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Abstract
Bolometry is a diagnostic technique common to most tokamak fusion experiments.
Bolometers are so widespread because they provide an important measure of the
energy lost from confined plasmas as radiation, as well as being relatively simple and
resilient in their construction. Here the bolometric diagnostics of the Alcator C-mod
tokamak, their function, limitations, and the details of their calibration, operation,
and maintainance are covered. In addition, the results of a variety of investigations
into the behavior of C-mod plasmas as observed by bolometers are presented and
discussed. The measurements dealt with are either measurements of total power
radiated by the plasma or measurements of radial emissivity profiles. Measurements
of the first kind are suitable for studying the effects of factors like net input power
while measurements of the second kind are useful for studying the effects of factors
like local temperature profiles and plasma composition.
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Chapter 1

Introduction

Thermonuclear fusion is a promising method of advanced alternative energy produc-

tion. Fusion uses fuels that are ample and widespread rather than scarce fossil fuels.

A fusion reactor would produce no dangerous or environmentally harmful pollutants.

Finally, once decomissioned the activated vacuum vessel of a fusion device would re-

main radioactive for far less time than the radioactive wastes typically produced by

fission reactors. For these reasons fusion represents a clean, long-lasting, and (hope-

fully) cheap source of energy. The possibility such an energy source is so attractive

that research into the construction of a working fusion reactor has therefore been

pursued for fifty years.

The obstacle that has stood in the way of the goal of fusion energy production is

the need to confine the particles and energy of a hot plasma in a small volume for

an amount of time sufficient to allow enough fusion reactions to occur. This problem

is still unresolved and makes the study of the means by which confinement is lost

critically important.

One of the principal ways energy is lost from the plasma is by means of electro-

magnetic radiation. Various processes occurring in the plasma give rise to radiation.

Chief among these are bremsstrahlung, cyclotron, and line radiation. This thesis is

a study of the bolometer system on the Alcator C-Mod tokamak [1] which measures

the spatial profile of the radiation emitted by the plasma.
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1.1 Fusion Research

The bolometer diagnostic detailed in this thesis is used to study the plasma in an

experimental tokamak built as a step toward an energy producing fusion reactor.

For this reason it is important to present some background information about both

magnetic confinement fusion research in general and the Alcator C-Mod tokamak in

particular. This section will provide an outline of the history of fusion research, a

brief introduction to the magnetic confinement of plasmas, and some details about

the C-Mod tokamak.

1.1.1 History

American, British, and Soviet fusion research was declassified in 1958. Ten years

after the general declassification of fusion research it was demonstrated that with

the technology then available the confinement achieved in tokamak devices was far

superior to that possible with magnetic mirrors and stellarators. Since then fusion

research has been focused on the tokamak magnetic confinement concept and that

concept remains, of the various magnetic and other confinement schemes, the one in

the most advanced stage of development.

Recently, there has been a resurgence in the research of stellarator technology.

This rekindling of interest in the stellarator approach to magnetic confinement has

resulted in the construction of new stellarator devices. These new devices, built

using modern design technology and manufacturing techniques, are now approaching

the theoretical capabilities of the stellarator design. Other magnetic confinement

approaches, including reversed field pinches, dipoles, and several variations on the

tokamak and stellarator designs are also investigated, though not in as many places.

Two final things to note: first, plasma confinement has many more applications than

fusion research and there are a great many confinement schemes ranging from purely

electrostatic Penning traps used to study non-neutral plasmas to cusp fields used to

investigate solar and space physics; second, research on fusion via laser-driven inertial

"confinement" has not been mentioned, though this field has experienced significant
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development of late.

1.1.2 Fusion and Tokamaks

Fusion

The success of any plasma confinement method or device built to pursue the possibility

of fusion energy production is generally gauged on the basis of how close one can come

to maintaining sustained fusion reactions in the device. The condition that must be

met for fusion to be sustained is easy to express (though not so easy to satisfy!): The

rate at which energy is added to the plasma system must (including energy from fusion

reactions) equal the rate at which energy is lost by the plasma. This is expressed as

the power balance equation

Pafus + Pheating = Floss (1.1)

Currently, the best candidate reaction for an energy producing fusion device is

the D-T reaction
2H +3 H n +4 He + 17.6MeV (1.2)

Simple kinematics tells us that the neutron carries 4/5 of the energy released in the

reaction or 14.1 MeV while the alpha particle carries only 3.5 MeV. This is important

for power balance because only power added by the charged alpha particles is present

in the P,f,, since the neutrons are not confined and are instantly lost from the

plasma. The confined plasma therefore gains Qa = 3.5MeV of energy for each fusion

reaction. The rate of these energy contributing reactions is determined by the D-T

fusion reaction cross-section. We will use the value of this cross-section that yields the

minimum possible ignition condition (this occurs at a plasma temperature of 27keV).

< av >= 6 x 10-22m3s - 1 (1.3)

Now we can fill in the factors in an expression for the first term of the power balance
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equation for a 50-50 mixture of deuterium and tritium (nD = nT = n/2) and equal

temperatures for all species.

12
Pafus = n < v > Q. (1.4)

where rne is the electron density. The rate at which energy is lost from the plasma

by diffusion is proportional to the energy contained in the plasma. The energy con-

tributed by each species in the plasma is given by the equation for the energy in a

monatomic ideal gas of the same temperature E = 1.5nT. If we ignore radiation

losses (something that will later be shown to be a mistake) and recognize that the

plasma is quasineutral then the last term in the power balance can be written

ls = 3neTe (1.5)
TE

The E in the constant of proportionality is the energy confinement time.

If the fusion power matches the power lost then the plasma is said to be ignited.

Our expressions for the corresponding terms in the power balance equation allow us

to obtain a condition for plasma ignition in terms of electron density and energy

confinement time as follows

1 123neTe- = ne < CV > Q,
TE 4

12T = neTE < v > Q

12T
< v > Qa

1 X 1020m-3s n ?eTE

To obtain the final equation we used the same T, (27keV) used to obtain (1.3)[2].

Tokamaks

Charged particles, like those that make up a plasma, are constrained to move in a

helical path around magnetic field lines with a frequency w, = qB/m and a gyro-
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radius p = 1 2E/m . This is the basis for the magnetic confinement of plasmas.

The tokamak confinement concept, at its most basic level, consists of enclosing the

plasma in a toroidal vacuum vessel and applying a closed toroidal magnetic field using

external coils. Additional fields are required to stabilize the system and prevent

it from expanding radially, notably a poloidal field, conveniently produced by the

current in the plasma itself, is necessary. The combination of the toroidal and poloidal

magnetic fields results in the tokamak having helical field lines.The plasma is confined

in the toroidal direction because the flux surfaces are closed in that direction. Several

limits on the parameters of the system are imposed by its physics and these limits

constrain what one can do with a tokamak and how one can do it [2, 3].

Beta Limits

The parameter P is the ratio of the plasma kinetic pressure to the magnetic field

pressure. Generally, one wants to design a tokamak so that P is as high as possible so

that a higher plasma pressure may be confined per unit of field strength, but there are

strong equilibrium and stability limits imposed on P values. There are many possible

forms for p. Two of the most useful of these are

2/yo < p >
p- B2(a) (1.6)

and
2t <p (1.7)

where Bo and B, are the poloidal and toroidal magnetic field magnitudes, respec-

tively. The poloidal beta value (p) is the ratio of average plasma kinetic pressure

(< p >) to the pressure of the poloidal magnetic field at the edge of the plasma. In

order to have a (circular) plasma in equilibrium the poloidal beta must satisfy

1
P < - (1.8)

where e is the inverse aspect ratio of the toroidal plasma e = a/R. The physical reason
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for this limit on 3p is that if the ratio between the kinetic and magnetic pressures is

larger than the limiting value, the last closed flux surface of the confining field will

infiltrate the main body of the plasma causing the plasma to flow out and confinement

to be lost.

The toroidal beta value is defined in a manner similar to the poloidal beta. The

difference is that the edge poloidal magnetic field strength is replaced by the on axis

toroidal field strength. To be stable to kink modes the plasma must satisfy the Troyon

limit

pt < 0.03 x p[MA](1.9)
aB(0) 

If the plasma is stable to kinks it should also be stable to ballooning modes which

impose a slightly higher limit on pt. The limiting value scales linearly with the

elongation e, (vertical size/minor radial size) of the plasma so tokamaks are usually

built to have plasmas with > 1.

1.1.3 Alcator C-Mod

Figure 1-1 shows a cross-section of the Alcator C-mod tokamak. C-mod has a com-

pact, high field torus design. C-mod typically operates at a toroidal field strength of

5-6 T and a plasma current of a little over 1MA though it is designed to be capable

of operation with a 9 T field and 3MA current [1]. The average electron density of

most shots is between 1 and 4 x 102 0m- 3. The tokamak has a major radius of 0.67 m

and a minor radius of 0.21 m (see Figure 1-1).

1.2 Plasma Radiation

This section gives some details about the most significant plasma radiation processes.

Cyclotron Radiation

Charged particles undergoing acceleration emit electromagnetic radiation. Since mag-

netically confined particles orbit about field lines they are continuously accelerated

14
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Figure 1-1: A cross-section of the C-mod Tokamak.
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and so are constantly emitting. The acceleration of a particle in a circular cyclotron

orbit is

acyc = w2 p (1.10)

where w, is the cyclotron frequency qB/m and p is the particle gyroradius vl/wc. The

rate of energy emission from a nonrelativistic particle with acceleration a is given by

dW 2 2 (1.11)

dt 67reOc3

If we take the velocity of the confined particles perpendicular to the magnetic field

confining them to be v = 2T/m then by (1.10) and (1.11) and the definition of

we, the rate of energy emisson due to a single particle is

dW = q (qB)4 2T) m 2

dt 67coC3 m m qB

( q4B2 
37rEo (mc) 3 T

'The power density of cyclotron emissions due to a single species is obtained by multi-

plying the last expression by the particle density of that species and using its charge,

mass, and temperature. Since electrons are much less massive than any of the other

plasma particles their contribution to plasma cyclotron emission is by far the greatest

even when impurities present in the plasma are taken into account.

To this point the discussion of cyclotron emissions from the plasma was much sim-

plified, particularly in that it deals only with emissions at the fundamental cyclotron

frequency. Radiation is also emitted at the harmonics of the cyclotron frequency but

at considerably lower levels. Also missing from the treatment is a consideration of

how much energy emitted by the plasma particles is actually lost. The plasma is

opaque to the fundamental electron cyclotron frequency and the lowest harmonics so

the rate of energy loss from the plasma due to cyclotron emissions is small, especially

compared to losses due to other radiating processes. In the operating regime of cur-

rent tokamaks cyclotron losses are negligible, though they are useful for temperature

16



measurements.

Bremsstrahlung

In addition to undergoing acceleration due to their orbits in a confining field the

particles in a plasma are accelerated by collisions with other particles. This is called

bremsstrahlung or braking radiation and it constitutes the most significant radiation

power loss process in a pure hydrogen isotope plasma.

The maximum acceleration due to a Coulomb collision between an electron and

an ion of charge Z is given by

Ze2

acoll 4romeb 2 (1.12)

where b is the impact parameter. We can make the approximation that the collision

lasts for a time 2b/v with v = /3T/m. Putting (1.12) into (1.11) and multiplying

by the duration of the collision gives the energy emitted in each collison in terms of

its impact parameter and plasma parameters. Integrating over impact parameters

(bearing in mind that the minimum possible impact parameter is the electron de

Broglie wavelength) gives an approximation close to the actual bremsstrahlung power

value which is most accurately given by

Pbrems e6 Z2 Te/ 2

(1.13)neni 6V3/273/2E3c33/ 2 (1.13)

as the equation for the power density of bremsstrahlung emissions due to collisions

between electrons and Z ions.

The classical treatment above must be corrected for quantum mechanical effects

by multiplying Pbrem by the Gaunt factor g. In a fusion plasma g is near unity.

Line Radiation

In a pure hydrogen isotope plasma bremsstrahlung radiation represents the minimum

possible energy loss not due to transport. In a real plasma with impurities, line

17



radiation from those impurities is usually comparable to or greater than that due to

electron bremsstrahlung.

The radiated power density due to impurity species Z has the form [4]

Prad,Z = nznefz(Te). (1.14)

The temperature dependence fz(T,), usually obtained from theoretical calculations,

is complicated and different for every species. Nevertheless, some accurate general

statements can be made about the temperature behavior of Prad. Above lkeV tem-

peratures low-Z impurities do not contribute to plasma line radiation because they

no longer have electrons to produce line emissions. In a tokamak, line radiation

from low-Z impurities comes from the edge where the temperature is sufficiently low.

High-Z impurities are another story, they retain some electrons through all or most

of the plasma and so radiate everywhere. In addition to radiating over a broader

range of temperatures high-Z impurities have an fz(Te) that is on average an order

of magnitude greater than low-Z impurities.

1.3 The Significance of Radiation Measurements

Radiation emitted by plasma particles and not reabsorbed by the plasma represents a

loss of energy from the plasma system. The energy lost in this way is a significant part

of the loss term in the power balance equation (1.1). For this reason it is important

to observe as closely as possible the radiation emitted by the plasma.

Several diagnostics used to study fusion plasmas depend on measuring the radi-

ations of that plasma. The temperature can be measured by means of the electron

cyclotron emissions of the plasma. The value of Zeff can be determined by measuring

the bremsstrahlung radiation while excluding line radiation. Spectral measurements

are used to obtain the (relative) quantities of different substances in the plasma. One

of the bolorneter diagnostics covered by this thesis is used to determine the total

power radiated from a plasma in the ultra-violet and x-ray regions of the EM spec-

18



trum. The other is an array of identical bolometers used to construct radial profiles of

the plasma, volume emissivity [5]. In a tokamak radiation in this range is dominated

by line emissions.
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Chapter 2

Bolometer Operation

The Alcator C-Mod tokamak is equipped with two types of bolometric detector. One

type is based on the thermal response of a metal foil to impinging photons and the

other is based on the photodiode behavior of a semiconductor. At present there are

two diagnostics of each type used to study plasma radiation in the tokamak. For each

type there is a diagnostic used to estimate plasma radiated power and another used

to obtain radial profiles of the plasma emissivity.

2.1 Detectors

2.1.1 Foil Detectors

The first type of bolometeric detector to discuss is the foil bolometer. As mentioned

above these detectors work because incoming radiation heats a small piece of metal

foil (in the case of the Alcator diagnostics, gold foil)[6]. The heating of the foil is

produced primarily by photoelectric absorbtion. The foil is in thermal contact over

its whole surface with a thin meander resistor see (Fig.2-1) for a schematic of the

meander resistor. Temperature changes in the foil are accompanied by a decrease in

the resistivity of the gold resistor. A bridge circuit, shown schematically below (Fig.

2-2), is used to convert this resistivity change to a voltage signal which is amplified

and recorded.

20



Figure 2-1: Schematic diagram of two of the detector resistors.

Vout

FF

Figure 2-2: Two of the foils are exposed and two are covered.
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When no radiation is inicident on the bolometers, all resistances are equal to a

common value, R. The signal from the bridge circuit is then

Vout VappR= (2.1)R 2

where Vot is the voltage measured across the circuit as shown in Figure 2-2, Vpp is

the total voltage applied to power the bridge, and AR is the change in the resistance

of the exposed resistors. If we can assume that the resistance R varies linearly with

with temperature T, a valid assumption for gold near room temperature, then we can

write

R = AT + Rt (2.2)

with Rrt as the room temperature resistance of a single resistor element and c as the

slope of the temperature-resistance relation (with units K for example) Vt is then

related to the change in foil temperature by

AT = Rrt Rrt Vt (2.3)
AT = ~ [(V_ -2) ce/2 Vpp(2.3)

'The power absorbed by the detector (as a function of time) is related to its temper-

ature by

Pdet(t) = (T(t) + Tc dt (2.4)

where Tc is the cooling time and sn is a calibration constant. The relation between

Pdet and the power radiated by the plasma will be discussed in the next chapter.

The advantages of foil type bolometers are their simplicity and reliability. The

bridge circuit arrangement with shielded detectors used as the reference resistors

makes the elimination of signals due to background temperature changes automatic.

The detectors can be calibrated in place (see below) and do not need to be adjusted

once installed. Detector sensitivity is only slightly susceptible to neutron bombard-

rnent. Additionally foil detectors have no spectral resolution. The gold foil bolometers

used on C-mod measure all radiation in their range of sensitivity. One important con-
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sequence of this feature is that identifying the source of the measured radiation is not

possible with any certainty using just bolometer information.

There are two main disadvantages to using foil type bolometer detectors. The

first is that; the foil is heated by neutral particles as well as by EM radiation. There

is therefore no way to distinguish between these two channels of plasma energy loss

using foil bolometers alone. The second drawback is that foil bolometers are slow.

The value of Tc, the cooling time has a lower limit which in turn limits the time

resolution of the diagnostic.

2.1.2 AXUV(Diode) Detectors

A photodiode allows more or less current to pass depending on how much light is

incident on it. The photodiodes used as bolometric detectors on C-Mod are sensitive

to light in the soft x-ray to ultraviolet range responding best from 20eV to 10keV [7].

Advantages of the diode detectors over the foil detectors are their faster time re-

sponse, their insusceptibility to heating by neutrals, and a simpler circuit to tune.

The major problem with using these detectors is that their spectral response is less

certain than for foil bolometers and the absolute calibration is known to vary depend-

ing on environment. This type of detector is especially susceptible to acquiring thin

coatings of material in the course of tokamak conditioning which play havoc with the

calibrations.

2.2 Arrangement

2.2.1 Detector Arrays

Both of the bolometer arrays (foil and diode) used to obtain plasma emissivity profiles

are contained in a box mounted at K-Port on C-Mod (see Fig. 2-3). The box is at

about the midplane and the apertures face A-port. Each array consists of sixteen

viewing chords which span the minor radius of the tokamak.
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Figure 2-3: Bolometer Box Arrangement. Solid lines: Sample viewing chords; Broken
lines: Tangency radii.
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Figure 2-4: 27r Bolometer View; Solid lines: Theoretical; Broken lines: With limiters
and tiles in place.

2.2.2 2v Detectors

The 27r foil and diode detectors are both located outside the plasma and considerably

below the midplane. Figure 2-4 shows that these detectors admit light from an entire

cross-section of the confined plasma, but exclude the divertor region.

2.3 Calibration of Foil Bolometers

2.3.1 Electronics

All the detector amplifiers have to be periodically adjusted to minimize voltage base-

line offsets, though small offsets are removed when the data is analyzed. The foil

bolometer channels must have a 5kHz AC signal applied across their bridge circuits.
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Figure 2-5: Simplified circuit diagram

Figure 2-5 is a simplified circuit diagram for a single foil bolometer channel. The

main parts of the circuit are the detector itself, the instrument amplifier, a phase

shifter, a nulling circuit, and a (synchronous) demodulator. When calibrating/tuning

the bolometer electronics typically only the variable resistors labeled R2, R3, and R8

on the circuit diagram are adjusted. Note that all of the IC components are powered

at 12V.

Amplifier

The instrument amp is mostly for adjusting the offset of the detector signal. However

the 10kQ range variable resistor has to be changed only occaisionally. The offset signal

coming from the detector channel (OUT 1 in the figure) is fed into an oscilloscope for

use in later calibration steps.

Phase Shifter

To properly demodulate the detector signal we need a signal that is 180 degrees

out of phase with the 5kHz driving signal. The phase shifter portion of our circuit

provides this signal but it must be tuned from time to time. To accomplish this the

output of the phase shifter (OUT2) is plotted on the other channel of an oscilloscope

that is reading OUT1. The variable resistors R2 and R3 are tuned until the desired
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half-period phase difference between the two plotted circuit outputs is achieved.

Nulling Circuit

We want to remove as much of the driving signal as possible so we use a nulling circuit

(we combine the out-of-phase signals through an op-amp). We want the minimum

output (OUT 3) possible from this part of the circuit. The resistor R8 is adjusted

to change how much of the phase-shifted signal is added. Since the adjustments to

the phase shifter resistors R2 and R3 is done by eye it is usuall necessary to use the

output of the nulling circuit to more finely tune the phase shifter to obtain a minimum

signal.

Final Steps

The output; of the Nulling circuit is synchronously demodulated using the output

of the phase shifter as the synchronizing signal. The output of the demodulator is

then put through a 500Hz low pass filter (7-pole Bessel) and sent on to the recording

electronics. The demodulator (OUT 4) and filter (OUT 5) outputs are checked to

make sure nothing goes wrong in those steps.

2.3.2 Time Constant

The time constant for each channel is determined by finding a shot that ends in a

disruption and fitting an exponential curve to the end of the raw voltage signal from

the detector bridge. An example of such a fit is shown in Figure 2-6 The decay

constant of the exponential will be the reciprocal of the channel's cooling time. The

cooling time constants of the channels vary between 0.08 and 0.15 seconds.

2.3.3 Sensitivity

The sensitivity of the detector is just a measure of how a measurable quantity, such

as the output voltage of the bridge changes in response to a change in incident ra-

diated power [8]. In section (2.1.1) discussing the response of the foil bolometer the
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Figure 2-6: Fitting a disruption curve to obtain c

calibration constant is a measure of sensitivity. First we consider the sensitivity of

the bolometer in a "cold" state. That is, the sensitivity of the bolometer to a single

power source absent any other power in the bridge. To do this we simply compare the

resistance of the detector when no voltage is applied to its resistance when a known

voltage is applied and a known power is dissipated in the foil.

The procedure is to (1) measure the resistance (R) across a detection resistor

with the power to the electronics rack turned off, (2) power the electronics and apply

a DC voltage of .5V to the bridge, (3) balance the calibration bridge by adjusting

the resistance of one leg so that the voltage across the bridge(Vbr)is zero,(4) apply

5V(= Vapp) to the bridge and measure the new voltage across the bridge (no longer

zero). This procedure is applied to each detector channel. The "cold" sensitivity of

the channel defined as

Sd Vbr 1 Vbr R (2.5)
Vapp/2P Vapp/2 (Vapp/2)2

where R is the resistance of one of the detector legs of the bridge, consisting

of just one resistor. When the bolometer is in use, the "cold" condition does not

hold - in operation each bolometer detector is an AC bridge circuit with a 5Vpp

applied voltage, in addition to the radiation falling on the detector, changing the
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temperature of the resistors and hence the measured signal. Fortunately, if we know

how the detector resistance depends on temperature (or incident power from any

source) we can relate the sensitivity at one temperature (such as when the detector

is "cold") to the sensitivity at any other temperature.

We can begin with a definition of the sensitivity (S) of the foil bolometer

S-dP R (2.6)

Where R is the resistance of the bolometer element and P is the power incident on

the bolometer, either due to radiation or current running through the bridge. If we

assume that R varies linearly with P then we can write

dR
R = Ro + d P (2.7)

dP

with a constant. The power dissipated in the bolometer is given in terms of the

voltage in the resistor by

V2

P = -- (2.8)R

and we can use this expression for the power with the linear equation for resistance

to obtain the following quadratic equation for the resistance

R2 - RoR- dRV 2 = 0 (2.9)dP

which has as its solution

R+ Ro + 4 -dV 2 /2. (2.10)

We can see from the definition of S that if we can assume that dR is constant then

the ratio between the sensitivities at two different temperatures is the reciprocal of

the ratio of the bolometer resistances at those temperatures
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S2 _ R1 (2.11)

S1 R2

so our solution for R can be used to relate the sensitivity of a bolometer when it is

cold to the sensitivity when it has AC current passed through it during operation.

Since we do not necessarily know d and we do know Scold it is useful to invert

(2.6) at S = Scold to get the constant slope. Using this information and taking (2.11)

can be rewritten

Swarm = cold _ a) + [(1 -a) 2 + b]2){(1 - a) ± [(1 - a)2 ± b]2(

where a =- 2Scold and b = ScoldV 2
en and a factor of RO was taken out after Ro was4Rold Rcold

expressed in terms of Rcold with Vapp taken to not be negligible for that purpose.

2.4 Determining the Position of AXUV Tangency

Radii

2.4.1 Setup and Procedure

In order to interpret measurements made with bolometers we must, for each detector

channel, know the radial position at which the viewing chord corresponding to the de-

tector intersects with a radius of the tokamak at right angles. This is called the radius

of tangency of the detector. This radius is not measured directly. The information

we have available to determine it is the radial and angular position of the focus of the

viewing chords (at the aperture of the AXUV detector) and, for each channel, the

radial location of the intersection of the viewing chord with a radius of known toroidal

angle. This last value, labeled RA, is found by placing a small mercury vapor lamp

in the tokamak and measuring its distance (in the A-port plane) from the inner wall

'when the AXUV detector channel of interest has its maximal response. The known

distance to the inner wall is added to the measured distance to give RA The knowns

and unknowns of this problem are shown in Figure 2-7 labeled in the following way:
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Rb = radial location of the aperture

Ob = angle between the aperture and the center of A-port

RA = radial location of intersection between the channel viewing chord and the

tokamak radius passing through the center of A-port

dA = the distance along the viewing chord between the aperture and RA

0c = Angle between the radius intersecting the aperture and the channel viewing

chord

OT = Toroidal angle between Rb and the tangency radius

dT= The distance along the viewing chord between the aperture and the tangency

radius

RT = The radial coordinate of the tangency point that we seek

2.4.2 Calculation

To calculate the tangency radius we need to apply some trigonmetry. We recall the

Law of Cosines for a triangle with sides a, b, c opposite angles A, B, C respectively:

c2 = a2 + b2 _ abcosC (2.13)

which can be applied to the triangle with sides a Rb, b - RA, C - dA(so C - b)

to obtain the length dA. Having dA we can apply (2.13) a second time, but with

a - Rb, b - dA, c - RA(so C Oc) and rearrange to get

2cos RbdA

Now since the triangle with sides RT, Rb, dT is a right triangle we have

dT = Rbcos O

RT = Rbsin c

OT = 2 Oc
2
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Figure 2-7: Schematic for the determination of tangency radii.

32

5 I
4 4 I

I



which are the values we wanted.

2.4.3 Results

The critical parameter obtained from these calculations is the value of RT for each

channel. The results are shown in Table 2.1 along with values of RT obtained from

various sources for comparison (all values are in millimeters).

The values in the columns labeled 1999 and 2000 are values reported by Dr. Boivin

for measurements made in the '99 and '00 run campaigns(note that my convention

for ordering channels is the opposite of his). It is not possible to associate the radii

obtained from the design drawing for the AXUV bolometers to particular channels.

However, the first and last measurements from the drawing match well with the first

and last channels calculated from our most recent measurements. I have listed the

drawing measurements in the row of the channel for which they are closest to our

RT values but that correspondence should

marked with "*" are broken. These results

not be taken too seriously. The channels

show that the variation of these measure-

Table 2.1: Tangency Radii for
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Ch 2002 ] 1999 J 2000 | Drawing]

1 921.9 920.6 898.8 920
2 916.2 914.4 893.3
3 * 906.8 886.5 904
4 900.2 897.6 878.0
5 892.2 887.6 869.1 880
6 * 875.5 858.1
7 866.8 861.9 845.6
8 855.6 846.7 831.6 852
9 834.9 829.8 815.9
10 821.4 811.3 798.7 820
11 802.1 791.1 779.7
12 781.4 769.2 759.0 776
13 759.5 745.9 736.9
14 736.4 721.2 713.4 728
15 712.4 695.1 688.4
16 681.1 668.0 662.4 672
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ments from setup to setup is well within the range of accuracy of the reconstructions.

These measurements can therefore be trusted and used in interpreting the AXUV

data.

The AXUV tangency radii are also useful for generating tangency radii for the

core foil array. Since each of the four blocks of foil detectors are mounted at a known

angle to the AXUV plate and the locations of the detectors on the blocks are fixed, we

know the angles between all of the foil viewing chords and any of the diode viewing

chords. With these angles and a measured RA from one of the diode channels we get

the RA values for the foil detectors and can repeat the process described above to get

their tangency radii.
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Chapter 3

Spatial Radiation Profiles

3.1 Inversion Problem and Solution

The problem faced when using bolometer data to generate spatial profiles of the

plasma emissivity is one of converting a line integrated power density to a volume

emissivity [9]. The mathematical technique for recovering spatial information from

line integrated data is often referred to as Abel inversion. Problems of this kind are

common to the inversion of data from other plasma diagnostics and astrophysical

observations so the basic technique is well developed.

3.1.1 Circumstances and Assumptions

The tokamak is circularly symmetric so the bolometer views, that is the lines of the

integration are all chords. We will assume the plasma is toroidally symmetric so that

the viewing chords can be treated as intersecting their corresponding tangency radii

at the same toroidal angle. This means we also assume the radial emissivity profile

we obtain is applicable all around the tokamak. Figure (3-1) shows the situation for

a single chord.
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Figure 3-1: Diagram for a single viewing chord, bordered by dashed lines. (After-
Bockasten 1961 [10])

3.1.2 Inversion

If we define e(r) to be the volume emissivity in units of power per unit volume then

the line integrated emissivity or brightness (in units of power per unit area) for the

detector channel, which we will hereafter identify by its tangency radius (y in Figure

(3-1)), is given by

b(y) = 2 e(r)dx. (3.1)

Since triangle xyr is a right triangle x = v/r-y, we can change equation(3.1) to an

integral with respect to the coordinate of interest r.

'ro 1
b(y) = 2 e(r)(r2 - y2)- rdr (3.2)

Now we can use Abel's inversion to write

e (r)o db(y2 r 2)ydy (3.3)7 r dy
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Figure 3-2: Diagram for a single chord. (Bockasten 1960)

db in this equation is known because we have several channels in the bolometer array.

The continous variable equations discussed in this section cannot be applied directly to

our bolometer data because we have a limited and discrete set of power measurements

each of which may contribute differently to the complete profile.

3.1.3 Calculation

The actual calculation of the spatial emissivity profile is carried out using matrix

methods. We begin the finite treatment of the inversion problem by defining a series

of concentric circles separated by equal increments in radius as shown in Figure (3-2).

We identify the j-th circle by its radius cj. These radii constitute a set of radial

coordinates onto which the inversion is mapped, corresponding to the coordinate r

in the previous section. We can also label the tangency radius of the viewing chord

of the ith detector by its length ri. This is a discretization of the coordinate y in the

previous section. The length of the portion of the i-th viewing chord between two
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adjacent circles cj and cj+l is

= 2( Cj -r- -) (3.4)

Figure (3-2) illustrates this. The factor of two is again present because equal portions

of the viewing chord lie between the circles on both sides of the tangency radius. The

rows of the matrix S are thus sets of discrete x coordinates and each row corresponds

to a particular detector view. S is what relates the tangency radii of the detectors to

our discrete coordinates.

Now that we have discretized versions of the various coordinates of the previ-

ous section we can rewrite the integrals found there as matrix products (matri-

ces will be denoted by capital letters while lower case symbols stand for vectors).

Equation(3. 1)then becomes

b(cl) = Slke(rk) (3.5)
k

Finding the emissivity vector e is now a matter of inverting (3.5) subject to two

conditions(the following comes from [11]). First, we want to have a minimal (Se -b) 2

so that we obtain the least-squares solution to our problem. Secondly, we wish to

ensure the smoothness of E. We do this by adding a term proportional to the square

of the second derivative of e, (De) 2, to the quantity we seek to minimize. Therefore,

we want to minimize

K = (Se - b)2 + E(De)2 (3.6)

where D is the discrete second derivative matrix given by

Di,i = -2

Di,i- = 1

Di,i+l = 1,

For arbitrary matrix A (either D or S in our case) we define A2 = ATA and the
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minimum is found by solving

O = [(eTST - bT)(Se - b) + eTDTDe]
de de

= 2STSe + 2EDTDe - 2STb

The solution is then given by

(STS + eD D)e = STb (3.7)

Now let's define a matrix M as follows to simplify the expression of the final inversion

M = STS + EDTD (3.8)

A singular value decomposition is carried out numerically to obtain a diagonal matrix

W such that

M = UWV (3.9)

with W a diagonal matrix and U and V mutually orthogonal. The pseudo-inverse

matrix used to obtain the solution to the matrix equation is then

M-1 = VW-1UT (3.10)

where W -1 is the same as W with the nonzero values (the singular values) replaced

by their reciprocals. Finally, the emissivity is just

e = M-STb (3.11)

where e is a vector of volume emissivities at the radial data points at the recorded

times and b is a vector of line intergrated emissivity or brightness readings from each

of the bolometer viewing chords, again at discrete time points. This is the linearized,

matrix form of Equation (3.3) from the previous section.

39



1.5

1.0

0.5

0.0

-0.5
C'I 1 2 3 4

Figure 3-3: The signal from a single channel.

It is easiest to see from the matrix form of the calculation that to obtain the

emissivity at some radius we add up the powers absorbed by the detectors with the

contribution of each weighted by how much of the detector's viewing chord is in the

region corresponding to the radius of interest.

The raw output of a single detector channel typically looks like Figure (3-3). This

raw signal (Vs) is related to the power absorbed by the detector channel Pabs by the

equation

Pabs = ( + dV) 1 (3.12)
dt V))V S

where Vi, is the input voltage amplitude across the detector bridge and Tc and S

are the quantities calculated as part of the calibration of the detector (see Chapter

2). This P,s absorbed by a detector channel is proportional to the radiated power

absorbed by a unit of area facing the plasma directly because the measured voltage

is, as discussed in Chapter 2, proportional to the temperature change in the detector.

The radiated power absorbed by the detector is given by.

Pabs = Et (3.13)4ir
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Et in this expression is the etendue of the detector channel, given by

ApAd
Et = 12 (3.14)

where Aap is the area of the aperture in the bolometer box,Ad is the effective aperture

due to the size of the bolometer detector foil and 1 is the distance between. We can

see that dividing Pabs by Et gives the correct units for b.

As can be seen from Figure (3-3) the measured voltage signal V, is quite noisy.

Taking the derivative of the signal, as is necessary to obtain Pabs magnifies the noise so

that simple, local average smoothing is not enough to suppress it. The noise filtering

technique used for the Alcator foil bolometer array data is a procedure called Lee

filtering which makes use of the local statistics of the measured signal. The filtering

algorithm was developed for use in suppressing speckle noise in satellite images [12].

The equation for the filtered signal y in terms of the measured signal z is

var(y)
+Y Y± + var(y) (3.15)

where

var(y) = var(z) + 2 (3.16)

and var(z) = z/(n - 1) and all averages are taken over 2n - 1 data points. The

smoothing is applied both to the measured voltage and its derivative but the smooth-

ing must be carried out over a larger time window (about twice as large) for the

derivative. For the C-mod foil bolometer array the time window is 40 milliseconds.

The effect of the filtering procedure can be seen by comparing Figure (3-3) to Figure

(3-4).

Following this procedure for each detector channel we can obtain a brightness

profile like the one shown below in Figure (3-5). The brightnesses from the different

chords can now be inverted as described above, following Equation (3.11) to give the

volume emissivity profile we are after which is shown here.
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Figure 3-4: The Lee filtered signal from a single channel.
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Figure 3-5: Brightness Profile
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Figure 3-6: Emissivity Profile

3.2 Sources of Error

There are two main sources of error in the radiation profile as measured by the foil

bolometer array: the voltage offset and the noise in the detector and associated

electronics.

3.2.1 Detector Voltage Offset

In addition to varying from channel to channel as one would expect the voltage offset

of the various channels also varies from shot to shot and linearly within shots (see

Figure (3-7)). We try to remove this offset as the data is analyzed by subtracting a

linear fit to the averages of the first few and last few time points where no real data

is taken. We denote regions where no data is available from the plasma with negative

times. Unfortunately, there is still uncertainty in the calculation of the magnitude of

the offset which must be included in the error.

3.2.2 Detector Noise

Figure (3-3') also shows that the signal from the bolometer bridges is subject to a

good deal of random noise. Even with reasonable binning and smoothing of the data
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Figure 3-7: No marking: Signal; Stars: Signal with approximate offset subtracted.

the errors of the line integrated powers are about 15%. These errors have different

effects depending on the channel they occur in as discussed in the next section.

3.3 Error Sensitivity

'The errors in the line integrated data must be propagated through the inversion

process to give proper error estimates in the final profile.

3.3.1 Relative Sensitivity of the Channels

It turns out that error accumulates as one probes deeper into the plasma [13] and

the accuracy of profile data is more susceptible to errors in the signals from the

innermost viewing chords of the bolometers. Figure (3-8) shows that at the same

fractional error in input signals the inner viewing channels have much larger errors.

Notice how insignificant the error due to the outermost channel is compared to the

nearly 50% error resulting from the same detector error in the innermost channels.

The next two figures show the result of this high sensitivity of the inner channels for

the final profiles.

Figures (3-9) and (3-10) illustrate the the significant differences in the effect of
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Figure 3-8: The fractional error of all channels was 10% in this demonstration.
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Figure 3-9: Outer Channels: Errors of 10,15, and 20%
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Figure 3-10: Inner Channels: Errors of 10,15,and 20%
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errors on inner channels compared to errors on outer channels. In Figure (3-9) we

see that errors in outer channels do not have a strong effect on the overall shape of

the profile. In contrast, Figure (3-10) shows the drastic effects of similar errors on

emissivity profile shape when the errors occur in a channel just ten centimeters closer

to the plasma core. Hopefully, these examples have demonstrated the nature of error

propagation in an Abel inversion.

The emissivity profiles discussed here can be used to recover the plasma radiation

as it is measured by the 27r bolometers. The radiated power absorbed by the 27r foil

is given by an expression like (3.12). An approximation (which assumes poloidal and

toroidal uniformity of radiation) for the power radiated in the detectable range is

then given by

P2 = Pabs,27r Awar (3.17)
A2 7rdet

where A2,det is the area of the 27r detector foil and Awall is the inner surface area of

the tokamak. A reconstruction from the array data can serve both to provide new

information about the plasma and as a check of our calibrations and calculations.

Comparisons of this kind are discussed in the next chapter.
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Chapter 4

Some Results

4.1 Overview

The results to be discussed in this thesis are of two categories: measurements of

plasma radiated power and measurements of the plasma emissivity profile. As men-

tioned at the end of the previous chapter radiated power measurements can be ob-

tained both from the bolometer arrays used to generate emissivity profiles and the

27r foil and diode bolometers. Results of this kind help us to determine how much

energy is being lost from the plasma via radiation under various conditions. In this

chapter one thing we will examine is how good the different bolometers are at provid-

ing a measurement of this radiation as well as the conditions under which it differs

significantly (e.g. when impurity concentrations are high). Emissivity profiles gath-

ered using the bolometer arrays tell us where in the plasma the radiation is chiefly

coming from. We use this information on the local emissivity values together with

information about local plasma properties obtained with other diagnostics to try to

identify the main sources of radiation in the plasma. Examples of this kind of work

which will be discussed in this chapter include using temperature profiles with the

emissivity profiles and known temperature-line emission curves of different species to

identify the main radiating species and determining the effect of the presence of a

temperature/density pedestal on the emissivity profile.
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Figure 4-1: Foil Array Radiated Power

4.2 One-Hundred Percent Radiated Power

When the plasma has a high impurity content we expect that all of the power input

will be radiated away. Under these conditions we can try to calibrate the bolometer

diagnostics (in fact there are not many other practical options for calibrating the

diode bolometers). Figure (4-1) shows the radiated power trace for a shot with

impurity injection. The time of the last impurity injection (which brings the impurity

concentration up to its final value before disruption) is shown as a vertical line on the

trace.

The next Figure (4-2) shows the time traces of the radiated power obtained from

the foil array and the two pi foil bolometer, along with the plasma current and average

density which are important in determining the radiated power, for the same shot.

The fraction of the total input power radiated for the same shot is shown in

Figure (4-3) for the segment of time following the final impurity injection. As shown

in Figure (4-3) the bolometer array measures 100% radiated power fraction for this

shot (accurate to about 5%) before disruption, as expected. For the plasma shown

the power input was entirely ohmic and the impurity injected was argon. Similar

results were obtained with a neon injection.

To determine the validity of this result the radiated power fraction as measured by
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Figure 4-4: Array Prad Fraction Histogram

Toroidal Field 5.4 T
Average ne 1.5 1020 m-3

Average Te 1.5 keV

Average Ip .78 MA

Table 4.1: Parameters for Figures 4-4 and 4-5

both the foil array and the 2 foil detector were determined at multiple time points

on several shots with maximum radiated power. The results are shown in histogram

form in Figures (4-4:Array) and (4-5:2w).

For shots for which 100% radiation is expected the radiated power fraction recon-

structed from the foil array bolometer data averages 98% with a standard deviation

of about 10%o and a range of +/-20%. The values obtained from the 2r foil for the

same shots average 100% with a 16% deviation and a +/-20% range.Table 4.1 shows

relevant data for the shots used to generate the histogram plots.
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4.2.1 Effect of RF Input on Power Fraction

In this section we will cover the attempt to determine what changes in radiated power

fraction, if any, result from increasing the input of RF heating power to the plasma.

We will also study the effect of the plasma mode on the way radiated power responds

to total input power. The results shown in Figure (4-6) were obtained by averaging

the radiated power fraction data from several instances with the desired input RF

power. Data from both foil array reconstruction and the 2r foil bolometer are plotted.

Figure (4-7) is similar to Figure (4-6) except that in this case the radiated power

output is plotted against the input power due to both ohmic and radio frequency

heating.

Table 4.2 shows the average plasma conditions (prior to RF input) of the plasmas

from which the power data for the figures was taken.

4.2.2 Discussion

Both plots show that radiated power increases with increasing input power, which is

expected since the plasma temperature should rise as the power increases. We can

53



0.0 0.5 1.0 1.5 2.0 2.5
RF Input Power (MW)

Figure 4-6: Radiated Power Fraction vs. Input RF Power

3.0

1 2 3 4
Input Power (MW)
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Toroidal Field 5.4 T
Average ne .9 102 0 m - 3

Average Te 1.5 keV

Average Ip .79 MA

Table 4.2: Parameters for Figures 4-6 and 4-7

also see that the plasma radiates more when in H-mode than when in L-mode. H-

mode is a high confinement mode in which a transport barrier develops in the plasma

edge leading to an increase in the plasma density and a doubling (approximately)

of the confinement time. The actual ratio of the energy confinement time after the

transition to H-mode to the confinement time before is called the H factor. One

feature of H-modes which is significant for our discussion is that they do not occur

below a threshold input power (see more about H-modes in e.g. [3]. Figure (4-7)

shows that data from shots that at some point have an H-mode match the data from

shots that remain in L-mode for their duration when input energies are too low to

produce an H-mode. Figure (4-7) also give us a better handle on the difference in

radiated power between H-mode and L-mode plasmas. We can see that in both cases

the radiated power scales linearly with input power. The difference is that in H-mode

the plasma the radiated power rises with input power about three and a half times

as fast as in the L-mode case. The reason for the power difference would not be so

clear from Figure (4-6) alone.
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Figure 4-8: Standard Shot Emissivity Profile

Toroidal Field 5.4 T
Average ne .9 1020m -3

Average Te 1.5 keV
Average Ip .79 MA

Table 4.3: Parameters For Figure 4-8

4.3 Emissivity Profiles

Typical emissivity profiles for unmodified, ohmically heated plasmas in Alcator C-

mod look like the one shown in Figure (4-8).

The main, consistently reproduced features in deuterium plasmas without inten-

tional injection of impurities are a strong peak at R=0.85 m and a minimum at R=

0.87 -.89 m. Emissivity values at the minimum are usually about a tenth the mag-

nitude of the maximum emissivity. Sometimes the reconstruction of the emissivity

profiles returns negative emissivity values. This is an unphysical result and must be

accounted for. The problem arises because the reconstruction of the emissivity profile

assumes a plasma that is always everywhere transparent to the radiation of interest,

and this is not the case for the real plasma. The general properties of shots like this
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one are common on C-mod. We will therefore be able to select similar shots so that

the features of their emissivity profiles may be compared. It should not be assumed

that emissivity profiles like Figure. (4-8) represent the results for a pure plasma. Pro-

files like this merely offer a kind of baseline for further comparison. There are many

impurities present, probably most important are carbon and molybdenum which radi-

ates strongly, not being completely stripped of electrons until reaching temperatures

a few times greater than those achievable in C-mod. In this section we will look

at the effects of adding various species of impurities (including larger than average

quantities of boron) to the plasma. We will also examine the effect of the varying the

location of the ion cyclotron resonance on the emissivity profile of the plasma. We

will also attempt a study of the effect of internal transport barriers on the emissivity

profile.

4.4 Impurity Species

The effect of different impurity species on the emissivity profile was checked by com-

paring shots similar in all respects except injected species. Shots with injections of

helium, argon, and neon are compared to shots with an injection of the plasma major-

ity species (deuterium). Note that all of these data come from L-mode shots without

RF heating. Figure (4-9) shows the results of this comparison, along with the errors

on the profille (corrected for radial position). The results are discussed in detail below.

Toroidal Field 5.4 T
Average ne .9-1.0 102 0m- 3

Average Te 1.3-1.6 keV
Average Ip .8 MA

Table 4.4: Parameters for Figure 4-9

Helium

Shots with an injection of helium have emissivity profiles very similar to shots with

only the majority species injected, so much so that it is not possible to tell solely from
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the profiles when the helium was injected (we'll see later that this is not the case for

other injected impurities). The observable difference in shots with a helium injection

is that the emissivity in the scrape-off layer (separtrix is at R=.89m) is depressed when

compared to the emissivity further in. This suppression of edge emissions is sustained

through the duration of the helium gas puff. It is not clear whether this suppression

corresponds to an increase in radiation from further in the plasma. However, as we

can see from Figure (4-9) there does not seem to be increased emissivity in the region

of highest emissivity in shots with deuterium injection.

Neon

Neon injection shots show a prominent peak in emissivity in a region associated with

diminished emissivity in deuterium injection shots. This feature of neon injection

shots as compared to deuterium shots is well outside the error range of the emissivity

profiles. Another feature of neon shots that is clearly visible in Figure (4-9) is that

the main emissivity peak decreases. Since this feature occurs deeper in the plasma it

is not as clear that it is not accounted for by the error in the emissivity profile. The
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decrease in emissivity at the inward emissivity peak is repeated in various shots and

over whole durations of neon puffing so we may be confident that it is not an artifact.

Argon

The puffing of argon gas into the plasma has an effect similar to the addition of neon.

An emissivity peak emerges in a region that is associated with reduced emissivity in

unmodified and deuterium injected plasmas. Unlike neon shots the inner emissivity

peak is, if anything, increased rather than diminished. This increase along with the

apparent slight inward shift of the peak visible for the particular case shown are not

strong enough or consistent enough to overcome the errors in the measurement. It is

therefore not possible to distinguish neon and argon injection shots on the basis of

snapshots of the emissivity profiles.

Discussion

Now we must see if we can make sense of the experimental observations presented so

far. As discussed in Chapter 2, the foil bolometer array "sees" radiation in the vacuum

ultra-violet and soft x-ray ranges. This means that it is sensitive to the line radiation

due to all the transitions of the lighter impurities. These impurities do not radiate in

the core of the plasma, being completely stripped of their electrons at tokamak core

temperatures. Such impurities,particularly neon, have been suggested as a means of

uniformly dispersing the plasma's heat in the edge while avoiding excessive radiation

from the core. Assuming, as we have, that differences between the emissivity profiles

of shots with an injected impurity and shots without are due solely to the impurity

we are left with the question of how the impurity got to where it is radiating from.

This brings us to the problem of impurity transport in a tokamak plasma. This

problem is treated in [14] and in great detail in [15] the following borrows heavily

from both of these. We can begin by writing down the classical (collisional/cylindrical

plasma) equation for radial (majority species) ion flux

= - dpi Tz dpz 3Ti (4.1)
pi dr ZTi pz dr 2 dr
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where the subscripts i and Z refer to the majority and impurity species respectively

and n,p,and T are the density,pressure, and temperature. Z by itself is the charge of

the impurity ion. Note that the second term of Eqn. 4.1 is negligible. The diffusion

coefficient for this flux is

D/i= t(4.2)
miWci TiZ

where iz is the i - Z collision time

127r3/ 1 /2 3 /2 2

7iZ = 21/2 nze e 1A (4.3)

We can now obtain the impurity flux rz from the majority ion flux (Eqn. 4.1,the

ambipolarity condition

ri - Fe + ZFz = 0 (4.4)

and the fact that Fr scales like

meTeVe i ni me ) (4 5)
miniviz nZZ 2 mi

which is small in a fusion plasma. For our purposes the important thing to note is that

Fi and Fz are of opposite sign. This means that as the majority species moves out

from the core the impurity moves in. The (flux surface averaged) diffusion equation

for the neoclassical case is the same as Eqn. 4.1 with different coefficients on the

terms, notably a factor of q2 multiplying the whole expression with q the safety

factor. There is also a neoclassical convective drift velocity Vn,,, or pinch. Finally, it is

known that real particle transport happens faster than the predictions of neoclassical

theory allow. On other toroidal experiments which have facilities to carry out fast

spectrally resolved measurements of plasma radiation in the VUV range experiments

have been carried out to determine D and Vn,, [16] but the results disagree even as to

whether neoclassical values are good enough for the lighter impurities (e.g. Ne and

Ar). Fast VUV spectrometers are necessary for such measurements because we want

to know how much of the impurity is in what charge state. The charge state appears

in the diffusion coefficient via the collision time Tiz (Eqn. 4.3).
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Work done to model the emissivity profiles for individual species in support of the

transport research described above is useful for interpreting our results as well. Based

on the work of Beil et al. [16] it seems that on argon injection shots the additionaly

peak in emissivity is due to Ar-XVI, Ar-XV, and Ar-XIV charge states.

An alternative, or more likely contributing, explanation for the observed changes

in emissivity profiles measured with the foil bolometer array is the local variation of

some plasma parameters in response to the impurity injections. Impurity injections

directly change the plasma density and temperature profiles (just by radiating in

the edge region they change the temperature profile), which in turn must affect the

emissivity profile (see Eqn. 1.14). These changes, and the change in Zeff which must

accompany any significant impurity injection are usually taken to be of secondary

importance..

4.4.1 Boronization

'To improve performance the Alcator C-mod tokamak is periodically boronized, that is

its inner surface is coated with a thin layer of boron. Immediately after boronization

it can be expected that a significant amount of boron enters the plasma from the

wall. To see the effect that this boron has on the emissivity we compare averaged

profiles fronm shots separated from a boronization by a different number of run days.

The results are plotted in Figure (4-10). Although the profiles come from different

boronizations they were all taken from ohmic L-mode shot segments. The average

properties of the shots are displayed in Table 4.5.

Toroidal Field 5.4 T
Average ne .94 102°m-3

Average Te 1.5 keV

Average Ip 1.0 MA

Table 4.5: Parameters for Figure 4-10

One thing that is immediately clear is that the post-boronization profile closely

resembles the profile I have presented as a "standard" shot. Much more so than the
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Figure 4-10: Profiles: No marking: Pre-Boronization; Star: 5 Runs Post-
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pre-boronization shot. This turns out not to be so surprising because profile shown in

Figure (4-8) was from a day right after a boronization (different from the borinization

resulting in the present profile). This is not a problem for the comparisons we have

used so far nor for the next section because all of these profiles were taken from shots

within three days of some boronization so we would want to allow for boronization

effects anyway. Figure (4-10) shows that there were no observable changes in average

profile from one boronization to another that did not fall within the errors on the

measurements. We know that plasma Zeff is strongly affected by boronization so

these results may show that effects on radiated power do not last long at all. It

should be pointed out that unlike the injected impurities discussed in this section

there is a steady source of boron throughout entire shots, except during disruptions.

4.4.2 ICRF Resonance Position Variation

Ion Cyclotron Resonance Frequency heating deposits power into the plasma at a

resonance layer in the plasma (see e.g. [17] for more on RF heating). We can study

the effect of changing the resonance location by using shots with different on-axis
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Figure 4-11: Resonances: No marking: On-axis; Star: Low field side; Diamond: High
field side

Average n 1.0 102°m- 3

Average Te 1.45 keV
Average Ip .8-1.0 MA

Table 4.6: Parameters for Figure 4-11

toroidal magnetic field strengths. Average emissivity profiles for shots with resonances

at three different locations is shown in Figure (4-11) all with 2.3MW of net RF power

at 80MHz. Prior to this investigation it was unknown whether changing the resonance

position would have any significant effect on the emissivity profiles of Alcator C-mod

plasmas. Further average properties of the plasmas are recorded in Table 4.6

We start; by identifying the salient features of the emissivity profile in shots with

on-axis RF heating. Two distinct examples of on-axis heated shots are provided by

the profiles without special symbols on the plots in this section and the similarly

unmarked profile in Figure (4-12) of the next section. These profiles show what is

common to D plasmas without RF heating (see Fig. (4-8)). The profile shape is

similar to the one already seen in ohmically heated deuterium plasmas with the main

difference being a broadened and intensified primary peak in emissivity resulting in an
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outward displacement of the emissivity minimum. Figure (4-11) shows that profiles

for high field and low field shots are virtually identical to each other within the error

of the measurement but are substantially different from the profile of a shot with on-

axis heating. Specifically both profiles from shots with off-axis ion cyclotron heating

seem to show an overall inward shift of the emissivity. This behavior cannot really be

confirmed in the main emissivity peak because of the large errors deep in the plasma.

The high enissivities in a region where low emissivity is expected in shots with on-

axis heating are unmistakable though. These results demonstrate that the location

of the ion cyclotron resonance, at least whether it is on- or off-axis has a moderately

significant effect on the shape of the emissivity profile.

4.4.3 Revisiting an Impurity

Armed with the information we now possess about the behavior of deuterium plasmas

when subject to ion cyclotron heating we can return to an injected impurity we ignored

until now. Lithium is injected into the plasma in the form of a single pellet which is

ablated and dispersed. Lithium probably should not show up in emissivity profiles

as it is a quickly ionized low-recycling species which should leave the plasma after

not much longer than the foil array detectors' time resolution. The reconstructed

radiated power measurements do not show a response to the addition of Lithium.

Figure (4-12) compares an average emissivity profile of shots with RF heating and

lithium to aE shots without lithium. The deformation (compared to the lithium-less

shots) of the emissivity peak to include a lump to the outboard side is similar to but

not quite the same as the behavior of shots with argon and neon injections. This

feature is sustained throughout the application of RF heating, raising the suspicion

that it may be an artifact of the heating after all. The feature in the lithium profiles

may be left over neon as that gas was injected close to the Li pellet shots.
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Figure 4-12: Profiles: No marking: Deuterium; Star: Lithium

4.4.4 ITB Effects

The information about off-axis ion cyclotron heating also frees us to investigate the

emissivity profiles of plasmas with internal transport barriers (ITBs). These barriers

are produced using off-axis heating. Following the discussion about impurity trans-

port, we can perhaps expect that an alteration in the transport properties of the

plasma will result in a change in the emissivity profile. Figure (4-13) is a comparison

of emissivity profiles showing a plasma with RF heating and no ITB and a plasma

with RF heating and a double barrier ITB. Both profiles are from shots with argon

injected.

Table 4.7 shows the average data for the shots used to generate Figure (4-13).

Note that the on-axis field is higher than usual, resulting in an off-axis RF resonance

location. The presence of RF heating also explains the higher average temperature

for these shots.

There are a couple of possibly important differences in plasma condition between

the two cases shown. First, the heating in the non-ITB case is on-axis while the heat-

ing in the ITB case is off-axis. Secondly, the RF heating power is about .5MW greater
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Figure 4-13: Profiles: No marking: No ITB; Star: ITB

Toroidal Field 6.4 T
Average n 1.0 102 0m- 3

Average T 1.85 keV
Average Ip .8 MA

Table 4.7: Parameters for Figure 4-13
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in the non-ITB case. There is, however, only one significant difference between the

profiles. The second minimum in emissivity, occuring in the pictured case at R=.91,

is common to most of the ITB plasmas studied but appears to be unique to them.

This seems to be a real, if small, effect but it is difficult to explain. The minimum

in emissivity appears to occur a full centimeter out from the density/temperature

pedestal possibly due to a lack of spatial resolution. [Additionally the emissivity

begins its drop further in.]

4.5 Impurity Identification by Temperature Pro-

file

When impurities like neon or argon are intentionally injected into the plasma we can

be fairly certain that the majority of the radiation is due to that impurity. When the

contamination of the plasma is not intentional identifying the species responsible for

most of the radiation is more problematic.

One approach is to use the temperature profile of the plasma together with its

emissivity profile. This approach to identifying the main contributor to plasma radia-

tion is based on the fact that different species have strong radiation peaks at different

temperatures [18]. Plasma temperature profiles are available from Thomson scatter-

ing and ECE diagnostics. We can use the emissivity profiles from the bolometer array

to match peaks in the emissivity to a local temperature. From this and information

about the temperatures at which peaks in radiation associated with the different

species occur we can try to identify which species is responsible for the radiation

peak.

Figure (4-14) shows a spatial emissivity profile (the solid line indicates the separ-

trix and the dashed line shows the limit of the core Thomson scattering diagnostic),

while figure (4-15) shows the same emissivity profile plotted against temperature as

obtained from Thomson scattering (the temperature profile is shown in Figure (4-16)).
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Figure 4-15: Emissivity vs. Temperature
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Figure 4-16: Temperature Profile

Unfortunately, this method has not been successful for the identification of the

principal radiating species. Though clear peaks in the emissivity profile are observable

it is not possible to reliably relate them to emission peaks of particular species. Part

of the problem is that it is difficult to distinguish effects of species identity from effects

of density and temperature. Recall from the Introduction, that plasma radiation is

proportional to both the density and the temperature. The main difficulty, however,

is that emissivity peaks as measured by the bolometer array do not reproducibly

correspond to particular temperatures. As we have already seen in cases with high

concentrations of injected impurities(Section 4.4) emissivity profiles corresponding to

different impurity species are distinguishable. The possibility of identification does

not seem to extend to typical plasmas at this time.

In this chl-apter several studies of the emission properties of tokamak plasmas from

Alcator C-mod tokamak both in spacial profile and in total have been reported. Many

of the investigations discussed here yielded negative results. As examples, it would

have been useful to be able to identify impurity species present in the plasma or

observe the diminution of boronization effects on the basis of the emissivity profile

obtained from the bolometers. On the the other hand, we now know that studies of

these properties of the plasma will not work with the current bolometer setup.
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Chapter 5

Summary, Conclusions, and Future

Work

5.1 Summary

This thesis is an attempt to gather together the information available about the

bolometer diagnostics of the Alcator C-mod tokamak and to present some results

obtained using these diagnostics. The chapters comprising the thesis deal with the

fundamentals of bolometer operation and why they are useful diagnostics to have

on a tokamak (including some rudimentary information about tokamaks in general

and C-mod in particular), the details of bolometer operation, the use of tomographic

techniques and multiple bolometric sensors to generate emissivity profiles of mea-

sured plasmas, and, finally, some results obtained using the equipment and methods

discussed in the earlier sections.

5.1.1 Bolometer Basics

A bolometric diagnostic is used to measure radiated power. This diagnostic is im-

portant in a tokamak because radiation is one of the main ways the confined plasma

loses energy and since energy (and particle) confinement is what we are about it is

important to try to understand radiative losses as well as possible. We would like
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to understand how both total radiated power and plasma emissivity profile shapes

behave under a variety of plasma conditions.

5.1.2 Alcator Bolometer Details

The bolometer diagnostics of Alcator C-mod covered by this thesis are of two varieties.

There are two sets of tangentially viewing bolometer arrays (for forming emissivity

profiles as well as reconstructing total radiated power) one is made up of silicon photo-

diode detectors and the other has bridge circuits made of matched meander resistors

in thermal contact with gold foils either shielded from or exposed to the radiation

of interest (see Chapter 2). Similarly there are two wide aperture or 2r bolometers,

one of each type as described above. Chapter two includes figures illustrating where

exactly in the tokamak the detectors view as well as details of how they work.

5.1.3 Profile Reconstruction: Abel Inversion

Chapter three details the process of obtaining radial profiles of plasma emissivity

from the tangentially viewing bolometer arrays via tomographic (Abel) inversion.

The important equation governing this procedure is

e(r) = 1 db(y r2) yd (5.1)

where e(r) is the emissivity profile and b(y) is the power absorbed (per unit area) by

the detector with tangency radius y (see Chapter 3 for the relevant figures).

Another important topic covered in the third chapter of the thesis is the nature of

error propagation through the Abel inversion. A result of [8] shows that uncertain-

ties in the incident powers measured by the detectors produce greater errors in the

emissivity profile when they come from detectors viewing closer to the center of the

plasma. Another way of putting this is to say that uncertainty in the radial emis-

sivity profile decreases as one moves out in radius. Correctly handling the errors in

the profile is vitally important for making meainingful comparisons between profiles

from different plasmas as discussed in the next section.
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5.1.4 Results

In this section I will recaptitulate the problems whose investigation is described in

chapter four, the outcome of these studies will be saved for the conclusions section.

Two kinds of measurements are possible using the bolometer diagnostics of C-mod:

we can measure a large fraction of the total radiated power and we can get radial

emissivity profiles as discussed above. The first of these two kinds of measurements

is available both from the 2r foil and by reconstruction from the tangential foil array

while the second comes only from the foil array. The diode measurments are not used

because of unavailablity of reliable calibrations for the photodiode detectors.

Problems of Radiated Power

The first problem to be investigated is the power radiated from plasmas where one-

hundred pecent of the input power is expected to be radiated back. We would like

to know how much of the radiated power is observed by the detectors and use the

information to check calibrations. Another question that was studied was the way

that radiated power depends on total input power and input RF power both in H

mode and L mode.

Problems of Profile Shape

There are several questions that fall under the category of profile shape problems.

'The first problem is to determine what will serve as a "standard" emissivity profile

shape so that comparisons to other profiles are easier and more informative. The

next problem tackled was an attempt to connect the features of the emissivity profile

to the presence of particular impurity species. One method that was tried was to

use the temperature profile and information about which impurities radiate the most

at which temperatures to try to identify the impurities present. Another approach

that was tried was to look for unique features in the emissivity profiles of plasmas

with known highly radiative impurities to see if they could be distinguished from

each other and the profiles of plasmas lacking impurities. In the spirit of comparing
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emmissivity profiles we move on to comparing profiles from shots with rf power input

at on-axis and both inboard and outboard off-axis resonance points. Once information

was obtained about shots with off-axis heating it was possible to study shots with

internal transport barriers.

5.2 Conclusions

The bolometer diagnostics of Alcator C-mod provide accurate and consistent mea-

surements of the power radiated by the tokamak plasma. At large impurity concentra-

tions the plasma is observed to radiate essentially all of the input power. The power

emitted by the plasma is dependent on both the confinement mode and the amount

of power input. In both H-mode and L-mode the radiated power, as measured by

both the 2 and array foil bolometers, is linearly dependent on the input power. The

difference is that in the H-mode case the proportionality factor is much larger.

Profile studies proved more difficult as there was significant variability of profiles

between and during shots, even when plasma conditions were matched as well as

possible. Despite the difficulties and errors larger than one would like it is possible to

identify the features characteristic of "typical" plasma profiles and in many cases it

is also possible to identify the differences produced by changes in plasma properties

or composition. Changes were observed upon the addition of argon and neon. No

significant differences were observed between plasma profiles of plasmas with and

without the injection of helium and lithium. A small shift in the location of peak

plasma radiation was observed between shots with off-axis as opposed to on-axis

RF heating. However when the RF resonance position mapped to the same plasma

flux surface no differences were observable between high- and low- field side off-axis

heating. Profiles for plasmas with an ITB differed from the averaged reference set of

profiles only in the far edge of the plasma.
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5.3 Future Work

The first improvement to be made is to extend the measurements of the foil bolometer

array to the center of the plasma. The inclusion of the plasma core will make it

possible to use all of the temperature and density profile data already available in

conjunction with radiation profile measurements. The addition of core views should

also improve the accuracy of radiated power measurements made using the foil array.

The photodiode detector based diagnostics can be improved by finding a method of

calibrating them reliably, the main requirement for this would be a properly calibrated

source.

Further possiblities for work on continuum radiation measurements for the C-mod

tokamak not limited to the existing diagnostics can be divided into a few categories.

Improvements can be made to the spatial properties of the measurement and the time

resolution of the detectors..

Other Views

The addition of other viewing directions oriented poloidally and at an angle to the

existing bolometer array views will make it possible to obtain poloidal cross-sections

of the plasma rather than just profiles. This kind of work was in fact already done at

on C-mod. Cross-sections were obtained for the plasma at the entrance to the divertor

using an additonal array placed at the divertor nose. These cross-sections necessarily

covered only a small region of the plasma determined by their placement. Placing a

bolometer array at, for example, a vertical port and aiming it poloidally and perpen-

dicularly to the foil array would provide the kind of cross-section I am talking about.

Size limitations recommend the used of a diode array so this returns to a problem of

properly calibrating such a bolometer detector. Using diode detectors for this purpose

will also result in the possibility of improved spatial resolution (more channels can be

packed in)and improved time resolution (because, as mentioned before, photodiode

detectors have faster response times).
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