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by

Nicholas Chiang
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Materials Science and Engineering

ABSTRACT

Oil is one of the most valuable natural resources in the world. Any technology that could
possibly be used to conserve oil is worth studying. Biomass waste to olefin (WTO)
technology replaces the use of oil as a feedstock. WTO technology is actually a
combination of two different processes: the waste to methanol (WTM) process and the
methanol to olefins (MTO) process. However, WTO technology is still not commercially
applied. Despite the environmentally beneficial advantages of biomass waste to olefins
technology, the economic advantages or disadvantages still need to be explored further.
This thesis tries to determine under what operating conditions (production volumes,
feedstock prices, etc.) make the biomass waste to olefins technology most competitive.
The WTM process is the economical limiting factor in the WTO technology. However,
for relatively significant production volumes, the WTO technology is still competitive
with a slight decrease in biomass feedstock price.

Thesis supervisor: Randolph E. Kirchain, Jr.
Title: Assistant Professor of Materials Science and Eng. Sys. Div.
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1. Introduction

The United States consumes more oil than any other country in the world. The

United States currently consumes approximately 20 million barrels of oil a day, which is

nearly four times that of Japan, the country with the second highest consumption of oil in

the world [1,2]. The United States' demand for oil is expected to grow significantly

during the next couple decades. With growing demand for oil as well as higher oil prices,

the conservation of oil has becoming an increasingly important issue.

Oil is not solely used to produce fuel for vehicles. It can also be refined to

produce plastics. One possible method of conserving oil is to find a substitute feedstock

to produce plastics. Using today's technology, it is possible to produce plastics using

biomass waste as a feedstock. Biomass waste is any kind of organic matter that can be

burned to produce heat. Another advantage of using biomass waste as opposed to oil as a

feedstock is that it is a renewable resource while oil is not. Some examples of biomass

waste include wood, agricultural waste such as crop residues or livestock manure, and

municipal waste such as sewage.

The technology evaluated in this thesis converts biomass waste to olefins, with

particular emphasis on using wood as a feedstock. Olefins are a group of unsaturated

hydrocarbons that have double the number of hydrogen atoms as carbon atoms per

molecule. They are also known as alkenes. Ethylene and propylene are the two types of

olefins that are produced. Some examples of products that are made with or derived from

ethylene and propylene include: antifreeze, detergents, cosmetics, and adhesives.

However, most of the ethylene and propylene produced are linked with molecules of the

same kind to produce polyethylene and polypropylene which are two of the most

commonly used plastics in the world.
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In 2003 the worldwide demand for ethylene was estimated to be 103 million

tonnes while the worldwide demand for propylene was estimated to be 61 million tonnes

[3]. By the end of 2009, the worldwide demand for ethylene is expected to grow to 128

million metric tones while the worldwide demand for polyethylene is expected to grow to

78 million metric tons. One thing to note from this data is that the demand for propylene

is expected to grow relatively faster than that of ethylene.

The dominant technology used today to produce ethylene and propylene is steam

cracking, which is a process in which saturated hydrocarbons are broken down into

smaller, usually unsaturated, hydrocarbons. The main feedstock used in steam cracking

is naphtha, which is a mixture of different volatile flammable hydrocarbon liquids.

Naphtha is produced by distilling oil.

The biomass waste to olefins process is actually a combination of two separate

technologies: the biomass waste to methanol (WTM) process and the methanol to olefins

(MTO) process. Both technologies have been studied extensively in the past independent

of the other. Most of the research in the WTM technology has been geared toward

creating a sustainable fuel. The methanol was to be used in fuel cells to power cars. The

idea was that fuel cell vehicles would cause less pollution and also reduce the United

States' dependence on importing oil from other countries.

Currently the WTM technology has not found any widespread commercial use.

However, there is a company based in Ft. Lauderdale, FL still exploring this technology.

Enerl is a company that makes lithium batteries and fuel cells [4]. Enerl is toying with

the idea of using orange peels as a feedstock to produce methanol. It is estimated that

Florida produces about 8 million tons of orange peels a year, which are usually used to

make cattle feed. Enerl was recently awarded a five hundred thousand dollar grant to
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carry out their research. Enerl is planning to use the methanol as an energy source to

power an interstate highway rest area in Florida.

Mobil did the majority of the original research in MTO technology during the

energy crisis of the 1970s [5]. The MTO process was an intermediate step in creating

gasoline from methanol. As a result, Mobil developed the MTO process alongside the

methanol to gasoline process. Since that time other groups have focused research on the

MTO process by itself. The MTO process was recently commercialized due to the

collaborative efforts of two different companies: UOP and Hydro [5]. UOP constructed a

demonstration plant in 1995 capable of processing one metric ton of methanol per day.

According to their studies, UOP claimed that they could scale this production by about a

factor of 8000 to produce one million metric tons of ethylene and propylene per year.

UOP currently licenses their MTO process and the catalyst that they use.

The purpose of the Master of Engineering thesis is to evaluate a new

technology and determine the feasibility of its commercialization. Many factors

influence the commercialization of a technology. Some examples include technological

barriers, intellectual property issues, and government regulations. This thesis is focused

primarily on evaluating the operational costs of the biomass waste to olefins (WTO)

process as a means to describe its potential for commercialization. The operational costs

encompass the fixed and variable costs of the entire process. Fixed costs include

expenses for equipment, maintenance, overhead, and building space. Variable costs

include expenses for materials, labor, and energy. These expenses are measured with an

analytical technique called cost modeling. The objective of a cost model is to determine

the operational costs of a technological process by analyzing the process. A more

detailed description of the basics and methods of cost modeling will be discussed later.
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After determining the operational costs of the biomass waste to olefins process,

these values can be compared to recent prices of ethylene and propylene. The feasibility

of commercializing biomass waste to olefin technology, in terms of operating costs, can

be estimated through this comparison. This thesis tries to determine under what

operating conditions (production volumes, feedstock prices, etc.) make the biomass waste

to olefins technology most competitive.

This thesis attempts to develop accurate cost models for the WTM and MTO

processes. The WTM cost model is independently analyzed and the calculated cost of

producing methanol with WTM technology is compared to the cost of producing

methanol with current technology. The MTO cost model is analyzed with a set price for

methanol feedstock. The WTM and MTO cost models are then combined and analyzed.

The calculated cost of producing olefins with biomass waste to olefins technology is

compared to a recent price for olefins.

The backgrounds and descriptions of the WTM and MTO processes will be given.

Then there will be an introduction to the basics of cost modeling. Finally, the results and

analysis of the WTM and MTO cost models will be discussed.
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2. WTM Technology Background

The WTM process can be broken down into a number of steps: 1) pretreatment,

2) gasification, 3) gas cleaning, 4) syngas processing, and 5) methanol synthesis [6-9].

Figure 1 displays a block diagram of the WTM process.

Biomass Pretreatmen Gasification -- Gas Syngas Methanl Methano
waste Cleaning Processing Synthesis

Figure 1. Block diagram of the waste to methanol process.

2. 1 Pretreatment

The first step is to pretreat the waste. This involves chipping and grinding the

waste into particle sizes of roughly 0 to 50 mm in diameter. The feedstock is then dried

to a moisture content of approximately 10% to 15%.

2.2 Gasification

The waste is then passed on to a gasification reactor where it is heated in the

presence of steam and oxygen to produce a synthetic gas composed of hydrogen, steam,

carbon monoxide, carbon dioxide, methane, and ethylene. The gasification step usually

takes place between temperatures of 800 to 1000 degrees Celsius. There are also some

by-products produced such as tar, sulphur, and ash. Figure 2 is a diagram of a typical

IGT gasifier.

Biomass

Srear -+ oxgan

Figure 2. Diagram of a typical IGT gasifier [6].
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2.3 Gas Cleaning

These by-products are removed during the gas cleaning step. It is important to

remove these contaminants because they cause wear and corrosion throughout the plant,

and they also lower the activity of the catalysts that are used later on in the chemical

reactions that take place in the following steps.

2.4 Syngas Processing

During syngas processing, the product gas is furthered refined. The methane and

ethylene are converted into carbon monoxide and hydrogen with the aid of a catalyst in a

process called reforming. The addition of the catalyst is needed for these reactions to

take place.

CH4 + H20 CO + 3H 2

C2H4 + 2H20 2CO + 4H2

The amount of carbon monoxide is then adjusted using the water-gas shift reaction,

which is shown below. Once again, a particular catalyst is needed to for this reaction to

occur. The amount of carbon dioxide can be adjusted using carbon dioxide scrubbing.

Typically, a hydrogen to carbon monoxide ratio of 2:1 with relatively small amounts of

carbon dioxide is desired. This ratio is important because it ensures that the

stoichiometry of the chemical reactions during methanol synthesis is satisfied. This step

is crucial in converting the feedstock into methanol because a certain ratio of carbon

dioxide, hydrogen, and carbon dioxide is required for optimal methanol production. And

if necessary, carbon monoxide can be reacted with water to produce carbon dioxide and

hydrogen as described by the following chemical reaction to further control this ratio.

CO+ H20 CO 2 + H2

2.5 Methanol Synthesis
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During methanol synthesis, the carbon monoxide and carbon dioxide react with

hydrogen to form methanol. These reactions take place in the presence of a copper oxide

or zinc oxide catalyst. The first reaction produces the majority of the methanol. The

relatively small amount of carbon dioxide in the gas acts as a promoter for the primary

reaction and helps maintain the catalyst activity.

2H2 + CO -) CH 3OH

3H2 + CO2 CH30H + H20

As mentioned earlier, the molar ratio of carbon monoxide, hydrogen, and carbon dioxide

is important for optimal methanol production. The quantity

H2 - C02R=
CO+C02

should have a minimal value of 2.03. Figure 3 shows a typical methanol reactor.

Steam

Boiler
Feedwater

;acted Syngas
thanol Product (vapor)

Disengagement Zone

Liquid

apor
ibble

2/ Catalyst Vapor
O Bubble

Catalyst Powder
lqhrripd in Oil

Syngas
Feed
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Figure 3. Diagram of a typical methanol reactor [10].



3. MTO Technology Background

The MTO process can be split into two parts: the reactor section and the product

recovery section [5,11]. Methanol is preheated and fed into the reactor. The conversion

of methanol to olefins requires a catalyst. During the reaction the catalyst accumulates

carbon which reduces its activity. So the catalyst is cycled through a regenerator where

the carbon is removed and then fed back into the reactor. The reactor operates between

the temperatures of 350 to 550 degrees Celsius. The product gas formed by the reactor is

composed of ethylene, propylene, carbon dioxide, steam, propane, ethane, and methane.

The product gas is then cooled, causing some of the steam to condense into water

which can be removed. The carbon dioxide is then chemically absorbed and the

remaining water in the product gas is removed with a dryer.

During the ethylene and propylene recovery step, the propane, ethane, and

methane are separated from the ethylene and propylene by through the use of chemical

splitters. The entire process produces approximately one metric ton of ethylene and

propylene for every three tonnes of methanol. Also, the ratio of the propylene to ethylene

produced can be somewhat influenced by the operating conditions of the methanol

reactor. Figure 4 shows a diagram of the UOP MTO process.
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Product Recovery Section

-I CH4

Product

Fluid-Bed
Reactor

MeOH

Caustic -

.Flue r
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Air X

Rx = Reactor
R = Regenerator
S = Separator
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Figure 4. Diagram of the UOP MTO process [5].
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4. Cost Modeling Background

A cost model uses technical information about a process to determine the

operational costs [12-14]. The model should also be able to address issues such as

changes in product design or process operation such as the production volume.

Eventually the goal is to have the model measure the operational costs in terms of two

rates: cost per unit and cost per time period. Usually, the cost per unit is a good measure

for comparing different technologies. Cost models are developed by working backwards.

The resulting cost is linked to a sequential number of characteristics that can be

eventually quantitatively described by the technical information given about the process.

Cost modeling is used as a tool to make decisions concerning a particular technology

before it is implemented.

There are four basic steps in creating a cost model: 1) define the question to be

answered, 2) identify relevant cost elements, 3) diagram the process operations and

material flows, and 4) relate the costs to what is known.

The first step is to define the question to be answered. What is the process being

modeled? A solid understanding of the process is necessary since the technical

information about the process acts as the basis of the cost model. Who would be

providing the money to finance this technology? The perspective of the financer is

needed in the following step when determining the relevant costs. Are there any

alternative or competing technologies? The costs of alternative or competing

technologies can act as a standard of measure for the process being modeled.

The second step is to identify the relevant costs. This relevance depends on the

process itself as well as the question being answered by the cost model. When the

purpose of a cost model is to compare different technologies used to create functionally
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equivalent products, the common relevant costs include material, energy, labor,

overheard, building, and equipment costs. These relevant costs can be divided into two

groups: variable and fixed costs.

Variable costs are directly proportional to the production volume of a process.

Variable costs include expenses for materials, labor, and energy. Material costs are

primarily determined by the amount of raw material needed by the process and the price

of the raw material. Material losses during the process as well as process consumables

such as catalysts also need to be considered. Labor costs are determined by wages and

the number of workers needed. Energy costs are determined by the amount of electricity

needed to run the equipment as well as any other energy inputs required by the process

such as heat.

Fixed costs are not directly proportional to the production volume of a process.

Fixed costs include expenses for equipment, maintenance, overhead, and building space.

Equipment costs include the cost of the machinery used for production along with the

installation costs for the machinery. The equipment costs are usually paid in installments

over the lifetime of the machinery. Maintenance costs are taken as a proportion of the

equipment costs. Overhead costs include managerial labor and other support services.

Building space cost is simply the cost of the space required by the process machinery and

utilities. Building space cost is also paid in installments over the lifetime of the building.

Table 1 lists common relevant costs in cost modeling.

Table 1. Table of the common relevant costs in cost modeling.

Variable Costs . Fixed Costs
Materials Equipment

Labor Maintenance
Energy Overhead

Building Space

16
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The third step is to diagram the process operations and material flows. This

involves breaking the process down into a number of steps. The material flowing in and

out of each step needs to be determined. It is often more convenient to record the

material flow of each step with a common unit of measure. And also, the equipment,

labor, and energy requirements need to be tracked for each process step.

For the last step, the costs are related to what is known by multiplying the

requirements that were catalogued in the previous step by their respective unit costs.

Sensitivity analyses are conducted on the cost model to determine the important

parameters in the model.

17



5. WTM Cost Model

The WTM process has been extensively well-documented by research papers

published in the past. This made the task of developing the WTM cost model much

easier. The WTM cost model broke the process down into five steps: 1) pretreatment, 2)

gasification, 3) gas cleaning, 4) syngas processing, and 5) methanol synthesis.

5.1 Material Costs

The material cost estimated by the WTM cost model was the cost of the biomass

that is used as a feedstock to produce methanol. When tracking the flow of materials, the

pretreatment, gasification, and gas cleaning steps were collected together into a single

step titled "gasification." Table 2 is a data specification sheet detailing the composition

of the product gas produced by the IGT gasifier when wood is used as a feedstock. This

data was taken from research done by Hamelinck and Faaij [6].

Table 2. Table of the product gas composition of the IGT gasifier using wood as a feedstock.

IGT Gasifier
Gas yield (kmol/dry tonne bioimass) 82
Wet gas output composition: mol fraction

H20 0.318

H2 0.208

CO 0.15
C02 0.239
CH4 0.0819

C2H4 0.0031
Total 1

Three different activities affect the flow of materials during the syngas processing

step: reforming, water-gas shifting, and carbon dioxide scrubbing. Table 3 describes the

chemical reactions that take place during reforming and water-gas shifting. The amount

of carbon dioxide removed during carbon dioxide scrubbing can be controlled as desired.

Only a small amount of carbon dioxide (2-10%) is wanted in the feed at the end of the

18



syngas processing step. The WTM model assumed a carbon dioxide content of 5% in the

feed. Another constraint was presented by the ratio of the molar amounts of carbon

monoxide, carbon dioxide, and hydrogen present in the feed before methanol synthesis.

The quantity

R H2 - CO2
CO + C02

should have a minimal value of 2.03 to ensure the stoichiometry of the chemical reactions

that take place during methanol synthesis are satisfied.

Table 3. 'The chemical reactions that take place during reforming and the water-gas shift.

Process Chemical Reactions

Reforming CH 4 + H20 CO + 3H 2

C2H4 + 2H20 _ 2CO + 4H2

Water-gas Shift CO+ H20 e C002 + H2

The following two reactions take place during methanol synthesis:

2H2 + CO --> CH 30H

3H2 + CO2 CH30H + H0

The WTM cost model also included a methanol refining step during methanol synthesis.

It is assumed that 5% of the produced methanol is lost during refining. By combining all

of the data, chemical reactions, constraints, and assumptions, a table tracking the flow of

materials during each processing step was created given a certain methanol production

volume. Table 4 is an example of a materials flow table showing the amounts of

materials in each process step in kmol for a methanol production volume of 1000 tonnes.

The required molar output from the IGT gasifier could then be calculated. This value

was then converted into the required amount of dry biomass using the gas yield value of
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82 kmol/dry tonne biomass presented in Table 2. The cost of the dry biomass required

could then be calculated to determine the material costs.

Table 4. An example of a material flows table for a production volume of 1000 tonnes of methanol.
Material amounts are given in kmol.

Step H20 H2 CO C02 CH4 C2H4 02 MeQH
Gasification In 2222 -

Gasification (Out) 6180 4042 2915 4645 1592 60 0 0
Reforming (In) 6180 4042 2915 4645 1592 60 0 0
Reforming (Out) 4468 9058 4627 4645 0 0 0 0
Water Gas Shift (In) 4468 9058 4627 4645 0 0 0 0
Water Gas Shift
(Out) 6941 11372 2314 6958 0 0 0 0
Scrubbing (In) 6941 11372 2314 6958 0 0 0 0

Scrubbing (Out 6941 11372 2314 972 0 0 0 0
Synthesis (In 6941 11372 2314 972 0 0 0 0

Synthesis (Out) 7913 3830 0 0 0 0 0 3285
Refining (In 7913 3830 0 0 0 0 0 3285

Refining (Out) 0 0 0 0 0 0 0 0

5.2 Equipmen[L Costs

Table 5 describes the component costs of the equipment used in the WTM process

[7]. The equipment was planned to run for 8395 hours a year. It was assumed that the

equipment would run 365 days a year and 23 hours a day. Each piece of equipment also

had a certain amount of unplanned down time which needed to be deducted to determine

the actual available time a year. The capacity of each component required for a given

production volume of methanol was determined by observing the amount of material

being passed through each step, which could be tracked with a materials flow table

similar to the one in Table 4, and then dividing that amount by the actual available time

for that particular piece of equipment. The cost of each component for a given capacity

could then be calculated with the following equation:

Costa _ Size__
Cost b Size b

Costb Sizeb

20



where Costa is the component base investment cost, Sizea is the component base scale,

COstb is the investment cost for the component with the required capacity, Sizeb is the

required capacity, and R is the scale factor. Costb was then scaled by the overall

installation factor to calculate the final component cost. If the required capacity for a

component exceeded the maximum size, the appropriate number of lines was added and

the corresponding costs for the additional lines were calculated. If a maximum size was

not listed, the base scale was taken as the maximum size. Investments in equipment were

to be paid over an equipment lifetime of 25 years at a discount rate of 15%.

Table 5. The component costs of the equipment used in the WTM process in MUS$S.

Base Overall
investment Scale installation Maximum

Step cost (fob) factor Base scale factor size
Pretreatment

Overall 8.15 0.79 33.5 wet tonne/h 1.86 110

Gasification
IGT 38.1 0.7 68.8 dry tonne/h 1.69 75

Oxygen plant 44.2 0.85 41.7 tonne 02/h 1 -
Gas cleaning

Cyclones 2.6 0.7 34.2 m3 gas/s 1.86 180
HT heat exchanger 6.99 0.6 39.2 kg steam/s 1.84 -

Baghouse filter 1.6 0.65 12.1 m3 gas/s 1.86 64

Condensing scrubber 2.6 0.7 12.1 m3 gas/s 1.86 64

Syngas processing
Steam reformer 9.4 0.6 1390 kmol total/h 2.3 -

15.6 Mmol
Shift reactor 36.9 0.85 CO+H2/h 1

Selexol C02 remover 54.1 0.7 9909 kmol CO02/h 1

Steam plant 6.99 0.6 39.2 kg steam/s 1.84

Methanol production
87.5 tonne

Liquid phase methanol 3.5 0.72 MeOH/h 2.1
87.5 tonne

Refining 15.1 0.7 MeOH/h 2.1

5.3 Labor Costs

Workers were paid a wage of $20 an hour with a paid time of 7665 hours a year.
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Table 6 displays the number of workers required for a particular piece of equipment.

These values were used to estimate the number of workers required for the pieces of

equipment used in the WTM process. Fractions of workers result from the fact that a

worker does not necessarily have to be dedicated to a single piece of equipment.

Table 6. Number of workers required for particular pieces of equipment.

Operators per
Equipment Shift
Air plants 1

Boilers 1

Cooling towers 1
Water demineralizers 0.5
Portable generation plants 3
Incinerators 2
Mechanical refrigeration
units 0.5
Waste water treatment
platns 2

Evaporators 0.3

Vaporizers 0.05
Furnaces 0.5

Fans 0.05

Blowers and compressors 0.15
Heat exchangers 0.1
Towers 0.35
Reactors 0.5

5.4 Energy Costs

Electricity used to run the equipment was the energy input accounted for by the

WTM cost model. The electricity requirements for the equipment used in the WTM

process were estimated from data gathered by Hamelinck, Faaij, and Boding [6,8]. The

price of electricity was set at $0.05 per kilowatt hour. The rate of electricity consumption

for each processing step is shown in Table 7. No electricity is needed for the gas

cleaning step.
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Table 7. Electricity requirements for the WTM process.

Step Electricity Requirement
Pretreatment 44.8 kWh/wet tonne biomass
Gasification 77.2 kWh/dry tonne biomass
Syngas processing 30.4 kWh/dry tonne biomass
Methanol
production 119.3 kWh/dry tonne biomass

5.5 Building Space Cost

The building space cost was calculated with the following equation:

Cost = 423 x (tpd )' 7

where tpd is the dry feed capacity of the IGT gasifier in tonnes per day [9]. Investments

in building space were to be paid over a building space lifetime of 40 years with a

discount rate of 12%.

5.6 Maintenance Costs

Maintenance costs for equipment and building space maintenance were calculated

as 15% of the annual fixed costs for equipment and building space.

5.7 Overhead Costs

Overhead costs for equipment, building space, and maintenance were calculated

as 15% of the annual fixed costs for equipment, building space, and maintenance.
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6. MTO Cost Model

There is less information available on the MTO process. Much of the data used to

construct the MTO cost model was referenced from research done by UOP [11]. The

MTO cost model broke the process down into two sections: 1) the reactor section and 2)

the product recovery section.

6.1 Material Costs

Approximately three tonnes of methanol are needed to produce one ton of olefins.

Table 7 is a material balance of an 800,000 MTA MTO plant constructed by UOP. The

ratio of propylene produced to ethylene produced was set at one. This ratio can be

adjusted between 0.8 and 1.3. The ratio between the amount of methanol processed and

the amount of olefins produced was used to calculate the amount of methanol needed to

produce a given volume of olefins. The cost of the required methanol could then be

calculated to determine the material costs. The catalyst used in the MTO process was

considered a significant expense and was labeled as a processing material cost. The

processing material cost was calculated as approximately 21% of the methanol feedstock

cost.

Table 8. Material balance of UOP's 800,000 MTA MTO plant [11].

Material Feed MTD Products MTD
Methanol 7080

Ethylene 1200
Propylene 1200

Butenes 370
C5+ 137

Fuel Gas 120

Others (mostly water) 4053

Totals 7080 7080
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6.2 Equipment Costs

Table 9 lists the pieces of equipment required for the MTO process. The total

investment for equipment for UOP's 800,000 MTA MTO plant was $230 million [11].

The costs for certain pieces of equipment used in the MTO process that had similar

functions as the equipment in the WTM process were estimated by using the figures from

Table 5. These estimated equipment costs were deducted from the $230 million total and

the remaining cost was divided proportionally among the unaccounted for pieces of

equipment according to their capacities.

Table 9. Equipment list for UOP's MTO process.

Equipment Estimated by
Liquid phase methanol

Fluidized-bed reactor reactor
Fluidized-bed
regenerator
Separator HT heat exchanger

Caustic scrubber Selexol C02 remover
Dryer HT heat exchanger

Demethanizer
Deethanizer
C2 splitter
C3 splitter

Depropanizer

6.3 Labor Costs

Workers were paid a wage of $20 an hour with a paid time of 7665 hours a year.

A similar approach was taken to estimate the labor costs for the MTO process by using

the data from Table 6 to determine the number of workers needed for each piece of

equipment.

6.4 Energy Costs

Electricity used to run the equipment was the energy input accounted for by the

MTO cost model. The price of electricity was set at $0.05 per kilowatt hour. The overall
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rate of consumption for the MTO process was estimated to be 65 kilowatt hours per tonne

of olefins produced [15].

6.5 Building Space Costs

The building space was estimated to cost $4.08 per tonne of methanol processed

[9]. Investments in building space were to be paid over a building space lifetime of 40

years with a discount rate of 12%.

6.6 Maintenance Costs

Maintenance costs for equipment and building space maintenance were calculated

as 15% of the annual fixed costs for equipment and building space.

6.-7 Overhead Costs

Overhead costs for equipment, building space, and maintenance were calculated

as 15% of the annual fixed costs for equipment, building space, and maintenance.
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7. WTM Cost Model Analysis

The following sensitivity analyses were done on the WTM cost model: 1) product

cost versus production volume, 2) product cost versus investments in equipment, 3)

product cost versus biomass feedstock price, and 4) product cost versus production

volume and biomass feedstock price. The general purpose of the analyses was to

determine under what operating conditions the WTM technology would be competitive.

This was done by comparing the product cost to the 2003 methanol price of $85 per tonne

[11].

7.1 Product Cost Versus Production Volume

The biomass feedstock price was set at $31.76 per tonne for this analysis [7]. It

can be seen from Figure 5 that the WTM technology is far from being competitive when

compared to the price of methanol of $85 per tonne. Even at higher production volumes

the production costs levels off around $250 per tonne of methanol produced.
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Figure 5. Product cost versus production volume for the WTM cost model.
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7.2 Product Cost Versus Investments in Equipment

A factor varying from 0 to 2.0 was used to scale the aggregate equipment costs.

A factor value of 1.0 indicates the baseline equipment costs. Figure 6 displays the

product cost plotted against the investments in equipment costs for methanol production

volumes of 10,000 tonnes and 250,000 tonnes. It can be seen that even if there were no

equipment costs, the WTM technology still is not competitive with the price of methanol.
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8 $300.00

- $200.00 --- -
. $100.00 -

$- $50 $100 $150 $200 $250 $300 $350 $400 $450

Equipment Costs (M$)

Figure 6. Product cost versus equipment costs for methanol production volumes of 10,000 and
250,000 tonnes.

7.3 Product Cost Versus Biomass Feedstock Price

The biomass feedstock price was varied from $32 per tonne of biomass to $(100)

per tonne of biomass. The negative feedstock price represents a fee for collecting

biomass waste. Figure 7 displays the product cost versus biomass feedstock price for

methanol production volumes of 10,000 and 250,000 tonnes.
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Figure 7. Product cost versus biomass feedstock price for methanol production volumes of 10,000
and 250,000 tonnes.

7.4 Product Cost Versus Production Volume and Biomass Feedstock Price

Methanol production volumes were varied from 0 to 1,000,000 tonnes. The

biomass feedstock price was varied from $30 per tonne of biomass to $(100) per tonne of

biomass. Figure 8 displays the product cost versus production volume and biomass

feedstock price. Region I represents the combination of production volumes and biomass

feedstock prices that result in product costs of $85 per tonne of methanol produced or less.

Region II represents the combination of production volumes and biomass feedstock

prices that result in products costs of greater than $85 per tonne of methanol produced.
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Figure 8. Product cost versus production volume and biomass feedstock price.
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8. MTO Cost Model Analysis

The following analyses were done on the MTO cost model: 1) product cost versus

production volume, 2) product cost versus varied investments in equipment, 3) product

cost versus methanol feedstock price, and 4) product cost versus production volume and

methanol feedstock price. The general purpose of the analyses was to determine under

what operating conditions the MTO technology would be competitive. This was done by

comparing the product cost to the 2004 average olefin price of $723 per tonne [16].

8.1 Product Cost Versus Production Volume

The methanol feedstock price was set at $85 per tonne for this analysis. It can

be seen from Figure 9 that the MTO process is competitive with olefin prices when

production volumes are greater than 7,000 tonnes of olefins.
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With even higher production volumes, the product cost levels off to around $400 per

tonne of olefins produced.

8.2 Product Cost Versus Investments in Equipment

A factor varying from 0 to 2.0 was used to scale the aggregate equipment costs.

A factor value of 1.0 indicates the baseline equipment costs. Figure 10 displays the

product cost plotted against the varied investments in equipment costs for methanol

production volumes of 10,000 tonnes and 250,000 tonnes. It can be seen that the MTO

technology is always competitive with the price of olefins for an olefins production of

250,000 tonnes. In the case when the production volume is 10,000 tonnes of olefins, the

product cost exceeds the price of olefins when the equipment costs are scaled by a factor

of approximately 1.35 or greater.
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8.3 Product Cost Versus Methanol Feedstock Price

The methanol feedstock price was varied from $85 per tonne of methanol to $0

per tonne of methanol. At a production volume of 10,000 tonnes, the MTO technology

loses its competitiveness at a methanol price of approximately $117 per tonne or greater.

At a production volume of 250,000 tonnes, the MTO technology loses its competitiveness

at a methanol price of approximately $182 per tonne or greater.

Figure 11. Product cost versus methanol feedstock price for olefin production volumes of 10,000 and
250,000 tonnes.

8.4 Product Cost Versus Production Volume and Methanol Feedstock Price

Olefin production volumes were varied from 0 to 1,000,000 tonnes. The

methanol feedstock price was varied from $200 per tonne to $0 per tonne. Figure 12

displays the product cost versus production volume and biomass feedstock price. Region

I represents the combination of production volumes and biomass feedstock prices that

result in product costs of $723 per tonne of olefins produced or less. Region II represents
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the combination of production volumes and biomass feedstock prices that result in

products costs of greater than $723 per tonne of olefins produced.
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Figure 12. Product cost versus production volume and methanol feedstock price.
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9. Analysis of WTM and MTO Cost Models Combined

The WTM and MTO cost models were combined and the following analyses were

done: 1) olefin product cost versus olefin production volume, 2) olefin product cost

versus biomass feedstock price, and 3) olefin product cost versus olefin production

volume and biomass feedstock price. The general purpose of the analyses was to

determine under what operating conditions the waste to olefins technology would be

competitive. This was done by comparing the olefin product cost to the average olefin

price of $723 per tonne. The methanol production volume of the WTM process was set

by the methanol required to produce a given volume of olefins with the MTO process.

The methanol feedstock price was set by the methanol product cost of the WTM process.

9.1 Olefin Product Cost Versus Olefin Production Volume

The biomass feedstock price was set at $31.76 per tonne for this analysis [7]. It

can be seen from Figure 5 that the waste to olefins technology is far from being
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Figure 13. Olefin product cost versus olefin production volume for the waste to olefins process.
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competitive when compared to the average price of olefins of $723 per tonne. Even at

higher production volumes the olefin production costs levels off around $930 per tonne

of methanol produced.

9.2 Olefin Product Cost Versus Biomass Feedstock Price

The biomass feedstock price for the WTM process was varied from $32 per tonne

of biomass to $(100) per tonne of biomass. The negative feedstock price represents a fee

for collecting biomass waste. Figure 14 displays the olefin product cost versus biomass

feedstock price for olefin production volumes of 20,000 and 450,000 tonnes. For an

olefin production volume of 20,000 tonnes, the WTO process becomes competitive when

the biomass feedstock price is $(33) per tonne or less. For an olefin production volume

of 450,000 tonnes, the WTO process becomes competitive when the biomass feedstock

price is $14 per tonne or less.
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Figure 14. Olefin product cost versus biomass feedstock price for olefin production volumes of
20,000 and 450,000 tonnes.
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9.3 Olefin Product Cost Versus Olefin Production Volume and Biomass Feedstock Price

Olefin production volumes were varied from 0 to 1,000,000 tonnes. The biomass

feedstock price was varied from $30 per tonne of biomass to $(100) per tonne of biomass.

Figure 15 displays the olefin product cost versus olefin production volume and biomass

feedstock price for the WTO process. Region I represents the combination of production

volumes and biomass feedstock prices that result in olefin product costs of $723 per

tonne of olefins produced or less. Region II represents the combination of production

volumes and biomass feedstock prices that result in olefin products costs of greater than

$723 per tonne of olefins produced.
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10. Conclusion

The WTM technology is only competitive if the biomass feedstock can be

obtained at a negative price. A fee of approximately $28 per tonne of biomass waste

would need to be collected to make the WTM technology competitive. With a set

methanol feedstock price of $85 per tonne, the MTO technology is competitive over a

wide range of production volumes. Only at olefin production volumes at approximately

7,000 tonnes or less does it fail to be competitive. When combining the WTM and MTO

cost models to analyze the WTO technology, the WTM process is the economically

limiting factor. Despite this fact, for relatively significant olefin production volumes, the

WTO remains competitive with a slight decrease in biomass feedstock price.

More detailed information on the MTO process is needed to construct a more

accurate cost model. In particular, more information is needed to provide better estimates

for the costs of the catalyst and equipment used for the MTO process. The accuracies of

both the WTM and MTO cost models should also be explored further.

Further research on the environmental advantages of WTO technology should be

conducted. It would also be interesting to explore the use of other materials besides

wood as a possible source of biomass waste feedstock.
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