
Multiobjective Collaborative Optimization of Systems of Systems

by

Robert A. Wolf

B.S. Systems Engineering
United States Naval Academy, 1995

Submitted to the Department of Ocean Engineering and the Engineering Systems Division
in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer

and

Master of Science in Engineering Systems

at the
Massachusetts Institute of Technology

June 2005

(Robert A. Wolf, 2005. All rights reserved.

The author hereby grants MIT and the U.S. Government permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author: ,...............................
Department of Ocean Engineering

May 9, 2005

C ertified by : ... d....... 1- X.........................
Dr. Timothy J. McCoy, Associate Professor of the Practice of Nay t onstruction and Engineering

Thesis Supervisor

C ertified by:
Dr. Olivier de Weck, Assistant Professor Aeronautics & Astronautics and Engineering Systems

Thesis Reader

A ccepted by: .. ------------
Dr. Michaelriafitafyllou, P iofessor of Mechanical and Ocean Engineering

Chair, Departmental Committee on Graduate Students

A ccepted by:
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

SEP 0 1 2005

L1 ' A RES

.............................
1r. Rich dfe Neufville, Professor of Engineering Systems

Engineering System Division Education Committee

1 1,05

Page Intentionally Left Blank

2

Multiobjective Collaborative Optimization of Systems of Systems

by

Robert A. Wolf

Submitted to the Department of Ocean Engineering and the Engineering Systems Division
on May 9, 2005 in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer
and

Master of Science in Engineering Systems

ABSTRACT

Concept studies for warship designs typically focus on ship performance characteristics by
setting design goals for such things as speed, range, and cost. However, warships generally
operate as part of a larger battle or strike group. Therefore, the designs should be evaluated as
part of a system of multiple ship systems since designing each ship individually may result in
underutilized and excess equipment and capability; in other words an inefficient design of the
system of systems.

This thesis examines the simultaneous design of several ships using the sea base concept as an
example application of a network of ships working together. The number and characteristics of
these ships determine the mission performance of the sea base. To properly design any of the sea
base ships, the interrelationships must be included. A mission simulation is used to combine the
performance characteristics of different ship designs into a single performance objective: the
time to deliver a brigade size combat force to its assigned objectives.

To enable the design of multiple ships, collaborative optimization, a multilevel optimization
approach, was used to decompose the problem into individual ship design optimizations with
system level interfaces controlled by a system of systems optimization algorithm. This allowed
each ship to use techniques and algorithms best suited to reach an optimal design without
impacting the design approaches used by the other ships. The classical collaborative
optimization approach was relaxed to include multiple objectives such as performance and cost,
thus developing a range of solutions which represent the tradeoff between these objectives.

Thesis Supervisor: Dr. Timothy J. McCoy
Title: Associate Professor of the Practice of Naval Construction and Engineering

Thesis Reader: Dr. Olivier de Weck
Title: Assistant Professor Aeronautics & Astronautics and Engineering Systems

3

Page Intentionally Left Blank

4

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Professor McCoy and Professor de
Weck for their assistance and guidance in this research endeavor. Additional thanks go out to
fellow MIT students Andy Gold, Edward West, and Andy Johnson in developing the mission
simulation model and ITS ship model; and to Brian Miller and Georgios Gougoulidis for
providing data on air cushioned vehicles. Most of all I would like to thank my wife Amy and
son Nicholas for allowing me to stay focused.

5

Page Intentionally Left Blank

6

TABLE OF CONTENTS

ABSTRACT ... 3

A CKNOW LEDGM ENTS ... 5

TABLE OF CONTENTS ... 7

LIST OF FIGURES .. 9

LIST OF TABLES .. 11

N OM ENCLATURE .. 13

CHAPTER 1: INTRODUCTION .. 15

SYSTEM S-OF-SYSTEM S .. 16

D EFENSE INTEGRATED ARCHITECTURES .. 18

THESIS OVERVIEW ... 21
OPTIMIZATION ... 23
M ULTIOBJECTIVE OPTIMIZATION ... 24

M ULTILEVEL OPTIM IZATION .. 29

M ULTIDISCIPLINARY SYSTEM DESIGN OPTIMIZATION ... 35

CHAPTER 3: M O CO SS .. 37

EXTENSION OF CO TO M ULTIPLE OBJECTIVES ... 37

TEST PROBLEM .. 42

CHAPTER 4: SEA BASING M ODEL .. 45

SEA BASING CONCEPT ... 45
SEA BASE M O CO SS FORMULATION ... 50
GENETIC A LGORITHM S .. 52
PERFORM ANCE M ODEL .. 53

COST M ODEL ... 55
PLATFORM M ODELS ... 56
COMPUTATIONAL IMPROVEMENT .. 58

CHAPTER 5: RESULTS .. 61

CONVERGENCE ISSUES ... 61

D ATA A NALYSIS (HLSL REQUIRED) ... 67
Fuzzy PARETO FRONTS ... 71
D ATA ANALYSIS (H LSL N OT REQUIRED) ... 73
COMPARISON OF RESULTS ... 74

CHAPTER 6: CONCLUSIONS AND FUTURE W ORK .. 77

CONCLUSIONS .. 77
FUTURE W ORK .. 80

REFERENCE LIST .. 85

APPENDIXES .. 89

7

APPENDIX A : LIST OF A CRONYM S .. 91

APPENDIX B: SOLID ROCKET BOOSTERS AND THE ROMAN CHARIOT 93

APPENDIX C: BI-LEVEL INTEGRATED SYSTEM SYNTHESIS (BLISS)...................................... 95

APPENDIX D : SEA BASE ARCHITECTURE ... 97

APPENDIX E: GENETIC ALGORITHM SYSTEM LEVEL OPTIMIZER ... I1I
APPENDIX F: GENETIC ALGORITHM SETUP CODE .. 115

APPENDIX G: PERFORMANCE SIMULATION MODEL ... 121
APPENDIX H: PERFORMANCE SIMULATION CODE.. 127
APPENDIX I: ITS OPTIMIZATION AND MODEL DESCRIPTION.. 143
APPENDIX J: ITS OPTIMIZATION AND MODEL CODE ... 151
APPENDIX K: HSC MODEL AND OPTIMIZATION DESCRIPTION .. 157
APPENDIX L: HSC OPTIMIZATION CODE ... 159
APPENDIX M : HLSL M ODEL DESCRIPTION ... 163

APPENDIX N: HLSL OPTIMIZATION CODE... 165

8

LIST OF FIGURES

Figure 1. System of Systems Framework Showing Functional Overlap With System
In dep en d en ce .. 17

Figure 2. Top Down Capability Need Identification Process ... 20
Figure 3. T hesis R oadm ap ... 22
Figure 4. Multimodal Function Showing Different Minima ... 24
Figure 5. Pareto-Optimal Frontier of Arbitrary Design Space ... 26
Figure 6. Actual Pareto-Optimal Frontier Showing a Concave Region and Weighted Sum

O bjective F unction ... 28
Figure 7. Block Diagram of Basic Collaborative Optimization Problem................ 33
Figure 8. Depiction of Collaborative Optimization for a Multiobjective Problem................... 38
Figure 9. Actual Pareto-Optimal Frontiers for Systems and SoS Used For MOCOSS Test

P rob lem .. 4 3
Figure 10. Sea B ase C ontext... 47
Figure 11. N odal D iagram of Sea B ase ... 48
Figure 12. Artificial Beach Used in JLOTS exercise .. 49
Figure 13. Sea Base Operational Diagram Showing Where Various Platforms Would Operate 49
Figure 14. MOCOSS Formulation For the Sea Base Problem ... 51
Figure 15. Cost Convergence History of Runs 2-6 Showing Improving Populations Over the

C ourse of the O ptim ization ... 62
Figure 16. Gene Distribution at Generation 50 of Run #2 Showing Convergence Problem not

Related to Lack of Diversity Within Population... 64
Figure 17. HLSL Required Optimization Results Showing SoS and Platform Designs

Breakdown in Terms of Uniqueness, Feasibility and Dominance 65
Figure 18. Plot of SoS Objective Space and Pareto-Optimal Curve for HLSL Required

O ptim ization R esults .. 68
Figure 19. Plot Showing Inverse Relationship Between ITS Capacity and Organic Aircraft..... 71
Figure 20. Comparison of Pareto-Optimal Frontiers of Different Optimizations Runs With

Approximately the Same Number of Solutions ... 75
Figure C 1. BLISS V ariable Flow .. 95
Figure C 2. B L ISS C ycle ... 96
Figure D 1. Sea B ase C ontext .. 99
Figure D2. Object Process Model (OPM) Problem Statement Description 100
Figure D3. OPM Conceptual Development of Sea Basing...101
Figure D 4. Sea B ase Process Zoom .. 104
Figure D5. Two Level Form Decomposition of Sea Basing .. 105
Figure D6. Sea Basing Form Coupled with Function...106
Figure D 7. Sea B ase O perations ... 108
Figure El. Flowchart of GOSET 1.03 genetic algorithm...112
Figure G I. N odal D iagram of Sea B ase..121
Figure G2. Sea Base to Objective Transport Validation...125
Figure Il. Conceptual Drawing of ITS Showing That Interface Sites Are Functions of Length

an d S u rface .. 14 3
Figure 12. MPF(F) Cargo Area vs. Total Volume .. 146
Figure M l. H LSL D esign Selection ... 163

9

Page Intentionally Left Blank

10

LIST OF TABLES

Table 1. Comparison of Test Problem Results Showing Computational Advantage of MOCOSS
... 44

Table 2. List of System Level Performance (Z*) and Compatibility (Y*) Variables........ 51
Table 3. Population, Generation and Evaluation Size Characteristics of the Optimization Runs6l
Table 4. Number and Percentage of SoS Solutions Containing Subsystem Pareto Solutions..... 66
Table 5. System Variables of the SoS Pareto-Optimal Set For HLSL Required Optimization

R u n s.. 7 0
Table 6. System Variables of FPF Data Set Showing Minimal HSC Impact on Performance ... 72
Table 7. Comparison of SoS Design Breakdown Showing Change in Feasibility of HLSL Not

R equired O ptim ization Results .. 73
Table 8. System Variables of the SoS Pareto-Optimal Set For HLSL Not Required Optimization

R u n s.. 7 4
Table E l. G enetic A lgorithm V ariables..112
Table E2. G enetic A lgorithm Constraints...112
Table G1. Cargo Loading and Delivery Validation Results ... 125
Table I1. Feasible Range of Dim ension Ratios .. 149
Table 12. Representative Shipyard Dimension Limits..150
T able 13. V alidation Inputs ... 150
Table 14. V alidation R esult Com parison .. 150

11

Page Intentionally Left Blank

12

NOMENCLATURE

Naval Architecture Nomenclature

B ship beam
BM metacentric radius
Cb ship block coefficient
CbD ship block coefficient measured at the depth
CbT ship block coefficient measured at the draft
CIT transverse inertia coefficient
CW waterplane coefficient
D ship depth
KB vertical center of buoyancy
KG vertical center of gravity
L ship length
T ship draft
A ship displacement
v specific volume of seawater (35 ft3/LT)

Optimization Nomenclature

g(X) inequality constraint
h(X) equality constraint
J objective or fitness function
Jf fitness value (objective value adjusted for constraints)
Jo initial objective value before adjustment for constraints
Jsys system objective function
k cost-to-displacement factor
N number of platforms
u(X) utility function
w' constraint scaling factor for subsystem i
Xi ith design variable
X i vector of design variables X controlled by subsystem i
XLi lower bound of variable Xi

XuJ upper bounds of variable Xi
X optimal or non-dominated solution
Y* system compatibility variables defined at the system level
Y^ system compatibility variable used at the subsystem level
Z * system level variable defined at the system level
Z system level variable used at the subsystem level

ith weighting factor
set of X representing the feasible set

91+ set of positive real numbers

Note: Bold indicates a vector or set of multiple values throughout the thesis

13

Page Intentionally Left Blank

14

CHAPTER 1: INTRODUCTION

Many Naval concept studies for ship design focus on missions and operations to be

performed by a single ship. Typically, design goals are established for things such as speed,

range, and cost. However, these design goals are merely proxies for the ship's mission

performance. Furthermore, in the U.S. Navy, ships frequently operate as part of a larger battle or

strike group. This trend toward interdependence between ships is likely to continue and would

indicate that ship design should be studied as part of a supersystem of multiple ships or system of

ship systems.

A simple example of ships which must operate together to achieve success is the sea base

concept. A sea base is not a single ship or ship type, but rather a network of many different ships

working together to accomplish a mission: to assemble, deliver, sustain and reconstitute a joint

force to and from a land objective from the sea. Each ship has its own design goals and

constraints to achieve some level of performance; however, it is only a single system. The true

performance is at the System of Systems (SoS) level.

To properly design any of these ships, first, the potential architectures must be

understood and how each of the various systems combines into a SoS. With these architectures

in mind, the entire SoS can be viewed as a whole to develop its own Mission Performance

Parameters (MPP) which combines the various individual ship design MPPs. The difficulty lies

in the simultaneous analysis and design of each of these individual ships which have their own

multiple design goals and constraints while taking into account the interrelationships necessary

to achieve an improved overall SoS design.

15

Systems-of-Systems

A general definition for a system is a collection of elements which, working together,

produce a result not achievable by the elements alone (Maier & Rechtin, 2002). By this

definition, almost anything can be considered a system consisting of subsystems which can

themselves be systems, thus making the system a SoS. Therefore, formally, a SoS has no

distinguishing characteristic. However, it is useful to distinguish between systems made up of

subsystems and SoS made up of independent systems. The key difference is the subsystems

require each other while systems within a SoS synergize with each other. For example, an

airplane consists of wings, engine, and other subsystems which all require each other to cause the

airplane to fly. In contrast, an airplane flying passengers across the country is part of a greater

air traffic SoS which includes several aircraft, the airports, air traffic control, etc. which can all

operate without the others but synergize when they operate together. Therefore, a separate

definition of a SoS is useful to differentiate large and distributed systems from less complex and

compact systems (Maier, 1998).

An SoS can be defined as an assemblage of components which individually are regarded

as systems and which are both operationally and managerially independent. Operational

independence implies that if the SoS is disassembled into its individual systems, these systems

must be able to usefully operate independently to fulfill a customer purpose (Maier, 1998). For

instance, an airplane engine is not operationally independent because while it provides thrust or

power, only when combined with other elements (i.e. wings, fuselage, etc.) is it able to achieve a

useful customer purpose (i.e. flying). On the other hand, the airplane (consisting of several

subsystems) is an operationally independent system since it is able to takeoff, fly, and land

without any other system, and thus could be combined with other systems to create a SoS.

16

Managerial independence implies that the individual systems not only can operate

independently but do actually operate independently. The systems are integrated but maintain an

operational existence independent of the SoS. In other words, the systems are managed in part

for their own purpose rather than strictly the purposes of the whole (Maier, 1998).

Figure 1 illustrates the framework of a SoS. Notice that the subsystems of system 3 all

fall within system 3 implying they are a integral part of system 3 and do not have operational

independence. On the other hand, systems 1, 2, and 3 are located both inside and outside of the

SoS. These systems each have their own independent design requirements. This is meant to

imply that the SoS is made up of these three systems but the systems are both managerially and

operationally independent.

System-of-systems .Fv

Design
Reqmts Design

System 2 Rgt
(System 1) System f not oe os

(System 2)

deige witou yte addiytona functionait fhor preumtivealy essct(a ie19) WithSyeIdpdne

independence comes some redundancy which optimization can be used to reduce or eliminate.

17

There are also other characteristics typical of SoS. A SoS is almost always complex,

involving many elements with significant interactions. However, these interactions are not

usually directly coupled like the airplane engine and its structure, but instead are frequently time

or rule dependent. Additionally, these interactions are in many cases nonlinear and

discontinuous. SoS also involve a greater amount of human involvement and thus add additional

layers of uncertainty and ambiguity. Finally, the design of a SoS is typically not controlled by a

single entity as might be the case for an airplane design, but rather is made up of different

companies, organizations, and stakeholders without a single controlling authority.

Even with these difficulties, the impact of an individual system on the overall SoS

represents part of the true utility of the individual system. In much the same way as separately

optimizing subsystems on an airplane can lead to an overall suboptimal design, an optimal

airplane may not achieve the desired effectiveness when operated within the larger SoS.

Defense Integrated Architectures

The United States Defense Department is one organization that has identified the need to

approach design from the SoS standpoint. It has codified its approach to SoS within the Joint

Capabilities Integration and Development System (JCIDS). The JCIDS process identifies

"capability gaps and capability redundancies, assess the risk and priority of the gaps, and

recommends the best approach or combination of approaches to address the gap" (Chairman,

Joint Chiefs of Staff [CJCS], 2003, p.A-6). The process is a top down exploration of needed

capabilities starting with an examination of national strategy which ultimately leads to Joint

Operations Concepts (JOpsC). The JOpsC portrays "the linkage between how the joint force

operates today and the vision for the future" (CJCS, 2003, p.A-3). Supporting the JOpsC are the

Joint Operating Concepts (JOC) and Joint Functional Concepts (JFC). The JOCs describe how

18

to conduct military operations to accomplish a mission whereas JFCs describe how forces will

perform a particular function. In other words, JFCs describe the capabilities while JOCs describe

the operational context (CJCS, 2004a).

From the JFCs and JOCs, integrated architectures are developed. The integrated

architectures are views or perspectives of Families-of-Systems (FoS) or SoS that facilitate

integration, promote interoperability across, and compatibility among related architectures.

Using the integrated architectures, further analysis explores the difference between "what we

have and what we need to do" to define capability gaps. These capabilities should meet the

following criteria:

" General enough so as not to prejudice decisions in favor of a particular means of
implementation.

* Specific enough to evaluate alternative approaches to implement the capability.

" Contain the following elements: key attributes with appropriate measures of
effectiveness, supportability, time, distance, effect (including scale) and obstacles to be
overcome.

Following the capability analysis is a review of alternatives to satisfy the capability gaps.

Through the exploration of science and technology as well as experimentation, various

alternatives can be assessed both in terms of risk, cost, and effect to determine the best solution

available. The entire process is illustrated in Figure 2 (CJCS, 2003).

There are two main points about the JCIDS process. First, as mentioned before, it begins

with a solution neutral need and then explores possible methods to meet that need. Second,

integrated architectures must look at interrelationships among several different systems without

being system specific. The goal is to be able to use the integrated architecture to help identify

what additional systems are needed and how they should operate with existing systems. To

19

make this system selection requires optimization to ensure that the nation gets the best possible

capability for its limited resources.

National Strategy & Joint Operations
Security Overarching Concepts

Guidnce Strategy Concepts

Joint Integrated Joint

Operating AhtetrsFunctional

Assessmen

Concepts Concepts

OPLANS Defense

and Planning
CONPLANS Scenarios Overlay

what we have with capability

T ask what we need to doforces,
Analyses- COCOM lPLs

Assessment Anlss-Gap Analysis
and - Risk Assessment JCIDS ANALYSIS
Analysis (FAA, FNA, FSA)

JCIDS Capabilities-based identification
Reoclito .eomnain of needs combines joint concepts

into Recommendationo atpintegrates and integrated architectures with analysis

deiet reemexingd pbiitieswhnsurheaiprovementNe snojutfehsmayfte

DOTMLPF Changes

Decision |Science & | Planning,

a d s t Technololed Programming, an aquisition Experi entation

Action Budgeting System

Figure 2. Top Down Capability Need Identification Process

One of the difficulties is that systems are typically scattered across different forces,

programs, and engineering disciplines which are combined through the integrated architecture

into a SoS. When looking at integrated architectures, to minimize development cost, there is a

desire to reuse existing capabilities when further improvement is not justified, thus many of the

systems would likely remain legacy elements. If only one system must be added to complete the

architecture, it is typically controlled by a single program within the military that can be

designed based on existing interfaces. If, on the other hand, the architecture could use or

requires multiple new systems, perhaps across a variety of forces, programs, and engineering

disciplines, the architecting problem becomes more difficult.

20

There are several examples of integrated architectures requiring multiple new systems to

be developed simultaneously. This thesis will specifically examine sea basing as an example of

an architecture which requires multiple new system designs. The interactions between the

various systems provide a wide variety of possible combinations without a clear indication of

which combination is best. To overcome this uncertainty, this thesis will explore multilevel

optimization as a method to simultaneously design and evaluate different integrated architectures

in order to better define possible capabilities and desired requirements.

Thesis Overview

With an understanding of a SoS and integrated architectures, the optimization problem

can be examined in more detail. This thesis proposes Multiobjective Collaborative Optimization

of Systems of Systems (MOCOSS) as a methodology to evaluate and optimize large-scale

multiobjective SoS, such as the sea base, made up of multiobjective systems while ensuring

feasibility and compatibility. Figure 3 provides a roadmap for this thesis research.

Chapter 2 will discuss various aspects of optimization. Multiobjective optimization will

be defined and methods discussed to deal with the problem of determining the "optimal" solution

when there is more than one objective. Multilevel optimization, specifically Collaborative

Optimization (CO) will also be introduced as a way to combine multiple system designs to

achieve an improved SoS design. These optimization techniques can be specifically applied to

an engineering system through Multidisciplinary System Design Optimization approaches

(MSDO) which is defined.

Chapter 3 will outline how the classical CO formulation can be relaxed and extended to

the multiobjective situation where each individual system is itself a tradeoff of objectives. This

21

new formulation makes up the MOCOSS formulation. This new approach will be compared to

the classical CO framework using a simple test problem.

Chapter 4 will apply MOCOSS to a real world SoS problem involving the sea base

concept. The sea base concept as well as several models for system design and performance

analysis used to simulate the sea base will be described. With the use of a genetic algorithm, the

various models will be optimized collaboratively. Chapter 5 will provide the results from the

optimization as well as more detailed analysis regarding the results and the performance of

MOCOSS. The concept of a Fuzzy Pareto Front will also be introduced. Finally, Chapter 6 will

describe the conclusions from this research and potential areas for future work both with

MOCOSS and the sea basing problem.

r ---------------- ir --------------- ---------------------------------
Chap. I Optimization Chap. 2

Systems of Systems BMultiobjective Multilevel BLISS (App. C)
Optimization Optimization

Defense Integrated u Collaborative Optimization

Architectures
Multidisciplinary System Design

~I~ ~ Optimization (MSDO)

Multiobjective Collaborative Chap. 3
Optimization of Systems of 4

Systems (MOCOSS)

Test Problem

Chap. 4 Chap. 5

Sea Base Performance Genetic Algorithm Pareto Results Fuzzy
Concept Model System Optimizer & - Pareto
(App. C) (App.G, H) (App.E, F) Data Analysis Front

ITS Model (App. I, J) ----- Ch
'I Conclusions Cap. 6

HSC Model (App. K, L) - -

HSC Model (App. M, N) Model Future Work

Figure 3. Thesis Roadmap

22

CHAPTER 2: OPTIMIZATION THEORY

Optimization

The basic optimization problem is formulated as follows:

minimize f(X)
subject to XE Q (1)

where f (X) is a real valued function called the objective function or simply J.
X is a vector of n real independent variables called decision variables
1 is the set of X representing the feasible set (Chong & Zak, 1996)

Equation 1 represents the general form of a constrained single objective optimization

problem. While proposed as a minimization problem, it could easily be converted to a

maximization problem by taking the negative of f(X) (i.e. minimizing -f is equivalent to

maximizing f) without loss of generality. 1 also usually takes the form of { X: h(X) = 0, g(X) <

0} where h represents the set of equality constraint functions of X and g represents the set of

inequality constraint function of X. A strict inequality [g(X) <0] could also be used. (Chong &

Zak, 1996). Additionally, for convenience, simple boundaries on variable X are described by

XL < X < XU where XL and Xu represent the lower and upper boundaries on feasible values of X

respectively. This leaves the more usual optimization problem form shown below.

min J = f(X)
s.t. h(X)= 0

g(X) < 0
D.V. XL < X < XU (2)

The purpose of the optimization is to find X*i, defined as the global optimal value of X

such that f(X) > f(X*) for all X # X*. If f(X) is multimodal (i.e. having multiple peaks) within

the feasible set, there may also be local optimal values such that all values of X near the local X*

also satisfy f(X) > f(X*). Figure 4 graphically shows local and global optima.

23

f(X)
Local

Minimum

X*

XU X
XL

f(X*) Global
Minimum

Figure 4. Multimodal Function Showing Different Minima

Depending on the type of variables, constraints, and objectives, there are several methods

that can be used for optimization (e.g. Simplex for linear constrained problems, Sequential

Quadratic Programming (SQP) for nonlinear constrained problems, Branch-and-Bound

techniques for discrete variables, etc.). The specifics of these and other methods, their

implementation, and their properties go beyond the focus of this thesis and are best left to other

references (e.g. Chong & Zak, 1996; Gill, 1981).

The optimization problems discussed in this thesis will be assumed to be nonlinear and

constrained. The purpose of the optimization will be design improvement. Extensions to the

basic optimization framework of Equation 2 for multiobjective and multilevel optimizations will

be discussed in more detail.

Multiobjective Optimization

Real engineering design decisions at the system level typically involve both technical

(e.g. maximize performance) and economic (e.g. minimize cost) considerations. In general,

performance and cost are opposing objectives, i.e. performance can only be increased by

24

increasing cost. Thus the problem becomes multiobjective. The typical multiobjective

formulation is given as follows: (Liu, Yang & Whidborne, 2001).

min J = f(X) = [fI(X), f2(X), ... , fn(X)I
s.t. h(X) = 0

g(X) < 0
D.V. XL-< X < XU (3)

where J is a vector of n objective functions at solution X

With multiple objectives, generally a single solution does not exist which optimizes all

objectives simultaneously, thus there are multiple "optimal" solutions. In general, the best

solutions represent a compromise between the various objectives that are efficient.

Multiobjective or multicriteria problems were first examined in the field of economics

where the best decision simultaneously optimizes several criteria. An economist, Vilfredo

Pareto, in 1906 described the best allocation as one in which it is impossible to make one

individual better off without hindering another (de Weck & Willcox, 2003). This was extended

to the engineering and science fields where a solution X* is considered weakly efficient if no

other feasible solution exists such that f(X) < f(X*) and f(X) # f(X*) for all objectives. In other

words, no other feasible solution exists which is better in one objective and at least as good in all

other objectives. A strongly efficient solution X* is one where no other solution exists such that

f(X) < f(X*) for all objectives. All other solutions are considered inefficient (Palli, Azarm,

McCluskey & Sundararajan, 1998). The efficient solutions are considered nondominated in the

objective space, and represent the Pareto-optimal set, named after Vilfredo Pareto. The Pareto-

optimal set also defines a curve, called the Pareto-Optimal Frontier (POF) shown graphically in

Figure 5. The heavy line along the edge of the arbitrary feasible region represents the

nondominated points, or the POF. Note that the POF is not necessarily a continuous curve.

25

Design Space Objective Space

Pareto-optimal

XL i XU,j

Figure 5. Pareto-Optimal Frontier of Arbitrary Design Space

Since the multiobjective problem creates multiple solutions, in order to arrive at a single

preferred solution, some method must be chosen to identify the best compromise which

maximizes the utility function shown in Equation (4). This equation combines the multiple

objective values into a single utility, though the exact formulation of the utility function is not

necessarily required. (Liu et al., 2001)

u[f(X)] = u[fi(X), f2(X), ... , f.(X)] (4)

The methods to obtain the best solution can be divided into four primary classes: no

preference methods, a priori methods, iterative methods, and posterior methods (Palli et.al.,

1998).

In no preference methods, the distance to the ideal point (defined by the combination of

minimal values attainable in any objective) is minimized requiring no input from decision

makers. In the a priori methods, decision makers define the utility function before any analysis

through the use of priorities and/or weighting functions. Posterior methods identify the POF and

then allow the decision maker to determine the best compromise solution given the range of

26

solutions. Finally, iterative methods identify decision maker preferences progressively as the

design analysis progresses.

No preference, a priori and iterative methods essentially apply decision analysis tools in

order to convert the multiobjective problem into a single objective one which can be solved

using standard optimization algorithms. If we instead concern ourselves with identifying the

multiobjective POF, alternative optimization methods must be used. One common approach is

the use of a weighted sum shown in Equation (5). In this method, the objectives are each

multiplied by a weighting factor and summed together. The optimization is then done as a single

objective problem using various combinations of weights. The sum of all the weights is typically

restricted to be a value of one. By varying the weights, various points along the POF can be

determined. This method is easy to implement and thus frequently used.

u[f(X)]= X1 * f2(X)+k 2 * f2 (X)+...+ X, * fn(X)

=1 (5)
i=1

where X is the weighting factor for function i

However, there are two main drawbacks. First, the weighted sum method will only

identify convex regions of the POF. For example, Figure 6 shows part of an actual POF for the

sea base. The concave part of the feasible region is shown between the two lines. It is in this

region that a weighted sum approach will not identify Pareto solutions. Second, the solutions

identified by the weighted sum method are generally not distributed evenly across the POF (de

Weck & Kim, 2004).

27

30 --------

24 Feasible Region

Concave Portion
2 18 of Pareto Optimal
C\I Frontier
CDJ
2!
U 12

6 J=kf1+k2f2
(Weighted Sum

0 Objective Function)
0 20 40 60 80 100 120 140

Objective 1 (fl)

Figure 6. Actual Pareto-Optimal Frontier Showing a Concave Region and Weighted Sum Objective Function

There has been research on approaches which treat the problem as a single objective

optimization while still identifying the Pareto solutions in the concave portion. These include

the &-constraint method where one objective is optimized while constraints are applied to others

(Marglin, 1967), the normal boundary intersection method which identifies Pareto points by

optimizing along vectors normal to a line or surface connecting the extreme points of each

objective (Das & Dennis, 1998) and the adaptive weighted sum method which recursively

creates subregions between identified Pareto points to identify additional Pareto-optimal designs

(de Weck & Kim, 2004) to name a few.

Another approach is to use population based heuristics such as Multiobjective Genetic

Algorithms (MOGA). The advantage to MOGA is that it defines a POF in a single optimization

by maintaining a population of solutions (Goldberg, 1989). The optimizer examines the entire

population and preferentially selects or retains through elitism the nondominated solutions of the

population for subsequent generations. The end result is a set of solutions which approximates

the POF. MOGA has since been applied to a wide range of difficult problems including naval

ship design (Brown & Salcedo, 2003; Wolf, Dickmann & Boas, 2005).

28

Multilevel Optimization

Researchers working with multiobjective optimization assert that any system is actually a

tradeoff of multiple objectives and should be treated as such. The same is true for multilevel

optimization which recognizes that there is typically a hierarchy of decision makers with

decisions made at different levels within the hierarchy (Migdalas, Pardalos & Varbrand, 1998).

The simplest approach is for each level to handle the other levels as assumptions or

givens. However, this approach can result in a paradox where the assumptions drive one

decision which in turn drives a decision in a completely different system, for example, the legend

that the dimensions of the solid rocket boosters on the space shuttle were determined by the

width of a Roman war chariot. Appendix B illustrates how one assumption leads to a design

which may impose an arbitrary constraint for a subsequent design. While this whimsical

example is somewhat circumstantial, there are other examples of the same decision making

approach. For a Naval example, the Landing Craft, Air Cushion, (LCAC) began construction in

1981 and needed to fit within well decks of existing amphibious transport ships. At the time,

those included the LPD-4 Austin and LSD-36 Anchorage classes, designed in the 1960s, which

had well decks 50 feet wide. Thus the LCAC is less than 50 feet wide (Polmar, 2005;

GlobalSecurity.org, 2004). Subsequently and more recently, the newly designed LPD-17 class

ships had their well decks designed in order to accommodate the LCAC, thus indirectly taking on

constraints established more than 30 years earlier (Pickens & Picotte, 2003). The next

generation of LCAC is now being studied. It is longer than the current LCAC, "but would

maintain the same height and width dimensions in order to conform to existing well deck

operations" (Office of Naval Research [ONR], 2004)

29

In order to properly optimize the design of any system, it is important to look not only at

interactions within the system but also the interactions between different systems that occur at

the SoS level. The interactions, especially for complex systems, can be very difficult to assess a

priori. Thus, to truly capture the impact requires concurrent design between the various parts of

the hierarchy. Multilevel optimization looks at the whole of the hierarchy.

The multilevel optimization field was first introduced in 1952 by von Stackelberg who

proposed a two level strategy for use in systems where policy makers at the top level influence

the decisions of private individuals and companies (Migdalas et al., 1998). For example, to

reduce dependence on imported energy, government could impose a tax, quotas, or rationing.

Individuals and companies will adjust how they consume energy which in turn will affect pricing

and import levels.

The general multilevel optimization problem is formulated as follows: (Migdalas et al.,

1998):

min fl(X, X 2 ,X... Xk)
s.t. gl(X, X2 , ... , Xk) O

h.(X., x2,..., Xk)= 0
D.V. XL< X1 < X U

where X2 solves
min f2(X1, X 2, ... ,Xk)
s.t. g2(XI, X 2 , ... , Xk) 0

D.V. X2 L < X2 < X2U

where Xk solves
min fk(Xl, X 2, ... ,Xk)
s.t. gk(X1, X2,., Xk) < 0

hk(X1, X 2, ... ,Xk) =0
D.V. XkL <Xk<Xk U (6)

At level 1, the highest level in the hierarchy, the decision maker has control and may only

change the X 1 variables in order to minimize the objective fl. Level 2 can adjust the X2 variables

30

in order to minimize its objective f2, and so on for all k levels. However, the objectives and

constraints of each levels can be subject to the values of variables from other levels in which

they have no control.

Multilevel optimization can also be applied to engineering systems to solve large scale

coupled problems. In standard practice, the design of a single system is split among the various

groups to be designed or optimized using their own internal procedures. Since the subsystems

are typically not independent at the system level, there is necessary interaction between the

groups. This can be handled by taking a design spiral approach where each group fixes certain

areas of the design space iteratively for others until the entire system converges to a solution.

Alternatively, interfaces, standards, and legacy equipment can be specified a priori, thereby

decoupling the various subsystems. Each of these cases can result in suboptimizing the design

and prevents full exploration of the possibilities.

Unfortunately, trying to optimize the system as a whole by coupling the systems into a

single design optimization is unruly and in most cases impractical. This leads to the strategy of

decomposition.

"Optimization of complicated engineering systems by decomposition is motivated by the

obvious need to distribute the work over many people and computers to enable simultaneous,

multidisciplinary optimization" (Sobieszczanski-Sobieski, Agte & Sandusky, 1998).

Furthermore, even as computers and processes improve, it is unlikely that the optimization

problem will be solved as one monolithic calculation since human judgment is still required for

most problems. With complex systems, this judgment is usually best left within discipline

specialists rather than at the system level. Thus, one goal is to focus on the collaboration of

autonomous groups that work concurrently to compress the project elapsed time.

31

Decomposition focuses on optimization at lower levels with coordination at the system

level. The basis for this is that most variables are at best only loosely coupled between

subsystems. Thus, the system level problem can be split into smaller subsystem problems which

are then coupled by a set of system level variables (i.e. Decomposition).

Decomposition performs two functions. First, it divides the problem into smaller and

theoretically simpler subproblems. Second, it divides design variables for each of the

subproblems into two categories, system level and subsystem level. Variables which are inputs

or outputs of more than one system are considered system level variables. Variables that only

affect one system are considered subsystem variables. In a well decomposed system, the number

of system level variables is usually much less than the number of subsystem level variables.

While this approach is generally applied to single systems, the multilevel approach can be

extended beyond the system and subsystem levels to include the SoS as well. Several multilevel

methodologies for solving engineering design problems have been introduced. These include

Collaborative Optimization (CO) (Braun & Kroo, 1995), Bi-Level Integrated System Synthesis

(BLISS) (Sobieszczanski-Sobieski et al., 1998), and Concurrent Subspace Optimization (CSSO)

(Chi & Bloebaum, 1996) to name a few. This research focused on applying CO, discussed

below, combined with some elements of BLISS, discussed in Appendix C, to a SoS.

Collaborative Optimization (CO)

In CO, "a complex problem is hierarchically decomposed along disciplinary boundaries

into a number of subproblems. With the use of local subsystem optimizers, each discipline is

given control over its own set of local design variables and is charged with satisfying its own

disciplinary constraints. The goal of each local optimizer is to agree with the other groups on

values of the multidisciplinary variables, while a system level optimizer provides coordination

32

and minimizes the overall objective" (Braun & Kroo, 1995). This is analogous to a situation

where a team leader (system level) coordinates the activities of the team members (subsystem

level) through tasking in order to achieve an objective.

The system level optimizer develops a set of target system level variables. These system

level variables are sent to the subsystem optimizer which has total control over subsystem

variables and is also allowed to deviate from the target system level variables to achieve a

feasible design. The objective of the subsystem optimizer is to minimize this departure while

satisfying its own internal constraints. This optimization can be performed using any means

necessary. The system level optimizer in turn adjusts the target values in such a way as to

minimize the system level objective while satisfying the constraint that the subsystems do not

violate the target variables. The basic structure of CO is shown in Figure 7.

System
Coordination

Subsystem I Subsystem 2 i fSubsystem 3
Optirmizer Optimizer Optimizer

Disciplinary Disciplinary Disciplinary
Analysis Analysis Analysis

Figure 7. Block Diagram of Basic Collaborative Optimization Problem

The formulation of the subsystem objective can be any number of different functions.

Many problems have used the sum of the squared differences, (e.g. [ZAZ*]2) however this has

shown some difficulties in convergence near the system solution (Kroo & Manning, 2000).

Constraints and objectives can also be combined in a penalty method approach (DeMiguel &

Murray, 2000).

33

This classical CO optimization can be mathematically described in Equation (7)

System Level: min Jsys(Z*)
s.t. J'= 0 for all i

Z*L < Z* < Z*U

ith subsystem: min Ji(Z*,ZA) = f(Z*, ZA)
s.t. g(Z^,X') 0

h(ZA,X')= 0
XiL < X < XiU (7)

where Z* is a vector of system level variables defined at the system level
ZA is a vector of system level variables used at the subsystem level
X' is a vector of subsystem i variables defined at the subsystem level

One defining difference in CO is that the system level variables are allowed to be varied

by the subsystem optimizer such that the subsystem always achieves a feasible solution. This

reduces the workload and communication required between levels and keeps the computational

burden at the subsystem level (Braun & Kroo, 1995).

Advantages to CO are summarized as follows: (Kroo & Manning, 2000)

* Expedited integration due to minimal asynchronous communications
" Divisible computational effort
" Ability to use different subsystem optimizers
" Structure matches closely with industry and government design practices

Disadvantages to CO are summarized as follows: (Kroo & Manning, 2000)

" Greater computational time
* Requirement for careful decomposition planning and problem formulation
" Sensitivity to optimization parameters and tolerances
" Difficulty in compatibility constraints forms causing numerical difficulties
" No convergence proof (DeMiguel & Murray, 2000)

Kroo & Manning (2000) also identified areas where CO was well suited:

" Large problems requiring significant effort for subproblem solution
" Problems with low dimensionality coupling and few system variables
" Problems able to exploit special optimization methods
* Situations where tight integration is undesirable

34

When looking at a SoS, we can see that many of the advantages of CO apply well to this

form of problem. SoS problems are large and complex because of the typically complex systems

as much as the system interaction, thus CO's decomposition of optimization distributes the effort

across the problem levels. SoS problems also involve diverse and minimally connected groups,

both in terms of system compatibility and design team interaction. CO's minimal

communication between levels and lack of communication within the subsystem level suit the

SoS situation well where tight integration is typically not possible and cumbersome. The diverse

groups involved in the SoS are also free to use whatever optimization technique best fits their

system.

Multidisciplinary System Design Optimization

In addition to the mathematical difficulties of optimization, there are also issues involved

with the construction of real world design optimization problems. Most real world designs are a

combination of several disciplines such as mechanical engineering, structural engineering,

electrical engineering, finance, etc. Designing a system across these different disciplines

presents unique challenges. For an engineering system optimization, each discipline or

subsystem typically seeks to achieve a certain objective within physical constraints. Historically,

large and complex systems were developed by individual subsystems or engineering disciplines

and later integrated. However, each specialized discipline would seek to optimize their

subsystem within their field of expertise to create detailed designs without fully understanding

the impact on the overall design in terms of performance, cost, and risk. Furthermore, different

engineering fields sometimes require conflicting designs to achieve their individual objective.

For instance, in a ship hull, speed performance can be improved by using a long narrow hull;

however hull volume is improved by using a short and wide ship hull. These conflicting

35

objectives (speed versus volume) lead to conflicting designs (long and narrow versus short and

wide). In order to integrate the subsystem designs across the various disciplines required either

significant and costly redesign or instead of simultaneously designing the subsystems, they

would be developed sequentially, where a single subsystem would be designed and then become

a constraint on the next subsystem design. Both of these methods typically lead to an overall

suboptimal design. Therefore, MSDO was begun as a research area for the design of complex

engineering systems and subsystems that coherently exploits the synergism of mutually

interacting phenomena (Giesing & Barthelemy, 1998).

MSDO is (M)ultidisciplinary in that it seeks to integrate different discipline models

together into a single macro model. MSDO deals with (S)ystems which are "a collection of

things or elements which, working together, produce a result not obtainable by the things alone."

MSDO focuses on engineering (D)esign. Finally, MSDO uses (O)ptimization as a mathematical

framework to achieve improved performance (de Weck & Willcox, 2003).

MSDO techniques, including the multiobjective and multilevel methods discussed above,

have been applied to several different complex systems such as automobiles, aircraft, telescopes,

helicopters, and ships (Giesing & Barthelemy, 1998). However, each of these applications deals

with a single system but could theoretically be extended to multiple systems.

36

CHAPTER 3: MOCOSS

Extension of CO to Multiple Objectives

The traditional CO formulation is posed as a single objective optimization problem. In

most applications, the goal is to maximize the performance of the overall design by adjusting key

attributes that may be common to more than one subsystem. These performance characteristics

make up the system level variables. At the subsystem level, the optimizer attempts to achieve a

design which does not alter the system level variables while meeting the subsystem constraints.

This ensures the design is technically feasible and compatible with the other subsystem. By

optimizing for the maximum system performance, the optimizer will, if it converges, arrive at a

single "optimal" design.

There has been some research on multiobjective CO, (Tappeta & Renaud, 1997), which

focused on the use of the weighted sum approach. This research showed different formulations

and how to effectively perform sensitivity analysis. However, this research did not consider

multiobjective subsystems. Some would say that each system level variable examined by the

subsystem optimizer can be considered an objective, making the subsystem multiobjective;

however, the CO methodology combines them into a single objective by essentially using a

single special case of the weighted sum approach with each objective weight being equal.

For the SoS problem, the multiple objectives are typically performance and cost, which

could themselves be multiple objectives. Within CO, the SoS would be optimized at the top or

system level. The systems which make up the SoS would be optimized at the second or

subsystem level. Theoretically, additional sublevels could also be included (i.e. the second or

subsystem level is decomposed into various sub-subsystem levels also optimized via CO). In the

case where the systems are designed independent of cost or have only one purpose, the classical

37

CO approach described is adequate. However, many of the individual systems which make up

the SoS also have their own performance and cost objectives.

The primary issue is how the subsystem level optimizer deals with situations where there

may be multiple technically feasible solutions which meet the technical system level variables.

This is illustrated below in Figure 8. The isoperformance line represents the designs which

achieve the desired technical performance by meeting the system level variables. Designs to the

left of the POF would represent infeasible solutions, while the ones to the right are feasible. The

"best" designs would be on the POF (Note: the performance objective is satisfied, while cost

objective is minimized) (de Weck, Miller & Mosier, 2002).

(Utopia Pareto Optimal
Point) Frontier

0e Feasible
8 Region

Isoperformance Line

Cost

Figure 8. Depiction of Collaborative Optimization for a Multiobjective Problem

In the approach presented in previous multiobjective CO research, the system level

optimizer defines a point within the objective space for each subsystem optimizer to achieve.

The point could be a single pair of objectives (i.e. cost and performance levels) given to the

subsystem optimizer or a group of technical and economic system level variables which are

ultimately combined at the system level. The target values from the system level represent the

utopia point for the subsystem level since only at that point is the subsystem objective

minimized.

38

The system level optimizer is responsible for selecting points along the POF while the

subsystems' only objective is to minimize the distance between the system level targets and a

feasible solution as shown by the arrow in Figure 8. This increases the scope of the system level

optimizer and requires significantly more interactions with the subsystem optimizer. It also

further constrains the subsystem optimization by increasing infeasible solutions which would

meet the technical system level variables but do not meet the economic system level variables.

For the SoS problem, the classical CO formulation may be relaxed by recognizing some

characteristics of the problem and utilizing some aspects of BLISS (Appendix C). Of the system

level variables, there are actually two classes, those that relate to performance (Z) and those that

enforce compatibility (Y). The SoS interactions that deal with performance characteristics, such

as speed, range, etc., of the individual systems are typically objectives of those systems.

Furthermore, many of these performance characteristics can be exceeded without affecting the

feasibility of the system. For instance, a ship designed for a max speed of 30 knots is still a

feasible design for a ship needed to achieve a max speed of 25 knots. Recognizing this

characteristic of certain performance variables allows them to be relaxed and become inequality

constraints of the system design rather than essentially equality constraints as in the classical CO

approach. The system level variables required to ensure the systems can interface properly (e.g.

size of airplane door to interface with gangway) are system compatibility variables. These

compatibility variables can be realized by either an equality constraint or by using a tolerance

depending on the level of model fidelity or compatibility required.

By relaxing the requirement to exactly meet the system level variables, the design space

is expanded from a single point to a region. Additionally, the subsystem optimizer no longer

enforces compatibility through the objective, but rather through the constraints.

39

MOCOSS maintains the business analogy that created CO, extending it to include

economic factors (i.e. cost). Namely, that the subsystem be responsible for achieving the desired

technical performance within the compatibility constraints while minimizing cost. In this

formulation, the system level optimizer would identify an isoperformance level while the

subsystem optimizer seeks to satisfy that isoperformance level and then to minimize cost.

By only using solutions which minimize subsystem cost, MOCOSS makes an implicit

assumption that the optimal SoS solution is made up of optimal subsystem solutions. There are

three aspects which need to be addressed, compatibility variables, performance variables, and the

cost objective.

The compatibility variables (Y) are the same (within a design tolerance) across the entire

SoS, and thus their affect on each subsystem is included. The performance variables represent

how the SoS would be operated which may be different than how the individual systems are

designed. However, specifying these system level variables as performance variables with

inequality feasibility constraints ensures that the subsystem can be operated at the system

specified level. With a SoS performance objective based on the system level variables, the

performance result may not be optimal but is operationally feasible for all the subsystems.

Subsequent system level optimization can be used to improve the performance. Taking speed as

an example, the system optimizer may select a target speed of 25 knots. The subsystem

optimizer may possibly identify the cheapest design is one with a max speed of 30 knots perhaps

because of some concavity in the subsystem POF. That design is still feasible for a speed of 25

knots. If the performance at 30 knots is better than at 25 knots, the system level optimizer should

move toward that better design in subsequent iterations. If on the other hand, performance at 25

knots is better than at 30 knots, the subsystem is still able to perform at 25 knots even though it

40

was designed to achieve 30 knots and thus the system level optimizer will not seek a better

solution (except maybe to reduce goal speed further). This creates convergence issues but not as

a trade between the subsystem attempting to match the system level variables and the system

level attempting to optimize those variables since altering the system level variables may not

force a subsystem design change because of the use of inequality constraints.

The last restriction with MOCOSS deals with how the subsystem optimizations are

combined. Since cost is the objective of the subsystem optimization, care must be taken when

combining them to identify the SoS cost. First, any variables that do not monotonically increase

the total subsystem cost or represent couplings between subsystems must be included within the

subsystem optimization. For example, if acquisition cost is to be optimized, number of units do

not have to be included since acquiring two units cost as much or more than acquiring one unit in

terms of total cost. On the other hand, if operations costs are included, having two units may

cost less to acquire and operate than having only one unit and thus the number of ships would

need to be included in the subsystem optimization to ensure the minimal cost. Similarly, if the

characteristics of one subsystem affect the cost of another system, those affects need to be

included within the subsystem optimization as system level variables. With this restriction, the

subsystem costs, and possibly system level variables, can be combined using any monotonically

increasing function [a + b, a * b. ab but not a - b, a / b, a-b] since the minimum cost would consist

of the minimum of each of the subsystem costs, ensuring the subsystems are on their POF.

One further note is that the acquisition cost should be based on the actual system design

variables (Z) determined by the subsystem optimizer since that is how the subsystem would be

built while operations costs would be based on the system design variables specified by the

system level optimizer (Z*) since that is how the subsystem would be operated.

41

Equation (8) shows the optimization formulation for MOCOSS.

System: min JSYS=[f(Z*), f(J, Z*)]
s.t. g' i 0 for all 1

h'= 0 for all i
D.V. Z*L < Z* < Z*U
D.V. Y*L U Y < Y*U

Subsystem: min Ji = f(XI, ZA, YA)

s.t. g,(X', Z*, Z^, Y*, YA) < 0
f(YA, Y*) <

Z^ - Z* < 0

hi(X', ZA, YA)= 0
D.V. X'L < X < Xiu

ZA, YA (8)

where Jsys is a vector of system level objectives
i varies from 1 to the number of subsystems
J is the ith subsystem objective
g'is a vector of the ith subsystem inequality constraints

in addition to sub-system specific constraints, g' also includes:
compatibility constraints f(YA, Y*) < g

isoperformance constraints ZA - Z* < 0

h' is a vector of the ith subsystem equality constraints
Z* is a vector of system specified performance variables to be achieved by

the subsystems
ZA is a vector of actual subsystem performance variables
Xi is a vector of subsystem i design variables
Y* is a vector of system specified compatibility variables to be adhered to

by the subsystems
YA is a vector of actual subsystem compatibility variables

Test Problem

A simple test problem can be used to illustrate the computational advantage of using

MOCOSS. The SoS will be made up of two systems, A and B which each have their own

tradeoff between performance and cost given in Equations (9) though (12). Figure 9 shows the

Pareto optimal solution of A, B, and the SoS.

Perf 1 -1I./((Costi.^. 15/15))+15 (9)
Perf2<- 1 ./((Cost2-5).^.25/20)+20 (10)
Perfsos=(Perfi +Perf2)/2 (11)
Costsos=CostI+Cost 2 (12)

42

14

12

10
a)

8-

-System of Systems

System B
0

0 20 40 60 80 100
Cost

Figure 9. Actual Pareto-Optimal Frontiers for Systems and SoS Used For MOCOSS Test Problem

The test problem was solved using both the traditional CO approach (MOCO) as well as

the modified approach (MOCOSS) described above. The implementation is described in

Equations (13) and (14). The problem was programmed with MATLAB, with the optimization

performed by a SQP optimization algorithm for both approaches at both the system and

subsystem levels. The system level multiobjective problem used the weighted sum approach

with seventeen different weights. Table 1 shows the results of the two simulations.

MOCO Implementation

Classical CO Implementation
System Level: min X *Costsos+(1- X)*Perfsos

0<x< 1
s.t. J'= 0 for all i
D.V. Perf'*, Costi*

ith subsystem: min Ji = (Perf1*-PerfiA) 2+(Costi*-CostiA) 2

s.t. Equations (9),(10)
D.V. PerfA CostA (13)

43

MOCOSS Implementation
System Level: min X*Costsos+(l- X)*Perfsos

0O< x< 1
s.t. g< 0 for all i
D.V. Perf'*

ith subsystem: min Cost'
s.t. Equations (9),(10)

Perf'*-Perf^ 0
D.V. Perfi^, Costi (14)

where gi are the constraints of the ith subsystem.

Table 1. Comparison of Test Problem Results Showing Computational Advantage of MOCOSS

CPU Time # of System Average Error from
(s) Evaluations System Optimum

MOCO 221.3 831 2.85e-6
MOCOSS 151.8 207 2.87e-7

Additional test using random optimization starting points and varying convergence

tolerances yielded similar ratios of 1.5x less CPU Time, 3-4x fewer function evaluations, and

lOx less error between MOCO and MOCOSS. The addition of compatibility constraints should

reduce the relative magnitude of the difference but MOCOSS will still retain a performance

advantage.

44

CHAPTER 4: SEA BASING MODEL

The sea base concept represents an excellent SoS problem to solve using MOCOSS.

Since the concept is relatively new, first discussed in the late 1990's, the architecture is not well

defined leaving a great deal of room in determining its composition. Existing platforms which

might perform the various sea basing functions are nearing the end of their useful lives. This

creates an opportunity for a clean sheet design of several interoperating and multidisciplinary

platforms resulting in a SoS optimization problem. The types of platforms needed are also

spread across different programs within the U.S. Navy creating managerial independence as well

as operation independence necessary to classify it as a SoS.

The function of the sea base is relatively straight forward, dealing with the movement of

materiel. This single mission allows one to overcome one of the main difficulties with SoSs,

namely how to evaluate its performance. By combining the various elements of a sea base

together using a mission simulation, a single performance measure can be determined. This

performance measure along with cost represent a real world multiobjective, multilevel SoS

problem able to be analyzed using MOCOSS.

Sea Basing Concept

President Bush stated in his 2004 State of the Union Address, "America will never seek a

permission slip to defend the security of our country." Thus military commanders must be able

to assure access and project power to swiftly deter or defeat enemy actions when host nation

support and neighboring basing is not available (CJCS, 2004b). This issue was illustrated during

the recent Iraq war where a U.S. Marine Corps division was unable to land in a NATO allied

base in Turkey because the U.S. was denied permission. Sea basing seeks to address this

military need.

45

Sea basing provides the military with the ability to rapidly deploy, assemble, equip,

command, project, retrograde, and re-employ joint combat power from the sea, while providing

continuous support, sustainment, and force protection to expeditionary joint forces. Supplying

the necessary equipment, troops, and supplies from the sea eliminates the need for a land base or

a beachhead. To reach an objective, the combat force can be taken directly from the sea base to

the objective using lighters such as planes, helicopters, or air cushioned vehicles. These lighters

are typically carried to the sea base and supported aboard other ships within the sea base. While

pursuing the mission, the combat force must be continuously resupplied directly from the sea

base. Once the mission has been accomplished, the force is reconstituted at sea to be potentially

transported to another objective.

The sea base is not necessarily a single ship or platform, but is "an inherently

maneuverable, scalable aggregation of distributed, networked platforms" (CJCS, 2004b, p.13).

The sea base also does not operate alone. It requires sea and air dominance around the sea base,

referred to as Sea Shield, which may be provided by warships and planes. Forces may also be

supplied by other sea elements such as Expeditionary Strike Groups (ESG). The ships also carry

additional lighters (i.e. transport vehicles able to deliver men and materiel to the objective),

which could be used by the sea base to deploy its force.

The surrounding logistic system of the sea base is also important. This system consists of

the joint force cargo which is made up of legacy equipment and troops. The force also requires

logistical supplies such as fuel, ammunition, water, and food necessary for sustainment. For the

scope of this discussion, these supplies can be assumed to have an infinite source and can be

provided indefinitely to the sea base via replenishment or cargo ships. The entire sea base

including the surrounding interfaces is shown in Figure 10.

46

Sea Shield
Legacy Combat - iaForwar Transporter

Cargo Land Base or
CONUS

Transporter
Supplies Interface E

(Fuel, Ammo) Replenishment FEneForce
Ships Warehouse

Expeditionary Lighter-~-~-
Strike Group Interface 0 ective

Command & [Carrier Strike

Control Group__Sustainment
Sea Base System Boundary

Figure 10. Sea Base Context

There are multiple ways of accomplishing the sea base concept using several different

architectures. In general, accomplishing the objective from start to finish requires three types of

nodes: land base, sea base, and objective nodes, illustrated in Figure 11. To travel from the land

base nodes to the objective nodes, the joint force must travel aboard three platforms: a cargo

platform, or transporter, which moves along the edges between the land base and sea base nodes,

an assembly platform (i.e. warehouse), which makes up the sea base node, and a sea/air lift

platform, or lighter, which moves the force along the edges between the sea base and the

objective. In addition, there are also interfaces between the platforms. These platforms and

interfaces are identified within the sea base system boundary of Figure 10. The characteristics of

the platforms and interfaces, such as number, size, capacity, speed, throughput rate, etc.,

aggregate to determine the mission performance of the sea base.

47

Adv. ~2000 nm ~25 nm Shore
Base ITS Obj.

~100 nm

ESG Inland
Obj.

Land Base Node Sea Base Nodes Objective Nodes

Figure 11. Nodal Diagram of Sea Base

The five blocks shown within the sea base system boundary of Figure 10 can be

combined in different ways to accomplish the sea base. For instance, a potential two ship

combination would have the transporter through lighter interface as one ship, and the lighter as

another ship. This is similar to the Maritime Preposition Force (Future) [MPF(F)] concept where

a single group of ships carries the entire cargo load to the sea base, warehouses and assembles

the combat equipment, and interfaces with lighters which transport the force to the objective

(Souders, Schulze, Ginburg & Goetke, 2004). Another possibility is to have a virtual warehouse

such as an artificial beach (Figure 12) assembled at the sea base which has no cargo carrying

capability and acts only as an assembly and interface point. The joint force would be delivered

from the advanced base via cargo or ferry, assembled at the artificial beach, and then transported

to the objective using lift assets from other platforms in the area. This is similar to what was

done for Joint Logistics Over The Shore (JLOTS) exercises (Herron, 2001; Kane, 1998).

Obviously, there is a range of possibilities between these two extremes representing the various

ways the platforms could interrelate with each other.

This thesis will consider a three ship solution to achieve a sea base consisting of a High

Speed Connector (HSC) to act as the cargo/ferry platform, an Intermediate Transfer Ship (ITS)

to act as the sea base interface platform, and a Heavy Lift Sea Lift (HLSL) to act as the sea lift

48

platform which is carried and supported aboard the ITS. Figure 13 shows an operational

depiction of how this sea base might operate. Appendix D is a more detailed description of the

sea basing concept its function and architectural form from a system architecting perspective.

Figure 12. Artificial Beach Used in JLOTS exercise

... .-. . . .-...

Heavy uel .
Equipment Ammo

Troops Food

-. ogistics and Sustainment Support ..

Sea-- '" Inter-bhse Transfer
. .,w.----- Base

In'ta-theater Support.

'.Base-to-Shore *

/ : * 00Command ase-to-Objective
Strike Support & Control

Logistics &
Reconstitution

High Speed
Connector

Intermediate
Transfer Ship

Lighter
e.g. Heavy

Lift Sea Lift

Figure 13. Sea Base Operational Diagram Showing Where Various Platforms Would Operate

49

Sea Base MOCOSS Formulation

The sea base problem is multiobjective in that there are two opposing goals, to minimize

cost and maximizing performance. For this research, maximizing performance will be

equivalent to minimizing the delivery time of the combat forces to their assigned objectives.

These objectives are subject to the constraint that the sea base ship platforms are feasible. Since

there are three ships to be designed (a HSC, an ITS, and a HLSL) each with their own multiple

objectives, the MOCOSS approach was chosen. To clarify notation, when referring to the

MOCOSS, the system level optimization is performed on the SoS while the subsystem level

optimizations are performed on the ship platforms. Each subsystem is given a set of

performance goals to meet. The subsystem will optimize to achieve these parameters while

minimizing the individual platform cost. There is also a compatibility constraint between the

ITS and HLSL to ensure they can operate together (i.e. the ITS can carry the HLSL). The total

problem consists of 2 objective modules, 3 analysis models and 4 different optimizers. Of these,

the objective modules, two of the analysis modules, two optimizers and the interfaces to the

optimization algorithms were written specifically for this research. The remaining modules and

optimizers used commercially developed algorithms. The variable and objective flow is shown

in Figure 14. The two objective modules do not perform any optimization but rather combine

the outputs of the subsystem optimizers and the system level variables to develop the system of

system objective values, cost and delivery time. A description of each of the models and their

optimizers is given below.

Sixteen system level variables (Z*) and two compatibility constraints (Y*) were used to

combine the five models. The system variables were all scaled to enable optimization as integer

values while still keeping a wide range of solutions. Table 2 identifies the variables, the models

50

that use them and their lower and upper bounds. Equation (15) is the generalized optimization

problem to be solved. Specifics on the equations and constraints are described below and in

Appendixes G, I, K, and M.

Z* ZL, ZU,T 1 Optimization Parameters

Z^,Y^,Xl

Cost,

g
ZA,YA,X 2

g

Z Y ,X

Z*, Y

Cost,
g

Cost
2

g-

Cost3

JI

Figure 14. MOCOSS Formulation For the Sea Base Problem

Table 2. List of System Level Performance (Z*) and Compatibility (Y*) Variables

Variables Variable Models Used Lower Upper
Type Bound Bound

(Z*L, Y*L) (Z*u, Y*U)
HSC Speed (kts) Z* HSC, Perf 20 50
HSC Cargo Capacity Z* HSC, Perf [2, 1] [11, 25]
[LT(x125), sqft(x1000)]
of HSCs Z* Perf, Cost 1 15
ITS Cargo Capacity Z* ITS, Perf [10, 10] [80, 50]
[sqft(x5000) Personnel(x 100)]
ITS Interface Sites (3 types) Z* ITS, Perf [1, 1, 1] [15, 3, 2]

of ITS Z* ITS, Perf, Cost 1 8
ITS Lighters (HLSL, LCAC, H-53, MV- Z* ITS, Perf, Cost [0, 0, 0, 0] [8, 8, 20, 20]
22)
HLSL Speed Z* HLSL, Perf 40 70
HLSL Cargo Capacity (x25LT) Z* HLSL, Perf 3 8
HLSL Length (x10 ft) Y* HLSL, ITS 2 18
HLSL Length / Beam Ratio (/10) Y* HLSL, ITS 18 22

51

A

System: min Jy, = [Cost(J', Z*); Delivery Time(Z*)]
s.t. g'< 0 for all i

h'= 0 for all i
D.V. Z*L < Z* < Z*U
D.V. Y*L < *<YU

ith Subsystem: min J' = f(X , ZA, YA)
s.t. g(Xi' ZA, YA) < 0

O<YA/Y*< .2
ZA - Z* < 0

h'(X', ZA, YA)= 0
D.V. X'L < Xi < XiU

ZA,YA (15)

where Jsy, is a vector of system level objectives
i varies from 1 to the number of subsystems
Ji is the ith subsystem objective
g' is the set of it subsystem inequality constraints (including compatibility

and isoperformance constraints)
h' is the set of ith subsystem equality constraints
Z* is a vector of system specified performance variables
ZA is a vector of actual subsystem performance variables
X'is a vector of subsystem i variables
Y* is a vector of system specified compatibility variables
YA is a vector of actual subsystem compatibility variables

Genetic Algorithms

A Genetic Algorithm (GA) was chosen as the system level optimizer because of its

simple implementation, ability to generate a POF in a single optimization run, and its ability to

handle discrete variables such as number of platforms. Other optimization methods such as SQP

were attempted but proved difficult to implement.

GAs begin with a population of individuals with randomly generated genes which in this

problem represent the system performance and compatibility variables. Each individual of the

population is evaluated for its objective value. Feasibility constraints are accounted for as

penalties to the objective to determine a fitness value. After evaluation, the population

undergoes selection, where individuals are randomly selected in proportion to their fitness values

(i.e. those with better fitness are selected with a higher probability). Groups of two selected

52

individuals, referred to as parents, undergo crossover, the equivalent to biological mating. Genes

are exchanged between the two parents to create two new children to replace the parents.

Finally, the population undergoes mutation where a small percentage of genes are randomly

altered. These three operators, selection, crossover, and mutation create a new population. The

new population is re-evaluated, completing a generation. The process of selection, crossover,

mutation, and re-evaluation occurs repeatedly until the desired number of generations have

passed.

The specific GA used is called GOSET and was developed at Purdue University by Dr.

Scott Sudhoff. Basic genetic algorithm operators such as selection, cross-over, and mutation

were used along with more advanced techniques such as elitism and diversity control. Details

and explanations on the parameters used are included in Appendix E. The actual genetic

algorithm interface codes are provided in Appendix F.

Performance Model

When analyzing how the sea base performs, it is important to understand the greater

system dynamics of the system of ship systems. The ultimate goal of the sea base is to provide

adequate logistical throughput to deploy and sustain a military force. The U.S. Marine Corps

Marine Expeditionary Brigade (MEB) 2015 was chosen as the combat force for the analysis due

to the availability of information on the equipment and sustainment requirements as well as the

fact that the primary customer of the sea base concept is the U.S. Marine Corps. However, a

different unit size or composition could also have been used. The performance model takes

capability information such as cargo capacity and speed about the three ships design (HSC, ITS,

HLSL) as well as a cargo load to be delivered. Additional assets such as the ESG and airlift craft

are included as fixed parameters.

53

Using a discrete time simulation, the cargo is tracked from an advance base to one of two

assigned objectives (see Figure 11). The actual distances would depend on the tactical and

strategic situation in which the sea base operated. Distances would also vary with time as both

the sea base and objectives would be constantly moving. For this analysis, the distances between

the nodes were fixed at 2000nm between the advanced base and the sea base, 25nm between the

sea base and the shore objective, and 100nm between the sea base and the inland objective. The

distances were selected to be consistent with other sea base concept studies (Johnson, Wolf,

West & Gold, 2005) but could have significant design impact. For instance, shortening the

distance between the sea base and the shore objective would place more emphasis on the number

of interfaces and time to load and unload cargo and less emphasis on speed. (U.S. Navy, 1997).

Further analysis beyond this research with different distances and including stochastic position

changes would be required to properly identify the impact of distance on the solution.

Cargo is treated as combat units by grouping them in sorties. The cargo is either

preloaded on the ESG or ITS or remains at the advanced base for later delivery by HSCs. Cargo

delivered via HSC has a time penalty aboard the ITS before it can be subsequently delivered to

the objective to account for preparation and assembly time. In addition to delivering cargo, the

model also accounts for the delivery of sustainment resources such as food, ammunition, and

water, stored aboard the ITS, by tracking usage rates and making air drop deliveries to the

objective or resupply the ITS using the HSC when supplies at the objective or ITS fall below

critical levels. This sustainment requirement is included to account for the need to allocate

resources to this mission during the simulation time.

The primary output of the simulation is the time to complete the delivery of the MEB

combat force including any sustainment operations (i.e. resupply) required during that time.

54

Using combat force delivery time as the single performance measure of the sea base was used

because it is quantitative, measurable, understandable, and is useful for comparison purposes.

The model does provide the capability to track delivery of additional follow-on equipment and

re-supply, but the time frame is much longer and less critical than the initial combat force

deployment. Appendix G provides further details on the performance model and validation. The

simulation code is given in Appendix H.

Cost Model

The cost model is a very simple weight based formulation which combines the number

and displacements of the various subsystems using Equation (16). The k factors are used to

relate the displacement in tons to a cost. Each platform has a different k factor based on the type

and size. For instance, the ITS would likely have a smaller k factor than the HLSL to account

for economies of scale and simpler design. The k factors used in this optimization, [4, 1, 8] for

the HSC, ITS and HLSL respectively, were arbitrary and serve only to illustrate how a cost

model could be implemented. More accurate formulations could be included within each

subsystem model to improve the fidelity and remove the need for the k factors other than to

account for volume discounts [i.e. k=f(n)]. Operations and recurring costs could also be included

in the subsystem model optimization to identify life cycle costs as opposed to just acquisition

costs. However, this would require including other pertinent platform characteristics within the

subsystem cost model to ensure each subsystem identifies its own minimum cost.

Cost= (ki * Ni * Ai) (16)

where i is the (HSC, ITS, HLSL) subsystem
k is a cost/weight factor
N is the number of platforms
A is the platform displacement

55

Platform Models

Models of each of the three platforms were developed to simulate a simple conceptual

design. Each model uses a different optimization technique in order to select the best candidate

platform to illustrate the flexibility of MOCOSS.

ITS Model

The ITS represents a fairly unique design combining aspects of amphibious ships with

well decks and flight decks, but with cargo carrying and transfer capabilities more like a Roll-on

/ Roll-off (RO/RO) ship. To develop a model for the ITS, it was assumed, like most ships, to be

space and volume constrained. An empirical formula from Ship Design and Construction for

RO/RO ships, shown in Equation (17) was used an estimate of the available space.

Length (m) * Beam (m)* Depth (in) = 27 * Lane Length (m) (17)

The lane length, a typical measure of available cargo area on RO/RO vessels, was

converted to total square footage. The total square footage was then allocated to various

functions such as a well deck, cargo space, assembly areas, and troop accommodations with

corrections made for differences in deck heights for each type of space. Additional volume for

cargo tanks and ballast was also included. These required spaces were determined based on the

system level variables. Further details and validation are provided in Appendix I.

In addition to available space constraints, the dimensions of the ITS were limited to what

current shipyards could build as well as ensuring standard nondimensional ratios, such as length

to beam, were within reasonable limits for a vessel of this type. Furthermore, a basic measure of

stability, metacentric height to beam ratio, was calculated to account for intact and damaged

stability requirements.

56

A SQP was used to vary the ship dimensions, length, beam, and depth, in order to meet

the various constraints while minimizing the displacement which was a function of the

dimensions. The ITS optimization interface, constraint, and objective function codes are given

in Appendix J.

HSC Model

The HSC design used a model developed by the Maritime Applied Physics Corporation.

It is a nonlinear empirically based model within Excel which uses existing ships for weight

fractions, size ratios, and seakeeping characteristics. It is not intended to be a design tool but

was used because it runs quickly, allows comparisons between various hull types and includes a

basic optimization algorithm. Three hull types were examined: monohull, catamaran, and

trimaran. The model allows the user to define the desired speed, payload, and range within a

constrained displacement. It uses a goal programming technique where each of the goals (speed,

payload, and range) are assigned a priority. The model attempts to achieve each goal in priority

order by varying engines, size, and fuel load.

In the MOCOSS application, range was assumed as a given and thus given first priority.

Each of the hull forms were examined for the goal speed and payload, alternating the priority

between the two goals. This produced a total of six potential designs (two for each of the three

hull types). An additional constraint on the cargo space was applied based on the final length

and beam. The design which met all of the goals and the space constraints at the minimum

displacement was selected. Additional details are included in Appendix K. The interface code is

included as Appendix L.

57

HLSL Model

As a simplifying assumption, the HLSL was assumed to be an Air Cushioned Vehicle

(ACV) similar to the LCAC currently used by the U.S. Navy. Due to the limited availability of

ACV design models, existing ACV designs were used as the potential design space. In addition,

some new design points were added from a design project on larger sized ACVs (Miller &

Gougliodis, 2005). This gave a total of ten discrete point designs. Each of the designs included

dimensions (length and beam), displacement, payload capacity, and speed and were assumed to

represent nondominated designs along these variables. The optimizer selected the design that

met the payload capacity and speed requirements and whose dimensions were below the actual

values within a defined tolerance (20%). Of the designs meeting these criteria, the one with the

minimum displacement was selected. Additional details are included in Appendix M.

Implementation code is included in Appendix N.

Computational Improvement

Because GAs are population based, they tend to require more computation time relative

to single solution methods. This coupled with the need to perform multiple optimizations and a

time intensive simulation required efforts to reduce the evaluation time. Three techniques were

used to achieve this reduction.

First, the performance simulation was skipped when any of the platforms were infeasible,

and the max delivery time was assigned to the delivery time objective function. Second, the

performance model was terminated after three simulated days. Since delivering the cargo in

more than two days would be generally unacceptable, this change would still formally evaluate

marginal solutions, but would not waste time on clearly poor solutions. The third change was to

record, in a data file, the inputs and results of the optimizations. Since the optimizations and

58

models were all deterministic and arrive at the same result given the same input, if the inputs

were repeated during a subsequent evaluation, the recorded result could be used rather then

reperforming the optimization and/or simulation. Recording the inputs and results for each

unique evaluation also provided a larger dataset than a single population to use in later analysis.

The use of these techniques reduced the average evaluation time from 90 to 30 seconds on a

Celeron 2.8GHz processor.

59

Page Intentionally Left Blank

60

CHAPTER 5: RESULTS

The Sea Basing MOCOSS optimization was done over six independent optimization

runs. The first three runs, referred to as the HLSL required runs, used the basic model with the

three platforms as described above and used various population and generation sizes. The HLSL

required runs identified an unforeseen result of the model formulation which caused the HLSL to

be adversely penalized. To check the results, the model was changed to provide the option to not

include the HLSL and instead to use the existing LCAC while also accounting for the cost of

obtaining additional LCACs. Three additional optimization runs, referred to as the HLSL not

required runs, were done using this modification. Table 3 shows the population, generation

characteristics and number of evaluations for each of the various data runs.

Table 3. Population, Generation and Evaluation Size Characteristics of the Optimization Runs

Run Initial Subsequent Number of # of
Population Populations Generations Evaluations

HLSL 1 50 50 50 1640
Required Runs 2 500 100 50 3704

3 100 100 100 6552
HLSL Not 4 100 100 100 6545
Required Runs 5 100 100 100 6539

1 6 100 100 100 6555

Convergence Issues

In general, while GAs are known to be a generally robust optimization algorithm

(Goldberg, 1989), there is important information that can be obtained from the convergence

history. Figure 15 shows the generational history of the best, mean, and median values of the

cost fitness function for runs 2 though 6. Run #1 was not included because the results required

an adjustment due to a modeling error. Since the adjustment altered the objective function, the

optimizer might have searched in another area of the design space. Therefore, the Run #1

convergence history may not be indicative of the actual optimization performance.

61

Run
-10 06..........0

5
-1010

-10

#2

0 10 20 30 40 50 60 70 80 90 1

Run #3
-10

-10 -.. ' ,00 0-.\0~ %N-0a

10-10
0 10 20 30 40 50 60 70 80 90 100

Run #4
0

-10 - -- I

-10 - --

10 *.0

0 10 20 30 40 50 60 70 80 90 100

Run #5
0

-10 5 K0
10 -

-10 - ---
0 10 20 30 40 50 60 70 80 90 100

Run #6
0

-10-10 -o-

0 10 20 30 40 50 60 70 80 90 100
Generation #

......... Best ----- Mean - Median

Figure 15. Cost Convergence History of Runs 2-6 Showing Improving Populations Over the Course of the
Optimization

62

-I.0
0

70

0

c)zDZ>

0

The graphs of Figure 15 plot the negative of the constraint adjusted cost fitness. The

constraint adjusted delivery time fitness is not shown but exhibits similar convergence history.

Cost is shown as a negative value because the desire is to minimize its value, yet the GA seeks to

maximize the objective. The fitness value is shown rather than the objective value because it

includes the constraint penalties, as shown in Equation (18). The constraint penalty factor of

.0001 was chosen based on previous work using GOSET to provide reasonable convergence

properties. This constraints penalty can alter the objective by orders of magnitude in some cases;

therefore the graph is shown as a semilog plot.

Jf = J0 * 1.0001 * max(g"(x),0) / w' (18)

where Jf is the fitness value
J0 is the objective value
g'(x) is the constraint value returned by subsystem optimizer i
w' is a scaling factor for subsystem i to bring the constraint to O(1)

Runs#3 though 6 show the GA optimization produces steady improvement over the

course of the optimization in the best result, shown by the dotted line approaching one.

Additionally, the mean and median values of the population also improve towards one indicating

a greater portion of feasible solutions within the population. Run #2 is the exception. One cause

might be speciation in which early domination prevents the GA from exploring new areas and

significantly slows the population improvement. However, Figure 16 shows the distribution of

the eighteen system variables, normalized between zero and one. The fact that the values are

well spread would indicate good population diversity, but the designs could still have some

clustering created by feasibility constraints (Wolf et al., 2005). The most likely cause is from

scaling. A form of linear scaling was used in this algorithm, which works well except when

most population members are fit, but a few have very low fitness (Goldberg, 1989) Since the

63

magnitudes of the objectives span several orders of magnitude, linear scaling can cause the

majority of solutions, narrowly separated by only a few orders of magnitude, to be clustered at

one end of the fitness scale while solutions which are several orders of magnitude less are at the

other end. The solutions clustered at the top end will have similar chances for selection and

make it more difficult to preferentially explore the very best solutions. The fact that the other

runs were able to show improvement with a larger number of generations indicate that this

problem could be resolved using more generations, but tuning of the GA and better scaling and

penalty functions would also improve the optimization performance as well as reduce the chance

of this problem occurring.

D 0.8 6.

0.6xX

FZ 0.4- X0

1 2 3 4 5 6 7 '8 9 10 11 12 13 14 15 16 17 18

Design Variable Number

Figure 16. Gene Distribution at Generation 50 of Run #2 Showing Convergence Problem not Related to Lack

of Diversity Within Population

Another convergence concern within the MOCOSS formulation is the implicit

assumption that the Pareto-optimal system solutions will be made up of Pareto-optimal

subsystem solutions. It is possible however, that the subsystem optimizer could identify a

weakly dominated solution which may have the same displacement (cost) but lower performance

characteristics. It is expected that the system level optimizer will be able to overcome this

problem and move toward the Pareto solution.

To check this result, the raw data from the first three runs was split into groups based on

the variables affecting each platform, or subsystem, as shown in Table 2. Duplicate and

64

infeasible solutions were removed from each group. To determine the Pareto solutions for each

group, the system performance variables were treated as objectives minimized and maximized

based on how they would affect overall performance (e.g. higher speed is better than lower

speed, all else being equal). The SoS was evaluated using the final objectives (delivery time and

cost), however, the number of fixed organic lighters (LCAC, MV-22, CH-53) aboard the ITS

were also included to break ties when identifying Pareto-optimal solutions. This provided a

penalty for using fixed platforms which were not included in the cost model. Figure 17 shows

the breakdown.

14000

12000 -

10000 -

6000 -1

2000-

0 -
SoS ITS HSC HLSL

* Total 12054 12054 12054 12054

0 Unique 11075 6768 2350 664

* Feasible 1998 1393 1209 154

E Pareto 22 877 278 10

Figure 17. HLSL Required Optimization Results Showing SoS and Platform Designs Breakdown in Terms of
Uniqueness, Feasibility and Dominance

To check for convergence, the 22 SoS Pareto solutions were compared to the subsystem

Pareto solutions with results shown in Table 4. Most of the SoS Pareto solutions did not include

65

;0
2==Mm

a Pareto-optimal HSC or HLSL solutions as would normally be expected. However, all the SoS

Pareto solutions included an ITS Pareto solution indicating any convergence problem likely lies

with the way the platform interacts with the SoS and/or with the optimizer rather than a

fundamental problem with the MOCOSS method.

Table 4. Number and Percentage of SoS Solutions Containing Subsystem Pareto Solutions

ITS HSC HLSL
22(100%) 10 (45%) 5 (23%)

Upon further review, the 12 non-Pareto HSC designs that were part of the SoS Pareto

solutions were all dominated along the sqft capacity variable. This domination occurs because

the HSC optimizer only verifies that the HSC is large enough to accommodate the desired square

footage which is typically not an active constraint. Thus the displacement (i.e. cost) is only

marginally affected by the desired square footage and changing this value only affects the SoS

delivery time making it more difficult to drive towards the Pareto solution. In fact, the 10 SoS

Pareto solutions with HSC Pareto designs consisted of only two unique HSC designs.

The number of non-Pareto HLSL solutions is also due to both the optimizer and how it

interacts with the SoS. First, the HLSL model is not an optimizer per se, but merely verifies that

the desired system level goals can be achieved using one of the discrete designs. It is expected

that there will be differences between these discrete designs and the HLSL design being tested,

however it is assumed that the desire for improved performance, will drive the system level

variables toward the discrete design with no resulting increase in cost. However, the HLSL is

not used in any of the SoS Pareto designs (i.e. the ITS does not carry the HLSL) and thus it is not

included in the performance analysis creating no objective function change to cause the

optimizer to preferentially select towards the discrete designs. Even with this difficulty at the

Pareto front, the GA still identified two of the six (33%) discrete designs possible within the

66

system variable bounds in only 664 unique evaluations of the possible 15,810 designs (4.2%).

This shows the GA performed better than random in progressing towards the discrete designs.

Data Analysis (HLSL Required)

Figure 18 shows the combined results of the HLSL required optimization runs. For

comparison, the Pareto front from the first two runs were compared to the combination of all

three. The third run was longer, covering 100 generations versus 50 and also increased the

number of feasible SoS solutions from 258 to 1998, an almost eight fold increase. Even with

more feasible solutions, the location of the POF remained relatively unchanged except for

significant expansion in two regions at the extreme low and high cost ends.

One interesting area is near the labeled point. There are very few additional solutions

near this point and none from run #3. This would indicate the need for additional exploration in

this area.

From the first two runs, it appears that there were asymptotes along each axis. The

minimum cost near 33 was attributed to having to purchase the HSC and ITS while achieving a

certain level of performance. The minimum performance asymptote was attributed to the

presence of the ESG which required more than one sortie to deliver its cargo. As Figure 18

shows, this performance barrier can be broken creating a concavity in the POF. By supplying

sufficient organic lighters such that the sea base is able to deliver the cargo in almost a single

trip, the delivery time is able to drop below 6.6 hrs. In this region, the entire surface delivered

cargo is landed in one sortie, thus requiring a critical number of lighters and the ITS that carry

them. Before this critical value is reached, the simulation requires a round trip back to the sea

base. Another way to look at it is that there are actually two delivery times, one for the surface

delivered cargo and one for the air delivered cargo. The surface delivered cargo will have a

67

discrete jump from 6.6 hrs to less than 1 once the critical number of lighters is reached. The air

delivered cargo will also exhibit this discrete jump, but the magnitude will be much less due to

the faster turn around times for aircraft sorties. The combined delivery time is the maximum of

these two creating a nonlinear concavity in the possible delivery time thus justifying the use of a

more advanced multiobjective optimization techniques than a simple weighted sum.

48

42

36

30

24

18

-9 -R
R

+ RXF
- -- +--FR

xx x a

M

N XXXOCX

X x 0< W x ,+ x

W X +

X x x + x x

X* %W ~ ee, in><*U X*

12

6

o01
0

Figure 18. Plot o

X x X x >o p x x X x)I X(

<X)<)O XK >0=~ Xx X X xO

X IK)M WXX X W

20 40 60 80 100 120 140 160 180 200
Cost = f(Disp)

f SoS Objective Space and Pareto-Optimal Curve for HLSL Required Optimization Results

Having the entire force for one objective land at one time does identify a problem with

the model. The model does not include a limit to the number of interface sites at the objective

since they are typically much less restrictive than the sea base interface sites. This model

simplification therefore allows an unlimited number of lighters to offload their cargo at the

objective simultaneously. This problem is only significant at the initial offload which has the

most number of lighters offloading cargo. With multiple sorties between the sea base node and

68

un1-3 Pareto front

un 1 data

un 3 data
un 2 data

un 1 &2 Pareto front

E
a)

the objective, bottlenecks will occurs at the sea base node minimizing the effect of any objective

interface site conflict issues. However, when only one sortie is conducted, the bottleneck would

instead occur at the objective. Thus the model underestimates the delivery times in the extreme

low delivery time situation.

Another interesting observation from Figure 18 is that the delivery times occur at discrete

intervals indicated by the lines of designs. A small contribution is the discretization of time to

two minute intervals used in the performance model. The greater contribution deals with the

discrete travel time (1-4 hours) for the lighters which travel between the ITS and the objective.

This impact is reduced in most cases by bottlenecking at the ITS interface sites which prevents

all the lighters from loading cargo simultaneously and thus separating the lighters only by the

turnaround time (-15-30 min).

Table 5 looks at the 21 solutions that make up the Pareto front in Figure 18 (the 2 2nd

point is off the graph due to a delivery time >2 days). There are some definite conclusions that

can be drawn from Table 5. Within the ITS designs, there appear to be clusters of results with

similar numbers and capacities. Since these clusters were developed from a single optimization

(Run#3) it is possible that the cause is localized exploration rather than a preference for that

particular design variant. While diversity control was enabled, the differences within the HSC

and HLSL designs may have been sufficient to prevent the clustering from being adversely

penalized. Additional runs with more generations might reveal more distributed results.

69

Table 5. System Variables of the SoS Pareto-Optimal Set For HLSL Required Optimization Runs

24 3 1 4 7

21 1 3 6 8 13 14 1 1 1 7 8 16 0 40 8 17 22 2.1 142.7
21 1 3 6 8 13 14 1 1 1 7 8 12 0 40 8 17 22 4.0 131.3
22 1 3 11 8 13 14 2 1 2 7 7 7 0 46 5 17 22 4.8 119.4
22 1 3 6 8 13 14 1 1 1 7 8 6 0 46 5 17 22 5.8 114.4
40 4 4 16 6 15 26 2 2 1 3 0 20 0 55 8 16 20 6.6 114.2
21 1 3 7 4 13 12 5 1 2 7 8 6 0 40 8 17 22 7.1 61.6
21 1 9 11 3 20 16 6 1 2 7 0 12 0 40 8 17 19 7.6 52.3
45 4 2 2 2 10 24 5 1 1 7 0 20 0 46 5 16 20 8.4 37.4
24 3 5 6 2 11 49 4 1 1 8 2 11 0 59 5 14 18 10.2 36.5
23 1 3 12 2 13 23 6 2 1 7 13 5 0 40 5 16 21 10.9 35.7
23 1 3 12 2 13 23 6 1 2 7 11 6 0 40 8 17 19 11.5 35.5
23 1 3 12 2 13 23 6 1 2 7 5 6 0 40 5 16 22 11.6 31.2
23 1 3 12 2 13 23 6 1 2 1 4 6 0 40 5 6 22 12.4 30.5
23 1 3 12 2 13 23 6 2 1 7 0 6 0 46 5 17 21 14.1 27.2
23 1 3 12 2 13 23 6 1 2 7 0 5 0 40 5 16 22 16.3 27.C
23 1 3 12 2 13 23 6 1 2 7 0 3 0 40 4 17 22 18.5 25.6
22 1 3 11 1 20 47 6 1 1 7 0 6 0 40 5 16 22 18.7 17.6
22 1 3 6 1 20 47 6 1 1 1 0 3 0 40 4 17 22 21.4 16.6
21 1 3 6 1 20 47 5 1 1 1 0 3 0 40 4 17 22 23.1 16.3
21 1 3 6 1 20 47 5 1 1 1 0 2 0 46 5 17 21 23.8 16.C
24 1 9 11 1 13 47 5 1 2 7 0 2 0 46 5 17 22 26.5 15.5

There is also a definite trend, however, in the ITS design with a tradeoff between a large

number of small capacity ITS for fast delivery times to a smaller number of large capacity ITS

for low cost. Regardless of the number or size of ITS, there appears to be a preference for a

large number of LCAC and a preference for CH-53 over MV-22. There is also a small tradeoff

between aircraft and capacity as the small capacity ITS has more aircraft than the large capacity

ITS as shown in Figure 19, though there is a great deal of scatter (R2 of .2492). Finally, none of

the Pareto solutions include a HLSL in the performance analysis.

As for the HSC designs, most of the POF includes a single slow speed HSC. The

exceptions are concentrated on the solutions generated in previous runs (highlighted in bold).

Since those are the minimum values for number and speed and appear across the POF, it is likely

that it is cheaper and faster to put all the cargo on a set of ITS rather than ferry it via the HSC. In

70

fact, in performance simulations with multiple fast HSC designs, the HSC performed no

deliveries and is therefore redundant. A general conclusion regarding HSCs though would be

premature since there may be other missions less time critical than the initial combat force

delivery that the HSC may be better suited which the model used did not account for. This

possibility was not examined in this analysis.

25 -

cc 20 $4a

4 15y= -0.9715x + 24.834
02

15 R2 0.2492

0

0
10 12 14 16 18 20 22

ITS Capacity (x5000 sqft)

Figure 19. Plot Showing Inverse Relationship Between ITS Capacity and Organic Aircraft

Fuzzy Pareto Fronts

From Figure 18, there are several points which are very close to the Pareto front, but that

are slightly dominated. However, the models used within this optimization, like any model, have

potential design errors. Thus it is possible that some of these slightly dominated points might

actually become dominant if more detailed design and optimization were done. Therefore, rather

than excluding them when looking at Pareto-optimal results, it might be useful to look at a

"Fuzzy" Pareto Front (FPF) to not only expand the number of solutions to examine but to also

corroborate any conclusions. We can apply a tolerance when sorting for Pareto-optimal

solutions and capture a larger data set and still retain confidence that the solutions are at least

71

near optimum. If we apply a 1% tolerance to the results of Runs 1, 2 and 3, we increase the

dataset to 297 solutions.

The difficulty with a larger dataset is that it will include more noise and is more difficult

to manage than a smaller data set such as the one in Table 5. In this formulation, some of the

noise is related to the optimizer trying to eliminate redundancies. Looking at the FPF highlights

these redundancies which improve the overall data and sensitivity analysis, improves the

confidence in the conclusions, and highlights areas for further, more detailed design and

improvement. For example, Table 6, shows a small region of the FPF with a specific delivery

time with the dominant solution shown in bold. The dataset was also controlled for a specific

ITS design in order to concentrate on the HSC. The nondominated solution, shown in bold,

includes the low speed, single HSC design. The dominated designs show increased speed,

number, and capacity which all increase the cost but have no effect on the delivery time because

they are not required to deliver the combat force. This helps verify the conclusion made above

that the HSC design is optimizing towards minimum performance levels and may not be

required. By controlling the HSC design, similar analysis could also be performed on the ITS.

Table 6. System Variables of FPF Data Set Showing Minimal HSC Impact on Performance

23 1 3 7 4 13 12 12 1 2 7 8 6 0 40 3 17 19 7.1 62.4
24 1 3 7 4 13 12 12 1 2 7 8 6 0 40 3 17 19 7.1 62.4
31 1 3 7 4 13 12 12 1 2 7 8 6 0 40 3 17 19 7.1 62.5
22 6 3 1 4 13 12 12 1 2 7 8 6 0 40 3 17 22 7.1 65.1
22 6 4 1 4 13 12 12 1 2 7 8 6 0 40 8 17 20 7.1 66.C
31 6 3 7 4 13 12 12 1 2 7 8 6 0 40 8 17 22 7.1 66.1
48 6 3 1 4 13 12 12 1 2 7 8 6 0 40 8 17 20 7.1 67.9
31 6 8 1 4 13 12 12 1 2 7 8 6 0 40 8 17 20 7.1 70.6

72

Data Analysis (HLSL Not Required)

One continuing trend throughout the HLSL required runs was that the HLSL was not

utilized in any Pareto design. One factor was that, unlike the HLSL, LCACs could be included

without increasing cost, yet provide the same function, delivering cargo from the ITS to the

surface objective. Including the LCAC cost using the same cost/displacement factors as the

HLSL resulted in only a small change in total cost and did not alter the POF solution set.

However, this post optimization cost adjustment potentially invalidated the optimization

as designs without HLSL were preferentially selected and those with HLSL were not fully

explored. To check this result, the model was adjusted to include LCAC costs. Additionally, if

the HLSL was not present, a feasible HLSL design and compatibility with the ITS would not be

required.

The HLSL not required runs also provide another set of independent data on the sea base

problem in addition to observing how LCAC costs might affect the results. Table 7 shows the

number of feasible SoS designs increased 85.2% versus only a 64.5% increase in unique SoS

evaluations. This improvement can be explained by the removal of the HLSL feasibility

constraint. The small change in the number of Pareto-optimal results is due to the discrete nature

of the model which results in many of the delivery times overlapping those observed in the

HLSL design required runs.

Table 7. Comparison of SoS Design Breakdown Showing Change in Feasibility of HLSL Not Required
Optimization Results

HLSL Not Req'd HLSL Design Req'd % Change
Unique 18270 11075 64.5%
Feasible 3700 1998 85.2%
Pareto 23 22 4.5%

The nondominated solutions of the HLSL not required optimization runs are given in

Table 8. Once again none of the solutions include the HLSL except for ones in highest cost

73

region. Interestingly, the speeds and capacities are very similar to the LCAC. The HSCs were

also generally slower speeds but this conclusion is not as definitive as the HLSL required runs.

The same ITS trends also occur with several small ITS at the fast delivery times and few larger

ITS at the low cost end.

Table 8. System Variables of the SoS Pareto-Optimal Set For HLSL Not Required Optimization Runs

4J H H H U H M A

2 E 43 10 *4 0 72 44 3 4 20 2. 140.2
22 8 2Ea7 1 0 T 1 1 80 3 9 3 4 20 .0 1 Uv4q 0f 0 a O~l r

M EG E3 E1 E4 r-

22 8 4 1 7 13 10 1 1 1 8 71 7 2 44 3 14 20 2.6 140.9

22 8 2 1 7 13 10 1 1 1 8 9 7 2 42 4 14 20 5.8 117.8
23 8 4 1 6 16 10 1 1 1 4 12 7 0 0 0 0 0 6.6 107.4
20 3 6 5 3 10 16 3 1 1 7 13 7 0 0 0 0 0 7.1 53.8
2U 7 2 5 3 10 16 3 1 1 7 8 7 0 0 0 0 0 7.6 48.2
24 2 3 2 2 10 27 15 1 1 8 2 12 0 0 0 0 0 9.4 37.6
49 2 2 2 2 10 27 7 1 1 8 2 12 0 0 0 0 0 9.6 35.0
49 2 2 2 2 10 27 2 1 1 8 2 12 0 0 0 0 0 11.4 33.1
49 2 2 2 2 10 27 7 1 1 3 4 5 0 0 0 0 0 12.4 30.2
24 2 2 2 2 10 27 2 1 1 3 4 8 0 0 0 0 0 13.1 29.7
24 2 2 2 2 10 27 7 1 1 1 2 5 0 0 0 0 0 14.0 27.5
24 2 3 2 2 10 27 2 1 1 1 4 5 0 0 0 0 0 15.2 27.3
24 2 2 2 2 10 27 2 1 1 1 2 5 0 0 0 0 0 16.3 25.6
28 3 4 6 1 19 48 10 1 1 4 0 5 0 0 0 0 0 18.6 20.2
28 3 4 6 1 19 48 10 1 1 0 2 5 0 0 0 0 0 18.7 19.9
31 3 6 19 1 16 49 4 1 2 0 0 7 0 0 0 0 0 18.7 19.6
31 3 6 191 16 49 5 1 2 0 0 3 0 0 0 0 0 21.8 18.4
28 3 4 5 1 19 48 7 2 1 1 0 2 0 0 0 0 0 23.4 18.4
20 5 2 5 1 25 49 3 1 1 0 0 3 0 0 0 0 0 25.5 18.3

Comparison of Results

Figure 20 shows a comparison of the combined Pareto-optimal frontier curves from runs

1-3, runs 4-5, and run 6 as specified in Table 3. Each set had approximately the same number of

evaluations and were performed on different computers at different times to ensure random

results. The curve for runs 1-3 were adjusted to include the cost of LCAC like runs 4-6. The

closeness of the three curves created from completely separate optimizations would indicate that

74

the Pareto-front is well defined. However, because of the random nature of the GAs, there is no

guarantee that additional optimizations might not develop a curve to dominate all of these.

(D

E
F~

0

48

42

36

30

24

18

12

6

%
0 20 40 60 80 100 120 140

Cost = f(Disp)

Figure 20. Comparison of Pareto-Optimal Frontiers of Different Optimizations Runs With Approximately
the Same Number of Solutions

75

....- Pareto-Optimal Frontier Run 6
+-- Pareto-Optimal Frontier Run 4 & 5
- Pareto-Optimal Frontier Run #1-3

t

-.......

Page Intentionally Left Blank

76

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Conclusions

The major purpose of this thesis was to develop a formulation to optimize SoS problems

where both the systems and the SoS involve a tradeoff between technical and economic factors.

MOCOSS was introduced as a methodology to solve this class of problems through a relaxation

of the classical CO approach. Changing the subsystem optimizer to search for the subsystem

POF rather than a single point in the objective space resulted in significant improvements in both

number of evaluations and accuracy of results as shown using the test problem.

Both the test problem and the sea base problem show that the MOCOSS formulation is

able to arrive at a POF for a SoS which combines the subsystem POFs. The major issue as

shown in the sea base problem deals with removing redundant capability which may be weakly

dominated in one objective (typically performance), however this is typical of GAs which

approach the POF but may not arrive at the most optimal solution unless run for a long period of

time. This problem is generally not an issue in high level design where models are less accurate,

but where the objective is to identify areas for more detailed exploration. For this type of

problem, MOCOSS with genetic algorithms is ideal.

Another issue involved weakly dominated solutions in the subsystem optimization. The

MOCOSS formulation requires detailed understanding of the problem in order to divide system

level variables between those that represent goals that need to be met or exceeded from those that

represent compatibility constraints between different subsystems. Relaxing the compatibility

constraints using a design tolerance and allowing differences between design performance and

operational performance gives greater flexibility to the optimizer. This added flexibility

improves the subsystems ability to arrive at a POF solution using different model and

77

optimization techniques. However, when system level variables are not part of the subsystem

objective function, the system level optimizer was slow to force the redundancies out of the

subsystem to arrive at a system level Pareto-design which was made up of subsystem Pareto-

designs as demonstrated with the HSC and HLSL models.

Computation time is another complication, even with the simplified sea base problem.

The multiple subsystem POFs and large numbers of system level variables made identifying the

SoS POF front very computationally intensive. The nonconvex multiobjective nature of the

problem coupled with the variables being mixed-integer made GAs well suited as a system level

optimizer, but this only added to the computational requirement. Several techniques such as

skipping time intensive simulations for infeasible solutions and referring to previous results

rather than reoptimizing a particular evaluation improved the speed by a factor of three. These

techniques did not appear to negatively impact the MOCOSS formulation for the sea base.

However, the computational time would make conducting detailed design analysis using

MOCOSS and GAs impractical considering the thousands of design iterations required. Rather

MOCOSS is best suited for use with subsystem models with response surfaces, discrete designs,

or empirical relationships. Any computationally intensive processes should be kept at the system

level when they can be selectively evaluated depending on the results of the subsystem

optimizations. However, improved computers along with coarse grained parallel optimization

processing may enable more detailed analysis.

Despite the computational inefficiencies associated with GAs, they did provide

impressively consistent results. This achievement is significant considering the sea base problem

had over 1017 possible solutions yet with about 12,000 evaluations each; three sets of

independent GA optimizations describe very similar POFs. GAs also are ideally suited for

78

problems with discrete variables or objectives. The concave regions of the POF of the sea base

also did not pose difficulties for the GA. Finally for multiobjective problems, a population of

solutions enables the evaluation of FPFs to improve the understanding of the solutions space.

GAs do impose some other limitations. Potential problems with scaling and constraint

application made convergence an issue. Running the optimization over more generations can

typically overcome most of these issues but requires more computation time. Alternatively, the

GA performance could be improved with better tuning of parameters and with a careful selection

of the scaling and constraint implementation algorithm.

Another limitation of the GA is that it does not create sensitivity information like more

traditional numerical optimization methods such as SQP or linear programming methods. The

use of FPF was introduced in part to overcome this limitation. By evaluating the FPF data, some

variables can be controlled and the sensitivity data obtained without requiring additional

evaluations. The additional information provided by the FPF may increase confidence in data

and trend analysis as well as identify possible redundancies that the system level optimizer failed

to eliminate. Another useful aspect of the FPF is that it minimizes the effect of the inaccuracies

in all models. These inaccuracies may make an actual nondominated solution appear to be

dominated. Having a tolerance with the Pareto data set expands the possibilities so that the user

can identify model errors which may skew results.

Finally, several conclusions were made during the data analysis of the sea base problem.

It is important to realize that these conclusions are based on a model designed and written by the

author and may not reflect all the required capabilities. The model was only concerned with the

delivery of a specific cargo load as quickly as possible and did not include the possibility of

additional cargo required for sustained operations nor for either a smaller or larger initial force

79

size. Other issues such as attrition, maintenance problems, varying distances, environmental

conditions, etc. were also not analyzed. Also, the metric selected, delivery time, may not be the

best measure of performance. Thus the purpose of this analysis was not to resolve the sea base

architecture but to present how MOCOSS could be applied to SoS problem like the sea base and

the results examined to obtain useful system architecture information.

Future Work

There are several areas identified during this thesis research that merit further

exploration. Since the thesis explored both MOCOSS and sea basing, the possibilities for future

work are separated into these two area.

MOCOSS Improvements

The mathematical rigor which went into the MOCOSS formulation needs to be improved.

I asserted in this research that the requirement to decompose the objective function and delegate

responsibility to the subsystem level was that the function which combined the regions must be

monotonically increasing. This assertion was made based on intuitive reasoning and was

submitted without proof. To be truly accepted as a formal optimization method, this assertion

needs to be proven or the actual restriction made known. Specifically, it is necessary to prove

under what conditions that several regions combined result in a region whose boundary is a

combination of the boundaries of the other regions. The problem statement is further

complicated in that the only important boundary is the nondominated section which is problem

dependent.

More testing of MOCOSS also needs to be done using known test problems. The simple

test problem used in this thesis did not include any compatibility constraints or subsystem

variables. Additionally, only two objectives, cost and performance, were used and were

80

combined using a linear superposition. In general performance involves more than one objective

and the subsystems may not combine in a linear fashion. Though it is not expected to

significantly change the relative results, more testing may highlight other areas for improvement.

Finally, a simplification not addressed in the MOCOSS method is the performance of the

individual systems outside of the SoS. By definition, these systems must be operationally

independent and may operate in other SoS with different sets of systems. Perhaps this problem

could be addressed by including additional objectives or somehow operating parallel MOCOSS

optimizations.

Sea Base Model Improvement

As indicated before, the sea base is an excellent SoS problem which can be addressed

well within the JCIDS process and use optimization techniques, specifically, MOCOSS.

However, the models used in this research were written to illustrate how MOCOSS could work

with different optimization methods. Furthermore, with limited time and access to computer

power, it was necessary to keep the models simple. For further improvement, the models,

especially the HSC, should be improved to include more subsystem level variables and to ensure,

where possible, that all system level variables have an impact on cost. Additionally, it would be

preferable to include cost directly within the platform models rather than the extremely

simplified cost model used in this example. As for the performance model, more customer input

is required to better define a performance metric which incorporates the true speed of combat

force delivery, such as a time integrated cumulative combat power index, as well as the need to

deliver subsequent sustained operations cargo, but not necessarily in as rapid a fashion.

The "chunking" and "smearing" effects within the performance model also need to be

addressed. The "chunking effect" deals with how a cargo sortie, which represents several

81

vehicles, cargo, and personnel, is amalgamated into a single space and weight requirement. Each

sortie can then be divided into equally size elements for delivery to the objective. The

performance model includes "chucking" to maintain unit integrity, but poses problems since the

division into smaller elements may not be equal. Greater fidelity in the cargo list could reduce

this effect.

The "smearing effect" is where cargo is not allocated to a specific ship, but rather the

total cargo on all ITS or ESG platforms is combined together and treated as a single unit. This

effect ignores issues where a single cargo sortie might be spread among different ships.

Likewise, interface sites are also "smeared" together. This may overlook some bottleneck issues

where one ship may not have cargo, but its interface sites could effectively be used for cargo

transfer from another ship. Removing the "smearing effect" would increase the complexity of

the cargo distribution across the platforms and may not be worth the effort since, in practice,

many of these issues are resolved with careful logistics preplanning.

There are also other architectures that could be examined besides the three platform

model used in this example, such as using multiple variants of the ITS or other platforms.

Additionally, some of the fixed platforms (aircraft, ESG) could also be included as designs.

Finally, within the performance model, the capability exists to include random attrition

and maintenance problems. The effect of environmental factors, such as sea state, on speed and

transfer capability could be included. Other factors such as varying travel distance, cargo size,

beach interfaces, etc. are also important for sensitivity analysis to ensure a robust design.

However, sensitivity analysis of fixed and/or stochastic system level parameters is especially

difficult in this type of problem. For instance, if the cargo size was doubled, the importance of

the HSC might increase as less could be carried on the ITSs. But the large amount of time

82

required developing even a small set of usable solutions make multiple runs more difficult to

perform. One potential solution would be to limit the sensitivity and stochastic analysis to a

smaller data set such as the Pareto-optimal solutions. However, limiting the analysis in this

manner may not accurately reflect how these fixed and stochastic parameters affect other parts of

the data set.

83

Page Intentionally Left Blank

84

REFERENCE LIST

Adams, C. (2000, February 18). Was standard railroad gauge (4'8/2") determined by Roman
chariot ruts? Retrieved April 2, 2005 from
http://www.straightdope.com/columns/000218.html

Braun, R.D. & Kroo, I.M. (1995, August 14). Development and application of the collaborative
optimization architecture in a multidisciplinary design environment. International
Congress on Industrial & Applied Mathematics, Hamburg, Germany.

Brown, A. & Salcedo, J. (2003, Fall). Multiple-objective optimization in naval ship design.
Naval Engineers Journal [electronic version]. 49-61. Retrieved April 5, 2005 from
http://www.aoe.vt.edu/-brown/VTShipDesign/ASNE2002Paper.pdf

Chairman, Joint Chiefs of Staff (CJCS). (2003, June 24). CJCS instruction on joint capabilities
integration and development system. (CJCSI 3710.01C).

Chairman, Joint Chiefs of Staff (CJCS). (2004a, July). Joint concept development and revision
plan.

Chairman, Joint Chiefs of Staff (CJCS). (2004b, August 29). Joint integrating concept on sea
basing (Draft), version .25.

Chi, H.W. & Bloebaum, C.L. (1996, Sept 4-6). Concurrent subspace optimization for mixed-
variable coupled engineering systems. AIAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. [AIAA 96-4020].

Chong, E.P.K., & Zak. S.H. (1996). An introduction to optimization. New York: John Wiley &
Sons Inc.

Das, I. & Dennis, J. (1998, August). Normal-boundary intersection: a new method for
generating Pareto optimal points in multicriteria optimization problems. SIAM Journal on
Optimization, 8(3), 631-657.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, NY:
John Wiley & Sons, Inc.

de Weck, 0. & Kim, I.Y. (2004, April 19-22). Adaptive weighted sum method for bi-objective
optimization. 45 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference. [AIAA-2004-1680].

de Weck, 0., Miller D. W., & Mosier, Gary E.. (2002, April 22-25). Multivariable
Isoperformance Methodology for Precision Opto-Mechanical Systems. 4 3rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. [AIAA-2002-1420].

de Weck, 0. & Willcox, K. (2003). Multidisciplinary system design optimization. Lecture Note,
M.I.T.

85

DeMiguel, A.V., Murray, W. (2000, September 6-8). An analysis of collaborative optimization
methods. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization. [AIAA-2000-4720].

Giesing, J.P. & Barthelemy, J.F.M. (1998, September 2-4). A summary of industry MDO
applications and needs. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization. [AIAA- 1998-4737].

Gill, P.E., Murray, W. & Wright, M.H. (1981). Practical optimization. London: Academic Press.

Gilmer, T. & Johnson, B. (1982). Introduction to naval architecture. Annapolis MD: Naval
Institute Press.

GlobalSecurity.org. (2004, August 18). LSD-36 anchorage class. Retrieved April 11, 2005 from
http://www.globalsecurity.org/military/systems/ship/lsd-36.htm

Goldberg, D.E. (1989). Genetic algorithms in search, optimization & machine learning.
Reading, MA: Addison-Wesley Publishing Company, Inc.

Herron, S.M. (2001, September-October). JLOTS: Ship to Shore. Retrieved April 11, 2005 from
http://www.almc.army.mil/alog/issues/SepOct01/MS667.htm

Hootman, J.C. (2003). A military effectiveness analysis and decision making framework for
naval ship design and acquisition. M.I.T. Thesis.

Johnson, A., Wolf, R., West E. & Gold, A. (2005, April 26-27). Intermediate Transfer Ship as
Part of a Sea Base Family of Ships. ASNE Day 2005.

Kane, P. R. (1998, October). Advanced Modular Platforms for Sea State Three Operation. 1998
Naval Logistics Conference, Arlington VA, October 1998. American Society of Naval
Engineers, Alexandria VA.

Kroo, I. & Manning, V. (2000, September 6-8). Collaborative optimization: status and directions.
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization. [AIAA-2000-4721].

Lamb, T. (2003). Ship design and construction. Jersey City, NJ: Society of Naval Architects.

Liu, G.P., Yang, J.B. & Whidborne, J.F. (2003). Multiobjective optimisation and control.
Baldock, Hertfordshire, England: Research studies press ltd.

Maier, M. W. (1998). Architecting Principles for Systems-of-Systems. Systems Engineering.
1(4), 267-284.

Maier, M.W. & Rechtin, E. (2002). The art of systems architecting. (2nd ed.). Boca Raton, FL:
CRC Press LLC.

Marglin, S. (1967). Public investment criteria. Cambridge, MA: MIT Press.

86

Migdalas A., Pardalos, P.M., & Varbrand, P. (1998). Multilevel optimization: algorithms and
applications. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Miller, B. & Gougliodis, G. (2005, May). Sea base assault connector design project.
Unpublished design project. Cambridge, MA: Massachusetts Institute of Technology.

Naval Air Systems Command. (2003, April 10). Air Capable Ship Aviation Facilities Bulletin No
JJ. (NAVAIR Lakehurst - 4.8.10.4)

Office of Naval Research. (2004, August 27). Expeditionary logistics: Sea Base to Shore Surface
Craft (SSSC). Retrieved April 2, 2005 from
http://www.onr.navy.mil/fncs/explog/explog/products/seabaseshore.asp

Palli, N., Azarm, S., McCluskey, P. & Sundararajan, R. (1998, December). An interactive
multistage e-inequality constraint method for multiple objectives decision making.
Journal of Mechanical Design, (120), 678-686.

Pickens, G.L. & Picotte, L.F.(RADM, USN Ret.) (2003, November 12). LPD 17- A ship built by
andfor the expeditionary warrior. San Antonio Class: 21" Century Amphibious Assault
Ships. Retrieved April 2, 2005 from
http://www.pms317.navy.mil/news/lpd17ashipbuilybyandfor.asp

Polmar, N. (2005). The Naval Institute guide to the ships and aircraft of the U.S. fleet.
Annapolis, MD: Naval Institute Press.

Sobieszczanski-Sobieski, J., Agte, J.S. & Sandusky Jr., R.R. (1998, September 2-4). Bi-Level
Integrated System Synthesis (BLISS). 7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. [AIAA- 1998-4916].

Sobieszczanski-Sobieski, J., Altus, T.D, Phillips, M. & Sandusky, R. (2003, October). Bilevel
Integrated System Synthesis for concurrent and distributed processing. AIAA Journal,
41(10), 1996-2003.

Souders, R.M., Schulze, S., Ginburg, Y. & Goetke, J. (2004, April). MPF(F) analysis of
alternatives: final summary report. Center for Naval Analysis. Alexandria, VA.

Sudhoff, S. & Lee, Y., (2004). GOSET Manual Version 1.03. (Available from Scott Sudhoff,
Purdue University School of Electrical and Computer Engineering).

Tappeta, R.V. & Renaud, J.E. (1997, September). Multiobjective collaborative optimization.
Journal of Mechanical Design, (119),403-411.

U.S. Marine Corps. (1996). Operational Maneuver From the Sea (Concept Paper). Quantico,
VA: U.S. Marine Corps Combat Development Command.

U.S. Marine Corps. (1997). Ship-To-Objective Maneuver (Concept Paper). Quantico, VA: U.S.
Marine Corps Combat Development Command.

87

U.S. Navy (1997, February). NWP 3-02.12/MCRP 3-3 1.1 A, Employment of Landing Cr2aft
Air Cushion (LCAC). Norfolk, VA: Naval Doctrine Command.

Watson, D.G.M. (1998). Practical ship design, (1st ed.). Amsterdam: Elsevier Science Ltd.

Wolf, R., Dickmann J., & Boas, R. (2005, April 18-21). Ship design using heuristic optimization
methods. 1st AIAA Multidisciplinary Design Optimization Specialist Conference, [AIAA
2005-1980].

88

APPENDIXES

89

Page Intentionally Left Blank

90

Appendix A: List of Acronyms

AB Advanced Base
ACV Air Cushioned Vehicle
AoA Analysis of Alternatives
BBi Black Boxes
BLISS Bi-Level Integrated System Synthesis
BLT Battalion Landing Team
CO Collaborative Optimization
CONOPS Concept of Operations
CSSO Concurrent Subspace Optimization
ESG Expeditionary Strike Groups
FoS Families of Systems
FPF Fuzzy Pareto Front
GA Genetic Algorithm
GOSET Genetic Optimization and System Engineering Tool
HLSL Heavy Lift Sea Lift
HSC High Speed Connector
ITS Intermediate Transfer Ship
JCIDS Joint Capabilities Integration and Development System
JFC Joint Functional Concepts
JLOTS Joint Logistics Over The Shore
JOA Joint Operations Area
JOC Joint Operating Concepts
JOpsC Joint Operations Concepts
LCAC Landing Craft, Air Cushion
LCUs Landing Craft, Utility
LCU (R) Landing Craft, Utility (Replacement)
LHA Amphibious Assault Ship (General Purpose)
LHA (R) Amphibious Assault Ship (Replacement)
LHD Amphibious Assault Ship (Multipurpose)
LPD Amphibious Transport Dock
LSD Dock Landing Ship
MAPC Maritime Applied Physics Corporation
MCCDC Marine Corps Combat Development Command
MSDO Multidisciplinary System Design Optimization
MEB Marine Expeditionary Brigade
MOCO Multiobjective Collaborative Optimization
MOCOSS Multiobjective Collaborative Optimization of Systems of Systems
MOGO Multiobjective Genetic Optimization
MPF(F) Maritime Prepositioning Force (Future)
MPP Mission Performance Parameters
MSC Military Sealift Command
MTI Moment to Trim 1 Inch
NATO North Atlantic Treaty Organization
NAVSEA Naval Sea Systems Command
OMFTS Operational Maneuver From The Sea
OPM Object Process Methodology
POF Pareto-Optimal Frontier
RO/RO Roll-on/Roll-Off
SoS System of Systems
SQP Sequential Quadratic Programming
SRB Solid Rocket Boosters
STOM Ship To Objective Maneuver
TPI Tons Per Inch Immersion

91

Page Intentionally Left Blank

92

Appendix B: Solid Rocket Boosters and the Roman Chariot

Solid rocket boosters (SRB) used on the space shuttle are manufactured at a Thiokol plant
in Utah, then shipped to Florida by rail for final assembly at the launch site. The rail line passes
through one or more tunnels en route, and the SRB pieces had to be made small enough so they'd
fit through the tunnel bore.

The U.S. standard railroad gauge (distance between the rails) is four feet, eight and a half
inches. That's an exceedingly odd number. Why was that gauge used? Because that's the way
they built them in England, and English expatriates built the U.S. railroads.

Why did the English people build them like that? Because the first rail lines were built by
the same people who built the prerailroad tramways, and that's the gauge they used.

Why did 'they' use that gauge then? Because the people who built the tramways used the
same jigs and tools that they used for building wagons, which used that wheel spacing.

Why did the wagons use that odd wheel spacing? Well, if they tried to use any other
spacing the wagons would break on some of the old, long distance roads, because that's the
spacing of the old wheel ruts.

So who built these old rutted roads? The first long distance roads in Europe were built by
Imperial Rome for the benefit of its legions. The roads have been used ever since.

And the ruts? Roman war chariots made the initial ruts, which everyone else had to
match for fear of destroying their wagons. Since the chariots were made for or by Imperial
Rome, they were all alike in the matter of wheel spacing. Thus, the standard U.S. railroad gauge
of four feet, eight and a half inches derives from the specification for an Imperial Roman army
war chariot.. .made to be just wide enough to accommodate the back ends of two warhorses
(Adams, 2000).

93

Page Intentionally Left Blank

94

Appendix C: Bi-Level Integrated System Synthesis (BLISS)

Bi-Level Integrated System Synthesis (BLISS) is a multilevel optimization technique
proposed by Sobieszczanski-Sobieski, Agte, & Sandusky in 1998. BLISS relies on sensitivity
analysis in order to couple the various subsystems with the system level optimization. The entire
system is decomposed into separate subsystems, or Black Boxes (BBi). The variables are
divided into three classes: variables internal and unique to an individual black box, Xi, coupling
variables between black boxes, Yj,i, and system level design variables shared by at least two BB,
Z. The system level objective is typically a Y variable and is calculated within a BB.

One key to BLISS is that each BBi should optimize to the same system level objective.
This ensures that the suboptimization within each BB reflects the impact of local variables on
both the local and system level and results in minimization of the system objective function. To
achieve this, the BLISS algorithm initializes with a best guess for Y and Z. A sensitivity
analysis is performed on Y with respect to X and Z. An approximation of the system objective is
made as a function of X and Z. This approximate objective function is then used as the
minimization objective for each BB. Each BB performs its own optimization, varying the local
variables, Xi, while treating the system variables and coupling variables from other BB as
constants. The output of the BB is the objective value and other coupling variables. Sensitivity
analysis is then done on the objective function of each BB as a function of Z and Y. The
sensitivity analysis at each BB is used to develop an overall objective function expressed as a
function of Y and Z. A system level optimization is performed to minimize the approximate
objective function by varying Z. With new values for Z and Y, the process is repeated until the
system converges. Figures Cl and C2 illustrate the structure and cycle of BLISS.

Z - system level-

X4 BB1 - subsystem I

Y's

X 2 -BB 2 - subs stem 2 BB3 -subsystem 3 X3

Figure C1. BLISS Variable Flow

The objective function of BLISS is presented in Equation (CI).

0= D(D, Xi)T Ax (C1)

where #' is the objective function for subsystem i

D(CD, X)is the total derivative of the overall objective function w.r.t. the

j local variables Xi,j.

95

This can also be viewed as a composite objective function similar to that used in
multiobjective optimization. The effect on the objective function is a sum of the local design
variables weighted by their influence on the single objective of the whole system where the
weights are the derivatives calculated through the sensitivity analysis.

Initialize
X&Z

System and
Sensitivity Analysis F-

Human
Intervention

Subsystem 1
Optimization

Subsystem 2
Optimization

Subsystem 3
Optimization

Subsystem 4
Optimization

System Update
Optimization P Variables

X=XO + AXovr
Z= ZO + AZO0 r

Figure C2. BLISS Cycle

One of the major drawbacks of the BLISS algorithm is the need to perform significant
sensitivity analyses. Two methods were proposed to obtain the necessary derivatives. First,
traditional finite differencing could be used to calculate the derivatives. This can be
computationally inefficient and require several evaluations at the subsystem level. The second
method is to use Lagrange multipliers as shadow prices of the various constraints and can be
used to calculate the necessary derivatives. This eliminates the need for performing additional
analysis, but relies on the use of an optimizer that produced Lagrange multipliers as a by product
of its optimization, e.g. SQP.

BLISS 2000 (Sobieszczanski-Sobieski et al., 2003) is another method developed to
minimize the sensitivity analysis by replacing the subsystem level objective function with a
weighted sum of the subsystem output coupling variables YA. This eliminates the need for
calculating the total derivatives.

96

Appendix D: Sea Base Architecture

Introduction

Every successful military land engagement has involved some form of ground combat
leading to the issue of how to get ground forces to the conflict. When conflicts erupt between
neighbors, there is no concern for how to get ground forces into position or resupply them since
the countries share a common border. Most of military history consists of campaigns executed in
this manner where border disputes and land conquests were the primary reasons to go to war.
Furthermore, the technology typically limited the force that could be brought to bear over long
distances.

To reach a distant objective typically involves establishing an area of operations in a
bordering country who may be an ally. If this is not possible, forces might simply pass through
neutral territory to reach their objective, or may progressively take over territory to reach the
ultimate objective, as Napoleon did to reach Russia. If allies cannot be found or if intimidation
or seizure by force of neutral territory is unacceptable, or if natural barriers such as sea or
mountain block land travel, the ground force must find another way to reach the objective

The most recent war in Iraq has shown the difficulty in utilizing allied territory to
advance an attack. Turkey, a close NATO ally to the U.S. denied the 3rd U.S. Marine Corps
Division from crossing its territory to attack Iraq from its northern border. This meant the force
had to travel a long distance around the Arabian Peninsula in order to reach an area where it
could establish a base of operations.

The U.S. must be able to address both of these concerns: Project forces over long
territories and absent an allied base of operations. With two oceans separating the U.S. from its
enemies, the military has spent a great deal of resources ensuring that the seas are capable of
being controlled and able to be used as an avenue to reach the enemy. Furthermore, warships are
considered sovereign territory and thus no permission is required in order to conduct operations
from them. This naval capability has created a large amount of interest in basing operations
from a sea base.

History of Sea Basing

Forces able to dominate the seas are able to use them to reach the enemy through
amphibious warfare. There are examples of amphibious warfare throughout history; however, it
reached its largest scale during World War II. The D-Day attack on the beaches of Normandy is
a classic example of traditional amphibious warfare. Troops attacked a hostile beach where they
established a beachhead. Using this beachhead, they established a port of entry to bring and
store further supplies and heavier equipment in order to progress the battle further inland. This
method was necessary since the sea was the only western border that the Germans had exposed
to attack.

There are several problems with this method of power projection. First, D-Day and other
amphibious operations of World War II required a significant amount of lead time to build up
forces in a nearby base such as England. A second problem is that forcible entry against a
prepared enemy is very costly in terms of casualties and time. This cost is further exasperated by
the fact that the point of forcible entry is seldom the desired objective resulting in the third
problem; that intermediate objectives must be seized before the mission is accomplished. In the
Pacific campaign of World War II, the island hopping strategy was implemented because of the

97

need for nearby bases to collect forces. A fourth problem is that, as the battle progresses towards
the objective, all the territory between the front line and the beachhead must be protected to
prevent counterattacks. This requires a large buildup of forces before the force can advance
which severely impacts the momentum and removes the element of surprise.

After World War II, the U.S. Marine Corps was assigned the primary responsibility for
executing amphibious warfare. They developed various prepositioned squadrons of ships with
the necessary equipment and supplies at various bases around the world. In the event of a
conflict, the squadrons would immediately sail to a sea port near the conflict where the troops
would join the equipment and proceed to the conflict. Additionally, the U.S. Navy developed
various amphibious ships able to deploy and support a battalion sized force (-1000 troops) to
execute a forcible entry on a beach. This solved the first problem of collecting forces for an
assault since the force was already ready. However, this plan either required a friendly seaport
or only allowed a small force to capture a beach and establish a base of operations for further
buildup.

This problem was the genesis of current U.S. Marine Corps doctrine, "Operational
Maneuver From The Sea (OMFTS)" and its tactical implementation, "Ship-to-Objective
Maneuver (STOM)". STOM changes the traditional ship-to-shore movement to amphibious
maneuver.

Specifically, it will allow for conducting combined arms penetration and exploitation
operations from over the horizon directly to objectives ashore without stopping to seize,
defend, and build up beachheads or landing zones (U.S. Marine Corps, 1996).

This implies the ability to put a sufficiently sized combat ready force in a decisive
position to be able to accomplish the mission. This ability to strike at 'centers of gravity' deeply
inland forces the enemy to defend a larger area and increases tactical surprise (U.S. Marine
Corps, 1997). This form of warfare forces the base of operations to be moved from the
beachhead to a sea base

The sea base is a military concept initially developed in 1998 by the U.S. Marine Corps
and included as a major component in the current naval strategy document, "Sea Power 21." It
has also been declared one of five Joint Integrating Concepts by the Joint Chiefs of Staff. As
defined by the Department of Defense:

Sea basing is the ability to rapidly deploy, assemble, equip, command, project,
retrograde, and re-employ joint combat power from the sea, while providing continuous
support, sustainment, and force protection to expeditionary joint forces without initial
reliance on land bases within the Joint Operations Area (JOA). These capabilities will
enable operational maneuver and facilitate assured access and entry from the sea.

Supplying the necessary equipment, troops, and supplies from the sea eliminates the need
to establish a land base or a beachhead. To reach an objective, the combat force could be taken
directly from the sea base to the objective using planes, helicopters, or beachable ships such as
air cushioned vehicles. While pursuing the mission, the combat force must be continuously
resupplied directly from the sea. Once the mission has been accomplished, the cargo can return
to the sea base or be transported to another objective.

Assuming sea control can be maintained, operations can be conducted from an
invulnerable base releasing forces normally required for defense to be included in assault forces.

98

This increases combat effectiveness, reduces the force and logistics required, and reduces the
personnel and equipment subject to enemy attack (U.S. Marine Corps, 1997).

Sea Base Context

It is important to note that the sea base is not necessarily a single ship or platform, but
could be a network of different ships. The sea base also does not operate alone. It requires sea
and air dominance around the sea base, referred to as Sea Shield, which may be provided by
warships and planes. Forces may also be supplied by other sea elements such as carrier strike
groups and ESGs. The ships in these groups typically carry additional lighters which could be
used by the sea base to deploy its force. These groups could be considered a part of the sea base,
but because they perform a specific aspect on a limited scope, for this discussion they will be
considered only in how they support the overall goal of the sea base.

The surrounding logistic system of the sea base is also important. These logistics consist
of the joint force cargo which is made up of legacy equipment and troops. The force also
requires logistical supplies such as fuel, ammunition, water, and food necessary for sustainment.
These supplies can be provided to the sea base via replenishment ships or aboard cargo
transporters. The enemy is also critical to the context. It obviously will engage the joint force
during battle which will create equipment and troop attrition which must be handled by the sea
base. The enemy may also attack the sea base directly by engaging the sea shield. The enemy
may also be able to directly attack lighters (platforms which move forces from the sea base to the
objective) when they are at the transition of the sea shield and the combat area. Finally,
command and control aspects are inherent throughout the architecture and ensure the proper
execution of the joint force deployment. Figure DI illustrates the context of the sea base and
identifies the system boundary.

Sea Shield

Legacy Combat ViaForrward~ Transporter
Cargo Land Base or

CONUS
Transporter

Supplies I Interface Enemy
(Fuel, Ammo) .* lI nm

Replenishment Forces
Ships Warehouse

Expeditionary Transporter -
Strike Group Int0 ective

Command & Carrier Strike

Control GrpSustainment
Sea Base System Boundary

Figure D1. Sea Base Context

99

Sea Base Goals

The purpose of a sea base is to solve a problem consisting of several parts mentioned
briefly above. First, a ground combat force must be deployed a long distance from the U.S. This
force might consist of troops and/or equipment from any of the services: Army, Navy, Air Force,
and/or Marines. Therefore the sea base must be joint capable and not tailored to any one force.
Second, the sea base must be able to operate independent of a land base adjacent to the objective
and be able to attack the objective directly. Third, the force deployed must be significant enough
to achieve its mission. Since the capability exists for deploying battalion sized forces, the sea
base must improve on this and be able to deploy a brigade sized force (-4000 troops) and be
scalable to support larger sized forces. Finally, in order to achieve tactical surprise, the force
must be capable of deployment within a single period of darkness or about 12 hours.

In summary, the problem statement is: To deploy a joint brigade sized combat force from
the U.S. to a long distance objective during one period of darkness, independent of an adjacent
land base. This problem statement is shown graphically in Figure D2.

Ccmbat Forces

Brigade Size
(> 4000 Troops)

Locationi Joint

Deployinig

Independent Of
Adjacent Land Base

Duiing One Period
Of Daikness

Long Distance

Figure D2. OPM Problem Statement Description

Conceptual Development

While the preceding section describes the sea base and makes a case for itself as a
concept, there are many other possible concepts which might also satisfy the problem statement.
Figure D3 shows the top level functional and conceptual development of the sea base. Three
specific operations are presented which could potentially solve this problem: airlifting,
selflifting, or sealifting.

100

Airlifting could involve a long range aircraft able to transport the force from the U.S.
directly or via some intermediate airbase. Any pure airlift method, however, would be difficult
to execute in the short time frame due to the small payload carrying capability of aircraft and the
long travel distances.

Joint Combhat Forces'

B ri g ad (I, I z

Location

Airlifting Aircraft

Delyi~ ng inr

Deplovin

Independent Of
Adjacent Land Base

During ne Period
O Darkness

Lng Distance

Amphibious Vehicle

Selflifing PeCial Operations

Driven V hicle

Beachable Ship
Sealifting

Sea Base

FThree Platformi Two Platformn

Figure D3. OPM Conceptual Development of Sea Basing

Selflifting could consist of amphibious vehicles which transport themselves over the
water and then act as a combat vehicle once on shore. This concept would be technologically
difficult to achieve over long distances from the U.S. to the objective and in sufficient size to
meet the problem statement. This would also limit the type of equipment that could be deployed
to the objective since current equipment would either be unusable or require significant
modification. The combat force could drive itself to the objective for a distant land base. The
problem with this concept is that it requires the permission of border countries to drive through
which may not always be possible. The last selflifting concept would be to use special
operations forces which have their own gear and equipment and can infiltrate and extract
themselves with limited assistance. While this concept is used more frequently, it is limited in
the scope and size of forces that can be deployed and would be unrealistic for a battalion or
larger sized force.

101

I

A sealifting concept could be performed in one of two ways. A single ship could carry
the force from the U.S. to the objective. There are ships with this capability in use today;
however, the technical demands of being able to go directly to shore while also being sea worthy
in the open ocean make these slow vessels. Use of these ships also assumes the objective is at or
near the sea in order to attack it directly.

The final concept is to have a sea base capable of collecting the forces preparing them for
deployment and then sending them to the objective. This could be performed by three types of
vessels to conduct each of the phases, namely transporting forces from the U.S. to the sea base,
collecting and assembling the forces in a warehouse at sea, and finally sending the forces to the
objective. The sea base concept could also be accomplished using two platforms where two of
the functions above are conducted by one platform such as transporting and warehousing. The
three platform concept will be explored in more detail.

External Influences
There are many significant upstream and downstream influences on sea basing. On the

upstream side, there are five major influences: regulation, strategy, core competencies,
environment, and technology.

Regulation plays a role in the specific design of the platforms as the sea base must follow
habitability standards, pollution control laws, and survivability regulations to name a few.
However, given enough urgency, most, if not all of these regulations could be ignored since
warships are specifically excluded from having to adhere to them.

Strategy is also critical to the architecture. At the highest generality, the need for a
military or a deployed combat force is identified by national security strategy. Furthermore, the
need for a sea base is based on a strategic concern of lack of a land base to operate from.

Core competencies also can have an effect on the architecture. The U.S. Marine Corps
has a well established method of amphibious warfare which suits their particular force makeup
and training. As a result, many proposed sea base architectures are based on their current
operational doctrine and force composition. Additionally, there are several legacy elements in
the military which impose compatibility constraints. Several pieces of equipment have
significant impact due to their weight, size, or magnitude. For instance, the main battle tank used
by the U.S. Army and U.S. Marine Corps are over twice as heavy as any other piece of
equipment. Since the difficulty in transferring equipment at sea grows exponentially with
weight, this imposes a significant design and architecture constraint.

The environment, both physical and competitive, also impacts the architectural design.
The sea is generally an unforgiving place to operate and thus drives certain interfaces and
eliminates some designs as unsuitable in rough conditions. For instance, using an air cushioned
vehicle in the open ocean during rough seas would be extremely dangerous due to limited
stability. The competitive environment also requires that the various platforms incorporate some
form of protection from enemy attack or operate with other forces within the protection of Sea
Shield

The final upstream impact, technology, has the greatest impact on architecture. The
desirability of having a 100 knot ship capable of carrying 10,000 tons of equipment is certainly a
laudable goal, but technically infeasible. Changing technology in terms of better materials and
control systems, however, are what enable certain capabilities such as transferring a main battle
tank between ships in heavy seas to be a possibility that would have been considered infeasible
just a few years ago.

102

The downstream side also influences the architecture. Manufacturability is a major
concern for the design and imposes concerns. For example, the desire to build in the U.S. puts
additional complexity into the design such as whether a new shipyard needs to be built or to
constrain the design to fit into existing shipyard facilities. Locations where the sea base will
operate and be maintained also impose downstream architecture constraints such as draft limits.

The expected operations also should impact the architecture. The sequence of operations
could be considered established by the upstream influences such as current doctrine and thus
forces the architecture into a certain set of possibilities. However, doctrine is constantly
changing as new capabilities are recognized thus the downstream operations may alter or make
moot some of the upstream influences.

The dynamic behavior is also a very important factor. Ranges between the various nodes
(U.S., sea base, objective), battle attrition, sea conditions, and other uncertainties can have a
major impact on the effectiveness of different architectures. Thus these uncertainties must be
considered to ensure a robust design is selected.

Finally, as with most systems, cost must be considered as a critical factor. Not only must
the architecture be designed to minimize cost, but cost may also impact the problem statement as
the design progresses and the achievement of certain goals might exceed the allocated budget.
Thus, both budgets and designs must be flexible to reallocate resources.

Functional Description
With a well defined problem statement and concept, the architecture can examine the

functionality in more detail. From a functional standpoint, the sea base needs to perform many
tasks in order to properly deploy the combat force. The first level processes were obtained from
the Department of Defense Joint Integration Concept for Sea Basing and are summarized below:

Deliver forces that will reside on or be supported by the sea base
Assemble integrated joint forces and equipment
Beach combat ready integrated joint forces
Sustain selected forces from the sea base
Reconstitute joint force capabilities for rapid reemployment

Zooming into the process of deploying reveals the first level processes. A further zoom
shows the subprocesses which represent additional functions. This process zoom is shown in
Figure D4. Most of the processes are linear in time, thus the arrows show the order the processes
are normally taken. For instance, the joint force is delivered before it is assembled.

Most of the processes, and their subprocess, act on the operand of deploying, namely the
joint combat force. The sustaining process, however, acts on the joint combat force, yet its
subprocesses actually act on the consumable supplies needed by the joint combat force. Thus
each process represents part of a function. Each of these functions is described in more detail
below.

The first function involves taking the joint force from the U.S. to the sea base. This
includes the troops, their equipment, and immediate supplies. These forces can then either reside
on the sea base relatively permanently, such as logistics or command personnel or can be located
on the sea base temporarily, like most of the fighting force, but still supported from the sea base.
Within this delivering process, there are the 2" level processes. The troops and equipment must
be gathered together, stored for the journey, moved to the sea base, and then transferred to the

103

next platform. Concurrent with these processes, the joint combat force must be protected not
only from enemy forces, but also from environmental conditions such as weather and seas.

The second function involves assembling or connecting the forces, equipment, and
supplies together. This requires transporting or gathering elements of the force within the
assembling warehouse. Some element of the force will be prepared which may involve training,
calibration, fueling, etc. depending on the force. From there the force must be stored before
being transferred to the next platform.

so llllllllllliliillllllililiillllllIIIIIIII11,0 0 0 111 D e p I o y in g --IIIIIIII111
Deliveren Beaching

at herin Storing at herin Storing
rot ect in rot e necti

T ransf errin Moving ransferrin Movin

at hseo emblin in ag
rate u re rinn eplenfishin

Transferrin Storin st itu t ing transferrin tin

Repairin esizin
Storin

G at herini,

Figure D4. Sea Base Process Zoom

The third function transports the assembled force to the objective. So as not to confuse
this function with the first function, it will be referred to as beaching. This does not necessarily
mean that the force much be placed on a beach. The force could also be sent to an objective
further inland using a helicopter for instance. The subprocesses for beaching are exactly
identical to those of delivering since they perform the same basic function. They are considered

separate because each is influenced by different interfaces and upstream influences, such as
environment, which significantly impacts the ultimate form.

The fourth function is sustaining the force indefinitely. Sustainment in this context
implies providing consumable supplies such as water, food, ammunition, and fuel to the joint
force. These supplies are typically stored in bulk and periodically resupplied from replenishment

ships. The bulk supplies must be resized so they can be carried by individual force members.
Finally, the supplies must be transferred to a platform capable of delivering them to the force.

The final level I function is reconstitution. This involves taking troops back from the
beach. The force is repaired and reorganized (or gathered) to prepare for a different objective.
The force is then stored until it is transferred to a platform to take it once again to the beach.

104

Form Decomposition
The sea basing concept described above involved three different platforms, a transporter,

a warehouse, and a lighter. Between each of these platforms has an interface. Since these
interfaces are critical to the form design of each platform they are treated separately. Finally,
there is also a replenishment interface to satisfy the resupply function of indefinite sustainment.
Each of these pieces can be further broken down into subelements as shown in Figure D5. Two
additional elements, the ESG and replenishment ships, are shown to indicate their auxiliary role
in sea basing in providing some of the same functions to different joint combat forces.

Sea Base

ESG Replenishment Ships

Transporter Transporter Warehouse
Interface

Propulsion Ramp C

Crew Fender We

Weapons Mooring Ass

Storage Flight
Area Deck

Hull Control Pro
System

BJajse Connector C
.

I ___i_ __ _ _ _
Replenishment Lighter Lighter

Interface Interface

rew

apons

embly
Area

Hull

)ulsion

argo
trea

Kingpost

Fueling
System

Storage
Tanks

Well
Deck

Crane

i Integrated
I Landing

Platform

Cargo

Ramps

I Cargo
Elevator

I -

Transfer Point

--4-

Propulsion

Storage
Area

Crew

Hull Form

Beach
Ramp

Objective Connector i

Figure D5. Two Level Form Decomposition of Sea Basing

Figure D5 is drawn as a structural/topological decomposition where each of the three
platforms is identified by a dashed line. One characteristic is the overlap at the interface forms.
Some of the parts for each of these forms will be on each platform, but at this level of
decomposition, the form elements are in general shared by the two platforms. This form
decomposition also has elements of operational decomposition indicating how the force moves
over time from the base connector through the transporter interface to the transfer point through
the lighter connector to the objective connector. However, each of the platforms perform many
of the same functions, thus the form decomposition could be reorganized to relate more directly
to function. In this case, the transfer point platform may have transporter elements, as the
platform must move into the sea base area and warehouse elements where it stores and assembles
the force.

105

a

Figure D6 shows how the forms and functions could be combined. In this diagram it is
less clear where one platform starts and another ends since many of the form elements actually
exist on several of the platforms.

Delivering ~ ------- PropulsionI

T Fa nsp orte r
Intelface

As en 1 i11 lt e ontf uta cI

C UStaining

Transfenng - e -

Joint Combat Force Hull

Lighter W pnsOilers

Troops Bechn [int tface Pr cing
Equpmet Ojeciv Sea Shield

F k PppZe] Lighter Reconstituting

I---------------------------
Figure D6. Sea Basing Form Coupled with Function

Operational Description

Based on the three platform sea base concept and the form given in the previous section,
it is important to understand how the subsystems operate together. The best way to describe the
operations of the sea base is to describe a scenario and demonstrate how the sea base would be
utilized.

Imagine "Country Orange", henceforth referred to as Orange, has declared war on the
U.S. and is supporting terrorist attacks on U.S. property. The countries bordering Orange have
leaning toward Orange, but remain neutral. Therefore, basing rights are unobtainable and
escalating the conflict by invading neighboring countries is unacceptable. The objectives are
strategic "centers of gravity" such as terrorist training camps and military bases directly.
Unfortunately, these "centers of gravity" are located within civilian areas and change locations
rapidly. Thus, a ground force is needed to ensure the objectives are destroyed while minimizing
collateral damage. Since basing rights are not obtainable from neighboring countries, the
decision is made to employ the sea base. Equipment and supplies are loaded onto the transfer
ship(s) based on the expected needs. Additional equipment and supplies are gathered and placed
on sealift base connectors. These ships begin their movement toward the Orange Sea. In the
U.S., troops prepare themselves and their families for the upcoming battle before getting onto
airlifting base connectors. The transfer ship arrives in the Orange Sea, where other warships
have established sea control. The troops aboard the airlift connectors and the equipment aboard

106

the sealift connectors are transferred to the transfer ship via transporter interfaces such as the
flight deck and ramps in conjunction with the other elements.

Aboard the transfer ship, combat support personnel are preparing the equipment for battle
and the troops join their equipment. The troops and equipment remain on the transfer ship until
the time to attack the objective comes. At this point, the joint force is moved from the assembly
area through the lighter interface to board objective connectors. Once to connector is fully
loaded and secured, it proceeds to the objective where it delivers the joint force.

As the battles progress, the joint force uses up its supplies. Some of the objective
connectors not being used to transport equipment and troops are used to resupply the joint force
wherever they happen to be located. The transfer ship, also periodically receives new supplies,
such as oil, from replenishment ships.

After an objective is destroyed, the joint force is gathered by the objective connectors and
returned to the transfer ship. The equipment is repaired, troops rested, and wounded troops
receive medical attention. Replacement equipment and troops can also be augmented and
gathered with the returning force. Once the force is reconstituted and battle ready, they are
delivered to another objective in a similar method as described above.

Figure D7 shows a simplified topological diagram of the sea base. It shows the activities
that go into and out of the sea base and what each of the three platforms of the sea base (base
connectors, a transfer ships, and objective connectors) operate on. There are significant things
that this diagram does not show. The cargo and supplies have many legacy elements to them in
their size, weight, and/or amount. The troops, equipment, and supplies must come from
somewhere, either the U.S. or a land base. The distance and travel time also impact the form of
the base connector in order to meet the system goals.

Critique of Architecture

It is important to note that the sea base as described in this paper does not exist. As
discussed in the conceptual development section, there are numerous architecture options which
may achieve the same objective as sea basing. Most of the other architectures either already
exist in some form or are proposed as alternatives to the architecture described in more detail
The argument that led to sea basing is based on several assumptions such as complete lack of
allies, which many military strategists find unlikely while the U.S. remains capable of force
projection. Even if there is a need for sea based forces, there are several architectures that could
be used.

The U.S. Army and U.S. Air Force are exploring using a single platform to take a force
directly to the objective using high speed catamarans or aircraft as well as existing landing craft.
The assembly would be done before or during the transportation. This architecture is generally
considered inefficient because of large transportation fuel costs and the number of trips required
to transport a sufficiently sized force.

107

.. Heavy uel

Equipment Ammo

Troops Food Connector

- .. .ogistics and Sustainment Support . ..
''*'Se

Sea ...--. ".Inter-bbse Transfer
.1 .'0' Base Transfer

Ship

. nia-theater Support....

.Base-to-Shore .

Objective
Connector

Command ase-to-ObjectiveConcr
Strike Support & ontrol

Logistics &
Reconstitution

Figure D7. Sea Base Operations

The U.S. Navy and U.S. Marine Corps are currently exploring a two platform option
called MPF(F) which essentially eliminates the need for the base connector and transporter
interface by carrying the entire force to the theater on a squadron of ships. The problem with this
method is robustness. The MPF(F) is designed with one size force in mind and thus would be
less suitable if a different force is needed.

Another two platform solution uses a virtual transfer ship by combining the transporter
interface and lighter interface. In this construct, the base and objective connectors would
interface with each other and be continuously cycle between the three locations (U.S., sea base,
and objective). This requires having objective connectors which can operate independently since
there is no transfer ship that can carry them to the sea base. This causes additional design
constraints on the objective connector making it less efficient.

The three platform option presented above provides additional flexibility over the
MPF(F) since different forces can be transported to the sea base by the base connectors both
before and during the conflict. It is also a more feasible and efficient alternative to the virtual
transfer ship or the single platform options. This architecture is most similar to Just-In-Time
logistical processes currently in business vogue. The transfer ship acts as like a Wal-Mart store.
The objective connectors are shoppers who take the product off the shelf. The base connectors
are similar to the periodic shipments received from suppliers which bring only the product
desired by the customers. Extra product is kept to a minimum and is flexible to the needs of the
customer.

The negative to the three platform architecture is the potentially greater acquisition cost.
A minimum of three different platforms implies three different designs and sets of development
costs. Economies of scale might be achieved from building more of fewer sets of platforms.
These economies of scale are less in the three platform architecture. Operational costs may also
be greater for the three platform architecture over other architectures since there could be more

108

transits between the U.S. and the sea base. A final negative consequence of this architecture may
be in delivery time. Larger travel distances between the U.S. and the sea base increase the time
required to deliver the complete force to the sea base which could impact mission
accomplishment.

Conclusion

An issue with every architecture option is bias. The proponents of the various
architectures may have certain biases which tend to accentuate the advantages while avoiding the
difficulties and problems. Since no architecture currently exists, the desired tradeoff between
flexibility, cost, efficiency, and delivery time has not been properly assessed which leaves a great
deal of room for argument. Changing technologies also add another dynamic effect. The
feasibility of some of the enabling technologies also creates an element of risk but also present
opportunities. The major concern is that many of the high level architectural decisions lock in
design choices which will impact a system which will likely be around for the next 30 to 40
years. Ultimately, the best choice is to continue exploration of the conceptual options to
determine the necessary technology investment and better define the potential opportunities of
sea basing while continuing collaboration to reduce any architectural bias among the system
architects.

109

Page Intentionally Left Blank

110

Appendix E: Genetic Algorithm System Level Optimizer

Unlike traditional gradient based numerical optimization methods, GAs are well suited
for discrete variables that predominate when dealing with SoS (e.g. number of each system
involved in SoS, type of interface, etc.) GAs also perform well in nonlinear design spaces where
other algorithms may have problems. Furthermore, GAs are able to work in large infeasible
design spaces which hinder many gradient based optimization techniques. Finally, because of
the randomness inherent in GAs, they perform better at locating global optimum points than
gradient based techniques which require multiple optimizations from different starting points to
improve the chance the global optimum is captured.

The major drawback with GAs is that they are population based, which means they are
typically more computationally intensive than other optimization algorithms. The need to
perform gradient based analysis from multiple starting points reduces the effect of this
disadvantage. Furthermore, as a population based method, the GA is able to present a range of
possible solutions which is especially useful in multiobjective design.

A GA was chosen as the system level optimizer for several reasons. First, the problem is
nonlinear in both the performance model and the subsystem model constraints. The performance
model is a discrete time based simulation which provides a significant nonlinearity. Second, the
problem formulation includes a large number of integer variables making this a mixed-integer
problem difficult to be solved using traditional numerical optimization methods. Finally, for a
multiobjective problem, a population based approach can identify a POF in one optimization run.
Since the shape of the POF is not known, the GA provides a robust technique which avoids some
of the difficulties with typical weighed sum approaches to multiobjective problems.

The GA used in this research was GOSET Version 1.03 developed at Purdue University
by Professor Scott Sudhoff. This algorithm was written in MATLAB, provides mixed-integer
and multiobjective capabilities, and can be tailored to the specific problem. It uses many
standard GA techniques to improve the population and follows a program flow described in
Figure El. The following discussion will describe how the GA was implemented for this
problem. Goldberg (1989) and Deb (2001) are excellent sources for further information and
greater details. Additionally, GOSET provides additional functionality not utilized in the
research, described in the GOSET Manual (Sudhoff & Lee, 2004).

The GA begins by creating an initial population of individuals with randomly generated
genes between specified boundaries. For this problem, the genes were the system level variables
with bounds described in Table El. GOSET is able to accommodate both continuous and integer
variables, however in order to speed the fitness evaluation process, all variables were scaled and
held to integer values. This constraint limits the ability to accurately represent the actual POF,
but the design space is sufficiently large and the design tolerances wide enough at the
preliminary stage to make this a small sacrifice.

111

Start)

Initialization

-- + Diversity Control

F-scaling

_ I

Selection

Crossover

Fitness E-valuation

Elitism

Terminate?

Stop
Figure El. Flowchart of GOSET
1.03 Genetic Algorithm

I

Each individual of the initial population is evaluated for its fitness. The fitness function

includes running each of the subsystem optimizers to evaluate the platform feasibilities and

displacements. The function then determines the objective values by running the cost and

performance models. Constraints from the subsystem optimizers are applied to each objective

value as a penalty function to develop a fitness value described in Equation (El).

Jf = JO * Z.0001 * max(g'(x),0) / w' (E1)

where Jf is the fitness value
J0 is the objective value
g(x) is the constraint value returned by subsystem optimizer i
w' is a scaling factor for subsystem i to bring the constraint to 0(1)

Table E2. Genetic Algorithm Constraints

Output Variable Normalization Value Reason
HSC Feasibility Error None Already normalized internally

HSLS Feasibility Error 225 Max error in previous trials

ITS Feasibility Error 235 Max error in previous trials

After evaluation, the fitness of the population undergoes diversity control and scaling.

Diversity control spreads solutions across the design space to minimize speciation, i.e. where a

single or small subset of fit individuals dominates the population. Scaling, on the other hand,

helps prevent the early domination of extraordinary individuals, while encouraging healthy

competition between individuals during later generations.

112

I I

Table El. Genetic Algorithm Variables

Gene Min Max Type
Value Value

Cargo Speed 20 50 Integer

Cargo Number 1 15 Integer

Cargo Capacity (x125LT) 2 11 Integer

Cargo Capacity (xlOOOsqft) 1 25 Integer

JOAShip Number 1 8 Integer

JOAShip Capacity sqft (x5000) 10 80 Integer

JOAShip Capacity Personnel (xIOO) 10 50 Integer

JOAShip Sites air 1 15 Integer

JOAShip Sites well 1 3 Integer

JOAShip Sites side 1 2 Integer

JOAShip Lighter LCAC 0 8 Integer

JOAShip Lighter MV-22 0 20 Integer

JOAShip Lighter CH-53 0 20 Integer

JOAShip Lighter SeaBAC 0 8 Integer

Lighter Speed 20 50 Integer

Lighter Capacity (x25ton) 3 12 Integer

Lighter Length (xlO) 2 18 Integer

Lighter L/B Ratio (/10) 18 22 Integer

I

The ultimate goal is to obtain a single fitness value for each individual to be used for
selection and crossover. First, the various objectives are summed together using a randomly
determined weighting to determine a fitness value. Alternatively, a specific weighting could be
assigned in order to preferentially select for a certain objective; however, this was not done for
this research.

With a single fitness value, diversity control is applied. The diversity control used in this
research assumes that individuals with similar gene values have similar weighted sums of their
gene values. Using a random weighting, the genes are combined and then divided into a random
number of bins between 50% and 200% of the population size. The fitness of each individual is
divided by the number of individuals in that individual's bin. Because of the initial assumption
on weighted sums of the genes, two very different genes could have similar weighted sums.
Therefore, the algorithm is performed several times with different weighting schemes and the
highest penalty is ultimately applied. The weighted sum diversity control was used due to the
shorter computational time versus a more systematic approach such as normalized distance
between individuals.

Before applying the diversity penalty, the fitness values are scaled using linear mapping
to assign values between 1 and 101 based on the initial fitness value. Linear mapping was used
because of problems resulting from standard and median scaling. These methods maintain the
mean and median fitness respectively and truncate fitness values at zero. However, when
dealing with highly infeasible regions with only a few feasible solutions, many of the individuals
can end up with a fitness of zero which can cause problems later with selection and mutation.

After applying the scaling and diversity control penalty to the fitness value, a roulette
wheel selection technique is used to select the population for crossover. This technique
calculates a ratio of each individual's fitness to the total population fitness (the sum of each
individual's fitness). The ratio represents the percentage chance of selection and ensures those
individuals with the highest fitness are preferentially selected for crossover. During crossover,
groups of two individuals, referred to as parents, exchanges genes about a random crossover
point to create two new "children". In total, 60% of the population is replaced by children.

The mutation operations also can produce new individuals. Selection and crossover
could cause some possible genes to be lost within the population, so mutation is included to help
avoid this problem. Because all the variables in this problem are integers, only integer mutation
is used where each gene has a .8% probability of being assigned a new value within its defined
limits.

Crossover and mutation were used to create new individuals. Elitism on the other hand is
used to retain individuals. This is especially useful in multiobjective optimization since elitism
allows nondominated solutions to be retained. After evaluating the new individuals, the
nondominated individuals from both the old and new population are kept. They randomly
replace up to 50% of individuals in the new population. If the number of nondominated
individuals exceeds 50% of the population, the nondominated individuals are selected based on
diversity controls.

Once a new population is completed, if the desired number of generations has been
evaluated, the algorithm terminates, otherwise, the process begins again.

113

Page Intentionally Left Blank

114

Appendix F: Genetic Algorithm Setup Code

function [fP,GAS] = ship-optimizing()

% This routine is the system level setup that calls GOSET

% Created by Robert Wolf - Jan 2005

% [fP, GAS] = ship-optimizing
% fP = Final population
% GAS = Genetic Algorithm Statistics

close all
clear all
format compact

%** ***

% User Defined Nonoptimized Constant Parameters (Assumptions)

% Data setup for Fitness function

Param.NumESG=2;
Param.MV22=0;
Param.CH53=0;

% Mission Performance Model Parameters
Param.NumITS=l; % Number of ITS Variants (Listed first in JOAShips)
Param.CargoSize=3; % Size of Cargo Variables (Tons, SqFt, People)
Param.SiteSize=3; % Sites (Air, Well, Side)
Param.PlotFreq=5; % Plotting Frequency (in Time Steps)
Param.PlotFlag=0; % 0 - No plots
Param.TimeSteps=30; % # time steps per hour (12 = 5 min per step)

Param.Distance=[25,110,500,2000];% Surf Obj Dist, Air Obj Dist, AB Dist

% From MPF(F) AoA, The daily sustainment requirements for the MEB are:

% Food; Water; Fuel; Ammo (tons, sq.ft., people)
Param.DailySustain=[15, 29, 0; 169, 337, 0; 254, 141, 0; 250, 250, 0];
Param.DailySustain=[12.4, 39, 0; 60.5, 150, 0;128.4,70, 0; 96.7, 100, 0];
Param.DaysSustain=5; % Number of Days Sustainment on ITS
Param.AAAVSize=[37.25 358.2 20]; % Size of AAAV

Param.AAAVSpeed=20; % Speed of AAAV
Param.SupportElement=[0 0 760];% From MPF(F) AoA p.10 w/o air wing

Param.FlightHours=24; % Hours per day air lighterage allowed to fly
Param.PrepTime=3; % In hours
Param.DayMax=3; % Max number of days until simulation termination

% The following code sets up variables for GOSET
numobj=2; % Number of Objectives (Cost, DeliveryTime
GAP=gapdefault(numobj); % Get default values of GOSET parameters
GAP.fp_ipop=5; % Size of initial population
GAP.fpnpop=5; % Size of subsequent populations
GAP.fpngen=2; % Number of generations
GAP.fp-obj=0; % objective to optimize (0 for multiobjective)
GAP.oplist=[]; % list of objectives to make objective plots for
GAP.pplist=[2 1]; % list of 2 or 3 parameters to be used in Pareto
plot
GAP.pp-xl='Cost'; % x-axis label

GAP.ppyl='DeliveryTime'; % y-axis label

GAP.pp-axis=[-80 0 -48 0]; % axis limits for Pareto plot

GAP.rp-itd=0; % No time report

115

GAP.scalg=4; % Scaling algorithm (linear mapping)

GAP.sc_kln=101; % Scaling parameter (size of linear map)
GAP.mcalg=l; % Crossover algorithm (single point)

% Zero the non-integer mutation rates

GAP.mtptgm=0;

GAP.mt-prgm=0;

GAP.mtpagm=0;

GAP.mtprvm=0;
GAP.mtpavm=0;

GAP.mtsavm=0;

% Setup Gene bounds and type(i.e. integer)

% minval maxval
Genes=[20 50

1 15
2 11
1 25
1 8
10 80
10 50
1 15
1 3
1 2
0 8
0 20
0 20
0 8
40 70
3 8
2 18
18 22

minvals = Genes(:,l)';
maxvals = Genes(:,2)';
type = Genes(:,3)';

type
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
1;...
11;

Cargo Speed
Cargo Number

Cargo Capacity
Cargo Capacity
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
JOAShip
Lighter
Lighter
Lighter
Lighter

(xl25LT)
(xl000sqft)

Number

Capacity sqft (x5000)
Capacity Personnel (x1OO)
Sites air

Sites well
Sites side
Lighter LCAC
Lighter MV-22
Lighter CH-53
Lighter SeaBAC
Speed
Capacity (x25ton)
Length (x1O)

L/B Ratio (/10)

chromid = ones(size(type)); % All on the same chromosome

[fP,GASI= gaoptimize(@SeabaseFitnessV2,numobj,0,Param,minvals,maxvals,...
type,chromid,GAP, [],[],[);

116

function f = SeaBasefitness(GAInput,Param)

% This function is called by the GOSET GA algorithm (gaoptimize)
% The purpose of this function is to evaluate a set of genes and determine

% their fitness
% This function also calls the 2nd level routines

% Created by Robert Wolf - Jan 2005
%.

Output: f = fitness value
Input : Input vector that consists scaled values of

GAInput(1-4) = CargoShip (Speed, #, Cap(LT, sqft))
GAInput(5-14) = JOAShip (#,Cap(sqft, Pers),Sites(x3),Lighter(x4))

GAInput(15-18) = Lighter (Speed, Cap(LT), Length, Beam)

Param : Non-optimizing parameters structure variable
.NumESG = Number of ESG (consists of LPD, LHA, LSD)

.MV22 = Additional MV22 in scene (perhaps from carrier)

.CH53 = Additional CH53 in scene (perhaps from carrier)
Other variables for Mission Simulation

% Make sure the input variables are real numbers

if any(-isfinite(GAInput))

load SimPerfData2
Cost=999
output.DeliveryTime=999
feasible=le-12

else

% Setup the Variable structures
[CargoShips,JOAShips,Lighter]=ThesisShipData(Param); % Get default values
[ESGCargo]=CargoListESGMEB; % Cargo aboard ESG
[SurfCargo]=CargoListSurfMEB; % Non-ESG Surface Objective Landing Team

[AirCargo]=CargoListVertMEB; % Non-ESG Air Objective Landing Team
AirBLT=1;SurfBLT=l; % Number of Landing Teams
CargoList=[ESGCargo;repmat(AirCargo,AirBLT,1);repmat(SurfCargo,SurfBLT,1)];

CargoShips(1)
CargoShips(1)
CargoShips(1)
CargoShips(1)
CargoShips (1)

JOAShips
JOAShips
JOAShips
JOAShips
JOAShips
JOAShips

(1)
(1)
(1)
(1)
(1)
(1)

Lighter(5)
Lighter(5)
Lighter(5)
Lighter(5)
Lighter(5)
Lighter(5)
Lighter(5)
Lighter(5)

.Speed =

.Number

.Capacity =

.LoadTime =

.UnloadTime=

.Number

.Capacity

.Sites

.Lighter

.LighterB

.LighterL

.LSpeed

.USpeed

.Capacity

.LoadTime

.UnloadTime

.Length

.Beam
Sites

GAInput(l);
GAInput(2);

[GAInput(3)*125, GAInput(4)*1000, 200];

ceil(4*GAInput(3))/4; % -125LT per hour
CargoShips(1).LoadTime;

GAInput(5);

[30000, GAInput(6)*5000, GAInput(7)*1001;
[GAInput(8:10)];

[GAInput(11),0,GAInput(12:14)];

GAInput(17)*10/(GAInput(18)/10);

GAInput(17)*10;

GAInput(15)*.8;

GAInput(15);
[GAInput(16)*25,.45*GAInput(17)*GAInput(18),

.5*GAInput(16)*25/75/((GAinput(18)/10)/50);

Lighter(5).LoadTime;

GAInput(17)*10;

GAInput(17)*10/(GAInput(18)/10);

[0,ceil(Lighter(5).Beam/50),0];

117

%.

241;

%

% Check previous iterations to see if this is a duplicate

load SimPerfData2; % Location of previous optimization results
SimResults=[];

for i=1:1:size(SimPerfData2,1)
if all(SimPerfData2(i,1:18)==GAInput(1:18))

SimResults=SimPerfData2(i,19:20);
Output.DeliveryTime=SimPerfData2(i,20);

Cost=SimPerfData2(i,21);

C1=SimPerfData2(i,22);
C2=SimPerfData2(i,23);
C3=SimPerfData2(i,24);
break

end
end

if isempty(SimResults) % No identical previous iteration?
% Evaluate the 2nd level optimizers
% Optimize the CargoShip
% Input: CargoShip variables (Speed, Num, Cap(ton), Cap(sqft))
% Output: C1 = Subsystem error (0 if feasible)
% Outputl= Displacement

try % If an error occurs, keep from terminating the optimization
[Cl,Ceql,Outputl]=HSCCOOptimizer(CargoShips(1),Param);

if JOAShips(1).Lighter(5)-=0 % HLSL present?
% Optimize the Lighter
% Input: Lighter variables (Speed, Cap(ton), Length, Beam)
% Output: C2 = Subsystem error (0 if feasible)
% Output2= Displacement
[C2,Ceq2,Output2]=SeaBACCOOptimizer(Lighter(5),Param);

else % No HLSL, then skip subsystem and remove coupling constraint
C2=0;Ceq=0;Output2=0;JOAShips(l).LighterB=O;JOAShips(l).LighterL=O;
GAInput(15:18)=0;

end

% Optimize the JOA Ship
% Input: JOAShip variables and Lighter Size

% Output: C3 = Subsystem error (0 if feasible)
% Output3= Displacement

[C3, Ceq3, Output3]=ITS_CO_Optimizer(JOAShips(l),Param);
Output3=Output3*10000; % Unscale the displacement

% Check performance if all subsystems feasible
% Input (JOAShip, CargoShip, Lighter)
% Output (DeliveryTime)

if and(and(C1==0,C2==0),C3==0)
Output=MissionSim5(CargoShips,JOAShips,Lighter,CargoList,Param);

else

Output.DeliveryTime=24*Param.DayMax;

end

% Check cost

% Input (Number of ships, and costs)

% Output (system cost)

118

kI=4;k2=8;k3=1;
Cost=kl*Outputl*CargoShips(l).Number+...

k2*Output2*JOAShips(1).Number*JOAShips(1).Lighter(5)+...
k2*153.3*JOAShips(l).Number*JOAShips(l).Lighter(l)+... % for LCAC
k3*Output3*JOAShips(1).Number;

Cost=Cost/le4;

catch % if there was an error, then set special errors and outputs
Output.DeliveryTime=24*Param.DayMax
Cost=max(SimPerfData2(:,21));
Cl=999;C2=999;C3=999;Outputl=999;Output2=999;Output3=999;
disp('error')

end
% Record new det of iteration data for file
SimPerfData2(size(SimPerfData2,1)+1,:)=[GAInput, [Output.DeliveryTime],...

Cost, C1, C2, C3, Outputl/1000, Output2/100, Output3/10000];
end

% Apply penalty constraints
feasible=1;
Constraint=[Cl/1,C2/100,C3/100;
for i=1:1:size(Constraint,2)

if Constraint(i)>O
feasible=feasible*.0001/max(Constraint(i),.001);
end

end

end

% Define Objectives
f=[-max([Output.DeliveryTime])/feasible; ...

-Cost/feasible]; % Multiobjective output must be a column vector

% Save iteration data file
save SimPerfData2 SimPerfData2;

119

function [CargoShips,JOAShips,Lighter]=ThesisShipData(Param)
%6

JOAShips(2)

JOAShips(2)

JOAShips(2)
JOAShips (2)
JOAShips(3)

JOAShips(3)
JOAShips(3)
JOAShips (3)
JOAShips(4)
JOAShips(4)
JOAShips(4)
JOAShips (4)
JOAShips(5)
JOAShips(5)
JOAShips(5)

JOAShips (5)

.Name='LPD-17';

.Number=Param.NumESG;

.Lighter=[2,0,0,0,01;

.AAAV=12;

.Name='LSD-41';

.Number=Param.NumESG;

.Lighter=[0,2,0,0,0];

.AAAV=12;

.Name='LHD';

.Number=Param.NumESG;

.Lighter=[3,0,10,3,0];
. AAAV=12 ;
.Name='Carrier';
.Number=1;

.Lighter=[0,0,Param.MV22,Param.CH53,0);

.AAAV=0;

Lighter(1)=struct('Name','LCAC',..

'LSpeed', 35,...
'USpeed', 40,...
'Capacity', [75,1800,241,...
'LoadTime', .6. ...
'UnloadTime',.5,...
'Air' ,0, ...
'Sites', [0,1,0],...
'Attrition' ,0);

Lighter(2)=struct('Name','LCU',...

'LSpeed', 10,...
'USpeed', 15,...
'Capacity', [200,3000,1001,...
'LoadTime', .85,...
'UnloadTime',.75,...
'Air' ,0, ...
'Sites', [0,0,01,...
'Attrition' ,0);

Lighter(3)=struct('Name','MV-22',.

'LSpeed', 135,...
'USpeed', 240,...
'Capacity', [5,410,24],...
'LoadTime', .25,...
'UnloadTime',.25,...
'Air', 1,...

'Sites', [1,0,01,...
'Attrition' ,0);

Lighter(4)=struct('Name', 'CH-53',.

'LSpeed', 125,...
'USpeed', 135,...
'Capacity', [13.4,600,36],...
'LoadTime', .25,...
'UnloadTime',.25,...

'Air', 1,...

'Sites', [1,0,0],...
'Attrition' ,0);

% STOM CONOPS p.5-3

% STOM CONOPS p.5-3

120

.

Appendix G: Performance Simulation Model

When analyzing how the sea base performs, it is important to understand the greater
system dynamics of the system of ship systems. The ultimate goal of the sea base is to provide
adequate logistical throughput to deploy and sustain a U.S. Marine Corps 2015 MEB sized unit.
This particular unit size is not special in that a smaller or larger unit could also be used, but was
chosen as the baseline due to the availability of equipment information and sustainment
requirements and because the primary sea base customer is the U.S. Marine Corps.

Simulation Concept

The sea base model is set up with three sets of nodes with lines indicating the flow path.
Figure GI represents a nodal diagram of the setup.

Adv. Shore
Base ITS Obj.

ESG Inland
Obj.

Land Base Node Sea Base Nodes Objective Nodes

Figure G1. Nodal Diagram of Sea Base

The first node is the Advance Base (AB) which is located some distance from the
operating area. While referred to as an advance base, it could also be located in the U.S. It is
considered a secure place to store and maintain equipment and personnel. The AB could be
multiple locations (i.e. equipment at one AB and personnel at another) and is assumed to be an
infinite source of logistics. In other words, no attempt is made to plan the logistics from the
point of departure from the U.S. to the AB. This means the equipment is prepositioned, airlifted,
or sealifted to the AB prior to being required by the sea base. From the AB the joint force must
be transported to the sea base.

The second node is the sea base itself. This consists of some number of ESGs made up
of an amphibious ship from each of three ship classes: LSD-41, LPD-17, and LHD-1.
Specifying these ships is arbitrary as other ships including new designs such as the LHA(R)
could also be used. The sea base also contains some number of ITS which act as the conduit for
the personnel, equipment, and supplies for the joint force. The ITS may or may not carry cargo
to the sea base based on its warehousing capacity. However, the ITS must have interface
positions, both surface and air, to allow the transfer of the joint force. Each ship at the sea base,
ESG and ITS, is assumed to start with a full cargo load to support the operation. This cargo load
may not contain the full MEB and additional deliveries from the AB may be required.

The third node is the objective. This is the final destination for the joint forces and could
be located on the shore or some distance inland. Forces must be transported from the sea base to
the objective via air or sealift from either the ships of the ESG or ITS. The distances between the

121

sea base and the objectives can be different and could vary during the simulation as both the sea
base and the objective change position. Each objective is assumed to be an infinite sink in that
cargo can be delivered in any quantity without problems. The infinite sink assumption can be
thought of as having multiple landing sites within the vicinity and having the cargo advance
toward other objectives after landing thus clearing the area for more cargo.

The edges between the different nodes represent the distance between the nodes and the
assets that must carry the cargo between the nodes. The first set is between the AB and sea base.
Along this path would be cargo carrying ships such as RO-RO, container ships, heavy lift
aircraft, or a new design HSC. The second set is between the sea base and the objective. Assets
traveling this edge could be airlift, such as CH-53 Sea Stallions, MV-22 Ospreys, etc., or sealift,
such as LCAC, Utility Landing Craft (LCU), or a HLSL. A third set of edges could connect the
AB with the objective; however, landing craft do not typically have the range to extend to the
AB nor do cargo ships have the ability to land on the beach. Potentially, aircraft such as the
MV-22 could be used on this theoretical edge, but this possibility was not included in the model.

The interface between the nodes and edges is handled in terms of loading and unloading
times as well as cargo transfer sites. The load and unload times occur at all nodes, but the cargo
transfer sites only exist at the ITS node. The ITS has a finite number of air, side and well deck
transfer sites. Each cargo and lift asset, when transferring cargo occupies a certain number of
these sites depending on the site type and the size of the asset.

The cargo to be transported represents the MEB as it is intended to be deployed. Units
are grouped by sorties that should reach the objective at about the same time. For example, one
sortie may be a tank platoon. The cargo is sized using three components, weight (in tons), area
(in square feet), and personnel. Each sortie is given a priority for landing and an objective to
land (either by air or shore). The sortie is allowed to be divided into smaller segments in order to
be transported to the objective. For instance a tank platoon of four tanks may be divided into
four equal parts so that it may be transported by a wider range of lift assets. Finally, cargo
transported via cargo ship to the ITS must be prepared before being sent to the shore. Thus a
time penalty is applied to this cargo aboard the ITS before it is made available for loading onto
lift assets.

A final aspect of the model is sustainment. Once at an objective, the combat force is
assumed to require sustainment supplies from the ITS. The sustainment requirement is assumed
to be in proportion to the weight of the cargo. All sustainment is delivered via air assets since
the force requiring the sustainment is likely no longer on the beach.

Simulation Inputs

For design purposes, the simulation requires several inputs. These inputs can be divided
into variables which represent the design space of the SoS and parameters which represent
assumptions or uncertainties. The variables and parameters are listed below. Except where
noted, no ranges are given for either variables or parameters since the simulation is
unconstrained thus any set of positive real inputs is possible though some inputs may result in
extremely long delivery times. To limit the scope of the design space, it is assumed that only
three ships are to be designed, a HSC, an ITS, and a HLSL. All other ships, such as the ESG,
LCAC, MV-22, etc. are considered fixed in their characteristics.

122

HSC Variables

- Number of HSC
- Cargo capacity of HSC
- Speed of HSC
- Load time of HSC
- Unload time of HSC
- Required transfer sites on ITS

ITS Variables
- Number of ITS (>0)
- Cargo capacity of ITS
- Number of transfer sites on ITS (>0)
- Sea and air lift assets carried by ITS

HLSL Variables
- Cargo capacity of HLSL
- Loaded speed of HLSL
- Unloaded speed of HLSL
- Load time of HLSL
- Unload time of HLSL
- Required transfer sites on ITS

Parameters
- Cargo list
- Distance between nodes
- Number and makeup of ESGs
- Number and makeup of non-HSC cargo

ships
- Number and makeup of non-HLSL lift

assets
- Support element on ITS
- Required sustainment of MEB
- Sustainment carried on ITS
- Number of daily flight hours
- Attrition rate
- Mechanical breakdown rate

Simulation Outputs

The outputs of the simulation are meant to measure the effectiveness of the sea base
operating as a system. Thus three measures indicate the performance: the time to complete
delivery of the cargo, and the usage efficiencies of cargo and lift assets. The usage efficiency is
measured as the time spent completing the mission (loading, unloading, or transiting) over the
total time to complete the delivery. Cargo and lift assets are assumed inefficient if they must
wait to receive cargo because there is no cargo available to load or if there are no unoccupied
transfer sites available. These three measures are by no means the only ones that measure the
performance of the sea base, but they are quantitative, measurable, and understandable and can
be useful for comparison purposes.

Simulation Operation

The simulation is conducted in discrete time steps. It begins with the cargo being
allocated to the ITS, ESG, and available cargo ships. Though there are multiple ways to load the
various ships, no optimization is performed by the performance model. Instead, the cargo
elements aboard the ESG are specifically designated and are assumed to fit aboard the available
ESG assets. The remaining cargo is preloaded onto the ITS based on the desired landing order,
with cargo landing first being preloaded first. When the ITS reaches its capacity, the remaining
cargo is loaded onto available cargo ships. Half the cargo ships are assumed to be in transit to
the sea base to represent the supply train. All remaining cargo is assumed to be at the advance
base. For simplicity, cargo is not assigned to individual ITS or ESG ships within the sea base.
Thus, for the purpose of this simulation, the cargo on the ITS could be located on any of the ITS
ships. The same goes for cargo on the ESG.

123

Cargo identified as being on the ESG or ITS is preloaded onto the various lift assets
based on the priority of the cargo and the cargo capacity of the lift asset. Each lift asset is loaded
with a fraction of a cargo sortie until it reaches its capacity.

The simulation begins at H-hour, where the lift assets land simultaneously at their
respective objectives. After this point, each asset is assigned a mission (loading, unloading,
transiting) and a time remaining to complete the mission. At each time interval, the time
remaining is reduced and checked to see if the mission is complete. If complete, the mission is
changed and a new time remaining is established.

The lift and cargo assets are handled slightly differently. Each lift asset unloads in its
allotted time and then returns to the sea base at its unloaded speed. When the lift asset reaches
the sea base, if it originally came from the ESG, it returns there to receive any remaining cargo
still required to reach the objectives, otherwise it goes to the ITS. The lift assets going to the ITS
queue up for an available transfer site(s). Similar to the treatment of cargo, for simplicity the
ITS transfer sites are not handled by individual ships but rather as a total available among the
ITS ships. Once a site becomes available, the lift asset that has been waiting the longest takes
the site(s) and loads cargo for the next wave. Once the load time has elapsed, the lift asset
proceeds to the objective at its loaded speed. Refueling of lift assets is assumed to occur in
parallel with loading operations aboard either the ESG or ITS.

Cargo assets operate in much the same way except they are given priority for unloading
cargo onto the ITS over the lift assets and only transfer cargo to the ITS. Once cargo has
completed unloading, the cargo asset returns to the AB. The cargo, however, must wait a
predetermined amount of time before being available to load onto lift assets.

Sustainment required by the cargo at the objective is updated at each time interval and is
treated as a separate cargo sortie. This sortie is given the highest priority to transfer to the
objective to ensure that the landing force is properly supplied. The ITS carries some amount of
sustainment supplies on board which is drawn upon to send to the objectives. When a day's
supply is consumed, new supplies are prepared at the AB to replenish the ITS via cargo ships.

Simulation Validation

There is limited information available on sea basing operational times, therefore the
validation was performed in segments where data was available.

To validate the transportation of cargo from the sea base to the objective for a distance of
25nm, a special architecture of the model was used such that the sea base would have 55 loads of
a standard LCAC. The number of LCACs available to transport the load and the number of
interface sites at the sea base were varied. The results were compared with data obtained from
two different logistics models developed by the Naval Sea Systems Command (NAVSEA) and
the U.S. Marine Corps Combat Development Command (MCCDC). Figure G2 shows the
comparisons graphically.

The mean error is 5.5% and the median error is 4.9%. The most severe errors occur with
large number of LCAC and is due to lack of any lane confliction at the beach in the MIT Model.
The other models assume only 20 LCAC can reach the beach at any one time. Looking only at
simulations with less than 20 LCACs, the error drops to 2.7%.

124

1 7 - - - - - -

15 -

11 -

4IPNAVSEA
--- 8 IP NAV SEA --

4 IP MCCDC
7- 8 IP MCCDC

- - 41P
- - -8 IP

5 -

15 17 19# Craft21 23 25

Figure G2. Sea Base to Objective Transport Validation For a Distance of 25nm

The second validation is used to check both the makeup of the MEB loadout as well as
the MIT Model's ability to configure the loads of the ships. The validation is done against the
scenario used in the U.S. Marine Corps Draft STOM CONOPS. In that scenario, 2 ESGs (1
LPD-17, 1 LSD-41, 1 LHA(R)) and a squadron of 6 MPF(F) ships with 10 organic LCU(R) and
28 aircraft operating spots carry the MEB. Of the 6 MPF(F) ships, 2 were assumed to be used
for tactical aircraft and thus were not included in the logistics validation thus only 20 aircraft
spots were available. Also, only 3 of the MPF(F) ships had two interfaces each for LCUs or
LCAC lighters. For simplicity, the MPF(F) were combined into a single sea base platform, the
ITS, with 20 aircraft and 6 surface interface spots.

The cargo lift requirements consist of the personnel and equipment for two vertical and
two surface battalion landing teams allocated between the ESG and the MPF(F). Since it is
assumed that the entire force would be carried aboard the sea base at the start of the conflict, the
capacity of the ITS was made sufficiently large so as not to constrain the problem.

The LCAC and LCU(R) load times was approximated based on time given in the STOM
CONOPS assault plan. Unload times were unable to be determined similarly so were assumed to
be the same as load times. The results of the validation are shown in Table G1.

Table G1. Cargo Loading and Delivery Validation Results

STOM MIT Sea Error
CONOPS Base Model

LCAC Sorties 30 28 - 2
LCU(R) Sorties 18 18 0
MV-22 Sorties 195 196 + 1
CH-53 Sorties 76 66 - 10

Air BLT Delivery Time 7.27 hrs 7.01 hrs -3.6%
(1st to last landing)
Surface BLT Delivery Time 6.81 hrs 5.78 hrs 15.1%
(1st to last landing)

The results between the two models are very similar except for the surface Battalion
Landing Teams (BLT) delivery time and aircraft sorties. The cause of the surface BLT deliver
time discrepancy is two fold. First the STOM CONOPS assumes that the platforms in the ESG

125

were only serviced by their organic lighterage rather than being based on lift priority and
available assets. More specifically, in the STOM CONOPS, the cargo aboard the LSD awaited
the return of its LCUs while there were available LCACs that could have carried the load faster.
The second cause of the discrepancy is the lack of interface conflict at the beach. While this is
an issue at the initial surge, it should equalize out over time. As shown in the previous model
validation, this can cause a couple of percentage points of error in the delivery time. The cause
of the aircraft sorties appears to be differences in allocation of loads. While each aircraft is only
allowed to carry equipment and personnel from a single sortie, the determination of whether a
CH-53 or MV-22 is used can be different between the two models. In order to keep as much
flexibility, the cargo was not specifically geared to be carried as a certain combination, but rather
simply constrained by the aircraft's carrying capacity.

One final common error is the smearing effect. The sea base transfer node is made up of
several ships, however, the MIT model does not specifically track each platform at the node but
rather treats them as two units, an ESG and an ITS. The cargo contained aboard each and the
interface spots are combined together. This can create some problems especially if some
platforms carry significantly more cargo than others. This problem could be minimized through
prior planning before the assault.

126

Appendix H: Performance Simulation Code

function [Output]=MissionSim5(CargoShips,JOAShips,Lighter,CargoLoads,Param)

% Mission Simulation Model

% Assumptions (In addition to ship characteristics)
% 2 objectives (one for surface forces, one for vertical forces)
% All lighters deliver cargo simultaneously to objective at H-hour
% All lighters are preloaded for initial assault (no load time required)
% AAAV all deliver themselves and Cargo at H-hour
% Sustainment required in linear proportion to cargo weight
% Sustainment not required until delivered to the objective
% Maintenance/Repair/Fueling included in load time
% Aviation only active during certain hours starting at H-Hour

% ITS lift sites and warehouse capability interchangable
% (i.e. not broken down by individual ships)
% No Site confliction for ESG platform lighters
% (i.e. ESG platforms have sites for all their organic assets)
% All ITS and ESG platforms are present in JOA at beginning of simulation
% Three types of sites [Air, Side, Well Deck]
% CargoLoadList identifies cargo preloaded on ESG
% Non ESG cargo is placed on ITS, the Cargo Ships, then Advanced Base
% Cargo is loaded in priority order from CargoLoadList
% Cargo can be broken into equal # of pieces defined by fraction column

% User Inputs

% The simulation runs based on 5 inputs variables

CargoShips .Name % Name of ship
.Speed % Transit & Return Speed (in kts)
.Range % Range (not used)
.Number % Number used by sea base
.Capacity % Cargo Carrying Capability
.LoadTime % Load Time (in hours)
.UnloadTime % Unload Time (in hours)
.Sites % Interface sites required

JOAShips .Name % Name of JOA ship

.Speed % Speed (not used)

.Range % Range (not used)

.Number % Number at sea base

.Capacity % Cargo Carrying Capability

.Sites % Interface sites available

.Lighter % Organic lighters on board

.AAAV % Number of AAAVs on board
Lighter .Name % Name of lighter

.LSpeed % Speed when loaded (in kts)

.USpeed % Speed when unloaded (in kts)

.Capacity % Cargo Carrying Capability

.LoadTime % Loading time (in hours)

.UnloadTime % Unloading time (in hours)

.Air % Air or surface craft

.Sites % Interface sites required

.Attrition % Percent Chance of attrition per sortie

* .Capacity variable sizes based on Param.CargoSize
.Sites variable sizes based on Param.SiteSize

127

.Lighter variable size based on # of element of Lighter variable%6

%-

CargoLoads

Param

(Each row is one

Column 1
Column 2
Column 3

Column 4

Column 5
Column 6
Column 7
.NumITS

.CargoSize

.SiteSize

.TimeSteps

.Distance

.DailySustain

.DaysSustain

.AAAVSize

.AAAVSpeed

.SupportElement

.FlightHours

.PrepTime

.DayMax

.PlotFreq

.PlotFlag

.DeliveryTime

.LiftEff

.CargoEff

.LiftErr

.MaxWarehouse

.CargoUsage

% Created by Robert Wolf - Aug 15, 2004

% Convert Param Structure Variable to normal variables

NumITS=Param.NumITS;

CargoSize=Param.CargoSize;
PlotFreq=Param.PlotFreq;

PlotFlag=Param.PlotFlag;

TimeSteps=Param.TimeSteps;

Distance=Param.Distance;

DailySustain=Param.DailySustain;
DaysSustain=Param.DaysSustain;

AAAVSize=Param.AAAVSize;

AAAVSpeed=Param. AAAVSpeed;

SupportElement=Param.SupportElement;

FlightHours=Param.FlightHours;

PrepTime=Param.PrepTime;

Time=0;Day=O0;Hour=0;Min=0;
TotalLiftWait=0;TotalLift=0;

128

sortie of the joint force)
% Size in tons
% Size in sq. ft. footprint
% Size in personnel
% Initial Location (0-AB, 1-ITS, 2-ESG)

% Number of parts the sortie can be divided
% Desired landing time / Landing priority
% Which objective (1-air, 2-shore)
% Number of ITS Variants listed before ESG
% Number of Capacity Variables
% Number of interface sites
% # time steps / hr (12 = 5 min per step)
% [SB to Surf Obj, SB to Air Obj, AB to SB]

% Required sustainment of CargoList per day
% # Days Sustainment on ITS at beginning
% Size of AAAV (in Cargo Capacity terms)
% Speed of AAAV (in kts)

% Support Element (reduces ITS capacity)
% Hrs per day air lighterage allowed to fly
% Hrs prep required on ITS
% Max days until simulation termination
% Plotting Frequency (in Time Steps)
% 0 - No plots

% Time to complete delivery of cargo list
% Percent Lift Asset Utilization
% Percent Cargo Asset Utilization

% Error between desired and actual delivery
% Maximum warehouse capacity used by ITS
% Number of cargo assets actually used

%-

9-
Outputs

Output

TotalCargo=O;TotalCargoWait=O;
LiftErr=O;

% Temporary Validation Variable
%* ** ************** **** **********************

Output.CargoResults=zeros(1,4);

%-*** **

% Setup and Simulation Code starts here

% Setup Cargo Tracking Variables
NullCargo=zeros(1,CargoSize);
NullSites=zeros(l,Param.SiteSize);

AtBase=NullCargo;

Cargo=NullCargo;
Warehouse=NullCargo;
ESGWarehouse=NullCargo;
OnLighter=NullCargo;
Delivered=NullCargo;
Prep=zeros(PrepTime+l,CargoSize);

PrepList(PrepTime).List=[];

Output.BLTDeliveryTime=[O 0];

% Get Data on the Ships and Cargo to be used
%[CargoShips,JOAShips,Lighter]=GetShipData2;
%CargoLoads=CargoLoadList2;

% Establish Cargo and Sustainment Variables
JOASustain=sum(DaysSustain.*DailySustain);
CargoSustain=NullCargo;

% AAAVs handled seperately from Cargo list since require no lighterage
% They are included only to ensure the warehouse requirements are met
ITSAAAV=sum([JOAShips (1:NumITS) .AAAV]);

ESGAAAV=sum([JOAShips (NumITS+1: length (JOAShips)) .AAAV]);

AAAVTransit=ceil (Distance(1) /AAAVSpeed*TimeSteps);

% ITS Warehouse includes Sustainment, Support Element, AAAV, and Cargo
Warehouse=Warehouse+JOASustain;
Warehouse=Warehouse+SupportElement;
Warehouse=Warehouse+ITSAAAV. *AAAVSize;

% ESG Warehouse made up of AAAV and MEB Deployment preloaded on ESG
ESGWarehouse=ESGWarehouse+ESGAAAV.*AAAVSize;

% MEB made up of the MEB Deployment preloaded and at AB and AAAVs
MEB=sum(CargoLoads(:,1:CargoSize));
MEB=MEB+ (ITSAAAV+ESGAAAV).*AAAVSize;

% Setup the ITS Squadron data (i.e. open sites and cargo onboard)
WarehouseMax=[JOAShips(1:NumITS).Number]*reshape([JOAShips(1:NumITS).Capacity

],CargoSize,NumITS)';
SitesOpen= [JOAShips (1:NumITS) .Number] *reshape([JOAShips (1:NumITS) .Sites] , Para

m.SiteSize,NumITS)';

ESGSitesOpen=sum([JOAShips(NumITS+1:length(JOAShips)).Number]); % ESG Sites

(Assumes 1 site per ship)

129

ESGSitesMax=ESGSitesOpen;

% Setup the Cargo List (CargoList(l) is Sustainment to be set up later)

% CargoList is in order of the priority established in input file
[CargoLoadList,CargoIndex]=sortrows(CargoLoads,6);% Sort based on Priority
for i=1:1:size(CargoLoadList,1) % First on CargoList is Sustainment
CargoList(i+l).Location=CargoLoadList(i,4); % 0-AB,1-ITS,2-ESG,3-Other
CargoList(i+1).Number=0; % Ship Number

CargoList(i+l).Priority=CargoLoadList(i,6); % Desired Landing Priority
CargoList(i+l).Air=CargoLoadList(i,7); % Objective
CargoList(i+1) .Total=[CargoLoadList(i,1:3)]; % Total Cargo in Sortie

CargoList(i+l).Fraction=CargoLoadList(i,5); % # parts sortie divisible
CargoList(i+l).InJOA=0; % Track whats on ITS/ESG

CargoList(i+l).OnBeach=0; % Track whats at objective

CargoList(i+1).Destroyed=0;
end
% Set up the Sustainment CargoList
CargoList(l).Location=l; % Sustainment assumed all on ITS

CargoList(1).Total=sum(DailySustain); % Daily Sustainment reqmt

CargoList(l).Number=O; % Don't particularly care
CargoList(l).Priority=O; % Max priority

CargoList(l).Air=l; % Assume all sustainment airlifted
% Set the sustainment fraction so all lighters can transport
% (Assume tons most limiting)
CargoList(l).Fraction=sum(DailySustain(:,l))/min([Lighter.Capacity]);
% InJOA is increased each time step.

% If >0, one fraction will be sent to objective

CargoList(1).InJOA=0; % Amount required

CargoList(l).OnBeach=0; % Amount on Beach

% Allocate the Equipment to the various locations
% (Note: ESG equipment should already be allocated)
% Priority is ITS, Cargo Ships, Advance Base

% Allocate the Equipment aboard the ITS Ships
% Also count the cargo on ESGs

for i=2:1:size(CargoList,2) % Skip Sustainment

switch CargoList(i).Location

case 0 % On Advanced Base

if CargoList(i).Total<=WarehouseMax-Warehouse
% If it is within the capacity of the ITS Warehouse, then load it
CargoList(i).Location=l; % Specify it is on the ITS
Warehouse=Warehouse+CargoList(i).Total; % Update cargo tracking

CargoList(i).InJOA=CargoList(i).Fraction; % Update cargo tracking

% InJOA defines # of pieces remaining to be sent to the objective
else
AtBase=AtBase+CargoList(i).Total;

end

case 1 % On ITS

Warehouse=Warehouse+CargoList(i).Total; % see notes for case 1
CargoList (i) .InJOA=CargoList(i) .Fraction;

case 2 % On ESG
ESGWarehouse=ESGWarehouse+CargoList(i).Total; % see notes for case 2

CargoList (i) .InJOA=CargoList(i) .Fraction;

case 3 % On Cargo Ships

% Shouldn't happen but may want to be able to preload (i.e. MPS)

end

130

end

% Setup the Cargo Ships in Operation and preload cargo from Advanced base

% Each Cargo Asset assigned to a structure variable [CargoAsset(i)]

count=1;
for i=l:size(CargoShips,2)

% Determine the spacing of the incoming cargo ships by taking the time
% from start of loading to getting to the JOA and assuming 1/2 of the
% cargo assets are in that process. The first asset will arrive after a
% delay so as not to interfere with the assault.

TurnaroundTime=(Distance(3)/CargoShips(i).Speed+CargoShips(i).LoadTime)*TimeS
teps;

% Assume each cargo ship is loaded and ready
CargoSpacing=round(1.l*CargoShips(i).LoadTime*TimeSteps);
for j=1:CargoShips(i).Number

% For all cargo assets, define certain default values
CargoAsset(count).Type=i;
CargoAsset(count).Mission='Transit';
CargoAsset(count).TimeRem=CargoSpacing*j;
CargoAsset(count).Air=Lighter(i).Air; % 1 - Airlift, 0 - Sealift
CargoAsset(count).Sites=NullSites; % number of sites occupied
CargoAsset(count).Sortie=O; % number of sorties completed
CargoAsset(count).Capacity=CargoShips(i).Capacity;
CargoAsset(count).Cargo=NullCargo;
CargoAsset(count).CargoList=[];
count=count+1;

end
end

% Now preload the cargo aboard the Cargo Ships
for j=1:1:size(CargoAsset,2)

for i=2:1:size(CargoList,2) % Skip Sustainment
if -CargoList(i).Location % Is it at Advanced Base (Location=0)

if CargoList(i).Total<=CargoAsset(j).Capacity-CargoAsset(j).Cargo
% If within the remaining capacity of cargo ship, then load it
CargoList(i).Location=3;
CargoList(i).Number=j;
CargoAsset(j).Cargo=CargoAsset(j).Cargo+CargoList(i).Total;
CargoAsset(j).CargoList=[CargoAsset(j).CargoList, i];
Cargo=Cargo+CargoList(i).Total;
AtBase=AtBase-CargoList(i).Total;

end
end

end
if all(-CargoAsset(j).Cargo)

% If no cargo was loaded, then have cargo ship wait at advance base
CargoAsset(j).Mission='Loading';
CargoAsset(j).TimeRem=l;

end
end

% The transit time is calculated as distance/speed. Return and Transit
% times for each platform used later
Transit=((Distance(2)*[Lighter.Air])./[Lighter.LSpeed]+...

131

(Distance(l)*~[Lighter.Air])./[Lighter.LSpeed]).*TimeSteps;
Return=((Distance(2)*[Lighter.Airl)./[Lighter.USpeed]+...

(Distance(l)*~[Lighter.Air)./[Lighter.USpeed]).*TimeSteps;
Delay=(max(Transit)-Transit);

% Setup the Lighterage Ships in Operation

% Each Lift Asset (air and surface) assigned to a structure variable
% [LiftAsset(i,j)] where i identifies the lift platform type

count=l;
for i=l:size(Lighter,2)

for j=l:size(JOAShips,2)
for k=l:JOAShips(j).Lighter(i)

for l=l:JOAShips(j).Number
% For all lift assets, define certain default values

LiftAsset(count).Type=i;
LiftAsset(count).Origin=j; % ITS/ESG platform that it belongs
LiftAsset(count).Air=Lighter(i).Air; % 1 - Airlift, 0 - Sealift
LiftAsset(count).Sites=NullSites; % No sites occupies at start
LiftAsset(count).Sortie=0; % The number of sorties completed
LiftAsset(count).Capacity=Lighter(i).Capacity;
LiftAsset(count).Cargo=NullCargo;
LiftAsset(count).CargoList=[];
LiftAsset(count).Mission='Transit'; % Everything starts preloaded
LiftAsset(count).TimeRem=1; % Everything arrives at H-hour
% Find which cargos are available on the right platform and going
% to the right objective
a=[LiftAsset(count).Air]==[CargoList.Air]&[CargoList.InJOA]>0&...

or(and(j,[CargoList.Location]==l),and(j, [CargoList.Location]==2));
% PreLoad the Cargo
% Load the lighter with as much cargo as it can carry
% ***Note*** this may not be the exact same loadout at STOM CONOPS
for m=2:1:length(a) % Skip Sustainment

if a(m)
% Size of cargo segment
CargoFraction=CargoList(m).Total./CargoList(m).Fraction;

CapacityLeft=LiftAsset(count).Capacity-LiftAsset(count).Cargo;
if LiftAsset(count).Air==l&any(LiftAsset(count).Cargo)

CapacityLeft=NullCargo;
end %(Air should only carry one sortie)
while all(CapacityLeft>=CargoFraction)&... % Capacity avail?

CargoList(m).InJOA>0 % Cargo left to load?
% Load the cargo on the lift asset, remove it from the
% warehouse, and keep track of which cargo you are carrying
% (LiftAsset.CargoList)
LiftAsset(count).Cargo=LiftAsset(count).Cargo+CargoFraction;
CapacityLeft=CapacityLeft-CargoFraction;
CargoList(m).InJOA=CargoList(m).InJOA-1;
LiftAsset(count).CargoList=[LiftAsset(count).CargoList, m];
OnLighter=OnLighter+CargoFraction;
if CargoList(m).Location==l
Warehouse=Warehouse-CargoFraction;

elseif CargoList(m).Location==2
ESGWarehouse=ESGWarehouse-CargoFraction;

end
end

132

end
end
LiftAsset(count).Sortie=LiftAsset(count).Sortie+l;
count=count+1;

end
end

end
end

% Commence Simulation Time
MEBToGo=sum([CargoList.Fraction])-CargoList(l).Fraction-...

sum([CargoList.OnBeach])+CargoList(1).OnBeach;
MaxWarehouse=Warehouse;
while and(MEBToGo>ODay<Param.DayMax)

% Determine the DD:HH:MM time
Min=rem(fix(Time*60/TimeSteps),60);
Hourold=Hour;
Hour=rem(fix(Time/TimeSteps),24);
Day=fix(Time/TimeSteps/24);

% If we have switched to a new hour move equipment preparations along
if Hourold-=Hour

if -isempty([PrepList(l).List]) % Equipment completing preparations?
% Identify it as ready for loading onto lighter (Location=l,InJOA>O)
for i=1:1:size(PrepList(1).List,2)
CargoList(PrepList(l).List(l,i)).Location=l;
CargoList(PrepList(l).List(l,i)).InJOA=...
CargoList(PrepList(l).List(l,i)).Fraction;

end
end
% Advance preparation by one hour and clear last hour
for i=2:1:PrepTime

PrepList(i-1).List=PrepList(i).List;
end
Prep(l:PrepTime-l,:)=Prep(2:PrepTime,:);
Prep(PrepTime,:)=NullCargo;
PrepList(PrepTime).List=[];

end

% Take care of the AAAV (if required)
if Time==l % Time Step #1 - Launch AAAV
Warehouse=Warehouse-ITSAAAV.*AAAVSize;
ESGWarehouse=ESGWarehouse-ESGAAAV.*AAAVSize;
% OnLighter=OnLighter+(ITSAAAV+ESGAAAV) .*AAAVSize;
% end
% if Time==max(Transit) % AAAV have hit the beach

% OnLighter=OnLighter- (ITSAAAV+ESGAAAV).*AAAVSize;
Delivered=Delivered+ (ITSAAAV+ESGAAAV).*AAAVSize;

end

% Go through each Cargo Asset to check mission status

% (Cargo Assets done first to ensure priority)

for i=l:size(CargoAsset,2)
% Reduce the time remaining to the next mission

CargoAsset(i).TimeRem=CargoAsset(i).TimeRem-1;

133

if CargoAsset(i).TimeRem<=O % If the mission has been completed then

switch CargoAsset(i).Mission
% For each mission except waiting,
% Define new mission
% Reset Time to complete new mission

% Reset the Sites and Start Prep Time for Cargo
case 'Unloading'

CargoAsset(i).Mission='Returning';
CargoAsset(i).TimeRem=(Distance(3)/ ...
CargoShips(CargoAsset(i).Type).Speed)*TimeSteps;

SitesOpen=SitesOpen+CargoAsset(i).Sites;
CargoAsset(i).Sites=NullSites;
Prep(PrepTime,:)=Prep(PrepTime,:)+CargoAsset(i).Cargo;

Prep(PrepTime+l,:)=Prep(PrepTime+l,:)-CargoAsset(i).Cargo;

PrepList(PrepTime).List= ...
[PrepList(PrepTime).List, CargoAsset(i).CargoList];

CargoAsset(i).Cargo=NullCargo;
CargoAsset(i).CargoList=[];
CargoAsset(i).Sortie=CargoAsset(i).Sortie+l;

case 'Returning'

CargoAsset(i).Mission='Loading';
CargoAsset(i).TimeRem=...
CargoShips(CargoAsset(i).Type).LoadTime*TimeSteps;

case 'Loading'
% Check and see if there is a need for sustainment at ITS
% Order 1 day of sustainment if >1/2 day used and not ordered
if any(round((JOASustain(1:2)+CargoSustain(1:2))./...

sum(DailySustain(:,1:2)))-DaysSustain)

CargoAsset(i).Cargo=sum(DailySustain);
CargoAsset(i).CargoList=[l]; % Should not have any other cargo
CargoSustain=CargoSustain+sum(DailySustain); % Track order

end

a=-[CargoList.Location]; % List of only cargo on advanced base
if any(a) % Any cargo waiting at advanced base?

for j=1:1:size(a,2)
if a(j) % Cargo at AB and able to fit on cargo ship?

if CargoList(j).Total<=CargoAsset(i).Capacity-...

CargoAsset(i).Cargo

% If so, update cargo list, and track of cargo on ship
% Note: Entire item is carried aboard cargo ships.
% No fractional amounts allowed
CargoList(j).Location=3;

CargoList(j).Number=i; % Cargo Ship number

CargoAsset(i).Cargo=CargoAsset(i).Cargo+...
CargoList(j).Total;

CargoAsset(i).CargoList=[CargoAsset(i).CargoList, j];
Cargo=Cargo+CargoList(j).Total;

end
end

end
end
if any(CargoAsset(i).Cargo)

% If the ship is loaded with cargo then update mission and time
CargoAsset(i).Mission='Transit';

CargoAsset(i).TimeRem=(Distance(3)/CargoShips(CargoAsset(i).Type).Speed)*Time

Steps;

134

else
% If ship has no cargo, leave it at AB until next time step

CargoAsset(i).TimeRem=l;
end

case 'Transit'
CargoAsset(i).Mission='Waiting';
% No change to Time Remaining since priority based on negative
% Time Remaining

case 'Waiting'
% Do nothing

otherwise
% Error Unknown Mission or maybe destroyed??

end
end

end

% Go through each Lift Asset and check mission status
for i=l:size(LiftAsset,2)
LiftAsset(i).TimeRem=LiftAsset(i).TimeRem-1;
if LiftAsset(i).TimeRem<=O % If the mission has been completed then...

switch LiftAsset(i).Mission
% For each mission except waiting,
% Define new mission
% Reset Time to complete new mission
% Keep track of cargo transferred and lift sites used
case 'Loading' % For the loading mission

if and(Hour>FlightHours,LiftAsset(i).Air)
% Flight missions only during flighthours, so prevent going to

% next mission keeps a site occupied, but does not hinder
% efficiency
LiftAsset(i).Mission='Crew Rest';
LiftAsset(i).TimeRem=24*TimeSteps-mod(Time,24*TimeSteps)-1;

else
LiftAsset(i).Mission='Transit';
Dist=Distance(LiftAsset(i).Air+l);
LiftAsset(i).TimeRem=(Dist/ ...

Lighter(LiftAsset(i).Type).LSpeed)*TimeSteps;
if LiftAsset(i).ESGLoad&-LiftAsset(i).Air
ESGSitesOpen=min(ESGSitesMax,ESGSitesOpen+l);

else
SitesOpen=SitesOpen+LiftAsset(i).Sites;

end
LiftAsset(i).Sites=NullSites;
LiftAsset(i).Sortie=LiftAsset(i).Sortie+l;

end
case 'Transit'
LiftAsset(i).Mission='Unloading';
LiftAsset(i).TimeRem=...
Lighter(LiftAsset(i).Type).UnloadTime*TimeSteps;

if rand(l)<Lighter(LiftAsset(i).Type).Attrition
LiftAsset(i).Mission='Attrition';
LiftAsset(i).TimeRem=9999;
OnLighter=OnLighter-LiftAsset(i).Cargo;
Delivered=Delivered+LiftAsset(i).Cargo;
for j=l:1:size(LiftAsset(i).CargoList,2)
CargoList(LiftAsset(i).CargoList(j)).OnBeach=...

CargoList(LiftAsset(i).CargoList(j)).OnBeach+l;

135

CargoList(LiftAsset(i).CargoList(j)).Destroyed=...

CargoList(LiftAsset(i).CargoList(j)).Destroyed+l;

if LiftAsset(i).CargoList(j)==1 %Is it sustainment?

Delivered=Delivered-CargoList(1).Total/CargoList(1).Fraction;
end

end

end
case 'Unloading'

LiftAsset(i).Mission='Returning';

Dist=Distance(LiftAsset(i).Air+l);

LiftAsset(i).TimeRem=(Dist/...

Lighter(LiftAsset(i).Type).USpeed)*TimeSteps;
OnLighter=OnLighter-LiftAsset(i).Cargo;

Delivered=Delivered+LiftAsset(i).Cargo;
for j=1:1:size(LiftAsset(i).CargoList,2)
CargoList(LiftAsset(i).CargoList(j)).OnBeach=...

CargoList(LiftAsset(i).CargoList(j)).OnBeach+l;
if LiftAsset(i).CargoList(j)==1 %Is it sustainment?
Delivered=Delivered-CargoList(1).Total/CargoList(1).Fraction;

elseif CargoList(LiftAsset(i).CargoList(j)).OnBeach==...
CargoList(LiftAsset(i).CargoList(j)).Fraction

LiftErr=LiftErr+Time*60/TimeSteps-...
CargoList(LiftAsset(i) .CargoList(j)).Priority;

end
end
LiftAsset(i).Cargo=NullCargo;
LiftAsset(i).CargoList=[];
% Place a damage/maintenance check here
% If damaged, can unload cargo, but put time penalty into
% return time i.e. slower return speed and repair time

case 'Returning'
LiftAsset(i).Mission='Waiting';

% No change to Time Remaining since priority based on time spent

waiting

case 'Waiting'
% Do nothing

case 'Crew Rest'

LiftAsset(i).Mission='Loading';

LiftAsset(i).TimeRem=l;

case 'Maintenance'

case 'Attrition'

otherwise

% Error Unknown Mission
end

end
end

% Place cargo assets in open lift sites based on wait time
% (Cargo ships done first to give them priority in sites)
% Ca is wait time for each cargo asset (should be NaN for empty fields)
% Cindex indicates the position if all numbers placed in column vector
[Ca,Cindex]=sort([CargoAsset.TimeRem]); % Waiting Cargo Ships are <=O

% Start with the cargo asset that has waited the longest

for k=l:size(Ca,2)

i=CargoAsset(Cindex(k)).Type; % Determine the type of platform
if Ca(k)>O; break; end % If no more waiting ships, then stop

if all(-SitesOpen); break; end % If all sites taken, then stop

136

% If no room for cargo then wait for next item

if WarehouseMax-Warehouse<=CargoAsset(Cindex(k)).Cargo;break;end

% for each waiting ship, check each site configuration to see if there
% are enough open slots. Priority order given based on wait time

% Preferred site defined by site order in GetShipData
for ll:size(CargoShips(i).Sites,2)

if CargoShips(i).Sites(l)<=SitesOpen(l)&CargoShips(i).Sites(l)-=O
% If there are enough open slots then...
% Change mission, load time, adjust open slots and update cargo

CargoAsset(Cindex(k)).Mission='Unloading';
CargoAsset(Cindex(k)).TimeRem=CargoShips(i).UnloadTime*TimeSteps;
SitesOpen(l)=SitesOpen(l)-CargoShips(i).Sites(l);
CargoAsset(Cindex(k)).Sites(l)=CargoShips(i).Sites(l);
if CargoAsset(Cindex(k)).CargoList(l)==1

% If part of the cargo was sustainment, then update sustainment

% cargo tracking and remove sustainment from the cargo so that it

% looks like a regular shipment
JOASustain=JOASustain+sum(DailySustain);
Warehouse=Warehouse+sum(DailySustain);

CargoSustain=CargoSustain-sum(DailySustain);
CargoAsset(Cindex(k)).Cargo=CargoAsset(Cindex(k)).Cargo-...

sum(DailySustain);

a=size(CargoAsset(Cindex(k)).CargoList,2);

CargoAsset(Cindex(k)).CargoList(l:a-l)=...
CargoAsset(Cindex(k)).CargoList(2:a);

end
Cargo=Cargo-CargoAsset(Cindex(k)).Cargo;
Warehouse=Warehouse+CargoAsset(Cindex(k)).Cargo;
Prep(PrepTime+l,:)=Prep(PrepTime+l,:)+CargoAsset(Cindex(k)).Cargo;
break % cargo asset in cargo site, so stop checking sites

end
end
% if unable to load because insufficient open slot, priority will

% improve as time continues
end

% Place lift assets in open lift sites based on wait time

% aaa is wait time for each lift asset (should be NaN for empty fields)

% index is indicates the position before sort

[aaa,index]=sort([LiftAsset.TimeRem]); % Waiting Lift Ships are <= 0

% Start with the lift asset that has waited the longest
for k=l:size(aaa,2)
yy=LiftAsset(index(k)).Type; % Determine the type of platform

if aaa(k)>0; break; end % If no more ships are waiting, then stop

% If the Lift Asset originated from an ESG platform and there is ESG

% Cargo left then get that cargo first
if LiftAsset(index(k)).Origin>NumITS&any(round(ESGWarehouse))

% Get list which shows any cargo going to same location and on ESG
a=[CargoList.Location]==2&[CargoList.InJOA]>0&[CargoList.Air]==...
LiftAsset(index(k)).Air;

if any(a)&ESGSitesOpen % Anything there? and site available
for i=l:l:size(a,2)

if LiftAsset(index(k)).Air&any(LiftAsset(index(k)).Cargo);

break;
end
if a(i) % Is this item available to load?
CargoFraction=CargoList(i).Total./CargoList(i).Fraction;

137

CapacityLeft=LiftAsset(index(k)).Capacity-...

LiftAsset(index(k)).Cargo;

% Load cargo until no more spare capacity or item fully loaded
% Update cargo and keep track of which cargo is on board
while all(CapacityLeft>=CargoFraction)&CargoList(i).InJOA>O

LiftAsset(index(k)).Cargo=...

LiftAsset(index(k)).Cargo+CargoFraction;

CapacityLeft=CapacityLeft-CargoFraction;
CargoList(i).InJOA=CargoList(i).InJOA-1;

OnLighter=OnLighter+CargoFraction;

ESGWarehouse=ESGWarehouse-CargoFraction;
LiftAsset(index(k)).CargoList=...

[LiftAsset(index(k)).CargoList, ii;
end

end
end

if any(LiftAsset(index(k)).Cargo) % Was cargo loaded?
LiftAsset(index(k)).Mission='Loading';
Dist=Distance(LiftAsset(index(k)).Air+l);

LiftAsset(index(k)).TimeRem=(Lighter(yy).LoadTime)*TimeSteps;

LiftAsset(index(k)).ESGLoad=1;

if -LiftAsset(index(k)).Air

ESGSitesOpen=ESGSitesOpen-1;
end

end
end

end

% If not an ESG lighter or no ESG cargo (i.e. the Asset is still
% waiting) for each waiting ship, check each site configuration to see
% if there are enough open slots
% Preferential site based on order of site configuration in GetShipData
if LiftAsset(index(k)).Mission=='Waiting'

if any(SitesOpen>=Lighter(yy).Sites) % Enough potential sites open?
for l=1:size(Lighter(yy).Sites,2)

if Lighter(yy).Sites(l)<=SitesOpen(l)&Lighter(yy).Sites(l)-=O

% If there are enough open slots then...

% Check to see if cargo available, otherwise continue waiting

% This ensures an open site for incoming cargo, otherwise may

% never get resupply

% Get array which shows cargo going to same location and on ITS

a=[CargoList.Location1==l&[CargoList.InJOA]>O&...

[CargoList.Air]==LiftAsset(index(k)).Air;

if any(a) % Any cargo available

for i=1:1:size(a,2)
if LiftAsset(index(k)).Air&any(LiftAsset(index(k)).Cargo);

break;
end
if a(i) % Specific item available?
CargoFraction=CargoList(i).Total./CargoList(i).Fraction;

CapacityLeft=LiftAsset(index(k)).Capacity-...

LiftAsset(index(k)).Cargo;

% Load cargo until no more capacity or item fully loaded
% Update cargo and keep track of which cargo is on board
while all(CapacityLeft>=CargoFraction)&CargoList(i).InJOA>O

LiftAsset(index(k)).Cargo=LiftAsset(index(k)).Cargo+...

CargoFraction;

138

CapacityLeft=CapacityLeft-CargoFraction;

CargoList(i).InJOA=CargoList(i).InJOA-1;

OnLighter=OnLighter+CargoFraction;
Warehouse=Warehouse-CargoFraction;

LiftAsset(index(k)).CargoList=...

[LiftAsset(index(k)).CargoList, i];

if i==1 % Carrying Sustainment?
JOASustain=JOASustain-CargoFraction;

end
end

end
end

end
if any(LiftAsset(index(k)).Cargo-=NullCargo)

% If Cargo loaded, then change mission, loadtime, open sites
LiftAsset(index(k)).Mission='Loading';
LiftAsset(index(k)).TimeRem=Lighter(yy).LoadTime*TimeSteps;
SitesOpen(l)=SitesOpen(l)-Lighter(yy).Sites(l);

LiftAsset(index(k)).Sites(l)=Lighter(yy).Sites(l);

LiftAsset(index(k)).ESGLoad=O;
break % lift asset in lift site, so stop checking

else
break % no Cargo even though site available, so stop

end
end

end
end

end
end

% Account for use of sustainment supplies
CargoList(1).InJOA=CargoList(1).InJOA+Delivered(l)/MEB(l)/24/...

TimeSteps*CargoList(1).Fraction;

Time=Time+l; % increment time step
MEBToGo=round(sum([CargoList.Fractionl)-CargoList(1).Fraction-...

sum([CargoList.OnBeach])+CargoList(l).OnBeach);
if -dot([CargoList(2:length(CargoList)).Fraction]-...

[CargoList(2:length(CargoList)).OnBeach],...
[CargoList(2:length(CargoList)).Air]==O)&-Output.BLTDeliveryTime(1)

Output.BLTDeliveryTime(1)=Time/TimeSteps;

end
if -dot([CargoList(2:length(CargoList)).Fractionl-...

[CargoList(2:length(CargoList)).OnBeach],...
[CargoList(2:length(CargoList)).Air]==l)&-Output.BLTDeliveryTime(2)

Output.BLTDeliveryTime(2)=Time/TimeSteps;

end

% Stuff to condense the mission status into a history (one character per

% lift asset)and for plotting the status
TotalLiftWait=TotalLiftWait+sum(strcmp({LiftAsset.Mission}, 'Waiting'));

TotalLift=TotalLift+size(LiftAsset,2);
TotalCargoWait=TotalCargoWait+sum(strcmp({CargoAsset.Mission}, 'Waiting'));

TotalCargo=TotalCargo+size(CargoAsset,2);

MaxWarehouse=max([MaxWarehouse;Warehousej);

% Instructions to plot the mission status of the lift assets

139

if PlotFlag&or(-mod(Time-1,PlotFreq),~MEBToGo) % Plot at PlotFreq and end

1=size(LiftAsset,2)+1;
k=l+size(CargoAsset,2)-1;
for i=1:1:size(Lighter,2)
plotdisplay(i,1:1-1)=[strcmp({LiftAsset.Mission}, 'Loading')+...

strcmp({LiftAsset.Mission},'Transit').*2+...
strcmp({LiftAsset.Mission},'Unloading').*3+...

strcmp({LiftAsset.Mission},'Returning').*4+...
strcmp({LiftAsset.Mission},'Waiting').*5+...
strcmp({LiftAsset.Mission},'Crew Rest').*6+...
strcmp({LiftAsset.Mission},'Attrition').*7J.*...

([LiftAsset.Type]==i);

end
for j=1:1:size(CargoShips,2)
plotdisplay(j+size(Lighter,2),

strcmp({CargoAsset.Mission},
strcmp({CargoAsset.Mission),
strcmp({CargoAsset.Mission},
strcmp({CargoAsset.Mission},
strcmp({CargoAsset.Mission},
([CargoAsset.Type]==j);

1:k) =[...
'Loading')+
'Transit').
'Unloading'
'Returning'
'Waiting').

*2+...

.*3+.

.*4+..

5

end
figure (1)
subplot (2,1,1)
plot([1:1:size(plotdisplay,2)],plotdisplay,'.')
char(sum(plotdisplay)+48);
legend(char(Lighter.Name,CargoShips.Name),-1)
axis([1 size(plotdisplay,2) 1 7])
set(gca, 'YTick', [1 2 3 4 5 6 7])
set(gca,'XTick', [])
set(gca,'YTickLabel',{'Loading','Transit','Unloading','Returning',...

'Waiting','Crew Rest','Attrition'))
Timestr=Hour*100+Min;
title(['Time: D' num2str(Day,'+%.0f')

time2str(Timestr,'24','hm','hmn')])
ylabel('Lift/Cargo Asset Status')
xlabel('Lift/Cargo Assets')
drawnow
subplot(2,1,2)
TonDisp=[AtBase./MEB;Cargo./MEB;sum(Prep)./MEB;...

(Warehouse+ESGWarehouse-JOASustain-SupportElement-sum(Prep))./MEB; ...
OnLighter./MEB;Delivered./MEB;...
[JOASustain(1:2)./(sum(DailySustain(:,1:2))*DaysSustain),01];

TonDisp=round(TonDisp.*100);
bar(TonDisp,'group')
axis([.5 6.5 0 100])
title(['Lift Efficiency: ' num2str(round((TotalLift-TotalLiftWait)/...

TotalLift*100),'%.0f') '% Lift Error:
num2str(LiftErr,'%.0f') 'min'])

ylabel('% of MEB Deployment')
xlabel('Location of Cargo')
set(gca,'XTickLabel',{'AtBase','Cargo Ship','In Prep','On ITS',...

'On Lighter','On Shore','Sustain'})
set(gca,'XTick',[l 2 3 4 5 6])
legend(char('Tons','sq. ft.','People'),-1)
pause(1)

end

140

end

% Objective Metrics
Output.DeliveryTime=Time/TimeSteps;
Output.LiftEff=(TotalLift-TotalLiftWait)/TotalLift*100;
Output.CargoEff=(TotalCargo-TotalCargoWait)/TotalCargo*100;
Output.LiftErr=LiftErr;
Output.MaxWarehouse=MaxWarehouse;
for i=1:size(Lighter,2)
Output.LiftSortie(i)=sum(([LiftAsset.Type]==i).*([LiftAsset.Sortie]));

end
j=1;
for i=1:1:length(CargoShips)
CargoUsage(i)=sum([CargoAsset(j:j+CargoShips(i).Number-1).Sortie]>O);
j=j+CargoShips(i).Number;

end
Output.CargoUsage=CargoUsage;

141

Page Intentionally Left Blank

142

Appendix I: ITS Optimization and Model Description

While the ITS is primarily a single mission platform, it has a variety of characteristics
that set it apart from other platforms. It must have the airlift capability of an LHA, the cargo
carrying characteristics of RO/RO and container ships. It has well deck interfaces similar to
LPD and LSD class amphibious ships and must support a large number of personnel. Different
mixes of personnel, cargo carrying capabilities, transfer interfaces, and assembly areas all can
affect the mission performance.

Many would point to the fact that large ships typically have increasing returns to scale in
terms of cargo carrying capacity of the ship since capacity is a function of volume (length3)
while total operating cost may be less than a function of volume due to less hull surface,
nonscaled officers and crew, etc. This would lead to the use of fewer numbers of larger ships to
carry cargo, the typical trend in the shipping industry. On the other hand, cargo throughput is
also dependent on the interface points which is either a function of surface (e.g. the flight deck is
a function of length*beam) or even a function of length (e.g. side interfaces are a function of
length, well interfaces a function of the beam) (Figure I1) thus the interface points could result in
decreasing returns of scale. These opposing trends to size may result in nonintuitive results
regarding the size and scale of each platform depending on the magnitude of the increasing and
decreasing returns to scale. This means that the ITS must be examined within the context of the
larger system which uses aspects of decreasing returns to scale to identify an optimal design.

Flight Deck
Surface

Interface Sites on
...... Side and Back

Figure 11. Conceptual Drawing of ITS Showing That Interface Sites Are Functions of Length and Surface

ITS Optimization

The optimization of the ITS design is done using the MATLAB function fmincon with a
medium scale search. The medium scale fmincon algorithm uses a SQP optimization method.
SQP is a gradient based numerical optimization method for constrained continuous nonlinear

143

problems. The basic SQP method involves taking an initial solution and developing a quadratic
approximation of the objective function. To account for the nonlinear constraints, the
Lagrangian is used in lieu of the objective function. In accordance with the Kuhn-Tucker
Conditions, Equation (I1), one necessary condition for optimality is that the gradient of the
Lagrangian must equal zero. A quadratic subproblem is developed by approximating the
Lagrangian, using a second-order Taylor series expansion, and constraints, using a first order
Taylor series. The quadratic subproblem is solved using a quadratic programming method to
determine the search vector which optimizes the quadratic subproblem. A lines search along the
direction of the search vector is performed to arrive at a new solution. The Hessian of the
Lagrangian is updated and the process is repeated. The mathematics of the SQP method as well
as descriptions of how to solve a quadratic program, perform a line search, and update the
Hessian matrix are described in more detail in (Gill et al., 1981).

Vf(x*)+ Y X VG(x*)= 0

Vi =X* 01lne
VG(x*= i = 1,,

where x* is the optimal solution
f(x) is the objective function
Xi are the Lagrange multipliers corresponding to constraint i
Gi are the i constraints of the problem

The formulation of the ITS optimization problem is shown in Equation 12. Details of the
objective and constraints follow.

min J = Displacement = f(X)
sAt. g(X,Y,Z) < 0
D.V. X = [L, B, D]' (12)

where X is the vector of subsystem design variables
Y is the vector of system level compatibility variables
Z is the vector of system level performance variables
g(X,Y,Z) is the set of constraints
L is the ship length
B is the ship beam
D is the ship depth

ITS Ship Objective

The objective of the ITS Model and Optimization is to minimize displacement. Equation
(13) is used to calculate the displacement as a function of length, beam, and depth.

144

Displacement = L * B * D * Cb * T/D * v

where L is the ships length
B is the ship beam
D is the ship depth
Cb is the block coefficient (Assume .6)
T/D is the draft-to-depth ratio (Assume .6)
v is the specific volume of seawater (35 ft3/LT)

ITS Ship Constraints

Conceptual ship design typically begins with identifying the key limiting characteristics;
namely, determining if the ship is weight or volume limited. Weight limited design implies the
model should carefully balance the available weight as it is more restrictive then volume.
Conversely, volume limited design carefully balances the available volume rather than weight.
Most ships including warships are volume limited, with notable exception being large bulk and
crude oil. To determine whether the ITS is weight or volume limited, Watson describes a
process to make the determination by essentially comparing the cargo density (cargo
weight/cargo volume) to the ship density (-displacement/hull volume) (1998). If the cargo
density is greater than the ship density, then the ship is weight limited. Otherwise, it is volume
limited.

For the sea base, it is necessary to have access to the various cargo elements for loading
or unloading as needed. Having access for this selective loading requires less dense stowage
which creates significant open spaces within the ship. Personnel and other office spaces which
will occupy a significant portion of the ship also reduce the effective cargo density. These two
effects along with the fact that passenger and container ships are almost always volume limited
lead to the assumption that the ITS is volume limited and thus weight balance is not required.

Available Versus Required Space
While the ITS is volume limited, the cargo model used in the performance simulation is

based on rolling square feet. Therefore a relationship must be developed between ship volume
and available square footage. Since the ITS has different capabilities than any other existing
platform, it is difficult to derive an empirical relationship using other ships. Fortunately, the
MPF(F) performs many of the same missions. Data from ships considered in the MPF(F)
Analysis of Alternatives (AoA) were examined. To calculate the square footage available for
troops, interfaces, and cargo, data for each of these elements was converted to square feet using
Equation 14 (i.e. each interface required X square feet for an assembly area, personnel each
require Y square feet for berthing, messing, and habitability, etc.)

Cargo Area = 37.5*X1 + 7000*X 2 +4500*X3 + 3.3*X4 + X5 (14)

where Xi is the number of troops onboard
X2 is the number of interface spots
X3 is the number of LCACs carried

X4 is the weight of fuel
[3.3 - 43 ft3/LT / 14 ft deck height * 1.07 for tank structure expansion]
X5 is the amount of cargo square

145

(I3)

The total volume was calculated from the length (L), beam (B) and draft (T) using

Equations (15), (16), and (17) from (Watson, 1998).

CbT = A / (L * B * T) (I5)

CbD= CbT +(I- CbT)*(0.8*D-T)/3/T (16)

Volume = L * B * D *CbD (17)

where CbT is the draft block coefficient
A is the ship displacement
L is the ship length
B is the ship beam
T is the ship draft
CbD is the depth block coefficient
D is the ship depth (estimated to be T/.33 similar to LHA)

A power regression resulted in a relatively close approximation to the data and is shown

in Figure 12.
There are two primary problems with this regression. First, the regression does not cover

the entire range of values for possible ships (up to volumes of 18 million ft3 within shipyard and

ratio constraints discussed below). Second, none of the ships used in the regression have

actually been built. Therefore, to confirm the results, an analysis was done of RO/RO ships.

RO/RO ships were chosen since they are well established as a sea going vessel, there is a large

number of them commercially available, and rolling cargo space could theoretically be used for

other purposes.
An empirical Equation (18) obtained from (Lamb, 2003), was used to correlate the

volume to lane length. The lane length was multiplied by a typical lane width of 3.5m to obtain

an available area.

L (m) * B (m)* D (m) = 27 * Lane Length (m) (18)

The results of using Equation 18 on the MPF(F) ships is also shown in Figure 12.

S1000
e 900 -- - - -- -

y = 0.0827xP'1'
800 - --- - -- =-0.8662

500600 - - - - - - - -_ -

500 "MPF(F) Data'
400 - - - - -- . 'Watson RO/RO Equation'

300 -- -- Power ("MPF(F) Data')
200 -

5000 7000 9000 11000 13000 15000 17000

Total Volume (CuFt) Thousands

Figure 12. MPF(F) Cargo Area vs. Total Volume

146

In general Equation (18) fits the regression analysis very well. Since it is easier to
optimize using Length, Beam and Depth, Equation (18) was used to determine available
arrangeable cargo space for the ITS.

The available space calculated using Equation (18) is assumed to be usable for any
purpose. For instance, it could be a berthing area, an assembly space, or a well deck. While this
may be appropriate for a concept design, much greater concern for space arrangement must be
applied during subsequent design. However, this method allows each of the required spaces to
be accounted for together and compared against the available space.

Accommodations for the crew would not be part of the lane length and so are assumed to
be accounted for in the remainder of the ship. Accommodations for troops carried aboard the
ITS are of two classes, one for troops that stay on board for an extended period such as combat
support personnel, referred to as the support element, and one for troops that surge through the
ITS and remain onboard for less than one week. The support element is assumed to have
accommodations which meet U.S. Navy standards for embarked troops. Common spaces shared
with crew are assumed to meet Military Sealift Command habitability standards. Therefore,
embarked troops are given an average of 130 ft2 each. The surge troops are assumed to have
austere accommodations. They are given the same sanitary facilities, but are expected to be
berthed in tighter quarters. Food service and leisure areas are also not provided for these
personnel. Therefore, each surge troop has an average area of 50 ft 2 . Note that these values are
averages and different personnel such as officer and enlisted would require different area
allocations. For this analysis, it was assumed one officer for every nine enlisted. The required
personnel space was further modified by a factor (9/14) to account for different deck heights
used in personnel spaces and RO/RO cargo lanes.

Each interface spot is allocated 7,000 ft2 for an assembly area. This value is similar to
that used in the MPF(F) designs. Additionally, each LCAC well deck spot is assumed to take
9,000 ft2 of space (90ft x 50ft x 2 decks). An additional 20,000 ft 2 is required for lighter
maintenance if organic well deck craft are present. If organic aircraft are present, hangar space
of 50,000 ft2 is required along with -13,000 ft2 per aircraft. However, the ITS is not a command
and control ship, therefore spaces related to this function were not included.

The final space consideration concerns ballast and fuel tankage. A certain amount of
ballast is already accounted for in the ship to maintain stability. However, additional ballast to
lower the well deck to the waterline is not. Most likely, the ship would be trimmed by the stern
to lower the well deck opening. However, due to the difficulty in calculating the Moment to
Trim 1 Inch (MTI) because of the uncertainty with centers of gravity, buoyancy and metacentric
height, the ITS is assumed to ballast down two feet using parallel sinkage. Therefore the
required additional ballast volume is calculated using Equation (19), which is converted to ft 2 by
assuming a 14ft deck height

Ballast = (L*B*Cw/420) * X * v * k (19)

where (L*B*Cw/420) is the Tons Per Inch immersion (TPI)
L is the ship length
B is the ship beam
Cw is the waterplane coefficient (Assume .75)
X is the additional parallel sinkage in inches (Assume 24 in)
v is the specific volume of seawater (35 ft3/LT)
k is a tankage adjustment factor for structure and expansion (-1.07)

147

Likewise, cargo fuel tankage is determined based on the MEB requirements and aviation
and well deck refueling to be conducted at each interface spot. The following assumptions
correlate the interface spots and number of days of sustainment to the cargo fuel required on
board.

0 400 LT per day for MIEB ground personnel

0 28 LT/day/Well Deck Interface for LCAC & HLSL operations

* 10.3 LT/day/Air Interface for MV-22/CH-53 operations

After all these spaces have been accounted for, the remaining space is assumed to be
available for cargo stowage. A stowage factor is applied to this amount to account for how
densely packed the cargo might be. Previous studies have shown a stowage factor of
approximately 50% is suitable to selective off loading of cargo (Souders et al., 2004). The
remaining space with the stowage factor must exceed the goal cargo capacity to be a feasible
design

Site and Lighterage Constraints
The number of each interface site type is also checked to see if the ship is large enough to

accommodate. The side sites are properly handled by the system level boundaries (i.e. up to two,
one for each side) The air interface sites must fit on the unobstructed flight deck with each site
being large enough to accommodate a CH-53 (the worst case clearance requirement). The
number of potential spots is calculated using Equation (110) and must exceed the goal air sites to
be a feasible design. A value of 1.1 is used for k to account for added sponsons which increase
the effective flight deck beam and for clearance areas which may overhang the deck edge as well
as reduced area taken by the flight control tower. (Based on data for LHD-8, the k value would
be 1.05 without accounting for clearance overhang)

AirSites = L * B * k / (x * (d/2)2) (110)

where L is the ship length
B is the ship beam
k is unobstructed flight deck area/(L*B)
d is the aircraft clearance diameter (-115 ft for CH-53) (Naval Air

Systems Command, 2003)

Based on the ITS length and beam, the number of equivalent LCAC well deck sites is
calculated. Both the ITS beam and length are adjusted by factors to determine the maximum size
well deck. The maximum potential LCAC equivalent well deck sites must exceed the goal well
deck sites to be a feasible design.

WellSites = ki * (B/50) * k2 * (1190) (I11)

where k, is the Well Deck Beam-to-Ship Beam Ratio (Assume .8)
(B/50) is the number of LCAC the ITS is wide
k2 is the Well Deck Length-to-Ship Length Ratio (Assume .6)
(L/90) is the number LCAC the ITS is long

148

In addition to the number of sites, the potential well deck length (.6*L) and beam (.8*B)
are checked against the HLSL size to ensure that it would fit within the available well deck.
Finally, the total potential well deck area (.8 * B * .6 * L) is checked to make sure that all
organic LCAC and HLSL would fit. For simplicity, Equation (112) was used to calculate the
required well deck area. It does not take into account the actual arrangement of the lighters or
the possibility of unusable space within the well deck. The potential well deck area must exceed
the requirement to be a feasible design.

WellArea = ELi * Bi * ni (112)

where i is either the HLSL or LCAC
L is the length of the LCAC or HLSL
B is the beam of the LCAC or HLSL
n is the number of organic LCAC or HLSL

Stability and Size Constraints
To ensure the ITS is stable, within typical ship dimensions, and has the ability to be built

within existing shipyards, several additional parameters were checked. For stability, a common
conceptual design practice is to use the metacentric height-to-beam ratio (GM/B). An arbitrary
but historically adequate range is .09 to .122. Because of the low fidelity of this model, the
allowable range was extended to .085 to .1225 to allow for greater optimization flexibility,
understanding that more detailed design can alter the value of GM. To calculate GM, equations
(113), (114), and (115), were used (Gilmer & Johnson, 1982).

KB =(D/5) * (2.5 - Cb / C,) (113)
BM L * B3 * CIT / (8 * L * B * D * Cb) (114)
GM=KB+BM-KG (115)

where KB is the vertical center of buoyancy
D is the ship depth
L is the ship length
B is the ship beam
C, is the waterplane coefficient (Assume .57)
C, is the waterplane coefficient (Assume .75)
BM is the metacentric radius
Crr is the transverse inertia coefficient (-.497 + 1.44 * C,)
KG is the vertical center of gravity (Assume D/2)

Typical ship dimensions were also checked by ensuring various dimension ratios were
within values typical of ocean going cargo ships. Table I gives the ranges used for these ratios.
The ranges used were obtained from Watson (1998).

Table 11. Feasible Range of Dimension Ratios

Ratio Lower Bound Upper Bound
L/B 5 8
B/D 1.4 1.95
L/D 10 12

149

Finally, the actual dimensions were checked against shipyard sizes to ensure at least one
would be large enough to build the ITS without having to build a new dock. The maximum
combinations of length and beam are shown in Table 12.

Table 12. Representative Shipyard Dimension Limits

Shipyard Length (ft) Beam (ft)
A 1020 174
B 1084 146
C 994 171

Validation

To check the validity of the model the results of an optimization run were compared to
those obtained during a design project to create an ITS using more sophisticated design tools
(Johnson et al., 2005). The inputs to the model are given in Table 13 and a comparison of results
is given in Table 14. At first glance, with errors as high at 16% it would seem that the model
does not perform very well. However, when looking at the ratios of length-to-depth (LJD) and
beam-to-depth (B/D), we see that both of these are below the minimum levels of 10 and 1.4
respectively which would make the design project ITS an infeasible design in this ITS Model. In
order for the ITS Model to optimize to a feasible design, depth had to decrease and beam
increase, which they do to keep LD and B/D near their minimum values. Violating the L/D and
B/D constraints make stability more difficult to achieve during detailed design due to the higher
center of gravity which is related to depth. It is also important to note that the design project ITS
hull form was not optimized and thus should be expected to have a larger L*B*D value which it
does.

Table 13. Validation Inputs

Variable Value
Capacity (Sqft, Pers) [125000, 3500]
Interface Sites (air, well, side) [12, 2, 1]
Lighter (LCAC, MV-22, CH-53, HLSL) [8,0,0,0]

Table 14. Validation Result Comparison

Dimension 13A Design Project ITS Model Results % Error
Length (ft) 1000 1002.1 .2%
Beam (ft) 138 147.5 6.9%
Depth (ft) 120 100.2 -16.5%
L*B*D (ft) 1.66e7 1.48e7 -10.8%
L/D 8.3 10
B/D 1.15 1.47

150

Appendix J: ITS Optimization and Model Code

function [SysErr, Ceq, Disp]=ITSCOOptimizer(Input, Param)

% The purpose of this script is to optimize the ITS within constraints

% Objectives: 1 - meet system level inputs

% 2 - minimize displacement (a proxy for cost)
% System Variables: Number, Capacity, Sites, Lighter, LighterSize (B&L)
% Subsystem Variables: Length, Beam, Depth

% Constrants: within existing shipyards, stability

% Objective Function: J=C*Length*Beam*Depth

% Inputs: Input.Name = Name (not adjusted)

% Input.Speed = Speed (not adjusted)
% Input.Range = Range (not adjusted)

% Input.Number = Number
% Input.Capacity = Capacity [LT, sqft, pers]
% Input.Sites = Transfer Sites [Air, Side, Well]
% Input.Lighter = Organic Lighters [LCAC,LCU,CH-53,MV-22,SeaBAC]
% Input.AAAV = Organic AAAV (not adjusted)

% Input.LighterB

% Input.LighterL

% Outputs: SysErr = sum of constraint violations squared
% Ceq = []
% Disp J

% Created by Robert Wolf, - Jan 2005

load ITSOptimData % Get data from previous optimizations
Data=[Input.Number, Input.Capacity(2) Input.Capacity(3), ...

Input.Sites(1:3), Input.Lighter(l), Input.Lighter(3:5),...

Input.LighterB, Input.LighterL]; % Setup comparison data variable
SimFlag=l; % Set flag
for x=1:1:size(ITSOptimData,1) % Check previous optimization data

if all(ITSOptimData(x,1:12)==Data) % Is this optimization not unique?

X=ITSOptimData(x,13:15); % Get optimization solution
Disp=ITSOptimData(x,16); % Get optimization result
SimFlag=0; % Skip Optimization
break % Stop looking for same optimization in file data

end
end

if SimFlag % Unique optimization
x0=[1082, 146, 80]; % Initial Starting Point (L,B,D)
lb=[100,10,10]; % Lower bounds on L,B,D
ub=[1082,174,100]; % Upper bounds on L,B,D
% Options for fmincon
Options.ActiveConstrTol= [1;
Options.DerivativeCheck= 'off';
Options.Diagnostics= 'off';

Options.DiffMaxChange= 0.1000;
Options.DiffMinChange= 1.0000e-008;

151

Options.Display= 'off';

Options.GradConstr= 'off';

Options.GradObj= 'off';
Options.Hessian= 'off';
Options.HessPattern= 'sparse(ones(numberofvariables))';
Options.LargeScale= 'off';
Options.MaxFunEvals= 10000;
Options.MaxIter= 4000;
Options.MaxPCGIter= 'max(l,floor(numberofvariables/2))';
Options.MaxSQPIter= Inf;

Options.PrecondBandWidth= 0;
Options.TolCon= 1.0000e-006;
Options.TolFun= 1.0000e-006;
Options.TolPCG= 0.1000;
Options.TolX= 1.00OOe-006;
Options.TypicalX= 'ones(numberofvariables,1)';
% Optimization

[X,Disp,exit,output,lambdal=fmincon(@ITSObjective,xO, [], [],[],[],...

lb,ub,@ITSCOFun,Options,Input);
ITSOptimData=[ITSOptimData;Data, X, Disp]; % Add this data to file
save ITSOptimData ITSOptimData; % Save optimization data

end

[C,Ceq]=ITSCOFun(X,Input); % Get constraint information

SysErr=sum(max(C,zeros(size(C))).^2); % Calculate sum of errors squared

if SysErr<le-10;SysErr=0;end % Adjust to account for optimizer tolerance

function [J]=ITSObjective(x,Param)

J=x(l)*x(2)*x(3)*.6*.6/35/10000;

152

function [C,Ceq]=ITSCOFun(Input, Param)

% The purpose of this script is to analyze the ITS for its constraints

% Optimality is determined seperately by minimizing displacement
%-

% Input:

% Param:

% Outputs:

Input (1)

Input (2)

Input (3)

Param.Name

Param.Speed
Param.Range
Param.Number

Param.Capacity
Param.Sites
Param.Lighter

Param.AAAV

Param.LighterL

Param.LighterB

C(1)

C(2)

C(3:5)
C(6:7)
C(8)

C(9)

C(10:ll)
C(12:13)
C(14:15)
Ceq

= Length
= Beam

= Draft

= Name (not adjusted)
= Speed (not adjusted)
= Range (not adjusted)
= Number
= Capacity [LT, sqft, pers]
= Transfer Sites [Air, Well, Side]
= Organic Lighters [CH53,MV22,LCAC,LCU,SeaBAC]
= Organic AAAV (not adjusted)

= SqFt Capacity constraint
= Wt Capacity constraint
= Sites Constraints
= Lighter Size Constraints
= Organic Lighter Space Constraints
= Stability Constraint
= L/B Constraints
= B/D Constraints

= L/D Constraints
= []

% Sizing and weights are approximate and derived from various unclassified
% US Navy documents

% Created by Robert Wolf - Jan 2005

SqFtPerUSMC=50;
SqFtPerSupport=130;
SqFtPerSite=7000;
SqFtPerWell=90*50*2; % Size of LCAC (nominal 2 decks)
SqFtPerAir=0; %Air is topside thus no internal volume unless hangar
SqFtPerSide=0; % on side, so no internal volume
SqFtTotCommand=0; % Command space on different ship
AirFuel=775; % Air fuel per Day (tons)
% Assume fuel per site based on CH-53 equivalents
% Find CH-53 equivalents by taking CH-46 equivalent size of MEB (199)
% Divide by CH-53 size in terms of CH-46s (2.68)
% To get the CH-53 equivalents (-75)
% Thus each Air spot should take about AirFuel per day/ 75
AirSiteFuel=AirFuel/75;
MEBFuel=400; % MEB Fuel per Day (LT)
LCACFuel=28; % Fuel per LCAC per day (LT)
TankageAdjust=1.05*1.02;
TonsPers=.35;
DaysSustain=5;
CbGuess=.6;
TGuess=31;

153

UsableDeck=1.1; % % of L*B usable for flight deck (Assuming Sponsons)
UsableSide=.7;
UsableWell=.5;
WellLen=90;
SideLen=190;
SuppPers=760;
VolLimit = 4890000; % Based on Kavaerner Shipyard Size

Cw=.75;
L=Input(1);
B=Input(2);
D=Input(3);
TPI=L*B*Cw/420;
ShipyardConstraint=[1020 174 50000;

1082 146 72400;
994 171 30000];

% ***** SqFt Capacity Error Check
% Based on RO/RO from Watson (/33 factor accounts for m to ft conversion)
LaneLength=L*B*D/27/33;
SqFtAvail=LaneLength*3.5*10; % Based on Lane Width of 3.5m or -35 ft
if sum([Param.Lighter(3:4)])-=0

SqFtAir=50000+115^2*sum([Param.Lighter(3:4)]); % Aircraft Hangar
% 50000 is maintenance space from MPF AoA, 115^2 is for aircraft
% storage, 500 is for additional personnel berthing and office space

else
SqFtAir=0;

end
if sum([Param.Lighter(1:2)1)+Param.Lighter(5)-=0

SqFtSurf=20000; % Surface craft maintenance
% 20000 is a pure guess on maintenance space, 500 is for personnel
% berthing and office support. No stowage required within well deck
% constraint (outlined below)

else
SqFtSurf=0;

end
% Personnel Areas. Note 9/14 factor accounts for difference between
% lane length deck(14') and other decks(9') Note: MSC personnel not
% included since assumed part of non-lane length area
StowageFactor=.5;
SqFt=SqFtAvail-... % Available Area

SqFtPerSite* (sum([Param.Sites])) -... % Interface Assembly Areas
SqFtTotCommand/Param.Number-... % Command and Control / Maintenance
SqFtPerWell*Param.Sites(3)-... % Well Deck
SqFtAir-SqFtSurf-... % Organic Lighter Support
(SqFtPerSupport*SuppPers+...

SqFtPerUSMC*(Param.Capacity(3)-SqFtPerSupport))*9/14-...
% LT cargo fuel per day converted to sqft (assume 14' deck height)
(AirSiteFuel*Param.Sites(l)+LCACFuel*Param.Sites(3)+MEBFuel)* ...

(DaysSustain*43/14*TankageAdjust)-...
(TPI*24*35/14)*TankageAdjust; % Ballast Tanks (2' parallel sinkage)

C(1)=(Param.Capacity(2)-SqFt*StowageFactor)/Param.Capacity(2);

% ***** Weight Capacity Error Check
% Ship is probably volume limited, so LT capacity error based on if cargo
% weight greater than percentage of max displacement
HullVol=Param.Capacity(2)/(.01669+3.6748e-07*Param.Capacity(2));

154

VolDisp=HullVol/35;
PersWt=TonsPers*Param.Capacity(3);

FuelWt=(AirSiteFuel*Param.Sites(1)+LCACFuel*...

(Param.Sites(2))+MEBFuel/Param.Number)*DaysSustain*TankageAdjust;

CargoTot=Param.Capacity(l)+PersWt+FuelWt;

% Regression based on similar functioned ships
WtDisp=CargoTot/(.0706+1.2285e-05*CargoTot);
LightShip=max(WtDisp,VolDisp)-CargoTot;

SizeError=-any(all(repmat([L,B,LightShip],3,1)<ShipyardConstraint));
C(2)=SizeError;

% ***** Air Site Error Check *
% Calculate the possible air sites based on CH-53 size
% Assume clearance circle of 115ft (from NPS report on seabase ship)

% Assume flat top deck
% Note: Clearance over deck edge, LOA>LBP, and tower assumed to even out
AirSites=L*B*UsableDeck/(pi*(115/2)^2); % round down to integer

C(3)=Param.Sites(1)-AirSites;

% ***** Side Site Error Check *****

% Side sites are to be limited to 2
C(4)=Param.Sites(3)-2;

% ***** Well Site Error Check *

% Calcultate the possible well deck sites based on LCAC
% Assume stern gate can cover 80% of beam
% Assume well deck can cover 60% of the length
% LCAC Well Deck Spot of 50ft x 90ft
% Well Deck assumed longitudinal with FILO capability
WellSites=.8*B/50*min(floor(.6*L/90),1)
C(5)=Param.Sites(2)-WellSites;

% ***** Lighter Size Error Check

% Length and Beam should accomodate within well deck
C(6)=(Param.LighterL-.6*L)/L;

C(7)=(Param.LighterB-.8*B)/B;

% ***** Well Deck Lighter Capacity Error Check *****

% Should have no more Surf Lighters than Sites
% Verified by simple area calc
% Fit SeaBAC (HLSL) first

WellSize=.8*B*.6*L;

SeaBACArea=Param.LighterB*Param.LighterL;
WellSizeRem=WellSize-SeaBACArea*Param.Lighter(5);
LCACArea=50*90;

C(8)=max(Param.Lighter(2),0)+...

max(Param.Lighter(5)-WellSize/SeaBACArea,0)+...
max(Param.Lighter(l)-WellSizeRem/LCACArea,0);

% % ***** Stability Error Check

T=D*.6;

KG=D/2;

CIT -0.497 + 1.44*Cw;

KB = (T/3)*(2.5 - ((.6 * .95)/Cw));

BM= (L*B^3) * CIT/(12 * L*B*T*CbGuess);

155

GM = KB + BM - KG;

CGMB = GM/B;

C(9)=max(.085-CGMB,CGMB-.1225)/.1;

% ***** L/B Ratio Check *****

% L/B of 5 to 8 Watson p. 67

% B/D of 1.4 to 1.95 with most ships at top end
% L/D of 10 to 12 (MIT math model limits to 15 for structural reasons)
C(10)=5-L/B;

C(11)=L/B-8;

C(12)=1.4-B/D;
C(13)=B/D-1.95;
C(14)=10-L/D;

C(15)=L/D-12;
Ceq=[];

156

Appendix K: HSC Model and Optimization Description

The HSC platform was optimized using a hull form comparison tool developed by the
Maritime Applied Physics Corporation (MAPC). The limited program documentation states that
the results are not meant for design purposes and represent only one of many possibilities. Thus
the results from the MAPC model do not represent an optimized design in the truest sense, but
rather a balanced design which meets the various goals. However, the model was used because it
was already available, illustrates how to interface with another program, approaches design in a
different way than the other models (via goal programming), matches how the standard
collaborative optimization framework works, and allowed multiple different hull forms to be
examined. No validation of the MAPC model result was performed for this research as it was
assumed to have been done when the model was written.

The HSC model starts the MAPC model and sets goals for Speed, Payload, and Range.
The values for speed and payload came from the system level variables. Range was fixed to be
2000nm, a nominal distance between the AB and the sea base. Another required input is to
prioritize the three goals in the order the MAPC model should achieve them. Once the #1
priority goal is met, the MAPC model begins trying to increase goal #2. Since Range was a
fixed quantity, it was given first priority. From there, two runs were done prioritizing range,
speed, payload and range, payload, speed in those orders.

With the goals and priorities, the MAPC model begins with several basis vessels of the
same hull form. The formulation for each hull form is very similar with the difference related to
the results of empirical relationships for the weight fractions of weights other than fuel and
payload as well as values of block coefficient, length-to-beam ratio and beam-to-draft ratio.
Empirical relationships are also made for specific fuel consumption as a function of horsepower
and required shaft horsepower/displacement as a function of Froude number (a nondimensional
quantity of speed, gravity, and length). An additional factor is also calculated to take into
account the reduction in speed due to rough weather which is applied to the calculated speed.

The balancing begins by adjusting the fuel to meet the range. As fuel is increased, the
displacement goes up requiring more horsepower to reach speed. As horsepower goes up, the
specific fuel consumption goes down requiring less fuel. Additionally, the higher horsepower
may require a different engine. Increasing speed increases the Froude number which increases
the required horsepower for the displacement. More horsepower lowers specific fuel
consumption but more fuel is still required because of the increased horsepower to meet the
range. Increasing payload increases displacement which increases required shaft horsepower
which lowers the specific fuel consumption but still increases required fuel because of the higher
horsepower required. The ship is further constrained by a maximum displacement of 4000LT
and the use of 2 LM6000s which provide up to 114660 shaft horsepower.

Each of these three effects is solved iteratively by adjusting fuel for range, speed and
payload in priority order. Once the iterations fall below the desired accuracy, the model stops.
Length, beam and depth are calculated using the final displacement and the empirical values for
block coefficient, length-to-beam ratio, and beam-to-draft ratio.

The HSC model retrieves the final attained values for speed, payload, and range as well
as the final displacement, length and beam. The length and beam are used to check that the
potential cargo area, Equation Ki exceeds the system level variable for square foot capacity.

157

HSC Cargo Area = k * C * L * B

where k is the stowage factor (assume .5)
Cb is the block coefficient (assume .6)
L is the length of the HSC
B is the beam of the HSC

Three different hull forms are evaluated, mono hull, catamaran, and trimaran. For each
of the six designs (two different priority orders for each of the three hull forms), the negative
errors between the system level variables and the HSC design results (i.e. where the HSC design
did not meet the performance goal) are summed. The six designs are then sorted based on this
error and the displacement. The design with the smallest displacement and zero error is selected.
If no design had zero error, then the design with the smallest error is selected.

158

(KI)

Appendix L: HSC Optimization Code

function [C,Ceq,Output,Vehicle]=HSCCO_Optimizer(Input, Param)

% This script is used as the HSC module for collaborative optimization
% *** This function must be run with the mapc directory in the MATLAB

% working directory for the function to work

% Objective Function: min J=Displacement

% s.t. Goal Speed <= Achieved Speed
% Goal Payload <= Achieved Payload
% Goal sqft <= Achieved sqft

% D.V. # and type of Engines, Displacement,
% Hullform type (Monohull, catamaran, trimaran)

% This optimization works by interfacing with the MAPC Hullform analysis
% tool, written in EXCEL to determine an appropriate size and ensure the

% feasibility constraints are met. MAPC is a goal programming optimizer
% thus goals are given and priorities assigned to each goal. For this
% project, each set of priorities is run to find the best overall design.

% The best design first minimizes errors in achieving goals. If all goals

% are met on more than one design, then the design with the smallest
% displacment is selected

% Inputs: (Part of the inputs to performance module
% Input.Speed = Speed
% Input.Capacity = [Payload, SqFt, Pers]

% The Outputs are C and Ceq (constraint values) and Output
% C - sum of overage errors in Speed and Capacity
% Ceq = [1
% Outputs - Displacement

% Note: Payload in MAPC is assumed equal to cargo tonnage

% L*B*.3 is used to calculate available sq.ft.
% .3 chosen because Cp of .6 for area at waterline

% Assume 50% of area is usable

% Setup variables
directory=[cd,'\mapc\'];
filename=char([I'catamaran.xls'], ['MONOHULL.xls'],['Trimaran.xls']);

SortedRows=[];
Goals=[Input.Speed, Input.Capacity(l), Input.Capacity(2), Input.Rangel;

% Check to see if the data has been optimized before
load HSCOptimizedData; % Location of previous optimization results
for i=l:size(HSCOptimizedData,1)

if all(HSCOptimizedData(i,1:4)==Goals) % Same as previous data
SortedRows=HSCOptimizedData(i,5:11); % Get results
break % stop looking

end
end

if isempty(SortedRows) % No previous optimization on this data?

% Open an Excel Server.

Excel = actxserver('Excel.Application');

159

Workbooks = Excel.Workbooks;

Atotal=[3,2,1;2,3,1]; % Two goal programs(Speed-Payload, Payload-Speed)
% The goals: Range is fixed input, 4000 is max displacement for MAPC
B=[Input.Speed;Input.Capacity(l);Input.Range;4000];

count=0;
for y=l:1:2 % try both goal programs

A=Atotal(y,:)';

for x=l:size(filename,l)
count=count+1;

Workbook = invoke(Workbooks, 'Open',
[directory,filename(x,:)], 1); % 1 forces update

Sheets = Excel.ActiveWorkBook.Sheets;
InterfaceSheet=get(Sheets,'Item',6); % 6th sheet in workbook
CalcSheet=get(Sheets,'Item',5); % 5th sheet in workbook

% set(Excel, 'Visible', 1); % uncomment if you want to see the worksheet
% invoke(InterfaceSheet, 'Activate');% Make the interface sheet active.
% Activesheet = Excel.Activesheet;% Get a handle to the active sheet.

% Get various Excel arrays

PriorityRange = get(InterfaceSheet,'Range','B4','B6');
GoalRange = get(InterfaceSheet, 'Range', 'D4', 'D7');
SpeedRange = get(InterfaceSheet, 'Range', 'DlO');
PayloadRange = get(InterfaceSheet, 'Range', 'D11');
RangeRange = get(InterfaceSheet, 'Range', 'D12');
ResetRange = get(InterfaceSheet, 'Range', 'D17');
DispRange = get(InterfaceSheet, 'Range', 'D13');
CostRange= get(CalcSheet, 'Range','C79');
LengthRange= get(CalcSheet, 'Range', 'C60');
BeamRange= get(CalcSheet, 'Range', 'C61');

% Set goal and priorities

set(ResetRange, 'Value', 'Y');
set(PriorityRange, 'Value', A);

set(GoalRange, 'Value', B);

set(ResetRange, 'Value', 'N');

% Get back a range. It will be a cell array, since the range
% can contain different types of data.

Results(count,1)=SpeedRange.Value; % Speed

Results(count,2)=PayloadRange.Value; % Payload

Results(count,3)=.3.*LengthRange.Value.*BeamRange.Value; % SqFt

Results(count,4)=RangeRange.Value; % Range

Results(count,5)=DispRange.Value; % Displacement

% Error which only looks at how far below goal the ship is
Error=(Results(count,1:4)-Goals) ./Goals; % Normalize errors
Results(count,6)=dot(Error,sign(Error)-l)/2; %sum the errors
Results(count,7)=x; % Hullform type

% To avoid saving the workbook and being prompt to do so,
Workbook.Saved = 1;

invoke(Workbook, 'Close');
invoke(Excel, 'Quit');

end

end

% Pick a best design (sort by error then displacement)

[SortedRows, indexRows]=sortrows(Results,[6,51);

% Add this data to the file

160

HSCOptimizedData(size(HSCOptimizedData,l)+l,:)=[Goals, SortedRows(l,:)];

delete(Excel); % Release the ActiveX server interface

end

% Errors for Optimization

C=SortedRows(1,6); % Sum of overage errors

Ceq=[];

Output=SortedRows(1,5); % Best displacement
% Actual data (not used)

Vehicle.Speed=SortedRows(1,1);
Vehicle.Capacity=[SortedRows(1,2) ,SortedRows(1,3) ,Input.Capacity(3)];

Vehicle.Range=SortedRows(1,4);
Vehicle.Disp=SortedRows(1,5);
Vehicle.Type=filename(SortedRows(1,7),1:8);

save HSCOptimizedData HSCOptimizedData; %Save previous optimization data

161

Page Intentionally Left Blank

162

Appendix M: HLSL Model Description

The HLSL model and optimizer were used to design and select an ACV. Design tools for
this type of craft are extremely limited and proprietary thus instead of designing an ACV, the
model selects from a set of existing or potential designs. The design points were obtained from
two sets of data. The first was from an MIT new ship construction design project which ran a
design of experiment run of data using software designed by a private firm on contract to the
U.S. Navy. Because these designs were from a model used for ACV design within the U.S.
Navy, no additional validation was done and the designs were assumed to be feasible solutions.
The second set of data was from existing ACVs in operation today (Miller & Gougliodis, 2005).
These two sets of data were combined and the non dominated designs were identified based on
maximizing speed and payload, and minimizing length, beam, and displacement.

The HLSL model and optimizer selects the design which at least achieves the goal for
speed and payload and whose length and beam are greater than the actual length and beam but
within a 20% tolerance. Since length and beam are coupling constraints, it was important to
ensure that they were not unbounded. However, the conceptual level of the design would make
designing to an exact common length and beam impractical, thus the 20% margin. Of the
designs which meet the above constraints, the one with the smallest displacement is selected.
This process can be illustrated graphically in Figure MI.

Performance
Utopia Point

Upper Performance Boundary due

Goal to the Coupling Constraint 0

Performance_______
(from System * Add'l Feasible

level) HLSL Design

Best HLSL Design

Cost

Figure M1. HLSL Design Selection

The HLSL model and optimizer does not actually use any subsystem design variables,
however, there are several beyond the performance goals that are implicitly included in the
designs, such as number and type of engines, skirt pressure, etc. It is assumed that these designs
were each optimized to minimize displacement (cost) while meeting various constraints
(stability, strength, weight balance, etc.).

163

Page Intentionally Left Blank

164

Appendix N: HLSL Optimization Code

function [C,Ceq,Outputs]=SeaBACCOOptimizer(Input, Param)

% The purpose of this function is to select the best air cushioned craft

% The optimization is done based on two sets of data. The first is from
% the SeaBAC Design team from the MIT 13A program (Brian Miller, George
% Gougoulidis). This data was based on design runs using software designed
% by a private firm on contract with the Navy. The data is assumed to be
% correct and provide feasible solutions. The data was sorted to give
% non-dominated solutions in terms of speed, payload, and size. The second
% set of data is from the SeaBAC report on existing air cushioned vehicles.

% The two sets of data were combined to create a Pareto-optimal set from
% which to select.

% Objective Function: min Displacement
% s.t. Goal Speed <= Actual Speed
% Goal Payload <= Actual Payload
% Goal Length & Beam > Actual Length & Beam
% Goal Length & Beam < Actual Length % Beam *1.2
% DV: Not explicitly examined in this algorithm but
% included # and type of engines, as well as
% constraints, stability, etc.

% Inputs: (Part of the inputs to performance module (+ Length & Beam)
% Input.USpeed = Speed
% Input.Capacity = [Payload, SqFt, Pers]
% Input.Length = Length
% Input.Beam = Beam

% The Outputs are C and Ceq (constraint values) and Output
% C - sum of overage errors in Speed, Capacity, Length, and Beam
% Ceq = [I
% Outputs - ACV Disp

% Data: Spd Pyd L B H Disp

% based on Pareto sort of SeaBAC Data
Data= [

43.0000 25.0000 25.2000 11.7000 55.0000
55.0000 50.0000 32.0000 15.0000 150.0000
45.0000 54.3000 26.8000 14.3000 153.5000
70.0000 90.0000 47.8000 17.5000 260.0000
45.0000 135.0000 140.0000 65.0000 510.5980
60.0000 135.0000 130.0000 70.0000 517.7270
60.0000 130.0000 57.6000 25.6000 550.0000
40.0000 203.0000 170.0000 65.0000 673.4430
50.0000 203.0000 150.0000 70.0000 675.0390
60.0000 203.0000 150.0000 75.0000 677.1910];

% Add the 20% extra length and beam
Data=[Data(:,1:2) -Data(:,3:4) Data(:,3:4).*1.2 Data(:,5)];

% Find the min for the ACVData

Goals=[Input.USpeed, Input.Capacity(l), -Input.Length, -Input.Beam,...

Input.Length, Input.Beam];

165

x=(repmat(Goals,size(Data,l),l)-Data(:,1:6));

y=x.*(sign(x)+l)./2; % eliminate satisfied constraints

[z,index)=min(sum(y')); % smallest disp satisfying constraints

C=z; % minimum error

Ceq=sum([Data(index,1:6)-Goalsl.^2); % Total Error

Outputs=Data(index,7); % Best ACV Disp

~c14Q~166 10166

