
Robust Evaluation of Differential Geometry

Properties using Interval Arithmetic Techniques
by

Chih-kuo Lee

B.A. in Mathematics

The Citadel, SC, USA 2001

Submitted to the Department of Ocean Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Naval Architecture and Marine Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005 (-:5L

Massachusetts Institute of Technology 2005. All rights reserved.

A uthor........

Department of Ocean Engineering

May 6, 2005

C ertified by ..

Nicholas M. Patrikalakis, Kawasaki Professor of Engineering,

Professor of Mechanical and Ocean Engineering

Thesis Supervisor

Accepted by.

Michael S. Triantafyllou, Professor of Mechanical and Ocean Engineering
MASSACHUSETTS INS E

OF TECHNOLOGY Chairman, Department Committee on Graduate Students

SEP 0 12005

LIBRARIES

2

Robust Evaluation of Differential Geometry Properties using

Interval Arithmetic Techniques

by

Chih-kuo Lee

Submitted to the Department of Ocean Engineering
on May 6, 2005 in partial fulfillment of the

requirements for the degree of Master of Science in
Naval Architecture and Marine Engineering

Abstract

This thesis presents a robust method for evaluating differential geometry properties of

sculptured surfaces by using a validated ordinary differential equation (ODE) system

solver based on interval arithmetic. Iso-contouring of curvature of a Bezier surface patch,
computation of curvature lines of a Bezier surface patch and computation of geodesics of

a Bezier surface patch are computed by the Validated Numerical Ordinary Differential

Equations (VNODE) solver which employs rounded interval arithmetic methods. Then,
the results generated from the VNODE program are compared with the results from

Praxiteles code which uses non-validated ODE solvers operating in double precision

floating point arithmetic for the solution of the same problems. From the results of these

experiments, we find that the VNODE program performs these computations reliably, but

at increased computational cost.

Thesis Supervisor: Nicholas M. Patrikalakis, Kawasaki Professor of Engineering

Professor of Mechanical and Ocean Engineering

3

Acknowledgments

First, I would like to thank Professor Nicholas M. Patrikalakis, my advisor, who guided

and supported me throughout the entire thesis process with his great patience and

knowledge. Without his expert advice, a careless person like me would never be able to

finish his thesis.

I would also like to thank Harish Mukundan for the great amount of knowledge he has

taught me about the VNODE program, and the help from him all the time. I also want to

thank Design Laboratory staff Dr. W. Cho who helped me to solve various problems in

the Praxiteles program and Mr. F. Baker who installed the entire VNODE program for

me.

Many thanks to Taiwan's Navy for supporting my tuition and living cost in the last two

years while I was studying at MIT. And thank all the friends in Boston for their help

either in living or in academic issues during the two years.

Finally, I would like to thank my family in Taiwan for their encouragement all the time,

especially thank to my beloved wife, Chieh-Yin, who is always being supportive and

loving.

4

Table of Contents

Abstract 3

Acknowledgments 4

Chapter 1: Introduction 13

1.1 B ackgroun d ... 13

1.2 Thesis O verview ... 14

Chapter 2: Interval Arithmetic Techniques: VNODE 15

2.1 Interval Arithmetic Operations and Properties.................................15

2.2 Validated Methods for IVPs for ODEs...17

2.3 The VNODE Package...19

Chapter 3: Bezier Surface 23

3.1 Bernstein Polynomials...23

3.2 Arithmetic Operations of Polynomials in Bernstein Form......................25

3.3 Definition and Properties of a Bezier Curve 27

3.4 Definition and Properties of a Bezier Surface.......................................30

Chapter 4: Iso-Contouring of Curvature of a Bezier Surface Patch 33

4.1 Stationary Points of Curvature of Free-Form Parametric Surfaces............33

5

4.1.1 Gaussian Curvature..34

4.1.2 M ean Curvature...35

4.1.3 Principal Curvature..36

4.2 Contouring Constant Curvature Lines...39

4.3 Performance of Algorithm..40

Chapter 5: Lines of Curvature of a Bezier Surface Patch 53

5.1 Lines of Curvature..53

5.2 Performance of Algorithm (Example: 1)..57

5.3 Performance of Algorithm (Example: 2)..62

Chapter 6: Initial Value Problem for Geodesics on a Bezier Surface Patch 67

6.1 G eodesics... 67

6.2 Performance of Algorithm (Example: 1)...69

6.3 Performance of Algorithm (Example: 2)..72

Chapter 7: Conclusions and Recommendations 75

7.1 C onclusions... 75

7.2 Recommendations for Future Research...78

References 79

6

List of Figures

Figure 3-1: A cubic Bezier curve with control polygon (adapted from [28])............27

Figure 3-2: A cubic Bezier curve with convex hull (adapted from [28]).............28

Figure 3-3: A cubic Bezier curve with the variation diminishing property (adapted

from [28]).. 29

Figure 3-4: A bi-quadratic Bezier surface with its control net.............................31

Figure 4-1: Wave-like bicubic integral Bezier surface [Pi](u,v) with control points..40

Figure 4-2: Color map of contour lines of Gaussian curvature from the Praxiteles

program for surface [Pi](u,v)...41

Figure 4-3: Contour lines of Gaussian curvature from the VNODE program for

surface [P i](u,v)... 42

Figure 4-4: Color map of contour lines of mean curvature from the Praxiteles program

for surface [P i](u,v)...44

Figure 4-5: Contour lines of mean curvature from the VNODE program for surface

[P 1](uv).. 45

Figure 4-6: Color map of contour lines of maximum principal curvature from the

7

Praxiteles program for surface [Pi](u,v)..................................47

Figure 4-7: Contour lines of maximum principal curvature from the VNODE program

for surface [P1](u,v)..48

Figure 4-8: Color map of the contour lines of minimum principal curvature from the

Praxiteles program for surface [Pi](u,v)..................................50

Figure 4-9: Contour lines of minimum principal curvature from the VNODE program

for surface [P t](u,v)..51

Figure 5-1: A symmetric bi-quadratic Bezier surface [P2](u,v)...........................57

Figure 5-2: Lines of curvature from the Praxiteles program for surface [P2](u,v)...58

Figure 5-3: Lines of curvature from the VNODE program for surface [P2](u,v)......59

Figure 5-4: A bi-quadratic Bezier surface [P3](u,v)....................................62

Figure 5-5: Lines of curvature from the Praxiteles program for surface [P3](u,v)....63

Figure 5-6: Lines of curvature from the VNODE program for surface [P3](u,v)......64

Figure 6-1: Geodesics from the Praxiteles program for surface [P2](u,v)...............69

Figure 6-2: Geodesics from the VNODE program for surface [P2](u,v)...............70

Figure 6-3: Geodesics from the Praxiteles program for surface [Pi](u,v)...............72

8

Figure 6-4: Geodesics from the VNODE program for surface [Pi](u,v).............73

Figure 6-5: Geodesics from the Praxiteles program and the VNODE program for

surface [P i](u,v)...74

Figure 7-1: Three different mapping results from three different input tolerances... 77

9

List of Tables

Table 4-1: Input in the VNODE program for contour lines of Gaussian curvature for

surface [P i](u,v)...43

Table 4-2: Input in the VNODE program for contour lines of mean curvature for

surface [P1](u,v)...46

Table 4-3: Input in the VNODE program for contour lines of maximum principal

curvature for surface [Pi](u,v)...49

Table 4-4: Input in the VNODE program for contour lines of minimum principal

curvature for surface [Pi](u,v)...52

Table 5-1: Input in the VNODE program for lines of maximum principal curvature for

surface [P 2](u,v)...60

Table 5-2: Input in the VNODE program for lines of minimum principal curvature for

surface [P 2](uv)...61

Table 5-3: Input in the VNODE program for lines of maximum principal curvature for

surface [P3](u,v)...65

Table 5-4: Input in the VNODE program for lines of minimum principal curvature for

10

surface [P 3](u,v)...66

Table 6-1: Input in the VNODE program for geodesics for surface [P2](u,v).....71

Table 6-2: Input in the VNODE program for geodesics for surface [Pi](u,v)......74

Table 7-1: Average time for integrating the length of 1 for each experiment..........75

11

12

Chapter 1

Introduction

1.1 Background

Validated methods for initial value problems for ordinary differential equations produce

bounds that are guaranteed to enclose the true solution of the problem. The validated

numerical ordinary differential equations (VNODE) package [25], an experimental

implementation, was developed using standard libraries and component packages. The

VNODE program is implemented in the C++ language for computing rigorous bounds on

the solution of an initial value problem for a system of ordinary differential equations.

Several examples of differential geometry properties of a Bezier surface patch are

evaluated by the VNODE program and the results are compared with the results

generated from the Praxiteles program version 10.4 which is developed and maintained

by members of the Design Laboratory of the Department of Ocean Engineering at the

Massachusetts Institute of Technology. Moreover, the data in the u-v parametric space

generated from the VNODE program are also mapped into the 3-D space which can show

the relations between the evaluation and the surface. All calculations from the VNODE

program are performed on a PC running at 1.4 GHz with 896MB of physical memory

under the Linux operating system installed in the Design Laboratory of the Department of

Ocean Engineering.

13

1.2 Thesis Overview

The thesis is structured as follows: Chapter 2 briefly introduces the interval arithmetic

technique on which the VNODE program is based and which is used in this thesis. In

Chapter 3, the definition and basic properties of a Bezier surface patch are reviewed

because all the examples presented in this thesis involve a Bezier surface patch. Chapter 4

describes the iso-contouring of curvature and the performance of algorithm, including

Gaussian curvature, mean curvature and principal curvatures. In Chapter 5, curvature

lines are introduced and two executions of algorithm are described. Chapter 6 describes

an initial value problem for geodesic line computation and two executions of the

algorithm. The last chapter, Chapter 7, concludes this thesis and recommends directions

for future research.

14

Chapter 2

Interval Arithmetic Techniques: VNODE

In this chapter, the interval arithmetic technique used in the VNODE program (Validated

Numerical Ordinary Differential Equations) developed by Nedialkov [23] is described.

VNODE is a C++ package for computing rigorous bounds on the solution of an initial

value problem for the system of ordinary differential equations [25].

2.1 Interval Arithmetic Operations and Properties

An interval is a set of real numbers defined as:

[a, b]= {xIa< x b }

If [a, b] and [c , d] are two intervals, the interval arithmetic operations are:

[a, b] + [cd] = [a+c , b+d],

[a,b] - [cd] = [a-d , b-c],

[a , b] [c , d] = [min(ac,ad,bc,bd) , max(ac,ad,bc,bd)],

[a , b] / [c , d] = [min(a/c,a/d,b/c,b/d) , max(a/c,a/d,b/c,b/d)], where the closed interval

[c , d] does not contain zero.

15

The algebraic properties of interval arithmetic are:

Commutative:

[a,b]+[c,d]=[c,d]+[a,b]

[a,b] [c,d]=[c,d] [a,b]

Associative:

[a,b]+([c,d]+[e,f])=(a,b]+[c,d])+[e,f]

[a,b]([c,d][e,f])=([a,b]*[c,d]) [e,f]

Although interval arithmetic is not distributive [1], the subdistributive law still holds:

[a,b]*([c ,d] +[e, f]) '- [a,b]* [c,d] +[a,b]* [e, f]

However, the distributive law will be true for interval arithmetic when [a , b] is a

degenerate interval (a = b).

There is also another important property for interval arithmetic operations:

If [a,b] I [al,bl]and[c, d] I [cl,dl],

Then [a, b]function [c,d] [al , bl] function [cl , dl].

function(- { +,-,*, /}

The power of interval arithmetic when used on a computer is in computing rigorous

enclosures of real operations by including rounding errors in the computed bounds. In

order to obtain machine interval arithmetic also known as rounded interval arithmetic, the

real intervals are rounded outwards including those errors. For instance, if [a, b] and [c ,

d] are added, the b + d is rounded up and a + c is rounded down. The intervals computed

in machine interval arithmetic always contain the corresponding real intervals because of

the outward roundings. Besides the scalar case for these intervals, the arithmetic

operations also work for interval vectors and matrices.

16

2.2 Validated Methods for IVPs for ODEs

Most validated methods for initial value problems (IVPs) for ordinary differential

equations (ODEs) are based on Taylor series [25]. There are several reasons as to why the

Taylor series approach has been used most: First, the coefficients of Taylor series can be

efficiently generated by automatic differentiation. Second, Taylor series have the simple

form of error term and such term can be readily bounded using interval arithmetic. Third,

the order of the method can be changed easily by adding or deleting Taylor series terms.

Finally, the step size can be changed without doing extra work to recompute Taylor series

coefficients.

There are two phases in most Taylor series methods [26]. Algorithm one involves

validating the existence and uniqueness of the solution, and algorithm two involves

computing a tight enclosure. In algorithm one, the limit of the stepsize is restricted to

Euler steps. However, one can obtain methods that enable larger stepsizes by using

polynomial enclosures [19] or more Taylor series terms to obtain a Taylor series

enclosure method [8,22,23]. In algorithm two, when the enclosures are computed, the

widths of the computed intervals may decrease. However, this algorithm may work

poorly in some cases, when the so-called wrapping effect happens. The wrapping effect is

clearly described by Moore [22]. In order to reduce the effects caused by wrapping,

Lohner's QR-factorization method [18] which is one of the most successful,

general-purpose methods can be used. Recently, besides the Taylor series method, a new

scheme which is an interval Hermite-Obreschkoff method [23, 24] has been developed.

17

Base on this method, the results have smaller local errors, better stability, and require

fewer Jacobian evaluations than interval Taylor series methods. However, the extra cost is

one matrix inversion and a few matrix multiplications.

18

2.3 The VNODE Package

Currently, there are three available software packages for computing guaranteed bounds

on the solution of an IVP for ODEs [25]. The three packages are:

AWA[17]:

This package is an implementation of Lohner's method [18]. This is also the constant

enclosure method for validating the existence and uniqueness of the solution. The

stepsize in this package is often restricted to Euler steps by algorithm one. It is written in

an extension of Pascal for scientific computing which is called Pascal- XSC [14].

ADIODES[31]:

This package is a C++ implementation of a solver using the constant enclosure method in

algorithm one and Lohner's method in algorithm two. The stepsize is also often restricted

to Euler steps by algorithm one.

COSY INFINITY[5]:

This package is a Fortran-based code to study and design beam physics systems. High-

order Taylor polynomials with respect to time and the initial conditions are used to verify

integration of ODEs. Computations are carried out with Taylor polynomials with real

floating-point coefficients and a guaranteed error bound for the remainder term. Then, the

arithmetic operations and standard functions are executed with such Taylor polynomials

as operands. Therefore, by establishing functional dependency between initial and final

conditions, the wrapping effect can be reduced [6]. However, working with polynomials

is more expensive than working with intervals.

19

The VNODE package is designed using an object-oriented approach and implemented in

C++ [10]. Before this design, the Godess [27] and TIDE [12] packages which are also

object-oriented designs offer generic ODE solvers that implement standard methods for

IVPs for ODEs. Moreover, Diffpack [16] is another successful object-oriented package

for solving partial differential equations. Since VNODE is an object-oriented design, the

following are three important object-oriented concepts supported in C++ and used in

VNODE [7]:

Data Abstraction:

The software system in the object-oriented model can be viewed as a collection of objects

that interact with each other to achieve a desired functionality. The objects are instances

of a class which defines the structure and behavior of its objects. By grouping data and

methods inside the class and specifying its interface, separating the interface from the

implementation can be achieved. Therefore, the data representation and the

implementation of the methods of a class can be changed without modifying the software.

By doing so, function calls with long parameter lists can be avoided.

Inheritance and Polymorphism:

Inheritance in object-oriented models can allow a derived class to reuse data and

functions of its base class. Polymorphism can let a given function apply to different types

of objects. They both often are used with abstract classes which define abstract functions

implemented in the subclasses.

Operator Overloading:

Operator overloading allows the operators of the language to be overloaded. In order to

program interval operations without explicit function calls, a language that supports

operator overloading has to be used. Due to the fact that interval-arithmetic operations

20

have to be coded by using function calls, programming interval-arithmetic expressions

will be cumbersome without operator overloading.

The properties of the VNODE package include:

Modularity:

The VNODE package is organized as a set of modules with well-defined interfaces. The

implementation of each module is hidden, however, the user is able to modify the

implementation if necessary.

Flexibility:

There is a flexibility property in VNODE that allows users to replace a method inside the

solver without affecting the rest of the solver. Moreover, methods following the

established structure can be added without modifying the existing code.

Efficiency:

The efficiency of a validated solver is determined mainly by the efficiency of the

underlying automatic differentiation package, however, there are also some other

contributing factors including the efficiency of the interval arithmetic package, the

programming language, and the actual implementation of the methods. Although the

methods incorporated in VNODE require the computation of high-order Taylor

coefficients and Jacobians of Taylor coefficients, they do not have theoretical limits on

the size of the ODE system or order of the method. Therefore, VNODE is structured so as

to achieve this objective.

There are two packages for automatic differentiation of interval Taylor coefficients for the

solution of an ODE and the Jacobians of these coefficients in the VNODE package. These

21

two packages are FADBAD/TADIFF [3,4] and IADOL-C [13]. In FADBAD/TADIFF

package, TADIFF generates Taylor coefficients with respect to time, and then FADBAD

computes Jacobians of Taylor coefficients by applying the forward mode of automatic

differentiation [29] to these coefficients. The IADOL-C package is an extension of

ADOL-C package [11] which computes Taylor coefficients by using the forward mode

and their Jacobians by applying the reverse mode [30] to their coefficients. It can exploit

the sparsity structure of the Jacobian of the function for computing the right side when

generating Jacobians of Taylor coefficients. The IADOL-C package applies well on large

and complex problems. On the other hand, the FADBAD/TADIFF package applies well

on small to medium size problems.

The interval arithmetic package in VNODE is PROFIL/BAIS which is among the fastest

interval arithmetic packages. It uses directional rounding facilities of the processor on the

machines on which it is installed. Isolating the machine dependent code in small

assembler files allows portability of the code. The number of rounding mode switches

and sign tests are minimized in vector and matrix operations. Moreover, it provides

matrix and vector operations and essential routines including guaranteed linear equation

solvers and optimization methods.

In summary, the VNODE package is developed to help users compute validated solutions

of IVPs for ODEs in an effective and user-friendly manner. The design and

implementation of the VNODE package follows well-defined patterns. Therefore, the

methods which are implemented, modified or used are very systematic. The VNODE

package also allows users to construct solvers by choosing an appropriate method from a

set of methods. Moreover, it enables users to isolate and compare methods implementing

the same part of a solver.

22

Chapter 3

Bezier Surface

In this chapter, the Bezier surface patch is introduced as the surfaces which are going to

be used in this thesis are of this form. Such a patch is represented using Bernstein basis

polynomials which have better numerical stability under perturbation of their coefficients

than in the power basis.

3.1 Bernstein Polynomials

The Bernstein polynomials are defined as

Bi,n (t) = n! . (t)n-i -t i

!(n - i)!

The properties of Bernstein polynomials are:

Non-negativity:

B;,,(t) is greater than or equal to zero. 0 t I 0,...,n.

Partition of unity:

n

Z B ,n(t) = (I - t + t)n

i= 0

Symmetry:

23

Bin(t) = Bn-00(-t)

Recursion:

Bin(t)= (1-t)Bi,n- 1 (t)+ t Bi_,. 1-(t) with B,(t)-O for i<0, i>n and Bf,0(t)= I

Linear precision:

The monomial t can be expressed as the weighted sum of Bernstein polynomials of

degree n with coefficients evenly space in the interval [0,1].

n
t= - Bin(t)

i= 0

Degree elevation:

The basis functions of degree n can be expressed in terms of those of degree n+1 as

n+ i)

i+1 N)
BinI(t) + Bi+ 1,n+ 1(t)

(n+ 1

where i=0, 1,. .. ,n. Or more generally in terms of basis functions of degree n+r as

n) r)
i+r

= ~ j .j -0 Bj,n+/t)
. n+ r)

j)

24

B;,n(t)= (

Bi,n(t)

3.2 Arithmetic Operations of Polynomials in Bernstein Form

Arithmetic operations between polynomials are often required for shape interrogation.

The arithmetic operations include addition, subtraction and multiplication. Let the two

polynomials f(t) and g(t) of degree m and n with Bernstein coefficients f(m,i) and g(n,i)

be as follows:

m

f(t) = f(m, 1)Bi,,dt)

i= 0

n

g(t) = Z g(n, i) Bi,n(t) 0 t 1

i= 0

Addition and subtraction:

If the degrees of the two polynomials are the same, i.e. m=n, we simply add or subtract

the coefficients:

m

f(t)+g(t) = (f(m, i) + g(m, i)) Bj'Mt)

i= 0

m

f(t)-g(t) =I (f(m,) - g(m, i)) Bi,t)

i= 0

25

In terms of basis functions of degree n+r as:

B;,n(t)
i+r

= S Bjn+t)
. . n+r)

Jj)

, i= 0,...,n.

If m>n, degree elevation of g(t) m-n times is needed by using the above formula, and then

add and subtract the coefficients:

m

f(t)+g(t) = I
i= 0L

f(m,i) +

mir(n, i)

j = max(O, i-m+n)

-) i
-m- n)

J) .(i -)g(n, j) Bi,r(t)

(i)I

Multiplication:

Multiplication of two polynomials of degree m and n yields a degree m+n polynomial.

m+n

f(t)g(t) =

i = 0

mirm,)

j = max(O, i-n)

Bj m+4t)

m) n)

-f(m, j) -g(n, i - j)
m+ n)

(i)

26

3.3 Definition and Properties of a Bezier Curve

A Bezier curve is a parametric curve that uses the Bernstein polynomials as a basis. A

Bezier curve of degree n (order n+1) is represented as:

n

r(t)= I biBin(t) 0 t 1

i= 0

The shape of the curve is determined by the coefficients, bi, which are control points or

Bezier points and the basic function B1 ,n(t). Lines drawn between consecutive control

points of the curve form the control polygon. Figure 3-1 shows a cubic Bezier curve

together with its control polygon.

bb
% %

bo

Control Polygon % %%

b2)

Figure 3-1: A cubic Bezier curve with control polygon (adapted from [28])

The properties of Bezier curves are:

Geometry invariance property:

Partition of unity property of the Bernstein polynomial assures the invariance of the shape

27

of the Bezier curve under translation and rotation of its control points.

End points geometric property:

The first and last control points are the endpoints of the curve, and the curve is tangent to

the control polygon at the endpoints.

Convex hull property:

A domain D is convex if for any two points P1 and P2 in the same domain, the segment

PIP2 is entirely contained in the domain D. The intersection of convex domains is also a

convex domain. The convex hull of a set of points P is the boundary of the smallest

convex domain containing P. Therefore, the convex hull of a Bezier curve is the boundary

of the intersection of all the convex sets containing all vertices or the intersection of the

half spaces generated by taking three vertices at a time to construct a plane and having all

other vertices on one side. The convex hull can also be conceptualized at the shape of a

rubber band in 2-D or a sheet in 3-D stretched taut over the polygon vertices [9]. Figure

3-2 shows a cubic Bezier curve with convex hull.

0.b1

Convex Hull

b3

bo

'wb2

Figure 3-2: A cubic Bezier curve with convex hull (adapted from [28])

Variation diminishing property:

The number of intersections of a straight line with a planar Bezier curve is no greater than

the number of intersections of the line with the control polygon. A line intersecting the

28

convex hull of a planar Bezier curve may intersect the curve transversally, be tangent to

the curve, or not intersect the curve at all. However, it may not intersect the curve more

times than it intersects the control polygon. Figure 3-3 shows a cubic Bezier curve with

the variation diminishing property.

Possible Impossible

Figure 3-3: A cubic Bezier curve with the variation diminishing property (adapted

from [28])

The same relation is also true for a plane with a space Bezier curve. Therefore, a Bezier

curve oscillates less than its control polygon which also means the control polygon's

segments exaggerate the oscillation of the curve. This property is important in

intersection algorithms and in detecting the fairness of Bezier curves [28].

Symmetry property:

If we renumber the control points from bO,bi,...,bn to bn,bn.1,...,bo, by using the

symmetry property of the Bernstein polynomial, the following equation is also true:

n n

Z b Bi,n(t) = b bi Bin(1-t)

i= 0 i= 0

29

3.4 Definition and Properties of a Bezier Surface

A tensor product surface patch represented using Bernstein polynomials, known as a

Bezier surface patch, is given by the following equation:

m n

r(uv)= Y Z b ijBi,14u) Bin(v) 0 < u, v 1

i=O j=0

The set of straight lines drawn between consecutive control points bij is referred to as the

control net. The Bezier surface is a direct extension of the univariate Bezier curve to its

bivariate form, therefore, it also has the following properties of the Bezier curve:

Geometry invariance property

End points geometric property

Convex hull property

However, the Bezier surface patch does not have the variation diminishing property.

Figure 3-4 shows a bi-quadratic Bezier surface with its control net.

30

Figure 3-4: A bi-quadratic Bezier surface with its control net

31

32

Chapter 4

Iso-Contouring of Curvature of a Bezier Surface

Patch

4.1 Stationary Points of Curvature of Free-Form Parametric

Surfaces

Stationary points of surface curvature are important in methods for the correct topological

decomposition of the surface on the basis of curvature [20]. A curvature C(u , v) of a

parametric surface patch r = r (u , v), is a scalar function of u, v, where u and v are

between 0 and 1. In order to locate all the stationary points of curvature and to find the

global maximum and minimum values of C (u , v) to provide a correct topological

decomposition of the surface, the following values have to be evaluated:

First, the four values of curvature at the parameter domain corners.

C (0, 0), C (0, 1), C (1 , 0), C (1 , 1).

Second, the roots of the following four equations (stationary points along parameter

domain boundaries).

C"(u,O)=0 ,CU(u, 1)0, 0 u < 1

CV(0,v)=0,C (1,v)=0, 0 v 1

where C,, and C, are the first partial derivatives of C with respect to u and v, respectively.

33

Third, the roots of the following two equations (stationary points within the parameter

domain).

C" (u,v)=0, C(u,v)=0, 0 u,v I

Those equations are applied to the Gaussian curvature K (u , v), the mean curvature H

(u , v) and the two principal curvatures K (u , v) in order to compute the stationary

points for each case [28].

4.1.1 Gaussian Curvature: K (u, v)

In the case of finding the stationary points of Gaussian curvature within the domain, the

following equations are true when C (u, v) is replaced by K (u, v) [28]:

A (u, v)
KU u , v) 6 V) = 0

S (u, v)
K(u , v) 6(V) = 0 0 ! u, 1

where

S (u ,v)=S ru x rI

L(u,v)= S2_ 4 (Su)A

I (u,v)= Av S2_ 4(S'vs)A

A (S ruu)-(S r,) - (S ruv)-(S ruv)

ru and rv are the first partial derivatives of r (u , v) with respect to u and v, respectively.

Su and Sv are the first partial derivatives of S (u , v) with respect to u and v, respectively.

Au and Av are the first partial derivatives of A with respect to u and v, respectively.

ruu and ruy are the first partial derivatives of ru with respect to u and v, respectively.

34

rVV is the first partial derivative of r, with respect to v.

When S is not zero,

A (u,v)=0, I (u,v)=O, 0 u,v 1

The stationary points along the four boundary edges can be found by finding the solutions

of the following equations:

A (u,0)0, A (u,1)=0, 0 u 1

I (0,v)=0, I (1,v)=0, 0 v 1

4.1.2 Mean Curvature: H (u, v)

Similarly, in order to find the stationary points of mean curvature within the domain, the

following equations are true when C (u, v) is replaced by H (u , v) [28]:

(D (u, v)

Hu (u , v) =2S 5(u, v)

2S (u, v)
Hv (u, v) =2S 5(u, V) = 0 0 :! U, v I

where

S (U , v = S I |ru x rV

F(u,v)= B S 2-3(S-Su)B

Y(u,v)= B, S2 -3(S-Sv)B

B = 2(r - rv)-(S - ruv) - (ru - ru)-(S -r,) - (r rv)-(S ruu)

Su , S ,ru , rv , ruu,, ruv and r, are the same as those described in section 4.1 .1.

Bu and Bv are the first partial derivatives of B with respect to u and v, respectively.

35

When S is not zero,

D (u,v)=O,W(u,v)=O, 0

The stationary points along the four boundary edges can

of the following equations:

(D u, 0 0 , (u, 1) =0,

W(0 , v 0 , XY (1 v =0

< uv 1

be found by finding the solutions

0<u <

0<v<1

4.1.3 Principal Curvature: K (u , v)

For principal curvature, the stationary points within the domain can be found by solving

the following equations when C (u, v) is replaced by K (u, v) [28]:

Maximum principal curvature:

k" (u , v)

kv (u, v)

p(u, v) + q(u, v)-f g(u, v)

= 2S 5(u, v) - g (u, v)

m(u, v) + n(u, v)- g(u, v)

2S5 (u, v)- g(u, v)

= 0

= 0 0 < uv<y 1

Minimum principal curvature

p(u, v) - q(u, v). g(u, v)

2S5 (u, v)-V g(u, v)

m(u, Y) - n(u, v) - g(u, v)

= 2S 5(u, v)- lg(u, v)

= 0

= 0 0 uv y< 1

36

ku (u, v)

kv (u, v)

where

S (u,v)= S I =1 ruxrj I

p (u, v) = (BBU - 2-AU $2) 2+ (8-A

q(u, v)=kS 2-3 (S*SU)B

m (u, v) = (BBV - 2 Av'S2 2+ (8-A

-S2 - 3 - B2)(S SU)

S2 3 - B2)(SS)

n(u,v)= 4S 2- 3 (S-SQ)B

g (u, v)=B2- 4- A- S2

SU , SV ,ru , rv , Au, AV, BU, BV , A and B are the same as those described in sections 4.1.1

and 4.1.2.

When S and g (u , v) are not zero, for maximum principal curvature,

p(u, v) + q(u, v)- g(u, v) = 0

m(u, v) + n(u,v)-i g(uv) 0 0 ! ulv 1

The stationary points along the four boundary edges can be found by finding the solutions

of the following equations:

p(u,0) + q(u,0)- g(u,0) = 0

p(u, I) + q(u, 1) . g(u,l) = 0

m(0, v) + n(0, v)- g(0,v) = 0

m(1,v)+ n(1,v) -. g(1v)= 0 0 uv<! 1

The plus signs in the above six equations can be changed to minus signs in order to find

the solutions for minimum principal curvature as well.

37

When g (u , v) is zero which means the two principal curvatures are identical for that

point, i.e. an umbilical point, the following equations are true [21]:

(B-Bu - 2 A S2) - 4-A (S -Su)=0

(B-By - 2-Av- S2) -4-A- (S-SV)=O

B 2- 4. A. S 2= 0 0 ::! u, v < I

Therefore, the umbilical point can be checked if it corresponds to a local maximum or

minimum of principal curvature.

38

4.2 Contouring Constant Curvature Lines

Contour curves for constant curvature can be described as in the following equation:

C (u , v) = constant,

Here, C (u , v) is a curvature at the given point (u , v). As the contour curve lies on the

surface r (u , v), then the curve in parametric form can be written as r (t) = r [u (t), v (t)].

The differentiation of C (u , v = constant with respect to t results in:

Cu + C, v= 0

u and v are the first derivatives with respect to t, and (u, v) shows the direction of the

contour line in parameter space. Then, the solution can be found as:

u = F Cs, v = - eCU

When the curvature map is constructed in the u-v parameter space, c can be chosen as

follows in order to provide arc-length parametrization in the parameter domain [28].

Cj + C,2

The contour lines in the parameter space of a bivariate function can be separated into

three parts: First, local maxima and minima of the function are encircled by closed

contour curves [15]. Second, at the precise level of a saddle point, the contour curves

cross or exhibit more complex behavior. Third, contour curves start from a domain

boundary point and end at a domain boundary point. In the following section 4.3, C, and

C, are replaced by derivatives of the Gaussian, mean and principal curvatures separately

to allow comparison with the results of the Praxiteles program [28].

FE

39

4.3 Performance of Algorithm

The example here is a wave-like bicubic integral Bezier surface patch [Pi](u,v) (Figure

4-1). The control points are:

(0,0,0) C0,

'00)
' '(3

0 0) 2

3

(1,0,0) CI

1

3

1

3

1

3

1

3

0)

1)

,0)

0,-
3

1 2 3
3 ' I I

2 2 -3) '

3' 3' 5)

2
I,-

3

'IN
'IN

z

Figure 4-1: Wave-like bicubic integral Bezier surface [P1](u,v) with control points

40

[P](u,v)

(

(1- 3

(2
-

3

0,1,0)

1, 1,
3)

2 110

3')

1, 1,0)(

N.
4 Ne

j ii

'.4
4
N ~

N ~ N

4 1

f~ 4 '

zJ7 N 'N ~

N, ~ 4

NI 4 4

4 4,.~
,444

N *~ '
Ii~ ~

N~

U

444

4
NN *

N ~4
iNN 4
INN
NC '

- - - - IN - - 4 fl __ _-_-4 "

'

Gaussian Curvature:

Figure 4-2 shows the color map of the contour lines of Gaussian curvature for surface

[Pi](u,v) in parametric space from the Praxiteles program.

1

0.5 -

0
0.5 1

Figure 4-2: Color map of contour lines of Gaussian curvature from the Praxiteles

program for surface [Pi](u,v)

Since surface [Pi](u,v) is anti-symmetric with respect u = 0.5, the contour lines of

Gaussian curvature are also symmetric with respect to u = 0.5 due to the fact that the

Gaussian curvature is the product of maximum and minimum principal curvatures. The

global maximum is located at (0.2 , 0.37) and (0.8 , 0.37) and the global minimum is

41

I I

located at (0 , 0) and (1 , 0). By inputting the equations from section 4.1.1 into the

VNODE program, the contour lines of Gaussian curvature lines can be found. Figure 4-3

shows the contour lines of Gaussian curvature lines generated from the VNODE program.

/

/

/

\ N

'I

/1

/

IN"

A I I
0.5

Figure 4-3: Contour lines of Gaussian curvature from the VNODE program for

surface [Pj](u,v)

Similarly, the contour lines of Gaussian curvature generated from the VNODE program

are also symmetric with respect to u = 0.5. The starting points are chosen on each border

from 0.2 to 0.8 by the increasing step size by 0.2. The length of integration is determined

by not exceeding the u-v parametric space. The average time for integrating the length of

42

I r-

0.5

I is 1.82 minutes. Table 4-1 shows the input in the VNODE program for contour lines of

Gaussian curvature for surface [Pi](u,v).

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 0.98 io1 5 +

2 (0,0.4) 0.91 10~" +

3 (0,0.6) 1.33 10-1 +

4 (0,0.8) 0.24 io1 5 +

5 (1 ,0.2) 0.98 10-15

6 (1,0.4) 0.91 10-15

7 (1,0.8) 0.24 10~15

8 (0.2,0) 0.66 10-15 +

9 (0.2,0) 0.22 io1' 5

10 (0.4,0) 0.26 10~" +

11 (0.8,0) 0.22 10-1 5 +

12 (0.2,1) 0.92 10~" +

13 (0.4,1) 0.20 10~1 +

Table 4-1: Input in the VNODE program for contour lines of Gaussian curvature for

surface [Pi](u,v)

43

Mean Curvature:

Figure 4-4 shows the color map of the contour lines of mean curvature for surface

[P1](u,v) in parametric space from the Praxiteles program.

1

0.51-

0
0.5 1

Figure 4-4: Color map of contour lines of mean curvature from the Praxiteles

program for surface [P1](u,v)

Due to the fact that surface [Pi](u,v) is anti-symmetric with respect u = 0.5, the contour

lines of mean curvature have the contour line H = 0 when u = 0.5. The global maximum

is located at (0.19 , 0.41) and the global minimum is located at (0.81 , 0.41). By

inputting the equations from section 4.1.2 into the VNODE program, the contour lines of

44

II

mean curvature lines can be found. Figure 4-5 shows the contour lines of mean curvature

lines generated from the VNODE program.

/

\ \N'

\j\ \j\

I j~ K

'7

I

-I--->

ii 7>->
/ / /7

/ I
I ii

I III!

1? 1
liii I
'1'

'ii

0.5

Contour lines of mean curvature from the VNODE program for surface

The contour lines of mean curvature generated from the VNODE program are similar to

those in Figure 4-4. The starting points are chosen on each border from 0.2 to 0.8 by the

increasing step size by 0.2. However, the curvature lines from some starting points do not

show well in this example because the denominator from the formula becomes very small

and this leads to error. Therefore, those points are omitted. The length of integration is

45

I t-

0.51 -

0

Figure 4-5:

[P1](uv)

determined by not exceeding the u-v parametric space as well. The average time for

integrating the length of 1 is 7.72 minutes. Moreover, some contour lines of mean

curvature do not continue to extend after some point. The reason for this is the integration

becomes more and more complicated and the intervals from the ODE integration become

very small such as 10-15, and therefore, it takes very long time to show the full trace of the

curvature lines. Table 4-2 shows the input in the VNODE program for contour lines of

mean curvature for surface [Pi](u,v).

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 0.34 10-25 +

2 (0,0.8) 3.61 1025 +

3 (0.2,0) 0.20 10- 25

4 (0.2 , 0.6) 2.50 10-25

5 (0.2,1) 1.60 1025 +

6 (0.8,0.6) 1.45 10-25 +

7 (0.8,1) 1.60 10-25

8 (1 ,0.2) 0.34 10-25

9 (1,0.8) 2.79 10-25

Table 4-2: Input

surface [Pi](u,v)

in the VNODE program for contour lines of mean curvature for

46

Maximum Principal Curvature:

Figure 4-6 shows the color map of the contour lines of maximum principal curvature for

surface [Pi](u,v) in parametric space from the Praxiteles program.

I

0.5V

('I

0.5

Figure 4-6: Color map of contour lines of maximum principal curvature from the

Praxiteles program for surface [Pi](u,v)

As for contour lines of maximum principal curvature for surface [P1](u,v), the global

maximum is located at (0 , 0) and (1 , 0) and the global minimum is located at (0.79 ,

0.3). By inputting the equations from section 4.1.3 into the VNODE program, the

contour lines of maximum principal curvature can be found. Figure 4-7 shows the

contour lines of maximum principal curvature generated from the VNODE program.

47

I I

1 -

0.5

Figure 4-7:

program for

Contour lines of maximum principal curvature from the VNODE

surface [Pi](u,v)

It can be seen easily that the contour lines of maximum principal curvature generated

from the VNODE program are similar to Figure 4-6. The starting points are chosen

randomly on each border and two from the inside which are (0.2 , 0.6) and (0.6 , 0.6) in

order to compare the curvature lines generated from the VNODE program to those from

the Praxiteles program. The length of integration is also determined by not exceeding the

u-v parametric space. The average time for integrating the length of 1 is 87.42 minutes.

Besides the long time for integrating, some contour lines of maximum principal curvature

do not continue to extend after some point like the discontinued lines shown in Figure 4-7.

48

N

/

/

/ /

/// ~

~

\ \

/
/

/

4-

/

/
N

/

I

/

0 I

0.5 -

The reason for this is the same with the situation happening in mean curvature. Table 4-3

shows the input in the VNODE program for contour lines of maximum principal

curvature for surface [Pi](u,v).

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 0.45 10-30 +

2 (0,0.8) 0.76 10-30 +

3 (0.1, 0) 0.40 1030 +

4 (0.4,0) 0.39 10-30

5 (0.6,0) 1.26 10~30

6 (0.7,0) 1.29 10~30

7 (0.8,0) 0.26 10-30 +

8 (0.4,1) 0.26 10~30

9 (0.6,1) 1.27 10-30

10 (0.8,1) 1.37 1030 +

11 (1 ,0.2) 0.27 10~30

12 (1,0.4) 0.52 1030

13 (1 ,0.8) 0.61 10~3U

14 (0.2,0.6) 0.86 1030 +

15 (0.2,0.6) 1.08 10~30

16 (0.6,0.6) 0.44 10o30 +

17 (0.6,0.6) 0.72 10~30

Table 4-3: Input in the VNODE

curvature for surface [Pi](u,v)

program for contour lines of maximum principal

49

Minimum Principal Curvature:

Figure 4-7 shows the color map of the contour lines of minimum principal curvature for

surface [Pi](u,v) in parametric space from the Praxiteles program.

1

0.5-

I I
0

0.5 I

Figure 4-8: Color map of the contour lines of minimum principal curvature from

the Praxiteles program for surface [Pi](uv)

As for contour lines of minimum principal curvature for surface [Pi](u,v), the global

maximum is located at (0.21 , 0.3) and the global minimum is located at (0 , 0) and (1 ,

0). By inputting the equations from section 4.1.3 into the VNODE program, the contour

lines of minimum principal curvature can be found. Figure 4-9 shows the contour lines of

minimum principal curvature generated from the VNODE program.

50

/1

0L
0.5

Figure 4-9: Contour lines of minimum principal curvature from the VNODE

program for surface [PI](u,v)

It can also be seen easily that the contour lines of minimum principal curvature generated

from the VNODE program are similar to Figure 4-8 although some curvature lines do not

completely extend to the border. The starting points are also chosen randomly on each

border and few from the inside in order to compare the curvature lines generated from the

VNODE program to those from the Praxiteles program. The length of integration is

determined by not exceeding the u-v parametric space as well. The average time for

integrating the length of 1 is 88.25 minutes. Table 4-4 shows the input in the VNODE

program for contour lines of minimum principal curvature for surface [P1](u,v).

51

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 0.27 10~30 +

2 (0,0.6) 0.42 10-30 +

3 (0,0.8) 0.21 1io30 +

4 (0.2,0) 0.38 10~30

5 (0.4,0) 0.82 1o- 30 +

6 (0.6,0) 0.26 10~30

7 (0.7,0) 0.21 10-30 +

8 (0.2,1) 1.60 10-30 +

9 (0.3,1) 0.49 10~30 +

10 (0.4,1) 0.61 10.30 +

11 (0.6,1) 0.61 10~30 +

12 (1 ,0.2) 0.67 10-30

13 (1 ,0.8) 0.52 10.30

14 (0.2,0.6) 1.44 10-30 +

15 (0.2,0.6) 1.38 10~30

16 (0.4,0.6) 1.00 10-30 +

17 (0.4 , 0.6) 0.48 10~30

18 (0.6,0.6) 1.00 1o-30 +

19 (0.6, 0.6) 0.96 10~30

20 (0.8 , 0.6) 0.30 10~30 +

21 (0.8,0.6) 0.49 10.30

Table 4-4: Input in the VNODE

curvature for surface [Pi](u,v)

program for contour lines of minimum principal

52

Chapter 5

Lines of Curvature of a Bezier Surface Patch

5.1 Lines of Curvature

The description of a line of curvature is a curve on a surface that has tangents which are

principal directions at all of its points. There are two principal directions at a given

non-umbilical point and they are orthogonal. The umbilic is a point on a surface where all

of the normal curvatures are equal in all directions. Therefore, the principal directions are

undefined at umbilics. More discussion on umbilics can be found in [28]. A line of

curvature indicates a directional flow for the maximum or the minimum curvature across

the surface [28]. Lines of curvatures can be found by integrating an initial value problem

for a system of few nonlinear ordinary differential equations. The number of integrated

points used to represent the contour line by straight line segments also affects the

accuracy of the lines of curvature. In the parametric surface r = r (u , v) where u and v

are between 0 and 1, the equations for lines of curvature can be found to be as follows:

U duM+ F
ds

dv L+KE

ds

where

M= rurN,L=ruu'N,E=r.'ru,F=ru'rv

53

l or(-1)

E-(M + KF) 2 - 2F(M + KF)(L + KE) + G.(L + kE) 2

ru and r, are the first partial derivatives of r (u , v) with respect to u and v, respectively.

ruu and ruv are the first partial derivatives of ru with respect to u and v, respectively.

N is the unit normal vector which also equals (ru x rv) /I ru x rv 1.

K is either K max or K mi which represent maximum principal curvature and minimum

principal curvature respectively.

Kmax=H+ H -K

Kmin = H - H -K

L-N - M2

E-G- F2

2-F-M - E-N - G-L
2-(E-G - F2)

N r yv' N, G = r s r v

rvv is the first partial derivative of rv with respect to v.

The sign of ri determines which direction the solution should proceed.

However, when computing the lines of curvature by the above equations, two cases may

happen which affect the results: First, that the coefficients in one of the equations can

both be zero while they are not both zero in the other equation. Second, that both

coefficients in one equation are small in absolute value while the other equation contains

one coefficient which is large in absolute value [28]. In the first case, the results will not

54

be right because the near zero coefficients do not let the equations have enough

information to find out the principal curvature direction. As for the second case, the small

coefficients may lead to the numerical inaccuracies. Alourdas [2] found that the size of

the coefficients can help to decide to use the equations above or not. In the situation when

I L + K E I ! I N + K G I , the equations above can be used. Otherwise, the following

equations can be used for computing lines of curvature:

u' = d. = (N +KG)
ds

V' = dv = - (M+KF)
ds

where

I or(-1)

E(N + KG)2 - 2F(K + KG)(M + KF) + G-(M + KF)2

M, N ,G F and K are the same as those described above.

The sign of pt also determines which direction the solution should proceed.

Since the unit normal vector N is used here for principal curvature lines, one important

factor has to be taken into consideration which is the definition of the positive normal

curvature. There are two different situations. The first one is when the center of curvature

is on the same side of the normal vector and the second one, when the center of curvature

is on the opposite side of the normal vector. Under these two different situations, a sign

convention needs to be used for the positive normal curvature. In this thesis, the positive

normal curvature is defined as the case in which the center of curvature is on the opposite

55

side of the normal vector and this is the same convention that the Praxiteles program uses

[28].

56

5.2 Performance of Algorithm (Example: 1)

The first example is a symmetric bi-quadratic Bezier surface [P2](u,v) (Figure 5-1). The

control points are given by:

(0,0,0) -,02) (1,0,0)
(2

[P2](u,v) (0, 1, 0) - 1 1) (1,1 ,0)

(0F2,0) A s- ,2 (1,2,0)
_ (2

Figure 5-1: A symmetric bi-quadratic Bezier surface [P2](U,V)

57

Figure 5-2 shows the lines of curvature for surface [P 2](u,v) in 3-D space from the

Praxiteles program.

4
I

T
ii

4:

1~

x

'40
%I

~

*
x

T

Figure 5-2: Lines of curvature from the Praxiteles program for surface [P2](u,v)

The lines of curvature for surface [P2](u,v) are plotted by two files generated from the

Praxiteles program. The vertical lines represent the lines of maximum principal curvature

and the horizontal lines represent the lines of minimum principal curvature. In the

Praxiteles program, a few options for lines of curvature can be specified including the

58

I rf -

step size, how many points in the u-v parametric space of the surface can be calculated in

u direction and v direction respectively. By inputing the equations from section 5.1 into

the VNODE program, the lines of curvature can be found. Figure 5-3 shows the lines of

curvature for surface [P2](u,v) in 3-D space from the VNODE program.

z

x

/

I1

Figure 5-3: Lines of curvature from the VNODE program for surface [P2](u,v)

59

I i i I i i I i I i i i i i

N

4

101

It can be seen easily that the lines of curvature generated from the VNODE program are

the same as those generated from the Praxiteles program. However, the integration via

VNODE becomes very difficult or even cannot continue when it proceeds to the middle

of this surface. The starting points are chosen on each border from 0.2 to 0.8 by

increasing the step size by 0.2. The length of integration is determined by not exceeding

the u-v parametric space. The average time for integrating the length of 1 is 2.15 minutes.

Tables 5-1 and 5-2 show the input in the VNODE program for lines of maximum

principal curvature and lines of minimum principal curvature for surface [P2](u,v)

respectively.

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0.2,,0) 1.02 10-30 +

2 (0.2,1) 1.02 10-30

3 (0.4,0) 0.97 1040 +

4 (0.4,1) 0.97 1040

5 (0.6,0) 0.97 1040 +

6 (0.6,1) 0.97 1040

7 (0.8,0) 1.02 10-30 +

8 (0.8,1) 1.02 1030

9 (0,0.4) 0.87 10-30

10 (1 ,0.4) 0.87 10~30 +

11 (0,0.6) 0.87 1~303-

12 (1 ,0.6) 0.87 10~30 +

Table 5-1: Input in the VNODE

curvature for surface [P2](u,v)

program for lines of maximum principal

60

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 1.01 10~30 +

2 (1,0.2) 1.01 10-30

3 (0,0.4) 0.95 10-3 +

4 (1 ,0.4) 0.95 10-30

5 (0,0.6) 0.95 10~30 +

6 (1,0.6) 0.95 10-30

7 (0,0.8) 1.01 10~30 +

8 (1,0.8) 1.01 10-30

9 (0.2,0) 0.47 10~30 +

10 (0.8,0) 0.47 10~30

11 (0.4,0) 0.11 10-30 +

12 (0.6,0) 0.11 1o30-

13 (0.2,1) 0.47 10~30 +

14 (0.8,1) 0.47 1o-30-

15 (0.4,1) 0.11 10~30 +

16 (0.6,1) 0.11 10~30

Table 5-2: Input in the VNODE program for

for surface [P2](u,v)

lines of minimum principal curvature

61

5.3 Performance of Algorithm (Example: 2)

The second example is a bi-quadratic Bezier surface [P3](u,v) (Figure 5-4). The control

points are given by:

(0,0,0) ,0,0 (1,0,0)

2(

[P3](u ,V) (0, 1,0) -, 1, -(1,)
(2 2)

(0,2,2) 1-,2, -3 ' (1,2,3)
(2 2)_

Figure 5-4: A bi-quadratic Bezier surface [P3](U,V)

62

........ !. .. -- j -i 4' l 06 - -- -

Figure 5-5 shows the lines of curvature for surface [P3](u,v) in 3-D space from the

Praxiteles program.

/

/
/

/
//

/ /1

/ / /

~ / / (1 /

z 4) / 7

/~/ 7 /
// /7

/

7/ /

________ ~ I

7

/ 7
\\ 7 ~ /

'7 ~7 1/" '>'

f//i.
/ {

Figure 5-5: Lines of curvature from the Praxiteles program for surface [P3](u,v)

The lines of curvature for surface [P 3](u,v) are also plotted by two files generated from

the Praxiteles program. By using the same equations from last example into the VNODE

program, the lines of curvature can also be found. Figure 5-6 shows the lines of curvature

for surface [P3](u,v) in 3-D space from the VNODE program.

63

I IN I I
I I -- -A Tl OC
I I JTY I FN-U

FYL --4t 1A

rr 1
UM -4 -I " 1 11 Lf I

I A~ I I

The lines of curvature generated from the VNODE program are the same as those

generated from the Praxiteles program. However, the integration stops after some point

for few lines. The starting points are chosen on each border from 0.2 to 0.8 by increasing

the step size by 0.2. The length of integration is determined by not exceeding the u-v

parametric space as well. The average time for integrating the length of 1 is 1.63 minutes.

Tables 5-3 and 5-4 show the input in the VNODE program for lines of maximum

principal curvature and lines of minimum principal curvature for surface [P3](u,v)

64

1TTMTTm1 1111111
14--1114 IDEMI

M-Uy I I A LWVI-M

M-f4JI'

)

respectively.

Table 5-3: Input in the VNODE

curvature for surface [P3](u,v)

program for lines of maximum principal

65

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0.2,0) 2.17 10~30 +

2 (0.4,0) 1.81 10-30 +

3 (0.6,0) 0.19 1040

4 (0.8,0) 0.32 1040

5 (0,0.6) 0.61 10-30 +

6 (0,0.8) 0.61 10.30 +

7 (0.2,1) 0.21 1030

8 (0.4,1) 0.42 10.30 +

9 (0.6,1) 0.27 1o-30 +

10 (0.8,1) 0.18 10~30 +

11 (1 ,0.4) 0.62 10~30

12 (1 ,0.6) 1.81 10-30

13 (1 ,0.8) 0.62 103-

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0.2,0) 0.22 10~30

2 (0.4,0) 0.43 1030

3 (0.6,0) 0.42 10~30 +

4 (0.8,0) 0.22 10-30 +

5 (0,0.2) 0.66 10-30 +

6 (0,0.6) 1.47 10~30 +

7 (0,0.8) 0.75 10 30 +

8 (0.2,1) 0.91 10~

9 (0.4,1) 1.65 1 0 40 +

10 (0.6,1) 0.77 10~30 +

11 (0.8,1) 0.31 10~30 +

12 (1,0.4) 0.80 10 30

13 (1 ,0.6) 1.39 10~30-

14 (1,0.8) 0.61 10-30

Table 5-4: Input in the VNODE program for

for surface [P3](u,v)

lines of minimum principal curvature

66

Chapter 6

Initial Value Problem for Geodesics on a Bezier

Surface Patch

6.1 Geodesics

The geodesic path can be described as the shortest path between two points on a surface.

According to Struik [32] , geodesics are curves of zero geodesic curvature. There may be

more than one geodesic between two points on the surface according to this definition.

An example can involve two points on a sphere. In the parametric surface r = r (u , v)

where u and v are between 0 and 1, the equations for geodesics are [28]:

du
= p

ds

dv
= q

ds

dp

ds

dq

ds

- -Fl. p 2 -2F2 .p q-~3 -q2

- -Z 1.p 2-2Z 2 -p . q-Z 3 -q2

67

G-EU -2-F-F+F-E
2-(E-G-F 2)

G-E -F-G

2-(E-G-F 2)
2-G-F, -G-G 1 +F-G

2-(E-G-F 2)

Z B2-E-F, -E-E +F-E
2-(E-G-F 2)

E-G -F-E
- 2-.(E-G

-F 2)

Z- E-GV -2-F-FV +F-G
S2-(E-G- F2)

E, F, G are defined in section 5.1.

Eu and Ev are the first partial derivatives of E with respect to u and v, respectively.

Fu and Fv are the first partial derivatives of F with respect to u and v, respectively.

Gu and Gv are the first partial derivatives of G with respect to u and v, respectively.

When all four boundary conditions are given at one point, the four first order ordinary

differential equations above can be solved as an initial value problem. The solution for

the initial value problem for geodesics is unique.

68

where

6.2 Performance of Algorithm (Example: 1)

The first example is the symmetric bi-quadratic Bezier surface [P2](u,v) (Figure 5-1).

Figure 6-1 shows the geodesics for surface [P2](u,v) in 3-D space from the Praxiteles

program.

A

N

//
'p

;f'
1/ A:

z

Ii

x

/
~~z.7/ [

/1
/

\ \
/

/

/
/ II

N I N

Figure 6-1: Geodesics from the Praxiteles program for surface [P 2](u,v)

69

The geodesics for surface [P2](u,v) are plotted by one file generated from the Praxiteles

program. A few options for geodesics can be specified including the step size, how many

points in the u-v parametric space of the surface can be calculated in u direction and v

direction respectively in the Praxiteles program. By inputing the equations from section

6.1 into the VNODE program, the geodesics can be found. Figure 6-2 shows the

geodesics for surface [P2](u,v) in 3-D space from the VNODE program.

1Go -

Figure 6-2: Geodesics from the VNODE program for surface [P2](U,V)

70

I11ai1111

The geodesics generated from the VNODE program are the same as those generated from

the Praxiteles program. The starting points are chosen on each border from 0.2 to 0.8 by

increasing the step size by 0.2. The length of integration is determined by not exceeding

the u-v parametric space as well. The average time for integrating the length of 1 is 0.42

minutes. Table 6-1 shows the input in the VNODE program for geodesics for surface

[P2](u,v).

Starting Length of Direction
Number Tolerance

Point: (u , v) Integration along X-axis

1 (0,0.2) 0.51 10 0-

2 (0,0.4) 0.60 1o4-

3 (0,0.6) 0.60 1040 +

4 (0,0.8) 0.52 1040 +

5 (0.2,0) 0.99 1040 +

6 (0.4,0) 0.95 1040 +

7 (0.6,0) 0.95 1040 +

8 (0.8,0) 0.99 1040 +

Table 6-1: Input in the VNODE program for geodesics for surface [P2](u,v)

71

6.3 Performance of Algorithm (Example: 2)

The second example is the wave-like bicubic integral Bezier surface [P](u,v) (Figure

4-1). Figure 6-3 shows the geodesics for surface [Pi](u,v) in 3-D space from the

Praxiteles program.

7~'~> I

Kcj
N

/

/

/

Figure 6-3: Geodesics from the Praxiteles program for surface [Pi](u,v)

By using the same equations from the last example into the VNODE program, the

geodesics can be found. Figure 6-4 shows the geodesics for surface [Pi](u,v) in 3-D space

from the VNODE program.

72

z

Figure 6-4: Geodesics from the VNODE program for surface [Pi](u,v)

The geodesics generated from the VNODE program are similar as those generated from

the Praxiteles program. The starting points are chosen on each border from 0.2 to 0.8 by

increasing the step size by 0.2. The length of integration is determined by not exceeding

the u-v parametric space as well. The average time for integrating the length of 1 is 2.14

minutes. Table 6-2 shows the input in the VNODE program for geodesics for surface

[Pi](u,v). However, there are differences between these two programs for some geodesics.

Figure 6-5 shows both the geodesics from the Praxiteles program and the VNODE

program in this example. The thin lines are geodesics from the Praxiteles program and the

bold lines are geodesics from the VNODE program. The reason for the difference is that

the Praxiteles program uses a fixed tolerance but the VNODE program allows users to

input different tolerances. Therefore, the width of the intervals from the VNODE program

differ when the tolerance changes.

73

ITI J
IF

TA

MOW

Starting Length of Direction

Number Tolerance
Point: (u , v) Integration along X-axis

1 (0,0.2) 0.78 1io40-

2 (0,0.4) 0.61 10~40

3 (0,0.6) 0.65 10~40 +

4 (0,0.8) 0.88 1040

5 (0.2,0) 0.82 10-40 +

6 (0.4,0) 0.97 1o-40 +

7 (0.6,0) 0.97 10 40 +

8 (0.8,0) 0.82 10 40 +

Table 6-2: Input in the VNODE program for geodesics for surface [Pi](u,v)

Figure 6-5: G6/desics from the Praxiteles program and the VNODE program for

surface [Pi](u,v)

74

Chapter 7

Conclusions and Recommendations

7.1 Conclusions

From the numerical experiments in Chapters 4, 5 and 6, robust evaluation using interval

arithmetic techniques based on the VNODE software package compute the results

reliably. However, there are two limitations including large computation time cost and

discontinuing of the integration for some cases. Table 7-1 shows the average time for

integrating the length of 1 for each experiment using VNODE.

Number Experiment Average time

(Minute)

1 Iso-Contouring of Gaussian Curvature 1.82

2 Iso-Contouring of Mean Curvature 7.72

3 Iso-Contouring of Maximum Principal Curvature 87.42

4 Iso-Contouring of Minimum Principal Curvature 88.25

5 Lines of Curvature: Example 1 2.15

6 Lines of Curvature: Example 2 1.63

7 Geodesics: Example 1 0.42

8 Geodesics: Example 2 2.14

Table 7-1: Average time for integrating the length of I for each experiment

75

For the case of iso-contouring of curvature of a Bezier surface patch, the average time for

integrating the length of 1 varies widely. The iso-contouring of principal curvatures takes

almost one and half hours to complete the length of 1 in the u-v parametric space. For the

cases of lines of curvature and geodesics, the average time varies under different surfaces

even for the same case which means using the same formula. Therefore, the integrating

time for the length of 1 in u-v parametric space will take longer when the surface

becomes more complicated.

The discontinuing of the integration problem happens in sections 4.3, 5.2 and 5.3. The

intervals in these examples become smaller and smaller when the integration proceeds.

The intervals in the end can be very small such as 10~" and this slows down the process.

Therefore, those computations have to be stopped when they are under this situation. The

reason for this may be that the denominator approaches 0 when the integration proceeds.

Therefore, it cannot continue but proceeds slowly with a small step size.

Since the integration results from the VNODE program are mapped into 3-D space in

order to show the relations between the results and the surface, the input tolerance used in

the VNODE program plays an important role because it will decide the width of the

mapping intervals in the 3-D space. Figure 7-1 shows the different mapping results from

three different input tolerances. The top and bottom lines represent the upper and lower

bounds of the mapping results from the input tolerance 10~1, the bold line represent the

mapping results from the input tolerance 10-30 and the thin line represent the mapping

results from the input tolerance 1040. The width of the intervals for the lines with its input

tolerance is 10~15 is large in comparison to others and it can not help users to determine

the proper answer although the exact answer is in this interval. Therefore, the smaller

input tolerance is given, the smaller width of the intervals is generated which gives the

76

nearest exact answer for the evaluation.

R.6

1,5

Figure 7-1: Three different mapping results from three different input tolerances

In summary, robust evaluation of differential geometry properties using interval

arithmetic techniques with the VNODE program is possible and compares well with the

existing program, Praxiteles, which operates in double precision floating point arithmetic

and uses standard ODE solvers.

77

7.2 Recommendations for Future Research

Future work on the topic of robust evaluation of differential geometry properties of

surfaces using interval arithmetic techniques should focus on reducing the computation

time cost and solving the discontinuing integration problem.

Another direction for future research is to obtain robust evaluation of differential

geometry properties on more complicated surfaces such as offsets, generalized cylinders,

blending surfaces and medial surfaces.

78

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,

New York, 1983.

[2] P. G. Alourdas, Shape Creation, Interrogation and Fairing Using B-Splines.

Engineer's thesis, Massachusetts Institute of Technology, Department of Ocean

Engineering, Cambridge, Massachusetts, 1989.

[3] C. Bendsten and 0. Stauning. FADBAD, a flexible C++ package for automatic

differentiation using the forward and backward methods. Technical Report

1996-x5-94, Department of Mathematical Modelling, Technical University of

Denmark, DK-2800, Lyngby, Denmark, August 1996.

[4] C. Bendsten and 0. Stauning. TADIFF, a flexible C++ package for automatic

differentiation using Taylor series. Technical Report 1997-x5-94, Department of

Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby,

Denmark, April 1997.

[5] M. Berz. COSY INFINITY version 8 reference manual. Technical Report

MSUCL-1088, National Superconducting Cyclotron Lab., Michigan State University,

East Lansing, Michigan, 1997.

[6] M. Berz and K. Makino. Verified integration of ODEs and flows using differential

algebraic methods on high-order Taylor models. Reliable Computing,

4:361-369,1998.

[7] G. Booch. Object-Oriented Analysis and Design. The Benjamin/Cummings Publishing

Company Inc., Rational, Santa Clara, California, 2nd edition, 1994.

[8] G. F. Corliss and R. Rihm. Validating an a priori enclosure using high-order Taylor

series. In G. Alefeld and A. Frommer, editors, Scientific Computing, Computer

Arithmetic, and Validated Numerics, pages 228-238. Akademie Verlag, Berlin, 1996.

79

[9] Q. Ding and B. J. Davies. Surface Engineering Geometryfbr Computer-Aided

Design and Manufacture. Ellis Horwood, Chichester, UK, 1987.

[10] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.

Addison-Wesley, 1990.

[11] A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical

Software, 22(2):131-167, June 1996.

[12] A. Hohmann. An implementation of extrapolation codes in C++. Technical Report,
Berlin, Germany, 1993.

[13] R. V. Iwaarden. IADOL-C, personal communications, 1997. IADOL-C is available

through the author. E-mail: vaniwaar@metsci.com.

[14] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich. Pascal- XSC: Language

Reference with examples. Springer-Verlag, Berlin, 1992.

[15] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and

differential-equation methods for surface intersections. Computer-Aided Design,
24(1):41-55, January 1992.

[16] H. P. Langtangen. Computational Partial DifjPrential Equations - Numerical

Methods and Diffrack Programming. Springer-Verlag, 1999.

[17] R. J Lohner. PhD thesis, University Karlsruhe, 1988.

[18] R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value

problems. In E. W. Kaucher, U. W Kulisch, and C. Ullrich, editors, Computer

Arithmetic: Scientific Computation and Programming Languages, pages 255-286.
Wiley-Teubner Series in Computer Science, Stuttgart, 1987.

[19] R. J. Lohner. Step size and order control in the verified solution of IVP with

ODE's,1995. SciCADE'95 International Conference on Scientific Computation and

Differential Equations, Standford, California, March 28 - April 1,1995.

80

[20] T. Maekawa and N. M. Patrikalakis. Interrogation of differential geometry properties

for design and manufacture. The Visual Computer, 10(4):216-237, March 1994.

[21] T. Maekawa, F.-E. Wolter, and N. M. Patrikalakis. Umbilics and lines of curvature

for shape interrogation. Computer Aided Geometric Design, 13(2):133-161, March

1996.

[22] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[23] N. S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value

Problem/fbr an Ordinary Dif4erential Equation. PhD thesis, Department of Computer

Science, University of Toronto, Toronto, Canada, M5S 3G4, February 1999.

[24] N. S. Nedialkov and K. R. Jackson. An interval Hermite-Obreschkoff method for

computing rigorous bounds on the solution of an initial value problem for an ordinary

differential equation. Reliable Computing, Vol. 5, pp. 289-310,1999.

[25] N. S. Nedialkov and K. R. Jackson. ODE Software that Computes Guaranteed

Bounds on the Solution. March 1999.

[26] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial

value problems for ordinary differential equations. Journal of Applied Mathematics

and Computation,Vol. 105, pp. 21-68, 1999.

[27] H. Olsson. Object-oriented solvers for initial value problems. In E. Arge, A. M.

Bruaset, and H. P. Langtangen, editors, Modern Software Tools fbr Scientific

Computing. Birkhauser, 1997.

[28] N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided

Design and Manufacturing. Springer-Verlag, Heidelberg, 2002.

[29] L. B. Rall. Automatic Di4ffrentiation: Techniques and Applications, volume 120 of

Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

[30] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by
Algorithms. PhD thesis, Department of Computer Science, University of Illinois at

81

Urbana-Champaign, Urbana-Champaign, Ill., January 1980.

[31] 0. Stauning. Automatic Validation of Numerical solutions. PhD thesis, Technical

University of Denmark, Lyngby, Denmark, October 1997.

[32] D. J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley,

Cambridge, MA, 1950.

82

