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ABSTRACT

This thesis investigates convective-diffusive phenomena in branching networks.
While the motivation for this study arose from an interest in modeling transport processes
in the lung, the general results of this study are applicable to a large class of transport
phenomena occurring in branching systems. This analysis develops a general
macrotransport theory for branching systems comparable to that existing for spatially
periodic systems, leading to a one-dimensional macrotransport description of transport in
branching networks. This work departs from the existing theory for spatially periodic
systems in that the macrotransport coefficients are found to vary with position to account
for the variation in the mean velocity in the direction of flow. In addition, the
macrotransport equation contains an 'apparent velocity' term, present even in the absence
of convection, which arises from the increase in cross-sectional area with increasing
generation number. It is also shown that the net dispersion is decreased as a consequence
of axial gradients in the mean velocity.
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I. INTRODUCTION

This research investigates convection and dispersion of aerosol or hydrosol

particles or dissolved gas species in a branching network such as the lung. As a particle

travels through such a branching network, it experiences constantly decreasing velocities,

in addition to encountering an increasing amount of area into which it can diffuse

laterally. The decreasing velocity and increasing area each affect the overall transport in

the branching system, making transport in this type of system very different from

transport in constant-area systems such as capillary tubes or porous media.

Understanding transport in the lung is useful for several purposes. Aerosol drug

delivery systems, such as those used to treat asthma, depend on the transport of

medication inhaled into the lung to be effective. In addition, understanding the transport

of particulates in the lung will aid in understanding how airborne pollution affects lung

function. Finally, tracer studies are one method used for diagnosis of lung disease. An

understanding of how lung geometry affects tracer dispersion will aid in the interpretation

of the results of such tests.

Previous researchers have taken several different approaches in modelling

dispersion in the lung. Ultmann and Blatman (1978) assume that the results for

undeveloped Taylor dispersion in an infinitely long tube apply in each of the lung

airways. Federspiel (1988) used a multiscale perturbation technique to study the case of

purely diffusive transport. Recently, Edwards (1993) treated the convective-diffusive case

by assigning an empirically determined effective dispersion coefficient to each tube and
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then finding the average velocity and dispersivity for the entire lung, which was treated

as one cell of a spatially periodic system.

This work begins with an exact description of transport in a branching array and

uses the methods of macrotransport theory to determine the mean particle velocity and

dispersivity as a function of axial position in the branching network. The methods used

are similar to those which have been developed for spatially periodic systems (Brenner

and Edwards, 1993), with provision made for the increasing area and decreasing velocity

experienced by a particle as it moves further into the system. Thus, the result is a one

dimensional equation with axially-varying coefficients, which can be solved to find the

average concentration of particles as a function of time and axial position.

II. THEORY

1. TRANSPORT IN THE BRANCHING NETWORK

1.1 Geometry

This work models transport in a system of 'branching' cells, as shown in Figure

1. In this model, the branching system consists of an infinite number of generations, each

containing 2" cells, where n is the generation number. Each of these cells may be

identified by a pair of integer indices, (n, j). The first index, n, is the generation number,

and takes on the values 0, 1, 2, ... , oo. The value n = 0 is assigned to the generation at

the entrance to the network, which consists of a single cell. The second index, j, the

intragenerational index, takes on the values 1, 2, ..., 2. In this numbering system, the two

'exit' faces of cell {n, j} are connected to the 'entrance' faces of cells {n+l, 2j-1} and

7
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n n+l

FIGURE 1: Interior portion of a branching array
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{n+l, 2j}. In this paper, the term 'entrance face' will be used to refer to the face of the

unit cell closest to the zeroth generation, while 'exit face' will be used for either of the

two faces on the opposite side of the cell.

In the subsequent analysis, the cells are regarded as being geometrically identical,

both intra- and intergenerationally. Each of the cells {n, j} encloses a volumetric domain,

V{n, j} of volume V, within its boundaries, aV{n, j}, as shown in Figure 2. The solid

surfaces are denoted S,{n, j}, while the inlet and exit faces are represented by S,{n, jJ and

Se {n, j}, respectively. A directed surface element dS may be written as dS = v dS, where

v is the outwardly-directed unit normal to the surface.

The infinite, fluid-filled domain will be denoted by V'.= f V{n, j} . The
n 

surface, AV, constituting the system's boundaries is comprised of: (i) the solid surfaces

forming the walls of the entire system, E Ss{n, j ; (ii) the inlet surface of the
n 

network, Si{0,1 }; and (iii) the exit boundaries, C Se{I, i} , at the infinite 'end' of the

network. Explicitly,

av. = Ss {n, j} (s l} S,{- (1)
n 3

A position vector within the infinite system will be represented by R.

Alternatively, this position may be represented by

R = Rn,j+r, (2)

where the discrete vector, Rj is the position vector identifying cell {n, j} (say, its

centroid) and r is a local position vector, r V{n, j}, measured from an origin located

at Rj . As shown in Figure 2, the vector 'length' of a cell is denoted 1, while the
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FIGURE 2: Unit cell
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'branching height', or the vector distance from the centerline of the unit cell to the center

of the upper exit face of the cell, is given by the vector h. Points lying on the exit

surfaces, S {n, j}, of cell {n, j} lie simultaneously on the inlet surface of one of the cells

{n+l, 2j} or {n+l, 2j-1)}. Consequently, within our notational system, the point

Rnj+ (r + I + h), which lies on the upper exit surface of cell {n, j}, is geometrically

coincident with the point R,+,, 2+ r, lying on the entry face to cell {n+ 1, 2j}. Likewise,

the point R, j + (r + I - h), located on the lower exit surface of cell {n, j}, coincides with

the point R,+,, 2j, + r on the entry face of cell {n+1, 2j-1}.

1.2 Kinematics of Fluid Flow in Branching Systems

The velocity field, v v{n, j; r) in a branching system is a function of both local

position, r, and global (or cellular) position {n, j}. On the solid boundaries of the system,

the no-slip condition requires that:

v = 0 on S8. (3)

Due to symmetry, the velocity field is identical within every cell, j, of a given generation,

n. That is,

v v (n; r), (4)

independently ofj. The velocity field, however, will vary from one generation to another.

For an incompressible fluid, the volumetric flow rate, q, through the system is an

invariant. The increase in the number of cells per generation thus causes a decrease in

the average velocity in each generation, defined as:
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1 / v(n;r)d3r , 5)
Vin, j}

where d3r is an infinitesimal volume element centered at r. As a result of the invariance

of the volumetric flow rate, the average velocity in each generation must be such that

vn = , (6)
2n

where vO is the average velocity in the zeroth generation of the system.

Consider the class of self-similar flows for which

v(n;r) = 2-nU(r). (7)

Here,

u(r) = v(O; r). (8)

This relation implies that the normalized velocity profile is the same in all cells of the

system. Examples of such self-similar flows are incompressible potential flows or

creeping flows. In order for the velocity to remain continuous throughout the system, U

must be a function such that

U(r) =2U(r +l ±h) . (9)

In words, the velocity at a point on the 'entry' face of the cell is twice as large as that at

the equivalent point on the 'exit' face.
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1.3 Conditional Probability Density

Suppose that at time t = 0, an effectively point-sized Brownian tracer particle is

instantaneously introduced into the network at a point R'. In applications, the Brownian

tracer is identified with a sub-micron aerosol or hydrosol particle suspended in the

flowing fluid. Let P(R,t R) denote the conditional probability density that the tracer

is located at point R at time t, given that it was located at point R' at time t = 0.

Conservation of probability density dictates that

aP+ VJ = (R-R') 8(t), (10)at

where J is the flux of probability density relative to a stationary observer, V = a/aR is

the gradient operator, and 8 is the Dirac delta function. The flux vector J is given by a

constitutive equation of the form

J (R, t R/) = V(R) P - DVP, (11)

where D (assumed constant) is the diffusivity of the tracer.

The probability density is determined by Eqs. (10) and (11) in conjunction with

appropriate boundary conditions. Firstly, the solid surfaces of the network are assumed

impermeable to both the tracer and the solvent, therefore

vJ = 0 on S . (12)

As a consequence of Eqs. (3) and (11), this is equivalent to

v VP = 0 on S.. (13)
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In addition, the condition that the particle does not exit the network requires that

v'J = 0 on itO,1}, (14)

v (UP - DVP) = 0 on Si{o,i1,

P - 0 as R - oo. (16)

To demonstrate conservation of probability within the network, integrate Eq. (10)

over the entire domain (V,) to obtain:

d fPd3R =
dt (17)

where we have used the identity

f (R -R')d 3R = 1.
VUse of the divergence theorem yields:

Use of the divergence theorem yields:

(18)

d f Pd3R =
v.

- dS J + ( t)
bveo

As a consequence of (12), (15), and (16), the surface integral in (19) vanishes over each

of the subdomains in (1). Equation (19) therefore becomes:

u Jpd 3R = 6(t) .Integrating this expression with respect to time yields:
Integrating this expression with respect to time yields:

14
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fPd3R = H (t) (21)
V.

where H(t) is the Heaviside step function,

H(t) 1 t < O (22)

Thus, for times less than zero, there is zero probability of the particle being located within

the network, whereas for times greater than zero, the probability is identically unity.

1.4 Intracellular Probability Density

The conditional probability density may be regarded as being functionally of the

form:

pnj _ pnJ (n,j,r, t n', j,r') -P(R, t') . (23)

Here, P"J is the intracellular probability density at point r within the j cell of the nt

generation. Transport within a given cell is governed by the conservation equation:

apt, + V'Jn' j = nnibjj (r -r)(t) 8 (24)at 

where 65 k is the Kronecker delta (
6

kl = 1 for k = and 0 for k l1). The flux, J"J within

that cell is given by the constitutive equation:

J"n = 2-"U(r)pn - DVPnj. (25)

Boundary conditions at the inlet and exit of cell n, j} may be found by imposing

conditions of continuity of probability density and flux between contiguous generations.
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The former is represented by

pnj(r+l h) = pn+l, 2j (-1) (r), (26)

while the later is given by

Jn(r + 1 ±h) = jn+l, 2j(-1) (r) (27)

Here, the additional arguments, t, n, j, nl, /, and r', that would otherwise have explicitly

appeared in these relations have been suppressed for emphasis. Note that each of these

boundary conditions represents conditions on two different boundaries, namely the 'upper'

and 'lower' exit faces of the cell. Here, the '+' sign in the '±' operator is associated with

the 2j cell of generation n+l, while the '-' sign corresponds to the 2j-1 cell of that

generation. Equations (25), (26), and (27) combine to give a boundary condition on the

gradient of the probability density:

VPn '(r +l 1 ±h) = Vpnl, 2J(- 1) ( )( (28)

The condition of no flux through the solid surfaces of the system requires that

v'VP n j = 0 on S,{n, j}, (29)

An additional boundary condition is needed for the cell at the entrance to the

network, cell {0,1}, as its inlet face, S1{0,1}, does not connect to another cell. In this

cell, Eq. (15) requires that

' (UP0 1 - DVP0 1) = 0 on Sif0,1}. (30)
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In addition, for large n, (16) requires that

pnj O0 as n -0 V(j,r). (31)

1.5 Generational Probability Density

Inasmuch as all of the cells of the branching array are geometrically identical and

the phenomenological coefficients governing the transport equation are independent of

intragenerational position, j, the later represents a 'dead' degree of freedom. We therefore

define the conditional generational probability, P":

2 n

pn (n,r, tn, j i, r) = Pn i (n j, r, tn, j ,r) . (32)

Summing Eqs. (24) - (26), (28) and (29) from j = 1 to 2" generates the boundary-

value problems for each of the generational probabilities:

adn + VJ = §8./ (r -r) 6 (t), (33)
dt nn

J" = 2-nU(r)P" - DVP" (34)

v'VPn= 0 on S,, (35)

pn(r+l+h) + pn(r+l-h) = pn+l(r) (36)

VPn(r+l+h) + VP"(r +1-h) = VPn"l(r) (37)

An additional boundary condition is needed on the inlet face of the zeroth generation:

v (UP ° - DVP °) = 0 on Sif0,1}. (38)

For large n, Eq. (31) requires that

pn - O0 as n - A. (39)
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2. MOMENTS OF THE PROBABILITY DISTRIBUTION

Define the m h - order local moments (m = 0, 1, 2, ...)

Pm(r, t In, j', r') = (Rn-Rn/)mpn(n, r, t /n',j/, r), (40)
n=o

where

Rn = nl, (41)

and the mth- order total moments

Mm( t In', j', r') = Pm (r, tin', j , r) d3r. (42)
V

Each of the total moments possesses a different physical interpretation, which reveals

information about the behavior of the system as a whole. The zeroth total moment, M0,

represents the total conditional probability of finding the tracer particle somewhere within

the network at time t, given that it was introduced into the system at the position

R1= lnj + r at time t = O. Likewise, the first total moment, MI, is the average

displacement of the particle at time t from its original position. The spread in the

distribution is directly related to the second centered moment, (M2 - MIM,).

Define also the m local and total a - weighted moments (m = 0, 1,...,
a = 0, 1, ...)

p[a (r, tn', j', r) = 2-an (Rn-R/n)mpn (n, r ttln, j , r') , (43)
n=O

and

m i(tn j, r) = pa] , n , r) d (44)
V
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Our attention will be primarily focused on the a = 0 and a = 1 moments. The a = 0

moments are identical to the unweighted moments defined in (40) and (42) which involve

the total probability of the particle being in anywhere in each generation. In contrast,

when the probability is independent of j, the a = 1 moments are equivalent to including

only the probability of the particle being in any one of the 2 cells in each generation.

The governing equations for P[a] can be found by multiplying (33) by

2-'(R, - R/,)m and summing over all n to obtain

ap [a]m + VJ[a] = 1m2-an ' ( r) (t), (45)

where

j[a] = U(r) P[a+1] - D[] (46)

and in which the source term appearing on the right-hand side of Eq. (45) arises from use

of the identity

8 ,1f (n) = f(n) (47)
n=O

These equations are to be solved in conjunction with the boundary condition

v.VP[a] = 0 on S. (48)

Boundary conditions are also needed on each of the cell faces. These are obtained

by multiplying Eqs. (36) and (37) by 2"(R, - R/n)m and summing over all n. As shown

in Appendix A, the boundary conditions derived in this manner can be expressed in terms

of the 'branching jump' operator, II ... It defined as the difference between the sum of the

19



values of a function at a pair of equivalent points on the two exit faces of the cell and the

value of this function at the equivalent point on the inlet face. Explicitly, for any scalar,

vector, or tensor-valued function f,

def
Ilfll = 2f (r +1h) - f (r) (49)

For asymptotically long times, the boundary conditions on the a = 0 moments are

IIPoll 0, (50)

IIV% n - 0, (51)

IIP1II - II(PII, (523)

1P 2Po 1(54)

IIVP1 at PP)(55)

whereas for a = 1, the requisite jump boundary conditions are

IlUPom ] II 0 (56)

lUVPo 1] II 0, (57)

11UP11 II --IlzP[l] 11, (58)

IIU~P ] II m -1UV(zPo [ 1] ) , (59)

UP21]11 II - (z[1] ( 10

l IP l (60)

IUVP2 ] l U POIPE' tl] (61)

Here, z is the axial component of the position vector.
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From the above differential equations and boundary conditions governing the local

moments, P,[], one can determine the time rate-of-change of the total moments, Mm.

Integrating (45) with a = 0 over the volumetric domain, V, of a unit cell gives

d = d JPmd3r = - v' Jmdr + m ( t) (62)
V V

Applying the divergence theorem to the integral on the right yields

dt -- B Jm + m0O8 (t) (63)

Since v-J. = 0 on the solid surfaces, S, of the cell, it follows that

fds.Jm = fdsIJmll (64)V s .
where Se is either of the two exit faces. The jump in the flux is

IJmI = IUPl ] I - DIIVP,U. (65)

Examination of the latter in light of Eqs. (50) - (61) reveals that for a specified m, ILJ,

can be expressed entirely in terms of lower-order local moments P.-[aJ, Pm2[a], ... pl [],

Poal] (a = 0, 1). Thus, in order to calculate the time rates-of-change of the total

moments, Mm of a given rank m, it suffices to determine only the local moments of rank

less than m.
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2.1 Zeroth-Order Moments:

Equations (45) and (46) with m = 0 furnish the governing equations for the zeroth

moments (a = 0, 1, ... )

apal+
at 0

(66)

- DVPo] . (67)

These equations are to be solved in conjunction with the boundary conditions (50), (51),

(56), and (57).

Set m = 0 in Eqs. (63) - (65) to obtain

do = fdS (UPO[] 11 + DIIVP0 1)

Se
+ (t). (68)

In conjunction with (51) and (56) integration of the above expression yields

Mo = H(t). (69)

The probability of the particle being somewhere in the system is thus always identically

unity for t > 0. This result is consistent with Eq. (21), since

Mo =fEpn d3r
v1 2 =o

2n

= S pnid3r
Vn=O '

(70)

= fPd3R.

V.

22
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Recasting (66) in dimensionless form gives

+ Pe u'VPO[e 11

def t 2
T -

D

Consider Eq.(71) with a = 1.

- V2Po[] = 12 -n (r -r ) ( t ) ,
D

Pe -= 
D'

def U(r)
u(r) = - ,

U = -Jfi. U (r) d3r.
V

Let P [1 be expressed as

po ( t n', j , r') = 1 MO[1] (tin', j', r) + 1 (r tn', j', /) (73)

where Po['] contains all of the spatial variation of Po0[ ]. Integration of the above over the

unit cell shows that

fP l] (r, t n, j , r') d3r = 0.
V

Substitution of (73) into the governing equation (71) for

dMTl]
dT aT + Peu'VPo [2] - V26o[1]

(74)

P0
[l] gives

(75)= D2-n8(r-r)8(t),D

subject to the boundary conditions

"6)1] (r) = ol] (r+1±h), (76)

V[1] (r) = VP'[1 (r+l±h) . (77)

(These boundary conditions are equivalent to those stated in (56)- (57)). For the case in

23
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which Pe = 0, Pol] decays asymptotically with time, so that for long times

Po[ (, t In', j', r) M, (tiont, j/, r') (78)
V

For long times, therefore, any spatial variation in Po['] is a result of the nonhomogeneous

term, Peu.VPO[2]. Thus, Pot l must be the proportional to this convective term. For long

times, Po['] may be replaced by (78) if

M[1]
> >pep 21 (79)

V

or, equivalently,

MomPe< < 2. (80)

We make the a posteriori assumption that the latter criterion is satisfied. Po[' ] may

therefore be approximated by (78), indicating that P0 '] is independent of position r within

the cell. Ultimately, the solution of the macrotransport equation will show that MO [21

decays more rapidly than MO ['], so that for all times greater than some T > 1, this

assumption is valid. (See Appendix C for verification of this assumption.)

For long times, Po assumes the form

Po Po + exp, (81)

where 'exp' denotes terms in r, t, and r which decay exponentially with time and P0O(r)

is governed by

V2Po = 0, (82)

vVP O' = 0 on S, (83)

24



IIPoIll = o, (84)1lPo"1 0 1 (84)

IIVP0 I = 0o. (85)

In order for this problem to be completely specified, the normalization condition is needed

fPOcd3r = 1. (86)
V

This condition retains the unit normalization information originally contained in the source

term in (66), which has been lost in the steady-state formulation of the Po0 problem.

2.2 First Order Moments

In order to find the first unweighted moment, set m = 1 and a = 0 in Eqs. (45)

and (46) and use the boundary conditions (48), (52), and (53)

aP 1 + VJ 1 = 0, (87)at V

J = U(r) P - DVP1, (88)

v 1P = 0 on S, (89)

IIPI = -IzP 0oll (90)

llVP11 = -IIV(zP 0 ) II. (91)

For m = 1, Eqs. (63) - (65) give

A =dt -fds (lUP' II-DIIVPI). (92)
Se

Substituting the boundary conditions (91) and (58) into this expression yields

25



dtM f d(UvPo[l 11 - DIIV(zPo, I). (93)
Se

Use of (64) allows this to be written as

d1 = 'dUzPo[ l ] -DfdS V(zPo) (94)
V V

or, upon using the divergence theorem,

t = fv (UZPoj1 ) -DVV(zPo) d3 r
V

= (u.vPo' - DV2Po)z + i(UPo[ ] - D Po d3 (95)
V

where Uz = iU, with iz a unit vector in the z-direction. However, from (78), the

gradient of Po[]'- 0. Furthermore, for long times, PO Po0 , so that as a consequence of

(82), V2P' - O0 for long times. Thus, we obtain

d MOM. +(96)M1 . TUMO[ 2 +A ,
dt

where

A+ - iSA, (97a)

A*= -Df d3r,
V a (97b)
V

and

U = iz, (98a)

= (Uzd3r.
V ~~~~~( 98b)
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The convective contribution in (96) may be written as

UM[1' = i 2-nUfPdV. (99)
n=O V

Eqs. (5) and (7) combine to give

= f2-nU (r) d3r, (100)
V

which is equivalent to

= z2-nU. (101)

Comparison of (99) and (101) reveals

'1] = E tPn"dV. (102)
n=O V

In words, this means that when the particle is in cell n, the convective contribution to the

particle's velocity is equal to the average fluid velocity in that cell.

Integration of (96) with respect to time yields

M1 UlfMo1]dt + A t + (103)

where the integral on the right-hand side of (103) is an indefinite integral and B is an

arbitrary position- and time-independent vector. The fact that the functional dependence

of Mo['] on time is explicitly unknown is irrelevant to the subsequent analysis. One needs

only to seek a macrotransport equation whose first moment exhibits the same dependence

on M [']
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We now seek an asymptotic trial solution for the P, field. It will be verified a

posteriori that insofar as dominant terms are concerned

P,1 I P (104)

where

P = [ufMO dt + At+ B]P . (105)

Here, B(r,t) is a vector field to be determined. Upon integrating (105) over the volume

of the unit cell, substituting the relationship given by (86), and comparing the result with

(103), it can be verified that the assumed solution for P/' guarantees that

fP;d3r M/, (106)
V

provided that B is defined so that

= fBPod3r . (107)
V

2.3 Determination of the B Field

Substitute Eqs. (105) and (88) into (87) to obtain the following equation governing

the B field:

Mo[ P + AP + PaB = -U + DV2(BPo) . (108)

Substitute Eq. (105) into the boundary conditions (89) - (91) imposed on P, and use Eqs.

(83) - (85) to obtain the following boundary conditions required of the B field:
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vVB = 0 on S8, (109)

B(r) = B(r+lih) + 1, (110)

VB(r) = VB(r +1 ±h). (111)

Observe that although B is a function of time, B is constant, consistent with the

assumption made in (103). That this is so can be shown by integrating the governing

equation for the B field over the volume of the unit cell.

The first term appearing on the right-hand side of Eq. (108) involves the P,['] field,

which has yet to be determined. The boundary-value problem for this field, determined

by Eqs. (45), (46), (48), (58), and (59), is

aPl + U.VP[[2 V2p[1] = 0, (112)
at 1 1

v P [1] = 0 on S s, (113)

P1] (r) = P[1] (r+lh) + 1P[1] (r), (114)

VP'[ ] (r) = A 1] (r +lh), (115)

where VPo[0 ](r + I h), which would have otherwise appeared in the latter expression was

replaced by zero as a consequence of the asymptotic expression for Pop'] (78). As shown

in Appendix B, the boundary conditions represented by (114) and (115) imply that VP, [
1

]

is approximately equal to Mo[']. The solution to the macrotransport equation will show

that Mo['] decays rapidly with time (see Appendix C), so the terms -UVP 1
11 and

UM0[']Po° may be neglected relative to A'Po. The result is therefore the following

steady-state boundary-value problem for B:
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DV2 (BPo) APo,

vV8 = 0 on S, (117)

B(r) = B(r+1±h) + 1, (118)

VB(r) = VB(r+1±h) . (119)

2.4 Second-Order Moments

Equations (63) - (65) with m = 2 combine to furnish the following expression:

= - (luP"' I - DIW 2P, I).

Se

(120)

The jump boundary conditions (55) and (60), allow this to be rewritten as

= I1dt + I21 (121)

wherein

I -fd tP ll P [l )
=- Poll (122)

and

12 = Dfd d (,%)'

On using the divergence theorem,

12 = fDV2( PP d3r.

(123)

(124)

Into this equation, substitute the expression for P/' (Eq. (105)). Thus, asymptotically,

12m DfV2[(Ug + A*t + B) 2P]d 3r,
V
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where g is given by the indefinite integral

g=jMl dt. (126)

Expand this expression and utilize the fact that V2P' = 0 to obtain

12 -D (2Ug + 2A t) V2 (BPo ) + V2(BBP) ]d3r. (127)
V

Here, we have used the fact that the vectors B, A', and U are all unidirectional in the

z-direction so that BU=UB and BA^=A'B. Use the governing equation (116) for the B

field to replace DV2(BPo° ) in the above expression and expand V2(BBP0 °), thereby

obtaining

1,-�2 2 (Ug+A* t) A *Pdr +2D[V(BPo) B + P(VB) t(V) ]d3r. (128)
V V

Multiply Eq. (116) for the B field by B and substitute the resulting expression into the

above equation. With use of (86), this gives

12 2D*+2UA*g+2A*At+2A*B, (129)

in which

D * = DPo (VB) t (VB) d3r
v (130)

= izizD* 

Substituting the boundary condition (114) imposed on P,1'] into the expression for I,

(Eq. 122) gives

I = fdS .u(r +h)[2UP[2 ( +h) 1 +Pl (r +1±h) 11], (131)
s.
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which may also be written as

I1= fdS-Uz(2P'] + 1Pvt) (132)
S

(where the 'entrance' face of the cell has been taken to be z = 0) or, using the divergence

theorem:

I, = fV[Uz (2P1 + 1POl' ) ]d3r. (133)
V

Expand this expression and use the fact that P0o[ ] is independent of position, together with

the definitions of Mo['1 and M,[ 'l. This eventually yields

1,= 2UMj[1] +UWlll +2fU (VP,) zd3r +1 i2fU.(Pl- V ) d3r (134)
V V

The time rate-of-change of the second centered moment may be expanded as

1 d(M 2- M1M1) 1 2 _ M A (135)
2 dt 2 dtM dt

Substitute the expressions for M, and the time rates-of-change of Ml and M2, given by

Eqs. (96), (103), (121), (129), and (134) into this equation to obtain

1 d(M2- 1Ml) . D*+ l (Ml -M[1 Ml)(
2 dt ] (136)

+ -. U1mMd'1 i fU (P d3 r +f VP[1] zd 3r.
V V

It can be shown that each of the last three terms in the above expression is proportional

to UMo[ '] (See Appendix B). Thus, for long times, they may be neglected relative to the
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term -UMo[l]M,, because while M1 grows at least linearly with time, these terms are equal

to UMo['] multiplied by a small constant. For long times, we therefore obtain

i1 d 1 D* + Il - Mg' m 1) . (137)
2 dt

In the spatially periodic case (Brenner and Edwards (1993)), the above asymptotic

expression for the second centered moment contains only D', derived from the B field via

Eq.(130). The additional term in the branching case results from the variation in the

velocity in the axial direction. Its magnitude is always less than or equal to zero (for

U > 0) and thus results in a decrease in dispersion. This behavior can be understood by

imagining a particle which diffuses backwards relative to the other particles. It will then

diffuse into a region of higher velocity, which will tend to return it to its original position.

Conversely, a particle which diffuses forwards will enter a region of lower velocity and

will thus be moving more slowly than the rest of the particles, which will soon overtake

it.

This 'extra' term is equal to zero in the case of a probability distribution which is

a Dirac delta function. Under these conditions, the dispersivity is equal to D*, and the

distribution will broaden. As it does so, however, the contribution to the dispersivity

from the varying velocity becomes increasingly negative, decreasing the rate of dispersion.

This type of behavior has also been observed by Delannay and Adler (1988) in their study

of a branching system of stirred tanks. It is interesting to note that if the flow is in the

opposite direction, towards the apex of the network, so that the velocity increases in the

direction of flow, the opposite behavior is observed. Rather than decreasing the amount
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of dispersion, the varying velocity magnifies any dispersion which occurs, so that for long

times, the time rate-of-change of the second centered moment becomes infinite.

3. THE MACROTRANSPORT EQUATION

In order to formulate a macrotransport description of transport through the

branching network, it is necessary to find a macroscale equation whose moments

asymptotically match those of the original, microscale problem. Subject to a posteriori

verification, we assume this macrotransport equation to possess the following form:

Uat +*(Z I -P) =8 (Z-Z/) (t), (138)

where the mean conditional probability P is defined in the range 0 < Z < o such that

(Z) (Z, t Z')-P 1(n, tin, j, r) d3r (i Z=Rn), 139)
V

where A(Z) is an average cross-sectional area, to be determined via the moment matching

process. The area terms appearing in the third term of (138) result from the increasing

area for diffusion.'

The macrotransport equation is to be solved subject to the following boundary

conditions:

1 This area dependence is analogous to that arising in the expansion of V2 in non-Cartesian coordinate
systems. For example, in the case of diffusion in a cylindrical wedge

At ~I 1ar a 

Here, the cross-sectional area increases linearly with r.
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ZJ(, t) = 0, (140)

5(, t) - as Z - o, (141)
where

j = Up Do - P. (142)
Xii az'

Define the moments of the mean conditional probability as

![4] (t) = (z- 'Z) mPA(1-)dZ. (143)
o0

This macroscale definition is meant to physically represent the microscale counterparts

of the corresponding microscale definitions (42) and (44).

From (138), (143) and the boundary conditions (140) and (141), we find that for

or=0O

Mo(tZ/ ) = H(t) (144)
Likewise,

dM1 - ] + D* dlnA (145)
dt dZ

This expression for M, will asymptotically match the comparable microscale expression

(96) for M, provided that A is chosen such that

D* dlnA A (146)
dZ

where A' is the constant defined in (97). Integration of the above expression gives

= exp ) (147)

with the (arbitrary) cross-sectional area at Z = 0 taken to be unity.
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From (138), (140) - (142), and (143) with m = 2 and a = 0, it follows that

2D* + 2D* d*1n + 2 M[1] . (148)dt dZ

Using Eqs. (145) and (148) yields

1 d(1 2- 1 1?) = D* +U U(M1? - M1 ), (149)
2 dt

This macroscale expression asymptotically matches the corresponding microscale

expression, Eq. (137). This macrotransport equation has the same moments as the

microscale problem, and is thus an appropriate macrotransport equation.

III EXAMPLE: TRANSPORT IN A BRANCHING ARRAY

The boundary-value problems for the P0 and B fields defined by the systems of

equations (82) - (86) and (116) - (119), respectively, were solved for a two-dimensional

branching array such as that shown in Figure 3, using an implicit finite-difference method.

Values for A' and D were then calculated according to Eqs. (97) and (130). These results

are plotted non-dimensionally in Figures 4 and 5 for various length-to-radius ratios (llr)

and branching-height-to-radius ratios (h/r), where the branching height, h, is measured

from the centerline of the cell to the mid-point of the upper branch of the cell. Note that

as the branching height increases, both AIl/D and D/D decrease, a reflection of the

increased distance that a particle must travel in the direction perpendicular to the axial

direction in order to enter the next cell. Similarly, as lr increases, both A'I/D and D/D

increase. For an h/r ratio of one, corresponding to the case of no separation between the
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two branches of the cell, AI/D and D/D asymptote to In 2 and unity, respectively, as

ir -> oo. These are the values they would assume in a continuously expanding system.

For all values of 1ir and hir, the ratio A*'/D* is identically equal to In 2, yielding

(150)
A(z) = 2 1.

This is the value which would be expected for a system whose area doubles continuously

every distance 1.

For this example, the macrotransport equation becomes

a + -U _3 D a (2 a-a = (ZZ) (t) (151)
8)t z aA z az az

21 2 2

This equation was solved numerically subject to the boundary conditions (140) and (141).

Figures 6 and 7 illustrate the weighted probability distribution, PA, for Pe = 0.1 and 10,

respectively, where Pe and T are defined in (72). Note that at Pe = 10, the distribution

is more sharply peaked than at Pe = 0.1. This is due to the tendency for axial variations

in velocity to decrease the dispersion. This phenomenon is further illustrated in Fig. 8

which compares the distributions after four diffusion times for the convective-diffusive

cases, Pe = 10 and Pe = 0.1, and purely diffusive case, Pe = 0. In the convective-

diffusive cases, there is a marked decrease in the net dispersion, this diminution increasing

with increasing Peclet number. Observe that most of the decrease in the dispersion occurs

in the high velocity region near the entrance to the system. In the low velocity region,

Z/I >> 1, the differences between the probability distributions for various Peclet numbers

are less pronounced.
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IV. CONCLUSIONS

Transport in a branching network is distinctly different from transport in a spatially

periodic system due to the increasing area for diffusion and decreasing mean velocities

in the direction of flow. Two phenomena present in a branching system which are not

observed in spatially periodic systems were found. Firstly, the increasing cross-sectional

area of the network results in a velocity-like effect caused by molecular diffusion, which

is present even in the absence of convection. Secondly, axial dispersion is reduced as a

consequence of the variation of the velocity in the axial direction. This reduction in

dispersion increases monotonically with the Peclet number.

44



REFERENCES

Abramowitz, M. and Steegan, I.A. Handbook of Mathematical Functions. New York: Dover.
(1965).

Bird, R. B., Stewart,W., and Lightfoot, E.N, Transport Phenomena. New York: John Wiley and
Sons. p 559. (1960).

Brenner, H. and Edwards, D.A. Macrotransport Processes. Boston: Butterworth-Heinemann.
Chapter 4. (1993).

Carslaw, H.S. and Jaegar, J.C. Heat Conduction in Solids. London: Oxford University Press.
(1959).

Delannay, R.L. and Adler, P.M. Dispersion de Taylor dans une Structure Arborescente. C.R.
Acad. Sci. Paris. 307, 453-456. (1988).

Edwards, D.A. A General Theory of the Macrotransport of Nondepositing Particles in the Lung
by Convective Dispersion I: General Theory. J. Aerosol Sci. (1994).

Federspiel, W.J. Analysis of Effective Axial Diffusion in Branching Networks. AIChE Jour.
38, 1631-1638. (1992).

Ultman, J.S. and Blatman, H.S. A Compartmental Dispersion Model for the Analysis of Mixing
in Tube Networks. AIChE Jour. 23, 169-176. (1977).

45



APPENDIX A: DERIVATION OF JUMP BOUNDARY CONDITIONS

Zero-Order Moments

Sum Eq. (36) over all n and use the definition of P0 (40) to obtain

P0(r+1+h) + P(r+1-h) = P(r) - PO (r) . (Al)

This boundary condition involves the probability of the particle being at the inlet to the

system, P°(r). By solving the macrotransport equation, it can be shown that for long

times, P°(r) is negligible compared with P0(r) (See Appendix C). This term and other

comparable terms are therefore systematically neglected throughout this paper in the long-

time limit. The resulting boundary condition on P0 is

P0 (r +1+h) + P(r +1-h) P (r). (A2)

A similar result may be derived from Eq. (37), namely

VP (r +1 +h) + VP0 (r + l-h) VP (r) . (A3)

One can invoke symmetry arguments to show that Po(r) = P(r*), where r* is the point

r reflected through the axis of symmetry. Through the use of this fact and the above

relationships, it can be shown that P(r+l+h) = P0 (r+!-h). The above equations may

therefore be written as

2Po (r+l±h) P (r), (A4)

2VPO (r+l±h) - VPO (r) . (AS)
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First-Order Moments

To derive the comparable boundary conditions imposed on the first moment,

multiply (36) by (R - R/n) and sum over all n to get

2P, (r +1 h) P, (r) - 1P (r) . (A6)

Similarly

2VP1(r + l+ h) - VP,(r) - VP0(r) (A7)
Add and subtract zP0(r) on the right-hand side of (A6) (where z is the local axial

coordinate) and use (A4) to derive an alternative form for (A6)):

2P, (r +1 h) - P (r) -2 (z +1) Po (r +1 h) + zP (r) . (A8)

Similarly, adding and subtracting zVP0 (r) on the right-hand side of (A8) and using (A5)

gives

2V 1 (r +1 ±h) -VP1 (r) -2 (z +1) VPo (r +1 h) +zVPo (r) . (A9)

Second-Order Moments

Following a similar procedure to that used to find the boundary conditions

imposed on the first moments, multiply (36) by (R - WR/)2 and rearrange to obtain the

following boundary conditions on P2:

2P2 (r+1±h) - P2(r) - 21P1(r) + 1Po0 (r ) , (A10)

2VP2(r +l±h) VP2 (r) - 21VP1 + 11VPo (r) . (All)

Use of (A4) - (A7) enables these boundary conditions to be rewritten as
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2P2(r+l±h) - P2 (r) 2 
Po +lth

2VP2(r +l ±h) - VP2(r) P )

Po L

_ Pi 1/0

(Al2)

(A13)

a = 1 Weighted Moments

To derive the boundary conditions imposed on the a = 1 moments, proceed as

with the unweighted moments, but multiply both sides of Eq. (36) by 2"(R, - R,,) before

summing over all n. For the zeroth moment this yields

Po[l] (r+loh) - Po[l] (r). (Ai 4)

As in the case of the unweighted moments, the term P(r) has been neglected in the long-

time limit relative to PO['] (r). Similarly,

VPols (r+l±h) VPol (r) . (A15)

Analogously, for m = 1 and m=2, one obtains

P11] (r +1 h)

VP,1 (r +l h)

P[] (r +lh) - P1

VPl (r + 1h) - VPL)1

pl (r) - 1PO['] (r),

VPfl] (r) - VPO[1 (r),

(r) - 21P [
1 l (r) + 11PO[1 1 (r) ,

(r) - 21VPl Il] (r) + 11VPO[11 (r).

Since the convective flux is given by UP['], it is convenient to multiply the boundary

conditions on the weighted moments by U(r) = 2U(r + I + h). Eqs.(A14) - (A19) then

become:
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2U(r + 1 h) Po11] (r + 1±h) U(r) P l (r ),

2U(r+lh)VPO[1l (r+l±h) U(r)VP[I1 (r),

2U(r +l±h)P1 (r+l±h) U(r) (P 1' (r) -1P ll1] (r)),

2U(r +l±h)VP 1] (r + h) U (r) (VP1 (r) -VPo[l] (r)),

2U (r +l±h) P 1] (r +l±h) 
U(r) (p11] (r) -21P1 (r) +11P 1 ' (r))

2U (r + 1 ih) VP1] (r + 1 h) -
U(r) (VP'1] (r) -21VP1]' (r) +11VP[1] (r))

(A2 0)

(A21)

(A22)

(A23)

(A24)

(A2 5)

Jump Boundary Conditions

Define the 'branching jump' operator, II ... II as the difference between the sum of

the values of a function at a pair of equivalent points on the two exit faces of the cell and

the value of this function at the equivalent point on the inlet face. Explicitly, for any

scalar, vector, or tensor-valued function f,

def
llfl = 2f (r +1 h) - f (r) . (A26)

The boundary conditions for both

terms of this operator. For the a

the a = 0 and a = 1 moments may be rewritten in

= 0 moments, one obtains:

IIPU - 0,

IlVPoI11 0,

IIP ll - IIZPII,

llVPll 1 -IIV(zP) II,

(A27)

(A28)

(A29)

(A3 0)
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,l 2 ||P, o ||PO (A31)

1iVP" 1 P1P 1 )1I (A32)

whereas for oc = 1, the requisite jump boundary conditions are

IlUvPo]l II o (A33)

IUVPOlll - O (A34)

IIuPll-IId -IIuzP[l]l II, (A35)

|IUP~ "] II -IIUV(zPo[l]) II, (A36)

IIUP II p' 1 p[l]Ptl (A37)

IIUP2 J II )v Poj J (A38)
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APPENDIX B: ESTIMATE FOR VP,1 11

Expand P,1[] in a Taylor series about the point r, the point at which

P,[1 = M[]N:

Pl] (r) = M1]/V+ (r - ) VP1] (rm)
+ (r - rm) (r - rm) :VW"' (rm) +. ..

At either of the points r + 1 h

P1] (r+1 h) = M 1 /V+ [ (r+1 h)
+ [(r+l±h) - r,

- rm] *VP1 (rm)
m] [(r+l±h) - rm] VVPI13 (rm) +. .

Substitute these expansions into the boundary condition (110) to obtain

(r -rm) .vW[1] (rm) = [ (r+l1h) -rm] W7Pl] (rm) +lPo 11 (r) +Ojr -r[m 2 ,

which eventually yields

or

(lh) -VP] (rm)

1('- [1' 1

az +a-y- z1

= lpo[ l] + Olr-rm 2,

= lpo[ + olr-rm 2,

(B2)

(B3)

(B4)

(B5)

where y is the coordinate in the direction of h. In the above expression, the '' allows one

to conclude that in order for the expression to be valid with either the '+' or the '-',

a = 0 . Thus,ay y,

+ olr -rl2. (B6)
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This estimate can be further refined by expanding VP1 [ l' in a Taylor series about rm to

obtain

VP [ L] (r) = P[1] (rm) + (r - rm) VP[1] (rm) +Or-rm 2. (B7)

Substitute this expression into the boundary condition (115) and follow a procedure

similar to that used above to show

VVP[1] = Or-r l12 ()(BS)

The third term in Eq. (B1) is therefore 0 lr - rm 14 and the error estimate in (B6) may

be replaced by 0 r - rm 1 3

The estimate for P,['] which is attained in this manner is

P.[ () = M11 / + (r - rm) i i zi [1] + Or r 13 (B9) 

from which it is clear that the second from last term in (136) is proportional to M0

while (B6) shows that the same is true for the last term.
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APPENDIX C: SOLUTION TO THE MACROTRANSPORT EQUATION AND
VERIFICATION OF ASSUMPTIONS

Pe = 0 Solution

For Pe = 0, an analytical solution for the macrotransport equation (138) and

boundary conditions ((140) - (141)) may be found. In order to utilize known solutions

in one dimension, define a function f(Z,t) such that

I(Z, t) = P(Z, t) Aexp (XZ), (C)

where X = A'/D*. Substituting this expression into the differential equation and boundary

conditions for P gives the following problem in I:

+ D*XZ - D* 2 -(t)( (Z-ZI) (C2)at az az 2

=- II at Z= 0, (c3)az

- 0 as Z- oo. (C4)

This problem is normalized so that

fndZ = 1. (C5)
0

We now make the substitution

II(Z, t) = u(Z, t) exp( (Z-Z/) - D 2 t) (C6)
2 4
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The resulting problem in u is

au = D* 2 U +8
at aZ2

du Au = 
z 2

u-O 0 as

(C7)(t) 8 (Z-Z'),

at Z = 0,

Z - oo.

Carslaw and Jaeger (1959) give the solution to the diffusion

(C8)

(C9)

equation with an

instantaneous source at Z' and au/Z = hu at Z = 0 as

u = - (exp(- (Z-Z')2 +exp(- (Z+z) 2 ))
-p 4Dt 4Dt

-hexp (Dth 2 +h (+Zl)) ex fZ+ Z/

N(-D-t~

(C10)

+h ) -

In the present case, h =
for P:

?d2 and D = D*. Back-substituting gives the following solution

D A2t)+exp - (Z+Z+AD* t)2 )]
4 4D*t (C11)

-o erfc( -.
2AO rf·4D-* t 2

For long times, this solution approaches

1 AoD*A2

The limit as x approaches infinity of erfc(x) is

erf2A c(VD t)
2A0 2 /

erfc(x) exp(-x 2)(1
V- x

1 13X- +2 2

X3 22x 5
+9 as x -o (C13)
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(Abramowitz and Steegan (1965)). Using this expression to approximate er fc(- X A-)

gives

2 exp- D*2t as t - . (C14)

Justification of Assumptions in Boundary Conditions

In order to justify neglecting the inlet condition in the boundary condition on Po,

we must compare the above expression with PO. It has been shown that Po is conserved

(Eq. (70)). Therefore, since P decays exponentially with time, p(. ')(r) may be neglected

relative to PO. For Pe>O, no analytical solution exists. However, as the time-rate-of-

change of the first moment increases with Pe, for a given time , (O' l)(r,t) decreases with

increasing Pe, so it may be neglected relative to PO for all Pe.

Calculation of Weighted Moments and Verification of Assumptions in Equations for

the B and PVT1 Fields

The higher-order moments, M?[I], may be calculated by multiplying the asymptotic

solution (C12) for P by A('- ) and integrating over all z. The a = 1 total moment is

8 exp(- D* t
M[1] 4 (C15)

Aol34it (D*t)3

where the approximation for erfc(x) given above has been used. This moment decays

exponentially with time, justifying the approximation made in (116).
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For the c = 2 moment, one obtains

20 exp - Dt)

9AoAX3t7r (D*t) 3
(C16)

We thus see that the ratio in (80) is 18/5 for Pe = 0. The ratio Mo[]/ MO[2] increases with

increasing Pe, since as Pe increases, the probability distribution is shifted father

downstream. Thus, from the solution for Pe = 0, one may conclude that for Pe << 18/5,

the criterion in (80) is satisfied. For larger Pe, one must solve the macrotransport

equation numerically and then verify the that (80) is satisfied. See Figure C1 for

representative plots of M0 []/ M0
[2] versus time.

56



zLUJ

£uu

150

M / M 2]

100

50

O-

Pe =20

i I I I I I I

0 2 4 6 8 10
Time (T)

FIGURE CI: M 0/M ]

57

,%Cf

nfnf


