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ABSTRACT

Theoretical models of compliantly supported rigid pegs entering

compliant holes and minimum energy chamfers were used to further under-

stand the mechanics of assembly. Key features of the "peg-in-hole"

model include large angle solutions and rotational hole compliance. The

effect of various insertion parameters on the "insertion force versus

depth" plot was determined. Minimum energy chamfers have been designed

according to either minimum insertion work (energy) or minimum fric-

tional work (energy). Both criteria have been shown to yield the same

chamfer shapes. Also, chamfers have been designed where the chamfered

part, while being displaced rubs against two surfaces with friction

(e.g. a doorlatch tongue).

An experiment was carried out which attempted to verify experi-

mentally the existence of minimum energy chamfers. Three aluminum cham-

fers were made and their insertion energies determined. One of the

chamfers was an optimal slope chamfer (aspect ratio, S = 1.40) and the

other two were straight line chamfers (S = 0.60, 3.75). The straight

line chamfers in theory had 18% (for S = 0.60) and 22% (for S = 3.75)

more insertion energy than did the optimal slope chamfer. The experi-

mental percentages were 29% and 18%, respectively which supports the

theoretical predictions; namely that chamfers flatter or steeper than

the optimal slope chamfer have larger insertion energies.

Thesis Supervisor: Dr. Daniel Whitney, Lecturer
Department of Mechanical Engineering
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SECTION 1

COMPLIANTLY SUPPORTED RIGID PEG ENTERING A COMPLIANT HOLE

1.1 INTRODUCTION

A field of study related to industrial'automation is part mating.

Part mating is primarily concerned with the mechanics of assembly,

studying the forces and displacements of the parts involved so as to

recommend ways of making the assembly easier. In many assembly situa-

tions (e.g., putting a bearing into a housing) there are two parts in-

volved: one is fixed (the "hole") and another part (the "peg"), while

being supported, is assembled to the first part as shown schematically

in Figure 1.1.1. The subsequent analysis will presume this type of

assembly. 0

Part mating has been researched by The Charles Stark Draper Labora-

tory, Inc. since 1973. One major accomplishment so far is the invention

of a passive device which when mounted to the wrist of a robot aids as-

sembly by providing proper support for the "peg". This device, called

a Remote Center Compliance (RCC), was invented in the mid-seventies and

versions of the original design are now being used extensively in indus-

trial automation.

Part mating research has continued following the invention of the

RCC and has yielded new and interesting results: (a) improved under-

standing of mating success criteria, (b) design guidelines for parts

to aid their assembly, (c) better appreciation of the relationship of

friction, geometry, and compliance to mating characteristics, and (d)

models of assembly force versus depth that can be used to monitor the

assembly process.

In general, there are two classifications of part mating: Rigid

and Compliant. In rigid part mating the parts involved do not store a

substantial amount of elastic energy during the mating process, whereas

in compliant part mating one or both of the parts store a substantial

amount of elastic energy during the mating process. Much work has

12



been done in rigid part mating and some areas of rigid part mating have

been recently extended to compliant part mating.1' 2 This thesis con-

centrates on compliant part mating.

A further subclassification of part mating is depicted in Figure

1.1.2, taking into account where the compliant support is located and,

more importantly, whether the parts themselves can be considered rigid

with respect to the supports. In the part mating theory developed by

The Charles Stark Draper Laboratory, Inc. it is the part that is sup-

ported compliantly, not the hole. An interesting alternative to this

approach is due to Arai and Kinoshita,3 where the hole (worktable) is

supported compliantly while the part remains fixed during the assembly.

They recommend the use of compliance in the worktable (hole) for small

batch production, but agree that for mass production, locating the

compliance in the part's support is more suitable.

Compliant part mating is primarily concerned with the mechanics

of assembly of parts that cannot be considered rigid compared to the

support. Recently, the theory has been extended to handle restricted

cases that involve compliant hole walls (e.g., no friction, small

angles). 4,5 This thesis presents even more general models which take

into account (1) lateral hole compliance, (2) rotational hole compliance,

and (3) combined lateral and rotational hole compliance.4 6 These three

models have been used to analyze a single "peg-in-hole" assembly. Two

types of solutions were used for each model, one based on linearized

solutions and one based on exact solutions.

In the analysis that follows, various simplifying assumptions

will be made that are based on experience and serve to substantially

reduce the complexity of the model used. One simplifying assumption

is the use of a two-dimensional model. Also, during compliant part

mating, the peg's support and the hole are assumed to deform elastic-

ally according to a linear stress-strain law. These deformations

characterize the assembly and determine its success or failure. The

"peg" is assumed to be rectangular in shape and supported compliantly

at its compliance center located along the center axis of the peg. For

our purposes a compliance center is a point where a fictitious support

acts to provide independent lateral and rotational support. In practice,

this can be done with the RCC. The "hole" is assumed to be chamfered

with parallel sides in its unstressed state. Figure 1.1.3(a) illustrates

the initial configuration of the peg and the hole with peg support

13
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Figure 1.1.1. Initial configuration of peg and hole.

Figure 1.1.2. Classification of part mating.
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(a) Physical Idealization

6--Z COMPLIANCE CENTER

"I

(b) Equivalent Representation

Figure 1.1.3 Initial configuration of peg and hole.

15

^ *

1



stiffnesses Kx, K (reciprocal compliances) and gripper identified.

Physically, the peg may be thought of as being supported by the gripper

which moves vertically downward during the assembly process. This

situation is equivalent to the one shown in Figure 1.1.3(b) where now

the gripper and support springs (compliances) have been replaced with

a single solid dot · representing the compliance center of the peg. Note

that the initial angular error of the peg's center axis with respect

to the hole's center axis is assumed to be negligible. Also, since

the parts are typically lightweight and assembly usually proceeds

relatively slowly, dynamic effects will be ignored. This justifies

the use of quasi-static models where the parts are presumed to be mass-

less.

Regardless of the type of hole compliance, the general quasi-

static phases of successful assembly to be considered are (a) chamfer

crossing, followed by (b) one-point contact, (c) two-point contact,

(d) resumption of one-point contact, and (e) line contact. Figure 1.1.4

illustrates this assembly process. The assembly process is continuous

except for the transition from chamfer crossing to one-point contact.

This is because the normal force changes direction abruptly when the

corner of the peg meets the corner of the chamfer. Physically, the

jump in the displacements (horizontal and vertical) of the peg are

typically small; however, the jump in the vertical insertion force can

be substantial.

The assembly process described above will be formally analyzed in

the following sections. Other successful and unsuccessful processes

are certainly possible but will not be analyzed in great detail. For

example, the location of the compliance center of the peg can greatly

affect the assembly process. If it is located too close to the end of

the peg a new kind of one-point contact is possible (see Figure 1.1.5).

Other locations of the peg's compliance center could be considered too

(e.g., not within the boundary of the peg) but are not as practical.

Hence this possibility will be ignored. Previous work in compliant

part mating has emphasized the assembly phases outlined in Figure 1.1.4

and thus provided the motivation for analyzing this type of assembly.

Also, efforts will be made to identify some of the unsuccessful or

undesirable modes of assembly; however, finding explicit criteria in

terms of the friction, the geometry, or the compliance is often difficult.

16



(b) One-point Contact

(c) Two-point Contact (d) One-point Contact

0

(e) Line Contact

Figure 1.1.4. Ideal successful assembly phases.
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(a) Chamfer Crossing

(b) One-point Contact

Figure 1.1.5. Development of new one-point contact.
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1.2 LATERAL COMPLIANCE HOLE

1.2.1 Introduction

In many instances it is necessary for the model to incorporate

only lateral hole compliance. Figure 1.2.1 illustrates the initial

configuration of the peg and the hole with the compliance center of

the peg indicated. During the assembly to be considered the hole

walls will initially deform outward, enlarging the hole. This defor-

mation will be treated as a uniform lateral translation of the hole

walls parallel to their initial position. Both sides (left and right)

will then deform away from the center axis of the hole so that the dis-

tance between the center axis of the hole and the sides of the hole will

always be nonnegative (i.e., 6xl,6X2 > 0). The quasi-static phases of

successful assembly to be analyzed are (1) chamfer crossing, followed

by (2) one-point contact, (3) two-point contact, (4) resumption of

one-point contact, and the final phase, (5) line contact. Line contact

occurs when the peg has uprighted itself (vertical) and is in contact

with the left side of the hole.

The compliance center's location along the peg's axis can

greatly affect the assembly characteristics. If the compliance center

of the peg is located too close to the end of the peg the other type

of one-point contact will occur. A sufficient criterion for avoiding

this type of one-point contact is to require the angle of the peg with

respect to the vertical (8) to be nonnegative +) during chamfer

crossing.

1.2.2 Chamfer Crossing

Chamfer crossing is depicted in Figure 1.2.2 and will now be

analyzed. A free body diagram of the peg is shown with all external

forces and moments present. The geometrical parameters and the re-

maining insertion variables are also indicated.

The positions of the peg and hole during chamfer crossing are

completely determined by (1) balancing the external forces and

moments on the peg, (2) using the constitutive law for each compli-

ance, and (3) invoking geometric constraints on the peg and hole.

The force and moment balance involves a horizontal and vertical force

balance along with a moment balance at the peg's compliance center.

Constitutive laws for the compliances must be applied to the peg's

support (both lateral and rotational compliance) and the left hole

wall (lateral compliance). The peg's support and the hole wall's

stiffness may be readily identified (e.g. Kx1 is the lateral stiff-

ness of the left side of the hole); also see List of Symbols. Two

19



Figure 1.2.1. Initial configuration of peg and hole.
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geometric constraints apply, a horizontal geometric constraint and a

vertical one. The following equations may then be derived with the aid

of Figure 1.2.2.

Equilibrium Requirements

Fx = F (sin - p cos )

Fz = F(cos + p sin )

M = F {a[sin(% + 68)

d
- [cos( + 6e)f

- cos( + 60)]

+ p sin(% + 6)]}

Force-Deformation Relations

F = K 6xx x

M = K 68

K 6x 1
X1

= F n(sin - p cos )
n

Geometric Compatibility Requirements

Az 2 8
tan = 6x + 6x1 + a sin 68 +d sin tan ~ ~ ~ -Z-~

a + Az = z + a cos 6 + sin 66
2

The variable Az is defined as the insertion distance. Chamfer crossing

begins when Az = 0 and ends when Az = (A _ C ) tan 4 > 0. Here C is

the clearance ratio, defined by

D -d
C = D (1.2.4)

To avoid the other type of one-point contact, the compliance cen-

ter of the peg must not be located too close to the end of the peg.

21
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Figure 1.2.2. Chamfer crossing.
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In fact, it must be located at a distance of at least 2 
2 tan(~ + 68 - B)

from the end of the peg. Here the friction angle () is given by

6 = tan 1~ (1.2.5)

This may be derived by requiring the normal force (Fn) and the angle of

the peg with respect to the vertical (60) to be nonnegative in the

moment balance equation (Equation 1.2.1). Since 68 is not known before-

hand, an estimate of the maximum value of 68 will provide an estimate

of the minimum acceptable value of a. Also, to avoid wedging the cham-

fer angle () must be greater than 6 - 68.

1.2.3 One-Point Contact

As mentioned earlier, chamfer crossing is not immediately followed

by one-point contact (see Figure 1.2.3). Instead a transient phase oc-

curs while the normal force (Fn) changes direction so as to align it-

self perpendicularly to the surface of the side of the peg. This phase,

although quite brief, is responsible for producing a discontinuity in

all of the insertion variables between chamfer crossing and one-point

contact. One could, however, construct a quasi-static model to analyze

this phase by continuously varying the direction of the normal force

while solving for a quasi-static solution. Because computer runs and

experience have shown that the "jump" in the geometric variables (e.g.,

6z) is typically small (less than 5%) this phase will not be analyzed.

Therefore the next phase to be analyzed is one-point contact.

The positions of the peg and hole during one-point contact are

completely determined by (1) equilibrium requirements, (2) force-

deformation relations, and (3) geometric compatibility requirements.

The one-point contact phase is shown in Figure 1.2.3 with a free-body

diagram of the peg included. Proceeding as before (Section 1.2.2) and

with the aid of Figure 1.2.3 it follows that:

Equilibrium Requirements

F = F (cos 6d - p sin 68)
x n1

F = F (sin 6 + p cos 60)
z n 1

M = F [a - Z) -d] (1.2.6)

23
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Figure 1.2.3. One-point contact.
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Force-Deformation Relations

F = K 6xx x

M = K 6s

K x = F n(cos 68 - p sin 6) (1.2.7)
X 1

Geometric Compatibility Requirements

CD 2 6e
A - CD = 6x + x 1 + (a - Z) sin 6 + d sin2 6

a + (A - )tan = 6z + (a - ) cos 6 + sin 68 (1.2.8)

Here is taken to be the insertion distance. One-point contact begins

when = 0. Also, we must require the angle of the peg with respect to

the vertical (60) to be nonnegative. From Equations 1.2.6 and 1.2.7

it follows that the distance from the tip of the peg to its compliance

center (a) must be at least d, since the equations hold for arbi-
2

trarily small.

One-point contact ends and two-point contact begins when the lower

right corner of the peg comes in contact with the right side of the

hole. To determine the values of and other insertion variables for

which two-point contact begins, the following additional geometric

constraint must be included with the one-point contact equations when

solving for these insertion variables

9 sin 6 + d cos 6 = D + 6x1 (1.2.9)

The above equation is a horizontal relationship which says in effect

that the peg's lower right corner has just touched the right wall (no

normal force yet).

As mentioned in the Introduction, Section 1.2.1, two-point contact

is followed by a resumption of one-point contact. The same equations

(Equations 1.2.6, 1.2.7, and 1.2.8), which hold for the first one-point

contact, must also hold for the resumption of one-point contact. In

addition, Equation 1.2.9 also applies to the boundary between two-point

contact and the resumption of one-point contact.
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Although the existence of the second one-point contact may not

be obvious, it does occur, and a more rigorous justification will now

be given. Manipulation of Equations 1.2.6 through 1.2.9 yields the

following quadratic in (a - Z)

sin m8(a - ) + B(60)(a - ) + C(68). = 0 (1.2.10)

where B(68), C(68) are complex expressions. This equation implies that

a resumption of one-point contact is possible since its solution yields

either two real roots or two complex roots. Two real roots correspond

to the case where two-point contact occurs marking the beginning and

the end of two-point contact. Two complex roots correspond to the case

where two-point contact does not occur. Numerical results have verified

this and also suggest that the resumption of one-point contact ends for

2 < a. To show that one-point contact is impossible for > a and to

establish a lower bound, consider the situation illustrated in Figure

1.2.4. A free-body diagram of the peg is shown for the case > a. The

moment balance equation

M + F ( - a) + Fn d = 0 (1.2.11)n 12

is meaningless because each term on the left side is greater than zero.

A lower bound for during one-point contact can be found by requiring

M and F in Equation 1.2.11 to be nonnegative, i.e.
n1

i < a - d (1.2.12)

The largest value of for which one-point contact is possible is shown

in Figure 1.2.4.

1.2.4 Two-Point Contact

The assembly phase immediately following one-point contact is two-

point contact. In Figure 1.2.5 the geometry of two-point contact is

illustrated along with a free-body diagram of the peg.

The positions of the peg and hole during two-point contact are

completely determined by (1) equilibrium requirements, (2) force-

deformation relations, and (3)geometric compatibility requirements. The

26



0

N1%

Figure 1.2.4.

M

2d-1
- -

One-point contact ( > a).

27

N



2i-

2

I

&Xl--~.~~~~~~~~~~
I

_1

Figure 1.2.5.

I.

L

-

-D

Fn2

I

I

I

I

I

I

I

I

I

i

I

- i~__x2
I

Two-point contact.

28

N

ni

/



force-deformation relations must of course include the constitutive re-

lations for the right hole wall's lateral compliance as well. An ad-

ditional geometry constraint must also be present. So, in a similar

manner to that shown earlier (see Figure 1.2.5) the following equations

may be derived.

Equilibrium Requirements

F = F (cos 6 - p sin 6) - F
x n1 n2

Fz = Fn (sin 6 + p cos 6) + pF

M = Fn [(a - ) - d]

- F [a(cos 68 - p sin 6) - (sin 68 + p cos 6)]

(1.2.13)

Force-Deformation Relations

F = K6x
x x

M = K60

K 6x =
Kx1X =

K 6x =
2

F (cos 6 - p sin 68)
1

F
n2

Geometric Compatibility Requirements

A 2 = 6x + 6x1 + (a - ) sin 6 + d sin 2 62

2 2

a + - )tan m = 6z + (a - Q) cos ~8 + 2 sin 68

Qsin 68 + d cos 6 = D + x + 6x2

29
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The insertion distance is again and the resumption of one-point con-

tact will occur when Fn = 8x2 =0 is substituted into the two-point

contact equations. These new equations, as expected, are the same as

the one-point contact equations with the geometric constraint (Equa-

tion 1.2.9) imposed.

1.2.5 Solution of Assembly Equations

A. Introduction

Because of the complexity of the assembly equations, it was neces-

sary to use a computer to solve them. Two types of solutions were ob-

tained: (a) exact solutions and (b) linearized solutions. For the

exact solutions simple iteration was used, and for the linearized solu-

tions the linearization was carried out with respect to the insertion

variables (except Az,k), leaving the insertion parameters fixed. By

definition, insertion variables are quantities which vary during the

assembly (insertion) and insertion parameters remain constant during

the assembly (insertion). Below, both methods of solution are explained

further. In either case, dimensional analysis has been used in computed

solutions as outlined in Table 1.2.1.

The dimensional analysis used below is, of course, not the only

way to nondimensionalize the variables and parameters. Measuring dis-

tances with respect to a offers the advantage that z for typical cases

ranges from 0 to 1.1 ± 0.1 during the assembly process. This allows

for easier interpretation of insertion force (Fz) versus depth (Sz) plots.

Also, because of the popularity of the clearance ratio (C), the diameter

of the peg (d) is effectively treated as a dependent parameter.

B. Exact Solutions

Chamfer Crossing

Equations 1.2.1 through 1.2.3 may be manipulated to yield the fol-

lowing transcendental relation in 68 whose solution is shown graphically

in Figure 1.2.6

8 =

f1 (68){a sin(6 + ) - s cos(60 + )] - [cos(6 + ) + sin(6 + )]

K8(1/K+ 1/Kxl) (sin - cos ,)

(1.2.16)
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Table 1.2.1 Dimensional Analysis

Dimensionless

Insertion ParametersInsertion Parameters

a

C

A/a

D/a

(l-C)D/a = d
a

K a2
x
Ke

Kxl/Kx
1

Kx /Kx

Dimensionless

Insertion VariablesInsertion Variables

68

6x

6x1

6x2

6x/a

6xl/a

6 z/a

Az/a

Z/a

aFn/K8

aFn /K81

aFn2/K

aFx/Ke

aFz/Ke

M
Ka

1

1

C

A

D

d

Kx

K
x 1

K
x2

Az

Fn

F
22

F
x

F
z

M
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EQUATION 1.2.1

2.16

Figure 1.2.6. Graphical solution of equations 1.2.16 and 1.2.17.
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where

fl(66) = tAn a sin 6 - d sin 2 66 (1.2.17)

Once 6 has been established by iteration, the remaining variables are

obtained easily by direct substitution.

One-Point Contact

Similar manipulation of Equations 1.2.6 through 1.2.8 yields

68 = [(i - ) (a - )sin 6e - d sin2 -6] [(a - ) - d]

Ke (1/x + 1/KK x )(cos 6 - sin 6)

(1.2.18)

which is also solved by iteration as motivated by Figure 1.2.6. Other

variables may the be determined by direct substitution.

Two-Point Contact

Again the same iteration scheme works (use Equations 1.2.13 through

1.2.15) when applied to

f2(66)[(Kx x+ K)f 3(6) + K [(a - )- d]/(cos 6e - sin 6]
Ke(Kx + K + K )

-K 3 (6e) [(A - CD (a - ) sin 68 - d sin2 68e/x 3 L 2 ) ~~- 2-K
(1.2.19)

where

f2 (6e) = Kx[( -2 ) - (a - Z)sin 6 - d sin 2 6]

+ K (d cos 6 - D + sin 6e)
x 2

f3(6e)
d= (sin 6 + cos 66) - a(cos 6 - sin 68)f

(1.2.20)

The other variables may then be solved for directly once 6 is known.
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Computer Program

The computer program written to solve the assembly equations is

called "LATERAL" (see Appendix A). Given the insertion parameters as

inputs it computes Fz, 6z, 66, and 6x for various insertion distances

(Az,Z) during the entire assembly. Because of the inherent complexity

of the equations, care was taken to verify a proposed solution by

substituting the insertion solution variables back into all of the

equations and displaying an "error matrix" while the program is running.

Each entry in the matrix corresponds to the residual error in an equa-

tion. The value of for which one-point contact ended and two-point

contact began was not determined exactly since double iteration was

required. Instead a modification of Equation 1.2.9 was used. For a

given value of , if the left side is greater than the right side, two-

point contact occurs. Otherwise, one-point contact occurs. For the

boundary between two-point contact and one-point contact, the sign of

the normal force (or 6x2) on the right side of the hole was observed.

When its algebraic sign changed (+ to -) the resumption of one-point

contact had begun.

C. Linearized Solutions

As mentioned earlier, the linearized solutions were determined

by linearizing the assembly equations with respect to all of the in-

sertion variables (except Az,Q) and then solving them. The details

of the linearization will not be given, but basically it involves ex-

panding all of the terms that appear in each equation and canceling all

of the nonlinear terms, thus arriving at a set of linearized equations.

The program written to solve these linearized equations is called

"LINLAT" (see Appendix A). Given the insertion parameters as inputs

it computes Fz, 6z, 6, and 6x for various insertion distances (Az,Q)

during the entire assembly. The linearized equations can also be solved

directly and some of these solutions (6x,60) are given in Table 1.2.2

for each assembly phase. As it turns out 6x and 6 are "easier" to

solve for than many of the other variables. The variables Fz, 6z may

be obtained readily once 6x and 6 are known. Again the value of 

for which one-point contact ended was not solved for exactly. Instead,

Equation 1.2.9 was linearized and used as described before. Also, the

sign of the normal force on the right side of the hole was used to

determine when the resumption of one-point contact begins.
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Table 1.2.2. Linearized Solutions for x and 68.

Chamfer Crossing

KaAz

tan L[Kxa2 (1 - 2a tan(- )) + K + KxK0/K]x

tan [Kxa2
Ke

+

K aAz
x

(1 2a ta -
2a tan( -

KxK /Kx1
d 2a tan( -

B) ) ( - 2a tan ( - )).

One-Point Contact

K (A CD)

K(a- ) (a- ) 3 + Ke + K K /K

_ 2 2]

Kx (a - )
x

[(a - Q) d + K8 + KxK8/Kx0 xO~~~

Two-Point Contact

K K( -C + KK 2 + KK (A + CD) - CD2e x 2 ) x1 Kxx2 2+ 12

K + K - ) - KxKx) [(2a(aK K + KKx +K K .2

Kx l x2 ) 2 x2 X1 X

KxK + K K (a 9) la - t) - + KK a(a + KKx KK K K x~ 1L. 2 2 2 ) e 19 2 1 2
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1.2.6 Results and Discussion

Once the assembly equations have been solved for the entire as-

sembly process, the effect of various insertion parameters on the solu-

tion can be determined. Of primary interest is the effect of the

insertion parameters on the "insertion force versus depth" plot (i.e.,

Fz versus 6z). In the present section the effect of the insertion

parameters which are unique to (1) the lateral compliance hole and (2)

the lateral and rotational compliance (Section 1.4) hole problems will

be analyzed. These parameters are, of course, Kx and Kx . Other

effects, such as the linearization effect and alternative assembly modes,

will also be discussed. In addition, the effect of location of the

compliance center of the peg on the assembly will be investigated.

General Features of Force versus Depth Plots

As discussed earlier, the general assembly sequence considered is

(1) chamfer crossing, followed by (2) one-point contact, (3) two-point

contact, (4) resumption of one-point contact, and (5) line contact.

These assembly phases may be identified in the force versus depth plot.

In Figure 1.2.7 some typical plots (exact solutions) are shown (use

K /Kx = 10 curve). The chamfer crossing region is seen to be very
linear, followed by a discontinuity where one-point contact begins
linear, followed by a discontinuity where one-point contact begins. The

force during one-point contact is also reasonably linear, and in this

instance almost constant. After one-point contact the insertion force

rises sharply during two-point contact to a maximum and then gradually

declines to where one-point contact resumes. This resumption of one-

point contact is typically of short duration as the peg snaps back to

line contact. The insertion force in this region also tends to be

very linear. Finally, line contact occurs and is represented by the

end point of the curve.

Effect of the Left Hole Wall Compliance on Insertion Force versus Depth

The effect of the compliance of the left side of the hole (measured

by Kx /Kx ) on Fz versus 6z is shown in Figure 1.2.7. Decreasing the

compliance (increasing the spring rate) of the left side is seen to

increase the insertion force during each of the assembly phases and

vice versa. If the compliance of the left side is large enough, two-

point contact will not occur (e.g., K /Kx = 0.5).
x1
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Effect of the Right Hole Wall Compliance on Insertion Force versus Depth

In Figure 1.2.8 the effect of the compliance of the right side of

the hole (measured by Kx /Kx ) is shown. Chamfer crossing and one-point
x

contact are of course not affected by the right hole wall's compliance.

Again decreasing the compliance is seen to increase the insertion force

during two-point contact and vice versa.

Effect of Linearization

The linearization, in general, tends to distort the solution

and is quite sensitive to insertion parameters which produce large

angular misalignments (e.g., 68 = 100). In Figure 1.2.9 two solutions

(Fz versus 6z) are given, one for a small ratio (Kx /Kx = 1) and one

for a large ratio (Kxl /Kx = 10). In each case a linearized solution is
1

also given. Note that both the linearized solution and the exact solu-

tion agree at the beginning of the assembly and at the end of the as-

sembly (line contact). The linearized solution also exhibits the gen-

eral features of the exact solution as discussed above but tends to

predict larger insertion forces during chamfer crossing and smaller

insertion forces during the rest of the assembly.

In Figure 1.2.10 the effect of the linearization on Fz, 60, 6x

versus 6z is shown. The plot of angular misalignment (60) versus depth

(6z) is very linear during chamfer crossing. During one-point contact

the angle (60) increases with a reasonably continuous transition (also

in slope) to two-point contact where a maximum occurs. Note that the

"jump" in 68 between chamfer crossing and one-point contact is insig-

nificant as mentioned earlier (essentially no jump in geometric vari-

ables). The angle then decreases gradually during the remaining portion

of two-point contact. During the resumption of one-point contact the

angle changes rapidly as the peg snaps back to line contact (60 = 0).

The linearization effect is seen to predict slightly smaller angles

during two-point contact while predicting the angle very accurately

during chamfer crossing, one-point contact, and the resumption of one-

point contact. The plot of horizontal displacement (6x) versus depth

(6z) (i.e., peg position) is seen to be steadily increasing (almost

linearly) and quite insensitive to the different assembly phases (e.g.,

no discontinuities, sharp rises, etc.). The linearization effect is

seen to be insigificant in this example.
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Alternative Assembly Modes

Although successful assembly has been emphasized, one must also

consider the alternative, which is also of practical interest. Real

parts resembling the peg and hole in the initial configuration, as

shown in Figure 1.1.3(b) may be assembled also if additional assembly

phases are considered, or they may not be assembled at all. Figure

1.2.11 illustrates two of these.undesirable or unsuccessful modes of

assembly. These are certainly not the only possibilities.

Even though these and other modes can be identified, finding ex-

plicit criteria is often difficult. However, for the undesirable cham-

fer line contact shown in Figure 1.2.11(a), a simple criterion exists.

By using Equations 1.2.1 through 1.2.3 with 8e replaced by -

(rad) the insertion distance Az for which line contact will occur may

be solved for

Az = tan [a cos + (1 - sin )

K(1/K x + 1/K ) (-) (sin P -i cos c) 
+ - . (12.2.21)

To make sense physically the undesirable line contact with the chamfer

must occur, between the start of the assembly and when the corner of the

peg meets the corner of the chamfer so that

0 < Az < (A - ) tan (1.2.22)

Since the stiffnesses K, Kx, and Kx are positive, Equation 1.2.21

and Inequality 1.2.22 may be reduced to the simple inequality

Ke(1/Kx + 1/Kxl) < Kmin (1.2.23)

where

(a- ) [(A 2) - a cos - (1- sin c)]
min (2 ) (sin j - i cos 4)

(1.2.24)
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(a) Undesirable Line Contact

(b) Undesirable Two-Point Contact

Figure 1.2.11. Undesirable assembly phases.
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Now to avoid this type of line contact the inequality must be reversed,

i.e.,

K(1/K x + 1/Kxl) > Kmin (1.2.25)

This relation intuitively makes sense. If line contact with the cham-

fer should occur, then increasing the stiffness Ke or decreasing either

of the stiffnesses Kx, Kx will prevent line contact from happening.
1

This simple example demonstrates that properly specified compliance can

aid assembly.

Location of Compliance Center of Peg

In the analysis so far the location of the compliance center of

the peg has been assumed to remain fixed with respect to the peg, and

no special considerations have been given to its location other than

a >2 tan(d + 60 - ~) (1.2.26)

during chamfer crossing and

a > d (1.2.27)

during one-point contact. If, however, a is taken to be an insertion

variable whose value may be independently controlled, a much simpler

and shorter assembly sequence is possible.

This simplified assembly sequence consists of only (1) chamfer

crossing followed by (2) a vertical motion of the peg (vertical inser-

tion) as illustrated in Figure 1.2.12. Basically, all angular mis-

alignments have been eliminated (60 0) by carefully selecting the

location of the compliance center of the peg during the assembly se-

quence. Note that since the clearance ratio is taken to be positive,

two-point contact does not occur.

As the assembly proceeds angular errors (68) will be present.

These angular errors may be eliminated by locating the compliance center

of the peg a distance a0(68) away from the end of the peg
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d
0 (6 ) d(1.2.28)
a0(68) = 2 tan( - + 68)

This may be derived from Equations 1.2.1 and 1.2.2. When 680 = 0

a d (1.2.29)
0 = 2 tan( - (1.2.29)

which may also be obtained from Table 1.2.2. Equation 1.2.28 in some

sense represents a feedback scheme; as angular errors arise a is con-

tinuously adjusted to eliminate them (see Figure 1.2.13).

Once the corner of the peg reaches the corner of chamfer, cham-

fer crossing ends and a new assembly phase begins. Exactly which

assembly phase begins is not at all clear. Ideally the value of a

has been adjusted continuously during chamfer crossing so as to elim-

inate any angular misalignments which may arise (i.e., 6e = 0). The

next logical assembly phase would then be line contact. However, by

virtue of controlling a, errors will be present so 6 = is more

realistic. If 68 = 0+ the next assembly phase will be one-point con-

tact. By following a similar procedure (see Equations 1.2.6 and. 1.2.7

or Table 1.2.2) as in the chamfer crossing case a0 is given by

a = + (1.2.30)

where no feedback of 68 is necessary. If 68 = 0 the next assembly

phase will be the new type of one-point contact (see Figure 1.1.5(b)).

A simple moment balance (not shown here) yields

d
a0 2 (1.2.31)0 = 2

where the feedback relation is given by

a(60) = tan(g - 6) (1.2.32)

However, this feedback scheme is not stable since 6 must be negative.

These results are summarized in Figures 1.2.14 and 1.2.15, where a is

plotted against the assembly phase and the sensitivity of the feedback

equations is shown for = 600, = 0.25.
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(a) Chamfer Crossing
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(b) Vertical Insertion

Figure 1.2.12. Simplified assembly sequence.
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6 = 0

Figure 1.2.13. Feedback scheme.
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Figure 1.2.14. Optimal compliance location(ao) versus assembly phase.
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1.3 ROTATIONAL COMPLIANCE HOLE

1.3.1 Introduction

In certain cases it is necessary for the model to incorporate

only rotational hole compliance. Figure 1.3.1 illustrates the initial

configuration of the peg and hole with the compliance center of the

peg indicated. The hole also possesses its own compliance centers as

indicated which are assumed to be located symmetrically about the center

axis of the hole. During the assembly to be considered the hole walls

will initially deform outward, enlarging the hole. This deformation

will be treated as a rotation of each hole wall about its compliance

center. Both sides of the hole will then rotate away from the center

axis of the hole (i.e., 681', 682 > 0). The quasi-static phases of

successful assembly to be analyzed are the same as before: (1) chamfer

crossing, followed by (2) one-point contact, (3) two-point contact,

(4) resumption of one-point contact, and the final phase, (5) line

contact.

The location of the compliance centers can affect the insertion

characteristics greatly. If the compliance center of the peg is lo-

cated too close to the end of the peg, the other type of one-point

contact cannot be avoided. If the compliance center of the hole is

located in Region 1 (see Figure 1.3.1), it is possible for the left

side of the hole to interfere with the assembly by rotating clockwise

and decreasing the effective hole diameter. Similarly, in Region II,

it is possible for the right side of the hole to complicate the as-

sembly by means of a line contact. This follows in part from the

general argument presented in Section 1.2.3 where it was shown that one-

point contact must end a distance = a - P2 into the hole. Region III
2

then appears to be the "safest" region since the sides of the hole will

not decrease the effective hole diameter. For this reason, the ex-

amples analyzed later have the compliance center located in Region III.

Since the derivation of the assembly equations for the rotational

compliance hole case is very similar to the derivation of the assembly

equations for the lateral compliance hole case, the development will be

quite brief with basically only figures and equations used.

1.3.2 Chamfer Crossing

Proceeding as before (Section 1.2.2) with the aid of Figure 1.3.2

the following equations may be derived. Additional insertion param-

eters may be identified in an obvious manner (e.g., K -rotational stiff-

ness of left hole wall).
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Figure 1.3.1. Initial configuration of peg and hole.
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Figure 1.3.2. Chamfer crossing.

51

I



Equilibrium Requirements

Fx = Fn[sin(p - 681) - p cos( - 681)]

Fz = F[cos( - 61) + sin( - 61)]

M = Fn{a[sin( % + 68 - 61) - p cos( + 6 - 681)1

- d [cos(% + 6 - 681) + sin( + 6 - 6e1)]}
2 1 1

(1.3.1)

Force-Deformation Relations

F = K 6xx x

M = K 68

K 16 F [(AC + Cv) (sin - p cos 4)

<+tA T- _Ch) (os 4 + sin 4)] (1.3.2)

Geometric Compatibility Requirements

Az 2 68
tan = 6x + a sin 68 + rc[co(Yc 681) - cos Yc] + d sin

a + Az = 6z + a cos 6 + sin 68 + r [sin(yc - 681) - sin yc]

(1.3.3)

For convenience the following dependent insertion variables (AC,r ,yc)

have been introduced by the following relationships

Az + AC = ( -CD tan 2 = ( + ) + ( Ch)
c (C, +n5)2 + tan ·
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tan -
cot c = CV + (1.3.4)

Again chamfer crossing begins when the insertion distance Az = 0, and

ends when Az = (A - CD)tan 4.

To avoid the undesirable type of one-point contact, the compliance

center of the peg must be located a distance at least 2tan( d + - 60 -

from the end of the peg where 68 > 601 > 0. This may be derived by

(1) fixing the compliance center of the hole in Region III so that

681 > 0, (2) requiring 68 > 61 so that the other type of one-point

contact won't happen, and (3) using Equation 1.3.1 with (1) and (2) im-

posed. In Section 1.3.6, however, it will be shown that the other type

of one-point contact can be used to simplify the assembly sequence.

1.3.3 One-Point Contact

Immediately following chamfer crossing is the "discontinuity

phase" discussed earlier and then one-point contact. In a similar

manner (see Section 1.2.3) the following equations may be derived with

the aid of Figure 1.3.3.

Equilibrium Requirements

F = F (cos 60 - sin 608)
x n1

F = F (sin 6 + cos 68)
z n 1

M = F [(a - ) - ] (1.3.5)

Force-Deformation Relations

F = K 6x
x x

M = K 6

K 601 = Fn {Cv[cos(60 - 601) - p sin(60 - 61)]
1 n1l

- Ch[sin( 6 - 681) + cos(6 - 601)} (1.3.6)
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Figure 1.3.3. One-point contact.
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Geometric Compatibility Requirements

CD d6x + (a - ) sin 6 + r[cos(y - 681) - cos y]

2 68
+ d sin 2

a + (A- CD)tan 6 = 6z + (a - )cos 6 + d sin 68

+ r[sin (y - 681) - sin y] (1.3.7)

Again is the insertion distance and one-point contact begins

when = 0. Also, the angle of the peg with respect to the left hole

wall (6 - 6e1 ) must be nonnegative. From Equations 1.3.5 and 1.3.6 it

follows that a > d as before.
2

One-point contact (two-point contact) ends and two-point contact

(resumption of one-point contact) begins when

2 sin 68 + d cos 6 = D + r[cos(y - 601) - cos ]

(1.3.8)

Manipulation of the above equation with the one-point contact

equations yields the following quadratic in (a - Z)

sin 6(a - 2) + B(60,61) (a - ) + C(6e,6e1) = 0 (1.3.9)

where B(60,601), C(60,601) are complicated expressions. Since Equa-

tion 1.3.9 will yield two real roots or two complex roots for (a - ),

a resumption of one-point contact is possible. This has been verified

by computer runs. Also, since the argument presented in Section 1.2.3

regarding the duration of one-point contact is completely general, the

largest value of for which one-point contact is possible is a - 2d

1.3.4 Two-Point Contact

In general, one-point contact is followed by two-point contact

(see Figure 1.3.4). Similarly (see Section 1.2.4) the following equa-

tions may be derived. Here, K is the rotational stiffness of the

right hole wall. 2
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Figure 1.3.4. Two-point contact.
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Equilibrium Requirements

F = F (cos 6 - sin 6e) - F (cos 6 - P sin 6 2)

F = F (sin 6 + cos 6) + F (sin 6 2 + I cos 62)
Z "1 "2 

M = F [(a- ) - d] Fn2 {a[cos(6 + 6e 2)
12 22

- i sin(6e + 62)]

d
-f [sin(66 + 662) + cos(6e + 682)]}

Force-Deformation Relations

F = K 6x
x x

M = K 68

K6 681
1

= F n C v[cos(6 - 6e1 ) - sin(6 '- 6)]
V n 1

- Ch[sin(6 - 6e1) + cos(6 - 66)]}

6 2
2

= Fn (V - Ch)

Geometric Compatibility Requirements

A CD
2

= 6x + (a - )sin 6e + r[cos(y - 6 1) - cos y]

2 60+ d sin 
2

a + tan Q =
d

6z + (a - Z)cos 68 + d sin 682

+ r[sin(y - 61) - sin y]

Q sin 68 + d cos 68 = ] + 2Chsin 2
D + r[cos(y - 6) - os Y] + 2Ch sin 2

+ V sin 682
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For convenience V has been introduced by the relation

V cos 62 = -Z cos 6e + d sin 68 + Ch(sin 68 - sin 62)

+ Cv cos 6e1 (1.3.13)

1.3.5 Solution of Assembly Equations

Introduction

Because of the inherent complexity of the assembly equations, it

was necessary to use a computer to solve them. Two types of solutions

were obtained: (a) exact solutions and (b) linearized solutions. To

solve the equations exactly, simple iteration was used for the one-

point contact equations and a generalized Newton-Raphson method for

the chamfer crossing and two-point contact equations. In both cases

the dimensional analysis as described earlier (see Section 1.2.5) was

used with the following additions (see Table 1.3.1) to Table 1.2.1 (ex-

clude Kx Kx 6x1, 6x2). Both types of equations are explained below.

Exact Solutions

To determine the exact solutions, a generalized Newton-Raphson

method must be used. This is also true for the lateral and rotational

hole compliance case where completely general solutions are derived

(Section 1.4.2). The solution scheme for the rotational hole com-

pliance case is very tedious also and may be arrived at by replacing

1/K xl 1/K in the general solution scheme by 0. For this reason the

solution will not be derived here.

The computer program written to solve the assembly equations is

called "ROTATE" (see Appendix A). Given the insertion parameters as

inputs it computes F, 6z, 6, and 6x for various insertion distances

(Az,k) during the entire assembly. The program is very similar to the

more general program, "LATROT," and will not be discussed further here.

Linearized Solutions

The program written to solve the linearized equations is called

"LINROT" (see Appendix A). Given the insertion parameters as inputs

it too computes Fz, 6z, 6, and 6x for various insertion distances

(Az,k) during the entire assembly. Some of the linearized solutions

on which the program is based are shown in Table 1.3.2. The remain-

ing variables may be obtained readily once 6x and 6 are known. Other
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Table 1.3.1. Dimensional analysis.

Insertion Parameters

C
V

Ch

Dimensionless
Insertion Parameters

Cv /a

Ch/a

K0
1

Ke
2

K /K e2

Insertion Variables

681

6e2

Dimensionless
Insertion Variables

6 1

602

C/a

59
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particulars, such as how the boundary between one-point contact and

two-point contact was determined, follow as before (Section 1.2.5).

1.3.6 Results and Discussion

Once the assembly equations have been solved, the effect of the

insertion parameters on F versus 6z can be determined. In this sec-

tion the effect of the insertion parameters which are unique to

(1) the rotational compliance hole and (2) the lateral and rotational

compliance hole problems will be analyzed. These parameters are KI ,

K8 , Ch, and Cv. Other effects such as the linearization effect and
2

the location of the compliance center of the peg on the assembly will

be investigated. The general features of the force versus depth plot

are basically the same as before (Section 1.2.6) except for where line

contact begins. This is because a contact force between the peg and

the corner of the chamfer exists just before line contact and as a

result the angles (68,681) do not vanish.

Effect of the Left Hole Wall Compliance on Insertion Force versus Depth

The effect of the compliance of the left side of the hole (measured

by K /K8) on Fz versus 6z is shown in Figure 1.3.5. Decreasing the

compliance of the left side is seen to increase the insertion force

and vice versa during each assembly phase. If the compliance of

the left side is large enough, two-point contact will not occur (e.g.,

K /K = 5).
1

Effect of the Right Hole Wall Compliance on Insertion Force versus Depth

In Figure 1.3.6 the effect of the compliance of the right side

of the hole (measured by K /Ke) is shown. Chamfer crossing and one-
2

point contact are of course not affected by the right hole wall's

compliance. As before, decreasing the compliance is seen to increase

the insertion force and vice versa.

Effect of the Horizontal Location of the Compliance Center of the Hole
on Insertion Force versus Depth

In Figure 1.3.7 the effect of the horizontal location of the

compliance center is shown for several Ch/a within Region III. Cham-

fer crossing and one-point contact are seen to be quite insensitive to

Ch/a whereas two-point contact is. Increasing Ch/a increases the inser-

tion force during two-point contact and vice versa.
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Figure 1.3.5. Effect of K /Ka on F versus 6z.
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Figure 1.3.6. Effect of Ka /Ke on Fz versus z.
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Effect of the Vertical Location of the Compliance Center of the Hole
on Insertion Force versus Depth

The effect of the vertical location of the compliance center is

shown in Figure 1.3.8 for several C/a within Region III. Again only

two-point contact is greatly affected by C/a. Increasing Cv/a de-

creases the insertion force and vice versa.

Effect of Linearization

As mentioned before, the linearization tends to distort the solu-

tion and is quite sensitive to insertion parameters which produce large

angular misalignments (60,601) . In Figure 1.3.9, two solutions (Fz

versus 6z) are given, one for a small ratio (Cv/a = 1) and one for a

larger ratio (CV/a = 2). In each case a linearized solution is also

given. The linearized solution and the exact solution are seen to

agree at both the beginning and at the end of the assembly (line con-

tact). The linearized solution exhibits the general features of the

exact solution as discussed above but as before (Section 1.2.6) it

tends to predict larger insertion forces during chamfer crossing and

smaller insertion forces during the rest of the assembly.

In Figure 1.3.10 the effect of the linearization on Fz, 6, 6x

versus 6z is shown. It is seen to be very similar to the lineariza-

tion effect for the lateral compliance hole case and will not be dis-

cussed further.

Location of Compliance Center of Peg

By optimally choosing the location of the compliance center of

the peg during the assembly, a much simpler assembly is possible. This

simpler assembly is similar to the one described earlier, but with one

important difference. The simplified assembly sequence consists of

(1) chamfer crossing, followed by (2) the other (new) type of one-point

contact as shown in Figure 1.3.11.

In a similar manner (see Section 1.2.6), an optimal value of a

may be found for each assembly phase. For chamfer crossing (use Equa-

tions 1.3.1 and 1.3.2) the optimal value of a is given by

ao(601) = 2 tan( - ) (1.3.14)

The optimal value a is seen to depend on 681 and will not remain

constant during chamfer crossing. From Table 1.3.2, the linearized

value of a is given by a0 = d/(2 tan( - )). Should 6 deviate from

65



aFz

zla

Figure 1.3.7. Effect of Ch/a on Fz versus 6z.
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Figure 1.3.8. Effect of Cv/a on Fz versus Sz.
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Figure 1.3.9. Comparison of linearized solutions with exact
solutions for several Cv/a.
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EXACT SOLUTIONS
-- LINEAR SOLUTIONS

INSERTION PARAMETERS

= 60"
u = 0.25
C = 0.01
A/a = 0.1
D/a - 0.25
Ch/a = 0.2
Cv/a = 2
K a2

- = 10
K8

K0 /K 9 = 100

K9 /K0 ' 100

4
,z/a

Figure 1.3.10. Effect of linearization on Fz, 6e, x versus 6z.
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(a) Chamfer Crossing

(b) Other Type of One-Point Contact

Figure 1.3.11. Simplified assembly sequence.
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zero, a "new" a0 must be selected based on feedback which forces 68

to be zero again. This value of a is given by

a(68,6 1 ) = 2 tan( + 6 6 (1.3.15)
1 2 tan( + 65 - 508

During the other type of one-point contact the optimal value of a is

a O6 = 2 tan( + 61) (1.3.16)a0 (681) 2

and the feedback relation is

d
a(68,681) = tan(O - 6 + 1) (1.3.17)

provided (581 > 6. If 681 < 6, the assembly phase changes and the

above equations no longer apply; so the feedback scheme is not stable.

Figures 1.2.13 and 1.2.14 when properly interpreted may be used to plot

a0 in terms of the assembly phase and to plot the feedback equations

(e.g., replace ,ji in those figures by 0 + 61, tan(S + 681), respectively).

1.4 LATERAL AND ROTATIONAL COMPLIANCE HOLE

1.4.1 Introduction and Derivation of Assembly Equations

In the most general case the model must incorporate both lateral

and rotational hole wall compliance. This general model combines the

theoretical models presented in Sections 1.2 and 1.3. Because the ro-

tational compliance hole problem is much more difficult than the

lateral compliance hole problem, the development of the general problem

will follow almost identically to the rotational compliance hole prob-

lem (e.g., compliance center location). Initially the peg and hole

are positioned as shown in Figure 1.3.1 and during the assembly the

hole walls deform outward, enlarging the hole. By Chasle's Theorem,

this deformation may be treated as a translation (6x1,6x2) and a rota-

tion (681,682) taken in either order. The assembly phases to be con-

sidered are the same as before as well as many of the assembly equations.

In Figures 1.4.1, 1.4.2, and 1.4.3 the chamfer crossing, one-point con-

tact, and two-point contact phases are shown, respectively. The equi-

librium requirements for each assembly phase are the same as the

corresponding ones in Section 1.3. The force-deformation relations

for each assembly phase are the same as the corresponding ones in both
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Figure 1.4.1. Chamfer crossing.
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Figure 1.4.2. One-point contact.
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Figure 1.4.3. Two-point contact.
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Sections 1.2 and 1.3 (except for Equation 1.2.2-replace by c - 601)

and will not be relisted. The geometric compatibility requirements are

different and will be given for each assembly phase.

Geometric Compatibility Requirements

Chamfer Crossing

tan = 6x + 6x1 + a sin 6 + r [cos(yc - 61) - cos c] + d sin 2

tan = +ao +d s + sin yc]

a + z = 6z + a cos 6 + sin 60 + rc[sin(y 60) - sin c 

(1.4.1)

One-Point Contact

CD
A C2 6x + 6x + (a - Q)sin 60

2 68
+ r[cos(y - 681) - cos y] + d sin2 

a + ( - CDtan = 6z + (a - Q)cos 68

+ d sin 6 + r[sin(y - 6) - sin y]
2 1

(1.4.2)

Two-Point Contact

CD
2

6x + 6x1 + (a - )sin 6e

+ r[cos(y - 681) - cos y] + d sin2

a + (A - )tan = d
6z + (a - )cos 6 + sin 68

2

+ r[sin(y - 601) - sin y]

Q sin 68 + d cos 6 = D + 6x1 + 6x2 + r[cos(Y - 601) - cos 1

+ 2Ch sin 2 + V sin 682

75
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Also, the boundary between one-point contact (two-point contact) and

two-point contact (one-point contact) is defined by

2 sin 6e + d cos 68 = D + 6x1 + r[cos(y - 681) - cos y]

(1.4.4)

1.4.2 Solution of Assembly Equations

A. Introduction

Due to the inherent complexity of the assembly equations, it was

necessary to use a computer to solve them. Two types of solutions were

obtained: (a) exact solutions and (b)linearized solutions. To solve

the equations exactly, simple iteration was used for the one-point con-

tact equations and a generalized Newton-Raphson method for the chamfer

crossing and two-point contact equations. Both types of solutions are

explained below.

B. Exact Solutions

Chamfer Crossing

Equations 1.3.1, 1.3.2, 1.2.2, and 1.4.1 may be manipulated to

arrive at the following two equations in 68, 681

Ko d01K 68

(1/Kx + 1 [sin( - 681) - cos( - 681) ](1K) D1
2 68 A

+ a sin 68 + d sin - + r [COS(y - 6os a2 c c 8 1 cos yc tan c

K 8 681

K868 + 1 [ap + d cos(4 + 68- 68)
8 D1 L 2; 1

- (a - I) sin( + 68 6 )] 0 (1.4.5)

where D1 = (A + Cv) (sin , - pcos ) + ( + tasin )

These equations may be written in the form

Az
f(8) = tan4, f2 (8) = 0
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f(e) = X (1.4.6)

T T
where = [608,61] , X = [Az/tan ,0] . The initial values X0 and 0 

are given by X0 = 0 = [0,0]T . Differentiating Equation 1.4.6 yields

dX d = J(8)d8 (1.4.7)

where J(8) (see Appendix B for computation) is the Jacobian of f with

respect to , i.e.,

af.

il a (6se) 
16i

a (el) i = 1,2 (1.4.8)

An approximation to Equation 1.4.7 may be rewritten as

AX J(O)AO

or

-1AG J () AX (1.4.9)

provided J1 exists. The following iteration scheme can then be used

to solve for 68, 6 (8)
1

AXk

Aek

ek+l

Xk+l

= s(X - Xk)

-1
= J (ek)Axk

= k + A k

k = 0,1,2,... (1.4.10)

where s is the scalar step size. Although s was not chosen optimally

for each iteration, the values 0.7 or 0.3 were found to always work in

a reasonable number of iterations for the desired accuracy--typically

30-40. Once 6 and 681 have been determined, the remaining variables

may then be determined by direct substitution.
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One-Point Contact

Manipulation of Equations 1.3.5, 1.3.6, 1.2.7, and 1.4.2 yields

the following transcendental relation in 60

K 601 (60) [(a- _) id

60 = K [C - PCh)COS(6 - 601(60)) (Ch +PC )sin(6 - 81(60))

(1.4.11)

where

601(6) = Y - cos [ + os Y

and

CD (1/K + 1/Kx )K868(cos 6e - p sin 68)
f(6e) = C

2 68
- (a - )sin 6 - d sin (1.4.12)2 

Equation 1.4.11 may be solved by simple iteration as described before

(Section 1.2.5). The remaining variables are easily determined.

Two-Point Contact

To solve the two-point contact equations, Newton-Raphson's method

must be used in much the same manner as it was used to solve the chamfer

crossing equations. It is possible to arrive at three equations in

three unknowns (608,81,602) using the two-point contact equations; how-

ever, implementing the method with these new equations is very diffi-

cult because the equations are extremely cumbersome. To alleviate this

apparent difficulty, the two-point contact equations were reduced to

six equations in six unknowns. Many more partial derivatives must be

computed, but they are much easier to evaluate. These six equations

are

KxSx - Fn (cos 6 - i sin 68) + Fn (cos 682 sin 602) = 0
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K 66 - Fn [a ) 
n1 2

+ F [(a - ) cos(60 + 62) - (a + sin(68 + 6) 

Ke 61 + F [(Ch + C v)sin(6 - 6 -1) - (Cv - PCh)COs(68 - 6 1)] = 0
1 1

Ke 682 cos 62 + F [9 cos 6 - d sin 6 - Ch(sin 6 81 sin 62)
2 2 2

- C COS 6 + Ch Cos 62] = 0

6x + F (cos 68 - sin 6)/Kx + (a - )sin 68

2 68 CD+ r cos(y - 68 + d sin2 6 = A C Ch
1 2 Ch

9 sin 6 cos 682 + d cos 6 cos 682

- r[cos(y - 6) - cos y] cos 62

- Ch(l1 - cos 682) cos 662 + [ cos 68

- d sin 68 - Ch(sin 61 - sin 62)

-Cv os 61]sin 62 - D cos 682

- Fn (cos 68 - p sin 6)cos 62/Kx

- F (Cos 682 - i sin 6 2)cos 682/K = 0

(1.4.13)

These equations may be written in the form of Equation 1.4.6 and solved
T

similarly where e = [Fnl 'Fn ,6 x, 6, 68 1,6 82] , etc. (see Appendix B for

calculation of J). The initial value e0 was evaluated at the boundary

between one-point contact and two-point contact. Also, the initial

value x was chosen to be 0 which allowed the iteration scheme to move

away from the original guess.
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Computer Program

A computer program called "LATROT" has been written which solves

the assembly equations (see Appendix A). Given the insertion parameters

as inputs it computes Fz, z, 58, and 6x for various insertion distances

(Az,k) during the entire assembly.

C. Linearized Solutions

The program written to solve the linearized equations is called

"LINLR" (see Appendix A). It computes Fz, 6z, 60, and 6x during the

entire assembly. Some of the solutions (68,6x) on which the linearized

solutions are based are shown in Table 1.4.1.

1.4.3 Results and Discussion

The effect of the insertion parameters which are common to all

of the problems discussed in Section 1 on Fz versus 6z will now be dis-

cussed (see Sections 1.2.6, 1.3.6).

Effect of the Chamfer Angle on Insertion Force versus Depth

In Figure 1.4.4 the effect of on F versus 6z is shown for

several . As the chamfer becomes flatter ( small) the insertion force

during chamfer crossing rises and vice versa. During one-point contact

and two-point contact the solution is primarily shifted as varies.

This is because the duration of chamfer crossing is sensitive to 4;
the steeper the chamfer, the longer chamfer crossing lasts.

Effect of the Friction Coefficient on Insertion Force versus Depth

Figure 1.4.5 illustrates the effect of p on Fz versus 6z. Of

course increasing increases the insertion force during each as-

sembly phase and vice versa. Also as increases, a - d decreases so

that line contact occurs earlier. Although not shown here, if p is

large enough, the peg will tip the other way () during chamfer crossing.

Effect of the Clearance Ratio on Insertion Force versus Depth

In Figure 1.4.6 the effect of C on Fz versus 6z is shown for

various C > 0. As C decreases the insertion force increases and vice

versa. For very small C there is little difference in insertion force

versus depth characteristics (e.g., compare C = 0.01, 0.0001 curves).

If C is large enough (e.g., C = 0.2) two-point contact will not occur.
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Figure 1.4.4. Effect of on F versus 6z.
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Figure 1.4.5. Effect of on F versus z.
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Effect of the Initial Lateral Error on Insertion Force versus Depth

Figure 1.4.7 illustrates the effect of A/a on F versus 6z. As

the error (A/a) increases more insertion force is required and vice

versa. If A/a is small enough two-point contact will not occur (not

shown).

Effect of the Hole Diameter on Insertion Force versus Depth

In Figure 1.4.8 the effect of the hole diameter (D/a) on F versus
z

6z is shown. As the diameter of the peg increases, the insertion force

increases during chamfer crossing and vice versa. During the remainder

of the assembly the effect is not as clear; however, the trend is

almost the same during two-point contact and reverses during the one-

point contact phase. If the diameter of the peg is large enough, two-

point contact does not occur. Also as D/a increases, the resumption

of one-point contact occurs earlier because a - d is smaller.
2

Effect of Peg Support Stiffness on Insertion Force versus Depth

The effect of Ka 2/Ke on F versus z is shown in Figure 1.4.9.

Increasing Kxa /K0 increases the insertion force and vice versa during

each assembly phase.

Effect of Linearization

The effect of the linearization on F versus 6z is shown in
z

Figure 1.4.10 for several A/a. These results suggest that a small angle

assumption is not always valid. As an example, when A/a = 0.1, 60 =max
5.20, but F is underestimated by about 20%.

max

Location of Compliance Center of Peg

The optimal location of the compliance center of the peg follows

as before (Section 1.3.6) and will not be discussed further here.

1.5 CONCLUSION

In the past, much work has been done at The Charles Stark Draper

Laboratory, Inc. in the area of part mating, studying different "peg-

in-hole" problems both theoretically and experimentally. The results

presented in this section have extended some of the theoretical models

used before, including the effect of various hole compliances and non-

linearities. It is anticipated that some of the models developed in

this section will be the basis of experimental work to be done in the

future.
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SECTION 2

MINIMUM ENERGY CHAMFER DESIGN

2.1 INTRODUCTION

2.1.1 Chamfer Design in General

From Section 1.4 (Figure 1.4.4) and previous work in Part Mating

it is apparent that the slope and shape of the chamfer can qreatly

affect the insertion forces which arise during chamfer crossing.

Knowledge of how these forces depend on the chamfer's slope and shape

is essential if better chamfers are to be designed which enable the

parts involved to be assembled more easily.

Design criteria have included the following: (1) minimum peak

force, (2) constant force, (3) minimum vertical work/energy, and (4)

minimum frictional work/energy during chamfer crossing. In general,

the chamfers obtained by applying any one of these criteria also depend

on the following three factors: friction, geometry (e.g. of peg), and

compliance (of peg support and hole). Specification of these factors

and one of the design criteria then determines the desired chamfer

shape provided it exists.

The various chamfers will now be briefly discussed. Minimum peak

force (vertical) chamfers are useful if it is desired to minimize the

insertion force. Constant force chamfers are just that; fixing either

the vertical insertion force or the normal contact force. If the nor-

mal contact force is kept constant, the frictional "wear" on the cham-

fer will be uniform during the assembly since the frictional force is

proportional to the normal force. So far, no theoretical minimum peak

force chamfers have been designed, but experimental evidence has sug-

gested that constant force chamfers are in fact minimum peak force

chamfers. Minimum "energy" chamfers ((3) and (4)) minimize a type of

mechanical work during the assembly - frictional or vertical insertion.

The use of the word "energy" is a bit of a misnomer because it is the

mechanical work that is minimized, but since an energy source must be
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present to generate the mechanical work, it is perhaps justified. The

words "work" and "energy" will be used interchangeably here. Some min-

imum energy chamfers have been designed in previous years. In this

section the emphasis will be entirely on the design of minimum energy

chamfers.

2.1.2 Minimum Energy Chamfer Design

Thus far, minimum energy chamfer design has centered on the orig-

inal minimum energy chamfer problem proposed a couple of years ago.

Much has been learned, with some aspects of the problem revisited in

Section 2.3. Briefly, the problem statement is: find the shape of the

chamfer (see Figure 2.1.1) which minimizes the vertical insertion work.

The peg is assumed to be very long in comparison to its width and is

supported compliantly by a rotational support of stiffness K . Small

angle assumptions have allowed an explicit solution.

Many problems related to this problem arise naturally. Suppose,

for example, that the peg's width is significant or that the small

angle assumption is dropped, etc. Ideally, the problem which allows

for a lateral and rotational peg support, finite thickness peg, and

large angles will eventually admit a solution. In an attempt to solve

more general problems such as the one mentioned, two "simpler" problems

were addressed with the following unique characteristics: (1) lateral

peg support and (2) rotational peg support with large angles. In both

of the cases the peg's width will be ignored and chamfers will be de-

signed where the frictional work is minimized. Also, chamfers will be

designed where the vertical insertion work is minimized and a very

interesting comparison will be made.

2.2 LATERAL PEG SUPPORT

2.2.1 Introduction

In many cases the peg will be supported with only lateral compli-

ance (Kx) as shown in Figure 2.2.1. Here, the chamfer shown in the

figure is an arbitrary shape represented by y(x) and the peg is repre-

sented by a line segment of length . Initially the peg is in contact

with the top of the chamfer (0, y) and coincident with the y axis.

During the assembly to be considered, the peg translates laterally

(i.e. parallel to y axis) while remaining in contact with the chamfer.

Assembly ends when the contact point is at the bottom of the chamfer

(xo, ).
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The mechanics of the assembly can be analyzed with the aid of

the free-body diagram of the peg provided in Figure 2.2.1. From the

definition of a lateral support it follows that the normal contact

force (Fn) is given by:

K x

n sin - pcos (2.2.1)

where

tan% = - y' (2.2.2)

Simplification yields:

Kx x 1 + y' 2
F = (2.2.3)
n y' +i

Since the normal force is nonnegative, y' < - ~. For chamfers that

have slopes smaller than p (in magnitude), wedging will occur. Also

of interest are the vertical and horizontal contact forces (Fy, Fx)

given by:

K x (y' - 1)
F = x (2.2.4)
y + .

F = K x (2.2.5)x x

Now that the mechanics of the assembly have been analyzed for a

general chamfer shape, one can impose criteria which determine a de-

sired chamfer shape indirectly. Chamfers will now be designed where

either the friction work or the vertical insertion work is minimized.

Also, a horizontal work criterion will be investigated.

2.2.2 Frictional Work Criterion

Definition

A natural criterion for designing chamfers involves finding a

chamfer which minimizes the frictional work or "wear" on the chamfer.

By definition, an increment in the frictional work (dW ) is equal to

the product of the frictional force (F n) and an increment in the
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distance (ds) through which the end of the peg moves anti-parallel to

this frictional force while in contact with chamfer, i.e.

dW = F ds (2.2.6)
n

where s is the arc length along the chamfer. The arc length (s) may be

related directly to the chamfer slope (y') and x by:

ds = 11 + y'2 dx (2.2.7)

The total frictional work (W ) is obtained by summing up all of the

incremental contributions along the entire chamfer. This may be ex-

pressed as the following integral where appropriate substitutions have

been made:

X- x(lK dI (x,y')dx (2.2.8)11 xJ Y + j)dx
o o

Note that W depends on the chamfer's slope (y') and not its shape (y).

Calculus of Variations Analysis

To find the chamfer shape such that the frictional work is mini-

mized, the Calculus of Variations must be used.(9) Before proceeding

with the analysis, one must recall that the Calculus of Variations does

not apply when the solution, in this case a chamfer shape, is not ex-

pressable in the form y(x) (i.e. not a function) - more about this

later.

Legendre's necessary condition for a minimum, Iu ,>0 is cer-

tainly satisfied everywhere along the chamfer since(10)Y

2 K x (1 + 2
I = - (2.2.9)

- y'y' (y + )3

This guarantees that the solution obtained will minimize the frictional

work. Euler's equation

d ~ )-> 0 (2.2.10)
dx y/
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immediately reduces to the following differential equation:

y 2 + 2x¥' - x~xy' + -x = -c (2.2.11)
(y' + )

where c is an integration constant. The optimal chamfer shape is then

independent of the peg support stiffness (Kx). Equation (2.2.11) may

be solved for y' by using the quadratic formula to yield:

y. = P - 2 _1 + 2~ (2.2.12)

Here the - sign must be used because y'< -p. Since x/(x+c) must be

nonnegative for 0<x<x o, it follows that c>0. This in turn produces a

bound on the slope (y') (use c = 0, );

l p _- N 1+ < y' < _ p (2.2.13)

By using one of the boundary conditions, it is observed that the

c = 0, chamfers serve as an envelope for the rest of the chamfer

shapes. This unexpected bound on the slope has to do with the fact

that an optimal slope exists (see Section 2.2.5). Chamfers with slopes

less than - p - 1 + 2 certainly exist but will not minimize the

frictional work. Using Dwight's Table of Integrals (#'s 195.01 and

195.04) Equation (2.2.11) may be ,integrated.(11) The dimensionless

chamfer equation is then given by:

Y = - - [ - C n(l+X/C + X/C)] (2.2.14)

-where

Y = Y/XO, X = x/xO , C 
= c/xo and

p < S = Yo/xo< + (2.2.15)

and the boundary condition Y(0) = S has been used. Here S is defined

as the aspect ratio, or baseline slope. To solve for the integration

constant C, the boundary condition Y(1) = 0 must be used. This bound-

ary condition yields a transcendental relation in C,

S = p + N 1+C - C n(Nl+l/CI1-- /C (2.2.16)
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In summary, given appropriate and S, Equation (2.2.14) de-

scribes the optimal chamfer shape.

2.2.3 Vertical Insertion Work Criterion

Definition

Chamfers can also be designed where the vertical insertion work

is minimized. By definition, an increment in the vertical insertion

work (dWv) is equal to the product of the vertical force (Fy) exerted

at the peg's support point and an increment in the distance (-dy)

through which the support point moves parallel to this vertical inser-

tion force, i.e.

dWv = - Fy dy (2.2.17)

By summing up all of the incremental contributions to the vertical in-

sertion work and making appropriate substitutions, the total vertical

insertion work (Wv) is given by an integral on x,

W K o x(l-y') y'dx o ° Iv(x,y')dx (2.2.18)

0o o

Again the work (Wv) depends on the chamfer's slope (y') but not its

shape (y).

Calculus of Variations Analysis

The Calculus of Variations can be used to find the chamfer shape

which minimizes the vertical insertion work. Legendre's condition

I , ,> 0 is the same as before (Equation (2.2.9)). In fact, Euler's

equation reduces to Equation (2.2.11) so that chamfers designed ac-

cording to minimum insertion work criteria are the same as chamfers

designed according to minimum frictional work criteria! This result

is not obvious but certainly not surprising either.

2.2.4 Horizontal Work Criterion

A surprising result happens if a minimum horizontal work criterion

is imposed. By definition, an increment in the horizontal work (dWh)

is equal to the product of the horizontal contact force (Fx) on the

chamfer and an increment in the distance (dx) through which the end of
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the peg moves anti-parallel to this horizontal force while in contact

with the chamfer, i.e.

dWh = F dx (2.2.19)

By summing up all of the incremental contributions to the horizontal

work and making appropriate substitutions, the total horizontal work

(Wh) can be expressed as an integral on x which simplifies to

2Wh = K x (2.2.20)
h x o

which is independent of the friction involved and the chamfer shape!

Since Wh is constant, it is automatically minimized.

2.2.5 Results and Discussion

As mentioned above, minimum vertical work chamfers are the same

as minimum frictional work chamfers, which are also minimum horizontal

work chamfers. Therefore, when one speaks of a minimum energy chamfer

(lateral peg support) the specific criterion used does not have to be

mentioned. Based on the Calculus of Variations analysis, the discussion

will be broken up into the following areas: (1) Optimal Chamfer Slope

and Energies, (2) Computer Program, and (3) Chamfer Shapes.

A. Optimal Chamfer Slope and Energies

By examining Equations (2.2.3) and (2.2.4) it is apparent that

if the chamfer slope (y') is too flat (close to -) arbitrarily large

frictional and vertical insertion forces will be present. As a result,

large frictional energies and vertical insertion energies will exist

(see Equations (2.2.8) and (2.2.18)). Similarly, if the chamfer slope

is too steep (y'I large), the forces (frictional and vertical inser-

tion) will have to act over a larger distance ( y' dx) which then

produce large frictional and vertical insertion energies. Therefore,

by selecting a chamfer slope that is not too flat, but yet not too

steep, an optimal slope may be arrived at. This optimal slope (mo) is

given by:

m (D) = - (I + 1 + ) (2.2.21)

98



which incidently, is also equal to the steeper bound on the chamfer

slope (see Inequality (2.2.13)). Increasing the friction makes the

optimal slope steeper (more negative) and vice-versa. For low fric-

tion, the magnitude of the optimal slope is close to 1 (e.g. mo =

1.22 when p = 0.2). When there is no friction- ( = 0), the frictional

work vanishes and the vertical insertion work is Kxx2 regardless of
the chamfer's slope and shape (see Equations (2.2.8 and 2.2.18)).

Therefore, there is no optimal slope when p = 0.

The optimal slope for p > 0 may be derived by requiring:

aW
P 0 (2.2.22)

ay'

or

aw
v 0 (2.2.23)

and using Leibniz's rule. It follows that the "optimal" optimal

chamfer is a straight line chamfer with S = + /1 + 2.

The frictional work/energy corresponding to this chamfer is

21 ( + L1 + p2) (Kxxo 2 ) which is proportional to the potential energy

stored in the compliant support. It's also dependent on the friction;

the larger the friction, the larger the frictional work/energy and

vice-versa.

The vertical insertion work/energy corresponding to this chamfer

is ( + + p2)2 (hKxo2). It too is proportional to the potential

energy stored in the compliant support. Increasing the friction is

seen to increase the insertion work and vice-versa.

B. Computer Program "CHAMF"

A computer program called "CHAMF" has been written which deter-

mines the dimensionless optimal chamfer shape given appropriate and

S. The details of the program will not be given here since it is a

general program which also solves the "doorlatch" problem discussed

later in Section 2.4.

C. Chamfer Shapes

The different types of optimal chamfers can be categorized by
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their aspect ratios (S) and the friction involved (p). They will now

be discussed with the results summarized in Figures 2.2.2 and 2.2.3.

Case 1 (S < )

For S < , no optimal chamfers exist since the peg will wedge

into the chamfer.

Case 2 (S = D)

When S = p, the optimal chamfer is a straight line chamfer of

slope - p. The peg, however, will wedge all of the way down the cham-

fer. This chamfer shape may be easily derived by using Eq. (2.2.12)

and observing that as c A, y' + - p.

Case 3 ( < S < p + 1 + 12)

For p < S < p + i1 + the Calculus of Variations yields curved

chamfer shapes (Equation (2.2.14)) and several of them are shown in

Figure 2.2.3. They are convex because in general y" < 0. The slope

is always - p at the top of the chamfer and it steadily decreases all

of the way to the base of the chamfer.

One quantitative measure of the shape of a chamfer is its curva-

ture, which measures how fast a curve is turning. From elementary

calculus, the curvature (K) of an optimal chamfer shape is:

y
K = Y (2.2.24)

(1 + y)3/2

Recall that the curvature (in absolute value) of a circle of radius R

is 1/R. The curvature of an optimal chamfer shape is seen to depend

on x and is always negative (as x - 0+, K - - ). The rate of change

of the curvature (K') is:

K' = (1 + y,2)y','- 3 yy 2 (2.2.25)
K' = (2.2.25)

(1 + y2) 52

The sign (+or-) of K' then depends on the sign of y' and y'''. By

differentiating Equation (.2.2.12) it may be easily shown that in gen-

eral y''' > 0. Therefore K' > 0 and the curvature (in magnitude) will

be the largest () at the top of the chamfer and steadily decrease to

its smallest value at the base of the chamfer.
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Case 4 (S = p +1 + 2)

When S = + 1 + 2, the optimal chamfer is a straight line

chamfer of slope - - 1 + p . This is easily derived by using Equa-

tion (2.2.12) (let c = 0) or by recognizing that -p - 11 + 2 is the

optimal slope. As mentioned-earlier, this chamfer is the "optimal"

optimal chamfer. All other optimal chamfers give rise to larger fric-

tional and insertion energies.

Case 5 (S > + 41 + p2)

For S > + 1 a sort of "concave" chamfer exists, but only

in a trivial sense. This minimum energy shape consists of a straight

line segment extending from (1,0) to (0, p + 1 + p ) plus a vertical

line segment extending from (0, + 1 + 2) to (0, S)(see Figure 2.2.3).

The shape cannot be written in the form y(x) and for this reason the

Calculus of Variations does not apply. This shape, although a mathe-

matically correct solution, is not a chamfer since there are no con-

tact forces along the vertical portion. Therefore, the minimum energy

shape reduces to the optimal straight line chamfer of slope -p-/1 + 2.

An indirect proof will be used to show that the shape described

above is a minimum energy shape. Suppose the shape exists. Is it a

minimum energy shape? Well, in going from (0, S) to (0, + 1 + p2)

no work will be done since there are no contact forces. And in going

from (0, + 1 + p2) to (1, 0) via a straight line chamfer the min-

imum possible frictional and insertion work is assured since the slope

is optimal. Therefore, it is a minimum energy shape.

2.3 ROTATIONAL PEG SUPPORT

2.3.1 Introduction

The rotational peg support problem is conceptually similar to the

lateral peg support problem and so the details of the analysis will be

kept to a minimum. This is the original minimum energy chamfer prob-

lem proposed by D.E. Whitney and solved for small angles. In the

present formulation, the small angle assumption will be dropped. Thus

far, the problem has not been solved completely; however, major results

such as the derivation of the optimal slope chamfer have been obtained.

In certain instances the peg will be supported with rotational

compliance (K6) as shown in Figure 2.3.1. Again the chamfer is an

arbitrary shape y(x) and the peg is represented by a line segment of
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length . Initially the end of the peg is in contact with the top of

the chamfer (0, y) and inclined at an angle 0o to the vertical.

During the assembly to be considered, the peg's support point moves

vertically downward along the y-axis, while the end of the peg slides

along the chamfer with friction. Chamfer crossing (assembly) ends

when the contact point is at the bottom of the chamfer (xo, 0).

With the aid of the free-body diagram of the peg provided in

Figure 2.3.1, the mechanics of the assembly can be analyzed. The nor-

mal contact force (Fn) can be solved for by balancing moments at the

support point,

(K/Z) (eo - e)
F = - (2.3.1)n sin ( - 0) - p cos ( - 0) (2.3.1)

where

Z sin 0 = Z sin 8 - xo

tan % = - y' (2.3.2)

The normal force may then be expressed in terms of x, y'. However, it

is more convenient to do the analysis in the x, y coordinates and then

transform back to the x, y coordinates later on. Therefore, F isn
given by:

F 0 0 + Sin (x)l + yl (2.3.3)
n o

(x - p ( -)- ,( 2 -x 2 + x)

where

x = x - sin 80

Y = Y (2.3.4)

Since the normal force is nonnegative,

- < x -x (2.3.5)
-2 _ x2 + 

provided the initial offset angle (0) is not too large;

cot 8 > p (2.3.6)
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For chamfers with larger slopes or pegs inclined at larger initial off-

set angles, wedging will occur. Also, the vertical contact force (Fy)

is given by:

K e o. + in-1 ( (1 - y)
F - (2.3.7)

(_ U iR2_~)- y(q2_ + u x)

Now that the mechanics of the assembly have been analyzed for a

general chamfer shape, minimum frictional and vertical insertion work

criteria will be used to design chamfers.

2.3.2 Frictional Work Criterion

Chamfers will now be designed where the frictional work is mini-

mized. Proceeding in a similar manner as in Section 2.2.2, the fric-

tional work (W ) may be expressed as;

Kf + [/ sin1(o (/ + y'2) dx
W = K| I1XY)dx

X x '(2.3.8)

The frictional work is seen to depend on the chamfer's slope (y') but

not its shape (y).

Calculus of Variations Analysis

The Calculus of Variations may be used to find the chamfer shape

y(x) (or y(x)) such that the frictional work is minimized.

Legendre's necessary condition for a minimum, I > 0 is sat-

isfied everywhere along the chamfer since: y y

y= K0 (1+12) + in ()] (239)
I = (2.3.9)p~~Y'Y' /SL -Y.x2 ' + 3x)]

Euler's equation reduces to the following differential equation:

(' - /y2-2 ( 2.2-'2 + VX)] 2

(2.3.10)
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where c is an integration constant. This equation may be solved using

the quadratic formula to yield:

' _x + x [8 + Sin (~)]+ c (1 2 -- x)

Since the argument of the radical must be nonnegative for - sin 0o

< x < x = x -2 sinO 0 c > 0. Also, the - sign must be used --

see Inequality 2.3.5. Note that positive slopes are possible (e.g.

let c be large, small) if x is allowed to be positive! This case,

however, is not too realistic since the support point will run into

the chamfer. For large , Equation (2.3.11) is seen to reduce to

Equation (2.2.12) when 0 = 0 (c must be replaced with c/g2) so that
o

the rotational peg support case reduces to the lateral peg support

case. The slope is bounded since (use c = 0, a);

x - I-IR -x x _ 2X 2 2 _ _1 < y< x - (2.3.12)x:2 + - -2 + [ p x92_ 2+-24Z2-x +2 x~2- ~ , x -_422+ x

By using one of the boundary conditions, it is observed that the

c = 0, chamfers serve as an envelope for the rest of the chamfer

shapes. This bound has to do with the fact that an optimal slope ex-

ists which depends on x and that wedging has been avoided.

It is believed that in general, Equation (2.3.11) cannot be inte-

grated by elementary methods and only a numerical or graphical solution

is possible. However, when c = 0, direct integration is possible.

For sin > x solutions will be obtained. These solutions corre--
spond to the case where the peg's support point does not interfere with

the chamfer (see Figure 2.3.1) during assembly. When c = a, Equation

(2.3.11) reduces to:

y c y i dx (2.3.13)
-x + xx
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or expanding,

-w 2(1 + p2 X 22 _ (l + di 2 (2.3.14)_ 2-(1 + 2x2 - (1 +
x x

The second integral integrates easily to a logarithm term. The first

integral may be transformed into the following pseudo-elliptic inte-

gral:

2 tan x' 1 - k2 sin2 x' dx' (2.3.15)

X I

where

1
k 

41 + 2

sin x' - (2.3.16)

which may be integrated using the extensive Rydzik-Gradstein Integral

Tables (Section 2.583 #37).(12) By combining the two integrals in

Equation (2.3.14) and transforming back to the original chamfer coor-

dinates (x, y), one obtains the dimensionless chamfer equation

:7-77:4£2_:2 +
Yw =J4 L2 -(l)2 L [n + n 22L + :-2 n 'nL _(l) 2 + uL.)

(L + v X())] (2.3.17)
(L + + X)

where

= /x, = x/x, L = ,/x

X(X) = X - L sin 0

p>0, cot 0 > , L sin 00 > 1 (2.3.18)co 80
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and the boundary condition YW(1) = 0 has been used. When c = 0,

Equation (2.3.11) reduces to:

~yc= _ y= | x- dx (2.3.19)
x + £ -x + Xpxx x

The first integral is the same as Equation (2.3.13) and the second

integral may be transformed using Equation (2.3.16) into

41-k 2 sin2 x' 
cos x'Csn , dx' + tan x'dx' (2.3.20)

x w x g

The second integral (Integral 2.3.20) may be integrated easily to a

logarithm term and the first integral is another pseudo-elliptic inte-

gral which may be integrated using the Rydzik-Gradstein Integral Tables

(Section 2.583 #33). By combining the two integrals in Eq. (2.3.19)

and transforming back to the original chamfer coordinates (x, y), the

dimensionless chamfer equation (YO = y /xo) is given by:

yo = yW + L [Sinl ((1)/L)- Sin (X/L)]

1 + 2

+ pL 2 n (L -(+ ) () ) (2.3.21)

whe te -ox(l)2 i iX(1)) (L -(1+P 2) e 2)

where the boundary condition Y (1) = 0 has been used.

2.3.3 Vertical Work Criterion

Chamfers can also be designed where the vertical work is mini-

mized. Recall that an increment in the vertical insertion work (dWv)

is equal to the product of the vertical force (Fy) exerted at the peg's

support point and an increment in the distance (dy*, see Figure 2.3.1)

through which the support point moves parallel to this vertical inser-

tion force, i.e.

dW = F dy* (2.3.22)v y
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The distance y* may be related to x, y indirectly by

cosO0 + y = + cos + y* (2.3.23)

Or, alternatively in differential form:

x - ksin6
dy* = - y' dx (2.3.24)

2 - (x- ZsineO) 2

By introducing the x, y coordinates and making appropriate substitu-

tions, the total vertical insertion work (Wv ) is given by:= K + Sin ( lY)(2

~x ~~~

Again(xy')dx tew(2.3.25)

Again, the work (Wv) depends on the chamfer's slope (y') but not its
shape (y).

Calculus of Variations Analysis

By using the Calculus of Variations, the optimal chamfer shape

which minimizes the vertical work can be determined. Legendre's con-

dition I > 0 is the same as before (Equation (2.3.9)). Also,

Euler's euation reduces to Equation (2.3.10) so that as before (lat-

eral peg support case), chamfers designed according to minimum inser-

tion work criteria are the same as those designed according to minimum

frictional work criteria.

2.3.4 Results and Discussion

To date, the rotational peg support problem has not been solved

completely and is currently under investigation. iMuch of the remaining

work pertains to solving for the various optimal chamfer shapes. How-

ever, most of the theoretical work has been done.

One major result so far is that minimum frictional work chamfers

are the same as minimum vertical work chamfers. Another result con-

cerns the derivation of the most important minimum energy chamfer, the
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optimal slope chamfer. Other results include a computer program

written to determine various optimal chamfer shapes and a classifica-

tion of the different chamfer shapes.

A. Optimal Chamfer Slope

By a similar qualitative argument (see Section 2.2.5) an optimal

slope exists. It may be derived by requiring

-=0

or

awv
ay 0 (2.3.26)

and using Leibniz's rule. The result is that the optimal slope mo

depends on x and is given by:

mo(x,p,) = x - _ + (2.3.27)

o + ix + X

which is equal to the steeper bound on the slope discussed earlier

(Inequality 2.3.12). Equation (2,3.21) then represents the "optimal"

optimal chamfer since the slope is optimized at each point on the

chamfer. For large Z, the optimal slope approaches -tan(8O +)-sec

(0o+B). Of course when eo ='0, this slope is - -4l+P2, which is the

optimal slope when the peg is supported laterally.

B. Computer Program "CHAMFR".

A computer program called "CHAMFR" has been written which com-

putes the dimensionless wedging chamfer (Equation 2.3.17) and more

importantly, the dimensionless optimal slope chamfer (Equation 2.3.21)
-1

given >0, e < Cot i, L > csce.
0 0

C. Chamfer Shapes

By analogy to Section 2.2.5, the different types of optimal

chamfers can be categorized by their aspect ratios (S = Yo/xo), the

friction involved (p), the initial offset angle ( ), and the length

of the peg (L). Given , 8o, and L the shapes yW, y are determined.

The optimal chamfers can then be categorized in terms of S, Ywo and YO
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Case 1 (S < W)

For S < Yw, no optimal chamfers exist since the peg will wedge0
into the chamfer.

Case 2 (S = Yw)
0

When S = W the optimal chamfer shape is given by YW(X); ob-
0'

tained from Inequality 2.3.5 or Equation (2.3.11) (C = a). The peg,

however; will wedge all of the way down the chamfer. Several of these

curved chamfer shapes are shown in Figures 2.3.2 and 2.3.3. Because

in general yW > 0, the shapes are concave, but for large L, the cham-

fers are very straight (Y Z 0). The initial slope is -tan(0o+B) and

it steadily increases (less negative) all of the way to the base of

the chamfer.

Case 3 (YW < S < YO)
0 0

< 0
For yW < S < YO Equation (2.3.11) must be integrated numerically

and the integration constant solved for to determine the optimal cham-

fer shape. This has not been done yet, but some insight can be gained

into the solution since the optimal chamfers are bounded by the two

curves YW(X) and Y(X) (see Figures 2.3.2 and 2.3.3). For large L

(eo = 0), the chamfer shapes approach those derived in the lateral peg

support case (Equation 2.2.14).

Case 4 (S = Y0 )
0

When S = YO, the optimal chamfer shape is given by Y(X). This

may be established by using Equation (2.3.11)(let c = 0) or recognizing

that Y(X) is the optimal slope chamfer. All other optimal chamfers

give rise to larger frictional and insertion energies. Several of

these shapes are shown in Figures 2.3.2 and 2.3.3. The chamfer shapes

are concave (Yo"> 0), but for large L tend to a straight line chamfer

of slope -tan( +)-sec(6o++). The initial slope is always -tan(So+B)

-sec(08o+) and it steadily increases all of the way to the base of the

chamfer.

Case 5 (S > YO)
0

For S > YO, the solution reduces to the optimal slope chamfer YO

(X). This result follows by analogy to the corresponding solution
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Figure 2.3.2. Optimal and wedging chamfers for various
L, = 0.2, 0 = 100.0
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Figure 2.3.3. Optimal and wedging chamfers for various
L, = 0.2, 0 = 200.
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(Case 5) of the lateral peg support problem (Section 2.2.5) and will

not be discussed further.

2.4 DOORLATCH PROBLEM

2.4.1 Introduction

So far, minimum energy chamfers have been designed where the

chamfered part rubs against another part with friction. An example of

a problem where the chamfered part, while being displaced, rubs against

a third part with friction is the design of a common household door-

latch illustrated in Figure 2.4.1(a). The problem concerns finding

the shape of the chamfer on the doorlatch tongue subject to minimum

energy criteria. Although this is a specific problem, it generalizes

previous work done in minimum energy chamfer design and it reinforces

the dependence of two design criteria which have been used to design

chamfers; namely (1) minimum frictional work, and (2) minimum insertion

work.

Problem Formulation

The mechanics of the "assembly" will be analyzed for an arbitrary

chamfer shape and will be developed in much the same manner as the

mechanics were analyzed in Sections 2.2 and 2.3. From this analysis

the Calculus of Variations will be used to determine the optimal cham-

fer shapes.

Before proceeding with the analysis, various simplifying assump-

tions will be made which serve to reduce the complexity of the mathe-

matical model used to analyze the doorlatch problem. First of all,

since the physical dimensions of most doorlatches are small in compar-

ison with the width of the door, the door will essentially move later-

ally past the door casing so that angular misalignments may be ignored.

Secondly, the model will not take into account the effect of a lead-in

shape affixed to the door casing. Finally, some "play" (very small)

between the tongue and the door will be assumed so that the only fric-

tional contacts will occur between (1) the corner of the door casing

and the chamfer and (2) the inside corner of the door and the back of

the tongue as shown in Figure 2.4.1(b).

The first step in the analysis is to define the geometry and

construct a free-body diagram of the doorlatch tongue (see Figure

2.4.2). From this the mechanics may be analyzed. The chamfer shown
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Figure 2.4.1. Doorlatch problem.
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Fn2

Figure 2.4.2. Free-body diagram of doorlatch tongue.
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is a general shape y(x) and initially the top of the chamfer (O,Yo) is

in contact with the door casing and the point (0,0) on the back of the

tongue is in contact with the inside corner of the door. During the

"assembly", the doorlatch tongue translates laterally while remaining

in contact with the door casing and the inside corner of the door.

Assembly ends when the contact points are at the bottom of the chamfer

(xo,O). The friction coefficients are p1', 2 and the spring force (Fs )
is proportional to the lateral displacement of the doorlatch tongue

(Fs = Kxx). Balancing forces in the x and y directions yields:

Kxx - Fn (sin - 1 cos) + 2Fn = 0

Fn2 - Fnl(cos + l1sinO) = 0 (2.4.1)

where Fnl, Fn2 are the normal contact forces and tan% = - y'. Solving

for the normal contact forces gives:

xF = - Kx
nl (1-1lp2)y' + 1 + 2

-K x (1- ly')

n2 Y (1-l2)' + 1 + (2.4.2)

Since the normal contact forces are nonnegative, it follows that-(1+I2)
y < 1_12 for 1211 < 1

(11+12)
y > 1_plp2 for p1 2 > 1 (2.4.3)

Because p1' 2 are typically small only the first case (1112 < 1) is

realistic. Also, some obvious difficulties arise if 1P2 > 1 because

the slope must be positive and the boundary conditions cannot be sat-

isfied. For chamfers with flatter slopes, wedging will occur.
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2.4.2 Calculus of Variations Analysis

The Calculus of Variations can be used to determine the minimum

energy chamfer shape. The derivation follows almost identically to

the derivation in Section 2.2 and will be quite brief. As before, min-

imum "insertion" work (Wv= F dy) chamfers are the same as minimum

frictional work chamfers. Only the later formulation will be presented

here.

An increment in the frictional work (dW ) is equal to the sum of

the frictional work along the chamfer (l1Fnlds) plus the frictional

work along the back of the doorlatch tongue (p 2Fn dx);
2

dWP = lFn ds + 2Fn dx (2.4.4)
1 2

where s is the arclength along the chamfer. By making appropriate sub-

stitutions and integrating, the total frictional work (W ) is given by:

x x

f (lY - 1P2y'+ P1+ P1 + 2)dx fW = K A 1-12Y 1 2 - J I (x,y')dx
(lp 2)Y' + 21 + p2O~~ ~~o0

(2.4.5)

Legendre's condition insures that the solution will minimize the fric-

tional work since:

2K x ( 1+2) (+1 2)
lyyI = x 12(lp(2.4.6)
1ytY' [(1-p1P2)y' + 1+2]

Substitution of Equation (2.4.5) into Euler's equation and simplifying

yields:

x[(l-l2)Y 2+ 2(p 1 +p 2 )Y (p +2)]
- ~I Yc (2.4.7)

[ (l-1 2)' + 1+ 2 (2.4.7)

where c is an integration constant. The optimal chamfer shape is seen

to be independent of the spring constant. Equation (2.4.7) may be

solved using the quadratic formula to give:
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y' 1 = 2 r1 + 1 + ]c(1-1~2) (2.4.8)
l+P,2 -L l+I 2 pix + c(l- P2 )

where the + sign has been used. (see Inequality 2.4.3). It also follows

that c > 0 and the slope is bounded (use c = 0,0);

-(P1+P2 2 -Ni 1 '12)
+2 [ X + 1< 11< (2.4.9)(~1+2 IP1- 'p1

1 2 1-2

so that c = 0,0 chamfers serve as an envelope for the rest of the

chamfer shapes. This bound is due to the fact that an optimal slope

exists (see Section 2.4.3). Chamfers with steeper slopes than the

lower bound (Inequality 2.4.9) will not be minimum energy chamfers.

Equation (2.4.8) may be integrated using Dwight's Table of Integrals

(#'s 195.01 and 195.04) to yield the following dimensionless chamfer

equation:

Y = X + [X(X+C) - Cin(l+X/C + 
1P l2 ill(pl+P2) , XC

(2.4.10)

where

C (1-P1, 2 )
Y = y/xO , X = x/x O , C = and

l o2
l+~ 2 ~1+y12 + l+112 a nd12 < S = yo/xo < _1 [ + and

1P2 < 1 (2.4.11)

and the boundary condition Y(0) = S has been used. The integration

constant may be defined from Y(1) = 0;

1p2 { el+ cn +c+ t21S+ = 2 1 + V1[l·+C -CY, n I(2.4.12) +
(2.4.12)
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Summarizing, Equation (2.4.10) describes the optimal chamfer shape

given appropriate pi' 2' and S.

2.4.3 Results and Discussion

Based on the above analysis, the discussion will be broken up

into (1) Optimal Slope, (2) Computer Program, and (3) Chamfer Shapes.

There is a very strong interrelationship between the doorlatch

problem and the lateral peg support problem. In fact when 2 = 0, the

doorlatch problem reduces to the lateral peg support problem and all

of the quations and results of Section 2.2 apply (note that integration

constants are different).

Optimal Chamfer Slope

As before (Section 2.2) an optimal chamfer slope exists. The

optimal chamfer slope (mo) is given by:

mi ( 1 ,'"2) 1 2 1 +1 ] (2.4.13)

A straight line chamfer with this slope is the "optimal" optimal cham-

fer. All other chamfers give rise to larger frictional and insertion

energies. The effect of the second source of frictiop (2) on the
am0

optimal slope can be determined by examining 2 . It may be shown in
am 0 a1

general that -mo < o, so that as p2 increases, the optimal slope will
alt12 2

become steeper. This is also true for the "wedging" slope, -(p1+p2)

/( 1 12)

Computer Program "CHAMF"

A computer program called "CHAMF" (see Appendix A) has been

written which computes the dimensionless optimal chamfer shape

(Equation (2.4.10)) given appropriate p1 1 2 , and S. When 2 = 0, the

shape obtained is also the minimum energy chamfer shape for the lateral

peg support problem.

A Newton-Raphson method was used to determine the integration

constant C numerically. Because of the wide range of C (0,-) an ini-

tial guess for C is needed. For small aspect ratios (S), a large in-

itial guess is required and vice-versa.
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Chamfer Shapes

The various optimal chamfer shapes can be categorized by their

aspect ratios (S) and the friction involved (112). The discussion

of the different cases may be reduced to the case analysis done in

Section 2.2.5 by replacing by lp_12, -V - 1 by m(1, ' 2 ) and

referring to the corresponding equations in Section 2.4. Some of

these chamfer shapes are shown in Figure 2.4.3 for i1 = 0.5, p2 = 0.25.

1-

Figure 2.4.3. Minimum energy chamfer shapes for various
S, 1 = 0.5, P2 = 0.25.
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2.5 MINIMUM ENERGY CHAMFER EXPERIMENT

2.5.1 Introduction

An experiment was conducted which attempted to support the exist-

ence of the minimum energy chamfers developed in Section 2.3. Although

it is not possible to verify experimentally that a chamfer is a minimum

energy chamfer (since it must be compared to an infinite number of cham-

fers), some insight can be gained by comparing it to a finite number of

chamfers--such as a family of straight line chamfers. In the experiment

only three chamfers were used: one optimal slope chamfer and two

straight line chamfers. One of the straight line chamfers was flatter

than the optimal slope chamfer and the other was steeper than the opti-

mal slope chamfer. According to the theory developed, the flattest

chamfer will be nonoptimal primarily because the insertion forces are

too large, and the steepest chamfer will be nonoptimal because the in-

sertion forces must act over a very large distance. Also, since minimum

vertical work chamfers are the same as minimum frictional work chamfers,

either criterion may be implemented experimentally. The vertical work

criterion is much simpler because arc lengths and normal forces are more

difficult to measure than are vertical displacements and vertical forces.

For this reason the experiment was based on the vertical work criterion.

2.5.2 Specifics of the Chamfers Designed

A. Optimal Slope Chamfer

Given i, L, eo an optimal slope chamfer is recommended by Equa-

tion 2.3.11. Since the shape is dependent on the friction, the friction

coefficient must be predicted accurately beforehand. From previous work

using aluminum chamfers made on an N/C (Numerically Controlled) milling

machine (200 points/inch and smoothed with emery cloth) and steel tipped

pegs, the friction coefficient remained essentially constant at = 0.15.

This value will be assumed since the chamfers were made out of aluminum

as before (however, in some instances the tip of the peg was spring

steel) along with L = 5, = 16° which are nominal values for theo
length and offset angle, respectively of a pin to be inserted into a DIP

socket.

B. Straight Line Chamfers

The flattest straight line chamfer selected has an aspect ratio

between YW(0) = 0.39, the wedging aspect ratio, and Y°(0) = 1.40, the

optimal slope aspect ratio. If the aspect ratio is too close to 1.40
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there will be little difference in energy between that chamfer and the

optimal one; especially since the friction coefficient is so small. On

the other hand, if the aspect ratio is very close to 0.39, very large

forces will be present and wedging is even possible since can not be

known exactly. Buckling and surface galling are also possible if the

forces are too large. An aspect ratio of 0.6 was found to satisfy both

of these constraints with 22% more energy predicted than optimal.

The steepest straight line chamfer selected has an aspect ratio of

3.75 corresponding to 19% more predicted energy than optimal.

C. Actual Construction

Once the chamfers had been designed, N/C tapes were created to be

used as input to a Bridgeport N/C Milling Machine which machined the

chamfers. The coordinates on the tapes were not the coordinates of the

chamfers (x,y), but instead, the coordinates of the center axis of the

cutter (x - ry'//1 + y'2, y + rli + y 2) where r.is the cutter radius

(1/4"). All three chamfers are shown in Figure 2.5.1 (x = 0.600").

2.5.3 Experimental Apparatus and Procedure

A. Experimental Apparatus

The experimental apparatus used consisted of a test bed, force

sensor and LVDT, data-acquisition electronics, minicomputer, data-taking

software, and hard-copy output units. Much of the apparatus had been

used in previous Part Mating experiments as described in Draper Labora-

tory Report No. R-12185.

A Bridgeport Milling Machine served as a test bed supporting the

peg and chamfer, as well as the force sensor and LVDT (see Figure 2.5.2).

The peg was made out of spring steel and supported by an adjustable fix-

ture (in 80) which was held in place by the milling machine directly

above the chamfer. A small radius at the end of the peg reduced the

effects of surface galling and wedging. This fixture was designed and

built by members of the Draper Staff (R. Gustavson and R. Roderick) and

had been used in other part mating experiments.

Of primary importance are the sensors which measure insertion

force and insertion depth. The vertical force on the chamfer (or sup-

port point) was measured using Draper's 6-axis force sensor (Fig-

ure 2.5.3) mounted to the test bed directly beneath the chamfer. A pre-

amplifier was used to magnify the sensor's output for further process-

ing. The vertical displacement of the peg's support point was measured
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(a) Straight line (b) Optimal slope (c) Straight line
chamfer (S = 0.60) chamfer (S = 1.40) chamfer (S = 3.75)

Figure 2.5.1. Chamfers used in experiment.
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(in mm) using a Schaevitz DC-LVDT (Linear Variable Differential Trans-

former) with the specifications given in Table 2.5.1. Also, an auto-

matic drive (servo motor) which controlled the vertical displacement

permitted efficient data sampling and more accurate data.

Table 2.5.1 Specifications of Schaevitz Engineering DC-LVDT

GENERAL SPECIFICATIONS

Input 24 V dc (nominal), 25ma

Temperature Range -65°F to +200°F

Null Voltage 0 V dc

Ripple Less than 1% full scale

Linearity ±0.5% full range

Stability 0.125% full range

LINEAR SCALE FREQUENCY OUTPUT
RANGE FACTOR RESPONSE IMPEDANCE

TYPE (INCHES) (V/INCH) (-3db at Hz) (K OHMS)

3000 HR-DC ±3.000 6.5 10 7.0

MIN. LOAD WEIGHT (GRAMS)
RESISTANCE BODY CORE

200 270 31

The remaining hardware/software was used to process the data.

Signals from the sensors were run through a low-pass filter, multiplexed

and digitized by a 12 bit A/D converter before being read by a Nova II

minicomputer. In addition, four interactive computer programs written

in EXTENDED BASIC were used for (1) sensor biasing, (2) real time data

acquisition and storage, (3) printing data on the line printer and

(4) plotting data on the plotter.

B. Experimental Procedure

Calibration of Force Sensor

Prior to performing the actual experiment it was necessary to cal-

ibrate the force sensor. It was calibrated with weights as described in

detail in Draper Laboratory Report No. R-12185 but with one important

difference. Since only two force components are needed (lateral Fx,

vertical Fy) only one leg of the sensor was calibrated (leg #2). The

resulting "calibration matrix", W which relates the output voltages of

the sensor to the applied loads Fx, Fy was determined experimentally to

be:

128



DRAPER LABORATORY SIX-AXIS FORCE SENSOR

APPROXIMATE CHARACTERISTICS

Weight 6 lb 6 lb

Axial axis force sensitivity 0.026 lb 0.052 lb
(12 gm) (24 gm)

Radial axis force sensitivity 0.013 lb 0.026 lb
(6 gm) (12 gm)

Radial axis moment sensitivity 0.14 in.-lb 0.28 in.-lb

Maximum axial load 53 lb 106 lb
Buckling load per leg (no springs) 40 lb 320 lb

Diameter 4.5 in. 4.5 in.

Height 2.6 in. 2.6 in.

Figure 2.5.3. Draper's 6-axis force sensor.
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6.2381 -0.108
W = (2.5.1)

-3.0468 19.3271 (2.5.1)

so that

Fx = W[:;] = w[V3] (2.5.2)

where the forces Fx, Fy are measured in newtons and the voltages VS3,

VE3 are measured in volts, representing the output of the shear strain
gauge and the extensional strain gauge, respectively.

Data Acquisition

Once the force sensor had been calibrated and the apparatus set up

as described, experimental data was easily obtained (e.g. see Fig-

ure 2.5.4). First the sensor and LVDT were biased, then data taken,

printed and plotted. Several data runs were done for each chamfer.

2.5.4 Experimental Results

Many experimental plots, plotting the vertical force, F versus

depth, y* for each of the three chamfers were obtained. Unfortunately,

not all of the data gathered was "good data". Some of the data demon-
strated the sensitivity of the insertion force versus depth plot to

localizing effects (e.g. surface galling) yielding many large peaks and

valleys. This unpredictable behavior was of course not analyzed in the

model since both the peg and the chamfer were treated as rigid objects.

Its effect was reduced by adequately preparing the contact surfaces of

the peg and chamfer. Only three or four data runs were taken at a time;

then the surfaces were sanded with emery cloth before taking more data.

The remaining data (1/2) however was good conclusive data in agreement

with the theory predicted. Only data of this quality will be pre-

sented here. Typical experimental plots of insertion force versus depth

are shown in Figures 2.5.5-2.5.7 for chamfers #1, 2, and 3, respective-

ly. Figure 2.5.8 plots them all on the same axes. There is an obvious

trade-off between maximum insertion force and maximum insertion depth.
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Figure 2.5.4. Sample data from experiment - chamfer #2.
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Figure 2.5.5. Insertion force versus depth--chamfer #1.
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Figure 2.5.6. Insertion force versus depth--chamfer #2.
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Figure 2.5.7. Insertion force versus depth--chamfer #3.
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Figure 2.5.8. Insertion force versus depth-all chamfers.
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2.5.5 Comparison with Theory

A. Friction Coefficient

As mentioned earlier the friction coefficient had to be estimated

beforehand since the optimal slope chamfer's slope depended on it. A

value of p = 0.15 was assumed in the design. The experimental value may

be determined indirectly from the vertical force Fy, the lateral force

Fx, and the slope of the chamfer y' by projecting the contact force into

axes tangent and normal to the chamfer at the contact point. This

yields the following expression for p:

Fx/F + y'
= y (2.5.3)
y' (Fx/Fy) - 1

By evaluating Equation 2.5.3 at many points during the insertion an

average coefficient of friction was established for each of the chamfers

(see Table 2.5.2).

Table 2.5.2 Experimentally Determined Friction Coefficients

Chamfer V

1 0.135

2 0.221

3 0.169

B. Theoretical Plots of Insertion Force Versus Depth

Theoretical plots of insertion force versus depth were determined

for each of the chamfers by using Equations 2.3.7 and 2.3.23 where ap-

propriate substitutions have been made (e.g. for chamfer #1, = 0.135,

y' = -0.6 etc.). Several computer programs were written to compute

Fy(y*) (see Appendix A; FSTCH, FCHAM). In Figures 2.5.5-2.5.8 these

theoretical plots are plotted along with the experimental plots for di-

rect comparison. Note that the theoretical maximum insertion depth

ytmax tends to be greater than the experimentally determined maximum

insertion depth y*max. There are two reasons for this. First, as the

spring deflects angularly it also bends, so the distance from the tip of

the peg to the support point is slightly less than predicted. It then
* *

follows immediately from Equation 2.3.23 that ymax < ytmax. Secondly,

end effects make it impossible to start exactly at the top of the
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chamfer and end at the bottom of the chamfer. Also, the spring constant,

Ke, was not determined directly, but instead adjusted to fit the data

(matching experimental energies) while not biasing any one particular

chamfer (K8 = 85.1 N/rad).

C. Insertion Force Characteristics

The experimental plots obtained (Figures 2.5.5-2.5.8) exhibit the

general features of the corresponding theoretical ones. For example, in

Figures 2.5.6 and 2.5.7 the experimental plots (use curve fit) are very

linear; so are the theoretical plots. Also, in Figure 2.5.5 the theore-

tical plot is convex as is the experimental plot.

D. Insertion Energy

The insertion energy may be determined by evaluating the area

under the force versus depth plot and comparison of the experimental

energies with the theoretical energy predictions is the basis for the

entire experiment. To eliminate end effects for each chamfer a smooth

curve was run through the data and extrapolated to the theoretical maxi-

mum insertion depth. The experimental energy was then given by the area

under this curve. Before comparing the experimental energies they must

be multiplied by the theoretical ratio of the energy corresponding to

p = 0.15 (E(0.15)) to the energy corresponding to the actual p (E(p))

for that chamfer. These ratios were computed using numerical integra-

tion. This assures that the comparison will be fair since p is artifi-

cially made the same for each chamfer (o = 0.15). Only p = 0.15 will

do since the optimal slope chamfer was designed for p = 0.15. Ta-

ble 2.5.3 summarizes the results obtained.

Table 2.5.3 Comparison of Theoretical Energies
with Experimental Energies

Theoretical Experimental E(0.15)
Chamfer p Energy (Nmm) Energy (Nmm) E(p)

1 0.135 72.44 68.58 1.069

2 0.221 74.61 73.11 0.849

3 0.169 78.95 84.66 0.948

Theoretical Experimental Theoretical % Experimental %
Energy For Energy for Energy More Energy More

Chamfer p = 0.15 (Nmm) p = 0.15 (Nmm) Than Optimal Than Optimal

1 77.41 73.31 22.2 18.1

2 63.35 62.07 0 0

3 74.85 80.26 18.2 29.3
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2.5.6 Conclusions and Recommendations

A. Conclusions

Good comparison between the experimental results and the results

predicted by the theory was achieved. The experimental % energy more

than optimal for chamfer #1 was very close to the theoretical value

(18.1% versus 22.2%). For chamfer #3 there was more of a difference.

However, despite experimental errors, the experimental results corrobor-

ate the theoretical predictions; namely that chamfers much flatter or

steeper than the optimal slope chamfer give rise to larger insertion

energies.

B. Recommendations

Although the optimal slope chamfer is the mathematically optimal

solution, it is fairly complex and for many engineering applications a

chamfer which is only close to optimal but not optimal may be good

enough. Since the difference in insertion energy between a straight

line chamfer with an aspect ratio slightly larger than optimal and the

optimal chamfer is small when the friction is small (e.g. in experiment

only a 29.3% increase from S = 1.40 to S = 3.75) and because the optimal

slope chamfer is somewhat insensitive to L, a simple rule of thumb

exists for designing approximately minimum energy chamfers (within a few

%). Select appropriate materials for the peg and chamfer so the fric-

tion is small and construct a straight line chamfer with an aspect ratio

of S = tan ( + ) + sec A(86 + ). The larger L is the better this

approximation will be.
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SECTION 3

SUMMARY AND DIRECTION OF FURTHER RESEARCH

3.1 SUMMARY

A theoretical model of a compliantly supported rigid peg entering

a compliant hole was used to understand the mechanics of an idealized

assembly in terms of the assembly phases, the friction, geometry and

compliance. This led to the classification of different assembly phases:

chamfer crossing, one-point contact, two-point contact, resumption of

one-point contact, and line contact. The effect of various insertion

parameters on the "insertion force versus depth plot" was then deter-

mined and recommendations were made regarding the optimal location of

the compliance centers of both the peg and the hole.

The sensitivity of the "insertion force versus depth plot" during

chamfer crossing to the slope of the chamfer has led to the area of cham-

fer design. In this thesis different chamfers were designed subject to

minimum energy criteria and in all cases an optimal slope chamfer was

derived

In general, if a chamfer is too flat when compared with the opti-

mal slope chamfer very large forces will be present as well as large

insertion energies. On the other hand, if a chamfer is too steep in

comparison with the optimal slope chamfer the insertion energy will be

large because the contact forces must act over a very large distance.

This was verified experimentally.

3.2 DIRECTION OF FURTHER RESEARCH IN PART MATING

Thus far much research in part mating theory has centered on the

study of insertion force characteristics (force versus depth) for quasi-

static two-dimensional "peg-in-hole" models. Much has been learned but

the need to extend the research in different directions can not be for-

gotten. Two related topics in particular which have been perhaps over-

looked are (1) buckling and stability analysis and (2) extension to

three-dimensional peg-in-hole models.
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Buckling and stability analysis is very useful because it quanti-

fies physical limitations of the parts involved. As a simple example,

Equations 1.2.1 and 1.2.2 when properly interpreted may be used to com-

pute the buckling load for the normal force during chamfer crossing:

Ks/d(sin - cos ) where the compliance center distance, a, has been

optimally chosen.

Although three-dimensional models are inherently very complex,

they can be used to better understand the characteristics of an actual

assembly which can not be modelled using only two-dimensional models.

Other areas of research which could be investigated or extended

are:

(1) Variations and extensions of minimum energy chamfer design:

* finite thickness peg

* both lateral and rotational support

* minimize energy subject to constraints (e.g. fixed amount of
material - impossible?)

* design both contact surfaces subject to minimum energy cri-
teria (impossible?)

* given one contact surface design the other contact surface

(2) Model a compliantly supported compliant peg entering a compliant

hole

(3) Chamfer design in general:

* constant force chamfers (rotational support)

* buckling and stability

* minimum peak force chamfers (impossible?)

(4) Continuum elasticity models; finite element analysis

(5) Dynamic analysis (point out limitations of quasi-statis analysis)

(6) Design a mechanism which attempts to choose the compliance center

distance, a, optimally (i.e. no angular errors) during each assem-

bly phase. The RCC of course locates the compliance center dis-

tance, a, optimally (approximately) only during one-point contact.

(7) Multi-pin, multi-socket compliant part mating

(8) Energy propagation model of compliant part mating
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APPENDIX A

COMPUTER PROGRAMS: "LINLAT"

"LINROT"

"LINLR"

"LATERAL"

"ROTATE"

"LATROT"

"CHAMFR"

"CHAMF"

"FSTCH"

"FCHAM"

This appendix contains a listing in BASIC of the computer pro-

grams described in Sections 1 and 2.
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'Q:010 REM PROGRAM NAME: LINLAT(LIN SOL FOR LAT COMP HOLE)
;-12Ol CLOSE
003t DI1 A$ 8
;1040 INPLiT "DATA EI NAM'E: ",A$
i50 OPEN FILE [t, 1J, A
ij0 6 OPE' T LE [6h, 1] "$LPT"
Z:¢7. INPUT "CHAMFER ANGI.E PHI(CEG)= ",P1
080" INPUT "FRICTION COEFFIcIEhT MU= ",M

A0QO INPUT "CLEARANLE RATIO C ",C
;impo INPur "INITIAL LAIRAL ERROR frELTA/A: ",0)2
i11 , ITNPUT "MHOLF ULIAIETER D/A: ",D
01?20 INPUT "STIFFNESS ATIO-KX*A'2/KTHETA'- ",K9
0t13' INPUr "STIFFNEbS RAT!O-Kl/KX= ",H9
l140~ IraPUT "STIFFNESS RATIO-K2/KX: ",H01

k150 1 IPlJT "NO. OF CHAMFER CROSSING SOLUTIONS-Nt- ",N1
016 PRINT FILE[ 6],bATA SET NAME: ";A$
0170 PRINT FILE[6(O,SING "CHAMFER ANGLE PHI(UEG) ##.# ",P1
018f0 PRINT FILE[6] ,USING "FRICIION COEFFICIENT MU #,o# ,M
019V PRINT FILE61 ,USING "CLEARANCE RATIO C #.##### ",C
0200 PRINT FlLEb6],USING "INITIAL LATERAL ERROR DELTA/A #.#### "t,2
E1210 PRINT FILE t6] ,0SING "HOLE IAMETER O/A #.### ",0
0220' PRINT FILE t6] ,USING "STIFf NESS RAfIO-KX*A'2/KTHET ### ## ",K9
W 231 PRINT FILEr61,USING "STIFFNESS RATIO-Kl/KX ###,## "1,H9
024C1 PRINT FILE[6, JSNG "STIFFNESS RATIO-K2/KX ##.#*e# ",h
02s5 PRTNT FLE [6 ),USING "NO O CHAMFER CROSSING SOLUTIONS-Nl[ 01 ",,N1
0260 LET 08=0
r27l LET P:3.14592b535*Pi/180
02 AR LET Z=([)2-C*D/2)*TAN(P)
0290 LET Z9:Zo
o13¢1i REM 3EGiN CHAM iER COSSING***********************
,310 PRINT FILE[b],"CHAMFER CROSSING"
0320 FOR I:0 TO N1
0330 LET Z:Z0*I/N1
0340 LET XZ/(TANP) *(K9+1+1/H9-(1-C)*O*K9/{2*TAN(P-ATN{M)))))
0350 LET TZ/TAN()-X*(I+I/H9)
0360 LET Z5Z- (1-L)*O*T/2
0370 LET F5K9*X/(TAN(P-ATNM) ) )
0380 PRINT "CHAMFER CROSSING"
0390 PRINT FTLE[6J,IJSING "t-## #,#t# ",F5,Z5,T*18i0/3.1415926535,x
0400 PRINT FILE[1,O],USING "-###,#t# ",F5SZ5eT*180/3,1415926535,X
0410 LET 08=08+1
0420 NEXT I
0430 REM BEGIN POINT CONTACT************************************* *******
0440 LET L0:0
0450 PRINT FILEf6],"1 POINT CONTACT"
0460k FOR K=0 TO 1000
0470 LET L:L4+K*Z9/N1
0480 LET X:(D2-C*U/2)/(I+I/H9+K9*(1-L)-2-M*(I-C)*O*K9*tl-L)/2)
040 LE r TK9X* (1-L-M* (1-C)*D/2)
1500 LET F5K9*X*M
P:510 LFT Z5:z+L- I1-C)*D*T/2
0520 LET (40+X/HM
0530 LET 05=L*T+(1-C)*D
254;0 PRINT "1 POINT CONTACT"
0550 PRINT USING "'-##,#4#M ",05,04,L
056k) IF 05>0 THEN LET K1000
0570 TF D5>04 THEN GTO 0b20
0518) IF T<O THEN LOTO 870
05'90 PRINT FLE6 J ,USING 1"-#f#t#### " F 5 Z5,T* 0/31415926535, X
ObW0 PFINT FILE 1,r J,USING "-###,## ",F5,Z5sT*80/3,141592b535,X
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LET 08=08+1
NEXT K
REM BEGIN 2 POiNT CONTCT*********************************.***
LET L2=L
PRINT FILEr6],"2 POINT CUNTACT"
FOU K=0 TO 1000

LET L=L2+K*ZJ/N1
LET Cl:K9*H9+K9*H+K9*H9*K9*(t-L)-2+Kq*HO*K9+K9*H9*K9*HO*L-2
LET C2:K9*M* 1-C)*I)*CK9*H9* (-L) +K9*H)/2
LET C3= (K9*lh+Kq*HO+K9*H9*K*H*L-2) *02
LET C4=K9*H-K9*H9+K9*H9*K*HO*L2-2*K9***H99H*L
LET X=(C3+C4*C*0/2)/(C1-C2)
LET X2t(K9*(LK9*H9* (1-L-M*(t-C)*D/2)-1)*X-K9*H9*C*O)/(C3/02)
LET X8L*K9*H9*( 1-L-M*(l-C)*n/2)-1
LET Xlt (+L*KQ*H*(l-M* (1-C)*)/2) )*X2+C*D)/X8
LET T=(XI+X2+C*O)/L
LET F5=M*(K9*H9*XI+K9*HO*X2)
LET ZSzo0+L-(1-C)*O*T/2
IF X2<0 THEN LET LL
IF X2<0 THEN LET Z9=Z9/5
IF X2<0 THEN GOTO 0450
PRINT "2 POINT CONTACT"
PRINT FILE6J1 USING "-a ###.## ",F5,Z5,T*180/3.1415926535,X
PRINT FILEI,0] ,USINrG 1"-a##, t, " ,F5,Z5,T*l80/3.1415926535,X
LET 06=08+1 -

NEXT K
PRINT FILE(6b,SING "NO ATA POTNTS ## ",n8
PRINT USING "NU DATA POINTS ## ",08
CLOSE
ENO

REM PROGRAM NAME: LINROTCLIN SOL FOR ROT COMP HOLE)

CLOSE
DIM AS EC

INPUT "ATA SET NAME: ",A$
OPEN FILE rl,1] A$
OPEN FILE t6,1], "LPT""

"CHAMFER ANGLE PHI[DEG): ",Pi
"FRICTION COEFFICIENT MU= ",M
"CLEARANLE RATIO C ",C
"INITIAL LATERAL ERROR DELTA/As "D2
"HOLE DIAMETER D/AU ", O
"HOR. COMP, CEN, OF OLE CH/Az ",G
"VER, COMP. CEN, OF HOLE CV/A= ",G1
"S1 IFFNEbS RATIO-KX*A'2/KTHETA2 "K9
"STIFFNEaS RATIO-KTHETA1/KTHETA= ",R9
"STIFFNLS RATIO.KTHETA2/KTHETA= ",RO
"NO, OF LHAMFER CROSSING SOLUTIONSNi1
F1LE[6],'OATA SET NAME: ";A$
FILE[6],JSING "CHAMFEH ANGLE PHI(DEG)
FILEb61],USING "FRICTION COEFFICItNT MU
FILE6] ,USING "CLEARANCE RATIO C #.###
FILE [6J1 SING "INITIAL LATERAL ERROR 0
FILECb],USING "HOLE OIAMETER D/A #,##
FILElb],JS[NG "HOR COMP CEN- OF HOLE CH

FILEt61,USING "VER COMP CEK1 OF HOLE CV

",N1

##,# ",PI
#,## I,M

## "C
ELTA/A #,#### "U2
",D

/A #,# ",G
/A #.## "G1
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0610
0620
0630

0650

067

070
71t 0

0720
07301
0740
0750
0760
0770
0780

0810
0820
0830
0841
0850
0860

0880
0890
0900

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
01 10
0120
0130
0140
0150
0160
0170

180
0190
0200
0210
0220
0230
0240
0250

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
PRINT
PR INT
PRINT
PRINT
PR I NT
PRINT
PRINT
PRINT



0260 PRINT FILE t63] JSING "STIFFNESS RATIO-KX*A-2/KTHETA #,q### "K9
0270 PRINT FLE[6bJ USING "STIFtNESS RATIO-KTHETAI/KTHETA ###,### ",R9
028 PRINT FILE 6,LJSING "STIFFNESS RATIO-KTHETA2/KTHETA ###,### ",RO
02910 PRTNT FILEr6],LSING "NO OF C4AMFER CROSSING SOLS-N ### ",Nl
0300 LET 08-0
0310 LET P-3,.4192b535*P/l80
0320 LET Z!0=(t)2-C*/2)*TANq(P)
033 LET ZS9Z0
0340 RE'1 EGIN CA ROSMrING********* R*********
0350 PRINT FILF rJ6, "CHAMFER CROSSIN!G"
03h FOR :=0 TO N1
0370 LtI' Z:ZO*I/N1
038'i LIT Z1i:Z-Z
0390 LET C:TAN(PJ*(K9+1)- (-C)*O*K9*TAN P) / (2*TA:4(P-ATN(M)))
ji400 LET C2 (rl+zLi)*TAN(P) *(G+Z-(G-Z1/(TAN(P)) ) / TAN(P-ATN(M))))
0410 LET X=Z/(Cl+C2*K9/R9)
B420 LEr C3:(G+Zl)*((GI+Z1)*TAN(P-ATN(M))-(G-Zl/(TAN(P))) )
0430 LET C4:T4N(PJ *(K9+1)+(I-C)*O*TAN(P)/(2*(TANP-ATN(M))-(iC)*D/2))
G440 LET T:K9*Z/(L4+C3*K9* (TAN(P TANPATN(M))-(l-C)*D/2)))
450 LE r T (Z/(TAN (P) ) -T-X) / (GI +ZI)
460 LET Z5Z-(C-L)*D*T/2+(Zl/(TAN(P))-G) *TI
0470 Lr F5:9=*X/(TAN(P-ATN(M)))
0'4.0 PRINT "CHAMFtR CROSSIIG"
0490 OR'rN FTLE(6i,USING "t-#f####, ",F5,Z5,T*180/3.1415926535,X
r500 PRINT FILELitOl ,USiNG "-###,t#, ,F5,Z5,T*18A/3. 1415,6535,X
o510 t.E' O08=8+1
0520 NEXT I
0530 REM liEGIN POINT CTCT*****************************************
0540 LET !LO-0
0550 PRINT FILE(6t, " lPOINT CONTACT"
056d FOR K: To 1i00
0570 LET L=LO+K*ZO/Nl
0580 Ltr C5=1+K9* . l-L) * (1-L-* (I-C) *0/2)+Gl*K9* (GI-M*G) /r9
0590 LET TK9* (02-C*D/2) * (-L-M* tC) *D/2)/C5
2600 LET X (O2-C*U/2)/C5

0610 LET F5=9*X*ll
0620 LET rlt * (Gl-M*G) / (R9* (I-L-M* l-C) *0/2) )
0630 LET Z5-ZO-(1-C)**T/2'L-G*T1
064 0 LET i)4=+Gl * I l
0690 LET 05zL*T+(l-C)*D
0660 PRINT " POINT CONTACT"
0670 PRINT USING "-###.### ",05,04,L
0680 IF 5>04 THE6 LET K1000
0690 TF D5>04 THEN GOTO 0740
07ol IF T<O THEN OTO 1000
0710 PRINT FLE16J,USING "-#a### t### ",FS,Z5,T*180/3,1415926535,x
0720 PRINT FILEC1i0J,USING ",F5,Z5,T*180/3,l4I592b535,X
0730 LET 08=AO+1
0740 NExT K
0750 REI EGID 2 POINT C *************************************
0760 LET ILL
0770 PRINT FILEr6bJ"2 POINT CONTACT"
0780 FOR K=0 TO 1002
019g I ltT L:L2+K*Z4/Nl
?800 LtT Cb:K9*Gl*(GI-L) * G-M*G)*(GI-M*G-L) +9*(G-L) * (Gl-M*G-L)
0810 LET C7:R0*G1*( CG-M*G)+RO*K9*Gl*Cl-M*(l-C)*U/2)*(GI-M*G)
0820 LET C8:R9*NR*L-2-K9*N9* (M*(l-C) */2-1+L) * l-L) *G-L) *IG-M*G-L)
0830 LET C9=-K9*R9*(r)2-C*0/2)*(,1*(1-C)*0/2-1+L)*(Gl-L)*(GI-i*G-L)
0840 LET CuWK9*NO*Gl*(1-M*(I-C)*nO/2)*(2+C*/2)*([1 -M*G)
0850 IET T:(C9+CO+R9*RO*L*C*D)/(C6+C7+C8)
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LET O1:R9*H0*L* (U2 *L.-C*DO* (L/2 ) +(02+C*0/) *Gl*(G1M*G),R
LET X (O1t+(D-C*D/2) *(G-L)*(G1-M*G-L)*R9) /(C6+C7+C)
LET T (02-C*0/2- (1-L) *T-X) /G1
LET T2 (L* -l* r-C*O) / (G1-L)
LET F5=M*(cR9*T/(GI-M*G)+R*T2/(GI-M*G-L))
LET Z5=Z9-(1-C)*U*T/2+L-G*T1
IF T2<0 THEN LET LO=L
IF T2<0 THEN LET Z9=Z9/5
IF T2<( THEli GOTU CA553w
PRINT "2 POINT CONTACT"
PRINT FILE[bJ ,US1NG "1####.#.### ",FSZS,T*1d0/3t1415926535,X
PRINT FILEEI,O0,USING "-##.*.###, ",F5,ZST*180/3.41S926535,X
LeT 08=08+1

NEXT K
PRINT FILErb],USING "NO DATA POINTS ### ",08
PRINT USING "NU UATA POINTS ## "G08
CLOSE
ENO

REM PROGRAM NAME: LINLR(LIN SOL FOR LAT AND ROT COMP HOLE)
CLOSE
DI' A [81
INPUT "DATA SEf NAME: ",A$
DIM d [3,3]

OIM E [3,1 
OIM J 3, 1]
DIM U[3,31
OPEN FILE1,l],A$
OPEN FILE (6, 1J,"$LPT"
INPUT "CHAMFER ANGLE PHI(DEG)a ",P1
INPUT "FRICTION COEFFICIENT MUm ",M
INPUT "CLEARANLIE RATIO C ",C
INPUT "INITIAL LATERAL ERROR DELTA/A: ",02
INPUT "HOLE UIAMETER D/A: ",0
INPUT "HOR. CUMP, CEN, OF HOLE CH/A: ",G
INPUT "VER, COMP, CEN, OF HOLE CV/A= ",G1
INPUT "STIFFNLtS RATIO-KX*A-2/KTHETA= "K9
INPUT "STIFFNESS RATIO-K1/KXZ ",h9
INPUT "STIFFNESS RATIO-K2/KX= ",HO
INPUT "STIFFNEbS RATIO-KTHETA1/KTHETA= ",R9
INPUT "STIFFNESS RATIO-KTHETA2/KTHETAs ",R0
INPUT "NO, OF CHAMFER CROSSING SOLUTIONS-NI- "NI1
PRINT FILE[6)"DATA SET NAME: ";AS
PRINT FILE61bllSING "CHAMFER ANGLE PH (DEG) ##,# ",P1
PRINT FILE [63 USING "FRICTION COEFFICItNT MU #,# , ",M
PRINT FILE6]1,0SING "CLEARANCE RATIO C ,##### ",C
PRINT FILE[6beUSING "INITIAL LATERAL ERROR DELTA/A #.A###
PRINT FILE[6]1,jSING "HOLE IAMETER /A #,### ".0
PRINT FILE6bJ uSING "HOR COMP CEN OF HOLE #,## ",G
PRINT FILEt61,USING "VER COMP CEN OF HOLE #,## ",GI
PRINT FILEt6J,JSING "STIFFNESS RATIO-KX*A'2/KTHETA ###,##
PRINT FILE 6blSING "STIFFNESS RATIO-KI/KX ###### ",H9
PRINT FILE6] ,USING "STIFFNESS RATIO-K2/KX ###,##t ",10
PRINT FILEElb6]SING "STIFFNESS RTIO-KTHETA1/KTHETA ###,.#
PRINT FILE6] USING "STIFFNESS RATIO-KTHETA2/KTHETA ###.##
PRINT FILET61 JSING "NO OF CHAMFER CROSSING SOLS-Nt #*# ",

". 02

",K9

" *,R9
# ",R 
NI
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0380 LET 08-0
0390 LET P3,141592b535*P1/180
0400 LET Z0OC(D2C*O/2)*TAN(P)
0410 LET L9aZO
0420 REM EGIN CHAMrER CROSSING**************************
0430 PRINT FILE[b61,CHAMFER CROSSING"
0440 FOR 1=0 T Nhi
0450 LET Z:Z[*I/N1
0460 LET Z 1Za-Z
0470 LET ClmTAN(P)J *K9+1)-(l-C)*O*<9*TAN(P)/(C2*TA(P-ATN(M)))
0480 L.T r C2 (Gi+Zi ) *TANP) *(GI+Zl-.(Zl/(TANCP) ))/(TAN(PATN ) )))
0490 LET X=Z/(C1+CL2*K9/R9+TAN(P)/H9)
05o0 LET CS=: (G1+Z]*C(G+Z l)*TANCP-ATN (M) )(G-Z/(TAN(P) ) )
0510 LET C4UTAN(PJ* (K9+1)+(I-C) *O*TANP(2*T AN(P-ATN(M))-(1IC)*O/2))
0520 LET C5:C4+C3*K9*TAN(P)/(R9*(TAN(P-ATN(M))-(In-C*O/2))
0530 LET T:K9*Z/(S5+TAN(P)*(I+(1-C)*O/(2*TANCP-ATN(M))-(1-C)*O))/H9)
0540 LET Tl(Z/TrAN(P))-T-X*( . I/H9))/(Gt+Z1)
0550 LET ZS=Z-(C-)*O*T/2+CZl/(TAN(P))-G)*TI
0560 LET F5"K9*X/fTAN(P-ATN(M)))
0570 PRINT "CHAMFLR CROSSING"
0580 PRINT FILE[6jUSING " -####g,#### ",F5,ZS,T*180/3.1415926535,X
0590 PRINT FILE10]wUSING " .-###.### "wF5wZ5 T*183/3.I14 5926535,X
0600 i.ET 08=08+1
0610 NFxr I
0620 REM EGIN 1 POINT CONTACT
0630 LET L0=0
0640 PRINT FILEt6J,"1 POINT CONTACT"
0650 FOR K=0 T 100a
0660 LET L=L0+K*Z/N 1
0670 LET C5 I +K9* L) * (-L-M* I-C) *D/2) +G*K9* CGl-'*G)/R9+1/H9
0680 LET TK9* (o2.C*r)/2) *( -L-M* Ci-C)*O//) /C5
0690 LET X= (n2-C*u/2)/C5
0lo LTr F5K9*X*M
0710 iET l T* (GIM*G) / (R9* C1-L-M* (1 -C) *U/2))
0720 LET ZSZO-(1'-C)*O*T/2+LiG*T1
0730 LET 4:D+Gl*' 1+X/H9
0740 LET O5:L*T+Ci-C)*
0750 PRINT "1 PINT CONTACT"
0760 PRINT USING "-*###### ",05,O4tL
0770 IF 09,04 THEN LET Ko1000
0780 IF 5>04 THEN GOtO 0830
0790 If T<O THEN OTO 1190
0800 PRINT FTLE[6J USING "-#####,#### ",F5ZS,5T*I80/3,I415926535,X
0810 PRINT FILE1I,J ,USING " ##e##, ",F5,Z5.T*80/3.t4159.26535,x
0820 LET 0808+1
0830 NEXT K
0840 REM EGIN 2 PUINT CONTACT
0850 LET L2:L
0860 PRINT FILE[6 !"2 POINT CONTACT"
0870 FnR 0 TO 1000
0880 LET LL2+K*Z/N1
0890 LET B[1,11:1
0900 LET B[12]=R'9*((lC)*D*M/2-1+L)/(G1-M*G)
0910 LET B T,3] :Rid* (ll(I-C) *U*M/2) / (G1M*G-L)
0920 LET 8[2,111'L
0930 LET H[2,2]Cl/K9+1/(K9*HI9)j*R9/CG1-M*G)+GI
0940 LLT 8r2,3] =t-0/(K9*(GI-M*G-L))
0950 LET 8[3,]JaL
0960 LET 83,2]2-iR9/(K9*H9*(Gl-M*G))+G1)
0970 LET 3L3]3l=-R/(K9*HO*CG-M*G-L))+.G1L)

145



LET Ee1,110
LET EC2,11]zOuC*U/2
LET EC3,1J]C*O
MAT U-INV(6t)

MAT J:U*E
LEt x2=R3*J .,11/(K9*h0*(Gl-M*G-L))
LET X1=R9*J d1 /(K9*9*(G1-M*G))
LET F5zM* (K9*H9*X 1 +K9*h0*X2)
L Er ZS=Z-(1-C)*O*J [I,1] /2+L-G*J 12,1
LET xD2-C*)/2-X 1-G1*J 2, 1 - (1 -L) *J [1,1 

IF X2<0 THEN LET LO=L
IF X2<0 THEN LET Z9xZ9/5
IF X2'0 THEN GOTO 0640
IF Jt3,ll<o THEN LET LL
IF J(3, 1]<0 HEN LET Z92Z9/5
IF Jl3,lt]< IHEN GOTO 0640
PRINT "2 PUOINT CONTACT"
PRINT FILEb6J fUSING "-#####,#### ",FS,Z5,J[1,1]*t80/3,141593,X
PRINT FILECI 03 ,OIING " #, #*##, ",F5,Z5,Jt,l 1*180/3.141593,X
LET 08=08+1

NEXT K
PRINT FILE[6],USING "NO DATA POINTS ## ",08
PRINT USING "NU DATA POINTS #o ",08
CLOSE
EN,3

REM PROGRAM NAME: LATERALtGEN SOL FOR LAT COMP HOLE)
CLOSE
IM A$ [8

INPUT "OATA SEI NAME: ",A$
OPEN FILE(,1] ,AS
OPEN FLE [6,llr"$LPT"
INPUT "CHAMFER ANGLE PHI (DEG)= ",P1
INPUT "FRICTION COEFFICIENT MUm ",M
INPUT "CLEARANCE RATIO C: ",C
INPUT "INITIAL LATERAL ERROR DELTA/A= ",02
INPUT "HOLE )IAMETER D/A "0
INPUT "STIFFNESS RATIO-KX*A^2/KTHETA= "K9
INPUT "STIFFNEbS RATIO-K1/KX= "H9
INPUT "STIFFNESS RATIOK2/KX "wH0

T

T
T
T
T
T
T

T
T

T
T

"NO OF
FILE (6]
FILE [61
FILE [61
FILE 1hi
FILE (6]
FILE [61
FILE [63
FILE (6]
FILE [6]
FILE (63

CHAMFER CROSSING SOLUTIONS-Nl1 ",Ni
,"OATA
,USING
,USING
,USING
,USING

,USINGfUSING
pUSING
,wSING
,JSING

SET NAME: "AS
"CHAMFER ANGLE PHI (DEG) #",PI
"FRICTION COEFFICIENT MU #,##",M
"CLEARANCE RATIO C #.####",C
"INITIAL LATERAL ERROR DELTA/A #.#### ",02
"HOLE IAMETER O/A #t,## ",D
"STIFFNESS RATTO-KX*A-2/KTHETA ###,###",K9
"STIFFNESS RATIO-K1/KX ##,###"',H9
"STIFFNESS RATIO-K2/KX ##.##N",HO
"NO OF CHAMFER CROSSING SOLS-Ni ### ",N1

08: 0
P:3,14 1 5926535*P/180
ZO:(D2-C*O/2)*TAN(P)
Z9:Z@
REGIN CHAMFER CROSSING*************************************
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0980
0990
1000
1010
1020
1030
1040
1 050
1 06
1070
1080
1090
1100
1110
1120i
1 30

1140
1150
1160
1170
1180
1190
1200
1220
1220

0010
0020
0030
004 0
0050
0060
0070
0080
009a

0110
0120
0133
0140
0150
0160
0170
0180
0190
0200
021U
0220
0230
0240

p260
~270
0280
0290
0300

INPU
PRIN
PRIN
PRIN
PRIN
PRIN!
PRIN
PRIN
PR tN
PRTN
PRIN
LET
LET
LET
LET
REM



0310 PRITNT FILEr6l r"CHAMFER CROSSING"
0320 FOR I0 TO N1
0330 LET z:=Z*I/NI
0340 LET T4=0
0350 LET T9SQR (1+ (* (I-C)) ?/4- (02-0/2) 2)
0360 LET T3-4TN(O*1(-C)/2)+ATN((n?-0f/2)/T9)
0370 FOR J=1 TO 4
0380 LET TT3*J/4+T4
0390 LET =z/ (TAN (P) ) -SIN (T5) (1- C ) * (SIN (T/2) ) 2
Q)400 LET H1=SIN(T5+S+-M*COS(Ts+P)-(D*(-C)/?) *rCOSTS+P) +M*SIN(T5+P))
0410 LET 2=: (SI.N CP)-M*CS (P) )* ( /9+1/ K9*H9))
0420 LET T=B*B1/52
0430 PRINT SING "-###### ",I,J,T*18(0/3,141593T5*l80/3.i41593
0440 IF AS CT-T) *<.00A001i THEN GOTO 0510
0450 IF TTr ThLN GOTO 470
0460 NEXT J
0470 LET T4=TS-T3/4
0480 LET T3=T3/4
B0490 GO'TO 037o
0500 REM CHECK CHAMFER CROSSING SOLUTION** ***********************
0510 LET 84=SIN T+P) -M*COST+P)
0520 LET 5= (n*(l-C)/2)* CCOSC TP) +M*SINT+P) )
0530 LET FS=T* (COS (P) +M*SIN (P) ) / (4-BS)
0540 LET F2=F5/(CUS(P)+M*SIN(P )
0550 LET F3=F2*(SIN(P)-M*COSC P))
0560 LET X=F3/K9
0570 LET XI=F3/(A 9*H9)
0580 LET MilT
0590 LET Z5SZ+l-COS(T)-0*(l-C)*SINJ(T)/2
0600 LEI ElF3-F2* (SIN(P)-M*COS(P))
0610 LET E2=F5-F2*(M*SIN(P)+COS (P))
0620 LET E3:M1+F2*(M*COS(T+P)-SIN(T+P)+((1-C)/2)O*(*SINCT+P)+COS(T+P)))
0630 LEI' E4=F3-K9*X
0640 LET E5= t-T
0650 LET Eh:K9*H9*X1F2*(SIN(P) -M*CCS(P))
0660 LET E=Z/CTAN(P))-SIN(T)-X-(i-C) *O*(SIN(T/2))~2-X
3670 LET F8Ez+I -Zb- ( i -C)*D*SN (T)/2-COS (T)
0680 PRINT USING "-#.####",,IE2,E3,E4
0690 PRINT USING "-#,f###" ,E5,E6,E7,E8
0700 PRINT "CHAMFLR CROSSING"
07101 REM BACK TU MAIN POGAM******************************************
0720 PRINT FILEL6J ,USING "-4##, ### ",F5,Z5,T*180/3.1415926535,X
0730[ PRINT FTLE1,0],USING "-##,###, ",F5,Z5T*180/3.14I592b535,X
a740 LET 08=08+1
3750 NEXT I
0760 REM EGIN POINT C ** **********************************

;770 LET L0:0
0780 PRINT FILEr6] " POINT CONTACT"
Z790 FOR KO TO 1000
3800 LET' l.=LO+K*Z9/N1
3810 LET T5=
0820 LET P2:3.141926535/2-P
0830 LET T8=P?
2840 FOR' N=1 TO 4
0850 LET T7=T8*N/4+T5
0860 LET 6=O2-(*i)/2- ( -L)*SIN(T7)-(l-C) *D*(SI (T7/2)) 
0870 LET 7:1-L-M*(I-C)*/2
0880 LET 8: (l+l/h9)* (COS(T7)-M*SIN(T7))
0890 LET TK9*6Bb*7/88
0900 PRINT USING " .###,#### ",K,N,T*180/3.141593,T7*180/3.141593
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0910 IF A(T-Tf)<000OrA01 THEN GOTO 0910
0920 IF T<TT THtN GOTO 0940
0930 NEXT 
0940 LET T5=T7-T8/4
0950 LET T8:tT/4
0960 GOTO 84
0970 REM CHECK 1 OINT CONTACT SOLUTION***************************
4980 LET F2: T/ (-L- ( t-C) ** M/2)
0990 LET F3=FP*(CUS(T)-M*SIN(T))
1000 LET x:F3/K9
1010 LET M1 T
1020 LET F5xF2*(SIN(T)+M*COS(T))
1030 LET Z5:ZOI-COS(C ) +L*COS(T)-(1-C) **SIN T)/2
1040 LET X 1 =F2*(CS (T)]-M*SIN(T)) /(K9*H9)

1050 LET El:F3F2*(COS(T)-M*SIN(T))
1060 LET E2FS-F2* (SIN(T)+M*COS(T))
1070 LET F3:M1-F2*(l-L-(l'C)*O*M/2)
1080 LET E4:F3-K9* X
1090 LET E5SMl'T
1100 LET E6xK9*H9*X1-F2*(COS(T)-M*SIN(T))
1110 LET EI:02-X-X1-C*U/2-(-L)*STN(T)-(-lC)*D* {SIN(T/2))-2
1120 LET E:ZO+-1Z5-(1-L)*COS (T)- 1-C)*O*SIN(T)/2
1130 PRINT USING "'#.#### ",E1,E2,E3,F4

1140 PRINT USING "-F#### ",E5,E6,E7,E8
1150 PRINT "1 POINT CONTACT"
1160 REM ACK TO AIN .PROGRAM**************************************
1170 LET 04X1I+D
1180 LET S:L*SIN(T)+(1-C) *O*COS(T)
1190 PRINT USING "-#t#,## ",05,014,L
1200 IF 05>O4 THEN LET K=1000
1210 IF D5>04 THEN GOTO 1250
1220 PNiNT FTLE (bJ,USING "-###*,4### ",FS,Z5,T*180/3,1415926535,X
1230 PRINT FILE[1,0 ,USING "-###.###, ",F5,Z5,T*180/3*141592bS35,X
1240 LET OQBO81+
1250 NEXT K
1260 REM BEGIN 2 POINT CGNTACT*************************************
1270 LET L2=L
1280 PRINT FILEb61l"'2 POINT CONTACT"
1290 FOR K TO 1000
1.300 ILET LIL2+K*ZO/N -

1310 LET T5s0
1320 LET T8:P?
1330 FOR NI TO 4
1340 LET T7mT8*N/4+T5
1350 LET 8 =D2-gC*/2 (1-L) *SIN T7) (1-C)*D* (SIN CT7/2) ) -2

1360 LET r2= (1-C) **COS (T7)-D+L*SIN(T7)
1370 LET 83=(1L-(1-C)*O**M/2)/(COS(T7)-M*SIN(T7))
1380 LET F:M*(1-C)*U*CUS(T7)/2+M*SIN(T7)+(1-C) *O*SI(T7)/2-COS(T7)
1390 LET TO:(K9*HO*62+K9*B1)*((K9*H9+K9)*F+K9*H9*63)/(K9+K9*H9+K9*HO)
1400 LET T=T0-K9*F*1l
1410 PRINT JSINU "-###"### ",K,N, T*180/3141593,T7*180/3.141S93
1420 IF ABS(T-T7)<0.0 e0 01 THEN GOTO 1480
1430 IF T<T7 THEN GOTO 1450
1440 NEXT l
1450 IET T5T7-T8/4
1460 LET TT8/4
1470 _GTO 133n
1480 9EM CHECK 2 POINT CONTACT SOLUTION*****************************
1490 LET X(T+K9*F*1I)/(F*(K9+K9*H9)+K9*H9

* B3)
1500 LET F:K9*h9*X1/ (COS(T)-M*SIN(T))
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LET X2O* (j-L) *COS (T) nD+L*SIN(T)-X1
IF X2<0 THEN LET L0L.
IF X2<0 THEN LET Z9Z9/5
IF X2<0 THEN GOTO 0780
LET F2=K9*,H*X2
LET F3:F1 * (CUS (T) -M*SIN (T)) -F2
LET XF3/K9
LET Z5=Z.+.1- ( 1-L) *COq CT) - ( 1-C) *O*S IN (T) /,
LET F5=F (*C1N (T)+M*COS () )+,*F 2
LE T MI=T
LET EI1F3-F1* (COS(T)-M*SIN(T1)+F2
LET E2:FS-F1*(SIN(T)+M*CUS(T))-M*F2
LET R3:M1+F1* ((1-C) **M/2-+L)
LET R4:F2*(M* C1-C)*D*COS(T) /+M*SIN (T)+(1-C)*O*SIN(T)/2-COS (T))
LET E3=R3-R4
LET E4:91-T
LET ESF3-K9*X
LET E6=F2-K9*HO*X2
LET E7=Fi*(CUS(T)-M*SIN(T))-K9*H9*X1
LET ES-fn2-C*0/2-X-X1-C(IL)*SIN(T)-(I-C) **(SIN(T/2))-'2
LET E9:ZO+1-L5-C-L)*COS(T)-(1C) *O*SIN(T)/2
LET EO -( C)*o*C(S(T)+L*SINCT)-X1-X2-D
PRINT USING "-#,#### ",E1,E2,E3,E4,E5
PRINT USTNG "'#,#### ",E6,E7,Eb,E9,EL
PRINT " POINT CONTACT"
REMi BACK T AIN PqOGRAM***********************,************
PRINT FILE6bJ USING "'# #.###. ",FS,75,T*1BO /3.1415926535,X
PRINT FTLE1,J3] ,us ING "'*#.####, ",F5,Z9,T*180/3.141i926535,X
PRINT USTNG "-##/.#### ",X2,L
LET 08=o0+1

NEXT K
PRINT FILEC6] USING "NO DATA PoINTS ### ",08
PRINT USING "NO DATA POIN.TS ##* ,08
CLOSE
ENO

REM PROGRAM NAME: ROTATE(GEN SOL FOR ROT COMP HOLE)

CLOSE
DIM A$ CB]
INPUT "'JATA LI{ .NAME: ",A$
CI M J C 2,2 1
01 Y [2, 11
i,Im u12, 13
DrIM ' 2, 11
I'M V (2, t]

0 l [ A 2. 21

OIM al6,11

0I' [r6,1]

OI E [6,6b
OPF N FILEf1,lj,AS
OPFN FILE 6h, 1] , " $LPT"
INPUT "CHAmFER ANGLE PHI(UEG): ",P1
INPUT "FRICTION COEFFICIENT MU "M
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1510
1520
1530
1540
1550
1560
157 
1580
15 90
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

1820
1830
1840
1850

e010
0020
0030
0040
0050
0060
007 0
0080
0090
0100
0110
01 20

0140
150

01 6E
01 0

018 

020k;



"CLEARANLE. RATIO C ",C
"INTTIAL LATERAL ERROR DELTA/A= ",D2
"HOLE UIAMLTER O/A= "D
"'HOR, CMP. CEN, OF HOLE Ch/A "G

"VER, COMP. CEN. OF HOLE CV/A= ",G1

"STTFFNE5S RATIO-KX*A-2/KTHETA= ",K9
"STTFFNE5S RATIO-Thi.TA1/KTHLTA: ",k9
"STIFFNEjS RATIO-KrHETA2/KTHETA= ",Rn
"SCALAR
"NO 6 OF
FILE (6]
FILE rb6
FILE r6]
FILE r6]
FILE [b]

FILE 63
FILE [61

FILE (6)
FILE (b]
FILE t6]
FILE 61
FILE 61J

FILE [b)

TEp SIZE S: ",S

LHAMFER ROSSING SOLUTInNS-N m1 ",N1
SET NAME: ";A$
"CHAMFER ANGLE PhIlDEG) #4#t ",Pi
"FRICIGN COEFFICILNT MU # 1## ",M
"CLEAKANCE RATIO C #.*#### ,C
"INITIAL LATERAL ERROR OELTA/A #,*### ",U2
"HOLE IAMETER /A #,### "ID
"HrR (OMP CEN OF HOLE CH/A ### ",G
"VER COMP CEN OF HULE CV/A #.** "GI
"STIFFNESS RATIO-KX*AA2/KTHETA ###,#4 ",K9
"STIFFNESS RATIO-KTHETA1/KTHETA ###.### ",R9

"STIFFNESS RATIO-KTHETA2/KTHETA ###,### ",RO
"SCALAR STEP SIZE S #.# "S

"NO OF CHAMFER COSSING SOLS-Nt ### ",N1

, 'DATA
, SING
,USING

,USING
, USING

,USING
,USING
,USING

,USING, USING
,USING

LET )6=0
LET P=3,14i592o535*P1/180
LET Z0:(l-C*L/2) *TA,(P)
REM EGIN CHAiPER CROSSING***** **** **********
PRINT FILEr6J",CHAMFER CROSSING"
FOR I10 T N1

LET ZZO*I/N1
LET ZZ2Z
Lr DU1(GI+1)*(SIN(P)-M*CUS(P))+(ZI/(TANP))-G)*(COS(P)+M*SIN(P))
LEr Y1,1]= 3

Y [2, I :0
H t1,1 0
H 2, 1J =0
U[1,1] :S*CZ/(TAN(P))-Y (1,1)
U [2, 1] =-b*Y (2, 11
J t1, 1] -COS IlH 1., 1l ) + Ct(-C *O*SIN (H [ l ,1] ) /2
C1=(G +Z1 ) *CUS(H [2, t )+ (G-Z/ (TAN (P) ) )*SIN(H [

2 , 13 )
C2= (1-M*r [2, 1] )*SIN (P-H [, 1] )
C3=-(M+H2, 1])*CnSCPH 2, 1] 
J[1,23] =Ci+(C2+C3)*R9/(C1*K9)
C1- (1M*t -C)*0/2) *COS(P-H 2, 1] l 1] )
C2z(M+(1C)*0/2)*SIN(P-H2,1+H1l,1] )
J 2, 1]1I-Rg*ft2,1 * (C1+Cr) /D1
C1 - ( M C -C)] *0/ 2+H[ 2, tl]*I-(I-C)*D*M/2) )*COS(PH2,1] +Hl, 1] )
C2(l-(1'C)*U*M/2-H[2,1]*(M+(I-C)*D/2))*SINP-Ht2,1]+Ht1,1])
J (2,P 1 R9* (C1-C2) /01
W=INV (J)

HtH+V
C1SIN(HL,1])+CC*'C * *(SIN H[1,t]2))2+G-Zl/TAN(P))
C2=(Zl/(IANCP))-G)*COS(H(2,13)+GIl+Zl)*SIN(Ht2 l])
C3=SIN(P;H (2 1] )..M*COS(P-H(2, 1]
C4=R9*H[L, 13*C3/(K9*D1)
Y 1,13 C1+C?_+C4
CI=STN(FPH2 [, 1] +H 1 l] )
C2=COS(P-H 2p 1 +H 1 1] )

C3=C1-M*L2-(1-C)*D*(C2+M*CI)/2
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INPUT
I NPb t
I NPLUT
INPUT
INPUT
INPUT
I NPUT
INPUT
INPUT
I NPUT
PRINT
PRI NT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRI N T
PRINT

0220
0230
0240
0250
0260
0 7 0
028g
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0j4 W

0420
0430
0440

04700470

04 10
0500

0520
0530
0540
0550
056o
0570
05bo
0590
0600

06100620
06 30
0640
0650
0660
0670

069i
0700

0720
07 3 0
0740
0750
070
0780
0790
0800

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
MAT

MAT
MAT

LET
LET
LET
LET
LET
LET
LET
LET



V,810 LET Y 2,1] 'H l,l1-R9*H [2,1] *C3/D1
r0820 PRINT USING "d#d.### ",IVrl,11,Vl[2,1]
G0830 LET F0
k1840 IF ABS(v1,1J)<. 0009001 THEN LET F1
085 k IF AS(V[2,1J) J, .o.o01 1 I THEN LET FF+1
08ah IF F=2 THtN 010 0e8'1
0870 GOTO 0573
088A PEM CHECK CHAMFEH COSSING SOLUTION************************
j890Q PEM CHECK 2 EDUCE E(QUATIONS IN THETA,rHETA1********

09 0 LErT C1 t- C)*0* (IN(H tl 1]/) +SIN(H 1,1] )
wgl1 LET C2=ST N(P-h L, 1J)-M*COS(PH [, 1j)
0V920 LET CS= (Zl/( I AN(P) )-G)*COS(H [2, 1 ) (GI+Z1) *SIN(H [2, 1 )
0930 LET C4-G.Z1/ TAN P))-Z/ 1 AN(P))
0940 LET E1:Ci+C2*R9*H(2,1/(K9*Dt)+C3+C4
0950 LET C1:(M+(1'C)*/2)*COS(P-H[2,1J+H(1,1])
0960 L T C2= (1-CJ *O*f1/2-1)*SIN(P-H [2,11 +H 1, 1])
097)0 LET E2=H1,1J +R9*H[2,]*(CCI+C2) /1
0980 PRINT USING "-#.####",E1,E2
0990 REM BACK TO HECK ALL CHAMFER EQUATIONS*************
1000 LET CISIN (P-M 1 +HL1, 1] )
1010 LET C2=COS(P-H ?l,1] +H1, 1) 
1020 LET F2=:H1r1J/(C1-M*C2-(1-C)*(Ci+M*C1)*()/2)
1030 _ LET FS=F*(CUS(P-t[2, 1] +M*S N (P-H[2, 1] )
1040 LET F=F2*(SIN(P-H2,1])-M*COS(P-HC2t1]))
1050;' LET C1 = CG1+Z1)*C0(H 2,l] )-G1-Z1+ (G-Z1/(TA(P)))*SIN(H 12,1] )
1060 LET Z5=1+Z-(1-C)*O*SIN(H[1, 1] )/2-COS(H1, 1] )-C1
107 tLET MI=HI, 1J
1080 LET X=F3/K9
1090 LET E IF3- 2* (SIN(P-H [2,1] )-M*CO5 (P-M [2,1] ))
1100 LET E2-F5-F2* (COS(P-H2, 1 ) +M*SN PP-H2,ll ) )
111 t LET C I = S I N (P-H 2, 1 ] +H [C 1 )
112 LET E 3 H 1 J +F2*( 1 - C ) *D*(M * C 1 +C2)/2+*C2-C 1 )
1130 LET E4:F3-9*X
1140 LET FSMl-HLi,1i
1150 LET C1G1+Z1 ) *F2* (SIN(P)-M*COS(P))
1 16 LET E6=R9*H 2, 1] -C+ (G-Z1/ (TAN (P)) )*F2* (COS (P) +M*SIN(P) )
1170 LET C1:(GI+Z1)*COS H 2 ,1] )-GI-Z71+CG-Z1/TAiN(P)))*SIIN(H2,1] )
1180 LEt E7:1+Z-Z- (1-C) ***SIN(H 1 11 ) /2-COSC H ( 1 )-C
1190 LET CI=(Z1/(IAN(P))-G)*COS(H[2, 1] )+(G1+Z1)*SIN(H2, 11 )
120ki LET C2=G-Z1/lTAN(P) ) +bINl [1, 1] )+X-Z/TAN (P))
1210 LET EaiCI +C2 (1-C) *O* (SIN( ,1 /2) )'2
1220 PRINT USING "-#.4###",E,EE2,3,E4
1230 PRINT USING -#.###",E S,E6,'?,E8
1240 PRINT "CHAMFLR CROSSING"
1250 REM BACK TO MAIN PROGAM*******************************
1260 PRINT ILE(b16USiNG "-t#t#.#t### ",F5,Z5,H[1,1i*Id0/3.141593,X
1?T PtRINT FLEiM1,0,USING "-A##.#*##, i",F5,ZS5H1,1J]*18,0/3.141593,X
1280 LET 08=08+1
1290 NEXT I
13o REM EGIN PUINI CNT4CI****************************
1310 LET L=
1320 PRINT FILEt6]J," POINT CONTACT"
1330 LET S1=NI
1340 LET O1-0
1350 FcR Kz3 tO 10no
1360 L.T L=L+K*ZW/5S1
1370 LET T8=3,141 926b35/2
1380 LET T5s=
1390 FO N TU 10
14 0 LET T7=T6*N/10+T5
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1410 LET C='T7* C05 (T7)-4M*SIN(T7))/K9
142'd LET CI2- U-L*O/2-CI/ ( 1-L-,*(1-C)*O/P)
1436 LET C3:C2-1-L)*SIN(T7)-(t-C)*U*(SIN (T7/2))-2 
1440 LET C4:Cc3-G)/(SQR(GI12+G'2))
14S4W LET A1=3. 1q415926535-ATN(G/G)
1460 IF C4<v THLN GrTO 149V

1470 LET Tl:A1-MTN( (SCQR(1-C4-2)/C4)
1480 GOTO 1520
1490 LET C1=ATil-(SC(1-C4-2))/C/4)
150' LET C2:t311415926535-C1
151l LET T1tAI-L2
1520 LET C1 (GI-M*G) *COS(T7-Tl)-(+M*G1) *SIFCT7-t1)
1530 LET C21-L-M* (1-C)*D/2
1540 LET T=R9*TI*C2/C1
1550 PRTNT USING "-##.####",K,N,T*180/3.141593,T7*180/3,141593
1560 IF AS(T-T/)<.00000001 THEN GOTO 162[
1570 IF r<T7 THLN GOTO 1590
1580 NEXT N
1590 LET T5=T7-'r8/10
1600 LET T8T8/1/ 0
1610 GOTO 1390
1620 REM CHECK 1 rOINT CONTACT SLUTION*************************
1630 LET F2:T/l-L-(l-C)*O*M/2)
1b40 LET F3:F2*(CS (TJ -*SIINr))
1650 t.ET xF3/K9
16bh L. T M1=T
1670 LET F9SF2*(LlNT)+M*CCUST) )
1680 LET Cl:Gl*CO (T)+G*SIN(T1)-G1
lb90 LFT C2: (2-C*/2) * TAN(P) + 
1700 LET Z5:C2-Cl-(l-C)**SIN(T)/2- (l-L) *CS(T)
1710 LET E1:=F3-2* (CnS (T) -M*SIN(T))
1720 LET E2:F9-F2*(SIN(T)+M*COS(T))
173ki LET E3:Mt1 -F2l-L- (l-CL)* * /2)

1740 LET E4:F3-K9*X
1750 LET ES=M1-T
1760 LET Cl F*((bl-M*G)*COS(T-T)-(G+M*Gl)*SIN(T-T))
1770 LET E6:R9*TI-C1
1780 L.tT C1 -G*COS(T1)+GI*SIN(T1)+G+(1wL)*SIN(T)
1790 LET E7=2-C*U/2-X-C-(1C) ** (SIN(T/2) ) -2
1800 LET C1G*COG ('rl)+GG*SIN(Tl)-Gl
1810 LET C2:(02-C*0/2)*rAN(P)+1
1820 LET E8ZS-C2+C1+(1C) *D*SIN(T) /2+ (1-L) *COS(T)
1830 PRINT USING "#.####",F1,E2,E3,L4
1840 PRINT USING '-#.####"l,E,E 8
1850 PRINT "1 POINT CONTACT"
1860 REM BACK TO MAIN PROGAM********************************
1870 LET 0D4=o-G*CUS (T1) +G *STN (Ti) +G
1880 LET rLSIN T) + 1-C)*D*CUS (T)
1890 PRINT ISING "-#*#,####*"DS,DD4,L
1900 rf 05>1, THEN LET 01:1
1910 fI 01=0 TH.N GOTO 20A
1920 IF 05<04 TE:N GOTO 230
1930 IF AdS(L-0)'<.0000001 THEN LET K1000
1940 IF ABS(D4-DS)<,i0o00j01 THEN G010 230
1950 LET L0=L--Z0/1
1960 LET S:N1*S1
1970 LET ZK 130
1980 NEXT K
1990 GOTO 1350
2000 PRTNT FILE(bl,USING "- ###,# ",FS,ZS,T*180/3,1415926535,x
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PRINT FILEttOJ IUSING "-##,.#~#, ",F5,Z5,T*180/3.1415926535,X
LET O0R+i
NEXT K
REM dEGIN 2 POINT CONTACT***********************************,
LET L2:L
PRINT FILE[6],"2 POINT CONTACT"
FOR K= T 100a

LET L=L2+K*Z0/N1

A , 1] :0
A (2, 11] 0
A ([,1] o

8 l, 11 F
8 (2, 1] -0

[3, 11 :X

8 5, 11 :T1
S t6, 1 1:0
Q , tl =b* [1, 1]

Q (2, ] =-*A DC2', 1 ]Q [3, 11 :--b*A [ 11Q [4,1] '--6*A E4, 1]

OCltl{M*SIN~Ti4,13I)-CO iRq, l])
a0(1,2Cb (8 1]-*AINA( B ,11
t01,3] SMSN0(1,31 CK9

0( [1,91 :0

0 (2, 1 =M* (-C) *)/8-1+L
Cl1: (M* 1-C) *D/2) *COS (4, 1] +3 (6, 11)
O 2,21 C1-(M+(1-C) *C/2) *I SIN(84, 1] +b 6, t] )
0 [2, 3] :0
C1 (I-M* I1C)*0/2)*SINCB (4, 11 +3 (6, 11 )
C2=C+(M+ ( 1-C)*/2)*COS (4, 11]+BL6, 1])
0 [2, 41'] 1-6 2,1] *C2
0 [2, 51 =0
0 (2,1J U 2,4] -1
Cl (G+M*G1)*SIN(8 [4, 1 -8(5, 11 )
0 (3,1] :C1+ (M*G-G1) *COS(8 (4 1 -8 [5, 1 )
03,2J =0
0 3,3] 0
C (G+M* ) *COS ( 4, I -8 5, 11)
C2=CI+(Gi-M*G) *SIN(B 4, 11 -B [5 1 )
0 (3,4] :d1 l1, 1. *C2
0 3,) .-0 (3, 41 +R9
0(3,6] :0
0 4, 11 0
CIG*(SIN ( [5, 1] )-SI(B 6, 11 ) )
C2=G*CI UB (5, 1] )-L*COS(B [4, 11)
O 4, 21 'C1+C2+(1' -C) *D*SIN (t4, 1] )-M*G*COS
0[(4, 3:0
CIL*SINLB [4,rl] )+(1-C) *i)*COS(8 (4,11)
0 4,)1 rtU(2,11 *C1
Cr, GI *IN (B (5, 1] I -G*COS F( [5. 1] )
0 [4,5] B 2, 1 *C1
Cl:-R0*SIN(8 6, 1 )

(8 6, 11 ) )
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261k LET C2:R3*C0 ( (b, 11 ) *C1*8 6, 11
2620 LET C3-CoS (B6,1] )-M*SIN( 36, ! )
2630 LET 0 4,6] Cd+6 (2,1]*G*C3
26b4k LET 0(5, ]t0
265v' L T 0 5t, P] 0
2660 LET 0 5,3121
2670 LET 05,4]:(I-L)*C (B[t4, l] )+(1-C)*D*SIN (br4t1])/2
2680 LET 0 L5, Sl -SL Hi G'2+G 1 2) *S IN ( - ,1 )
2690 LET 0 C[,6] =0
270 LET 016,11=0
271A LF t 06,2]3 0
p212( LET 016,31 :0
2t30 LET C1:L*C UStH[ 1, + E6, ] )
2740 IET C [6,4] ;Li- 1'C) *D*SINC r 1 +6 t ,1 )

2750 LET O [6,5:-R CGl'2+G-2) *SI (A1-Bt5, 1] -86,1 )
2760 LET C1=L*CUS [ 1] +B [,1 )
2770 iLET C2:. (I1LC **S INB (t4, 1 + 6, 1 )
2780 LET C3:(+2*G) *SIN( 6,11 )
2790 LET 0( 6,6bl 1+C+C32+C-SRR(Gl-'2+G2) *SIN(A1-8 L5, 11 - [6, 1 )
28z0 mAT E=INV(U)
2810 MAT R=E*n
2826 -AT 8:St+R
2830 LET C1:ClS(d L6,1 )-M*SiN([b, 1] )
2840 LET C2:CS Cd 4, 1) ) -M*SIN (B [, 11 )
285; L T C3:B 2, 1 *C1-b 1, 1 *C2
2860 L1.T A [1, 1 K9*B [3, 1] +C3
2871 LET CI (1-M* 1-C) *)2) *COS( t, 1 + lb,[61] )
2880 LET C2=-(M+(i-C)*D/2)*SIN(B4,1] +B[6,1] )
289sJ LET C3:-R 1, i ] * ( -L-M* 1-C) *D/2) + 2, ] * (C1+C2)
29)ok LET A(2,i)UL 4,1]+C3
2910 LtT C1(G,+h*Ml)*SIN I r4, 1] r,11) -
2920 LET C2: (m*G-i 1) *CUS (4, 1] -B t5, 1 )
2930 t T A [3, 1 ] =H'* [5, 1 +B t1 1] * (C1+C2)
294i LET C1G (SI I Ct [,1] -SIN (Bt6, 1] ) )
2950 LET C2=G *C0dbS, 1 ) IL*COS (CB4 1] )
2960 LET C3:(t-C)*O*SIN(dt4, 1] )M*G*C0S(B [6,1 )
2970 LET C4:R0* Lb, 1] *C0S (6 [ 1 )
2980 LET A (4,11 C4 -B 2, *( C1 +C2+C3)
2990 LET CLBS(3l1J+SQ(G-2+G-2)*COS(A-1R[5,1)
3000 LETr C2: (I-C) *U*C$I (4S ,f 11 /P) )-2

3010 LET A 5, 11 CI+C?+IL)*SIN(R[4,1] )

3020 LET C2=.SQH (Ll 1+G2)* (COS A1- [5,1l )-COS(Al))*COS ( 6,1 )
3030 LET C3=-G* ( 1COS (6, 1] ) )*Co (B 1] )
3040 LET C4:G* (SIN(Bt5ll )-SIN(6, 1 ) )
3050 LET C5=G1*C0 ([5, 13)-L*COS(B 4, 1 )
3060 LET C6=(l-C) *D*SINCB[4,1)
3070 LET C7=L*SIB 4 1] + (-C)*D*COS ( [4, 1] )
3080 LET C=C7*CO (bb, 1 ) +C2+C
3090 LET Al[,11=Cot-(C4+C5+Cf) *SINt[6, 1J )-*COSB6, 1] )
31o0 PkINiT LUSIN "-##,# #",H, 1, t t2,1l ,R t3, I] ,R 4 ,1 ,R [S 1 ,R t6, 1J
3110 LET F=
312vi FOR I111 TO b

313k; IF ABSR[t11,1)<,000001 THEN LET FF+I
3140 NEXT II
3150 TF F=6 THEN OTn 317o
3160 GOTO 2212i
3170 LET C=SIN(dCL4l] )+M*C0S(B[4,1 )
3180 LET C2= S N ( L6, 1 ) +*COCS (B [6, 11 )
3190 LET F5H [,I1J *C1+ t2,13*C2
3200 LET C1=1+(U2-C*0/2) *TAC,(P)-(IlC)*D*SiN(8 4, 1] )/2
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LE C2 C -C1( -L) *COS (BH 4, 1] )

LET Z5:Cp-SQN(G-2+G;'2)*(SIN(A1-bH ,11 )-SIi(A1))
IF rL6b,]11< IHEN LET L=l.
TF bI:6,11<0 IHEN LET Z=ZO/5
lTF [b, 1] I HJ GOTO 13d0
PRINT "2 POi&,T CONTACT"
PK1INT FILE[bJ ,U.SING "-#4##.ft## ",FS,Z5,B4,1iJ*180/3.141593,3,311
Pt IN T F'II r [1. ,El# US I Nr , ",F. F 5,Z 5,9 [ 4, 1 *18'o/3.141593t3 [3 I'
P IN T USIN G "- #. #t# Itd [, 1] ,L
LET 08="8+1

NEx K
PRINT FILE J,IJSING "NO ATA POINTS ##t ",08
PRINT USING "NLi DATA POINTS 1# 1 ",08
CLOSE

REm PROGRAM NAME: LATROT(GtN SOL FUR
CL USE
OI M AS 8]
INPUT "DATA t1L NAME: ",AS

lm J [2,21

Yl J [2, 1]
IiM J[2, 11)IM ML2,1]
O1M V 2V tl]

J [ 2,2 ]

ir M A 16 11
O1!a Q[6 1]

DIM 6 [6, 11
DI: 'R[(6,1]
DIN E[b6]
OPFN FILE[1,1J, A,
OP N F I E [6, 1] "lSt. PT"
INPUT "CHAMFER ANGLE PHI (EG) ",Pi
INPUT "FRICTION COEFFICIENT MU: ",M
INPUT "CLEARANLE RATIO C ",C
INPUT "INITIAL LATERAL ERROR DELTA/A
INPUT "HOLE DIAMETER D/A: "L)
INPUT "HOR. CUMP, CEN, OF HOLE CH/A=
INPUT r "VER COMP EN, OF HOLE CV/A4
I rPUT "STIFFNLtS RATIO.-X*A2/KTHETA=
INPUT "STIFFNEbS RATIO.K1/KX= ",H9
INPUT "STIFFNENS RATIO-K2/KX: l",H
IrPUT "STTFFNLS RATIO-KTHETA1/KTHETA
INPUT "S1IFFNE,)S RATIO-KTHETA2/KTHEIA
INPU T
INPUT
PRINT
PRINT
PRINT
PRIrT
PRINT

PRINT

P R ITN T

"SCALAR
"NO. OF
FILE [6)

FILE 61]
FILE 61]

FILE (6b
FILE rbJ

FILE [6]
FILE [bJ

LAT AND ROT COMP HOLE)

",02

, , 
it , G 1

", K9

= ",R9
- ",RO- ` o 'v

OTEP SIZE S= ",S
LHAMFER CROSSING SOLUTIONS-NI- ",1i

,"DATA
, Sli iG
, uSING
,U SIN6
,US ING
?USING
,uS I N G
,uSING

SET NAME; ";A$
"CHAMFER ANGLE PHIC(EG) ##,# ",P1
"FRICTION COEFFICItNT MU ### ",M
"CLEARANCE RATIO C .##### "C
"INITIAL LATERAL ERROR DELrA/A #,### ",02
"HOLE IAMETER D/A #.### "0
"hOR COMP C OF HOLE CH/A #.#* ",G
"VER COMP CEN OF HOLE CV/A .#i "G1
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3210
3220
3230
3240
325
3260
3270
328u
329d
3300
3310
3320
3330
3340
3350

00 
002
'030
f040
0050

007

OOQO
010
0110
0120
0130
0140
0150
0160
0170
0180
019o
0200
0210
¢220
0230
0240
0250
0260
0270
0280
0290
03o0
031
032o
0330

0350
036
037 
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0410 PRINiT FILE 6bJ ,1SING "STIFFNESS RATIO-KX*A'2/KTHETA ###,### "K9
0420 PRINT F1LE rb6,JSING "STIFFNESS RATIO-Kl/KX ##.##,# "wtH
0430 PRINT FILE rbJ]USING "STIFFNESS RATIO-K2/KX #4#,### ",Ho
0440 PRINT F1LEb] ,uSING "STIFFNESS RATIO-KTHETA/KTHETA ###.### ",R9
0450 PRINT FILE( [61,USING "STIFFNESS RATIO-KTHETA2/KTHETA #####* "PRO
46 0 PRINh FILE [6J uSING "SCALAR STEP SIZE S #,# "S
04770 PRINT FILE[bJ,USING "NO F CHAMFER COSSING SOLS-Nl ## ",NI
,480 LET 08!
.490 LET P=3.141592b535*P1/ lb.
05.G0 LET Zd-L)P-C*Q/2)*'AN(P)
0s510 REM UEGIN CA'R CROSSIG***** ********************************
0520 PRTNr FILE(b],'CHAMFER CR{SSING"
0530 FOR 1:0 TO NI
0540 LET Z:ZZ*I/N1
0550 LET Z1 z70-Z
;5b60 LET 01: (c1+Zi) *(SICN(P)-M*CUsCP) )+ (Z1/ CTAN(P) -G) *CCOS(P)+M*SIN(P))
0570 LET Y[ 1,1]20
0560 LET Y [,,1 0
0590 LET HE1,1]=0
060 LET Hl2,1=:0
0610 LET U , SS*Z (Z/ (TAN(P) )-Y 1 , 11 )
0620 LET U 2,13 -"s*Y 2,1]
0630 LET J[1,1] CUS(H[1,11 )+(I-C)*D*SIN(H[1,])/2
0640 LET C=lCl+Zl)*COS(Hl2,]3 )+(q-Zl/(TAN(P)))*SIN(H[2,1 )
0650 Ltl' C2: (1- *tr [2, 1 ) *SI! (P-H 2 
0660 I- ET C3:-(M+HL2,1] ) *COS(P-i [, 1 )
0670 Lt Jf [,2] :Ci + (C2+C3) *R9* (1/K9+1 K9*H9) ) /01
0680 LET C1:= (l- 1 1l-C)*U/2) *COS (P-H [2, 1] + t 1] )
06901 LET C2z (+(1-C) *D/2) *SIN(P-H [2,11 +H [1,1] )
0700 LET J 2,1J :1mR9*H [2, *(Cl+C2)/D1
0710 LET C1:(lt+C1-C)*U/2+H[2,1] 1*1-(1-C)*U*M/2))*COSCP-H[2,1]+H1, 1] )
072O LET C2 (1 (l-C) **M/2-'2, 1 * (M+( -C) */2) *INp-H 2, 11+H1, 1] )
0730 LET J 2,] =R9* (C1-C2) / 1
0740 MAT W=TNV (J)
0750 MAT V=W*U
0160 MAT HzH+V
0770 LET C:SIN(tHLl )+(1-C)*O*(sIN(H 1,1] /2))'2+G-Z1/(TAN(P))
07A80 LEI C2: (Zl/rAN(P) )-G) *COS(H [2,1] )+(GI+Z1 ) *SIN (2,1t)
0l90 LET C3:SIN(PH [2 1 )-M*COS (p.H , 1 )
0800 LET C4:R9*H 1 ] *C3*/K9+ 1/(K9*H9) )/Dl
0810 LET Y [1. 1C1+C2+C4
k820 LET C1SIN(P-h 2,1] +H 1] )
08318 LET C2:CoS(P [2,1 ] +H , 1 11 )
r0840 LET C3=Cl -M*L2- ( -C)*3*(C2+M*C1)/2
0850 LET Y 12, ,1 H LI 1I -R9*H 2, 1] *C3/D1
0860 PRINT USING "-##t## ",Iv[t1] ,,V[(2l
0870 LFT F=O
0880 TF AS(V(1,1J)<.00000001 THEN LET F:1
08990 IF ABS (V [2, 1 ) <.0003001 THEN LET F=F+ 1
090 IF F=:2 THEN bOTO 0920
0910 GOTO 61o
0 9210 PEM CHECK CMFER CROSSING SOLLJTION***************
0930 REM CrIECK 2 NEDUCE EQUATIONS IN THETATHETAI*****************
0940 LET C1(1-C)*D*(SIN(Htl1]/2))-2+SIN(Htl1,1J)
0950 LET C2=SIN(PH [2 )-M*COS(P-H(2,t1] )
0960 LET C3=(Z1/(lAN(P))-G)*COS(Ht2,1] )+(GI+Z1)*SINH(2,11 )
0970 LET C=G-Z1/ TAN(P) ) -Z/ ( TANP) )
0980 LT El C1I+C2*R9*[2, 1] *(1/Kg+t/iK9*H9))/nl+C3+C4
0990 LE C1 (M+ (1-C) */2) *COS (P-H t2, 1] +1 [1, 1] )
1000 LET C2: (1-CJ *D*M/2-1)*SIN(P-Ht2, 1] +H1,1])
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1010 LET E2H[1,1J +R9*H2,1]*(C1+c2)/D0
1020k PRHINT USING "-#.####",E1,E2
1030 QEM RACK TO CHECK ALL 9 CHAMFER EQUATIONS*********************
1040 LET CIUSIN(P-H[C211+HlI,11)
1050 LET C2:COS(P-H[2#1l+H(llJ)

0lt6bv L FeCHt1rlJ /(Cl-M*C2-L1-C)*(C2+M*Cl)*oD/2
1070 LET fB-F2 (CJS P-H [2, ]) +':*StNt(P-H i, ) 
108.0 LET F3=F2*(S~N(P' H 2,1])-M*COS(P-H [121l))
1090 LET Cl=C1+ZL)*CS(H(2,1 )-Gt-Zl(G-Z1/CTAN(P)))*SIN(HE2,11 )
1100 LET Z5-1Z-(1I-C)*D*SIN(Htil] )/2-CUS(Hti,1i )-C
i to LEr t=HlttlJ
1120 LET X=F3/K9
1130 LET XlX/h9
1140 LET E F3-F2*(SIN(PH [2 1] )-M*COS(P-H t2 1))
1150 LET E2F5B-F2*(COS(Pt[2,l])++M*SIN(P-HC2el]))
1160 LET C SIN P--H L2 1 +H 1,1 )
1170 LE r E3:H(1 [ 1 J +F2* ( ( 1-C) *D* (M*C 1 *2)/2+M*C2-C 1)
1180 LET E4-F3-K9*X
1190 LET E5=M11-H , 1ll
1'00 LET E6:x1-X/r19
1210 LET C1(Gl+Zl)*F2*(SIN(P)-M*COS(P))
1220 LET E7:R9*HI [11-C1l+((i-Z1/TAN(P)))*F2*(COS(P)+M*SIN(P))
1230 LtT C1 (Z1/([ AN(P))-G)**COS(Hr2, 1)+(+Zl)*SIN(H 2,11 )
1240 LET C2:G.Z1/lTAN(P)) +XI+XS+IN(H1, l )-Z/(TAN P))
1250. LET E8=C1C+L2+(i-C)*O*(SIN (HCfl l /2))
120id LET C= (CG+Z1 )*COS(H [2 ,1 )-GI-Z1+ (L-Z1/(TAN(P)) )*SI I(H [2 1J )
1270 LET E=I1+ZZ)- -ClC)*O*SIN H r1,1l )/-COS(H [, 1 )-C1
1280 PRINT USING "-#.###$"E,E,EE3,F4
12910 PRINT USING ¢'-#,##X#",E5,E6,F7,E8,E9
1300 PlINT-'"CHAMF-LR COSSING'!
1310 REM ACK TO MAIN PROGRAM*******************************,
1320 PRINT FILEL6J,USlNG "-w##*t.#t# ",F5,Z5,HtI,i1*1i8/3.141593,X
1330 PRINT FTLEL1l,0,LS ING "-##,#* ##, ',5 Z5 HI,1 *1,0/3,141593,X
1340 LET 08nl8+1
1350 NExT I
1360 REM EGIN I POINT CONTACT**************************************
1370 LET L0=0
1380 PRINT FILEr6]," POINT CONTACT"
1390 LET S1=N1
1400 LET 01=0
1410 FO, K(j T 1000
1420 LET LLO+K*Z0/S1
1430 LEI T8=3,1U4926535/2
1440 LET TS=
1450 FO N TO 10
146 LET T7=T8*N/10+TS
1470 LET C ltT7* .CUS (T7)-M*SIN (T7)) * ( 1/K9+1/ (K9*H9))
1480 LET C2m02- *D/2-C1/t1-L-M*(1-C)*O/2)
1490 LET C3=C2-1i-L)*SIN(T7)-(1-C)* *(SINCT7/2))-2
1500 LET C4(C3G)/(SQR(G'61+G2))
1510 LET At 3, 4 15926535-A1N(G1/G)
1520 IF C4<¢ THLN GOTO 1550
1530 LET T A1-ATNC((SQR(1-C42))/C4)
1540 GOTO 1580
1550 LET C1 ATNL-(SQR(1-C42))/C4)
1560 LET C23,1415926535'C1
157k LET T1A1-L2
1580 LET Cl (G1-M*G)*COS(T7-T1).(G+M*G1)*SINI(T7-Ti)
1590 LET C2:1-L-M*(1-C)*0/ 2
1600 LET T=R9*TI*C/C1
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161& PRINT USINI, "-###.###" ,K,N,T*180/3.141593,T7*180/3,141593
1620 IF AS(T-T)<.000n001l THFN GUTO 1680
1630 IF T<T7 THN GOTO 165,
Ibl4 E XT N
1650 LET TT7-T6/10
1660 LET 18TA/10
1b7vJ GOTO 1450
168; qEM CHECK 1 eOIi0 CONTACT SOLUT IGN****** ********************
169) LET Fc:T/(l-.-(l-C)*n*M/2)
170 0 LET F3:F2* CLLS(T)-tl*SI,(T))
1710 LET X=F3/K9
1720 LET M1=T
1730 LET F5=F2* (SIN (T) +M*CS T))
1740 LET xmlx/H9
1150 LET C1=GI*COS(Tl)+G*SINLT1)-G
1760 LET C2: (12-C*/2)* TAN(P)+1
1770 L,ET ZSC2-C1-C1-C) *D*SIN(T)/2-(l-L)*COS(T)
1780 LET E1F3.F2* (COS (T)M*SIN (T))
1790 LET Ee=FS-F* (SIN(T) +M*C0ST) )
1800 LET E3M-F2* ( 1-L- l -C)*D*M/2)
1810 LET E4:F3-K9*X
182?0 L~-r ES5M-T

1830 LET E6=H*X1"X
184e0 LET C=F?* ((1-M*G)*COS(T-T)-(G+M*Gl)*SIN(T-T1) )
1850 LET E7:R9*T1-C1
1860 LET C1:-G*CO (1)+Gl*bIN(Ti)+G (1-L)*SIN(T)
1870 LET E8:D2-C*U/2-X-X -C 1- ( -C)D* (SIN(T/2) )2
1880 LET C :G*COs (T1) +G*SIN (T1 ) -G
1890 LtT C2:(1)2-C*0/2)*TAN(P)+1
1900 LET E9:Z9-C+C 1+ (1-C) *U*SIN(T)/+ (I-L)*COS(T)
1910 PRINT USING "-#.####",E,E2,E 3,E 4
1920 PRINT USINL; -#,###",Eb,E,E7,E8,E9
1930 PRINT " POINT CUNTACT"
1940 REM BACK TO MAIN PROQGAM****************************
1950 LET 0=o=+XI-u*COS (T1+GI*SIN(T1)+G
1960 LET D5L*SlN lT) + (-C) *O*CUS (T)
1970 PRINT USING "-m#,*###",U5,D4,L
1980 IF 05>)4 THEN LET Oll
1990 IF 01:0 THEN GOTO 2080
2000 IF 05<04 THEN GOTO 2110
2010 IF AS(o4-05)<.00000101 THEN LET K=1000
2020 IF AS(CO4i-UsU<.owo0o l THEN GOTO 2110
2030 LET LL-Z0/61
2040 LET S1NI*S1
2050 LET Ka1q0
2060 NEXT K
2070 GOTO 1410
2080 PRINT FILErb],USING "-F###.#### ",F5,Z5,T*180/3.1415426S35,X
2090 PRINT FILEr1,OJVUSING "-##.###, ",F5,Z5,T*180/3,14l5925$35X
2100 LET 08=08+1
2110 NEJXT K
2120 REM EGIN 2 POINT CONTACT********************* ****************
2130 LET L2=L
2140 PRINT FILFr63,"2 POINT CONTACT,
2150 FOR K=0 10 100'
2160 ltT L:L2+K*ZO/Nl
217J LeT A[1,1I=0
2180 L6T A t2, 1 :0
2190 LET A [3,1=0
2200 LET A t4, 1] =0

158



A [5, 1] 0
A (6, 1] 0
B t,1 ] :FE
B (2, I 0
B[3,1]:3 I, X : T

(5, ] T1
R [6, 1] :=0
Q r,l ) -*A r , J
n 2, 1 -*A C2, 1
Q (3, 1I -*A[3,1J
Q t4, 1] =-b*A 4, 1]
[5, 1] zS* (L)2-C*D/2-G-A[5, ] )

Q [, 11 =-b*A 6, 11
O 1, Lt] :M*SI,4( [4, 1 )-COS(8 4, l)
O [1,21 =CJS ( [6, 11 ] -M*SIN ( 6, 11])
0 [1,3] :K
0 [l,4] =d ,L I] * (SIN (e 4, 1 )+M,*CUS LB [4,12 ))
U [1,5] -0
0 (,h6 =- (2, 1 * (SIN B (6, 1] ) +M*COS (8 6, 1 )
012,1 M* (1-C) *U/2-I+L
Cl (-M*i -C)*0/2) *COS( r4, 1] + [b, 1)
n[2,2]=CI-{M+fl-C)*D/2)*SIN(, [4, 1]B6,11 )
0 [2,3] :0
C1: (l-M* I-C)*O/) *SINP [4, 1] + b, ] )
C2=C + (C+ ( i.-C) *0/2) *COS( t[4, 1 1 + 6,1 )
0 [2,4] =1 2,1] *C2
0 2,51 :0
o0 ,6] zG 2,.4] -1
'C1= (G+M*L) *,IN(3 4, 1 - 5,1 1
0 [3, 1] =Ci+(M*G-Gi) *COS(fB 4, 1, -6 (5, 1 )
0 3,2] =A
0 [3,32 MU
CI=(G+M*ut)*COS(t3[4, 1]-8 5,1 )
C2=C1+(G1-M*G)*SIN(B 4,11 - 5,1] )
0 [3,4] = Ll 1 *C2
013,5] -,U C3,4] +H9
n03,6]0
0 [4, 1 2 0
C1G* (SIN (B r5, 11 )-SlN( 16,1 ) )
C2=G1*CO B 5 , 1 ) - L *C OS(B 14, 1]
0 t4 2) -2 LCl+C2+ (l-C)*D*SIN ( E4 1 l )-M*G*CUS(B t[b,-t 1 ))
014,3] 16
C1=L*SINLB(4, 1)+(l-C)*D*CUS(bt4,13 )
0 [4,4 '-"[ 2,11*C1
Cl=Gl*SI (CB [ 5,1 )-G*CCS( (,1 )
0 4,51= 2,11 *C1
Cl--0*SN(R b, 11 )
C2=Ro*COb (B tb, 12 ) +C1*8 [6, 1]
C3=COS(B 6, 1J )-M*SIN(B 6, 11 )
O [4,6] Cd+B 2,12 *G*CC3
O L5, 1] = (OS ( [(4, ] )-M*SJN CB (4, ] ) / (H9*K9)

0 5,32] :0

Cl (I-L)*COSB [(4,11 ) +(1-c) *C*SINB [4, 11 )/2
C2:STN( C8L4 1] ) +M*LO (B (4, 1] )
O [5, 4] -C -b (1, 11 *2/ Ch9*K9)
U 5,51 5SwR (G2+GI 2) *SINrAI-d [5, 1 )
0 5,6 6 0
O b, 1] =Ll*SIN(B [41] )-Cns(B 4,l] )*Cs([6,1l )/(CH*K9)
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2810 LET O E6,2: t l*SIN( 6( 1] ),COS(B E6,1] ] )*COS (t 6, 11 ) / (H0*K9)
2820 LET Ot6,3J=0
2830 LET Cl:L*C B [, 1] + , 1 ] )
284a LET C2= (1-CJ **SI i (t4, 1] + 6, 1 )
2850 LET C3=:SN(D L4, 1 )+M*CSC (4, 1] )
286o LET O (6 q] zC+C2+C3*38 1,1] *COS (B 6b, 1J ) / (CH9*K9)
28 i LFT O L6,5] :-bQR(G-2+G-c)*STNLAI-d 5, 1] - t6, 1] )
2860 LET C1L*CUS t 4, 1 + (b, 1 )
2890 LET C2:-(1CJ* S I N3 L 4, 1 + , 1] )
2900 LET C2:C2+ (2G+)*S1N (h [b,11
291] LET C3=:-SWN( 1'2*G8)*SI (A l- [51J tilb,])
2920 LET C4zCOS0 Cb L, 1 ) -M*SIN ( [4, 1] )
2930 LET C4-= t[1,l'*C4/(q*Kq)
294W LET CStSIN (*H [6w l ) +M*COS (2B 6 1 )
2950 LET C5=!2,1i*CS5/(rt0*9)
2960 LET [6,6:Cl+C?+C3+C4*SIN(B6, 1] ) +C5
297'i MAT E-I ,V'O)

2980 MAT RE*,
2990 MAT B=B+R
3000k LET C1:=CS (L 6,1 )-M*SIN( B [6, l )
3010 LET C2=COS(bL4, 1 )-M*SIN(l, 1] )
3020 LET C3= t2,1J*c 1 *- C , I] *C2
303V LET Al , 1] =K9*b 3,1] +C3
30140 LET C1:= ( t-M* -C) *)/2)*CUS(R [4, 11 +h (6,1] )
3050 LET C2=-(M+(i-C)*D/2)*SIN(U [4,1]+lJ6,1 )
3060 LET C3:- t[1,1] *(1-L-M*(1-C)*0/2)+8 [2,1 *(CI+C2)
30 7 LET A 2,1 L 4, 1+C3
3080 LET Cl: (G+M*J1) *SIN( [4, 1] - 5, 1] )
3090 LET C2=(M*G-)*COS (B [4,1 -8 [5,11 )
3100 E T A t3, 1 *B 5, 1 +8 ,1 , 1] * (C1+ 2)
3110 LET C1=G* (SI ( lS5 1] )-SIN [ tE6 11 ) )
312 0 LET C2:Gl*COS5 (8 t5,1] ]) -L*COS (R [ 4,1 ] )
3130 LET C3: (-C)D*SIN(8[4,1 )-M*G*COS(B 6,1 )
3140 LET C4:R0*b Lt, l] *CCS (t6, 11 )
3150 LET A [4,1] =C4-b (2,11 * (C1+C2+C3)
3160 LET C1 t3, 1J+SQR-(GI12+G2)*COS(A1- [5,tl )
3170 LET C2a(1-C)*O* SIN 4, 1 /2) ) 2+(1-L)*SIN(B 4, 1 )
3180 LET C3C05 (4,) ] -M*S1N (B4, 1 )
3190 LET A [5,i ] Cl+C2+8 [1,1] *C3/(H9*K9)
32o0 LET C1:L*SINLB41] )+1-C)*D*COS(BE4,l] )
3210 LET C1C1*CO(8[b 1 )
3220 LET C2:SQR(b12+G2)*(CUS(AI-B(5,1)-COS(Al))*C0S(b[6,1])
3230 LET C3:-G (1-COS (b, 1] ) )*COS( [6,11 )
3240 LET C4=G*(SIN(H 5, 1 -SIN (Bb, 1 ) )
3250 LET CSG1*CO ( [5,1 )-L*COS( [4, 1 )
3260 ILET C5SC5+Cl-C)*U*SIN(b4, 1])
3270 LET CbC 1 +C2+C3-(C4+C5)*SIN(R , 1 ] )-D*COS ( (6,1l)
3280 LET C7:C3S(BL4, )-M*SIN(64, 1 )
3290 LET C7:. [1,l1 ]*7*COS(R r), 11 )/(H9*K9)
3300 LET C8:C0S (b 6,1 ) -1*SIr ( 6, 1 )
331'A LET C8-8 [2, 1 C*C8C0 ( [6, ) / (H0*K9)
3320 LET A [6,1]Cb+C7+Cd
3330 PRINT USIING '-## ###",KR [1, 1 ,R (2,1] ,R 3, 1 R 4, 1 ,R RS,1 ] ,R [6, 11
3340 LET F=-
3350 FOR t 111 TO 
336h IF AB.l(StI.1)<lE-09 THEN LET F=F+I
3370 NLXT I1
3380 IF F TrHEN LOT 3400
339)o GjTO 2290
3400 LET C1=SIN ( L4, 1 ) +M'*COSC ( 4, 11 )

--
~~~~~6
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LET C1=cl,ljl*CI
LET C2=SIN( L6, 1])+M*C0S(t, 1])
LE. F5=C.1+ L, I 1 *C2
LET C:l+--L+ -C*O/2)*TAN(P)-(I-C)*D*sIN(Br4 1 )/2
LET C2=C(1L) *COS(3 4, 1] 
LET Z 5 = C 2 - ( G 2+ " i2)*( S INA1 -t3 t5, 1 )-SI NA1))
IF b (6,11 < I EN LET L-L
IF Bib,1]i<0 IHEN LET Z'=ZL0/5
IF b [6,1] < I HEN GOTO 1380
LET C1 :COS L , J1 ) -1*SIN CB [6, 1] 
LET C1i =3 c2, 1 *C1
IF C1<0 ThLN LET L=L
TF C1<0 TNt LET 20=70/5
TF C<0 THEN GOTO 1380
PRINT "2 POINT CONTACT"
PRINT FLE tb ,USING "'-#o#~#.#g# " ,FS,5,B(4,1 1 *It/3, 41593,3 t3, 1
PRINT FLL [1,0] ,USING "-#4.##t, ",F5,Z5,t[4,1] *16vj /3, 41593,t3,t13
PRINT USING "U-#S###/# "wi 6,1 ],C1/(H0*K9).L
LT 08o08+1

NEXT K
PRTNT FILE[bJ] USING "NO DATA POINTS ### ",08
PRINT USING "NU DATA POINTS ## "rO8
CL0bE
EN ln

REM PROGRAM NAME: CHAMFR (OPT tEDh kOT CHAMFER)
CLOSE
(T'4 A 
INPUT "ATA SET NAME: ",A$
OPEN FILE [1 ,1J, A$
OPEN FILE th, 1 , "SLPT"
INPUT "FRICTION COEFFICIENT Mu ",M
PRTNT USING "##.##",ATN(1/M)*tB~/3.1416
INPUT "INITIAL OFFSET ANGLE TO(DEG)x ",To
LET To03,145926535*TO/180
PRINT USINr. "###.#", 1/SIN(T3)
INPUT "LENGTH OF PEG L: ",L
PRINT F1LEC6],"DATA SET NAME: ";A$
PRINT FILE [ 6] ,SING "FRICTION COEFFICIENT M ##,## ",M
PPINT FILEr6JUSING "INITiAL OFFSET ANGLE TO ##,## ',TO
PRINT FILE16],JSING "LENGTH OF PEG L t###*.## ",L
LET XI1l-L*SINIT0)
LET C1SQR (L-2-X 12)
LET C2:SQR 1+M-2)
FOR I:0 TO 74

LET x: /74
LET Xu:XL*SIN (TO)
LET FSQR (L'-2-X-2)
LET N1=(C2*F+M*L)*(L+C2*X1)
L.ET 1: CC2*C1+M*L) * CL++C*X)
LET YqC1 -F+ M*L/C2) *LOG (N/n)
LET N2: (F-M* * tL*2- C*X 1)2)
LET 0" (C -M* 1 ) * (L- C2*X) 2)
LET F1(L/C * (ATN (XI/C)-ATN(XO/F))
LET Y= Y9+F 1(M*L/C2) *LOG (N2/D
LET Y5sy-Yq

161

34o1

3420
3430
3440
3450
34h0
34 7 

3490

35o0
351L
352W
3530
3540
3550
3560

3590

36 1 0
36201

3630
3 4 

0010
0020
00 30
0040
0050
0060
0 07.0

010
01 0
0120
0130

0160
0170
0180
0190
0200
0210
0220
02 30
0240
0250
0260
12 70
02r80
0290C~2 7 00289/02g~05~oc
031~



0320 PRINT USING "'#,'-# /# ",Y]iXY9y5
0330 PRINT FILE(b[J,USING "-,### ",YOXY9,Y 5

Q340 PRINT FILE C1V,] ,1USING 11-##.#, ", Y X,Y9, Y5
o35 v NExT I

0360 CLnSE
370 EN '1)

00o1 REM POGRAM NAME: CHAMF(GEN SOL M AND M)
V:020 CLOSE
0030 D1 A[81]
0040 INPUT "DATA SEI NAME$ ",AS
005~0 OPEN FILL r I,l] A$
0060 OPEN FILE r6,1] "$LPT"
0070 INPUT "FRICTION COtFFICIENr M: "M
0080 PRINT USING "###,# " t/M1
0090 INPUT "FRICTION COEFFICIENT M2- ",M2
0100 LE S(CM.+M2)/C(1M1*M2)
0110 LE SSO*(1+SIR(C 1*I1-2)/CM*fM1+M2))))

0120 PRINT USING "##.## ",S,S1
~J130 INPUT "ASPECT KATI S ",S
V14U INPUQ "INITIAL GUESS FOR : G: ",G
0150 PRINT FILEb16]"OATA SET NhME: "A$

01bv PRINT FILE(6J,USJING "FRICTION COEFFICIENT M1 #.#l ",M1
0170 PRINT FILEr6],USING "FRICTION COEFFICIENT M2 #,## ",M2
018vI PRINT FILErb] ,LJSING "ASPECT RATIO S **,## ",S
0190 PR Tr FILE(]6,USING "INITTAL GIJESS FOR C G #044~#,## ",G

020 gEM COMPUTE INlEGRATION CONSTANT C***********************
o02'1 LET C-G
0220 FOR I1 TO 10o0
0230 LET B:SR ((1+Ml2) * (M+M2)/M1 ) / (M1*M2)
0240 LET 1:SQR(C)
0250 LET BRtSnR(1+C)
0260 LET R3.t/ (2*82) +LOG (82+1)/R1)
0270 LET B4:(B1/8e-CR2+1)/81)/2
0280 LET F1=R*(3+B4*i/(B2+1))
0290 L.ET 83:R2-C*LOG((B2+1)/ 1)
0300 LET F:S+8B*8B-S
0310 LET C=C+F/F1
0320 PRINT USING "-####.#### ",C
0330 IF ABS(F/Fl)<.[)0(.00l THEN LET I-1000
0340 NEXT I
0350 PRINT USING "INTEGRATION CONSTANT C ######### ",C
0360 PRINT FILEr6jUSING "INTEG CONST C tY##.#### ".C

0370 REM COMPUTE CHAMFER SHaPE*************************
0380 FO I TO 74
0390 LET X/74
0400 LET 3-SQR(X+C)
0410 LET 84:SQR(XJ
0420 LET 4t:F3*t4-C*LOG((B3B+4)/81)
0430 LET YS-So*X-B*84
0b440 PRINT USING "##,#a "',,X,S0*C,1X),SI*('X)
0450 PRINT FLE6JUSING "##.## 'I,Y,XSo*CX),Sl*(1X)
046 PRINT FILE[ll,,USING "##*,##, ",YjXS0*(I-X)S1*l-X)
0470 NEX I
046a0 CLnSE
0490 EN,)
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12d I .r YT a Fr ( I)*-. / ) * Lj C2 J I)
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APPENDIX B

CALCULATION OF JACOBIAN MATRICES

Chamfer Crossing

The Jacobian matrix J is given by:

fl
a(6e)

J =

af2
a(6e)

af1

(e )

af2

a(6e l ) _
-j

where

(6) = a cos 8 + sin 
(60) 2

(1/Kx + 1/Kxl)K e
1 r,. i - \ -4- {A g _ - f - - Z % - - n \-I

+ rc sin(Yc- 6e1)

K(6) = 0 - 60 1 [(a- -)cos(P+6O-601 )+(ap + ~)sin(+6-601) ]a2 -1 D [(a-1d)61 + (ap + d)] cos( + -5 )

-[(a- 2d) - (a + 3) s01] sin(4 + 6 - 0e1)2 2 
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Two-Point Contact

The Jacobian matrix J is given by:

af1
a(6x)

af1

1DF
n1

af1
a (6e)

afl

a (e 1 )

af 2
aF
n1

af 3
aF
n1

af 4
aF
n1

af5
aF
n1

af6
aF
n1

jl 1. 12 £23

J21 J22 J23

J31
32 

Z-3 2 -33
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af

a (6 2 )

(B.3)

or

(B.4)

Df1
DF

n2



psin6 - cos68 I cos62 - isin682

(a-d2 ) cos(68+682)

- [(a -Z) - ]
-

|-(all+ ) sin(66+682)
_ ,

K Fn (sin6e8+pcos6e)
x n 1

K -F [(a- 2 )sin(6+62) )

' dn 2o2

+(ap+d) cos(e+c30 2 )j
L s _~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o0 -Fn (sin682+Pcos682)
2

|-Fn [(a-i )sin(68+682)
+ 2 (

0

+ (aii+d) cos(66+66 2 )j
_~~~~1 2 
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where

J12 =

13 =

(B.5)

Jr-- l 1

_

I

_ .~~~~~~~



-r l+p sin(y+d6e-6e 1 -) °

cos6 e-dsin6e

o I-Ch (sin6e1-sin6e2)

! -c cncR -4- i +ic -

O -rl+2 Fn cOS (y+66-6e 1+)
in 1

O I -Fn (Zsin66+dcos60)
2

K

I 0O

+r + 2 Fn cos(y+60-681+B)

iK (cos6-62sin 2 )2 2 2 Sin6 2 )

rFn cos (- 60
1 )

+ChFn (cos602-Hsin6e2)
h

168

J21 

J22

J23

(B.6)

II VV1~UYUY

.



J31= o - I o

J32 =
-32

d
1 1 (a-t)cos6 + 2 sin68

|I cos (6e+82)
0 (

-dsin (6e+6e2)

rsin(y-6 1) 0

-rsin( cos(66+602)-dsin(60+682)-rsin(y-601-662) 2
+ (D+2C ) sin6e, r2sin (-6 e2
-rsin(y-6e- 62)

(B.7)
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