by

Michael P. Hennessey

B.S., Math, University of Minnesota (Institute of Technology, 1980)

Submitted in Partial Fulfillment Of the Requirements for the Degree of

Master of Science
in
Mechanical Engineering
at the

Massachusetts Institute of Technology

June, 1982
© Michael P. Hennessey, June 1982

Signature of Author
Department of Mechanical Engineerig

Approved by

Certified by

Accepted by
Warren M. Rohsenow, Chairman, Department Committee on Graduate Students

Archives

COMPLIANT PART MATING AND
MINIMUM ENERGY CHAMFER DESIGN by
Michael Peter Hennessey
Submitted to the Department of Mechanical Engineering
on June 4, 1982 in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering

ABSTRACT

Theoretical models of compliantly supported rigid pegs entering compliant holes and minimum energy chamfers were used to further understand the mechanics of assembly. Key features of the "peg-in-hole" model include large angle solutions and rotational hole compliance. The effect of various insertion parameters on the "insertion force versus depth" plot was determined. Minimum energy chamfers have been designed according to either minimum insertion work (energy) or minimum frictional work (energy). Both criteria have been shown to yield the same chamfer shapes. Also, chamfers have been designed where the chamfered part, while being displaced rubs against two surfaces with friction (e.g. a doorlatch tongue).

An experiment was carried out which attempted to verify experimentally the existence of minimum energy chamfers. Three aluminum chamfers were made and their insertion energies determined. One of the chamfers was an optimal slope chamfer (aspect ratio, $S=1.40$) and the other two were straight line chamfers ($S=0.60,3.75$). The straight line chamfers in theory had 18% (for $S=0.60$) and 22% (for $S=3.75$) more insertion energy than did the optimal slope chamfer. The experimental percentages were 29% and 18%, respectively which supports the theoretical predictions; namely that chamfers flatter or steeper than the optimal slope chamfer have larger insertion energies.

Thesis Supervisor: Dr. Daniel Whitney, Lecturer Department of Mechanical Engineering

ACKNOWLEDGMENTS

This thesis was funded by the National Science Foundation under Grant No. DAR 79-10341 and prepared at The Charles Stark Draper Laboratory, Inc.

I would like to thank my thesis supervisor, Dr. Daniel Whitney for his guidance and advice, which saved me time and improved the quality of this thesis. Also, I would like to thank other members of the Draper Staff (10D) for their frequent participation in part mating discussions (Richard Gustavson in particular) and assistance in conducting experiments as well as those responsible for typing the final draft: Technical Publications, Lucille Legner and Kim Obrion.

Publication of this thesis does not constitute approval by the National Science Foundation or the Charles Stark Draper Laboratory, Inc. of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massachusetts Institute of Technology to reproduce any or all of this thesis.

1. COMPLIANTLY SUPPORTED RIGID PEG ENTERING A COMPLIANT HOLE 12
1.1 INTRODUCTION 12
1.2 LATERAL COMPLIANCE HOLE 19
1.2.1 Introduction 19
1.2.2 Chamfer Crossing 19
1.2.3 One-point Contact 23
1.2.4 Two-point Contact 26
1.2.5 Solution of Assembly Equations 30
1.2.6 Results and Discussion 36
1.3 ROTATIONAL COMPLIANCE HOLE 49
1.3.1 Introduction 49
1.3.2 Chamfer Crossing 49
1.3.3 One-point Contact 53
1.3.4 Two-point Contact 55
1.3.5 Solution of Assembly Equations 58
1.3.6 Results and Discussion 62
1.4 LATERAL AND ROTATIONAL COMPLIANCE HOLE 71
1.4.1 Introduction and Derivation of Assembly Equations 7.1
1.4.2 Solution of Assembly Equations 76
1.4.3 Results and Discussion 80
1.5 CONCLUSION 84
2. MINIMUM ENERGY CHAMFER DESIGN 90
2.1 INTRODUCTION 90
2.1.1 Chamfer Design in General 90
2.1.2 Minimum Energy Chamfer Design 91
2.2 LATERAL PEG SUPPORT 91
2.2.1 Introduction 91
2.2.2 Frictional Work Criterion. 94
2.2.3 Vertical Insertion Work Criterion 97
2.2.4 Horizontal Criterion 97
2.2.5 Results and Discussion 98
2.3 ROTATIONAL PEG SUPPORT 103
2.3.1 Introduction. 103
2.3.2 Frictional Work Criterion 106
2.3.3 Vertical Work Criterion. 109
2.3.4 Results and Discussion 110
2.4 "DOORLATCH PROBLEM" 115
2.4.1 Introduction. 115
2.4.2 Calculus of Variations Analysis 119
2.4.3 Results and Discussion. 121
2.5 MINIMUM ENERGY CHAMFER EXPERIMENT 123
2.5.1 Introduction 123
2.5.2 Specifics of the Chamfers Designed 123
2.5.3 Experimental Apparatus and Procedure 124
2.5.4 Experimental Results 129
2.5.5 Comparison with Theory 135
2.5.6 Conclusions and Recommendations 137
3. SUMMARY AND DIRECTION OF FURTHER RESEARCH 138
3.1 SUMMARY 138
3.2 DIRECTION OF FURTHER RESEARCH IN PART MATING 138
APPENDIX
A. COMPUTER PROGRAMS 140
B. CALCULATION OF JACOBIAN MATRICES 165
LIST OF REFERENCES 170

LIST OF FIGURES

Figure Page
1.1.1 Initial configuration of peg and hole 14
1.1.2 Classification of part mating 14
1.1.3 Initial configuration of peg and hole 15
1.1.4 Ideal sucessful assembly phases 17
1.1.5 Development of new one-point contact 18
1.2.1 Initial configuration of peg and hole 20
1.2.2 Chamfer crossing 22
1.2.3 One-point contact 24
1.2.4 One-point contact $(\ell>a)$ 27
1.2.5 Two-point contact 28
1.2.6 Graphical solution of equations 1.2 .16 and 1.2 .17 32
1.2.7 Effect of $K_{x_{1}} / K_{x}$ on F_{z} versus δz 38
1.2.8 Effect of $K_{x_{2}} / K_{x}$ on F_{z} versus δz. 39
1.2.9 Comparison of linearized solutions with exact solutions for several $\mathrm{K}_{\mathrm{x}_{1}} / \mathrm{K}_{\mathrm{x}}$. 40
1.2.10 Effect of linearization on $F_{z}, \delta \theta$, δx versus δz 41
1.2.11 Undesirable assembly phases 43
1.2.12 Simplified assembly sequence 46
1.2.13 Feedback scheme 47
1.2.14 Optimal compliance location (a_{0}) versus assembly phase 47
1.2.15 Sensitivity of feedback equations 48

LIST OF FIGURES (Cont.)

Figure Page
1.3.1 Initial configuration of peg and hole 50
1.3.2 Chamfer crossing 51
1.3.3 One-point contact 54
1.3.4 Two-point contact 56
1.3.5 Effect of $K_{\theta_{1}} / K_{\theta}$ on F_{z} versus δz 63
1.3.6 Effect of $K_{\theta_{2}} / K_{\theta}$ on F_{z} versus δz 64
1.3.7 Effect of C_{h} / a on F_{z} versus δz 66
1.3.8. Effect of C_{v} / a on F_{z} versus δz. 67
1.3.9 Comparison of linearized solutions with exact solutions for several C_{v} / a 68
1.3.10 Effect of linearization on $F_{z}, \delta \theta$, δx versus δz 69
1.3.11 Simplified assembly sequence 70
1.4.1 Chamfer crossing 72
1.4.2 One-point contact 73
1.4.3 Two-point contact 74
1.4.4 Effect of ϕ on F_{z} versus δz 82
1.4.5 Effect of μ on F_{z} versus δz 83
1.4.6 Effect of C on F_{z} versus δz 85
1.4.7 Effect of Δ / a on F_{z} versus δz 86
1.4.8 Effect of D / a on F_{z} versus δz 87
1.4.9 Effect of $K_{x} a^{2} / K_{\theta}$ on F_{z} versus δz 88
1.4.10 Comparison of linearized solutions for several Δ / a. 89
2.1.1 Original minimum energy chamfer problem. 92
2.2.1 Chamfer crossing-lateral peg support 93
2.2.2 Regions in the $s-\mu$ plane showing allowed minimum insertion energy chamfers and their shapes 101
Figure Page
2.2.3 Minimum energy chamfer shapes for various s, $\mu=0.2$ 102
2.3.1 Chamfer crossing-rotational peg support 104
2.3.2 Optimal and wedging chamfers for various L, $\mu=0.2, \theta_{0}=10^{\circ}$ 113
2.3.3 Optimal and wedging chamfers for various L, $\mu=0.2, \theta_{0}=20^{\circ}$ 114
2:4.1 Doorlatch problem 116
2.4.2 Free-body diagram of doorlatch tongue 117
2.4.3 Minimum energy chamfer shapes for various S, $\mu_{1}=0.5, \mu_{2}=0.25$ 122
2.5.1 Chamfers used in experiment 125
2.5.2 Experimental apparatus 126
2.5.3 Draper's 6-axis force sensor 127
2.5.4 Sample data from experiment-chamfer \#2 130
2.5.5 Insertion force versus depth-chamfer \#1. 131
2.5.6 Insertion force versus depth-chamfer \#2 132
2.5.7 Insertion force versus depth-chamfer \#3 133
2.5.8 Insertion force versus depth-all chamfers 134

LIST OF TABLES

Table Page
1.2.1 Dimensional Analysis 31
1.2.2 Linearized Solutions for δx and $\delta \theta$ 35
1.3.1 Dimensional Analysis. 59
1.3.2 Linearized Solutions for δx and $\delta \theta$ 60
1.4.1 Linearized solutions for δx and $\delta \theta$ 81
2.5.1 Specifications of Schaevitz Engineering DC-LVDT 128
2.5.2 Experimentally Determined Friction Coefficients 135
2.5.3 Comparison of Theoretical Energies with Experimental Energies 136

List of Symbols

```
    \phi - chamfer angle
\mu - friction coefficient
\beta - friction angle (Tan }\mp@subsup{}{}{-1}\mu
C - clearance ratio
\mp@subsup{\gamma}{c}{} compliance center of hole to contact point during chamfer crossing
\(\gamma\) - angle between line perpendicular to hole wall and line from compliance center of hole to contact point during one-point and two-point contact
D - diameter of hole
d - diameter of peg
\(\Delta\) - initial lateral error
a - distance from end of peg to compliance center of peg
\(a_{0}\) - optimized distance from end of peg to compliance center of peg
\(C_{h}\) - distance perpendicular to hole wall to hole's compliance center
\(C_{V}\) - distance parallel to hole wall from corner of chamfer to compliance center of hole
\(r_{c}\) - distance between contact point and compliance center of hole during chamfer crossing
r - distance between contact point and compliance center of hole during one-point and two-point contact
\(\Delta z\) - driving insertion variable during chamfer crossing
\(\zeta-\left(\Delta-\frac{C D}{2}\right) \tan \phi-\Delta z\)
\& - driving insertion variable during one-point and two-point contact
\(K_{\theta}\) - rotational stiffness of peg support
\(\mathrm{K}_{\theta_{1}}\) - rotational stiffness of left hole wall
```

```
K}\mp@subsup{0}{2}{}\mathrm{ - rotational stiffness of right hole wall
    K
K}\mp@subsup{\textrm{x}}{1}{
K}\mp@subsup{\mathbf{x}}{2}{}\mathrm{ - lateral stiffness of right hole wall
    \delta0 - rotational displacement of peg
\delta01 - rotational displacement of left hole wall
\delta02 - rotational displacement of right hole wall
    \deltax - lateral displacement of peg's compliance center
\deltax
\deltax
    \deltaz - vertical displacement of peg's compliance center
    V - distance parallel to right hole wall from contact point to compliance center of hole
    Fx - horizontal peg support force
    Fz - vertical peg support force
    Fn - normal contact force during chamfer crossing
F}\mp@subsup{n}{1}{}-\mp@subsup{n}{}{-
        and two-point contact
F}\mp@subsup{n}{2}{}-\quad\mathrm{ normal contact force on right hole wall during two-point
    M - external moment about peg support point
```

COMPLIANTLY SUPPORTED RIGID PEG ENTERING A COMPLIANT HOLE

1.1 INTRODUCTION

A field of study related to industrial automation is part mating. Part mating is primarily concerned with the mechanics of assembly, studying the forces and displacements of the parts involved so as to recommend ways of making the assembly easier. In many assembly situations (e.g., putting a bearing into a housing) there are two parts involved: one is fixed (the "hole") and another part (the "peg"), while being supported, is assembled to the first part as shown schematically in Figure 1.1.1. The subsequent analysis will presume this type of assembly.

Part mating has been researched by The Charles Stark Draper Laboratory, Inc. since 1973. One major accomplishment so far is the invention of a passive device which when mounted to the wrist of a robot aids assembly by providing proper support for the "peg". This device, called a Remote Center Compliance (RCC), was invented in the mid-seventies and versions of the original design are now being used extensively in industrial automation.

Part mating research has continued following the invention of the RCC and has yielded new and interesting results: (a) improved understanding of mating success criteria, (b) design guidelines for parts to aid their assembly, (c) better appreciation of the relationship of friction, geometry, and compliance to mating characteristics, and (d) models of assembly force versus depth that can be used to monitor the assembly process.

In general, there are two classifications of part mating: Rigid and Compliant. In rigid part mating the parts involved do not store a substantial amount of elastic energy during the mating process, whereas in compliant part mating one or both of the parts store a substantial amount of elastic energy during the mating process. Much work has
been done in rigid part mating and some areas of rigid part mating have been recently extended to compliant part mating. ${ }^{1,2}$ This thesis concentrates on compliant part mating.

A further subclassification of part mating is depicted in Figure 1.1.2, taking into account where the compliant support is located and, more importantly, whether the parts themselves can be considered rigid with respect to the supports. In the part mating theory developed by The Charles Stark Draper Laboratory, Inc. it is the part that is supported compliantly, not the hole. An interesting alternative to this approach is due to Arai and Kinoshita, ${ }^{3}$ where the hole (worktable) is supported compliantly while the part remains fixed during the assembly. They recommend the use of compliance in the worktable (hole) for small batch production, but agree that for mass production, locating the compliance in the part's support is more suitable.

Compliant part mating is primarily concerned with the mechanics of assembly of parts that cannot be considered rigid compared to the support. Recently, the theory has been extended to handle restricted cases that involve compliant hole walls (e.g., no friction, small angles). 4,5 This thesis presents even more general models which take into account (1) lateral hole compliance, (2) rotational hole compliance, and (3) combined lateral and rotational hole compliance. 4,6 These three models have been used to analyze a single "peg-in-hole" assembly. Two types of solutions were used for each model, one based on linearized solutions and one based on exact solutions.

In the analysis that follows, various simplifying assumptions will be made that are based on experience and serve to substantially reduce the complexity of the model used. One simplifying assumption is the use of a two-dimensional model. Also, during compliant part mating, the peg's support and the hole are assumed to deform elastically according to a linear stress-strain law. These deformations characterize the assembly and determine its success or failure. The "peg" is assumed to be rectangular in shape and supported compliantly at its compliance center located along the center axis of the peg. For our purposes a compliance center is a point where a fictitious support acts to provide independent lateral and rotational support. In practice, this can be done with the RCC. The "hole" is assumed to be chamfered with parallel sides in its unstressed state. Figure 1.1.3(a) illustrates the initial configuration of the peg and the hole with peg support

Figure 1.1.1. Initial configuration of peg and hole.

Figure 1.1.2. Classification of part mating.

Figure 1.1.3 Initial configuration of peg and hole.
stiffnesses K_{x}, K_{θ} (reciprocal compliances) and gripper identified. Physically, the peg may be thought of as being supported by the gripper which moves vertically downward during the assembly process. This situation is equivalent to the one shown in Figure 1.1.3(b) where now the gripper and support springs (compliances) have been replaced with a single solid dot - representing the compliance center of the peg. Note that the initial angular error of the peg's center axis with respect to the hole's center axis is assumed to be negligible. Also, since the parts are typically lightweight and assembly usually proceeds relatively slowly, dynamic effects will be ignored. This justifies the use of quasi-static models where the parts are presumed to be massless.

Regardless of the type of hole compliance, the general quasistatic phases of successful assembly to be considered are (a) chamfer crossing, followed by (b) one-point contact, (c) two-point contact, (d) resumption of one-point contact, and (e) line contact. Figure 1.1.4 illustrates this assembly process. The assembly process is continuous except for the transition from chamfer crossing to one-point contact. This is because the normal force changes direction abruptly when the corner of the peg meets the corner of the chamfer. Physically, the jump in the displacements (horizontal and vertical) of the peg are typically small; however, the jump in the vertical insertion force can be substantial.

The assembly process described above will be formally analyzed in the following sections. Other successful and unsuccessful processes are certainly possible but will not be analyzed in great detail. For example, the location of the compliance center of the peg can greatly affect the assembly process. If it is located too close to the end of the peg a new kind of one-point contact is possible (see Figure 1.1.5). Other locations of the peg's compliance center could be considered too (e.g., not within the boundary of the peg) but are not as practical. Hence this possibility will be ignored. Previous work in compliant part mating has emphasized the assembly phases outlined in Figure 1.1.4 and thus provided the motivation for analyzing this type of assembly. Also, efforts will be made to identify some of the unsuccessful or undesirable modes of assembly; however, finding explicit criteria in terms of the friction, the geometry, or the compliance is often difficult.

Figure 1.1.4. Ideal successful assembly phases.

(a) Chamfer Crossing

(b) One-point Contact

Figure 1.1.5. Development of new one-point contact.

1.2 LATERAL COMPLIANCE HOLE

1.2.1 Introduction

In many instances it is necessary for the model to incorporate only lateral hole compliance. Figure l.2.1 illustrates the initial configuration of the peg and the hole with the compliance center of the peg indicated. During the assembly to be considered the hole walls will initially deform outward, enlarging the hole. This deformation will be treated as a uniform lateral translation of the hole walls parallel to their initial position. Both sides (left and right) will then deform away from the center axis of the hole so that the distance between the center axis of the hole and the sides of the hole will always be nonnegative (i.e., $\delta x_{1}, \delta x_{2} \geq 0$). The quasi-static phases of successful assembly to be analyzed are (1) chamfer crossing, followed by (2) one-point contact, (3) two-point contact, (4) resumption of one-point contact, and the final phase, (5) line contact. Line contact occurs when the peg has uprighted itself (vertical) and is in contact with the left side of the hole.

The compliance center's location along the peg's axis can greatly affect the assembly characteristics. If the compliance center of the peg is located too close to the end of the peg the other type of one-point contact will occur. A sufficient criterion for avoiding this type of one-point contact is to require the angle of the peg with respect to the vertical $(\delta \theta)$ to be nonnegative $(N+)$ during chamfer crossing.

1.2.2 Chamfer Crossing

Chamfer crossing is depicted in Figure 1.2.2 and will now be analyzed. A free body diagram of the peg is shown with all external forces and moments present. The geometrical parameters and the remaining insertion variables are also indicated.

The positions of the peg and hole during chamfer crossing are completely determined by (1) balancing the external forces and moments on the peg, (2) using the constitutive law for each compliance, and (3) invoking geometric constraints on the peg and hole. ${ }^{7}$ The force and moment balance involves a horizontal and vertical force balance along with a moment balance at the peg's compliance center. Constitutive laws for the compliances must be applied to the peg's support (both lateral and rotational compliance) and the left hole wall (lateral compliance). The peg's support and the hole wall's stiffness may be readily identified (e.g. $\mathrm{K}_{\mathrm{X}_{1}}$ is the lateral stiffness of the left side of the hole); also see List of Symbols. Two

Figure 1.2.1. Initial configuration of peg and hole.
geometric constraints apply, a horizontal geometric constraint and a vertical one. The following equations may then be derived with the aid of Figure 1.2.2.

Equilibrium Requirements

$$
\begin{align*}
\mathbf{F}_{\mathbf{x}}= & \mathrm{F}_{\mathrm{n}}(\sin \phi-\mu \cos \phi) \\
\mathrm{F}_{\mathrm{z}}= & \mathrm{F}_{\mathrm{n}}(\cos \phi+\mu \sin \phi) \\
\mathrm{M}= & \mathrm{F}_{\mathrm{n}}\{\operatorname{a}[\sin (\phi+\delta \theta)-\mu \cos (\phi+\delta \theta)] \\
& \left.-\frac{\mathrm{d}}{2}[\cos (\phi+\delta \theta)+\mu \sin (\phi+\delta \theta)]\right\} \tag{1.2.1}
\end{align*}
$$

Force-Deformation Relations

$$
\begin{align*}
\mathbf{F}_{\mathbf{x}} & =\mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathbf{M} & =\mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\mathbf{x}_{1}} \delta \mathbf{x}_{1} & =\mathrm{F}_{\mathrm{n}}(\sin \phi-\mu \cos \phi) \tag{1.2.2}
\end{align*}
$$

Geometric Compatibility Requirements

$$
\begin{align*}
& \frac{\Delta z}{\tan \phi}=\delta \mathbf{x}+\delta \mathbf{x}_{1}+\mathrm{a} \sin \delta \theta+\mathrm{d} \sin ^{2} \frac{\delta \theta}{2} \\
& \mathbf{a}+\Delta \mathbf{z}=\delta z+\mathbf{a} \cos \delta \theta+\frac{d}{2} \sin \delta \theta \tag{1.2.3}
\end{align*}
$$

The variable Δz is defined as the insertion distance. Chamfer crossing begins when $\Delta z=0$ and ends when $\Delta z=\left(\Delta-\frac{C D}{2}\right)$ tan $\phi>0$. Here C is the clearance ratio, defined by

$$
\begin{equation*}
C=\frac{D-d}{D} \tag{1.2.4}
\end{equation*}
$$

To avoid the other type of one-point contact, the compliance center of the peg must not be located too close to the end of the peg.

Figure 1.2.2. Chamfer crossing.

In fact, it must be located at a distance of at least $\frac{d}{2 \tan (\phi+\delta \theta-\beta)}$ from the end of the peg. Here the friction angle (β) is given by

$$
\begin{equation*}
\beta=\tan ^{-1} \mu \tag{1.2.5}
\end{equation*}
$$

This may be derived by requiring the normal force (F_{n}) and the angle of the peg with respect to the vertical $(\delta \theta)$ to be nonnegative in the moment balance equation (Equation 1.2.1). Since $\delta \theta$ is not known beforehand, an estimate of the maximum value of $\delta \theta$ will provide an estimate of the minimum acceptable value of a. Also, to avoid wedging the chamfer angle (ϕ) must be greater than $\beta-\delta \theta$.

1.2.3 One-Point Contact

As mentioned earlier, chamfer crossing is not immediately followed by one-point contact (see Figure 1.2.3). Instead a transient phase occurs while the normal force $\left(F_{n}\right)$ changes direction so as to align itself perpendicularly to the surface of the side of the peg. This phase, although quite brief, is responsible for producing a discontinuity in all of the insertion variables between chamfer crossing and one-point contact. One could, however, construct a quasi-static model to analyze this phase by continuously varying the direction of the normal force while solving for a quasi-static solution. Because computer runs and experience have shown that the "jump" in the geometric variables (e.g., δz) is typically small (less than 5%) this phase will not be analyzed. Therefore the next phase to be analyzed is one-point contact.

The positions of the peg and hole during one-point contact are completely determined by (1) equilibrium requirements, (2) forcedeformation relations, and (3) geometric compatibility requirements. The one-point contact phase is shown in Figure 1.2 .3 with a free-body diagram of the peg included. Proceeding as before (Section 1.2.2) and with the aid of Figure 1.2 .3 it follows that:

Equilibrium Requirements

$$
\begin{align*}
& \mathrm{F}_{\mathbf{x}}=\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta) \\
& \mathrm{F}_{\mathrm{z}}=\mathrm{F}_{\mathrm{n}_{1}}(\sin \delta \theta+\mu \cos \delta \theta) \\
& \mathrm{M}=\mathrm{F}_{\mathrm{n}_{1}}\left[(\mathrm{a}-\ell)-\frac{\mu d}{2}\right] \tag{1.2.6}\\
& 23
\end{align*}
$$

Figure 1.2.3. One-point contact.

Force-Deformation Relations

$$
\begin{align*}
\mathbf{F}_{\mathbf{x}} & =\mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathbf{M} & =\mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\mathbf{x}_{1}} \delta \mathbf{x}_{\mathbf{1}} & =\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta) \tag{1.2.7}
\end{align*}
$$

Geometric Compatibility Requirements

$$
\begin{align*}
\Delta-\frac{C D}{2} & =\delta x+\delta x_{1}+(a-\ell) \sin \delta \theta+d \sin ^{2} \frac{\delta \theta}{2} \\
a+\left(\Delta-\frac{C D}{2}\right) \tan \phi & =\delta z+(a-\ell) \cos \delta \theta+\frac{d}{2} \sin \delta \theta \tag{1.2.8}
\end{align*}
$$

Here ℓ is taken to be the insertion distance. One-point contact begins when $\ell=0$. Also, we must require the angle of the peg with respect to the vertical $(\delta \theta)$ to be nonnegative. From Equations 1.2.6 and 1.2.7 it follows that the distance from the tip of the peg to its compliance center (a) must be at least $\frac{\mu d}{2}$, since the equations hold for ℓ arbitrarily small.

One-point contact ends and two-point contact begins when the lower right corner of the peg comes in contact with the right side of the hole. To determine the values of ℓ and other insertion variables for which two-point contact begins, the following additional geometric constraint must be included with the one-point contact equations when solving for these insertion variables

$$
\begin{equation*}
\ell \sin \delta \theta+\mathrm{d} \cos \delta \theta=\mathrm{D}+\delta \mathbf{x}_{1} \tag{1.2.9}
\end{equation*}
$$

The above equation is a horizontal relationship which says in effect that the peg's lower right corner has just touched the right wall (no normal force yet).

As mentioned in the Introduction, Section 1.2.1, two-point contact is followed by a resumption of one-point contact. The same equations (Equations 1.2.6, 1.2.7, and 1.2.8), which hold for the first one-point contact, must also hold for the resumption of one-point contact. In addition, Equation 1.2 .9 also applies to the boundary between two-point contact and the resumption of one-point contact.

Although the existence of the second one-point contact may not be obvious, it does occur, and a more rigorous justification will now be given. Manipulation of Equations 1.2 .6 through 1.2 .9 yields the following quadratic in ($a-\ell$)

$$
\begin{equation*}
\sin \delta \theta(a-\ell)^{2}+B(\delta \theta)(a-\ell)+C(\delta \theta)=0 \tag{1.2.10}
\end{equation*}
$$

where $B(\delta \theta), C(\delta \theta)$ are complex expressions. This equation implies that a resumption of one-point contact is possible since its solution yields either two real roots or two complex roots. Two real roots correspond to the case where two-point contact occurs marking the beginning and the end of two-point contact. Two complex roots correspond to the case where two-point contact does not occur. Numerical results have verified this and also suggest that the resumption of one-point contact ends for $\ell<a$. To show that one-point contact is impossible for $\ell>a$ and to establish a lower bound, consider the situation illustrated in Figure 1.2.4. A free-body diagram of the peg is shown for the case $\ell>a$. The moment balance equation

$$
\begin{equation*}
M+F_{n_{1}}(\ell-a)+\mu F_{n_{1}} \frac{d}{2}=0 \tag{1.2.11}
\end{equation*}
$$

is meaningless because each term on the left side is greater than zero. A lower bound for ℓ during one-point contact can be found by requiring M and $F_{n_{1}}$ in Equation 1.2.11 to be nonnegative, i.e.

$$
\begin{equation*}
\ell \leq a-\frac{\mu d}{2} \tag{1.2.12}
\end{equation*}
$$

The largest value of ℓ for which one-point contact is possible is shown in Figure 1.2.4.

1.2.4 Two-Point Contact

The assembly phase immediately following one-point contact is twopoint contact. In Figure 1.2 .5 the geometry of two-point contact is illustrated along with a free-body diagram of the peg.

The positions of the peg and hole during two-point contact are completely determined by (1) equilibrium requirements, (2) forcedeformation relations, and (3) geometric compatibility requirements. The

Figure 1.2.4. One-point contact $(\ell>a)$.

Figure 1.2.5. Two-point contact.
force-deformation relations must of course include the constitutive relations for the right hole wall's lateral compliance as well. An additional geometry constraint must also be present. So, in a similar manner to that shown earlier (see Figure 1.2.5) the following equations may be derived.

Equilibrium Requirements

$$
\begin{aligned}
\mathbf{F}_{\mathbf{x}}= & F_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta)-\mathrm{F}_{\mathrm{n}_{2}} \\
\mathbf{F}_{\mathbf{z}}= & \mathrm{F}_{\mathrm{n}_{1}}(\sin \delta \theta+\mu \cos \delta \theta)+\mu \mathrm{F}_{\mathrm{n}_{2}} \\
\mathrm{M}= & \mathrm{F}_{\mathrm{n}_{1}}\left[(\mathrm{a}-\ell)-\frac{\mu d}{2}\right] \\
& -\mathrm{F}_{\mathrm{n}_{2}}\left[\mathrm{a}(\cos \delta \theta-\mu \sin \delta \theta)-\frac{d}{2}(\sin \delta \theta+\mu \cos \delta \theta)\right]
\end{aligned}
$$

Force-Deformation Relations

$$
\begin{align*}
\mathbf{F}_{\mathbf{x}} & =\mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathrm{M} & =\mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\mathbf{x}_{1}} \delta \mathbf{x}_{1} & =\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \\
\mathrm{K}_{\mathbf{x}_{2}} \delta \mathbf{x}_{2} & =\mathrm{F}_{\mathrm{n}_{2}} \tag{1.2.14}
\end{align*}
$$

Geometric Compatibility Requirements

$$
\Delta-\frac{C D}{2}=\delta x+\delta x_{1}+(a-\ell) \sin \delta \theta+d \sin ^{2} \frac{\delta \theta}{2}
$$

$$
\begin{align*}
& \mathrm{a}+\left(\Delta-\frac{\mathrm{CD}}{2}\right) \tan \phi=\delta z+(\mathrm{a}-\ell) \cos \delta \theta+\frac{d}{2} \sin \delta \theta \\
& \ell \sin \delta \theta+\mathrm{d} \cos \delta \theta=\mathrm{D}+\delta \mathrm{x}_{1}+\delta \mathrm{x}_{2} \tag{1.2.15}
\end{align*}
$$

The insertion distance is again ℓ and the resumption of one-point contact will occur when $\mathrm{F}_{\mathrm{n}_{2}}=\delta \mathrm{x}_{2}=0$ is substituted into the two-point contact equations. These new equations, as expected, are the same as the one-point contact equations with the geometric constraint (Equation 1.2.9) imposed.

1.2.5 Solution of Assembly Equations

A. Introduction

Because of the complexity of the assembly equations, it was necessary to use a computer to solve them. Two types of solutions were obtained: (a) exact solutions and (b) linearized solutions. For the exact solutions simple iteration was used, and for the linearized solutions the linearization was carried out with respect to the insertion variables (except $\Delta z, \ell$), leaving the insertion parameters fixed. By definition, insertion variables are quantities which vary during the assembly (insertion) and insertion parameters remain constant during the assembly (insertion). Below, both methods of solution are explained further. In either case, dimensional analysis has been used in computed solutions as outlined in Table 1.2.1.

The dimensional analysis used below is, of course, not the only way to nondimensionalize the variables and parameters. Measuring distances with respect to a offers the advantage that δz for typical cases ranges from 0 to 1.1 ± 0.1 during the assembly process. This allows for easier interpretation of insertion force (F_{z}) versus depth (δz) plots. Also, because of the popularity of the clearance ratio (C), the diameter of the peg (d) is effectively treated as a dependent parameter.

B. Exact Solutions

Chamfer Crossing

Equations 1.2 .1 through 1.2 .3 may be manipulated to yield the following transcendental relation in $\delta \theta$ whose solution is shown graphically in Figure 1.2.6
$\delta \theta=$
$\frac{f_{1}(\delta \theta)\left\{a[\sin (\delta \theta+\phi)-\mu \cos (\delta \theta+\phi)]-\frac{d}{2}[\cos (\delta \theta+\phi)+\mu \sin (\delta \theta+\phi)]\right\}}{\mathrm{K}_{\theta}\left(1 / \mathrm{K}_{\mathrm{x}}+1 / \mathrm{K}_{\mathrm{x}_{1}}\right)(\sin \phi-\mu \cos \phi)}$

Table 1.2.1 Dimensional Analysis

Insertion Parameters	Dimensionless
a	1
K_{θ}	1
μ	μ
ϕ	ф
c	c
Δ	Δ / a
D	D/a
d	$(1-C) D / a=\frac{d}{a}$
R_{x}	$\frac{\mathrm{K}_{\mathrm{x}} \mathrm{a}^{2}}{\mathrm{~K}_{\theta}}$
$\mathrm{K}_{\mathrm{x}_{1}}$	$\mathrm{K}_{\mathrm{x}_{1}} / \mathrm{K}_{\mathrm{x}}$
$\mathrm{K}_{\mathrm{x}_{2}}$	$\mathrm{K}_{\mathrm{x}_{2}} / \mathrm{K}_{\mathrm{x}}$
	Dimensionless
Insertion Variables	Insertion Variables
$\delta \theta$	$\delta \theta$
δx	$\delta \mathrm{x} / \mathrm{a}$
$\delta \mathrm{x}_{1}$	$\delta x_{1} / \mathrm{a}$
$\delta \mathrm{x}_{2}$	$\delta x_{2} / \mathrm{a}$
$\delta \mathbf{z}$	$\delta z / a$
Δz	$\Delta z / a$
ℓ	l/a
F_{n}	$\mathrm{aF}_{\mathrm{n}} / \mathrm{K}_{\theta}$
F_{n}	$\mathrm{aF}_{\mathrm{n}_{1}} / \mathrm{K}_{\theta}$
$\mathrm{F}_{\mathrm{n}_{2}}$	$\mathrm{aF}_{\mathrm{n}_{2}} / \mathrm{K}_{\theta}$
F_{x}	$\mathrm{aF}_{\mathrm{x}} / \mathrm{K}_{\theta}$
F_{z}	$\mathrm{aF}_{\mathrm{z}} / \mathrm{K}_{\theta}$
M	$\frac{\mathrm{M}}{\mathrm{~K}_{\theta}}$

Figure 1.2.6. Graphical solution of equations 1.2.16 and 1.2.17.
where

$$
\begin{equation*}
f_{1}(\delta \theta)=\frac{\Delta z}{\tan \phi}-a \sin \delta \theta-d \sin ^{2} \frac{\delta \theta}{2} \tag{1.2.17}
\end{equation*}
$$

Once $\delta \theta$ has been established by iteration, the remaining variables are obtained easily by direct substitution.

One-Point Contact
Similar manipulation of Equations 1.2.6 through 1.2.8 yields

$$
\begin{equation*}
\delta \theta=\frac{\left[\left(\Delta-\frac{C D}{2}\right)-(a-\ell) \sin \delta \theta-d \sin ^{2} \frac{\delta \theta}{2}\right]\left[(a-\ell)-\frac{\mu d}{2}\right]}{K_{\theta}\left(1 / K_{x}+1 / K_{x_{1}}\right)(\cos \delta \theta-\mu \sin \delta \theta)} \tag{1.2.18}
\end{equation*}
$$

which is also solved by iteration as motivated by Figure 1.2.6. Other variables may the be determined by direct substitution.

Two-Point Contact
Again the same iteration scheme works (use Equations 1.2 .13 through 1.2.15) when applied to

$$
\begin{align*}
\delta \theta= & \frac{f_{2}(\delta \theta)\left[\left(K_{x}+K_{x_{1}}\right) f_{3}(\delta \theta)+K_{x_{1}}\left[(a-\ell)-\frac{\mu d}{2}\right] /(\cos \delta \theta-\mu \sin \delta \theta)\right]}{K_{\theta}\left(K_{x}+K_{x_{1}}+K_{x_{2}}\right)} \\
& -K_{x_{3}}(\delta \theta)\left[\left(\Delta-\frac{C D}{2}\right)-(a-\ell) \sin \delta \theta-d \sin ^{2} \frac{\delta \theta}{2}\right] / K_{\theta} \tag{1.2.19}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{f}_{2}(\delta \theta)= & \mathrm{K}_{\mathrm{x}}\left[\left(\Delta-\frac{C D}{2}\right)-(\mathrm{a}-\ell) \sin \delta \theta-\mathrm{d} \sin ^{2} \frac{\delta \theta}{2}\right] \\
& +\mathrm{K}_{\mathrm{x}_{2}}(\mathrm{~d} \cos \delta \theta-D+\ell \sin \delta \theta) \\
\mathrm{f}_{3}(\delta \theta)= & \frac{d}{2}(\sin \delta \theta+\mu \cos \delta \theta)-a(\cos \delta \theta-\mu \sin \delta \theta) \tag{1.2.20}
\end{align*}
$$

The other variables may then be solved for directly once $\delta \theta$ is known.

Computer Program

The computer program written to solve the assembly equations is called "LATERAL" (see Appendix A). Given the insertion parameters as inputs it computes $F_{z}, \delta z, \delta \theta$, and δx for various insertion distances $(\Delta z, \ell)$ during the entire assembly. Because of the inherent complexity of the equations, care was taken to verify a proposed solution by substituting the insertion solution variables back into all of the equations and displaying an "error matrix" while the program is running. Each entry in the matrix corresponds to the residual error in an equation. The value of ℓ for which one-point contact ended and two-point contact began was not determined exactly since double iteration was required. Instead a modification of Equation 1.2.9 was used. For a given value of ℓ, if the left side is greater than the right side, twopoint contact occurs. Otherwise, one-point contact occurs. For the boundary between two-point contact and one-point contact, the sign of the normal force (or $\delta \mathrm{x}_{2}$) on the right side of the hole was observed. When its algebraic sign changed (+ to -) the resumption of one-point contact had begun.

C. Linearized Solutions

As mentioned earlier, the linearized solutions were determined by linearizing the assembly equations with respect to all of the insertion variables (except $\Delta z, \ell$) and then solving them. The details of the linearization will not be given, but basically it involves expanding all of the terms that appear in each equation and canceling all of the nonlinear terms, thus arriving at a set of linearized equations.

The program written to solve these linearized equations is called "LINLAT" (see Appendix A). Given the insertion parameters as inputs it computes $F_{z}, \delta z, \delta \theta$, and δx for various insertion distances $(\Delta z, \ell)$ during the entire assembly. The linearized equations can also be solved directly and some of these solutions ($\delta \mathbf{x}, \delta \theta$) are given in Table 1.2.2 for each assembly phase. As it turns out $\delta \mathbf{x}$ and $\delta \theta$ are "easier" to solve for than many of the other variables. The variables $F_{z}, \delta z$ may be obtained readily once δx and $\delta \theta$ are known. Again the value of ℓ for which one-point contact ended was not solved for exactly. Instead, Equation 1.2 .9 was linearized and used as described before. Also, the sign of the normal force on the right side of the hole was used to determine when the resumption of one-point contact begins.

Table 1.2.2. Linearized Solutions for $\delta \mathbf{x}$ and $\delta \theta$.

Chamfer Crossing
$\delta x=\frac{K_{\theta} \Delta z}{\tan \phi\left[K_{x} a^{2}\left(1-\frac{d}{2 a \tan (\phi-\beta)}\right)+K_{\theta}+K_{x} K_{\theta} / K_{x_{1}}\right]}$
$\delta \theta=\frac{\mathrm{K}_{\mathrm{x}} \mathrm{a} \mathrm{\Delta z}}{\tan \phi\left[\mathrm{~K}_{\mathrm{x}} \mathrm{a}^{2}+\frac{\mathrm{K}_{\theta}}{\left(1-\frac{\mathrm{d}}{2 a \tan (\phi-\beta)}\right)}+\frac{\mathrm{K}_{\mathrm{x}} \mathrm{K}_{\theta} / \mathrm{K}_{\mathrm{X}_{1}}}{\left(1-\frac{\mathrm{d}}{2 a \tan (\phi-\beta)}\right)}\right]}$

One-Point Contact
$\delta \mathbf{x}=\frac{\mathrm{K}_{\theta}\left(\Delta-\frac{C D}{2}\right)}{\mathrm{K}_{\mathrm{x}}(\mathrm{a}-\ell)\left[(a-\ell)-\frac{\mu \mathrm{d}}{2}\right]+\mathrm{K}_{\theta}+\mathrm{K}_{\mathrm{x}} \mathrm{K}_{\theta} / \mathrm{K}_{\mathrm{x}_{1}}}$
$\delta \theta=\frac{K_{x}\left(\Delta-\frac{C D}{2}\right)\left[(a-\ell)-\frac{\mu d}{2}\right]}{K_{x}(a-\ell)\left[(a-\ell)-\frac{\mu d}{2}\right]+K_{\theta}+K_{x} K_{\theta} / K_{x_{1}}}$

Two-Point Contact

$$
\begin{aligned}
& \delta \mathbf{x}=\frac{K_{\theta} K_{x_{1}}\left(\Delta-\frac{C D}{2}\right)+K_{\theta} K_{x_{2}}\left(\Delta+\frac{C D}{2}\right)+K_{x_{1}} K_{x_{2}} \ell\left[\ell\left(\Delta+\frac{C D}{2}\right)-a C D\right]}{K_{x} K_{\theta}+K_{x} K_{x_{1}}(a-\ell)\left[(a-\ell)-\frac{\mu d}{2}\right]+K_{x} K_{x_{2}} a\left(a-\frac{\mu d}{2}\right)+K_{\theta} K_{x_{1}}+K_{\theta} K_{x_{2}}+K_{x_{1}}{ }^{K} x_{2} \ell{ }^{\ell}} \\
& \delta \theta=\frac{K_{x} K_{x_{1}}\left(\Delta-\frac{C D}{2}\right)\left[(a-\ell)-\frac{\mu d}{2}\right]+K_{x} K_{x_{2}}\left(a-\frac{\mu d}{2}\right)\left(\Delta+\frac{C D}{2}\right)+K_{x_{1}} K_{x_{2}} \ell C D}{K_{x} K_{\theta}+K_{x} K_{x_{1}}(a-\ell)\left[(a-\ell)-\frac{\mu d}{2}\right]+K_{x} K_{x_{2}} a\left(a-\frac{\mu d}{2}\right)+K_{\theta} K_{x_{1}}+K_{\theta} K_{x_{2}}+K_{x_{1}} K_{x_{2}} \ell^{2}}
\end{aligned}
$$

1.2.6 Results and Discussion

Once the assembly equations have been solved for the entire assembly process, the effect of various insertion parameters on the solution can be determined. Of primary interest is the effect of the insertion parameters on the "insertion force versus depth" plot (i.e., F_{z} versus $\left.\delta z\right)$. In the present section the effect of the insertion parameters which are unique to (1) the lateral compliance hole and (2) the lateral and rotational compliance (Section 1.4) hole problems will be analyzed. These parameters are, of course, $\mathrm{K}_{\mathrm{x}_{1}}$ and $\mathrm{K}_{\mathrm{x}_{2}}$. Other effects, such as the linearization effect and alternative assembly modes, will also be discussed. In addition, the effect of location of the compliance center of the peg on the assembly will be investigated.

General Features of Force versus Depth Plots

As discussed earlier, the general assembly sequence considered is (1) chamfer crossing, followed by (2) one-point contact, (3) two-point contact, (4) resumption of one-point contact, and (5) line contact. These assembly phases may be identified in the force versus depth plot. In Figure 1.2 .7 some typical plots (exact solutions) are shown (use $K_{x_{1}} / K_{x}=10$ curve). The chamfer crossing region is seen to be very linear, followed by a discontinuity where one-point contact begins. The force during one-point contact is also reasonably linear, and in this instance almost constant. After one-point contact the insertion force rises sharply during two-point contact to a maximum and then gradually declines to where one-point contact resumes. This resumption of onepoint contact is typically of short duration as the peg snaps back to line contact. The insertion force in this region also tends to be very linear. Finally, line contact occurs and is represented by the end point of the curve.

Effect of the Left Hole Wall Compliance on Insertion Force versus Depth

The effect of the compliance of the left side of the hole (measured by $K_{x_{1}} / K_{x}$) on F_{z} versus δz is shown in Figure 1.2.7. Decreasing the compliance (increasing the spring rate) of the left side is seen to increase the insertion force during each of the assembly phases and vice versa. If the compliance of the left side is large enough, twopoint contact will not occur (e.g., $K_{x_{1}} / K_{x}=0.5$).

In Figure 1.2 .8 the effect of the compliance of the right side of the hole (measured by $K_{x_{2}} / K_{x}$) is shown. Chamfer crossing and one-point contact are of course not affected by the right hole wall's compliance. Again decreasing the compliance is seen to increase the insertion force during two-point contact and vice versa.

Effect of Linearization

The linearization, in general, tends to distort the solution and is quite sensitive to insertion parameters which produce large angular misalignments (e.g., $\delta \theta=10^{\circ}$). In Figure 1.2.9 two solutions $\left(F_{z}\right.$ versus $\left.\delta z\right)$ are given, one for a small ratio $\left(K_{x_{1}} / K_{x}=1\right)$ and one for a large ratio $\left(K_{x_{1}} / K_{x}=10\right)$. In each case a linearized solution is also given. Note that both the linearized solution and the exact solution agree at the beginning of the assembly and at the end of the assembly (line contact). The linearized solution also exhibits the general features of the exact solution as discussed above but tends to predict larger insertion forces during chamfer crossing and smaller insertion forces during the rest of the assembly.

In Figure 1.2.10 the effect of the linearization on $F_{z}, \delta \theta, \delta x$ versus δz is shown. The plot of angular misalignment ($\delta \theta$) versus depth ($\delta \mathrm{z})$ is very linear during chamfer crossing. During one-point contact the angle $(\delta \theta)$ increases with a reasonably continuous transition (also in slope) to two-point contact where a maximum occurs. Note that the "jump" in $\delta \theta$ between chamfer crossing and one-point contact is insignificant as mentioned earlier (essentially no jump in geometric variables). The angle then decreases gradually during the remaining portion of two-point contact. During the resumption of one-point contact the angle changes rapidly as the peg snaps back to line contact ($\delta \theta=0$). The linearization effect is seen to predict slightly smaller angles during two-point contact while predicting the angle very accurately during chamfer crossing, one-point contact, and the resumption of onepoint contact. The plot of horizontal displacement (δx) versus depth ($\delta \mathrm{z})$ (i.e., peg position) is seen to be steadily increasing (almost linearly) and quite insensitive to the different assembly phases (e.g., no discontinuities, sharp rises, etc.). The linearization effect is seen to be insigificant in this example.

Figure 1.2.7. Effect of $K_{x_{1}} / K_{x}$ on F_{z} versus δz.

Figure 1.2.8. Effect of $K_{x_{2}} / K_{x}$ on F_{z} versus δz.

Figure 1.2.9. Comparison of linearized solutions with exact solutions for several $K_{x_{1}} / K_{x}$.

Figure 1.2.10. Effect of linearization on $F_{z}, \delta \theta, \delta x$ versus δz.

Alternative Assembly Modes

Although successful assembly has been emphasized, one must also consider the alternative, which is also of practical interest. Real parts resembling the peg and hole in the initial configuration, as shown in Figure 1.1.3(b) may be assembled also if additional assembly phases are considered, or they may not be assembled at all. Figure 1.2.11 illustrates two of these. undesirable or unsuccessful modes of assembly. These are certainly not the only possibilities.

Even though these and other modes can be identified, finding explicit criteria is often difficult. However, for the undesirable chamfer line contact shown in Figure 1.2.11(a), a simple criterion exists. By using Equations 1.2 .1 through 1.2 .3 with $\delta \theta$ replaced by $\frac{\pi}{2}-\phi$ (rad) the insertion distance Δz for which line contact will occur may be solved for

$$
\begin{align*}
\Delta z= & \tan \phi\left[a \cos \phi+\frac{d}{2}(1-\sin \phi)\right. \\
& \left.+\frac{K_{\theta}\left(1 / K_{x}+1 / K_{x_{1}}\right)\left(\frac{\pi}{2}-\phi\right)(\sin \phi-\mu \cos \phi)}{\left(a-\frac{\mu d}{2}\right)}\right] \tag{1:2.21}
\end{align*}
$$

To make sense physically the undesirable line contact with the chamfer must occur, between the start of the assembly and when the corner of the peg meets the corner of the chamfer so that

$$
\begin{equation*}
0<\Delta z<\left(\Delta-\frac{C D}{2}\right) \tan \phi \tag{1.2.22}
\end{equation*}
$$

Since the stiffnesses $K_{\theta}, K_{x^{\prime}}$ and $K_{X_{1}}$ are positive, Equation 1.2.21 and Inequality 1.2 .22 may be reduced to the simple inequality

$$
\begin{equation*}
K_{\theta}\left(1 / K_{x}+1 / K_{x_{1}}\right)<K_{\min } \tag{1.2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}_{\min }=\frac{\left(\mathrm{a}-\frac{\mu \mathrm{d}}{2}\right)\left[\left(\Delta-\frac{C D}{2}\right)-a \cos \phi-\frac{d}{2}(1-\sin \phi)\right]}{\left(\frac{\pi}{2}-\phi\right)(\sin \phi-\mu \cos \phi)} \tag{1.2.24}
\end{equation*}
$$

(a) Undesirable Line Contact

(b) Undesirable Two-Point Contact

Figure 1.2.11. Undesirable assembly phases.

Now to avoid this type of line contact the inequality must be reversed, i.e.,

$$
\begin{equation*}
K_{\theta}\left(1 / K_{x}+1 / K_{x_{1}}\right)>K_{\min } \tag{1.2.25}
\end{equation*}
$$

This relation intuitively makes sense. If line contact with the chamfer should occur, then increasing the stiffness K_{θ} or decreasing either of the stiffnesses $K_{x}, K_{x_{1}}$ will prevent line contact from happening. This simple example demonstrates that properly specified compliance can aid assembly.

Location of Compliance Center of Peg

In the analysis so far the location of the compliance center of the peg has been assumed to remain fixed with respect to the peg, and no special considerations have been given to its location other than

$$
\begin{equation*}
a \geq \frac{d}{2 \tan (\phi+\delta \theta-\beta)} \tag{1.2.26}
\end{equation*}
$$

during chamfer crossing and

$$
\begin{equation*}
a \geq \frac{\mu d}{2} \tag{1.2.27}
\end{equation*}
$$

during one-point contact. If, however, a is taken to be an insertion variable whose value may be independently controlled, a much simpler and shorter assembly sequence is possible.

This simplified assembly sequence consists of only (1) chamfer crossing followed by (2) a vertical motion of the peg (vertical insertion) as illustrated in Figure 1.2.12. Basically, all angular misalignments have been eliminated $(\delta \theta \cong 0)$ by carefully selecting the location of the compliance center of the peg during the assembly sequence. Note that since the clearance ratio is taken to be positive, two-point contact does not occur.

As the assembly proceeds angular errors $(\delta \theta)$ will be present. These angular errors may be eliminated by locating the compliance center of the peg a distance $a_{0}(\delta \theta)$ away from the end of the peg

$$
\begin{equation*}
a_{0}(\delta \theta)=\frac{d}{2 \tan (\phi-\beta+\delta \theta)} \tag{1.2.28}
\end{equation*}
$$

This may be derived from Equations 1.2.1 and 1.2.2. When $\delta \theta=0$

$$
\begin{equation*}
a_{0}=\frac{d}{2 \tan (\phi-\beta)} \tag{1.2.29}
\end{equation*}
$$

which may also be obtained from Table 1.2.2. Equation 1.2.28 in some sense represents a feedback scheme; as angular errors arise a is continuously adjusted to eliminate them (see Figure 1.2.13).

Once the corner of the peg reaches the corner of chamfer, chamfer crossing ends and a new assembly phase begins. Exactly which assembly phase begins is not at all clear. Ideally the value of a has been adjusted continuously during chamfer crossing so as to eliminate any angular misalignments which may arise (i.e., $\delta \theta=0$). The next logical assembly phase would then be line contact. However, by virtue of controlling a, errors will be present so $\delta \theta=0^{ \pm}$is more realistic. If $\delta \theta=0^{+}$the next assembly phase will be one-point contact. By following a similar procedure (see Equations 1.2 .6 and, 1.2.7 or Table 1.2.2) as in the chamfer crossing case a_{0} is given by

$$
\begin{equation*}
a_{0}=\ell+\frac{\mu d}{2} \tag{1.2.30}
\end{equation*}
$$

where no feedback of $\delta \theta$ is necessary. If $\delta \theta=0^{-}$the next assembly phase will be the new type of one-point contact (see Figure 1.1.5(b)). A simple moment balance (not shown here) yields

$$
\begin{equation*}
a_{0}=\frac{\mu d}{2} \tag{1.2.31}
\end{equation*}
$$

where the feedback relation is given by

$$
\begin{equation*}
a(\delta \theta)=\frac{d}{2} \tan (\beta-\delta \theta) \tag{1.2.32}
\end{equation*}
$$

However, this feedback scheme is not stable since $\delta \theta$ must be negative. These results are summarized in Figures 1.2 .14 and 1.2 .15 , where a_{0} is plotted against the assembly phase and the sensitivity of the feedback equations is shown for $\phi=60^{\circ}, \mu=0.25$.

Figure 1.2.12. Simplified assembly sequence.

Figure 1.2.13. Feedback scheme.

Figure 1.2.14. Optimal compliance location(a_{0}) versus assembly phase.

Figure 1.2.15. Sensitivity of feedback equations.

1.3 ROTATIONAL COMPLIANCE HOLE

1.3.1 Introduction

In certain cases it is necessary for the model to incorporate only rotational hole compliance. Figure 1.3.1 illustrates the initial configuration of the peg and hole with the compliance center of the peg indicated. The hole also possesses its own compliance centers as indicated which are assumed to be located symmetrically about the center axis of the hole. During the assembly to be considered the hole walls will initially deform outward, enlarging the hole. This deformation will be treated as a rotation of each hole wall about its compliance center. Both sides of the hole will then rotate away from the center axis of the hole (i.e., $\delta \theta_{1}, \delta \theta_{2} \geq 0$). The quasi-static phases of successful assembly to be analyzed are the same as before: (1) chamfer crossing, followed by (2) one-point contact, (3) two-point contact, (4) resumption of one-point contact, and the final phase, (5) line contact.

The location of the compliance centers can affect the insertion characteristics greatly. If the compliance center of the peg is located too close to the end of the peg, the other type of one-point contact cannot be avoided. If the compliance center of the hole is located in Region 1 (see Figure 1.3.1), it is possible for the left side of the hole to interfere with the assembly by rotating clockwise and decreasing the effective hole diameter. Similarly, in Region II, it is possible for the right side of the hole to complicate the assembly by means of a line contact. This follows in part from the general argument presented in Section 1.2 .3 where it was shown that onepoint contact must end a distance $\ell=a-\frac{\mu d}{2}$ into the hole. Region III then appears to be the "safest" region since the sides of the hole will not decrease the effective hole diameter. For this reason, the examples analyzed later have the compliance center located in Region III.

Since the derivation of the assembly equations for the rotational compliance hole case is very similar to the derivation of the assembly equations for the lateral compliance hole case, the development will be quite brief with basically only figures and equations used.

1.3.2 Chamfer Crossing

Proceeding as before (Section 1.2.2) with the aid of Figure 1.3.2 the following equations may be derived. Additional insertion parameters may be identified in an obvious manner (e.g., $\mathrm{K}_{\theta_{1}}$-rotational stiffness of left hole wall).

Figure 1.3.1. Initial configuration of peg and hole.

Figure 1.3.2. Chamfer crossing.

Equilibrium Requirements

$$
\begin{align*}
\mathrm{F}_{\mathbf{x}}= & \mathrm{F}_{\mathrm{n}}\left[\sin \left(\phi-\delta \theta_{1}\right)-\mu \cos \left(\phi-\delta \theta_{1}\right)\right] \\
\mathrm{F}_{\mathbf{z}}= & \mathrm{F}_{\mathrm{n}}\left[\cos \left(\phi-\delta \dot{\theta}_{1}\right)+\mu \sin \left(\phi-\delta \theta_{1}\right)\right] \\
\mathrm{M}= & \mathrm{F}_{\mathrm{n}}\left\{\operatorname{a}\left[\sin \left(\phi+\delta \theta-\delta \theta_{1}\right)-\mu \cos \left(\phi+\delta \theta-\delta \theta_{1}\right)\right]\right. \\
& \left.-\frac{\mathrm{d}}{2}\left[\cos \left(\phi+\delta \theta-\delta \theta_{1}\right)+\mu \sin \left(\phi+\delta \theta-\delta \theta_{1}\right)\right]\right\} \tag{1.3.1}
\end{align*}
$$

Force-Deformation Relations

$$
\begin{align*}
\mathrm{F}_{\mathbf{x}}= & \mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathrm{M}= & \mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\theta_{1}}{ }^{\delta \theta_{1}=} & \mathrm{F}_{\mathrm{n}}\left[\left(\Delta \zeta+\mathrm{C}_{\mathrm{V}}\right)(\sin \phi-\mu \cos \phi)\right. \\
& \left.+\left(\frac{\Delta \zeta}{\tan \phi}-\mathrm{C}_{\mathrm{h}}\right)(\cos \phi+\mu \sin \phi)\right] \tag{1.3.2}
\end{align*}
$$

Geometric Compatibility Requirements

$$
\frac{\Delta z}{\tan \phi}=\delta x+a \sin \delta \theta+r_{c}\left[\cos \left(\gamma_{c}-\delta \theta_{1}\right)-\cos \gamma_{c}\right]+d \sin ^{2} \frac{\delta \theta}{2}
$$

$$
\begin{equation*}
a+\Delta z=\delta z+a \cos \delta \theta+\frac{d}{2} \sin \delta \theta+r_{c}\left[\sin \left(\gamma_{c}-\delta \theta_{1}\right)-\sin \gamma_{c}\right] \tag{1.3.3}
\end{equation*}
$$

For convenience the following dependent insertion variables ($\Delta \zeta, r_{c}, \gamma_{C}$) have been introduced by the following relationships

$$
\begin{aligned}
\Delta z+\Delta \zeta & =\left(\Delta-\frac{C D}{2}\right) \tan \phi \\
r_{c}^{2} & =\left(C_{V}+\Delta \zeta\right)^{2}+\left(\frac{\Delta \zeta}{\tan \phi}-C_{h}\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
\cot \gamma_{c}=\frac{\frac{\Delta \zeta}{\tan \phi}-c_{h}}{c_{v}+\Delta \zeta} \tag{1.3.4}
\end{equation*}
$$

Again chamfer crossing begins when the insertion distance $\Delta z=0$, and ends when $\Delta z=\left(\Delta-\frac{C D}{2}\right) \tan \phi$.

To avoid the undesirable type of one-point contact, the compliance center of the peg must be located a distance at least $\frac{d}{2 \tan \left(\phi+\delta \theta-\delta \theta_{1}-\beta\right)}$ from the end of the peg where $\delta \theta>\delta \theta_{1} \geq 0$. This may be derived by (1) fixing the compliance center of the hole in Region III so that $\delta \theta_{1} \geq 0$, (2) requiring $\delta \theta>\delta \theta_{1}$ so that the other type of one-point contact won't happen, and (3) using Equation 1.3 .1 with (1) and (2) imposed. In Section 1.3.6, however, it will be shown that the other type of one-point contact can be used to simplify the assembly sequence.

1.3.3 One-Point Contact

Immediately following chamfer crossing is the "discontinuity phase" discussed earlier and then one-point contact. In a similar manner (see Section 1.2.3) the following equations may be derived with the aid of Figure 1.3.3.

Equilibrium Requirements

$$
\begin{align*}
F_{\mathbf{x}} & =F_{n_{1}}(\cos \delta \theta-\mu \sin \delta \theta) \\
F_{z} & =F_{n_{1}}(\sin \delta \theta+\mu \cos \delta \theta) \\
M & =F_{n_{1}}\left[(a-\ell)-\frac{\mu d}{2}\right] \tag{1.3.5}
\end{align*}
$$

Force-Deformation Relations

$$
\begin{align*}
\mathbf{F}_{\mathbf{x}}= & \mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathbf{M}= & \mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\theta_{1}}{ }^{\delta \theta_{1}}= & \mathrm{F}_{\mathrm{n}_{1}}\left\{\mathrm{C}_{\mathrm{V}}\left[\cos \left(\delta \theta-\delta \theta_{1}\right)-\mu \sin \left(\delta \theta-\delta \theta_{1}\right)\right]\right. \\
& \left.-\mathrm{C}_{\mathrm{h}}\left[\sin \left(\delta \theta-\delta \theta_{1}\right)+\mu \cos \left(\delta \theta-\delta \theta_{1}\right)\right]\right\} \tag{1.3.6}
\end{align*}
$$

Figure 1.3.3. One-point contact.

Geometric Compatibility Requirements

$$
\begin{aligned}
\Delta-\frac{C D}{2}= & \delta x+(a-\ell) \sin \delta \theta+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right] \\
& +d \sin ^{2} \frac{\delta \theta}{2}
\end{aligned}
$$

$a+\left(\Delta-\frac{C D}{2}\right) \tan \phi=\delta z+(a-\ell) \cos \delta \theta+\frac{d}{2} \sin \delta \theta$

$$
\begin{equation*}
+r\left[\sin \left(\gamma-\delta \theta_{1}\right)-\sin \gamma\right] \tag{1.3.7}
\end{equation*}
$$

Again ℓ is the insertion distance and one-point contact begins when $\ell=0$. Also, the angle of the peg with respect to the left hole wall ($\delta \theta-\delta \theta_{1}$) must be nonnegative. From Equations 1.3 .5 and 1.3 .6 it follows that $a \geq \frac{\mu d}{2}$ as before.

One-point contact (two-point contact) ends and two-point contact (resumption of one-point contact) begins when

$$
\begin{equation*}
\ell \sin \delta \theta+d \cos \delta \theta=D+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right] \tag{1.3.8}
\end{equation*}
$$

Manipulation of the above equation with the one-point contact equations yields the following quadratic in ($a-\ell$)

$$
\begin{equation*}
\sin \delta \theta(a-\ell)^{2}+B\left(\delta \theta, \delta \theta_{1}\right)(a-\ell)+C\left(\delta \theta, \delta \theta_{1}\right)=0 \tag{1.3.9}
\end{equation*}
$$

where $B\left(\delta \theta, \delta \theta_{1}\right), C\left(\delta \theta_{, ~}\right)\left(\theta_{1}\right)$ are complicated expressions. Since Equation 1.3.9 will yield two real roots or two complex roots for (a - 1), a resumption of one-point contact is possible. This has been verified by computer runs. Also, since the argument presented in Section 1.2.3 regarding the duration of one-point contact is completely general, the largest value of ℓ for which one-point contact is possible is a $-\frac{\mu d}{2}$.

1.3.4 Two-Point Contact

In general, one-point contact is followed by two-point contact (see Figure 1.3.4). Similarly (see Section 1.2.4) the following equations may be derived. Here, $\mathrm{K}_{\theta_{2}}$ is the rotational stiffness of the right hole wall.

Figure 1.3.4. Two-point contact.

Equilibrium Requirements

$$
\begin{align*}
\mathrm{F}_{\mathrm{x}}= & \mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta)-\mathrm{F}_{\mathrm{n}_{2}}\left(\cos \delta \theta_{2}-\mu \sin \delta \theta_{2}\right) \\
\mathrm{F}_{\mathrm{z}}= & \mathrm{F}_{\mathrm{n}_{1}}(\sin \delta \theta+\mu \cos \delta \theta)+\mathrm{F}_{\mathrm{n}_{2}}\left(\sin \delta \theta_{2}+\mu \cos \delta \theta_{2}\right) \\
\mathrm{M}= & \mathrm{F}_{\mathrm{n}_{1}}\left[(\mathrm{a}-\ell)-\frac{\mu \mathrm{d}}{2}\right]-\mathrm{F}_{\mathrm{n}_{2}}\left\{\mathrm{a}\left[\cos \left(\delta \theta+\delta \theta_{2}\right)-\mu \sin \left(\delta \theta+\delta \theta_{2}\right)\right]\right. \\
& \left.-\frac{\mathrm{d}}{2}\left[\sin \left(\delta \theta+\delta \theta_{2}\right)+\mu \cos \left(\delta \theta+\delta \theta_{2}\right)\right]\right\} \tag{1.3.10}
\end{align*}
$$

Force-Deformation Relations

$$
\begin{align*}
\mathrm{F}_{\mathbf{x}} & =\mathrm{K}_{\mathbf{x}} \delta \mathbf{x} \\
\mathrm{M} & =\mathrm{K}_{\theta} \delta \theta \\
\mathrm{K}_{\theta_{1}} \delta \theta_{1}= & \mathrm{F}_{\mathrm{n}_{1}}\left\{\mathrm{C}_{\mathrm{V}}\left[\cos \left(\delta \theta-\delta \theta_{1}\right)-\mu \sin \left(\delta \theta-\delta \theta_{1}\right)\right]\right. \\
& \left.-\mathrm{C}_{\mathrm{h}}\left[\sin \left(\delta \theta-\delta \theta_{1}\right)+\mu \cos (\delta \theta-\delta \theta)\right]\right\} \\
\mathrm{K}_{\theta_{2}} \delta \theta_{2}= & \mathrm{F}_{\mathrm{n}_{2}}\left(\mathrm{~V}-\mu \mathrm{C}_{\mathrm{h}}\right) \tag{1.3.11}
\end{align*}
$$

Geometric Compatibility Requirements

$$
\begin{aligned}
\Delta-\frac{C D}{2}= & \delta x+(a-\ell) \sin \delta \theta+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right] \\
& +d \sin ^{2} \frac{\delta \theta}{2}
\end{aligned}
$$

$\mathrm{a}+\left(\Delta-\frac{\mathrm{CD}}{2}\right) \tan \phi=\delta z+(\mathrm{a}-\ell) \cos \delta \theta+\frac{\mathrm{d}}{2} \sin \delta \theta$

$$
+r\left[\sin \left(\gamma-\delta \theta_{1}\right)-\sin \gamma\right]
$$

$\ell \sin \delta \theta+d \cos \delta \theta=D+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right]+2 C_{h} \sin ^{2} \frac{\delta \theta_{2}}{2}$

$$
\begin{equation*}
+\mathrm{V} \sin \delta \theta_{2} \tag{1.3.12}
\end{equation*}
$$

For convenience V has been introduced by the relation

$$
\begin{align*}
V \cos \delta \theta_{2}= & -\ell \cos \delta \theta+d \sin \delta \theta+C_{h}\left(\sin \delta \theta_{1}-\sin \delta \theta_{2}\right) \\
& .+C_{V} \cos \delta \theta_{1} \tag{1.3.13}
\end{align*}
$$

1.3.5 Solution of Assembly Equations

Introduction

Because of the inherent complexity of the assembly equations, it was necessary to use a computer to solve them. Two types of solutions were obtained: (a) exact solutions and (b) linearized solutions. To solve the equations exactly, simple iteration was used for the onepoint contact equations and a generalized Newton-Raphson method for the chamfer crossing and two-point contact equations. In both cases the dimensional analysis as described earlier (see Section 1.2.5) was used with the following additions (see Table 1.3.1) to Table 1.2.1 (exclude $\mathrm{K}_{\mathrm{x}_{1}}, \mathrm{~K}_{\mathrm{x}_{2}}, \delta \mathrm{x}_{1}, \delta \mathrm{x}_{2}$). Both types of equations are explained below.

Exact Solutions

To determine the exact solutions, a generalized Newton-Raphson method must be used. This is also true for the lateral and rotational hole compliance case where completely general solutions are derived (Section 1.4.2) . The solution scheme, for the rotational hole compliance case is very tedious also and may be arrived at by replacing $1 / K_{x_{1}}, 1 / K_{x_{2}}$ in the general solution scheme by 0 . For this reason the solution will not be derived here.

The computer program written to solve the assembly equations is called "ROTATE" (see Appendix A). Given the insertion parameters as inputs it computes $F_{z}, \delta z, \delta \theta$, and δx for various insertion distances $(\Delta z, \ell)$ during the entire assembly. The program is very similar to the more general program, "LATROT," and will not be discussed further here.

Linearized Solutions

The program written to solve the linearized equations is called "LINROT" (see Appendix A). Given the insertion parameters as inputs it too computes $F_{z}, \delta z, \delta \theta$, and δx for various insertion distances $(\Delta z, \ell)$ during the entire assembly. Some of the linearized solutions on which the program is based are shown in Table 1.3.2. The remaining variables may be obtained readily once $\delta \mathbf{x}$ and $\delta \theta$ are known. Other

Table 1.3.1. Dimensional analysis.
Dimensionless
Insertion Parameters
C_{V}
c_{h}
$K_{\theta_{1}}$
$\mathrm{K}_{\theta_{2}}$

Insertion Variables

$\delta \theta_{1}$	$\delta \theta_{1}$
$\delta \theta_{2}$	$\delta \theta_{2}$
ζ	ζ / a

Table 1.3.2. Linearized solutions for δx and $\delta \theta$.

$$
\begin{aligned}
& \text { Chamfer Crossing } \\
& \delta \mathbf{x}=\frac{\mathrm{K}_{\theta} \Delta z}{\tan \phi\left[\mathrm{~K}_{\mathrm{x}} \mathrm{a}^{2}\left(1-\frac{d}{2 a \tan (\phi-\beta)}\right)+\mathrm{K}_{\theta}+\frac{\mathrm{K}_{\mathrm{x}} \mathrm{~K}_{\theta}}{\mathrm{K}_{\theta}}\left(\mathrm{C}_{\mathrm{v}}+\Delta \zeta\right)\left[\left(\mathrm{C}_{\mathrm{v}}+\Delta \zeta\right) \tan (\phi-\beta) \cdot+\left(\frac{\Delta \zeta}{\tan \phi}-\mathrm{C}_{\mathrm{h}}\right)\right] / \tan (\phi-\beta)\right]}
\end{aligned}
$$

Two-Point Contact
Two-Point Contact
$\delta x=\frac{K_{\theta} K_{\theta}\left(\Delta-\frac{C D}{2}\right)\left(C_{v}-\ell\right)\left(C_{v}-\mu C_{h}-\ell\right)+K_{\theta} K_{\theta} C_{v}\left(\Delta+\frac{C D}{2}\right)\left(C_{v}-\mu C_{h}\right)+K_{\theta_{1}} K_{\theta} \ell\left(\ell\left(\Delta+\frac{C D}{2}\right)-a C D\right)}{\left[\begin{array}{l}\left.K_{x} K_{\theta} C_{v}\left(C_{v}-\ell\right)\left(C_{v}-\mu C_{h}\right)\left(C_{v}-\mu C_{h}-\ell\right)+K_{x} K_{\theta}(a-\ell)\left(C_{v}-\ell\right)\left(C_{v}-\mu C_{h}-\ell\right)\left[(a-\ell)-\frac{\mu d}{2}\right]+\right] \\ K_{x} K_{\theta} a C_{v}\left(a-\frac{\mu d}{2}\right)\left(C_{v}-\mu C_{h}\right)+K_{\theta} K_{\theta}\left(C_{v}-\ell\right)\left(C_{v}-\mu C_{h}-\ell\right)+K_{\theta} K_{\theta} C_{v}\left(C_{v}-\mu C_{h}\right)\end{array}\right.}$

Table 1.3.2. Linearized solutions for $\delta \mathbf{x}$ and $\delta \theta$ (cont.).
particulars, such as how the boundary between one-point contact and two-point contact was determined, follow as before (Section 1.2.5).

1.3.6 Results and Discussion

Once the assembly equations have been solved, the effect of the insertion parameters on F_{z} versus δz can be determined. In this section the effect of the insertion parameters which are unique to (1) the rotational compliance hole and (2) the lateral and rotational compliance hole problems will be analyzed. These parameters are $\mathrm{K}_{\theta_{1}}$, $K_{\theta_{2}}, C_{h}$, and C_{v}. Other effects such as the linearization effect and the location of the compliance center of the peg on the assembly will be investigated. The general features of the force versus depth plot are basically the same as before (Section 1.2.6) except for where line contact begins. This is because a contact force between the peg and the corner of the chamfer exists just before line contact and as a result the angles $\left(\delta \theta, \delta \theta_{1}\right)$ do not vanish.

Effect of the Left Hole Wall Compliance on Insertion Force versus Depth
The effect of the compliance of the left side of the hole (measured by K_{θ} / K_{θ}) on F_{z} versus δz is shown in Figure 1.3.5. Decreasing the compliance of the left side is seen to increase the insertion force and vice versa during each assembly phase. If the compliance of the left side is large enough, two-point contact will not occur (e.g., $\left.K_{\theta_{1}} / K_{\theta}=5\right)$.

Effect of the Right Hole Wall Compliance on Insertion Force versus Depth

In Figure 1.3.6 the effect of the compliance of the right side of the hole (measured by $K_{\theta_{2}} / K_{\theta}$) is shown. Chamfer crossing and onepoint contact are of course not affected by the right hole wall's compliance. As before, decreasing the compliance is seen to increase the insertion force and vice versa.

Effect of the Horizontal Location of the Compliance Center of the Hole on Insertion Force versus Depth

In Figure 1.3.7 the effect of the horizontal location of the compliance center is shown for several C_{h} / a within Region III. Chamfer crossing and one-point contact are seen to be quite insensitive to C_{h} / a whereas two-point contact is. Increasing C_{h} / a increases the insertion force during two-point contact and vice versa.

Figure 1.3.5. Effect of $K_{\theta_{1}} / K_{\theta}$ on F_{z} versus δz.

Figure 1.3.6. Effect of $K_{\theta_{2}} / K_{\theta}$ on F_{z} versus $d z$.

Effect of the Vertical Location of the Compliance Center of the Hole on Insertion Force versus Depth

The effect of the vertical location of the compliance center is shown in Figure 1.3 .8 for several C_{V} / a within Region III. Again only two-point contact is greatly affected by C_{V} / a. Increasing C_{V} / a decreases the insertion force and vice versa.

Effect of Linearization

As mentioned before, the linearization tends to distort the solution and is quite sensitive to insertion parameters which produce large angular misalignments $\left(\delta \theta, \delta \theta_{1}\right)$. In Figure 1.3 .9 , two solutions $\left(F_{z}\right.$ versus δz) are given, one for a small ratio ($C_{V} / a=1$) and one for a larger ratio $\left(C_{V} / a=2\right)$. In each case a linearized solution is also given. The linearized solution and the exact solution are seen to agree at both the beginning and at the end of the assembly (line contact). The linearized solution exhibits the general features of the exact solution as discussed above but as before (Section 1.2.6) it tends to predict larger insertion forces during chamfer crossing and smaller insertion forces during the rest of the assembly.

In Figure 1.3.10 the effect of the linearization on $F_{z}, \delta \theta, \delta x$ versus δz is shown. It is seen to be very similar to the linearization effect for the lateral compliance hole case and will not be discussed further.

Location of Compliance Center of Peg

By optimally choosing the location of the compliance center of the peg during the assembly, a much simpler assembly is possible. This simpler assembly is similar to the one described earlier, but with one important difference. The simplified assembly sequence consists of (1) chamfer crossing, followed by (2) the other (new) type of one-point contact as shown in Figure 1.3.11.

In a similar manner (see Section 1.2.6), an optimal value of a may be found for each assembly phase. For chamfer crossing (use Equations 1.3.1 and 1.3.2) the optimal value of a is given by

$$
\begin{equation*}
a_{0}\left(\delta \theta_{1}\right)=\frac{d}{2 \tan \left(\phi-\delta \theta_{1}-\beta\right)} \tag{1.3.14}
\end{equation*}
$$

The optimal value a_{0} is seen to depend on $\delta \theta_{1}$ and will not remain constant during chamfer crossing. From Table 1.3.2, the linearized value of a_{0} is given by $a_{0}=d /(2 \tan (\phi-\beta))$. Should $\delta \theta$ deviate from

Figure 1.3.7. Effect of C_{h} / a on F_{z} versus δz.

Figure 1.3.8. Effect of C_{V} / a on F_{z} versus δz.

Figure 1.3.9. Comparison of linearized solutions with exact solutions for several C_{v} / a.

Figure 1.3.10. Effect of linearization on $F_{z}, \delta \theta, \delta x$ versus δz.

(b) Other Type of One-Point Contact

Figure 1.3.11. Simplified assembly sequence.
zero, a "new" a_{0} must be selected based on feedback which forces $\delta \theta$ to be zero again. This value of a is given by

$$
\begin{equation*}
a\left(\delta \theta, \delta \theta_{1}\right)=\frac{d}{2 \tan \left(\phi+\delta \theta-\delta \theta_{1}-\beta\right)} \tag{1.3.15}
\end{equation*}
$$

During the other type of one-point contact the optimal value of a is

$$
\begin{equation*}
a_{0}\left(\delta \theta_{1}\right)=\frac{d}{2} \tan \left(\beta+\delta \theta_{1}\right) \tag{1.3.16}
\end{equation*}
$$

and the feedback relation is

$$
\begin{equation*}
a\left(\delta \theta, \delta \theta_{1}\right)=\frac{d}{2} \tan \left(\beta-\delta \theta+\delta \theta_{1}\right) \tag{1.3.17}
\end{equation*}
$$

provided $\delta \theta_{1}>\delta \theta$. If $\delta \theta_{1} \leq \delta \theta$, the assembly phase changes and the above equations no longer apply; so the feedback scheme is not stable. Figures 1.2.13 and 1.2.14 when properly interpreted may be used to plot a_{0} in terms of the assembly phase and to plot the feedback equations (e.g., replace β, μ in those figures by $\beta+\delta \theta_{1}$, $\tan \left(\beta+\delta \theta_{1}\right)$, respectively).

1.4 LATERAL AND ROTATIONAL COMPLIANCE HOLE

1.4.1 Introduction and Derivation of Assembly Equations

In the most general case the model must incorporate both lateral and rotational hole wall compliance. This general model combines the theoretical models presented in Sections 1.2 and 1.3. Because the rotational compliance hole problem is much more difficult than the lateral compliance hole problem, the development of the general problem will follow almost identically to the rotational compliance hole problem (e.g., compliance center location). Initially the peg and hole are positioned as shown in Figure 1.3.1 and during the assembly the hole walls deform outward, enlarging the hole. By Chasle's Theorem, this deformation may be treated as a translation $\left(\delta \mathbf{x}_{1}, \delta \mathbf{x}_{2}\right)$ and a rotation $\left(\delta \theta_{1}, \delta \theta_{2}\right)$ taken in either order. The assembly phases to be considered are the same as before as well as many of the assembly equations. In Figures 1.4.1, 1.4.2, and 1.4.3 the chamfer crossing, one-point contact, and two-point contact phases are shown, respectively. The equilibrium requirements for each assembly phase are the same as the corresponding ones in Section 1.3. The force-deformation relations for each assembly phase are the same as the corresponding ones in both

Figure 1.4.1. Chamfer crossing.

Figure 1.4.2. One-point contact.

Figure 1.4.3. Two-point contact.

Sections 1.2 and 1.3 (except for Equation 1.2 .2 -replace ϕ by $\phi-\delta \theta_{1}$) and will not be relisted. The geometric compatibility requirements are different and will be given for each assembly phase.

Geometric Compatibility Requirements

Chamfer Crossing

$$
\begin{align*}
& \frac{\Delta z}{\tan \phi}=\delta x+\delta x_{1}+a \sin \delta \theta+r_{c}\left[\cos \left(\gamma_{c}-\delta \theta_{1}\right)-\cos \gamma_{c}\right]+d \sin ^{2} \frac{\delta \theta}{2} \\
& a+\Delta z=\delta z+a \cos \delta \theta+\frac{d}{2} \sin \delta \theta+r_{c}\left[\sin \left(\gamma_{c}-\delta \theta_{1}\right)-\sin \gamma_{c}\right] \tag{1.4.1}
\end{align*}
$$

One-Point Contact

$$
\begin{aligned}
\Delta-\frac{C D}{2}= & \delta x+\delta x_{1}+(a-\ell) \sin \delta \theta \\
& +r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right]+d \sin ^{2} \frac{\delta \theta}{2} \\
a+\left(\Delta-\frac{C D}{2}\right) \tan \phi= & \delta z+(a-\ell) \cos \delta \theta \\
& +\frac{d}{2} \sin \delta \theta+r\left[\sin \left(\gamma-\delta \theta_{1}\right)-\sin \gamma\right]
\end{aligned}
$$

Two-Point Contact

$$
\begin{aligned}
\Delta-\frac{C D}{2}= & \delta x+\delta x_{1}+(a-\ell) \sin \delta \theta \\
& +r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right]+d \sin ^{2} \frac{\delta \theta}{2}
\end{aligned}
$$

$$
a+\left(\Delta-\frac{C D}{2}\right) \tan \phi=\delta z+(a-\ell) \cos \delta \theta+\frac{d}{2} \sin \delta \theta
$$

$$
+r\left[\sin \left(\gamma-\delta \theta_{1}\right)-\sin \gamma\right]
$$

$\ell \sin \delta \theta+d \cos \delta \theta=D+\delta \mathbf{x}_{1}+\delta \mathbf{x}_{2}+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right]$

$$
\begin{equation*}
+2 C_{h} \sin ^{2} \frac{\delta \theta_{2}}{2}+V \sin \delta \theta_{2} \tag{1.4.3}
\end{equation*}
$$

Also, the boundary between one-point contact (two-point contact) and two-point contact (one-point contact) is defined by

$$
\begin{equation*}
\ell \sin \delta \theta+d \cos \delta \theta=D+\delta x_{1}+r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right] \tag{1.4.4}
\end{equation*}
$$

1.4.2 Solution of Assembly Equations

A. Introduction

Due to the inherent complexity of the assembly equations, it was necessary to use a computer to solve them. Two types of solutions were obtained: (a) exact solutions and (b) linearized solutions. To solve the equations exactly, simple iteration was used for the one-point contact equations and a generalized Newton-Raphson method for the chamfer crossing and two-point contact equations. Both types of solutions are explained below.

B. Exact Solutions

Chamfer Crossing

Equations 1.3.1, 1.3.2, 1.2.2, and 1.4.1 may be manipulated to arrive at the following two equations in $\delta \theta, \delta \theta_{1}$

$$
\begin{align*}
& \left(1 / K_{x}+1 / K_{x_{1}}\right) \frac{K_{\theta_{1}}{ }^{\delta \theta_{1}}}{D_{1}}\left[\sin \left(\phi-\delta \theta_{1}\right)-\mu \cos \left(\phi-\delta \theta_{1}\right)\right] \\
& \quad+a \sin \delta \theta+d \sin ^{2} \frac{\delta \theta}{2}+r_{c}\left[\cos \left(\gamma_{c}-\delta \theta_{1}\right)-\cos \gamma_{c}\right]=\frac{\Delta z}{\tan \phi} \\
& K_{\theta} \delta \theta+\frac{K_{\theta_{1}}{ }^{\delta \theta_{1}}}{D_{1}}\left[\left(a \mu+\frac{d}{2}\right) \cos \left(\phi+\delta \theta-\delta \theta_{1}\right)\right. \\
& \left.\quad-\left(a-\frac{\mu d}{2}\right) \sin \left(\phi+\delta \theta-\delta \theta_{1}\right)\right]=0 \tag{1.4.5}
\end{align*}
$$

where $D_{1}=\left(\Delta \zeta+C_{v}\right)(\sin \phi-\mu \cos \phi)+\left(\frac{\Delta \zeta}{\tan \phi}-C_{h}\right)(\cos \phi+\mu \sin \phi)$

These equations may be written in the form

$$
f_{1}(\theta)=\frac{\Delta z}{\tan \phi} \quad, \quad f_{2}(\theta)=0
$$

or

$$
\begin{equation*}
f(\theta)=x \tag{1.4.6}
\end{equation*}
$$

where $\theta=\left[\delta \theta, \delta \theta_{1}\right]^{T}, \mathbf{x}=[\Delta z / \tan \phi, 0]^{T}$. The initial values \mathbf{X}_{0} and θ_{0}. are given by $X_{0}=\theta_{0}=[0,0]^{T}$. Differentiating Equation 1.4 .6 yields

$$
\begin{equation*}
\frac{d \mathbf{X}}{d \theta}=J(\theta) \tag{1.4.7}
\end{equation*}
$$

where $\mathcal{J}(\theta)$ (see Appendix B for computation) is the Jacobian of f with respect to θ, i.e.,

$$
\begin{equation*}
J_{i 1}=\frac{\partial f_{i}}{\partial(\delta \theta)} ; \quad J_{i 2}=\frac{\partial f_{i}}{\partial\left(\delta \theta_{1}\right)} ; \quad i=1,2 \tag{1.4.8}
\end{equation*}
$$

An approximation to Equation 1.4 .7 may be rewritten as

$$
\Delta X \cong J(\theta) \Delta \theta
$$

or

$$
\begin{equation*}
\Delta \theta \cong J^{-1}(\theta) \Delta x \tag{1.4.9}
\end{equation*}
$$

provided \mathbf{J}^{-1} exists. The following iteration scheme can then be used to solve for $\delta \theta, \delta \theta_{1}{ }^{(8)}$

$$
\begin{align*}
\Delta X_{k} & =s\left(X-X_{k}\right) \\
\Delta \theta_{k} & =J^{-1}\left(\theta_{k}\right) \Delta X_{k} \\
\theta_{k+1} & =\theta_{k}+\Delta \theta_{k} \\
x_{k+1} & =f\left(\theta_{k+1}\right) \quad k=0,1,2, \ldots \tag{1.4.10}
\end{align*}
$$

where s is the scalar step size. Although s was not chosen optimally for each iteration, the values 0.7 or 0.3 were found to always work in a reasonable number of iterations for the desired accuracy-typically 30-40. Once $\delta \theta$ and $\delta \theta_{1}$ have been determined, the remaining variables may then be determined by direct substitution.

One-Point Contact

Manipulation of Equations 1.3.5, 1.3.6, 1.2.7, and 1.4.2 yields the following transcendental relation in $\delta \theta$

$$
\delta \theta=\frac{\mathrm{K}_{\theta_{1}} \delta \theta_{1}(\delta \theta)\left[(a-\ell)-\frac{\mu d}{2}\right]}{\left.\mathrm{K}_{\theta}\left[C_{v}-\mu C_{h}\right) \cos \left(\delta \theta-\delta \theta_{1}(\delta \theta)\right)=\left(C_{h}+\mu C_{v}\right) \sin \left(\delta \theta-\delta \theta_{1}(\delta \theta)\right)\right]}
$$

where

$$
\delta \theta_{1}(\delta \theta)=\gamma-\cos ^{-1}\left[\frac{f(\delta \theta)}{r}+\cos \gamma\right]
$$

and

$$
\begin{align*}
f(\delta \theta)= & \Delta-\frac{C D}{2}-\frac{\left(1 / K_{x}+1 / K_{x_{1}}\right) K_{\theta} \delta \theta(\cos \delta \theta-\mu \sin \delta \theta)}{\left[(a-\ell)-\frac{\mu d}{2}\right]} \\
& -(a-\ell) \sin \delta \theta-d \sin ^{2} \frac{\delta \theta}{2} \tag{1.4.12}
\end{align*}
$$

Equation 1.4.11 may be solved by simple iteration as described before (Section 1.2.5). The remaining variables are easily determined.

Two-Point Contact

To solve the two-point contact equations, Newton-Raphson's method must be used in much the same manner as it was used to solve the chamfer crossing equations. It is possible to arrive at three equations in three unknowns $\left(\delta \theta, \delta \theta_{1}, \delta \theta_{2}\right)$ using the two-point contact equations; however, implementing the method with these new equations is very difficult because the equations are extremely cumbersome. To alleviate this apparent difficulty, the two-point contact equations were reduced to six equations in six unknowns. Many more partial derivatives must be computed, but they are much easier to evaluate. These six equations are

$$
\mathrm{K}_{\mathrm{x}} \delta \mathrm{x}-\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta)+\mathrm{F}_{\mathrm{n}_{2}}\left(\cos \delta \theta_{2}-\mu \sin \delta \theta_{2}\right)=0
$$

$$
\begin{align*}
& K_{\theta} \delta \theta-F_{n_{1}}\left[(a-\ell)-\frac{\mu d}{2}\right] \\
& +\mathrm{F}_{\mathrm{n}_{2}}\left[\left(\mathrm{a}-\frac{\mu \mathrm{d}}{2}\right) \cos \left(\delta \theta+\delta \theta_{2}\right)-\left(\mathrm{a} \mu+\frac{\mathrm{d}}{2}\right) \sin \left(\delta \theta+\delta \theta_{2}\right)\right]=0 \\
& \mathrm{~K}_{\theta_{1}} \delta \theta_{1}+\mathrm{F}_{\mathrm{n}_{1}}\left[\left(\mathrm{C}_{\mathrm{h}}+\mu \mathrm{C}_{\mathrm{v}}\right) \sin \left(\delta \theta-\delta \theta_{1}\right)-\left(\mathrm{C}_{\mathrm{v}}-\mu \mathrm{C}_{\mathrm{h}}\right) \cos \left(\delta \theta-\delta \theta_{1}\right)\right]=0 \\
& \mathrm{~K}_{\theta_{2}} \delta \theta_{2} \cos \delta \theta_{2}+\mathrm{F}_{\mathrm{n}_{2}}\left[\ell \cos \delta \theta-\mathrm{d} \sin \delta \theta-\mathrm{C}_{\mathrm{h}}\left(\sin \delta \theta_{1}-\sin \delta \theta_{2}\right)\right. \\
& \left.-\mathrm{C}_{\mathrm{v}} \cos \delta \theta_{1}+\mu \mathrm{C}_{\mathrm{h}} \cos \delta \theta_{2}\right]=0 \\
& \delta \mathrm{x}+\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta) / \mathrm{K}_{\mathrm{x}_{1}}+(\mathrm{a}-\ell) \sin \delta \theta \\
& +r \cos \left(\gamma-\delta \theta_{1}\right)+d \sin ^{2} \frac{\delta \theta}{2}=\Delta-\frac{C D}{2}-C_{h} \\
& \ell \sin \delta \theta \cos \delta \theta_{2}+d \cos \delta \theta \cos \delta \theta_{2} \\
& -r\left[\cos \left(\gamma-\delta \theta_{1}\right)-\cos \gamma\right] \cos \delta \theta_{2} \\
& -\mathrm{C}_{\mathrm{h}}\left(1-\cos \delta \theta_{2}\right) \cos \delta \theta_{2}+[\ell \cos \delta \theta \\
& -d \sin \delta \theta-C_{h}\left(\sin \delta \theta_{1}-\sin \delta \theta_{2}\right) \\
& \left.-C_{V} \cos \delta \theta_{1}\right] \sin \delta \theta_{2}-D \cos \delta \theta_{2} \\
& -\mathrm{F}_{\mathrm{n}_{1}}(\cos \delta \theta-\mu \sin \delta \theta) \cos \delta \theta_{2} / \mathrm{K}_{\mathrm{x}_{1}} \\
& -\mathrm{F}_{\mathrm{n}_{2}}\left(\cos \delta \theta_{2}-\mu \sin \delta \theta_{2}\right) \cos \delta \theta_{2} / \mathrm{K}_{\mathrm{x}_{2}}=0 \tag{1.4.13}
\end{align*}
$$

These equations may be written in the form of Equation 1.4 .6 and solved similarly where $\theta=\left[\mathrm{F}_{\mathrm{n}_{1}}, \mathrm{~F}_{\mathrm{n}_{2}}, \delta \mathrm{x}, \delta \theta, \delta \theta_{1}, \delta \theta_{2}\right]^{\mathrm{T}}$, etc. (see Appendix B for calculation of J). The initial value θ_{0} was evaluated at the boundary between one-point contact and two-point contact. Also, the initial value x_{0} was chosen to be 0 which allowed the iteration scheme to move away from the original guess.

Computer Program

A computer program called "LATROT" has been written which solves the assembly equations (see Appendix A). Given the insertion parameters as inputs it computes $F_{z}, \delta z, \delta \theta$, and δx for various insertion distances $(\Delta z, \ell)$ during the entire assembly.

C. Linearized Solutions

The program written to solve the linearized equations is called "LINLR" (see Appendix A). It computes $F_{z}, \delta z, \delta \theta$, and δx during the entire assembly. Some of the solutions $(\delta \theta, \delta x)$ on which the linearized solutions are based are shown in Table 1.4.1.

1.4.3 Results and Discussion

The effect of the insertion parameters which are common to all of the problems discussed in Section 1 on F_{z} versus δz will now be discussed (see Sections 1.2.6, 1.3.6). Effec: of the Chamfer Angle on Insertion Force versus Depth

In Figure 1.4.4 the effect of ϕ on F_{z} versus δz is shown for several ϕ. Δs the chamfer becomes flatter (ϕ small) the insertion force during chamfer crossing rises and vice versa. During one-point contact and two-point contact the solution is primarily shifted as ϕ varies. This is because the duration of chamfer crossing is sensitive to ϕ; the steeper the chamfer, the longer chamfer crossing lasts. Effect of the Friction Coefficient on Insertion Force versus Depth

Figure 1.4 .5 illustrates the effect of μ on F_{z} versus δz. Of course increasing μ increases the insertion force during each assembly phase and vice versa. Also as μ increases, a $-\frac{\mu d}{2}$ decreases so that line contact occurs earlier. Although not shown here, if μ is large enough, the peg will tip the other way ((4) during chamfer crossing. Effect of the Clearance Ratio on Insertion Force versus Depth

In Figure 1.4 .6 the effect of C on F_{z} versus δz is shown for various $C>0$. As C decreases the insertion force increases and vice versa. For very small C there is little difference in insertion force versus depth characteristics (e.g., compare $C=0.01,0.0001$ curves). If C is large enough (e.g., $C=0.2)$ two-point contact will not occur.
Table 1.4.1. Linearized solutions for $\delta \mathbf{x}$ and $\delta \theta$.

Figure 1.4.4. Effect of ϕ on F_{z} versus δz.

Figure 1.4.5. Effect of μ on F_{z} versus δz.

Effect of the Initial Lateral Error on Insertion Force versus Depth

Figure 1.4.7 illustrates the effect of Δ / a on F_{z} versus δz. As the error (Δ / a) increases more insertion force is required and vice versa. If Δ / a is small enough two-point contact will not occur (not shown).

Effect of the Hole Diameter on Insertion Force versus Depth
In Figure 1.4 .8 the effect of the hole diameter (D / a) on F_{z} versus δz is shown. As the diameter of the peg increases, the insertion force increases during chamfer crossing and vice versa. During the remainder of the assembly the effect is not as clear; however, the trend is almost the same during two-point contact and reverses during the onepoint contact phase. If the diameter of the peg is large enough, twopoint contact does not occur. Also as D / a increases, the resumption of one-point contact occurs earlier because a $-\frac{\mu d}{2}$ is smaller. Effect of Peg Support Stiffness on Insertion Force versus Depth

The effect of $K_{x} a^{2} / K_{\theta}$ on F_{z} versus δz is shown in Figure 1.4.9. Increasing $K_{x} a^{2} / K_{\theta}$ increases the insertion force and vice versa during each assembly phase.

Effect of Linearization

The effect of the linearization on F_{z} versus δz is shown in Figure 1.4.10 for several Δ / a. These results suggest that a small angle assumption is not always valid. As an example, when $\Delta / a=0.1, \delta \theta_{\max }=$ 5.2°, but $\mathrm{F}_{\mathrm{z}_{\max }}$ is underestimated by about 20%.

Location of Compliance Center of Peg
The optimal location of the compliance center of the peg follows as before (Section 1.3.6) and will not be discussed further here.

1.5 CONCLUSION

In the past, much work has been done at The Charles Stark Draper Laboratory, Inc. in the area of part mating, studying different "peg-in-hole" problems both theoretically and experimentally. The results presented in this section have extended some of the theoretical models used before, including the effect of various hole compliances and nonlinearities. It is anticipated that some of the models developed in this section will be the basis of experimental work to be done in the future.

Figure 1.4.6. Effect of C on F_{z} versus δz.

Figure 1.4.7. Effect of Δ / a on F_{z} versus δz.

Figure 1.4.8. Effect of D / a on F_{z} versus δz.

Figure 1.4.9. Effect of $K_{x} a^{2} / K_{\theta}$ on F_{z} versus δz.

Figure 1.4.10. Comparison of linearized solutions for several Δ / a.

MINIMUM ENERGY CHAMFER DESIGN

2.1 INTRODUCTION

2.1.1 Chamfer Design in General

From Section 1.4 (Figure 1.4.4) and previous work in Part Mating it is apparent that the slope and shape of the chamfer can qreatly affect the insertion forces. which arise during chamfer crossing. Knowledge of how these forces depend on the chamfer's slope and shape is essential if better chamfers are to be designed which enable the parts involved to be assembled more easily.

Design criteria have included the following: (1) minimum peak force, (2) constant force, (3) minimum vertical work/energy, and (4) minimum frictional work/energy during chamfer crossing. In general, the chamfers obtained by applying any one of these criteria also depend on the following three factors: friction, geometry (e.g. of peg), and compliance (of peg support and hole). Specification of these factors and one of the design criteria then determines the desired chamfer shape provided it exists.

The various chamfers will now be briefly discussed. Minimum peak force (vertical) chamfers are useful if it is desired to minimize the insertion force. Constant force chamfers are just that; fixing either the vertical insertion force or the normal contact force. If the normal contact force is kept constant, the frictional "wear" on the chamfer will be uniform during the assembly since the frictional force is proportional to the normal force. So far, no theoretical minimum peak force chamfers have been designed, but experimental evidence has suggested that constant force chamfers are in fact minimum peak force chamfers. Minimum "energy" chamfers ((3) and (4)) minimize a type of mechanical work during the assembly - frictional or vertical insertion. The use of the word "energy" is a bit of a misnomer because it is the mechanical work that is minimized, but since an energy source must be
present to generate the mechanical work, it is perhaps justified. The words "work" and "energy" will be used interchangeably here. Some minimum energy chamfers have been designed in previous years. In this section the emphasis will be entirely on the design of minimum energy chamfers.

2.1.2 Minimum Energy Chamfer Design

Thus far, minimum energy chamfer design has centered on the original minimum energy chamfer problem proposed a couple of years ago. Much has been learned, with some aspects of the problem revisited in Section 2.3. Briefly, the problem statement is: find the shape of the chamfer (see Figure 2.l.l) which minimizes the vertical insertion work. The peg is assumed to be very long in comparison to its width and is supported compliantly by a rotational support of stiffness K_{θ}. Small angle assumptions have allowed an explicit solution.

Many problems related to this problem arise naturally. Suppose, for example, that the peg's width is significant or that the small angle assumption is dropped, etc. Ideally, the problem which allows for a lateral and rotational peg support, finite thickness peg, and large angles will eventually admit a solution. In an attempt to solve more general problems such as the one mentioned, two "simpler" problems were addressed with the following unique characteristics: (1) lateral peg support and (2) rotational peg support with large angles. In both of the cases the peg's width will be ignored and chamfers will be designed where the frictional work is minimized. Also, chamfers will be designed where the vertical insertion work is minimized and a very interesting comparison will be made.

2.2 LATERAL PEG SUPPORT

2.2.1 Introduction

In many cases the peg will be supported with only lateral compliance $\left(K_{X}\right)$ as shown in Figure 2.2.1. Here, the chamfer shown in the figure is an arbitrary shape represented by $Y(x)$ and the peg is represented by a line segment of length ℓ. Initially the peg is in contact with the top of the chamfer (O, y_{0}) and coincident with the y axis. During the assembly to be considered, the peg translates laterally (i.e. parallel to y axis) while remaining in contact with the chamfer. Assembly ends when the contact point is at the bottom of the chamfer ($x_{0}, 0$).

Figure 2.1.1. Original minimum energy chamfer problem.

Figure 2.2.1. Chamfer crossing-lateral peg support.

The mechanics of the assembly can be analyzed with the aid of the free-body diagram of the peg provided in Figure 2.2.1. From the definition of a lateral support it follows that the normal contact force (F_{n}) is given by:

$$
\begin{equation*}
F_{n}=\frac{K_{x} x}{\sin \phi-\mu \cos \phi} \tag{2.2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \phi=-y^{\prime} \tag{2.2.2}
\end{equation*}
$$

Simplification yields:

$$
\begin{equation*}
F_{n}=\frac{K_{x} x \sqrt{1+y^{\prime 2}}}{y^{\prime}+\mu} \tag{2.2.3}
\end{equation*}
$$

Since the normal force is nonnegative, $y^{\prime} \leq-\mu$. For chamfers that have slopes smaller than μ (in magnitude), wedging will occur. Also of interest are the vertical and horizontal contact forces (F_{y}, F_{x}) given by:

$$
\begin{gather*}
F_{y}=\frac{K_{x} x\left(\mu y^{\prime}-1\right)}{y^{\prime}+\mu} \tag{2.2.4}\\
F_{x}=K_{x} x \tag{2.2.5}
\end{gather*}
$$

Now that the mechanics of the assembly have been analyzed for a general chamfer shape, one can impose criteria which determine a desired chamfer shape indirectly. Chamfers will now be designed where either the friction work or the vertical insertion work is minimized. Also, a horizontal work criterion will be investigated.

2.2.2 Frictional Work Criterion

Definition

A natural criterion for designing chamfers involves finding a chamfer which minimizes the frictional work or "wear" on the chamfer. By definition, an increment in the frictional work ($d W_{\mu}$) is equal to the product of the frictional force $\left(\mu F_{n}\right)$ and an increment in the
distance (ds) through which the end of the peg moves anti-parallel to this frictional force while in contact with chamfer, i.e.

$$
\begin{equation*}
d W_{\mu}=\mu F_{n} d s \tag{2.2.6}
\end{equation*}
$$

where s is the arc length along the chamfer. The arc length (s) may be related directly to the chamfer slope (y^{\prime}) and x by:

$$
\begin{equation*}
\mathrm{ds}=\sqrt{1+\mathrm{y}^{\prime 2}} \mathrm{dx} \tag{2.2.7}
\end{equation*}
$$

The total frictional work $\left(W_{\mu}\right)$ is obtained by summing up all of the incremental contributions along the entire chamfer. This may be expressed as the following integral where appropriate substitutions have been made:

$$
\begin{equation*}
W_{\mu}=-\mu K_{x} \int_{0}^{x_{0}} \frac{x\left(1+y^{\prime 2}\right)}{y^{\prime}+\mu} d x \equiv \int_{0}^{x_{0}} I_{\mu}\left(x, y^{\prime}\right) d x \tag{2.2.8}
\end{equation*}
$$

Note that W_{μ} depends on the chamfer's slope (y^{\prime}) and not its shape (y). Calculus of Variations Analysis

To find the chamfer shape such that the frictional work is minimized, the Calculus of Variations must be used. (9) Before proceeding . with the analysis, one must recall that the Calculus of Variations does not apply when the solution, in this case a chamfer shape, is not expressable in the form $y(x)$ (i.e. not a function) - more about this later.

Legendre's necessary condition for a minimum, $I_{\mu}, y^{\prime} y^{\prime} \geq 0$ is cer-
y satisfied everywhere along the chamfer since (10),

$$
\begin{equation*}
I_{\mu Y^{\prime} Y^{\prime}}=-\frac{2 \mu K_{x} x\left(1+\mu^{2}\right)}{\left(Y^{\prime}+\mu\right)^{3}} \tag{2.2.9}
\end{equation*}
$$

This guarantees that the solution obtained will minimize the frictional work. Euler's equation

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\partial I_{\mu}}{\partial y^{\prime}}\right)=0 \tag{2.2.10}
\end{equation*}
$$

immediately reduces to the following differential equation:

$$
\begin{equation*}
\frac{x y^{\prime 2}+2 \mu x y^{\prime}-x}{\left(y^{\prime}+\mu\right)^{2}}=-c \tag{2.2.11}
\end{equation*}
$$

where c is an integration constant. The optimal chamfer shape is then independent of the peg support stiffness (K_{x}). Equation (2.2.11) may be solved for y^{\prime} by using the quadratic formula to yield:

$$
\begin{equation*}
y^{\prime}=-\mu-\sqrt{1+\mu^{2}} \sqrt{\frac{x}{x+c}} \tag{2.2.12}
\end{equation*}
$$

Here the - sign must be used because $Y^{\prime} \leq-\mu$. Since $x /(x+c)$ must be nonnegative for $0 \leq x \leq x_{0}$, it follows that $c \geq 0$. This in turn produces a bound on the slope (y^{\prime}) (use $c=0, \infty$);

$$
\begin{equation*}
-\mu-\sqrt{1+\mu^{2}} \leq Y^{\prime} \leq-\mu \tag{2.2.13}
\end{equation*}
$$

By using one of the boundary conditions, it is observed that the $c=0, \infty$ chamfers serve as an envelope for the rest of the chamfer shapes. This unexpected bound on the slope has to do with the fact that an optimal slope exists (see Section 2.2.5). Chamfers with slopes less than $-\mu-\sqrt{1+\mu^{2}}$ certainly exist but will not minimize the frictional work. Using Dwight's Table of Integrals (\#'s 195.01 and 195.04) Equation (2.2.11) may be integrated. (11) The dimensionless chamfer equation is then given by:

$$
\begin{equation*}
Y=S-\mu X-\sqrt{I+\mu^{2}}[\sqrt{X(X+C)}-C \ln (\sqrt{1+X / C}+\sqrt{X / C})] \tag{2.2.14}
\end{equation*}
$$

where

$$
\begin{gather*}
Y=y / x_{0}, X=x / x_{0}, C=c / x_{0} \text { and } \\
\mu<S=y_{0} / x_{0}<\mu+\sqrt{1+\mu^{2}} \tag{2.2.15}
\end{gather*}
$$

and the boundary condition $Y(0)=S$ has been used. Here S is defined as the aspect ratio, or baseline slope. To solve for the integration constant C, the boundary condition $Y(1)=0$ must be used. This boundary condition yields a transcendental relation in C,

$$
\begin{equation*}
S=\mu+\sqrt{1+\mu^{2}}[\sqrt{1+C}-C \ln (\sqrt{1+1 / C}+\sqrt{1 / C})] \tag{2.2.16}
\end{equation*}
$$

In summary, given appropriate μ and S, Equation (2.2.14) describes the optimal chamfer shape.

2.2.3 Vertical Insertion Work Criterion

Definition

Chamfers can also be designed where the vertical insertion work is minimized. By definition, an increment in the vertical insertion work ($\mathrm{d} \mathrm{W}_{\mathrm{v}}$) is equal to the product of the vertical force (F_{y}) exerted at the peg's support point and an increment in the distance (-dy) through which the support point moves parallel to this vertical insertion force, i.e.

$$
\begin{equation*}
d W_{v}=-F_{y} d y \tag{2.2.17}
\end{equation*}
$$

By summing up all of the incremental contributions to the vertical insertion work and making appropriate substitutions, the total vertical insertion work $\left(W_{v}\right)$ is given by an integral on x,

$$
\begin{equation*}
W_{v}=K_{x} \int_{0}^{x_{0}} \frac{x^{\prime}\left(1-\mu y^{\prime}\right)}{y^{\prime}+\mu} y^{\prime} d x \equiv \int_{0}^{x_{0}} I_{v}\left(x, y^{\prime}\right) d x \tag{2.2.18}
\end{equation*}
$$

Again the work $\left(W_{v}\right)$ depends on the chamfer's slope (y^{\prime}) but not its shape (y).

Calculus of Variations Analysis

The Calculus of Variations can be used to find the chamfer shape which minimizes the vertical insertion work. Legendre's condition $I_{v y^{\prime} y^{\prime}} \geq 0$ is the same as before (Equation (2.2.9)). In fact, Euler's equation reduces to Equation (2.2.11) so that chamfers designed according to minimum insertion work criteria are the same as chamfers designed according to minimum frictional work criteria! This result is not obvious but certainly not surprising either.

2.2.4 Horizontal Work Criterion

A surprising result happens if a minimum horizontal work criterion is imposed. By definition, an increment in the horizontal work (dW_{h}) is equal to the product of the horizontal contact force (F_{x}) on the chamfer and an increment in the distance (dx) through which the end of
the peg moves anti-parallel to this horizontal force while in contact with the chamfer, i.e.

$$
\begin{equation*}
d W_{h}=F_{x} d x \tag{2.2.19}
\end{equation*}
$$

By summing up all of the incremental contributions to the horizontal work and making appropriate substitutions, the total horizontal work $\left(W_{h}\right)$ can be expressed as an integral on x which simplifies to

$$
\begin{equation*}
W_{h}=\frac{1}{2} K_{x} x_{o}^{2} \tag{2.2.20}
\end{equation*}
$$

which is independent of the friction involved and the chamfer shape! Since W_{h} is constant, it is automatically minimized.

2.2.5 Results and Discussion

As mentioned above, minimum vertical work chamfers are the same as minimum frictional work chamfers, which are also minimum horizontal work chamfers. Therefore, when one speaks of a minimum energy chamfer (lateral peg support) the specific criterion used does not have to be mentioned. Based on the Calculus of Variations analysis, the discussion will be broken up into the following areas: (1) Optimal Chamfer Slope and Energies, (2) Computer Program, and (3) Chamfer Shapes.
A. Optimal Chamfer Slope and Energies

By examining Equations (2.2.3) and (2.2.4) it is apparent that if the chamfer slope (y^{\prime}) is too flat (close to - μ) arbitrarily large frictional and vertical insertion forces will be present. As a result, large frictional energies and vertical insertion energies will exist (see Equations (2.2.8) and (2.2.18)). Similarly, if the chamfer slope is too steep ($\left|y^{\prime}\right|$ large), the forces (frictional and vertical insertion) will have to act over a larger distance ($\sim \mathrm{y}^{\prime} \mathrm{dx}$) which then produce large frictional and vertical insertion energies. Therefore, by selecting a chamfer slope that is not too flat, but yet not too steep, an optimal slope may be arrived at. This optimal slope (m) is given by:

$$
\begin{equation*}
m_{0}(\mu)=-\left(\mu+\sqrt{1+\mu^{2}}\right) \tag{2.2.21}
\end{equation*}
$$

which incidently, is also equal to the steeper bound on the chamfer slope (see Inequality (2.2.13)). Increasing the, friction makes the optimal slope steeper (more negative) and vice-versa. For low friction, the magnitude of the optimal slope is close to 1 (e.g. $\left|m_{0}\right|=$ 1.22 when $\mu=0.2$). When there is no friction. ($\mu=0$), the frictional work vanishes and the vertical insertion work is $\frac{1_{2}}{2} x_{x}{ }_{0}^{2}$ regardless of the chamfer's slope and shape (see Equations (2.2.8 and 2.2.18)). Therefore, there is no optimal slope when $\mu=0$.

The optimal slope for $\mu>0$ may be derived by requiring:

$$
\begin{equation*}
\frac{\partial W_{\mu}}{\partial y^{\prime}}=0 \tag{2.2.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial W_{v}}{\partial y^{\prime}}=0 \tag{2.2.23}
\end{equation*}
$$

and using Leibniz's rule. It follows that the "optimal" optimal chamfer is a straight line chamfer with $S=\mu+\sqrt{1+\mu^{2}}$.

The frictional work/energy corresponding to this chamfer is $2 \mu\left(\mu+\sqrt{1+\mu^{2}}\right)\left(\frac{1}{2} K_{x} x_{o}{ }^{2}\right)$ which is proportional to the potential energy stored in the compliant support. It's also dependent on the friction; the larger the friction, the larger the frictional work/energy and vice-versa.

The vertical insertion work/energy corresponding to this chamfer is $\left(\mu+\sqrt{1+\mu^{2}}\right)^{2}\left(\frac{1}{2} K_{x} x_{0}^{2}\right)$. It too is proportional to the potential energy stored in the compliant support. Increasing the friction is seen to increase the insertion work and vice-versa.

B. Computer Program "CHAMF"

A computer program called "CHAMF" has been written which determines the dimensionless optimal chamfer shape given appropriate μ and S. The details of the program will not be given here since it is a general program which also solves the "doorlatch" problem discussed later in Section 2.4.
C. Chamfer Shapes

The different types of optimal chamfers can be categorized by
their aspect ratios (S) and the friction involved (μ). They will now be discussed with the results summarized in Figures 2.2.2 and 2.2.3.

Case $1(S<\mu)$
For S < μ, no optimal chamfers exist since the peg will wedge into the chamfer.

Case $2(S=\mu)$
When $S=\mu$, the optimal chamfer is a straight line chamfer of slope - μ. The peg, however, will wedge all of the way down the chamfer. This chamfer shape may be easily derived by using Eq. (2.2.12) and observing that as $c \rightarrow \infty, y^{\prime} \rightarrow-\mu$.
Case $3\left(\mu<s<\mu+\sqrt{1+\mu^{2}}\right)$
For $\mu<S<\mu+\sqrt{l+\mu^{2}}$ the Calculus of Variations yields curved chamfer shapes (Equation (2.2.14)) and several of them are shown in Figure 2.2.3. They are convex because in general $y^{\prime \prime}<0$. The slope is always - μ at the top of the chamfer and it steadily decreases all of the way to the base of the chamfer.

One quantitative measure of the shape of a chamfer is its curvature, which measures how fast a curve is turning. From elementary calculus, the curvature (k) of an optimal chamfer shape is:

$$
\begin{equation*}
k=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} \tag{2.2.24}
\end{equation*}
$$

Recall that the curvature (in absolute value) of a circle of radius R is $1 / R$. The curvature of an optimal chamfer shape is seen to depend on x and is always negative (as $x \rightarrow 0^{+}, k \rightarrow-\infty$). The rate of change of the curvature (κ^{\prime}) is:

$$
\begin{equation*}
\kappa^{\prime}=\frac{\left(1+y^{\prime 2}\right) y^{\prime \prime}{ }^{\prime}-3 y^{\prime} y^{\prime 2}}{\left(1+y^{\prime 2}\right)^{5 / 2}} \tag{2.2.25}
\end{equation*}
$$

The sign (tor-) of K^{\prime} then depends on the sign of y^{\prime} and $y^{\prime \prime \prime}$. By differentiating Equation (2.2.12) it may be easily shown that in general $y^{\prime \prime \prime}>0$. Therefore $K^{\prime}>0$ and the curvature (in magnitude) will be the largest (∞) at the top of the chamfer and steadily decrease to its smallest value at the base of the chamfer.

Figure 2.2.2. Regions in the s - μ plane showing allowed minimum insertion energy chamfers and their shapes.

Figure 2.2.3. Minimum energy chamfer shapes for various S, $\mu=0.2$.

Case $4\left(S=\mu+\sqrt{1+\mu^{2}}\right)$
When $S=\mu+\sqrt{1+\mu^{2}}$, the optimal chamfer is a straight line chamfer of slope $-\mu-\sqrt{1+\mu^{2}}$. This is easily derived by using Equation (2.2.12) (let $c=0$) or by recognizing that $-\mu-\sqrt{1+\mu^{2}}$ is the optimal slope. As mentioned earlier, this chamfer is the "optimal" optimal chamfer. All other optimal chamfers give rise to larger frictional and insertion energies.
Case $5\left(S>\mu+\sqrt{1+\mu^{2}}\right)$
For $S>\mu+\sqrt{1+\mu^{2}}$ a sort of "concave" chamfer exists, but only in a trivial sense. This minimum energy shape consists of a straight line segment extending from $(1,0)$ to $\left(0, \mu+\sqrt{1+\mu^{2}}\right)$ plus a vertical line segment extending from $\left(0, \mu+\sqrt{1+\mu^{2}}\right)$ to ($0, \mathrm{~S}$) (see Figure 2.2.3). The shape cannot be written in the form $Y(x)$ and for this reason the Calculus of Variations does not apply. This shape, although a mathematically correct solution, is not a chamfer since there are no contact forces along the vertical portion. Therefore, the minimum energy shape reduces to the optimal straight line chamfer of slope $-\mu-\sqrt{1+\mu^{2}}$.

An indirect proof will be used to show that the shape described above is a minimum energy shape. Suppose the shape exists. Is it a minimum energy shape? Well, in going from ($0, S$) to $\left(0, \mu+\sqrt{I+\mu^{2}}\right)$ no work will be done since there are no contact forces. And in going from $\left(0, \mu+\sqrt{1+\mu^{2}}\right)$ to $(1,0)$ via a straight line chamfer the minimum possible frictional and insertion work is assured since the slope is optimal. Therefore, it is a minimum energy shape.

2.3 ROTATIONAL PEG SUPPORT

2.3.1 Introduction

The rotational peg support problem is conceptually similar to the lateral peg support problem and so the details of the analysis will be kept to a minimum. This is the original minimum energy chamfer problem proposed by D.E. Whitney and solved for small angles. In the present formulation, the small angle assumption will be dropped. Thus far, the problem has not been solved completely; however, major results such as the derivation of the optimal slope chamfer have been obtained.

In certain instances the peg will be supported with rotational compliance $\left(K_{\theta}\right)$ as shown in Figure 2.3.1. Again the chamfer is an arbitrary shape $y(x)$ and the peg is represented by a line segment of

Figure 2.3.1. Chamfer crossing - rotational peg support.
length ℓ. Initially the end of the peg is in contact with the top of the chamfer ($0, y_{0}$) and inclined at an angle θ_{0} to the vertical. During the assembly to be considered, the peg's support point moves vertically downward along the \bar{y}-axis, while the end of the peg slides along the chamfer with friction. Chamfer crossing (assembly) ends when the contact point is at the bottom of the chamfer $\left(x_{0}, 0\right)$.

With the aid of the free-body diagram of the peg provided in Figure 2.3.1, the mechanics of the assembly can be analyzed. The normal contact force (F_{n}) can be solved for by balancing moments at the support point,

$$
\begin{equation*}
F_{n}=\frac{\left(K_{\theta} / X\right)\left(\theta_{0}-\theta\right)}{\sin (\phi-\theta)-\mu \cos (\phi-\theta)} \tag{2.3.1}
\end{equation*}
$$

where

$$
\begin{gather*}
\ell \sin \theta=\ell \sin \theta_{0}-x \\
\tan \phi=-y^{\prime} \tag{2.3.2}
\end{gather*}
$$

The normal force may then be expressed in terms of x, y '. However, it is more convenient to do the analysis in the \bar{x}, \bar{y} coordinates and then transform back to the x, y coordinates later on. Therefore, F_{n} is given by:

$$
\begin{equation*}
F_{n}=\frac{k_{\theta}\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right]\right] \sqrt{1+\bar{y}^{\prime 2}}}{\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right)-\overline{\mathrm{y}}} \cdot \frac{\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \overline{\mathrm{x}}\right)}{} \tag{2.3.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\overline{\mathrm{x}}=\mathrm{x}-\ell \sin \theta_{0} \\
\overline{\mathrm{y}}=\mathrm{y} \tag{2.3.4}
\end{gather*}
$$

Since the normal force is nonnegative,

$$
\begin{equation*}
\overline{\mathrm{y}}^{\prime} \leq \frac{\overline{\mathrm{x}}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \overline{\mathrm{x}}} \tag{2.3.5}
\end{equation*}
$$

provided the initial offset angle (θ_{0}) is not too large;

$$
\begin{equation*}
\cot \theta_{0}>\mu \tag{2.3.6}
\end{equation*}
$$

For chamfers with larger slopes or pegs inclined at larger initial offset angles, wedging will occur. Also, the vertical contact force (F_{y}) is given by:

$$
\begin{equation*}
F_{y}=\frac{k_{\theta}\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]\left(1-\mu \bar{y}^{\prime}\right)}{\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right)-\bar{y}^{\prime}\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)} \tag{2.3.7}
\end{equation*}
$$

Now that the mechanics of the assembly have been analyzed for a general chamfer shape, minimum frictional and vertical insertion work criteria will be used to design chamfers.

2.3.2 Frictional Work Criterion

Chamfers will now be designed where the frictional work is minimized. Proceeding in a similar manner as in Section 2.2.2, the frictional work $\left(W_{\mu}\right)$ may be expressed as;

$$
\begin{equation*}
W_{\mu}=\mu K_{\theta} \int_{\bar{x}} \frac{\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]\left(1+\bar{y}^{2}\right) d \bar{x}}{\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right)-\bar{y}^{\prime}\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)} \equiv \int_{\frac{1}{\bar{x}}} I_{\mu}\left(x, y^{\prime}\right) d \bar{x} \tag{2.3.8}
\end{equation*}
$$

The frictional work is seen to depend on the chamfer's slope (\bar{y} ') but not its shape (\bar{y}).

Calculus of Variations Analysis

The Calculus of Variations may be used to find the chamfer shape $\bar{y}(\bar{x})$ (or $y^{\prime}(x)$) such that the frictional work is minimized.

Legendre's necessary condition for a minimum, $I_{\mu^{\prime}} \geq 0$ is sat-
isfied everywhere along the chamfer since:

$$
\begin{equation*}
I_{\mu_{Y^{\prime} Y^{\prime}}}=\frac{\mu K_{\theta} \ell^{2}\left(1+\mu^{2}\right)\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right),\right]}{\left[\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right)-\bar{y}^{\prime}\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)\right] 3} \tag{2.3.9}
\end{equation*}
$$

Euler's equation reduces to the following differential equation:

$$
\begin{equation*}
\frac{\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]\left[\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right) \bar{y}^{2}-2\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right) \bar{y}^{\prime}-\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)\right]}{\left[\left(\bar{x}-\mu \sqrt{l^{2}-\bar{x}^{2}}\right)-\bar{y}^{\prime}\left(\sqrt{l^{2}-\bar{x}^{2}}+\mu \bar{x}\right)\right]^{2}}=-c \tag{2.3.10}
\end{equation*}
$$

where c is an integration constant. This equation may be solved using the quadratic formula to yield:

$$
\begin{equation*}
\left.\bar{y}^{\prime}=\frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}-\sqrt{\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]\left[1+\left(\frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}\right)^{2}\right.}\right] \frac{\left.\partial_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]+c\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)}{} \tag{2.3.11}
\end{equation*}
$$

Since the argument of the radical must be nonnegative for $-\ell \sin \theta_{0}$ $\leq \bar{x} \leq \bar{x}_{0}=x_{0}-\ell \sin \theta_{0}, c \geq 0$. Also, the $-\operatorname{sign}$ must be used -see Inequality 2.3.5. Note that positive slopes are possible (e.g. let c be large, μ small) if \bar{x} is allowed to be positive! This case, however, is not too realistic since the support point will run into the chamfer. For large ℓ, Equation (2.3.11) is seen to reduce to Equation (2.2.12) when $\theta_{0}=0$ (c must be replaced with c / ℓ^{2}) so that the rotational peg support case reduces to the lateral peg support case. The slope is bounded since (use $c=0, \infty$);

$$
\begin{equation*}
\frac{\bar{x}-\mu \sqrt{\ell 2} \bar{x}^{2}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}-\sqrt{1+\left(\frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}\right)^{2}} \leq \bar{y}^{\prime} \leq \frac{\bar{x}-\mu \sqrt{\ell 2-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}} \tag{2.3.12}
\end{equation*}
$$

By using one of the boundary conditions, it is observed that the $c=0, \infty$ chamfers serve as an envelope for the rest of the chamfer shapes. This bound has to do with the fact that an optimal slope exists which depends on $\overline{\mathrm{x}}$ and that wedging has been avoided.

It is believed that in general, Equation (2.3.11) cannot be integrated by elementary methods and only a numerical or graphical solution is possible. However, when $c=0, \infty$ direct integration is possible. For $\ell \sin \theta_{0} \geq x_{0}$ solutions will be obtained. These solutions correspond to the case where the peg's support point does not interfere with the chamfer (see Figure 2.3.1) during assembly. When $c=\infty$, Equation (2.3.11) reduces to:

$$
\begin{equation*}
\bar{y}^{c=\infty} \equiv \bar{y}^{w}=\int_{\bar{x}} \frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}} d \bar{x} \tag{2.3.13}
\end{equation*}
$$

or expanding,

$$
\begin{equation*}
\overline{\mathrm{y}}^{\mathrm{w}}=\int_{\overline{\mathrm{x}}} \frac{\left(1+\mu^{2}\right) \overline{\mathrm{x}} \sqrt{\ell^{2}-\overline{\mathrm{x}}^{2}}}{\ell^{2}-\left(1+\mu^{2}\right) \overline{\mathrm{x}}^{2}} d \overline{\mathrm{x}}-\mu \ell^{2} \int_{\overline{\mathrm{x}}} \frac{\mathrm{~d} \overline{\mathrm{x}}}{\ell^{2}-\left(1+\mu^{2}\right) \bar{x}^{2}} \tag{2.3.14}
\end{equation*}
$$

The second integral integrates easily to a logarithm term. The first integral may be transformed into the following pseudo-elliptic integral:

$$
\begin{equation*}
\ell \int_{x^{\prime}} \tan x^{\prime} \sqrt{1-k^{2} \sin ^{2} x^{\prime}} d x^{\prime} \tag{2.3.15}
\end{equation*}
$$

where

$$
\begin{array}{r}
k=\frac{1}{\sqrt{1+\mu^{2}}} \\
\sin x^{\prime}=\frac{\sqrt{1+\mu^{2}} \bar{x}}{\ell} \tag{2,3.16}
\end{array}
$$

which may be integrated using the extensive Rydzik-Gradstein Integral Tables (Section 2.583 \#37). (12) By combining the two integrals in Equation (2.3.14) and transforming back to the original chamfer coordinates (x, y), one obtains the dimensionless chamfer equation

$$
\begin{gather*}
\mathrm{Y}^{\mathrm{W}}=\sqrt{\mathrm{L}^{2}-\overline{\mathrm{X}}(1)^{2}}-\sqrt{\mathrm{L}^{2}-\overline{\mathrm{X}}^{2}}+\frac{\mu \mathrm{L}}{\sqrt{1+\mu^{2}}} \ln \left[\frac{\left(\sqrt{1+\mu^{2}} \sqrt{\bar{L}^{2}-\overline{\mathrm{X}}^{2}}+\mu \mathrm{L}\right)}{\left(\sqrt{1+\mu^{2}} \sqrt{\mathrm{~L}^{2}-\overline{\mathrm{X}}(1)^{2}}+\mu \mathrm{L}\right)}\right. \\
\left.\cdot \frac{\left(\mathrm{L}+\sqrt{1+\mu^{2}} \overline{\mathrm{X}}(1)\right)}{\left(\mathrm{L}+\sqrt{1+\mu^{2}} \overline{\mathrm{X}}\right)}\right] \tag{2.3.17}
\end{gather*}
$$

where

$$
\begin{gather*}
Y^{w}=y^{W} / x_{0}, X=x / x_{0}, L=\ell / x_{0}, \\
\bar{X}(X)=X-L \sin \theta_{0} \\
\mu>0, \cot \theta_{0}>\mu, L \sin \theta_{0}>1 \tag{2.3.18}
\end{gather*}
$$

and the boundary condition $\mathrm{Y}^{\mathrm{W}}(\mathrm{l})=0$ has been used. When $\mathrm{c}=0$, Equation (2.3.11) reduces to:

$$
\begin{equation*}
y^{c=0} \equiv \bar{y}^{0}=\int_{\bar{x}} \frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}} d \bar{x}-\int_{\bar{x}} \sqrt{1+\left(\frac{\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}\right)^{2}} d \bar{x} \tag{2.3.19}
\end{equation*}
$$

The first integral is the same as Equation (2.3.13) and the second integral may be transformed using Equation (2.3.16) into

$$
\begin{equation*}
-\ell \int_{x^{\prime}} \frac{\sqrt{1-k^{2} \sin ^{2} x^{\prime}}}{\cos x^{\prime}} d x^{\prime}+\frac{\mu \ell}{\sqrt{1+\mu^{2}}} \int_{x^{\prime}} \tan x^{\prime} d x^{\prime} \tag{2,3.20}
\end{equation*}
$$

The second integral (Integral 2.3.20) may be integrated easily to a logarithm term and the first integral is another pseudo-elliptic integral which may be integrated using the Rydzik-Gradstein Integral Tables (Section 2.583 \#33). By combining the two integrals in Eq. (2.3.19) and transforming back to the original chamfer coordinates (x, y), the dimensionless chamfer equation $\left(Y^{0}=y^{0} / x_{o}\right)$ is given by:

$$
\begin{align*}
& Y^{0}=Y^{W}+\frac{L}{\sqrt{I+\mu^{2}}}\left[\sin ^{-1}(\bar{X}(1) / L)-\sin ^{-1}(\bar{X} / L)\right] \\
& +\frac{\mu L}{\sqrt{I+\mu^{2}}} \ln \left[\frac{\left(\sqrt{L^{2}-\bar{X}^{2}}-\mu \bar{X}\right)\left(L^{2}-\left(1+\mu^{2}\right) \bar{X}(1)^{2}\right)}{\left(\sqrt{L^{2}-\bar{X}(1)^{2}}-\mu \bar{X}(1)\right)\left(L^{2}-\left(1+\mu^{2}\right) \bar{X}^{2}\right)}\right] \tag{2.3.21}
\end{align*}
$$

where the boundary condition $Y^{\circ}(1)=0$ has been used.

2.3.3 Vertical Work Criterion

Chamfers can also be designed where the vertical work is minimized. Recall that an increment in the vertical insertion work (dW_{v}) is equal to the product of the vertical force (F_{y}) exerted at the peg's support point and an increment in the distance (dy*, see Figure 2.3.1) through which the support point moves parallel to this vertical insertion force, i.e.

$$
\begin{equation*}
d W_{v}=F_{Y} d y * \tag{2.3.22}
\end{equation*}
$$

The distance y^{*} may be related to x, y indirectly by

$$
\begin{equation*}
\ell \cos \theta_{0}+y_{0}=y+\ell \cos \theta+y^{*} \tag{2.3.23}
\end{equation*}
$$

Or, alternatively in differential form:

$$
\begin{equation*}
d y^{*}=\left[\frac{x-\ell \sin \theta_{0}}{\sqrt{\ell^{2}-\left(x-\ell \sin \theta_{0}\right)^{2}}}-y^{\prime}\right] d x \tag{2.3.24}
\end{equation*}
$$

By introducing the \bar{x}, \bar{y} coordinates and making appropriate substitutions, the total vertical insertion work $\left(W_{v}\right)$ is given by:

$$
\begin{align*}
& W_{v}=K_{\theta} \int_{\frac{1}{x}} \frac{\left[\theta_{0}+\sin ^{-1}\left(\frac{\bar{x}}{\ell}\right)\right]\left(1-\mu \bar{y}^{\prime}\right)\left(\bar{x} / \sqrt{\ell^{2}-\bar{x}^{2}}-\bar{y}^{\prime}\right)}{\left(\bar{x}-\mu \sqrt{\ell^{2}-\bar{x}^{2}}\right)-\bar{y}^{\prime}\left(\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}\right)} d \bar{x} \\
& \equiv \int_{\bar{x}} I_{v}\left(\bar{x}, \bar{y}^{\prime}\right) d \bar{x} \tag{2.3.25}
\end{align*}
$$

Again, the work $\left(W_{v}\right)$ depends on the chamfer's slope (\bar{y} ') but not its shape (\bar{y}).

Calculus of Variations Analysis

By using the Calculus of Variations, the optimal chamfer shape which minimizes the vertical work can be determined. Legendre's condition $I_{v \bar{y}}, \bar{y}, \geq 0$ is the same as before (Equation (2.3.9)). Also, Euler's equation reduces to Equation (2.3.10) so that as before (lateral peg support case), chamfers designed according to minimum insertion work criteria are the same as those designed according to minimum frictional work criteria.

2.3.4 Results and Discussion

To date, the rotational peg support problem has not been solved completely and is currently under investigation. iuch of the remaining work pertains to solving for the various optimal chamfer shapes. However, most of the theoretical work has been done.

One major result so far is that minimum frictional work chamfers are the same as minimum vertical work chamfers. Another result concerns the derivation of the most important minimum energy chamfer, the
optimal slope chamfer. Other results include a computer program written to determine various optimal chamfer shapes and a classification of the different chamfer shapes.

A. Optimal Chamfer Slope

By a similar qualitative argument (see Section 2.2.5) an optimal slope exists. It may be derived by requiring

$$
\frac{\partial W_{\mu}}{\partial \bar{Y}^{\prime}}=0
$$

or

$$
\begin{equation*}
\frac{\partial W_{v}}{\partial \bar{Y}^{\prime}}=0 \tag{2.3.26}
\end{equation*}
$$

and using Leibniz's rule. The result is that the optimal slope m_{0} depends on x and is given by:

$$
\begin{equation*}
m_{0}(x, \mu, \ell)=\frac{\bar{x}-\mu \sqrt{\ell 2-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}-\sqrt{1+\left(\frac{\bar{x}-\mu^{\sqrt{l}} \sqrt{\ell^{2}-\bar{x}^{2}}}{\sqrt{\ell^{2}-\bar{x}^{2}}+\mu \bar{x}}\right)^{2}} \tag{2.3.27}
\end{equation*}
$$

which is equal to the steeper bound on the slope discussed earlier (Inequality 2.3.12). Equation (2.3.21) then represents the "optimal" optimal chamfer since the slope is optimized at each point on the chamfer. For large ℓ, the optimal slope approaches -tan $\left(\theta_{0}+\beta\right)$-sec $\left(\theta_{0}+\beta\right)$. Of course when $\theta_{0}=' 0$, this slope is $-\mu-\sqrt{1+\mu^{2}}$, which is the optimal slope when the peg is supported laterally.
B. Computer program "CHAMFR".

A computer program called "CHAMFR" has been written which computes the dimensionless wedging chamfer (Equation 2.3.17) and more importantly, the dimensionless optimal slope chamfer (Equation 2.3.21) given $\mu>0, \theta_{0}<\cot ^{-1} \mu, L>\csc \theta_{0}$.

C. Chamfer Shapes

By analogy to Section 2.2.5, the different types of optimal chamfers can be categorized by their aspect ratios ($S=y_{0} / x_{0}$), the friction involved (μ), the initial offset angle (θ_{0}), and the length of the peg (L). Given μ, θ_{O}, and L the shapes Y^{W}, Y^{0} are determined. The optimal chamfers can then be categorized in terms of S, Y_{0}^{W}, and Y_{0}^{O}.

Case $1\left(S<Y_{o}^{W}\right)$
For $S<Y_{o}^{W}$, no optimal chamfers exist since the peg will wedge into the chamfer.

Case $2\left(S=Y_{O}^{W}\right)$
When $S=Y_{0}^{W}$, the optimal chamfer shape is given by $Y^{W}(X)$; obtained from Inequality 2.3.5 or Equation (2.3.11) ($C=\infty$). The peg, however; will wedge all of the way down the chamfer. Several of these curved chamfer shapes are shown in Figures 2.3.2 and 2.3.3. Because in general $\mathrm{Y}^{\mathrm{W}^{\prime}}>0$, the shapes are concave, but for large L, the chamfers are very straight ($Y^{W^{\prime}} \approx 0$). The initial slope is -tan $\left(\theta_{0}+\beta\right.$) and it steadily increases (less negative) all of the way to the base of the chamfer.
$\underline{\text { Case } 3\left(Y_{O}^{W}<S<Y_{O}^{O}\right)}$
For $\mathrm{Y}_{0}^{\mathrm{W}}<\mathrm{S}<\mathrm{Y}_{0}^{0}$, Equation (2.3.11) must be integrated numerically and the integration constant solved for to determine the optimal chamfer shape. This has not been done yet, but some insight can be gained into the solution since the optimal chamfers are bounded by the two curves $Y^{W}(X)$ and $Y^{O}(X)$ (see Figures 2.3.2 and 2.3.3). For large L $\left(\theta_{0}=0\right)$, the chamfer shapes approach those derived in the lateral peg support case (Equation 2.2.14).

Case $4 \quad\left(S=Y_{0}^{O}\right)$
When $S=Y_{0}^{0}$, the optimal chamfer shape is given by $Y^{0}(X)$. This may be established by using Equation (2.3.11) (let $c=0$) or recognizing that $Y^{\circ}(X)$ is the optimal slope chamfer. All other optimal chamfers give rise to larger frictional and insertion energies. Several of these shapes are shown in Figures 2.3.2 and 2.3.3. The chamfer shapes are concave $\left(Y^{\circ "}>0\right)$, but for large L tend to a straight line chamfer of slope $-\tan \left(\theta_{0}+\beta\right)-\sec \left(\theta_{0}+\beta\right)$. The initial slope is always $-\tan \left(\theta_{0}+\beta\right)$ $-\sec \left(\theta_{0}+\beta\right)$ and it steadily increases all of the way to the base of the chamfer.

Case $5\left(S>Y_{O}^{O}\right)$
For $S>Y_{0}^{0}$, the solution reduces to the optimal slope chamfer Y^{0}
(X). This result follows by analogy to the corresponding solution

Figure 2.3.2. Optimal and wedging chamfers for various L, $\mu=0.2, \theta_{0}=10^{\circ}$.

Figure 2.3.3. Optimal and wedging chamfers for various $L, \mu=0.2, \theta_{0}=20^{\circ}$.
(Case 5) of the lateral peg support problem (Section 2.2.5) and will not be discussed further.

2.4 DOORLATCH PROBLEM

2.4.1 Introduction

So far, minimum energy chamfers have been designed where the chamfered part rubs against another part with friction. An example of a problem where the chamfered part, while being displaced, rubs against a third part with friction is the design of a common household doorlatch illustrated in Figure 2.4.1(a). The problem concerns finding the shape of the chamfer on the doorlatch tongue subject to minimum energy criteria. Although this is a specific problem, it generalizes previous work done in minimum energy chamfer design and it reinforces the dependence of two design criteria which have been used to design chamfers; namely (1) minimum frictional work, and (2) minimum insertion work.

Problem Formulation

The mechanics of the "assembly" will be analyzed for an arbitrary chamfer shape ánd will be developed in much the same manner as the mechanics were analyzed in Sections 2.2 and 2.3. From this analysis the Calculus of Variations will be used to determine the optimal chamfer shapes.

Before proceeding with the analysis, various simplifying assumptions will be made which serve to reduce the complexity of the mathematical model used to analyze the doorlatch problem. First of all, since the physical dimensions of most doorlatches are small in comparison with the width of the door, the door will essentially move laterally past the door casing so that angular misalignments may be ignored. Secondly, the model will not take into account the effect of a lead-in shape affixed to the door casing. Finally, some "play" (very small) between the tongue and the door will be assumed so that the only frictional contacts will occur between (1) the corner of the door casing and the chamfer and (2) the inside corner of the door and the back of the tongue as shown in Figure 2.4.1(b).

The first step in the analysis is to define the geometry and construct a free-body diagram of the doorlatch tongue (see Figure 2.4.2). From this the mechanics may be analyzed. The chamfer shown

(a) Initial Configuration

(b) During "Assembly"

Figure 2.4.1. Doorlatch problem.

Figure 2.4.2. Free-body diagram of doorlatch tongue.
is a general shape $y(x)$ and initially the top of the chamfer $\left(0, Y_{0}\right)$ is in contact with the door casing and the point $(0,0)$ on the back of the tongue is in contact with the inside corner of the door. During the "assembly", the doorlatch tongue translates laterally while remaining in contact with the door casing and the inside corner of the door. Assembly ends when the contact points are at the bottom of the chamfer ($x_{0}, 0$). The friction coefficients are μ_{1}, μ_{2} and the spring force (F_{s}) is proportional to the lateral displacement of the doorlatch tongue $F_{s}=K_{x} x$). Balancing forces in the x and y directions yields:

$$
\begin{gather*}
K_{x} x-F_{n_{1}}\left(\sin \phi-\mu_{1} \cos \phi\right)+\mu_{2} F_{n_{2}}=0 \\
F_{n_{2}}-F_{n_{1}}\left(\cos \phi+\mu_{1} \sin \phi\right)=0 \tag{2.4.1}
\end{gather*}
$$

where $F_{n_{1}}, F_{n_{2}}$ are the normal contact forces and tan $\phi=-y^{\prime}$. Solving for the normal contact forces gives:

$$
\begin{align*}
& F_{n_{1}}=\frac{-K_{x} x \sqrt{1+y^{\prime 2}}}{\left(1-\mu_{1} \mu_{2}\right) Y^{\prime}+\mu_{1}+\mu_{2}} \\
& F_{n_{2}} \equiv F_{y}=\frac{-K_{x} x\left(1-\mu_{1} y^{\prime}\right)}{\left(1-\mu_{1} \mu_{2}\right) y^{\prime}+\mu_{1}+\mu_{2}} \tag{2.4.2}
\end{align*}
$$

Since the normal contact forces are nonnegative, it follows that

$$
\begin{align*}
& y^{\prime}<\frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}} \\
& y^{\prime} \geq \frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}} \quad \text { for } \mu_{1} \mu_{2}<1 \tag{2.4.3}\\
& \text { for } \mu_{1} \mu_{2} \geq 1
\end{align*}
$$

Because μ_{1}, μ_{2} are typically small only the first case ($\mu_{1} \mu_{2}<1$) is realistic. Also, some obvious difficulties arise if $\mu_{1} \mu_{2} \geq 1$ because the slope must be positive and the boundary conditions cannot be satisfied. For chamfers with flatter slopes, wedging will occur.

2.4.2 Calculus of Variations Analysis

The Calculus of Variations can be used to determine the minimum energy chamfer shape. The derivation follows almost identically to the derivation in Section 2.2 and will be quite brief. As before, minimum "insertion" work ($W_{V}=F_{y} d y$) chamfers are the same as minimum frictional work chamfers. Only the later formulation will be presented here.

An increment in the frictional work $\left(d W_{\mu}\right)$ is equal to the sum of the frictional work along the chamfer ($\left.\mu_{1} F_{n_{1}} d s\right)$ plus the frictional work along the back of the doorlatch tongue $\left(\mu_{2} F_{n_{2}} d x\right)$;

$$
\begin{equation*}
d W_{\mu}=\mu_{1} F_{n_{1}} d s+\mu_{2} F_{n_{2}} d x \tag{2.4.4}
\end{equation*}
$$

where s is the arclength along the chamfer. By making appropriate substitutions and integrating, the total frictional work (W_{μ}) is given by:

$$
\begin{equation*}
W_{\mu}=-K_{x} \int_{0}^{x_{0}} \frac{x\left(\mu_{1} y^{\prime 2}-\mu_{1} \mu_{2} y^{\prime}+\mu_{1}+\mu_{2}\right) d x}{\left(1-\mu_{1} \mu_{2}\right) y^{\prime}+\mu_{1}+\mu_{2}} \equiv \int_{0}^{x_{0}} I_{\mu}\left(x, y^{\prime}\right) d x \tag{2.4.5}
\end{equation*}
$$

Legendre's condition insures that the solution will minimize the frictional work since:

$$
\begin{equation*}
I_{\mu_{Y^{\prime}} y^{\prime}}=\frac{2 K_{x} x\left(\mu_{1}+\mu_{2}\right)\left(1+\mu_{1}^{2}\right)}{\left[\left(1-\mu_{1} \mu_{2}\right) y^{\prime}+\mu_{1}+\mu_{2}\right]^{3}} \tag{2.4.6}
\end{equation*}
$$

Substitution of Equation (2.4.5) into Euler's equation and simplifying yields:

$$
\begin{equation*}
\frac{x\left[\mu_{1}\left(1-\mu_{1} \mu_{2}\right) y^{\prime 2}+2 \mu_{1}\left(\mu_{1}+\mu_{2}\right) y^{\prime}-\left(\mu_{1}+\mu_{2}\right)\right]}{\left[\left(1-\mu_{1} \mu_{2}\right) y^{\prime}+\mu_{1}+\mu_{2}\right]^{2}}=-c \tag{2,4.7}
\end{equation*}
$$

where c is an integration constant. The optimal chamfer shape is seen to be independent of the spring constant. Equation (2.4.7) may be solved using the quadratic formula to give:

$$
\begin{equation*}
y^{\prime}=\frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}}\left[1+\sqrt{\frac{1+\mu_{1}^{2}}{\mu_{1}+\mu_{2}}} \sqrt{\frac{x}{\mu_{1} x+c\left(1-\mu_{1} \mu_{2}\right)}}\right] \tag{2.4.8}
\end{equation*}
$$

where the + sign has been used (see Inequality 2.4.3). It also follows that $c \geq 0$ and the slope is bounded (use $c=0, \infty$)

$$
\begin{equation*}
\frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}}\left[1+\sqrt{\frac{1+\mu_{1}^{2}}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}}\right] \leq y^{\prime} \leq \frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}} \tag{2.4.9}
\end{equation*}
$$

so that $c=0, \infty$ chamfers serve as an envelope for the rest of the chamfer shapes. This bound is due to the fact that an optimal slope exists (see Section 2.4.3). Chamfers with steeper slopes than the lower bound (Inequality 2.4.9) will not be minimum energy chamfers. Equation (2.4.8) may be integrated using Dwight's Table of Integrals (\#'s 195.01 and 195.04) to yield the following dimensionless chamfer equation:

$$
\begin{equation*}
\mathbf{y}=s-\frac{\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}}\left\{x+\sqrt{\frac{1+\mu_{1}^{2}}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}}[\sqrt{X(X+C)}-\operatorname{cln}(\sqrt{1+X / C}+\sqrt{X / C})]\right\} \tag{2.4.10}
\end{equation*}
$$

where

$$
\begin{gather*}
y=y / x_{0}, x=x / x_{0}, c=\frac{c\left(1-\mu_{1} \mu_{2}\right)}{\mu_{1} x_{0}} \text { and } \\
\frac{\mu_{1}+\mu_{2}}{1-\mu_{1} \mu_{2}}<s=y_{0} / x_{0}<\frac{\mu_{1}+\mu_{2}}{1-\mu_{1} \mu_{2}}\left[1+\sqrt{\frac{1+\mu_{1}^{2}}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}}\right] \text { and } \\
\mu_{1} \mu_{2}<1 \tag{2.4.11}
\end{gather*}
$$

and the boundary condition $Y(0)=S$ has been used. The integration constant may be defined from $Y(1)=0$;

$$
\begin{equation*}
s=\frac{\mu_{1}+\mu_{2}}{1-\mu_{1} \mu_{2}}\left\{1+\sqrt{\frac{1+\mu_{1}{ }^{2}}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}}[\sqrt{1+C}-c \ln (\sqrt{1+1 / C}+\sqrt{1 / C})]\right\} \tag{2.4.12}
\end{equation*}
$$

Summarizing, Equation (2.4.10) describes the optimal chamfer shape given appropriate μ_{1}, μ_{2}, and S.

2.4.3 Results and Discussion

Based on the above analysis, the discussion will be broken up into (1) Optimal Slope, (2) Computer Program, and (3) Chamfer Shapes.

There is a very strong interrelationship between the doorlatch problem and the lateral peg support problem. In fact when $\mu_{2}=0$, the doorlatch problem reduces to the lateral peg support problem and all of the quations and results of Section 2.2 apply (note that integration constants are different).

Optimal Chamfer Slope

As before (Section 2.2) an optimal chamfer slope exists. The optimal chamfer slope (m_{0}) is given by:

$$
\begin{equation*}
m_{o}\left(\mu_{1}, \mu_{2}\right)=\frac{-\left(\mu_{1}+\mu_{2}\right)}{1-\mu_{1} \mu_{2}}\left[1+\sqrt{\frac{1+\mu_{1}^{2}}{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}}\right] \tag{2.4.13}
\end{equation*}
$$

A straight line chamfer with this slope is the "optimal" optimal chamfer. All other chamfers give rise to larger frictional and insertion energies. The effect of the second source of friction (μ_{2}) on the optimal slope can be determined by examining $\frac{\partial m_{0}}{\partial \mu_{2}}$. It may be shown in general that $\frac{\partial m_{0}}{\partial \mu_{2}}<0$, so that as μ_{2} increases, the optimal slope will become steeper. This is also true for the "wedging" slope, $-\left(\mu_{1}+\mu_{2}\right)$ $/\left(1-\mu_{1} \mu_{2}\right)$.

Computer Program "CHAMF"

A computer program called "CHAMF" (see Appendix A) has been written which computes the dimensionless optimal chamfer shape (Equation (2.4.10)) given appropriate μ_{1}, μ_{2}, and S. When $\mu_{2}=0$, the shape obtained is also the minimum energy chamfer shape for the lateral peg support problem.

A Newton-Raphson method was used to determine the integration constant C numerically. Because of the wide range of $C(0, \infty)$ an initial guess for C is needed. For small aspect ratios (S), a large initial guess is required and vice-versa.

Chamfer Shapes

The various optimal chamfer shapes can be categorized by their aspect ratios (S) and the friction involved (μ_{1}, μ_{2}). The discussion of the different cases may be reduced to the case analysis done in Section 2.2.5. by replacing μ by $\frac{\mu_{1}+\mu_{2}}{1-\mu_{1} \mu_{2}} ;-\mu-\sqrt{1+\mu^{2}}$ by $m_{0}\left(\mu_{1}, \mu_{2}\right)$ and referring to the corresponding equations in Section 2.4. Some of these chamfer shapes are shown in Figure 2.4 .3 for $\mu_{1}=0.5, \mu_{2}=0.25$.

Figure 2.4.3. Minimum energy chamfer shapes for various $\mathrm{S}, \mu_{1}=0.5, \mu_{2}=0.25$.

2.5 MINIMUM ENERGY CHAMFER EXPERIMENT

2.5.1 Introduction

An experiment was conducted which attempted to support the existence of the minimum energy chamfers developed in Section 2.3. Although it is not possible to verify experimentally that a chamfer is a minimum energy chamfer (since it must be compared to an infinite number of chamfers), some insight can be gained by comparing it to a finite number of chamfers-such as a family of straight line chamfers. In the experiment only three chamfers were used: one optimal slope chamfer and two straight line chamfers. One of the straight line chamfers was flatter than the optimal slope chamfer and the other was steeper than the optimal slope chamfer. According to the theory developed, the flattest chamfer wi.ll be nonoptimal primarily because the insertion forces are too large, and the steepest chamfer will be nonoptimal because the insertion forces must act over a very large distance. Also, since minimum vertical work chamfers are the same as minimum frictional work chamfers, either criterion may be implemented experimentally. The vertical work criterion is much simpler because arc lengths and normal forces are more difficult to measure than are vertical displacements and vertical forces. For this reason the experiment was based on the vertical work criterion.

2.5.2 Specifics of the Chamfers Designed

A. Optimal Slope Chamfer

Given μ, L, θ_{0} an optimal slope chamfer is recommended by Equation 2.3.1.1. Since the shape is dependent on the friction, the friction coefficient must be predicted accurately beforehand. From previous work using aluminum chamfers made on an N/C (Numerically Controlled) milling machine (200 points/inch and smoothed with emery cloth) and steel tipped pegs, the friction coefficient remained essentially constant at $\mu=0.15$. This value will be assumed since the chamfers were made out of aluminum as before (however, in some instances the tip of the peg was spring steel) along with $L=5, \theta_{0}=16^{\circ}$ which are nominal values for the length and offset angle, respectively of a pin to be inserted into a DIP socket.

B. Straight Line Chamfers

The flattest straight line chamfer selected has an aspect ratio between $Y^{W}(0)=0.39$, the wedging aspect ratio, and $Y^{\circ}(0)=1.40$, the optimal slope aspect ratio. If the aspect ratio is too close to 1.40
there will be little difference in energy between that chamfer and the optimal one; especially since the friction coefficient is so small. On the other hand, if the aspect ratio is very close to 0.39 , very large forces will be present and wedging is even possible since μ can not be known exactly. Buckling and surface galling are also possible if the forces are too large. An aspect ratio of 0.6 was found to satisfy both of these constraints with 22% more energy predicted than optimal.

The steepest straight line chamfer selected has an aspect ratio of 3.75 corresponding to 19% more predicted energy than optimal.

C. Actual Construction

Once the chamfers had been designed, N/C tapes were created to be used as input to a Bridgeport N/C Milling Machine which machined the chamfers. The coordinates on the tapes were not the coordinates of the chamfers (x, y), but instead, the coordinates of the center axis of the cutter $\left(x-r y^{\prime} / \sqrt{1+y^{\prime 2}}, y+r / \sqrt{1+y^{\prime 2}}\right.$) where r.is the cutter radius (1/4"). All three chamfers are shown in Figure 2.5.1 ($x_{0}=0.600^{\prime \prime}$).

2.5.3 Experimental Apparatus and Procedure

A. Experimental Apparatus

The experimental apparatus used consisted of a test bed, force sensor and LVDT, data-acquisition electronics, minicomputer, data-taking software, and hard-copy output units. Much of the apparatus had been used in previous Part Mating experiments as described in Draper Laboratory Report No. R-12185.

A Bridgeport Milling Machine served as a test bed supporting the peg and chamfer, as well as the force sensor and LVDT (see Figure 2.5.2). The peg was made out of spring steel and supported by an adjustable fixture (in θ_{0}) which was held in place by the milling machine directly above the chamfer. A small radius at the end of the peg reduced the effects of surface galling and wedging. This fixture was designed and built by members of the Draper Staff (R. Gustavson and R. Roderick) and had been used in other part mating experiments.

Of primary importance are the sensors which measure insertion force and insertion depth. The vertical force on the chamfer (or support point) was measured using Draper's 6-axis force sensor (Figure 2.5.3) mounted to the test bed directly beneath the chamfer. A preamplifier was used to magnify the sensor's output for further processing. The vertical displacement of the peg's support point was measured

Figure 2.5.1. Chamfers used in experiment.

(in mm) using a Schaevitz DC-LVDT (Linear Variable Differential Transformer) with the specifications given in Table 2.5.1. Also, an automatic drive (servo motor) which controlled the vertical displacement permitted efficient data sampling and more accurate data.

The remaining hardware/software was used to process the data. Signals from the sensors were run through a low-pass filter, multiplexed and digitized by a 12 bit A/D converter before being read by a Nova II minicomputer. In addition, four interactive computer programs written in EXTENDED BASIC were used for (1) sensor biasing, (2) real time data acquisition and storage, (3) printing data on the line printer and (4) plotting data on the plotter.

B. Experimental Procedure

Calibration of Force Sensor

Prior to performing the actual experiment it was necessary to calibrate the force sensor. It was calibrated with weights as described in detail in Draper Laboratory Report No. R-1218 ${ }^{5}$ but with one important difference. Since only two force components are needed (lateral F_{x}, vertical F_{Y}) only one leg of the sensor was calibrated (leg \#2). The resulting "calibration matrix", W which relates the output voltages of the sensor to the applied loads F_{x}, F_{Y} was determined experimentally to be :

DRAPER LABORATORY SIX-AXIS FORCE SENSOR
APPROXIMATE CHARACTERISTICS

Weight	6 lb	6 lb
Axial axis force sensitivity	0.026 lb	0.052 lb
Radial axis force sensitivity	$(12 \mathrm{gm})$	$(24 \mathrm{gm})$
	0.013 lb	0.026 lb
Radial axis moment sensitivity	$0.14 \mathrm{in})$	$(12 \mathrm{gm} . \mathrm{lb}$
Maximum axial load	53 lb	$0.28 \mathrm{in} .-\mathrm{lb}$
Buckling load per leg (no springs)	40 lb	106 lb
Diameter	4.5 in.	320 lb
Height	2.6 in.	4.5 in.
		2.6 in.

Figure 2.5.3. Draper's 6-axis force sensor.

$$
\mathrm{W}=\left[\begin{array}{rr}
6.2381 & -0.1080 \tag{2.5.1}\\
-3.0468 & 19.3271
\end{array}\right]
$$

so that

$$
\left[\begin{array}{l}
\mathrm{F}_{\mathrm{x}} \tag{2.5.2}\\
\mathrm{~F}_{\mathrm{y}}
\end{array}\right]=\mathrm{w}\left[\begin{array}{c}
\mathrm{V}_{\mathrm{S} 3} \\
\mathrm{~V}_{\mathrm{E} 3}
\end{array}\right]
$$

where the forces F_{x}, F_{Y} are measured in newtons and the voltages $V_{S 3}$, $V_{E 3}$ are measured in volts, representing the output of the shear strain gauge and the extensional strain gauge, respectively.

Data Acquisition

Once the force sensor had been calibrated and the apparatus set up as described, experimental data was easily obtained (e.g. see Figure 2.5.4). First the sensor and LVDT were biased, then data taken, printed and plotted. Several data runs were done for each chamfer.

2.5.4 Experimental Results

Many experimental plots, plotting the vertical force, F_{Y} versus depth, Y^{*} for each of the three chamfers were obtained. Unfortunately, not all of the data gathered was "good data". Some of the data demonstrated the sensitivity of the insertion force versus depth plot to localizing effects (e.g. surface galling) yielding many large peaks and valleys. This unpredictable behavior was of course not analyzed in the model since both the peg and the chamfer were treated as rigid objects. Its effect was reduced by adequately preparing the contact surfaces of the peg and chamfer. Only three or four data runs were taken at a time; then the surfaces were sanded with emery cloth before taking more data. The remaining data ($\sim 1 / 2$) however was good conclusive data in agreement with the theory predicted. Only data of this quality will be presented here. Typical experimental plots of insertion force versus depth are shown in Figures 2.5.5-2.5.7 for chamfers \#1, 2 , and 3, respectively. Figure 2.5 .8 plots them all on the same axes. There is an obvious trade-off between maximum insertion force and maximum insertion depth.

Figure 2.5.4. Sample data from experiment - chamfer \#2.

Figure 2.5.5. Insertion force versus depth-chamfer \#l.

Figure 2.5.6. Insertion force versus depth-chamfer \#2.

Figure 2.5.7. Insertion force versus depth—chamfer \#3.

Figure 2.5.8. Insertion force versus depth-all chamfers.

2.5.5 Comparison with Theory

A. Friction Coefficient

As mentioned earlier the friction coefficient had to be estimated beforehand since the optimal slope chamfer's slope depended on it. A value of $\mu=0.15$ was assumed in the design. The experimental value may be determined indirectly from the vertical force F_{y}, the lateral force F_{x}, and the slope of the chamfer $\bar{y} '$ by projecting the contact force into axes tangent and normal to the chamfer at the contact point. This yields the following expression for μ :

$$
\begin{equation*}
\mu=\frac{F_{x} / F_{y}+\bar{y}^{\prime}}{\bar{y}^{\prime}\left(F_{x} / F_{y}\right)-1} \tag{2.5.3}
\end{equation*}
$$

By evaluating Equation 2.5.3 at many points during the insertion an average coefficient of friction was established for each of the chamfers (see Table 2.5.2).

Table 2.5.2 Experimentally Determined Friction Coefficients

Chamfer	μ
1	0.135
2	0.221
3	0.169

B. Theoretical Plots of Insertion Force Versus Depth

Theoretical plots of insertion force versus depth were determined for each of the chamfers by using Equations 2.3 .7 and 2.3 .23 where appropriate substitutions have been made (e.g. for chamfer \#1, $\mu=0.135$, $\bar{Y}^{\prime}=-0.6$ etc.). Several computer programs were written to compute $\mathrm{F}_{\mathrm{y}}\left(\mathrm{Y}^{*}\right)$ (see Appendix A ; FSTCH, FCHAM). In Figures 2.5.5-2.5.8 these theoretical plots are plotted along with the experimental plots for direct comparison. Note that the theoretical maximum insertion depth y_{t}^{*} max tends to be greater than the experimentally determined maximum insertion depth y_{e}^{*} max. There are two reasons for this. First, as the spring deflects angularly it also bends, so the distance from the tip of the peg to the support point is slightly less than predicted. It then follows immediately from Equation 2.3 .23 that $Y_{e}^{*} \max <y_{t}^{*}$ max. Secondly, end effects make it impossible to start exactly at the top of the
chamfer and end at the bottom of the chamfer. Also, the spring constant, K_{θ}, was not determined directly, but instead adjusted to fit the data (matching experimental energies) while not biasing any one particular chamfer $\left(K_{\theta}=85.1 \mathrm{~N} / \mathrm{rad}\right)$.

C. Insertion Force Characteristics

The experimental plots obtained (Figures 2.5.5-2.5.8) exhibit the general features of the corresponding theoretical ones. For example, in Figures 2.5 .6 and 2.5 .7 the experimental plots (use curve fit) are very linear; so are the theoretical plots. Also, in Figure 2.5 .5 the theoretical plot is convex as is the experimental plot.

D. Insertion Energy

The insertion energy may be determined by evaluating the area under the force versus depth plot and comparison of the experimental energies with the theoretical energy predictions is the basis for the entire experiment. To eliminate end effects for each chamfer a smooth curve was run through the data and extrapolated to the theoretical maximum insertion depth. The experimental energy was then given by the area under this curve. Before comparing the experimental energies they must be multiplied by the theoretical ratio of the energy corresponding to $\mu=0.15(E(0.15))$ to the energy corresponding to the actual $\mu(E(\mu))$ for that chamfer. These ratios were computed using numerical integration. This assures that the comparison will be fair since μ is artificially made the same for each chamfer ($\mu_{0}=0.15$). Only $\mu_{0}=0.15$ will do since the optimal slope chamfer was designed for $\mu=0.15$. Table 2.5 .3 summarizes the results obtained.

Table 2.5.3 Comparison of Theoretical Energies with Experimental Energies

Chamfer	μ	Theoretical Energy (Nmm)	Experimental Energy (Nmm)	$E(0.15)$ 1
2	0.135	72.44	68.58	1.069
3	0.221	74.61	73.11	0.849
2	0.169	78.95	84.66	0.948

Chamfer	Theoretical Energy For $\mu=0.15$ (Nmm)	Experimental Energy for $\mu=0.15$ (Nmm)	Theoretical \% Energy More Than Optimal	Experimental \% Energy More Than Optimal
1	77.41	73.31	22.2	18.1
2	63.35	62.07	0	0
3	74.85	80.26	18.2	29.3
		136		

2.5.6 Conclusions and Recommendations

A. Conclusions

Good comparison between the experimental results and the results predicted by the theory was achieved. The experimental onergy more than optimal for chamfer \#1 was very close to the theoretical value (18.1\% versus 22.2\%). For chamfer \#3 there was more of a difference. However, despite experimental errors, the experimental results corroborate the theoretical predictions; namely that chamfers much flatter or steeper than the optimal slope chamfer give rise to larger insertion energies.

B. Recommendations

Although the optimal slope chamfer is the mathematically optimal solution, it is fairly complex and for many engineering applications a chamfer which is only close to optimal but not optimal may be good enough. Since the difference in insertion energy between a straight line chamfer with an aspect ratio slightly larger than optimal and the optimal chamfer is small when the friction is small (e.g. in experiment only a 29.3% increase from $S=1.40$ to $S=3.75$) and because the optimal slope chamfer is somewhat insensitive to L, a simple rule of thumb exists for designing approximately minimum energy chamfers (within a few \%) . Select appropriate materials for the peg and chamfer so the friction is small and construct a straight line chamfer with an aspect ratio of $S=\tan \left(\theta_{0}+\beta\right)+\sec \left(\theta_{0}+\beta\right)$. The larger L is the better this approximation will be.

SECTION 3

SUMMARY AND DIRECTION OF FURTHER RESEARCH

3.1 SUMMARY

A theoretical model of a compliantly supported rigid peg entering a compliant hole was used to understand the mechanics of an idealized assembly in terms of the assembly phases, the friction, geometry and compliance. This led to the classification of different assembly phases: chamfer crossing, one-point contact, two-point contact, resumption of one-point contact, and line contact. The effect of various insertion parameters on the "insertion force versus depth plot" was then determined and recommendations were made regarding the optimal location of the compliance centers of both the peg and the hole.

The sensitivity of the "insertion force versus depth plot" during chamfer crossing to the slope of the chamfer has led to the area of chamfer design. In this thesis different chamfers were designed subject to minimum energy criteria and in all cases an optimal slope chamfer was derived.

In general, if a chamfer is too flat when compared with the optimal slope chamfer very large forces will be present as well as large insertion energies. On the other hand, if a chamfer is too steep in comparison with the optimal slope chamfer the insertion energy will be large because the contact forces must act over a very large distance. This was verified experimentally.

3.2 DIRECTION OF FURTHER RESEARCH IN PART MATING

Thus far much research in part mating theory has centered on the study of insertion force characteristics (force versus depth) for quasistatic two-dimensional "peg-in-hole" models. Much has been learned but the need to extend the research in different directions can not be forgotten. Two related topics in particular which have been perhaps overlooked are (1) buckling and stability analysis and (2) extension to three-dimensional peg-in-hole models.

Buckling and stability analysis is very useful because it quantifies physical limitations of the parts involved. As a simple example, Equations 1.2 .1 and 1.2 .2 when properly interpreted may be used to compute the buckling load for the normal force during chamfer crossing: $K_{\theta} / d(\sin \phi-\mu \cos \phi)$ where the compliance center distance, a, has been optimally chosen.

Although three-dimensional models are inherently very complex, they can be used to better understand the characteristics of an actual assembly which can not be modelled using only two-dimensional models.

Other areas of research which could be investigated or extended are:
(1) Variations and extensions of minimum energy chamfer design:

* finite thickness peg
* both lateral and rotational support
* minimize energy subject to constraints (e.g. fixed amount of material - impossible?)
* design both contact surfaces subject to minimum energy criteria (impossible?)
* given one contact surface design the other contact surface
(2) Model a compliantly supported compliant peg entering a compliant hole

Chamfer design in general:

* constant force chamfers (rotational support)
* buckling and stability
* minimum peak force chamfers (impossible?)

Continuum elasticity models; finite element analysis
Dynamic analysis (point out limitations of quasi-statis analysis) Design a mechanism which attempts to choose the compliance center distance, a, optimally (i.e. no angular errors) during each assembly phase. The RCC of course locates the compliance center distance, a, optimally (approximately) only during one-point contact. Multi-pin, multi-socket compliant part mating
(8) Energy propagation model of compliant part mating

APPENDIX A

COMPUTER PROGRAMS:

"LINLAT"
"LINROT"
"LINLR"
"LATERAL"
"ROTATE"
"LATROT"
"CHAMFR"
"CHAMF"
"FSTCH"
"FCHAM"

This appendix contains a listing in BASIC of the computer programs described in Sections 1 and 2.

```
010 REM PROGRAM NAME: LINLAT(LIN SDL FOR LAT COMP HOLE)
#Oこい CLOSE
7030 [IM AS[8]
0日&得 INPLIT "DATA SEI NAME: ",A&
\piИSO OPEN FILE[1,1],AS
##GW OPEN FTLE[G,1],"SLPT".
&07G INPUT "CHAMFEF ANGIE PHI(OEG)= ",P1
dQ&G INPUT "FRICTICN COEFFICIENT MU= ",M
ADG\ INPUT "CLEARANLE FATIO C= ",C
#10k INPUT "INITIAL LATERAL EkFOR DELTA/A= ",DZ
\pi1!6 INPUT "MOLF DIAMETER D/A= ",D
|12U INPUT "STIFFNESS RATIO-KX*A"Z/KTHETA= ",K9
013& INPUT "STIFFNESS RATTO-K!/KX= ",H9
@140 INPUT "STIFFNESS RATIO-K2/KX= ",H&
G156 INPUT "NC. OF CHAMFER CROSSING SOLUTIONS-NI= ",N1
01gG PRINT FILE (6),"UATA SET NAME: ";A$S
|17% PRINT FILE[G],USING "CHAMFER ANGLE PHI(DEG) ##.* ",PI
DIEQ PRINT FILE[G],USING "FRICTION COEFFICIENT MU #### ",M
019G PRINT FILE[6],USING "CLEARANCE RATIO C #,##### ",C
\DeltaZan PRINT FILE[6],USING "INITIAL LATERAL ERRCR DELTA/A #.#### ",OZ
0己!И PRINT FILE[G],USING "HOLE OIAMETER O/A #.### ",D
\22G PKINT FILE[6],USING "STIFFNESS RATIO-KX*A"2/KTHETA ####### H;K9
n23G PRINT FILE[6],USING "STIFFNESS RATIO-K1/KX####### ",H9
#24\emptyset PRINT FILE[6],USING "STIFFNESS RATIO-K2/KX ###.### ",H0
OZgU PRINT FILEE[G],USING "NO OF CHAMFER CROSSING SOLUTIONS-NI ##* ",NI
OC60 LET O8=0
8276 LEY P=3.1415926535*P1/180
のこの01 LET Z|=(D)2-C*D/2)*TAN(P)
|こ46 LET 29=26
a3aG LEM HEEIN CHAMFER CROSSING****************************************
O310 PRINT FILE[6],"CHAMFER CRUSSING"
0320 FOR I=| TO N1
0330 LET Z=Z0*I/NI
0340 LET X=Z/(TAN(P)*(K9+1+1/HY-(1-C)*D*K9/(2*TAN(P-ATN(M)))))
0350 LET T=2/TAN(r)-X*(1+1/H9)
0360 LET 25=2-(1-C゙)*口*T/?
0370 LET F5=K9*X/(TAN(P-ATN(M)))
0380 PRINT "CHAMFER CROSSING"
0396 PKINT FILE[6J,USING "-#####.#### ",FS,Z5,T*180/3.1415926535,x
0400. PKINT FILE[1,|],USING "-###.####, ",F55,25,T*180/3.1415920535,x
0410 LET O8=08+1
0420 NEXT I
0430 REM BEGIN | POLNT CONTACT****************************************
0448 LET LO=0
04S| PRINT FILE[6],"I POINT CONTACT"
046W FOR K=0 TO 1H0|
0470 LET L=Lの+K*24/N1
```



```
04C00 LET T=K9***(1-L-M*(1-C)*0/2)
0500) LET F5=K9****M
*510 LET Z5=Z0+L-(1-C)*D*T/Z
0520 LET 04=0+X/HG
0530 LET DS=L*T+(1-C)*D
Q540 PRINT "1 POINT CONTACT"
0550 PRINT USING "-###.##### ".05,D4,L
*506 IF DS>0\triangle THEN LET K=1000
0570 IF D5>04 THEN GOTO Q&20
0580 IF T<0 THEN SOTO 0870
#590 PRINT FILE[G],USING "-#####.#### ",F5,Z5,T*10|/3.1415926535,x
gb(AG) PFINT FILE[1,0],USING "-########, ",F5,Z5,T*180/3.1415926535,x
```

```
2610 LET O8=08+1
GG2G NEXT K
063G REM BEGIN ?
\ち4G LET L2=L
065V P&[NT FILE{G]:"2 PDINT CUNTACT"
06G0 FOR K=0 TO 10U0
0670 LET L=LZ+K*2U/N1
068月 LET C1=K9*H9+K9*HK+K9+K9*H9*K9*(1-L) 2 +K9*H0*K9+K9*H9*K9*HQ*L-2
0690 LET C2=K9*M* (1-C)*1)*(K9*H9*(1-L)+K9*H(B)/2
0700 LET C3=(K9*F19+K9*HD+K9*H9*K9*H0*L-2)*02
0710 LET C4=K9*H0-K9*H9+K9*H9*K9*HV*L-2-2*K9*H9*K4*H0*L
072G LET }x=(C3+C4*C*D/2)/(C1-C2)
073* LET x = (K9*(L*K9*H9*(1-L-M* (1-C)*D/2)-1)*x-K9*H9*C*D)/(C3/D2)
074E1LET < < = w *K9*H9*(1-L-M* (1-C)*0/2)-1
0750 LET X1=((1+L*K9*H0* (1-M* (1-C)*D/2))* X 2+C*0)/x8
0760 LET T=( }\mp@subsup{x}{1}{}+x2+C*0)/
0770 LET F5=M*(K9*H9*X1+K9*H0^*X2)
078n LET Z5=Z0+L*(1-C)*D*T/Z
0iqU IF X2<Q THEN LET LD=L
&R06! IF X2<0 THEN LET Z9=29/5
081^ IF X2<0 THEN GUTO 0450
OB2G PKINT "Z POINT CONTACT"
#&30 PRINT FILE[6],USING "######,#####",F5,25,T*130/3.1415926535,x
040| PRINT FILE[1,#],USING,"####,####, ",F5,Z5,T*180/3.1415920535,x
0850 LET O8=78+1
0860 NEXT K
087U PRINT FILE[6],USING "MOD OATA PDINTS ### ",O8
0880 PRINT USING "NU DATA POINTS ### ",08
6900 CLOSE
0900 ENO
```



```
0260 PRINT FILE[6],NSING "STIFFNESS RATIO-KX*A`2/KTHETA ###,### ",K9
|270 PRINT FILE[6],USING "STIFFNESS RATIO-KTHETAI/KTHETA ###,### ",R9
\ell2&| PRINT FILE[6],USING "STIFFNESS RATIO-KTHETAZ/KTHETA ###,### ",R0
G29b PRINT FILE[6], USING "NO OF CHAMFEK CROSSING SOLS-NI ### ",N1
030V LET 08=0
0310 LET P=3.1415920535*P1/180
0320 LET 20=(1)2-C*0/2)*YAN(P)
033| LET Z9=20
834| REY REGIV CHAMrEK CROSSING**************************************
G30 PRINT FILF[G],"CHAMFER CROSSING"
O36\triangle FOR I=0 TO N1
037% LET Z=Z0*I/N1
038日 LET Z1=20-2
0390 LET C1=TAN(P)*(K9+1)-(1-C)*D*K9*TAN(P)/(2*TAN(P-ATN(M)))
6400 LET C2=(G1+Z1)*TAN(P)*(G1+Z1-(G-Z1/(TAN(P)))/(TAN(P-ATN(M))))
Q410 LET x=2/(C1+C2*K9/R9)
Q420 LET C3=(F1+21)*((G1+Z1)*TAN(P-ATN(M))-(G-Z1/(TAN(P))))
843* LET C4=T4N(P)*(KY+1)+(1-C)*0*TAN(P)/(Z*(TAN(P-ATV(M))-(1-C)*П/己))
8440 LET T=K9*Z/(L゙4+C3*K9*TAN(P)/(R9*(TAN(P-ATN(M))-(1-C)*D/Z)))
0450 LET Tl=(Z/(TAN(P))-T-X)/(G1+Z1)
&460 LET 25=Z-(1-C)*D*T/Z+(Z1/(TAN(P))-G)*T!
0470 LET F5=K9*X/(TAN(P-ATN(M)))
#4,G PRINT "CHAMFER CROSSING"
|49G वRINT FTLE[6j,USING "-#####.#### ",F5,Z5,T*180/3.1415926535,x
OSON PRINT FILE[1,0],USING "-###,####, ",F5,25,T*18413.1415426535,x
B510 LET OR=08+1
\triangleS2U NEXT I
8530 REM BEGIN 1 POLNT CONTACT*****************************************
0540 LET LE=0
8550 PRINT FILEI61,"! POINT CONTACT"
65GU FOR K=\pi TO 100|
8510 LET L=L|+K*Z#/N1
058| LETCS=1+K9*(1-L)*(1-L-M*(1-C)*D/2)+G1*K9*(G1-M*G)/K9
0590 LET T=K9*(U2-C*0/2)*(1-L-M*(1-C)*D/Z)/C5
\Delta6g0 LET X=(02-C*U/己)/C5
0610 LET F5=Kg*X*M
0620 LET T1=T*(G1-M*G)/(R9*(1-L-M*(1-C)*0/2))
0630 LET 25=20-(1-C)*D*T/2+L-G*T1
0640 LET O4=0+G1*11
0650 LET D5=L*T+(1-C)*D
U660 PRINT "1 POINT CONTACT"
0670 PRINT USING "-###.#### ",05,D4,L
0680 IF DS>04 THEN LET K=10月0
0690 IF 05>04 THEN GOTO 0740
010| IF T<| THEN GOTO 10日Q
0710 PRINT FILE[6」,USING "-########## ",F5,Z5,T*184/3.1415926535,x
|72| PRINT FILE[1, D],USING "-###.####, ",F5,Z5,T*180/3.1415920535,x
0730 LET O8=08+1
0740 NEXT K
075| REM BEGIN 2 POLNT CONTACT**************************************
076| LET LZ=L
O770 PRINT FILE[6],"Z POINT CONTACT"
0780 FOR K=0 TO 100ロ
Z/90 I,ET L=L?+K*ZU/NI
7800 LET C6=K9*G1*(G1-L)* (G1-M*G)*(G1-M*G-L)+R9*(G1-L)*(G1-M*G-L)
Q810 LET C7=20*G1* (G1-M*G)+R泣G*G1*(1-M*(1-C)*0/C)*(G1-M*G)
\Delta8己も LET C&=R9*KR*L-2-K9*K9*(M* (1-C)*D/2-1+L)*(1-L)*(G1-L)*(G1-M*G-L)
0830 LET C9=-K9*R**(1)2-C*D/2)*(M* (1-C)*1)/2-1+L)*(G1-L)*(G1-M^*G-L)
084* LET Cu=k9*K|*G1*(1-M* (1-C)*D/2)*(0Z+C*D/2)*(G1-M*G)
685| L.ET T=(Cq+CG+R9*R|*L*C*O)/(C6+C7+C8)
```

```
UB60 LET OL=R9*RU*L*(UZ*L-C*D*(1-L/2))+(D2+C*D/2)*G1*(G1-M*G)*RD
0876 LET }X=(01+(0C-C*D/2)*(GI-L)*(G1-M*G-L)*RQ)/(C6+C7+C8)
0880 LET T1=(D2-C*D/2-(1-L)*T-x)/G1
0890 LET TP=(L*|-G1*T1-C*O)/(G1-L)
09a0 LET FS=M*(K9*T1/(G1-M*G)+R**T2/(G1-M*G-L))
0916 LET Z5= Z#-(1-C)*U*T/Z+L-G*T1
刀920 IF T己<0 THEN LET LD=L
0930 IF T2<| THEN LET Z9=29/5
0Y40 [F T2<0 THEN GOTO \5`0
DY5U PRINT "ב POINT CONTACT"
0960 PRINT FILE[G],USING "-#####.#### ",F5,Z5,T*1d#/3.1415926535,x
Q970 DRINT FILE[1, 皿,USING "-###.####, ",F5,Z5,T*180/3.1415926535,x
0980 LET 08=08+1
0990 NEXT K
10ดO PRINT FILE[0],USING "NO DATA POINTS ### ",08
1016 PRINT USING "NU DATA POINTS ### ",08
1020 ClOSE
1030 END
```

```
guig rem program name: linlq(lin sol for lat ano rot comb hole)
0020 CLOSE
0030 DIM A\$ \(\$ 8]\)
Qoab input "Data se! name: ",as
Coss DIM \(3(3,3)\)
Q060 DIM E 3,1 )
0070 DIM J 3,1 )
E080 OIM U \([3,3\) )
QOQQ OPEN FILE 1,11 ,AS
U10G OPEN FILE (6,1)," \$LPT"
Q110 INPut "Champer angle phi (Deg) \(=\) ", Pl
0126 Input "Friction coefficient muz ", M
0130 input "Clearance ratio ca ", c
0146 input "initial lateral error delta/a = ", Cl
e150 input "hole ulameter d/a= ", d
0160 INPUT "HOR. CUMP. CEN, OF hole Ch/a = ",G
0170 INPUT "VEr. COMP. CEN, OF HOLE CV/A= ",GI
018 In INLT "STIFFNESS RATID-KX*A-2/kTHETA= ", K9
0190 INPUT "STIFFNESS RATID-K1/kX= ",h9
g2gn input "Stiffness ratio-kz/kX = ", ho
0210 INPUT "STIFFNESS RATIO-KTHETA1/KTHETA= ",R9
g2ay input "Stiffness ratio-kthetac/kthetaz ",Rg
e230 input "no. of chamfer crossing solutions-ni= "ont
Q2aU PRint file [6],"data set name: ";as
๕250 PRINT FILE(G), USING "Chamfer angle phi(deg) \#\#.\# ", Pi
0260) PRINT FILE (6), USING "FRICTION CDEFFICIENT MU \#.\#\# ", M
0270 PRINT FILE[6], USING "CLEARANCE Ratio C \#.\#\#\#\#\# ", C
028も PRINT FILE[6], USING "INITIAL LATERAL ERROR DELTA/A \#.\#\#\#\# ", DC
0290 PRINT FILE(6), USING "hole oIameter d/a \#.\#\#\# ", o
0306 PRINT FILE[6],USING "HOR COMP CEN OF HOLE \#.\#\# ",g
0310 PRINT FILE(6), USING "VER COMP CEN OF HOLE \#.\#\# ",GI
0320 PKINT FILETG], USING "STIFFNESS RATIO-KX*AのZ/KTHETA\#\#\#,\#\#\# ", K9
0330 PRINT FILE[6], USING "STIFFNESS RATIO-K1/KX \#\#\#.\#\#\# ", H9
0340 PRTNT FILE[6],USING "STIFFNESS RATIO-k2/KX \#\#\#.\#\#\# ",H0
6350 PRINT FILE[6], USING "STIFFiNESS RATIO-KTHETAI/KTHETA \#\#\#.\#\#\# ",RG
0360 PRINT FILE \(\{6]\), USING "STIFFNESS KATIO-KTHETAZ/KTHETA \#\#\#.\#\#\# ", RR
0374 PRINT FILE[G], JSING "NO OF CHAMFER CROSSING SOLS-NI \#\#\#",N1
```

```
0380 LET 08=0
0394 LET P=3.1415420535*P1/180
04|| LET 20=(D2-C*D/2)*TAN(P)
0410 LET L9320
0420 REM HEGIN CHAMPER CROSSING****************************
Q430 PRINT FILE[6],"CHAMFER CROSSING"
0440 FOR I=0 TO N1
0450 LET R=20*I/N1
0460 LET 21=za-Z
0470 LET C1=TAN(H)*(K9+1)-(1-C)*D*K9*TAN(P)/(2*TAN(P-ATN(M)))
0480 LET CZ=(GI+Zi)*TAN(P)*(GI+Z1-(G-2I/(TAN(P)))/(TAN(P-ATN(M))))
0490 LET }x=2/(C1+C2*K9/R9+TAN(P)/H9
6500 LET C3=(G1+ZI)*((G1+2I)*TAN(P-ATN(M))=(G-Z1/(TAN(P))))
0510 LET C4=TAN(H)*(K9+1)+(1-C)*C*TAN(P)/(2*(TAN(P-ATN(M))-(1-C)*0/2))
0520 LET CS=C4+C3*K9*TAN(P)/(R9*(TAN(P-ATN(M))-(1-C)*D/2))
0530 LET T=K9*Z/(L5+TAN(P)*(1+(1-C)*D/(2*TAN(P-ATN(M))-(1-C)*D))/H9)
0540 LET T1=(Z/(TAN(P))-T-X*(1+1/H9))/(G1+Z1)
0550 LET Z5=Z-(1-C)*D*T/Z+(Z1/(TAN(P))-G)*TI
0560 LET F5=K9*X/(TAN(P-ATN(M)))
0570 PRINT "CHAMFER CROSSING"
0580 PRINT FILE[6J,USING "-#####,#### ",F5,Z5,T*180/3.1415926S35,x
0590 PRINT FILEIL,01,USING "-###.####, ",十5,25,T*18!/3.1415926535,X
0600 I_ET 08=08+1
0610 NEXT I
OZU REM BEGIN 1 POLNT CONTACT
063V LET LD=0
040 PRINT FILE[6],"1 POINT CONTACT"
0650 F0R K=0 TO 100|
O660)LET LELO+K*2Y/NI
0670 LET C5=1+K9*(1-L)*(1-L-M*(1-C)*D/2)+G1*K9*(G1-H*G)/R9+1/H9
0680 LET T=K9*(D?-C*D/2)*(1-L-M*(1-C)*D/2)/C5
0690 LET X=(D2-C*U/2)/C5
0700 LET F5=k9*X*M
0710 LET T1=T*(G1-M*G)/(RG*(1-L-M*(1-C)*u/Z))
0720 LET Z5=20-(1-C)*D*T/2+L~G*T1
0730 LET D4=D+G1*T1+X/H9
0740 LET 05=L*T+(I-C)*O
0750 PRINT "I PUINT CONTACT"
0760 PRINT USING "-##########,D5,04,L
070 IF DS>04 THEN LET K=10D|
0780 IF DS>D4 THEN GOTO UB3O
0790 IF T<0 THEN GOTO 1190
0800 PRINT FILE[6J,USING "m#####.##### n,F5,25,T*180/3.1415926535,x
0810 PRINT FILE[I,0],USING "m###.####, ",F5,25,T*180/3.1415926535,X
820 LET 08=08+1
0830 NEXT K
0840 REM BEGIN 2 PULNT CONTACT
0850 LET LZ=L
DBGU PRINT FILE[6],"Z POINT CONTACT"
0B7U FOR K=0 TO 10U0
08| LET L=L2+K*ZU/NI
0890 LET B[1,1]=1
900 LET B[1,2]=RY*((1-C)*D*M/2-1+L)/(G1-M*G)
0910 LET B(1,3]=R|*(1-(1-C)*D*M/2)/(G1-M*G-L)
0920 LET B[2,1]=1-L
0930 LET H[2.2]=(1/K9+1/(K9*r9))*R9/(G1-M*G)+G1
0940 LET B[2,3]=mK|/(K9*(G1-M*G-L))
0950 LET B[3,1]=L.
#960 LET B(3,2]=-(R9/(K9*H9*(G1-M*G))+G1)
097U LET B [3,3]=-(R0/(K9*H&*(G1-M*G-L))+G1-L)
```

```
0980
0994
1000
1010
1020
1030
1040
1050
1060
1070
1880
1090
1100
1110
IF J[3,1)<U IHEN LET 29a29/5
1136) IF J[3,11<U YHEN GOTO D640
1140 PRINT "Z POINT CONTACT"
1150 PRINT FILE[6J,USING H-#####,#### ",F5,Z5,J[1,1]*180/3.141593,x
1160 PRINT FILE[1,\Delta],USING "-###,####, ",F5,Z5,J[1,11*180/3.141593.x
1170 LET O8=08+1
1180.NEXT K
1190 PRINT FILE[6],USING "NO DATA POINTS ##* ",08
I2\emptyset0 PRINT USING "NU OATA POINTS ### ".D8
1C10 ClOSE
1224 ENi
```

```
QO10 REM PROGRAM NAME: LATERAL(GEN SOL FOR LAT COMP HOLE)
#0こด CLOSE
0030 DIM AS[8]
0040 INPUT "DATA SEI NAME: ".as
OOS| OPEN FILE[1,1],AS
0060 OPFN FILE[6,1],"$LPT"
DD70 INPUT "CHAMFER ANGLE PHI (DEG) = ",P1
ODBG INPUT "FRICTION COEFFICIENT MU= ".M
00ga INPUT "ClEaRANCE RATIO C= ",C
Q10G INPUT "INITIAL LATERAL ERROR DELTA/A= ",D己
0110 INPUT "HOLE DIAMETER D/Az ",D
0120 INPUT "STIFF'NESS RATIO-KX*A^2/KTHETA= ",K9
0130 INPUT "STIFFNESS RATIOOKI/KXz ",H9
0140 INPUT "STIFFNESS RATIOmK2/KX= ",HD
0150 INPUT "NO. OF CHAMFER CROSSING SOLUTIONSON1= ",N1
01gA PRINT F[LE[6],"DATA SET NAME: ";AS
0170 PRINT FILE[G],USING "CHAMFER ANGLE PHI (DEG) ##,#".P!
0180 PRINT FILE[6],USING "FRICTION COEFFICIENT MU #,##",M
Q190 PRINT FILE[G],USING "CLEARANCE RATIO C #.#####".C
0己@| FRINT FILE[G],USING "INITIAL LATERAL ERROR DELTA/A #.#### ",D己
Q21| PRINT FILE[6],USING "HOLE DIAMETER D/A #.### ".D
022\emptyset PRINT FILE[6],USING "STIFFNESS RATIO-KX*A-2/KTHETA ###,###",K9
0230 PR[NT FILE[6],USING "STIFFNESS RATIO-KI/KX #######",H9
0240 PRTNT FILE[6],USING "STIFFNESS RATIO-K2/KX ###.####,H|
O250 PRINT FILE[6],USING "NO OF CHAMFER CROSSING SOLS-NI ### ",NI
0260 LET 08=|
6270 LET P=3.1415920535*P1/180
028* LET Z0=(02-C*0/2)*TAN(P)
0290 LET Z9=Z0
0300 REM AEGIN CHAMFER CROSSING************************************
```

```
0310 PRTNT FILE[6],"CHAMFER CROSSING"
0320 FOR I=0 TO N1
C330 LET Z=2a*I/NI
0340 LET T4=0
0350 LET T9=SQR(1+(D*(1-C))-2/4-(D2-0/2)-2)
0360 LET T3=4TN(D*(1-C)/2)+ATN((n?-1)/2)/T9)
4370 FUR J=1 TO 4
0380 LEET T5=T3*J/4+T4
0390 LET G=Z/(TAN(P))-SIN(T5)-D*(1-C)*(SIN(T5/2))-2
0400 LEY H1=SIN(TS+P)-M*COS(T5+P)-(D*(1-C)/2)*(COS(TS+P)+M*SIN(TS+P))
*410 LET B2=(SIN(P)-M*COS(P))*(1/k9+1/(K9*H9))
Q42| LET T=B*B1/82
2430 FRINT UISING "-###,#### ",I,J,「*189/3.141593.T5*18G/3.141593
0440 IF ABS(T-Tb)<, D日,0#01 THEN GOTO 8510
0450 IF T<TS THEN GOTO 7470
040 NEXT J
Q470 LET T4=T5-T3/4
6480 LET T3=T3/4
G90 GOTO 037刀
050| REM CHECK CHAMFER CROSSING SOLUTION*********************************
051| LET B4=SIN(T+P)-M*COS(T+P)
0520 LET B5=(0*(1-C)/2)*(COS(T+P)+M*SIN(T+P))
0530 LET FS=T*(COS (P)+M*SIN(P))/(B4-B5)
0540 LET F2=F5/(CUS(P)+M*SIN(P))
0550 LET F3=F2*(SIN(P)-M*COS(P))
0560 LET X=F3/K9
057& LET XL=F3/(NY*H9)
0580 LET M1=T
0590 LET Z5=Z+1-CUS(T)-D*(1-C)*SIN(T)/2
Z600 LET EI=F3-F2*(SIN(P)-M*COS(P))
061^ LET E2=F5-F2*(M*SIN(P)+COS(P))
A620 LET ES=M1+F2* (M*COS(T+P)-SIN(T+P)+((1-C)/2)*U* (M*SIN(T+P)+COS(T+P)))
0630 LET E4=F3-K9*X
0640 LET E5=M1-T
0650 LET Es=K9*H9*X1-F2*(SIN(P)-M*COS(P))
0660 LEY ET=Z/(TAN(P))-SIN(T)-xI-(1-C)*0*(SIN(T/2))-2-X
3670 LET E8=Z+1-Zち-(1-C)*D*SIN(T)/2-COS(T)
2680 PKINT USING "-#.####",E1,E2,E3,E4
1690
O7gD PRINT "CHAMFER CKOSSING"
3710 REM BACK TU MAIN PROCRAM**********************************************
0720 PRINT FILE[6J,USING "-#####.#### ",F5,25,T*180/3.1415926535,x
273| PRINT FILE[1,0],USING "=###.####, ",F5,Z5,T*18#/3.1415920535,x
0740 LET O8=08*1
7750 NEXT I
07G| REM BEGIN 1 POINT CONTACT**************************************
0770 LET LD=0
0780 PRINT FILEP6]."1 POINT CONTACT"
8790 FOR K=0 TO 100|
\8000 LET L.=L刀+K*2G/N1
810 LET T5=\
0820 LET PE=3.141つ926535/2-P
O830 LET T8=P?
040 FOR N=1 TO 4
0850 LET T7=T8*N/4+T5
0860 LET B6=02-C*0/2-(1-L)*SIN(T7)-(1-C)*D*(SIN(T7/2))*2
087U LET B7=1-L-M*(1-C)*L/C
0880 LET B9=(1+1/H9)*(COS(T7)-M*SIN(T7))
&890 LET T=K9*B0*B7/B8
0900 PRINT USING "-###.#### ",K,N,T*180/3.141593,T7*184/3.141593
```

```
0910
2920
0930
0940
0950
0960
8970
6 9 8 0
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250 NEXT K
1260 REM BEGIN 2 POINT CGNTACT*
1270 LET L己=L
1280 PRINT FILE[6],"2 POINT CONTACT"
1290 FOR K=0 T0 10月0
1300 LET L=L2+K*2日/N1
1310 LET T5=0
1320 LET T8=P?
1330 FOR N=1 TO 4
1340 LET T7=T8*N/4+T5
1350
1360
137
1380
1390
1400
1410
1420
143
1440
1450 LET TS=T7-T8/4
1460 LET TB=TR/4
1470 GOTO 133त
148日 QE:Y CHECK 2 POINT CONTACT SOLUTION*****************************
1490
1500
    IF T<TY THLN GOTO a940
    NEXT N
    LET TS=T7-T8/4
    LET T8=T8/4
    GOTO D84?
    REM CHECK 1 rOIVT CONTACT SOLUTION*****************************
    LET F2=T/(1-L-(1-C)*1)*M/己)
    LET F3=Fコ*(CUS(T)-M*SIN(T))
    LET X=F3/KG
    LET M1=T
    LET F5=F2*(SIN(T)+M*COS(T))
    LET Z5=2#+1-COS(T)+L*COS(T)-(1-C)*i)*SIN(T)/2
    LET \1=FZ*(CUS(T)-M*SIN(T))/(K9*H9)
    LET E1=F3-F2*(COS(T)-M*SIN(T))
    LET E2=F5-F2*(SIN(T)+M*COS(T))
    LET F3=M1-F2*(1-L-(1-C)*0*M/2)
    LET E&4=F3-K9*X
    LET ESFM1-T
    LET E6=K9*H9**1-F2*(COS(T) -M*SIN(T))
    LET El=D2-X-xI-C*U/2-(1-L)*STN(T)-(1-C)*D*(SIN(T/Z))-2.
    LET E8=2\eta+1-25-(1-L)*COS(T)-(1-C)*D*SIN(T)/2
    PRINT USING "=#.#### ",E1,E2,E3,E4
    PRINT USING "-#.#### ",ES,E6,E7,E8
    PRINT "& POINT CONTACT"
    REM AACK TO YAIN PROGRAM****************************************
    LET O4=X1+D
    LET DS=L*SIN(T)+(1-C)*O*COS(T)
    PRINT USING "-###,#####"05,04,L
    IF 05>04 THEN LET K=1N00
    TF DS>04 THEV GOTO 1250
    PHINT FTLE{6),USING "-#####.#### ",F5,Z5,T*180/3.1415926535,x
    PRINT FILE[1,0],USING "-###.####, ",F5,25,T*!8け/3.1415926535,x
    LET O&=08+1
REM BEGIN 2 POINT CGNTACT*************************************
        LET B1=02-C*0/2-(1-L)*SIN(T7)-(1-C)*D*(SIN(T7/2))-2
        LET B2=(1-C)*(D*COS(T7)-0+L*SIN(T7)
        LET E3=(1-L-(1-C)*D*M/2)/(COS(T7)-M*SIN(T7))
        LET F=M*(1-C)*D*CUS(T7)/2+M*SIN(TT) +(1-C)*D*SIN(T7)/2-COS(T7)
        LET PA=(K9*H0*B2+K9*B1)*((K9*H9+K9)*F+K9*H9*B3)/(K9+K9*H9+K9*H0)
        LET T=T|-KY*F*B1
        PRINT |SING "-######## ",K,N,T*18#/3.141593,T7*180/3.141593
        IF ABS (T-TT)<, Q日aEaO1 THEN GOTO 1480
        IF T<TT THEN GOTO 1450
    NEXT H
    LET XI= (T+K9*F*B1)/(F*(K9+K9*H9) +KG*H9*B3)
    LET FI=Kq*H9**1/(COS(T)-M*SIN(T))
```

```
1510
1520
1530
1540
1550
1560
1570
1580 LET Z5=20+1-(1-L)*COS(T)-(1-C)*D*SIN(T)/2
1590 LET FT=F1*(SIN(T)+M*COS(T))+4*F2
1600 LETM1=T
1610 LET E1=F3-F1*(COS(T)-M*SIN(T))+F2
162| LET EZ=F5-F1*(SIN(T)+M*COS(T))-M*F2
1630 LET R 3 =M1+F1* ((1-C)*D*M/2-1+L)
1640 LET R4=F2*(M* (1-C)*D*COS(T)/P+M*SIN(T)+(1-C)*D*SIN(T)/2-COS(T))
1650 IET ES=R3-R4
1660 LET E4=M1-T
1670 LETES=F3-K9**
1680 LET EG=F2-K9*H|*X2
1690 LET E7=F1*(CUS(T)-M*SIN(T))-K9*HG**1
17の0 LET E8=02-C*0/2-X-x1-(1-L)*SIN(T)-(1-C)*!*(SIN(T/2))=2
171Q LEET E9=20+1-25-(1-L)*COS(T)-(1-C)*0*SIN(T)/2
1720 LETED=(1-C)*D*COS(T)+L*SIN(T)-x1-x2-0
1730 PRINT USING "-#,#### ",E1,E2,E3,E4,ES
174| PKINT USTNG "-#.#### ",EG,E7,EG,EG,EK
1750 PRINT "2 POIVT CONTACT"
1760 REM BACK TU MAIN PQOGRAM*****************************************
1770 PRIVT FILEl6),USING "=#####.#### ",F5,25,T*136/3.1415926535,X
178| PRINT FILE[1,D],USING "-###.####, ",F5,25,T*180/3.1415926535,x
1790 PKINT USING "-###.#### ", X2.L
1800 LET 08=08+1
18ID NEXT K
1820 PRINT FILE (6],USING "NO DATA POINTS ### ",08
1830 PRINT USING "NO DATA POINTS ### ",08
1840 CLOSE
1850 END
```

```
QOIV REM PROGRAM IVAME: KUTATE(GEN SOL FOR ROT COMP HOLE)
0020 CLOSE
0030 DIM A $ [8]
gO4# INPUT "UATA SEI NAME: ",AS
0U50 DIM J[2.2]
0060 DIM Y[2,1]
0070 DIM U{2.1]
0080 OIM N[2,11
0090 014 v[2,1]
010W DIM w[2,21
0110}01,M O[6,6
012k OIM A[b,1]
0130 01M 0 [6,1)
0140 014 6 [6,1]
d50 OIM R [6,11
015E OIM E[6.6]
0170 QPFN FILE(1,1j,AS
Q180 OPFN FILE[6,1],"$LPT"
Z196 INPUT "CHAMFER ANGLE PHI (UEG)= ",PI
OZDE INHLT "FRICTIUN COEFFICIENT MU= ",M
```

```
0己!0 INput "Cleakancig ratio c= ",c
&2% INPLT "INTTIAL`LATERAL ERROR DELTA/A= ",D2
0236 INPUT "HOLE UIAMETER O/A= ",0
024囚 INPUT "HOR. COMP. CEN. OF HOLE CH/A= ",G
0250 INPUT "VER, COMP. CEN. OF HOLE CV/A= ",GI
0266 INPUT "STTFFNESS RATIO-KX*A" 2/KTHETA= ",Kg
027| INPUT "STIFFNESS RATIO-KTHETAI/KTHETA= ",k9
OZgQ INPUT "STIFFNEOS RATIO-KTHETAZ/KTHETA= ",RD
#2ge INPLT "SCALAK SIEP SIZE S= ",S
0300 IMPUT "NO. OF LHAMFER CROSSING SOLUTIONS-N1= ",N1
0318 PRINT FILE[6],"DATA SET NAME: ";AS
0320 PKINT FILE[G],USING "CHAMFER ANGLE PHI(DEG) ##.# ",P1
0330 PRINT FILE[6],USING "FRICIIGN COEFFICILNT MU #.## ",M
0346 PRINT FILE[6],USING "CLEAKANCE RATIO C.#.##### ",C
0350 PRINT FILE[6],USING "INITIAL LATERAL ERROR OELTA/A #.#### ",0己
0360 PRINT FILE[Gd,USING "HOLE DIAMETER D/A #n### ",D
0370 PRINT FILE[O],USING "HOR COMP CEN OF HOLE CH/A #.## ",G
0380 PRINT FILE[b],USING "VER COMP CEN OF HULE CV/A #### ",GI
03g| PRINT FILE[6],USING."STIFFNESS RATID-KX*A=2/KTHETA ###,### ",K9
0400 PRINT FILE[6],USING "STIFFNESS RATIO-KTHETAI/KTHETA ###.*## ",R9
441% PRINT FILE[6],USING "STIFFNESS RATIO-KTHETAZ/KTHETA ###,### ",R|
0426 PRINT FILE [6],USING "SCALAR STEP SIZE S #.## ",S
Q436 PKINT FILE[G],USING "NO OF CHAMFER CKOSSING SOLS-NI ### ",N1
0446 LFTT DO:0
0450 LET P=3.1415420535*P1/180
0460 LET Z0=(1)?-C*い/こ)*TAN(P)
0476 REM BEGIN CHAMHER CHOSSING****************************************
(480) PRINT FILE[G],"CHAMFER CROSSING"
040日 FOR I=\triangle TO NI
O500 LET Z=Zn*I/NI
0510 LET Z1=20-Z
850 LET D1=(G1+\angle1)*(SIN(P)-M*CUS(P))+(Z1/(TAN(P))-G)*(COS(P)+M*SIN(P))
Q530 LET Y[1,1]=01
<540 LET Y[2,1]=0
0550 LET H[1,1]=0
056И L.ET H[2,1]=0
057日 LET U[1,1]=S*(Z/(TAN(P))-Y[1,1])
O5&| LET U[2,1]=-3*Y(2,1]
0590 LET J[1,1]=C.US(H[1,11)+(1-C)*U*SIN(H[1,1])/2
\partialG日| LETCl=(G1+7.1)*CUS(H(2,1))+(G-21/(TAN(P)))*SIN(H(2,1])
Q610 LET C?=(1-N*N[?,1])*SIN(P-H[?,1])
6620 LET C3=-(M+Hi2,1])*COS (P-H(2,1])
0630 LET J[1,2]=Ci+(C2+C3)*R9/(01*K9)
0640 LET C1=(1-M*(1-C)*D/2)*COS(P-H(2,1]*H[1,1])
0650 LET C2x(M+(1-C)*D/2)*SIN(P-H[2,1]+H[1,1])
066* LET J[2,1]=1-R9*H[2,1]*(C1+C?)/D1
0670 LET C1= (M+(1-C)*D/2+H[2,1]*(1-(1-C)*0*M/2))*COS (PaH[2,1]+H[1,1])
0680 LET C2=(1-(1-C)*U*M/2-H{2,1]*(M+(1-C)*D/2))*SIV(P-H(2,1]+H[1,1])
6696 LET J[己,?]=RY*(CI-C己)/D!
870U MAT W=INV(J)
0 7 1 0 ~ M A T ~ V = W * U ~
0720 MAT HEH+V
0730.LET CI=SIN(H[1,1])+(1-C)*0*(SIN(H(1,11/2))"2+G-Z1/(TAN(P))
0740 LET C2=(Z1/(IAN(P))-G)*COS(H(2,1])+(G1+21)*SIN(H[2,1])
0756 LET C3=SIN(P-H(2,11)-M*COS(P-H(2,1])
O7AD LET C4=R9*N[C,1]*C3/(K9*D1)
0776 LET Y[1,1]=C1+C?+C4
0780 LET Cl=SIN(H-H[2,1]+H(1,1])
0790 LET CZ=COS(P=H[2,1)+H(1,1])
080\LET C3=C1-M*L2-(1-C)*0*(CZ+M*C1)/2
```

```
0810
08टऔ PKINT USING "一###.#### ",I,V[1,1],V[2,1]
0836 LET F=0
0840 IF ABS(V[1,1J)<.ng\QnQ日1 THFN LET F=1
0850 IF ABS(V[2,1J)<,060日,001 THEN LET F=F+1
0&hki IF F=2 THEN GOIO bS8%
087b ricTO 057%
0880
6890
490%
0916
692n
6936
0946
0950
096
0976
098V
0990
1000
1010
1020
1030
1040
105
1060
1070
1080
1090
1 1 0 0
111k
112
1136
1140
1150
1160
117
1186
119
1206
1216
122
1230
124
125
1264
127
128
1290
1300 REM BEGIN 1 PULNI CONTACT******************************
1316 LET L.J=采
132U Print fIlE[6],"1 POINT CONTACt"
133* LET S1=N1
1346 LET O1=W
```



```
1360 LETT L=L刃+K*20/S1
1370 LET T8=3.141b926535/2
138* LET TS=9
1390 FON N=1 TU 10
1400 LET T7=T&*N/10+T5
```

```
1410 LET C1=T7*(COS(T7)-M*SIN(T7))/K9
1420 LET C2=02-L*O/2-C1/(1-L-M*(1-C)*D/己)
1436 LET [3=C2-(1-L)*SIN(T7)-(1-C)*U*(SIN(T7/2))-2.
144* LET C4=(CJ-G)/(SQR(G1-2+G*2))
145% LET A1=3.1415926535-ATN(G1/G)
1460 IF C4<N THEN GOTO 1490
1476 LET T1=A1-ATN((SOR(1-C4-2))/C4)
1480 GOTO 1520
1490 LET Cl=ATNG-(SOR(1-C4-2))/CA)
1500 LET C2=3.1415926535-C1
1510 LET TI=A1-LZ
1520 LET C 1=(G1-M*G)*COS(T7-T1)-(G+M*G1)*SIf(T7-T1)
1530 LET CZ=1-L-M*(1-C)*D/?
154% LETT T=R9*T1*C己/C1
1550 PRINT USINS "-########",K,N,T*18け/3.141593.T7*180/3.141593
1560 IF ABS(T-TI)<.OQODOESI IHEN GOTO 1020
1570 IF T<T7 THEN GOTO 1590
158% NEXT N
1590 LET T5=T7-T8/16
1600 LET T8=T8/10
1610 GOTO 1390
1620 REM CHECK 1 MOINT CONTACT SOLUTION*************************
1636 LET FZ=T/(1-L-(1-C)*D*M/2)
1640 LET FS=F2*(CUS(T)OM*SIN(T))
1650 LET }x=F3/K
16GOC LET MI=T
167V LET F5=F2*(S&N(T)+M*COS(T))
1680 LET C1=G1*COS(T1)+G*SIN(T1)-G1
169(LFT C2=(D2-C*D/2)*TAN(P)+1
170E LET 25=C2-C1-(1-C)*D*SIN(T)/2m(1-L)*COS(T)
171* LET E1=F3-+2*(COS(T)-M*SIN(T))
1720 LET E2=F5-F2*(SIN(T)+M*COS(T))
173* LET E3=M1-F2*(1-L-(1-C)*I)*M/Z)
174| LET E4=F3-K9*X
1754 LET ES=M1-T
17&| LETCI=F2*((GI-M*G)*COS(T-TI)-(G+M*G1)*SIN(T-TI))
1770 LET EG=R9*T1-C1
1780 L.ET C1=-G*COS(T1)+G1*SIN(T1)+G+(1-L)*SIN(T)
1790 LET ET=D2-C*U/Z-X-C1-(I-C)*D*(SIN(T/2))-2
1800 LET C1=G1*COS(T1)+G*SIN(T1)-G1
1810 LET CZ=(O2-C*D/2)* (AN(P)+1
1820 LET E8=2S-C2+C1+(1-C)*D*SIN(T)/2+(1-L)*COS(T)
1830 PFINT USING "-#.####",E1,E2,E3,E4
1840 PRINT USING "-#.####",ES,EG,ET,E8
1854 PHINT "1 FOINT CONTACT"
1860 PEM BACK TO MAIN PROGKAM**********************************
1870 LET D4=0-G*CUS(T1)+G1*SIN(T1)+G
1880 LET OS=L*SIN(T)+(1-C)*0*COS(T)
1890 OKINT LSING "-###,####",D5,D4,L
190W IF OS>CA THEN LET O I=1
191日 IF O1=0 THEN GOTO 20AO
1920 IF DS<04 THE:N GOTO 2,330
1930 IF AdS (04-05)<. \0000001 THEN LET K=1000
1940 IF ABS(04-05)<, ##OD日AD1 THEN GOTO 2030
1950 LET LO=L-Z0/S1
19G0 LET SI=N1*SI
1970 LET K=1990
1980 NEXT K
1990 GOTO 1350
2,AG PRTNT FILE[6],USING "-#####,#### ",F5,75,T*180/3.1415926535,x
```

```
2010 PRINT FILE!1,0J,USING "."###.####, ",F5,25,T*18U/3.1415926535,X
2020 LET 08=08+1
2030 NEXT K
2040 REM dEGIN 2 PO&NT CONTACT**************************************
2050 LET L2=L
20GO ORINT FILE[6],"2 POINT COMTACT"
207% FOQ K=刀 T0 1000
2080 LET L=LZ+K*20/N1
2090 LET A[1,1]=0
210E LET A(2.1]=&
2116 LET A [3,1]=0
2120 LET A [4,1]=0
2130 LET A[5,1]=0
2.140 LET A [6,1]=0
2150 LET B[1,1]=FC
2164 LET B {2,1}=0
2170 LET G[3,1]=x
2180 LET B[4,1]=T
2190 LET B[5,1]=T1
220C LET B[G,1]=0
2216 LET O[1,1]=-ゝ*A[1,1]
22?@ LET Q[2,1]=-S*A[2,1]
2236 LET O[3,1]=-S*A[3,1]
2?.4W LET Q(4,1]=-S*A[4,1]
225* LET &[5,1]=S*(0?-C*U/2-1-A(5,1])
2260 LET O[6,1]=-3*A(6,1)
2270 LET O[1,1]=M*SIN(B[4,11)-\operatorname{COS}(B(4,1])
2260 LET O[1,2]=CUS(B[6,11)-M*SIN(B[6,1])
2290 LET O[1,3]=KY
2300 LET O[1,4]=&[1,1]*(STN(8[4,1])+M*\operatorname{Cos}(B[4,1]))
2310 LET O[1,5]=0
2320 LET O[1,5]=-0 (2,1]*(SIN(B[6,1])+M*COS(B[6,1]))
2330.LET O(2,1]=M*(1-C)*D/2-1+L
2340 LET C 1=(1-M* (1-C)*D/2)*COS(B[4,1]+B[6,1])
2350 LET O[2,2]=CI-(M+(1-C)*C/2)*SIN(B[4,1]+B[6,1])
2360 LET O[2,3]=0
2376 LET CI=(1-M*(1-C)*0/2)*SIN(B[4,1]+B[6,1])
2380 LET C2=C1+(M+(1-C)*D/2)*COS(A[4,1]+B(6,1])
2390 LET O[2,4]=1-B[?,1]*C2
2400 LET O[2,5]=0
241ロ LET O[2,6]=0(2,4]-1
242(d LET C1= (G+M*EG1)*SIN(B[4,1]-B [S,1])
243| LET O[3,1]=C1+(M*G-G1)*COS(B[4,1]-B[5,1])
2440 LET O[3,2]=0
2450 LET O[3,3]=0
2460 LET C1=(G+M*G1)* COS(B[4,1)-B(5,1])
2470 LET C2=C1+(GI-M*G)*SIN(B[4,1]-B(5,1])
248@ LET O[3,4]=6(1,1]*C2
2490 LEY O[3,5)=-U(3,4]+R9
2500 LET O(3,6]=0
251% LET O[4,1]=0
2526 LET C1=G*(SIN(B[5,1])-SIN(B[6,1]))
2530 LET C2=G1*CUS(B(5,1])-L*COS(8[4,1])
2540 LET O[4, 2]=-(C1+C2+(1-C)*D*SIN(E (4,1])-M*G*COS(B[6,1]))
2550 LET O[4,3]=0
2560 LET C1=L*SIN(B(4,1])+(1-C)*|)*COS(B[4,1])
2570 LET O[4,4]=-U(2,1)*C1
2580 LET C1=G1*SIN(B[5,1])-G*COS(B[5,1])
259e LET O[4,5]=8(2,1]*C1
26|& LET C1=-RO*SLN(B[6,1])
```

```
2610
2620
2630
264%
265v
2660
2670
2680
2690
270%
271.
2126
2134
2740
2750
27ヶ0
2770
2780
2790
2804
2810
2824
2830
2840
285%
2860
2810
2880
2896
29061
2910
2920
2930
294k
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3160
3110
3126
3136
3146
3150
3160
3170
3180
3190
3200
```

```
LET C2=Rg*COS(B[6,1])+C1*B[6,1]
```

LET C2=Rg*COS(B[6,1])+C1*B[6,1]
LET CJ=COS(B(6,1])-M*SIN(B[6,!1)
LET CJ=COS(B(6,1])-M*SIN(B[6,!1)
LET O(4,6) =Cd+b (2,1]*G*C3
LET O(4,6) =Cd+b (2,1]*G*C3
LET O{5,1]=0
LET O{5,1]=0
LET O[5,2]=0
LET O[5,2]=0
LET O[5,3]=1
LET O[5,3]=1
LET O{S,4]=(1-L)*COS(B[4,1])+(1-C)*D*SIN(B(4,11)/2
LET O{S,4]=(1-L)*COS(B[4,1])+(1-C)*D*SIN(B(4,11)/2
LET O[5,5)=SWK(G-2+G1-2)*SIN(A1-甘[5,1])
LET O[5,5)=SWK(G-2+G1-2)*SIN(A1-甘[5,1])
LET O[5,6]=0
LET O[5,6]=0
LET O[6,1]=0
LET O[6,1]=0
LFT O[h,2]=0
LFT O[h,2]=0
LET O [6,3]=0
LET O [6,3]=0
LET C1=L*CUS(fi[4,1]+R(6,1))
LET C1=L*CUS(fi[4,1]+R(6,1))
I_ET C[6,4]=Ci-(1-C)*D*SIN(B[4,1]+B(6,1])
I_ET C[6,4]=Ci-(1-C)*D*SIN(B[4,1]+B(6,1])
LET O[6,5)=-SUR(G1-2+G*2)*SIN(A1-B[5,1]-B[6,1])
LET O[6,5)=-SUR(G1-2+G*2)*SIN(A1-B[5,1]-B[6,1])
LET Cl=L*CUS(B[4,1]+B[(t,1])
LET Cl=L*CUS(B[4,1]+B[(t,1])
LET C2=-(1-Cj*D*SIN(B[4,1]+B[6,1])
LET C2=-(1-Cj*D*SIN(B[4,1]+B[6,1])
LET C3=(0+2*G)*SIN(B[6,1])
LET C3=(0+2*G)*SIN(B[6,1])
LET O{6,6]=C1+C2+C3-SUR(G1-2+G-2)*SIN(A1-B [5,1]-B(6,1])
LET O{6,6]=C1+C2+C3-SUR(G1-2+G-2)*SIN(A1-B [5,1]-B(6,1])
MAT E=INV(0)
MAT E=INV(0)
MAT R=E*O
MAT R=E*O
MAT B=R+R
MAT B=R+R
LET Cl_=COS(B(6,1])-M*SIN(B[6,1])
LET Cl_=COS(B(6,1])-M*SIN(B[6,1])
LEY [2=C\capS(B(4,1])-M*SIN(B[4,1])
LEY [2=C\capS(B(4,1])-M*SIN(B[4,1])
LET C3=\&{2,1)*C1-B{1,1)*C2.
LET C3=\&{2,1)*C1-B{1,1)*C2.
LET A [1,1]=к4*\&[3,1]+C3
LET A [1,1]=к4*\&[3,1]+C3
LET Cl=(1-M*(1-C)*1)/2)*COS(B(4,1)+B(0,1))
LET Cl=(1-M*(1-C)*1)/2)*COS(B(4,1)+B(0,1))
LET C2=-(M+(1-C)*D/2)*SIN(B[4,1]+B[6,1])
LET C2=-(M+(1-C)*D/2)*SIN(B[4,1]+B[6,1])
LET C3=-R[1,1]*(1-L-M*(1-C)*D/2)+B[2,1]*(C1+C2)
LET C3=-R[1,1]*(1-L-M*(1-C)*D/2)+B[2,1]*(C1+C2)
LET A[2,1]=B(4,1]+C3
LET A[2,1]=B(4,1]+C3
LET C1=(G+M*G1)*SIN(B[4,1]-B(S,11)
LET C1=(G+M*G1)*SIN(B[4,1]-B(S,11)
LET CC=(M*G-G1)* *CUS (B(4,1]-B[5,1])
LET CC=(M*G-G1)* *CUS (B(4,1]-B[5,1])
IET A [3,1]=KY*B[5,1]+B[1,1]*(C1+C2)
IET A [3,1]=KY*B[5,1]+B[1,1]*(C1+C2)
LET C1=G*(SIN(B[5,1])-SIN(B[6,1]))
LET C1=G*(SIN(B[5,1])-SIN(B[6,1]))
LET C2=G!*COS(B[5,1])-L*COS(B[4,1])
LET C2=G!*COS(B[5,1])-L*COS(B[4,1])
LET C3= (1-C)*D*SIN(B (4,1])-M*G*COS(B[6,1])
LET C3= (1-C)*D*SIN(B (4,1])-M*G*COS(B[6,1])
LET CA=RQ** (0,1)*COS (B [6,1])
LET CA=RQ** (0,1)*COS (B [6,1])
LET A [4,1]=C4-B[2,1]*(C1+C2+C3)
LET A [4,1]=C4-B[2,1]*(C1+C2+C3)
LET C1=B[3,1J+SQR(G)-2+G*2)* COS(A1-R[5,1])
LET C1=B[3,1J+SQR(G)-2+G*2)* COS(A1-R[5,1])
LET C2=(1-C)*O*(SIN (B[4,1]/2))-2
LET C2=(1-C)*O*(SIN (B[4,1]/2))-2
LET A [5,1]=Cl+C?+(1-L)*SIN(R[4,1])
LET A [5,1]=Cl+C?+(1-L)*SIN(R[4,1])
LET CZ=-SQK(G1-2+G-2)*(COS(A1-B[5,1])-COS(A1))**OS(B[6,1])
LET CZ=-SQK(G1-2+G-2)*(COS(A1-B[5,1])-COS(A1))**OS(B[6,1])
LET C 3 =-G*(1-\operatorname{Cos}(B[6,1]))*\operatorname{cos}(B16,1])
LET C 3 =-G*(1-\operatorname{Cos}(B[6,1]))*\operatorname{cos}(B16,1])
LET C4=G*(SIN(B{5,1])-SIN(B(6,1]))
LET C4=G*(SIN(B{5,1])-SIN(B(6,1]))
LET C5=G1*COS(B[5,1])-L*COS(B[4,1])
LET C5=G1*COS(B[5,1])-L*COS(B[4,1])
LET C6= (1-C)*D*SIN(B (4,1])
LET C6= (1-C)*D*SIN(B (4,1])
LET C7=L*SIN(B[4,1])+(1-C)*D*COS(B[4,1])
LET C7=L*SIN(B[4,1])+(1-C)*D*COS(B[4,1])
LET CB=C7*COS (B (6,11) +C2+C3
LET CB=C7*COS (B (6,11) +C2+C3
LET A[6,1]=CO-(C4+C5+C6)*SIN(B[6,1])-0)*COS(B[6,1])
LET A[6,1]=CO-(C4+C5+C6)*SIN(B[6,1])-0)*COS(B[6,1])
PEINT USING "-\#\#,\#\#\#\#",K,K[1,1],K[2,1],R[3,1],R[4,1],R[5,1],R[6,1]
PEINT USING "-\#\#,\#\#\#\#",K,K[1,1],K[2,1],R[3,1],R[4,1],R[5,1],R[6,1]
LET F=O
LET F=O
FQR II=1 ro b
FQR II=1 ro b
IF ABS(R(IL,1])<,ganaOUQ! THEN LET F=F+1
IF ABS(R(IL,1])<,ganaOUQ! THEN LET F=F+1
VEXT I!
VEXT I!
IF F=6 THEN GOTO 317@
IF F=6 THEN GOTO 317@
GÜTO 2217
GÜTO 2217
LET C1=SIN(064,1])+M*COS(B [4,1])
LET C1=SIN(064,1])+M*COS(B [4,1])
LET C2=STN(B(6,1])+M*COS(B (6,11)
LET C2=STN(B(6,1])+M*COS(B (6,11)
LET FS=B[1,1]*C1+B(2,1]*C2
LET FS=B[1,1]*C1+B(2,1]*C2
LETC1=1+(D2-C*D/2)*TAN(P)-(1-C)*D*SIN(B [4,1])/2

```
    LETC1=1+(D2-C*D/2)*TAN(P)-(1-C)*D*SIN(B [4,1])/2
```

```
3210 LET CZ=C1-(1-L)*CCOS(B[4,1])
3220 LET Z5=C?-SQK(G1*2+G-2)*(SIN(A1-B[5,11)-SIN(A1))
3230 IF H[6,1]<0 IHEN LET L\ddot{OLI}
3240 IF E [6,1]<U IHEN LET Z U=ZV/5
3256 [F & [6,1]<0 1HE゙\ GOTO 13<も
326| DRINT "? POINT CONTACY"
3270 PHINT FILE[O],USING "-#####.#####",F5,25,B[4,1]*18:0/3.141593,B[3,1]
```



```
S29^ pKINT USING "-###.#### ",0[6,1],L
3300 LEET O&=O8+1
3316 VEXIK
3320 PRINT FILE[G],USING "NO LATA POINYS ### ",08
3330 frINT USING "NU DATA POINTS ### ",08
3340 CLOSE
3350 EN!
```

DQ16 REM PROGRAM NAME: LATROT (GEN SOL FOR LAT AND ROT COMP HOLE)
RUCW CLUSE
0030 UIM A\$[8]
EGuG Inpur "oata SE! name: ",as
VU56 にIM J(2.21
EQGO IIM Y $[2,1]$
0076014 山 $[2,1]$
bore UTM H[2,1]
WQaC DIM V[2.1]
©10. DJ4 w [2, 己]
0110 リ1M 1] [6.6]
$0120 \operatorname{DTM} A[6,1]$
0130 DIM Q[6,1]
U140 DIM 3 (6,1)
615 D DIM R $[6,1]$
0160 DIM E $[6,6]$
0170 OPFN FILE [1,1],AS
0180 OPEN FILE [6,1],"\$LPT"
©196 INPUT "CHaMFER AIVGLE PHI (IEG) = ", P1
e2ga Infut "Friction coefficient mu= ", M
0210 [NPUT "CLEaRaNCE RATIO C= ",C
ビ己己も INPUT "INITIAL LATERAL ERRUR DELTA/A= ",D己
Q236 INPUT "HOLE DIAMETER D/A= ", 0
6己4日 INPUT "hor. Cump, CEN. OF HOLE CH/A= ",G
0250 INPLT $V V E R$. COMP, CEN, OF HOLE CV/A= ", G1
@266 INPUT "STIFFNESS RATIO-KX*A" $2 / K T H E T A=", K 9$
0270 INPUT "STIFFNESS RATIO-K1/KX= ",H9
U28日 INPUT "STIFFNEOS RATIO-K2/KX= ",Hん
G290 INPUT "STIFFNESS RATIO-KTHETA1/KTHETA= ",R9
O30ロ INPUT "SIIFFNESS RATIO-KTHETA己/KTHETA= ",RO
Q3iE INPUT "SCALAK STEP SIZE S= ", S
e3zn infut "NO. OF LHAMFER CROSSING SOLUTIONS-Ni= ",N1
0336 PRINT FILE [6], "DATA SET NAME: ";A\$
Q346 PRINT FILE[6], USING "CHAMFER ANGLE PHI (DEG) \#\#, \# ", PI
© 350 PRINT FILE[6],USING "FRICTION COEFFICILNT MU \#.\#\# ", M
0360 PRINT FILE[6], USING "CLEARANCE RATIO C *.\#\#\#\#\# ", C
0376 FKINT FILE [6], USING "INITIAL LATERAL ERROR DELTA/A \#\#\#\#\# ", DC
[366 PRINT FILF[6], USING "hoLe DIAMETER D/A \#.\#\#\# ", D
6396 PKTNT FILE[6],USING "HOR COMP CEN OF HOLE CH/A \#.\#\# ",G
[4QU PRINT FILE[G], USING "VER COMP CEN UF HOLE CV/A \#.\#\# ",GI

```
0410 PRINT FILE[6],USING "STIFFNESS RATIO-KX*A"2/KTHETA ###,### ",K9
Q426 PRINT FILE[6],USING "STIFFNESS RATIO-K1/KX###,### ",H9
04| PRINT FILE[0],USING "STIFFNESS RATIO-K2/KX ####### ",H0
244G PRTNT FILE[6],USING "STIFFNESS RATIG-KTHETAI/KTHETA ###.### ",R9
045U PRINT FILE[6],USING "STIFFNESS RATID-KTHETAZ/KTHETA ###,### ",R|
<4GG PKINT FILE[b],uSING "SCALAK STEP SIZE S #.## ",S
047% PRINT FILE[O],USING "NO CF CHAMFER CKOSSING SOLS-NI ### ",N1
248G LET 08=0
W440 LET P=3.1415420535*F1/100
ASOQ LET 20=(1)P-C*1D/2)*TAN(P)
RS10 REM UEGIN CHAMPER CROSSING******************************************
Q52! PRINT FILE[b],"CHAMFER CRISSING"
0530 FOR I=0 TO N1
2540 LET Z=Z#*I/NI
0550 LET Z.1=20-Z
6566% LET D1=(G1+Z1)*(SIN(P)-M*COS(P))+(Z1/(TAN(P))-G)*(COS(P)+M*SIN(P))
0570 LET Y(1,1]=0
0580 LET Y [2,1]=0
05GE LET H[1,1]=0
GOGO LET H(2,11=0
0610 LET U[1,1]=S*(Z/(TAN(P))-Y[1,1])
0620}LET U[2,1]=-S*Y[2,1]
0630 LET J[1,1]=CUS(H[1,11)+(1-C)*D*SIN(H[1,1])/2
0640 LET C = (C1+ l1)* *OS(H{2,1])+(r-21/(TAN(P)))*SIN(H[Z,1])
0650 LET CZ=(1-M*H[2,1])*SIM(P-H(2,1])
0660 LET C 3=-(N+Hi2,1])*COS (H-H[2,1])
0670 LET I[1,2]=C立 +(C2+C3)*R9*(1/K9+1/(K9*H9))/0!
0680 LET C1=(1-M*(1-C)*U/2)*COS(P-H[2,1]+H[1,1])
B69W LET C2=(M+(1-C)*D/Z)*SIN(P-H[2,1]+H[1,11)
0700 LET J[2,1]=1-R9*H[2,1]*(Cl+C2)/D1
0710 LET C1= (M+(1-C)*0/2+H(2,1)* (1-(1-C)*U*M/2))* *OS (P-H[2,1]+H[1,1])
072G LET CZ=(1-(1-C)*D*M/2-H(2,1]*(M+(1-C)*D/2))*SIN(P-H(2,1)+H[1,1])
073| LET J[2,2]=RG*(C1-C2)/U1
074D MAT W=TNV(J)
0750 MAT V=W*U
O7GU MAT H=H+V
6770 LET C1=SIN(H:1,1J)+(1-C)*U*(SIN(H(1,1]/2))"2+G-Z1/(TAN(P))
&78| LET CZ=(Z1/(IAN(P))-G)*COS(H(2,1])+(G1+Z1)*SIN(H[2,1])
<7Y日 LET C3=SIN(P-H[2,1])=M*COS(P-H[て,1])
0800 LET C4=R9*H(\alpha,1]*C3*(1/KN9+1/(K9*H9))/D1
0810 LET Y[1,1]=C1+C2+C4
6820 LET CI=SIN(P-H[2,1]+H(1,1])
\Delta836 LET C2=COS(POH(2,1]+H[1,1])
0840 LET C3=C1-M*L2-(1-C)*D*(C2+M*C1)/2
0850 LET Y[2,1]=HL1,1]-R9*H[2,1]*C3/D1
O860 PRINT USING "-###.#### ",I,V[1,1],V[2,1]
0870 LFT F=0
0880 TF ABS(V[1,11)<.0日OUQOQ1 THEN LET F=1
D8Y0 IF ABS(V[C,1])<, UOHQDOEI THEN LET F=F+1
0900 IF F=2 THEN GOTO D920
0910 GOTO W610
09%6 REM CHECK CHAMFEK CROSSING SOLUTION*****************
0930 REM CHECK 2 KEDUCED EQUATIONS IN THETA,THETAl******************
0940 LET C1=(1-C)*D*(SIN(H[1,1]/2))-2+SIN(H[1,1])
0950 LET CC=SIN(P-H(2,1])-M*COS(P-H(2,1])
C960 L_ET C3=(Z1/(1AN(P))-G)*COS(H[2,1])+(G1+Z1)*SIN(H[2,1])
097日 LET C4=G-21/TTAN(P))-Z/(TAN(P))
0980 LET EI=C1+C2*R4*N[2,1]*(1/K9+1/(K9*H9))/01+C3+C4
0990 LET C1= (M+(1-C)*D/2)*COS(P-H[2,1]+H(1,1])
10%| LET CC=((1-C)*D*M/2-1)*SIN(P-H[2,1]+H[1,1])
```

```
1010
1020
1030
1040
1050
1960
1770
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1?26
1230
1240
1254
1264
1276
1280
1290
1300
1310
1320
1330
340
1350 NEXT I
1360 REM SEG
1380 PRINT FILE[6],": POINT CONFACT"
1390 LET SI=N
1400 LET OL=\
1410 FOR K=0 TO 100U
1420 LET L=Lの+K*2|/S1
1430 LET T8=3.1415926535/2
1440 LEY TS=0
FCR N=1 TO 1.
1460 LET T7=T8*N/10+TS
1470 LET CI=T7*(CUS(T7)~M*SIN(T7))*(1/K9+1/(K9*H9))
1480 LET C2=D2-L*D/2-C1/(1-L-M*(1-C)*D/C)
1490 LET C 3=C2-(1-L)*SIN(T7)-(1-C)*N*(SIN(T7/己))*2
1500 LET C4=(C゙3-G)/(SOR(G1``2+G*`))
1510 LET AI=3.1415926535-ATN(G1/G)
1520 IF C4<O THEN GOTO 1550
1530 LET Ti=A1-ATN((SQR(1-C4*2))/C4)
1540 GOTO 1580
1550 LET C1=ATN(-(SQR(1-C4*2))/C4)
1560 LET C2=3.1415926535-C1
157% LET T1=A1-C゙2
1580 LET C1=(G1-M*G)*COS(T7-T1)-(G+M*G1)*SIN(TT-T1)
59^LET C2=1-L-M*(1-C)*U/e
160| LEET I=R9*T1*C?/C!
```

```
2080
2690
2100
2110 NEXI K
2120 REM BEGIN 2 POINT CONTACT************************************
2130 LET LZ=L
2140 PRINT FILF[6],"2 POINT CONTACT"
2150 FOR K=0 10 1400
216% LET L=LZ+K*20/N1
2170 LET A[1,1]=0
218% LET A[2,1]=0
C190 LET A [3,1]=0
2200 LET A [4,1]=0
```

```
2210 LET A [5,1]=0
2220
2230
224%
2250
2260
2270
22%0
2290
2300
2310
2320
2336.
2340
2350
2366
2370
2380
239n
2406
2410
2426
2430
2440
2450
2460
2470
248k
<49|
250w
2510
2526
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2030
264ki LET C1=L*SIN(B[4,1])+(1-C)*D*CUS(B[4,1])
2650 LET O[4,4]=-0ं (2,1]*C1
2660 LET C1=G1*SIN(B(5,1])-G*COS(BP5,11)
267() LET O(4,5)=甘(2,1)*C!
2680 LET Cl=-R0*SIN(R[6,1])
2690 LET C2=Ra*COS (B [0,1])+C.1*B[6,1]
Z7UQ LET C 3 = cos(B16,11)-M*SIN(B[6,1])
2716 LET O[4,6]=CC+B[2,1]*G*C3
2720 LETO[S,1]=(LOS(B[4,1])-M*STN(B(4,1]))/(H9*KY)
2730 LET O[5,2]=0
2740 LET O[5,3]=1
2756 LET C L= (1-L)* COS(B[4,1])+(1-C)*C*SIN(B[4,1])/2
27力0 LET C2=SIN(B64,1])+M*COS(B[4,1])
2170 LET O[5,4]=C1-b(1,1]*CZ2/(H9*K9)
2780 LET U[5,5]=SWR(G-2+G1-2)*SIN(A1-B(5,1])
2790 LET O[5,6]=0
2800 LET O[0,1]=(M*SIN(B[4,1])-COS(B[4,1]))*COS(B[6,1])/(H9*K9)
```

```
2810
2420
2830
2840
2850
2866
287k
2884
2890
2906
2910
292И
2930
294kj
2950
2960
2976
2980
2990
300い
3010
3020
3030
3040
3050
3064
307%
308k
3094
3144
3116
3120
3130
3140
3150
3160
3170
3180
3190
3204
3210
3220
3230
3240
3250
3260
3270
3280


```

LET O[6,3]=0

```
LET O[6,3]=0
LET C1=L*COS(B[4,1]+4[6,1])
LET C1=L*COS(B[4,1]+4[6,1])
LET C2=-(1-Cj*U*SIN(A(4,1]+B[6,11)
LET C2=-(1-Cj*U*SIN(A(4,1]+B[6,11)
LET C3=SIN(0 (4,1])+M*COS(B [4,1])
LET C3=SIN(0 (4,1])+M*COS(B [4,1])
LET O(6,4]=C1+C2+C3*B[1,1]* COS(B (6,1])/(H9*K9)
LET O(6,4]=C1+C2+C3*B[1,1]* COS(B (6,1])/(H9*K9)
LFT O[6,5]=-SQR(G1-2+G``)*STN(A1-B[5,1]-H[6,1])
LFT O[6,5]=-SQR(G1-2+G``)*STN(A1-B[5,1]-H[6,1])
LET C1=L*CUS(B[4,1]+M[6,1])
LET C1=L*CUS(B[4,1]+M[6,1])
LET C2=-(1-C) *O*SIN(13[4,1]+B[0,1])
LET C2=-(1-C) *O*SIN(13[4,1]+B[0,1])
LET C2=C?+(2*G+D)*SIN(H[0,1])
LET C2=C?+(2*G+D)*SIN(H[0,1])
LET C3=-SUH(G1-2+G"2)*SIN(A1-U[5,1]-H[0,1])
LET C3=-SUH(G1-2+G"2)*SIN(A1-U[5,1]-H[0,1])
LET C4=COS(EL4,1])-M*SIN(B[4,1])
LET C4=COS(EL4,1])-M*SIN(B[4,1])
LET C4=B[1,1]*C4/(H9*N9)
LET C4=B[1,1]*C4/(H9*N9)
LET C5=SIN(2*H[6,1])+M*COS(2*E[6,1])
LET C5=SIN(2*H[6,1])+M*COS(2*E[6,1])
LET CS=B[2,1j*C5/(H0*K9)
LET CS=B[2,1j*C5/(H0*K9)
LET O[6,6]=C1+[? +C3+C4*SIN(B[6,1])+C5
LET O[6,6]=C1+[? +C3+C4*SIN(B[6,1])+C5
MAT E=INv(O)
MAT E=INv(O)
MAT R=E*Q
MAT R=E*Q
MAT B=B+R
MAT B=B+R
LET Cl=COS(b[6,1])-M*SIN(B[6,!])
LET Cl=COS(b[6,1])-M*SIN(B[6,!])
LET C2=COS(E[4,1])-M*SIN(B[4,1])
LET C2=COS(E[4,1])-M*SIN(B[4,1])
LET C3=&[2,1J*C1-E[1,1]*C己
LET C3=&[2,1J*C1-E[1,1]*C己
LET A[1,1]=KY**[3,1]+C3
LET A[1,1]=KY**[3,1]+C3
LET CI=(1-M*(1-C)*1)/2)* COS(R [4,1]+B[6,1])
LET CI=(1-M*(1-C)*1)/2)* COS(R [4,1]+B[6,1])
LET C2=-(M+(1-C)*D/2)*SIN(B[4,1]+Bl6,1])
LET C2=-(M+(1-C)*D/2)*SIN(B[4,1]+Bl6,1])
LET C3=-B[1,1]*(1-L-M*(1-C)*0/2)+H{(2,1]*(C1+C2)
LET C3=-B[1,1]*(1-L-M*(1-C)*0/2)+H{(2,1]*(C1+C2)
LET A[2,1]=8[4,1]+C3
LET A[2,1]=8[4,1]+C3
LET C1=(G+M*G1)*SIN(B[4,1]-B[5,1])
LET C1=(G+M*G1)*SIN(B[4,1]-B[5,1])
LET C2= (M*G-61)*COS(B[4,1]-B(5,11)
LET C2= (M*G-61)*COS(B[4,1]-B(5,11)
L.ET A [3,1]=Ry*B[5,1]+甘[1,1]*(C1+C2)
L.ET A [3,1]=Ry*B[5,1]+甘[1,1]*(C1+C2)
LET C1=G*(SIN(E[5,1])-SIN(B(f,1]))
LET C1=G*(SIN(E[5,1])-SIN(B(f,1]))
LET C2=G1*\operatorname{cos}(B[5.1])-L*COS(B[4.1])
LET C2=G1*\operatorname{cos}(B[5.1])-L*COS(B[4.1])
LET C 3= (1-C)*D*SIN(B[4,1])-M*G*COS(B[6,1])
LET C 3= (1-C)*D*SIN(B[4,1])-M*G*COS(B[6,1])
LET C4=R刀*D[b,1]*COS(R[6,1])
LET C4=R刀*D[b,1]*COS(R[6,1])
LET A[4,1]=C4-b [2,1]*(C1+C2+C3)
LET A[4,1]=C4-b [2,1]*(C1+C2+C3)
LET C!=B(3,1)+SOR(G1-2+G*2)*COS(A1-B[5,1])
LET C!=B(3,1)+SOR(G1-2+G*2)*COS(A1-B[5,1])
LET C2z(1-C)*D*(SIN(B[4,1]/2))-2+(1-L)*SIN(B(4,1])
LET C2z(1-C)*D*(SIN(B[4,1]/2))-2+(1-L)*SIN(B(4,1])
LET C3=COS(B(4,1])-M*SIN(B [4,1])
LET C3=COS(B(4,1])-M*SIN(B [4,1])
LET A[5,1]=C1+C2+B[1,1]*C3/(H9*K9)
LET A[5,1]=C1+C2+B[1,1]*C3/(H9*K9)
LET C1=L*SIN(B[4,11)+(1-C)*D*COS(B[4,1])
LET C1=L*SIN(B[4,11)+(1-C)*D*COS(B[4,1])
LET C1=C1*COS(B[0,1])
LET C1=C1*COS(B[0,1])
LET C2=mSQR(61``+G-2)*(COS(A1-B[5,1])-COS(A1))*COS(B[6,1])
LET C2=mSQR(61``+G-2)*(COS(A1-B[5,1])-COS(A1))*COS(B[6,1])
LET C3=-G*(1-COS(B[6,1]))*COS(B[6,1])
LET C3=-G*(1-COS(B[6,1]))*COS(B[6,1])
LET C4=G*(SIN(H!5,1])-SIN(B[6,1]))
LET C4=G*(SIN(H!5,1])-SIN(B[6,1]))
LET C5=G1*COS(B[5,1])-L*COS(A[4,1])
LET C5=G1*COS(B[5,1])-L*COS(A[4,1])
I_ET C5=C5+(1-C)*U*SIN(B[4,1])
I_ET C5=C5+(1-C)*U*SIN(B[4,1])
LET CG=C1+C2+C3-(C4+C5)*SIN(A[f,1])-D*COS(B[6,1])
LET CG=C1+C2+C3-(C4+C5)*SIN(A[f,1])-D*COS(B[6,1])
LE゙T C7=COS(844,1])-M*SIN(B(4,11)
LE゙T C7=COS(844,1])-M*SIN(B(4,11)
LET C7=-B[1,1]*C7*COS(8(6,1])/(H9*K9)
LET C7=-B[1,1]*C7*COS(8(6,1])/(H9*K9)
LET C&=COS(616,1])-H*SIN(6 (6,1])
LET C&=COS(616,1])-H*SIN(6 (6,1])
LET C8=-月[2,1]*C8*COS(E[6,1])/(H0*K9)
LET C8=-月[2,1]*C8*COS(E[6,1])/(H0*K9)
LEY A[6,1]=CO+C7+C8
LEY A[6,1]=CO+C7+C8
PRINT USING "-#######",K,R[1,1],R[2,1],R[3,1],R[4,1],R[5,1],R[6,1]
PRINT USING "-#######",K,R[1,1],R[2,1],R[3,1],R[4,1],R[5,1],R[6,1]
LET F=0
LET F=0
FOR 11=1 TO O
FOR 11=1 TO O
    IF ABS(K[IL,1])<IE-DG THEN LET F=F+1
    IF ABS(K[IL,1])<IE-DG THEN LET F=F+1
    NEXT I!
    NEXT I!
    IF F=6 THEN GOTO 34UD
    IF F=6 THEN GOTO 34UD
    G乡TO 2290
    G乡TO 2290
    LET C1=SIN(BL4,1])+M*COS(B[4,1])
```

 LET C1=SIN(BL4,1])+M*COS(B[4,1])
    ```
```

3410 LET C1= % {1,1*C1
342N LET C2=SIN(BL6,1])+M*COS(B[6,1])
343U LET FS=C.1+G[C,1]*C?
3440 LETC1=1+(LC-C*D/2)*TAN(P)-(1-C)*D*SIN(B[4,11)/2
3450 LET C2=C1-(1-L)* COS(B[4,1])
346Q LET 2S=C2-SQK(G1-2+G-2)*(SIN(A1-B[5,1])-SIN(A1))
3470i IF G[6,1]<U INEV LET LV=L
348K IF b [6,1]<W IHEN LET LO= LC/5
3490 [F b[6,1]<w !HEN GOTO 1386
35a@ LET C1=COS(bi6,1])-N*SIN(B[6,1])
3510 LET C1=3[2,1]*C1
3520 IF C1<0 THEN LET LO=L
3530 IF C1<Q THEN LET LD=7.0/5
3540 IF C1<0 THEN GOTO 1380
3550 PRINT "2 POINT CONTACT"
3566 PRINT FILE{b\,USING "-\#\#\#\#\#.\#\#\#\# ",F5,25,H{4,1]*180/3,1,41593,B\3,11]
3570 FRINT FILE[1,0],USING"=\#\#\#,\#\#\#\#, ",F5,25,B[4,1]*1dk/3,141593,B[3,11]
358[PKINT USING "-\#\#\#.\#\#\#\# ",B[6,1],C1/(MO*K9),L
3590 LET OO=08+1
3OVV NEXT K
361囚 PRTNT FILE[6],USING "NO DATA POINTS \#\#\# ",O8
362! PRINT USING "NU DATA POINTS \#\#\# ",O\&
3636 CLOSE
364k ENO

```
```

O|1D REM PROGRAM NAME: CHAMFR (OPT WED KOT (HAMFER)
y%a ClOSE
Pbs0 DIM A\$[9]
G|4@ INPUT "CATA SET NAME: ",AS
0050 OPEN FILE [1,1],AS
0日GO OPEN FILE[G,11,"SLPT"
QQ70 INPLT "FFICTION COEFFICIENT M= ",M
0日80 PRTNT USIVG "\#\#.\#\#",ATN(1/M)*18(13.1416
Q09 INPUT "INITIAL OFFSET ANGLE TO(DEG)= ",T0
0100 LET TO=3.1415926535*TU/180
0110 PRINT USINR, "\#\#\#\#\#.\#\#",1/SIN(T\#)
\&120 INPUT "LENGTH OF PEG L= ",L
|130 PRINT FILE[6],"DATA SEt NAME: ";AS
Q140 PRINT FILE[6],USING "FRICTION COEFFICIENT M \#\#,\#\#\#"M
0150 PRINT FILE[6],USING "INITIAL OFFSET ANGLE TO \#\#\#\#\#\#,T|
*160 PRINT FILE[6],JSING "LENGTH OF PEG L \#\#\#\#\#\#\#\# ",L
0170 LET XI=1-L*SIN(TO)
O1SD LET CI=SOR(L*-2-x1-2)
0190 LET C2=SNR(1+M-2)
\#200 FOR I=0 TO 74
|21u LET }x=\17
ดट2vj LET xj=x-L*SIN(TD)
6230 LET F=SQR(L-2-xの-2)
0240 LET N1=(C2*F+M*L)* (L+C2**1)
0250 L.ET OI=(C2*C1+M*L)*(L+C.;***)
0260 LET YG=C1-F+(M*L/C2)*LOG(N1/O1)
0270 LET N2=(F-M**O)*(L-2-(C?**1)-2)
028日 LET D2=(CL-M*X1)*(L* 2-(C2**か)- 2)
0290 LET FI=(L/C?)*(ATN(XI/C1)-ATN(X0/F))
030N LET Y = YG+F1+(M*L/CZ)*LOG(N2/DZ)
031| LET Y5=Yの-Yव

```
```

0320
0330
6340
*35n
0360 CLISSE
0370 END

```
```

OQ!И REM PHOGRAM NAME: CHAMF(GEN SOL M1 AND M己)
N020 CLOSE
\DeltaU30 DIM AS[8]
0040 INPUT "OATA SEI NAME: ",AS
WOS0 OPEN FILE[1,1],AS
NOGO DPEN FILE[6,1],"\$LPT"
QOTO INFUT "FRICTION COEFFICIENT MI= ",MI
0080 PRINT USING "\#\#\#.\# ",l/MI
GOq0 INPUT UFRICTIUN COEFFICIENT MZ= ",MZ
01\0 LET S0=(M1+M2)/(1-M1*M2)
|110 LET S1=S|*(1+SWR((1*H1-2)/(M1*(M1+M2))))
H12G PRINT USING "\#\#.\#\# ",S|,SI
6130 INPUT "aspect katyo S= ",S
W\&4G INPUT "INIYIAL GUESS FOR I:G= ",G
Q150 PRINT FILE[6],"DATA SET NAME: ";AS
O160 PRTNT FILE[GJ,USING "FKICTION COEFFICIENT MI \#.\#\# ",M1
*170 PRINT FILE[6],USING "FRICTION COEFFICIENT MZ \#.\#\# ",MR
|180 PRINT FILE[b],USING "ASPECT RATIU S \#\#.\#\# ",S
0190 PRINT FILE[G],USING "INITJAL GIJESS FOR C G \#\#\#\#.\#\#\#\# ",G
GZO| PEM COMPUTE INIEGRATION CUNSTANT C**************************
GCIW LET C=G
0220 FOR I=1 TO 100W
D230 LET B=SQR((1+M1-2)* (M1+M2)/M1)/(1-M1*M2)
0240 LET B1=SQR(C)
025* LET B2=SOR(1+C)
Q266) LET R3=-1/(2*B2)+LOG((B2+1)/R1)
\&270 LET B4=(B1/BC-(A2+1)/B1)/2
0280 LET F1=R*(B3+B4*B1/(82+1))
Q29v L.ET B3=B2-C*LOG((BZ+1)/R1)
0300 LET F=SO+B*ES-S
0310 LET C=C+F/FI
0320 PRINT USING "-\#\#\#\#\#,\#\#\#\#\# ",C
0330 IF ABS(F/FI)<. ब\,DOODOL THEN LET I=1900
0340 NEXT I
0350 PRINT USING "INTEGRATION CONSTANT C \#\#\#\#\#\#\#\#\#\#\#\#,C
0360 PRINT FILE[6],USING "INTEG CONST C \#\#\#\#\#.\#\#\#\#\#\#\#,C
\triangle370 REM COMPUTE CHAMFEK SHAPE****************************
0380 FON I=0 TO 74
0390 l.ET X=I/74
0400 LET G3=SOR (x+C)
0410 LET B4=SQR(X)
0420 LET R4=\&3*B4-C*LOG((B3+B4)/B1)
0430 LET Y=S-S0*X-B*B4
6440 PRINT USTNG "\#\#,\#\# ",y,x,S|*(1-x),S1*(1-x)
0450 PRINT FILE[6],USING "\#\#.\#\#\# ",Y,X,S|*(1-x),SI*(1-x)
046| FRINT FILE[1,01,USING "\#\#.\#\#\#, ",Y,X,SO*(1-x),S1*(1-x)
0470 NEXT I
04ठ洒 CLOSE
0490 EN:

```
```

DV1\ RET RROJ:R\1 VAME: FOTCH (ÖURCE VS IEP STCH STCHR)
0いこう ザつ心に
\03\)IM 45 (b)

```








```

|\21 Lr.T ru=1n*3.1415920535/107
113^ Fjiर [=7 ij) l4
A1|T LE゙\ x=.n*I/14
\1;\ LFT Y=S*(.0-x)
ylng I_tr xy={-3*jLv(r)
|17] L<T r=aril(-x山/(3GR(3-2-x.0-2))!

```


```

\Delta\OJ EET PT=3*CJ.SGTG)+.S*S-Y-S*COS(T)
\#2:15 I.ET Yc=?5.4*Y己
y己1J LE゙T F=K*(T\Delta-1)*(1+.15*S)/(C!+S*CZ)

```



```

\Delta2\zetaム VEx「I
OChd Cl.n`F
\21才 E


```

```

ロロこク 「いつ.SE
303A 门【4 AS(3)

```







```

-11, LET $\times 1=. \rightarrow-3 * 3$ IN(TA)

```






```

$\Delta 131 \quad$ LEr $11=\left(x 1-.15 *_{i}=\right) /(F+.15 * x J)$

```






```

12う」 LET Fi: (3/ここ)* (ATN(X1/Ci)-ATN(XD/F))

```







```

133) vext I
13.4^ CLJうE
小らちゃ ビい
```

\section*{APPENDIX B}

\section*{CALCULATION OF JACOBIAN MATRICES}

\section*{Chamfer Crossing}

The Jacobian matrix \(J\) is given by:
\[
\underline{\mathbf{J}}=\left[\begin{array}{cc}
\frac{\partial \mathrm{f}_{1}}{\partial(\delta \theta)} & \frac{\partial \mathrm{f}_{1}}{\partial\left(\delta \theta_{1}\right)}  \tag{Br}\\
\frac{\partial f_{2}}{\partial(\delta \theta)} & \frac{\partial f_{2}}{\partial\left(\delta \theta_{1}\right)}
\end{array}\right]
\]
where :
\[
\begin{gathered}
\frac{\partial f_{1}}{\partial(\delta \theta)}=a \cos \delta \theta+\frac{d}{2} \sin \delta \theta \\
\frac{\partial f_{1}}{\partial\left(\delta \theta_{1}\right)}=\frac{\left(1 / K_{x}+1 / K_{x_{1}}\right) K_{\theta_{1}}}{D_{1}}\left[\left(1-\mu \delta \theta_{1}\right) \sin \left(\phi-\delta \theta_{1}\right)-\left(\mu+\delta \theta_{1}\right) \cos \left(\phi-\delta \theta_{1}\right)\right] \\
+r_{c} \sin \left(\gamma_{c}-\delta \theta_{1}\right) \\
\frac{\partial f_{2}}{\partial(\delta \theta)}=K_{\theta}-\frac{K_{\theta_{1}} \delta \theta_{1}}{D_{1}}\left[\left(a-\frac{\mu d}{2}\right) \cos \left(\phi+\delta \theta-\delta \theta_{1}\right)+\left(a \mu+\frac{d}{2}\right) \sin \left(\phi+\delta \theta-\delta \theta_{1}\right)\right] \\
\frac{\partial f_{2}}{\partial\left(\delta \theta_{1}\right)}=\frac{K_{\theta}}{D_{1}}\left\{\left[\left(a-\frac{\mu d}{2}\right) \delta \theta_{1}+\left(a \mu+\frac{d}{2}\right)\right] \cos \left(\phi+\delta \theta-\delta \theta_{1}\right)\right. \\
\\
\end{gathered}
\]

Two-Point Contact
The Jacobian matrix J is given by:
or
\[
\underline{J}=\left[\begin{array}{lll}
\underline{J}_{11} & \underline{J}_{12} & \underline{J}_{13}  \tag{B.4}\\
\underline{J}_{21} & \underline{J}_{22} & \underline{J}_{23} \\
\underline{J}_{31} & \underline{J}_{32} & \underline{J}_{33}
\end{array}\right]
\]
where

(B. 5)


\[
J_{31}=\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & 0
\end{array}\right]
\]

(B.7)


\section*{LIST OF REFERENCES}
1. Whitney, D.E., Rigid Part Mating, C.S. Draper Laboratory Report No. P-1447, Session No. 8, November 1981, presented at the 2nd Annual Seminar on Advanced Assembly Research, Cambridge, MA, November 1981.
2. Whitney, D.E., et al., Part Mating Theory for Compliant Parts, First Report, C.S. Draper Laboratory Report No. R-1407, September l, 1979 to August 31, 1980.
3. Arai, T. and Kinoshita, N., The Part Mating Forces that Arise when using a Worktable with Compliance, Assembly Automation, August 1981, pp. 204-210.
4. Gustavson, R.E. and Hennessey, M.P., Compliant Part Mating, C.S. Draper Laboratory Report No. P-l447, Session No. 9, November 1981, presented at the 2nd Annual Seminar on Advanced Assembly Research, Cambridge, MA 1981.
5. Nevins, J.L., et al., Exploratory Research in Industrial Modular Assembly, C.S. Draper Laboratory Report No. R-1218, September 1, 1977 to August 30, 1978 .
6. Whitney, D.E., et al., Part Mating Theory for Compliant Parts, C.S. Draper Laboratory Report No. P-1390, November 1981, presented at the 9 th Conference on Production Research and Technology, Ann Arbor, MI, November 1981.
7. Crandall, Stephen H., Dahl, Norman C., and Lardner, Thomas J., An Introduction to the Mechanics of Solids, second edition, Chapter 2, McGraw-Hill, New York, 1972.
8. Whitney, D.E., Optimum Step Size Control for Newton-Raphson Solution of Nonlinear Vector Equations, IEEE Trans. Auto. Control, Vol. AC-14, No. 5, October 1969.
9. Sokolnikoff, I.S. and Redheffer, R.M., Mathematics of Physics and Modern Engineering, second edition, Chapter 5, Section 15 , McGraw-Hill, New York, 1966.
10. Courant and Hilbert: Methods of Mathematical Physics, Vol. 1, pp. 2l4-216, Interscience Publishers, Inc., New York, 1953.
11. Dwight, Herbert B., Tables of Integrals and Other Mathematical Data, fourth edition, p. 49, MacMillian, New York, 1961.
12. Gradshteyn, I.S., and Ryzhik, I.M., Table of Integrals, Series, and Products-Corrected and Enlarged Edition, pp. 157, 160, Academic Press, New York, 1980.```

