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Abstract
The main research question we explore in this dissertation is: How should a retailer
modify its product assortment over time in order to maximize overall profits for a
given selling season?

Historically, long development, procurement, and production lead times have con-
strained fashion retailers to make supply and assortment decisions well in advance of
the selling season, when only limited and uncertain demand information is available.
As a result, many retailers are seemingly cursed with simultaneously missing sales for
want of popular products, while having to use markdowns in order to sell the many
unpopular products still accumulating in their stores.

Recently however, a few innovative firms, such as Spain-based Zara, Mango and
Japan-based World Co. (referred to as "Fast Fashion" retailers), have gone substan-
tially further, implementing product development processes and supply chain archi-
tectures allowing them to make most product design and assortment decisions during
the selling season. Remarkably, their higher flexibility and responsiveness is partly
achieved through an increased reliance on more costly local production relative to the
supply networks of more traditional retailers.

At the operational level, leveraging the ability to introduce and test new products
once the season has started motivates a new and important decision problem, which
seems crucial to the success of these fast-fashion companies: given the constantly
evolving demand information available, which products should be included in the as-
sortment at each point in time? The problem just described seems challenging, in part
because it relates to the classical trade-off known as exploration versus exploitation,
usually represented via the multiarmed bandit problem.

In this thesis we analyze the dynamic assortment problem under different sets
of assumptions, including: (i) without lost sales; (ii) with lost sales but observable
demand; (iii) with lost sales and censored information; and (iv) with time vary-
ing demand rates. In each case we formulate an appropriate model and suggest a
(near-optimal) policy that can be implemented in practice, together with associated
suboptimality bounds. We also study the incorporation of substitution effects and



the extension of the models to a generic family of demand distributions. The com-
mon solution approach involves the Lagrangian relaxation and the decomposition of
weakly coupled dynamic programs.

The dissertation makes three contributions: (1) it is the first attempt in providing
mathematical optimization models with near-optimal solutions for the dynamic as-
sortment problem faced by a fast-fashion retailer; (2) our analysis contributes to the
literature on the multiarmed bandit problem, in particular for its finite-horizon ver-
sion, we derive a general closed-form dynamic index policy that performs remarkably
well; and (3) the solution approach contributes to the emerging literature on duality
in dynamic programming.

Thesis Supervisor: Jremie Gallien
Title: J. Spencer Standish Career Development Professor
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Chapter 1

Introduction

1.1 Motivation

Long development, procurement, and production lead times resulting in part from a
widespread reliance on overseas suppliers have traditionally constrained fashion re-
tailers to make supply and assortment decisions well in advance of the selling season,
when only limited and uncertain demand information is available. With only little
ability to modify product assortments and order quantities after the season starts and
demand forecasts can be refined, many retailers are seemingly cursed with simulta-
neously missing sales for want of popular products, while having to use markdowns
in order to sell the many unpopular products still accumulating in their stores (see
Fisher et al. 2000).

Since the late 1980's an industry-wide initiative known as "Quick Response" (see
Hammond 1990 for a more detailed description) has focused on attenuating that
curse, meeting some success. Leveraging information technologies, improved product
designs and manufacturing schemes as well as faster transportation modes, some of its
followers have significantly improved the flexibility of their overseas supply networks,
thus managing to postpone part of their production until more demand information
can be gathered.

Recently however, a few innovative firms including Spain-based Zara, Mango and
Japan-based World Co. (sometimes referred to as "Fast Fashion" companies) have
gone substantially further, implementing product development processes and supply
chain architectures allowing them to make most product design and assortment de-
cisions during the selling season. Remarkably, their higher flexibility and responsive-
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ness is partly achieved through an increased reliance on more costly local production

relative to the supply networks of more traditional retailers. The contrast between

these two supply-chain design alternatives seems particularly drastic: Zara's design-

to-shelf lead time range for new or modified product is 2 - 5 weeks, versus 6 - 9

months for a more traditional retailer; in-house production during the season is re-

ported to be approximately 85% for Zara, versus less than 20% for other retailers;

Zara manufactures about 11, 000 different products per year (excluding variations in

color, size and fabric), compared to only 2, 000-4, 000 items for key competitors; only

15 - 20% of Zara's sales are typically generated at marked-down prices, compared

with 30 - 40% for most of its European peers, furthermore the percentage discount

for their marked-down items was estimated as roughly half of the 30% average for

other European apparel retailers (see Ghemawat and Nueno 2003).

At the operational level, leveraging the ability to introduce and test new products

once the season has started motivates a new and important decision problem, which

seems key to the success of these fast-fashion companies: given the constantly evolving

demand information available, which products should be included in the assortment at

each point in time? Figure 1-1 provides a conceptual representation of this operational

challenge: in each period over a finite horizon (representing the whole season T), the

retailer must decide the subset (N) of products that will be offered from a larger

set (S) of all retail introduction candidates. As sales occur, the retailer gathers new

demand information about each particular product that was included in the latest

assortment, which may be combined with prior historical demand information to

select the next assortment - although not shown in Figure 1-1 for simplicity, it must

be noted that the assortment decision can typically only be implemented after a lag

(k?) corresponding to the design-to-shelves lead time.

The problem just described seems challenging, in part because it relates to the

classical trade-off known as exploration versus exploitation: in each period the retailer

must choose between including in the assortment products for which he has a "good

sense" that they are profitable (exploitation), or products for which he would like to

gather more demand information (exploration); that is, he must decide between being

"greedy" based on his current information, or try to learn more about product demand

(which might be more profitable in the future). In addition, this problem poses itself
frequently, for a high number of products, and involves a large amount of data.

Incidentally, we only have limited understanding at present of how these companies

11
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Objective: Maximize Total Season Profits

N

T

Season Current Season
Start Pe riod End

Historical POS Dynamic Candidate s orI : ' ;'. . ,DatafromPast Assortment ; .roductAssortments Decision'-.s,,t, ....Data iromPast i Assotment
Assortments Retail Introduction Test
Assortmnts ~ A rDecison

E

Figure 1-1: The dynamic assortment problem.

actually solve this dynamic assortment problem in practice, and all studies focusing

on fast-fashion companies we are aware of (e.g. Fisher et al. 2000, Ghemawat and

Nueno 2003, and Ferdows et al. 2003) only describe this challenge in qualitative terms.

Our main objective in the present paper is thus to develop and analyze a quantitative

optimization model capturing the main features of this dynamic assortment problem,

with a view towards eventually creating an operational decision support system.

The remainder is organized as follows: in Chapter 2 we provide all the duality

results for dynamic programming that are used throughout the thesis. In Chapter 3

we present the basic dynamic assortment model under the following salient assump-

tions: (i) the demand process for each individual product is independent of the other

products; (ii) there are no lost sales; and (iii) the demand rates remain constant dur-

ing the selling season. Chapter 4 shows how substitution effects can be taken into

account, and Chapter 5 covers the models that consider inventory decisions. Finally,

in Chapter 6 we provide concluding remarks and discuss other model extensions.

12
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1.2 Literature Review

We first discuss papers focusing on assortment problems. A first subset is found in

the Marketing literature, where several studies, typically motivated by supermarkets,

consider static assortment problems formulated as deterministic nonlinear optimiza-

tion models in which the demand of a product depends on the allocated shelf space,

and the overall space available is a limited resource. A classical example in this vein

is Bultez and Naert (1988); for more recent work see Kok and Fisher (2004) and ref-

erences therein. In the Operations Management literature, van Ryzin and Mahajan

(1999) and Smith and Agrawal (2000) are two papers also considering static assort-

ment problems, but with a stochastic demand model and static product substitution.

That is, customer demand reflects aggregated substitution effects depending on the

initial assortment decision, but not on the actual inventory levels observed by individ-

ual customers once arrived to the store. In contrast, Mahajan and van Ryzin (2001)

describe a more detailed assortment model capturing dynamic substitutions, that is

substitutions due to stockouts experienced by individual customers, and analyze it

using sample path methods.

None of the papers just cited considers demand learning, and accordingly the

assortment problems they investigate are static, not dynamic. Presumably because

of the relative novelty of fast fashion companies, we have in fact not found in the

literature any dynamic assortment model explicitly described as such. While papers

underlying the quick response initiative described in the previous section do place

much emphasis on learning and exploiting early sales information, the demand infor-

mation acquired over time is primarily exploited by the manufacturer to make better

ordering and production quantities decisions, as opposed to product design or assort-

ment decisions; the seminal paper by Fisher and Raman (1996), motivated by skiwear

manufacturer Sport Obermeyer, presents a two-stage stochastic programming model

in which initial production commitments are made before any sales occur, but fur-

ther production decisions are made in a second stage after receiving some customer

orders and refining total sales forecasts. Note that the trade-off between exploration

and exploitation is not present in the problem just described, where in fact the opti-

mal policy consists of postponing the ordering of products for which demand is most
uncertain.

As may already be clear from Figure 1-1, our work is closely related to the mul-

tiarmed bandit problem, which has been extensively studied in the literature (see

13
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Berry and Fristedt 1985, Kumar 1985, and Brezzi and Lai 2002). In the discrete-time

version, a player chooses N arms to pull out of a total of S available in each one

of T periods. Whenever pulled, each arm generates a stochastic reward following

an arm-dependent distribution, which is initially unknown but can be inferred with

experience as successive rewards are observed; the player's objective is to maximize

total reward over the game horizon. In the present paper, pulling an arm is equivalent

to including in the assortment the product to which it is associated.

A remarkable result for the multiarmed bandit problem is due to Gittins (see

Gittins and Jones 1974, and Gittins 1979). It involves the definition of the so-called

Gittins' index for each arm s, equal to the lump sum that would make the player

indifferent between retiring or playing arm s individually, ignoring the other arms (cf.

Bertsekas 2001, Vol. II, pp. 60-70). Assuming independent arms, infinite horizon

(T = oc), exactly one arm pulled in each stage (N = 1) and a discount factor strictly

smaller than one, the optimal policy is to play in each stage the arm with the highest

Gittins' index. Among several subsequent extensions to Gittins' result we highlight

the work on restless bandits by Whittle (1988), whose analysis is related to ours in

that it also involves Lagrangian multipliers.

In the finite horizon case (T < oc), it is known that Gittins' index policy is in

general not optimal. Relevant references include the book by Berry and Fristedt

(1985), which presents analytical techniques similar to the ones we use in the next

sections. Lai (1987) develops a policy (or allocation rule) based on the calculation

of an upper confidence bound for each arm (which can also be seen as an index).

For the case with multiple plays per stage, Anantharam et al. (1987) consider the

frequentist version of the problem, where the objective is to minimizing regret. While

the allocation rule they propose is asymptotically efficient, it does not seem directly

applicable to our problem because it requires a setup phase of at least S x N periods

in order to have N initial observations per arm, and does not allow for a response lag

(stemming in our context from the design-to-shelf lead times).

In §3.3.5 we introduce an assortment implementation lag to our model so it be-

comes equivalent to a finite horizon multiarmed bandit with a response delay. The

amount of literature available for this variant of the classic problem is rather limited.

Most of the papers come from the statistics community that is interested in the ap-
plication to clinical trials. However, the typical model involves only two arms with

Bernoulli rewards. A good example is the recent work by Hardwick et al. (2005),

14
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where the response delay has an exponential distribution (in our case the lag is con-

stant and measured in number of periods).

Finally, the paper by Bertsimas and Mersereau (2004), which focuses on an adap-

tive sampling problem, is the reference that is methodologically closest to our work

- their model is a finite horizon version of the multiarmed bandit problem, and

their analysis also involves Lagrangian decomposition. However, they do not consider

response lags and assume a Beta-Bernoulli learning model, while we use the Gamma-

Poisson model. Besides, in contrast to that paper we provide a suboptimality bound

for the policy we derive.



Chapter 2

Duality Results for Dynamic
Programs

Dynamic programming (DP) is the natural methodology used to model and solve
sequential decision problems. However, despite its versatility, in the vast majority of
cases when a closed form optimal policy is not available, the numerical solution of
the model involves computational requirements that quickly become overwhelming.
This fact is known to be the curse of dimensionality of DP (see Bertsekas 2001), and
as a consequence, approximate solution methods are in order.

The DP models developed in this thesis are subject to the curse of dimensionality
and the approximate solution approach we follow is based on Lagrangian relaxation
and the decomposition of weakly coupled dynamic programs. The underlying concepts
involved are similar to those of the well-established theory of duality for general
nonlinear optimization problems (see for instance Bertsekas 1999). The approach
dates at least from the late 80's with the independent work done by Karmarkar
(1987) on a finite-horizon multilocation inventory problem, and the seminal paper
of Whittle (1988) on restless bandits. The rest of the literature reporting successful
applications of this methodology is rather recent, see for instance Castafion (1997),
Talluri and van Ryzin (1998), Yost and Washburn (2000), Rajaram and Karmarkar
(2002), Hawkins (2003), Bertsimas and Mersereau (2004), and references therein.

The results shown in the present chapter can be seen as a generalization and
extension of the individual applications found in the literature.
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2.1 The Dual DP

Under the same framework as in Puterman (1990) and Bertsekas (2001), consider

the following generic finite horizon Bellman equation, in which periods are counted

backwards: 

J7*(x) = max gt(x, u)+ E,(,u) [Jtl((ot(x,u, n))] x E (2.1)
a'u<N

with J(x) = 0 V x E Q2.
In terms of notation, bold symbols represent vectors, and in particular, x, u, and

n correspond to the state, control, and random disturbance vectors respectively (note

that index t for these quantities has been omitted for ease of notation). The state
space is , and the control space is given by the intersection of U (an arbitrary set)
with all the control vectors that satisfy the linear constraint a'u < N. The transition

function pt(x, u, n) captures the dynamics of the model from period t to period t- 1.
The proofs we provide assume that the disturbance n takes values in a countable

space (in order to avoid unnecessary technical details, see the discussion in §1.5 of

Bertsekas 2001).

In our case, the linear constraint a'u < N corresponds to a shelf space constraint

but in general it can be regarded as some "coupling constraint" that is conveniently

relaxed, which leads to the definition of dual policies that will later prove to be useful

in finding near-optimal primal policies and upper bounds for the optimal profit-to-go.

Let At(x) denote any function associated with period t that maps the state space into

the set of nonnegative real values; we define a dual policy to be any vector a functions

At = (t(-), At- (), * * , 1(-))-

For any dual policy At and any initial state x, the corresponding profit-to-go is

obtained by solving the dual dynamic program given by:

Ht (x) = NAt(x) + max gt(x, u) - At(x)a'u + IEn(,[Htl (ot(xun))] (2.2)
uEU '

with HA° (x) = 0 V x E 2. In words, a dual policy gives a price (Lagrange multiplier)
for a unit of shelf space for each period and each possible state.

1We present our results in a finite-horizon framework that fits the DP model to be introduced in
the next chapter. Analogous results can be derived for other settings, in particular, for the infinite
horizon case.

17



Chapter 2. Duality Results for Dynamic Programs

A dual policy At is optimal if it minimizes the right hand side of (2.2) for any

initial state. In line with standard dynamic programming theory, we recursively define

At(x) to be the smallest solution of the following dual problem:

Ht (x) = min NAt + max gt(x, u) -Ata'u + En(,,) [HAt1 ((t(x, u, n))], (2.3)
At>0 uEU

and it can be verified through straightforward induction that the policy A* is

indeed optimal.

The following proposition is an intuitive result that relates the primal and dual

DP's; a similar result for open-loop dual policies (to be defined shortly) can be found

in Hawkins (2003).

Proposition 1 (Weak DP Duality) For any period t, any dual policy At and any
given initial state x: Jt*(x) < H*(x) < Htt(x).

As in classical duality theory, an interesting theoretical question is to determine if
the first inequality in Proposition 1 ever holds as an equality; this question is partially

solved by the following proposition:

Proposition 2 (Strong DP Duality) Consider the following parametric function:

f,(x'; C) = max gt(x', u) + En(x',u) [J*l(pt(x', u, n))] (2.4)
a'u=C

If f, 1(x'; C) is increasing and concave in C for all T t, . . . 1 and states x'
reachable from x in period T, then Jt*(x) = H (x).

In contrast with (2.1), the parametric function defined by (2.4) requires the shelf

space constraint of the current period to be satisfied as an equality; the shelf space

constraints for the subsequent periods remain unaltered however.

Via a counterexample, it will be shown in the next chapter that strong DP duality

does not always hold. However, in the rather few cases of the dynamic assortment

problem when it does not apply, the duality gap is small.

2.2 Open-Loop Dual Policies

Solving the dual DP problem given by equation (2.3) seems just as hard as solving the
original primal problem (2.1), motivating further simplifications. Specifically, we now

18



Chapter 2. Duality Results for Dynamic Programs

restrict our attention to open-loop dual policies, in which the shadow price on shelf

space is constant across all states for each period; formally an open-loop dual policy

A is a constant vector (At, At-1,.. ., A1), rather than a vector of functions. We use the

name open-loop to be consistent with the usual concepts in DP theory that makes

a difference between the policies that depend on the system state (closed-loop) and

those that do not (see p. 4 in Bertsekas 2001). Castafion (1997) calls the closed-loop

dual policies stochastic multipliers and the open-loop policies deterministic multipli-

ers. Karmarkar (1987) refers to the latter as "restricted Lagrangian".

In the following, we will use the notation H"(.), instead of HtX(.), to denote the

profit-to-go corresponding to an open-loop dual policy A.

Proposition 1 implies that an upper bound for the primal problem is obtained by

considering the best open-loop dual policy:

Jt (X) < min H>(x) (2.5)
A>O

A better bound follows from using the best open-loop dual policy to approximate

(for each state) the profit-to-go Jt* 1(t(x, u, n)) in the Bellman equation (2.1), that

is: 2

Jt (x) < max t(xu) + En(x,u) [ min Ht_l (pt(x, u, n))] (2.6)
a'lu<N

However, the expectation in (2.6) is not separable and its calculation seems very

computationally intensive. By interchanging the order of the minimization and max-

imization operators in (2.6) we still have an upper bound and the problem becomes

separable but also then equivalent to solving (2.5). The minimization with respect

to A in (2.5) can be solved with any convex non-differentiable optimization method,

and yields the upper performance bound that we use extensively in this thesis.

It is interesting to note that finding the best open-loop dual policy, i.e. solving

(2.5), is equivalent to solve the original (primal) problem but requiring the coupling

constraint to be satisfied on average in each period, instead of having it satisfied for

each possible sample-path. In other words, for each period, the constraint a'u < N is

replaced by E[a'u < N], where the expectation is with respect to all possible states

weighted by the probability of reaching each one of them under a given (primal)

2In what follows there is a slight abuse of notation: we write A to denote a vector but the number
of components depends on the context, for example when writing HtA_ 1(.) A is a vector with (t- 1)
components.
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policy. This fact has been observed by several authors in their particular applications

(see Whittle 1988, Castafion 1997, and Talluri and van Ryzin 1998). We will show

the equivalence by means of an example relevant to the dynamic assortment problem,

that is the finite horizon multiarmed bandit problem with several plays per stage.

Consider S independent bandit machines. Let QS be the set of all possible states

of bandit s, that for any practical purposes can be assumed to be finite. The player

has T periods in which he can play (at most) N arm. If a given state i E Qs the arm

of bandit s is pulled, then the player receives a reward equal to Ri and a transition

to state j E ~Q occurs with probability Pij. For simplicity (and also in agreement

with the dynamic assortment problem) we assume that Ri > 0 Vi Us I= Q,. The

objective of the player is to maximize the total reward over T.

We consider the problem description in the previous paragraph to be the "original

primal problem". Suppose now that the player is allowed to play (at most) N arms

on average in each period. This relaxed version of the problem can be formulated as a

linear program (LP). In fact, let 7r be any admissible policy (for the relaxed problem).

For a given state j E QS, let j(t) be the indicator function that equals one if the

player pulls the arm of bandit s in state j at time t, and let y(7r) = E,[j(t)]. Then

y (7r) is a frequency measure that represents the expected number of times the player

pulls the arm of bandit j at time t under policy r. Let xT be the initial state (T = 1

if bandit s starts at state j E Qs), then the player solves the following problem:

T S

JT(xr ) = max E R 3 yJ(7r) (2.7)
t=l s=1 ijEs

It can be shown that problem (2.7) is equivalent to solving the following LP (see

Bertsimas and Nifio-Mora 2000):
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T S

J(x T ) = max Ey Rjy (2.8)
t=l s=l jiEs

subject to

Yj -l -j =ii +- Y j s, Mj E , Q, t = 2,..., T

E yJ < N t= 1,...,T (2.9)
s=l jEVss

y7J t > 0 Vs, Vj Q, t = 1,.,T

The constraints (2.9) ensure that the on average the player does not pull more
than N arms in every period. We now relax ("dualize") that constraint using a vector
of multipliers A. Let HT(xT) be the optimal value of the LP with the new objective
function subject to all the other constraints. From standard LP duality theory we
have that J(xT) = minx>o HT(xT). Following the same steps that led to the LP
formulation (2.8), it is easy to verify that H(xT) corresponds to the profit-to-go
reported by the dual DP (2.2) under the open-loop policy A. Hence, via an example
(that can be generalized), we have shown that when finding the best open-loop policy
we are actually solving a relaxed version of the original problem in which the coupling
constraint only has to be satisfied on average each period.

In the next chapters we will also be interested in finding the best stationary open-
loop policy (i.e. A = (A, A,..., A), for some scalar A > 0). It is now easy to see that

this is equivalent to solving the original problem but requiring the coupling constraint
to be satisfied on average over the whole horizon T. The reasoning is the same as
above but replacing (2.9) with the constraint:

T S

,Y E •Y < N T. (2.10)
t=l s=l jfEQs

As mentioned before, the upper bound obtained from considering open-loop dual
policies will be used later to asses the suboptimality of some heuristic policies. Then
knowing the quality of the bound would be relevant. In that respect, Adelman and
Mersereau (2004) provide an alternative LP-based bound that is shown to be tighter
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(or no worse) than the bound given by equation (2.5). However, the computation

of their bound is more demanding. Finally, there is some evidence showing that the

open-loop dual policy bound can be "asymptotically" tight. In fact, Weber and Weiss

(1990) prove this result (under certain regularity conditions, not easily verified) for

the average reward, infinite horizon, restless bandit. In their case, the asymptotic

regime corresponds to N and S tending to infinity while the ratio N/S remains fixed.
The parameters N and S are the same as in the example given above (which can also

be seen as a restless bandit but with finite horizon). When the regularity conditions

are not met, they claim that the "size of the suboptimality which one might expect is

minuscule". In a finite horizon network revenue management setting, Talluri and van

Ryzin (1998) also show that the bound (2.5) is asymptotically tight when the initial

leg capacities and sales volumes are scaled to infinity. An interesting open research

topic would be to find general conditions for this asymptotic result to hold.
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Chapter 3

Model without Lost Sales

In this chapter, we formulate the basic dynamic assortment model in §3.1, then discuss

its applicability and justify our assumptions in §3.2. Throughout the remaining of the

thesis all symbols in boldface represent vectors, subscripts represent the components

of a vector, and superscripts represent elements in a sequence.

3.1 Model Definition

3.1.1 Supply

Consider a retailer selling products in a store during a limited selling season. The set

of all products that the retailer may potentially sell is denoted by S = {1, 2,..., S};

this set includes both the products already available when the season starts and all the

variants and new products that may be designed during the season. The net margin

r, of product s E S is assumed to be exogenously given, positive, and constant. In line

with the features of fast fashion companies described in the introduction, we assume

that the selling season can be divided into T periods, and that at the beginning

of each of these periods the product assortment in the store may be revised; time

is counted backwards and denoted by the index t (thus representing the number of

periods remaining before the end of the season). Due to design, production and
distribution delays, there may be a lag between the period t when an assortment
decision is made and the period t-f at which this assortment is actually implemented

in the store (this also occurs at the beginning of period t - f). However, our approach
in this chapter is to perform our analysis in subsections §3.3.1 to §3.3.4 under the
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assumption that the lag is zero ( = 0), then adapt the policy and performance upper

bound we derive to the case with a positive lag > 0 in subsection §3.3.5.

The store's limited shelf space (or desire to limit in-store product variety due

to other considerations) is captured by the constraint that the assortment in each
period may include at most N different products out of the S available; we are thus

implicitly assuming that all products require the same shelf space. We also assume

a perfect inventory replenishment process during each assortment period, so that

there are no stockouts or lost sales. Consequently, in our model, realized sales equal

total demand, and we focus for each product on assortment inclusion or exclusion as

opposed to order quantity. Finally, holding costs are ignored in our formulation.

3.1.2 Demand

In our model, demand for each product in the assortment is exogenous and stationary

but stochastic, and we do not capture substitution effects. Specifically, we assume

that customers willing to buy one unit of each product s in the assortment arrive

to the store according to a Poisson process with an unknown but constant rate ys.

That is, the underlying arrival rate -ys is assumed to remain constant throughout the

entire season, but the resulting actual demand for product s may only be observed in

the periods when that product is included in the assortment. In addition, the arrival

processes corresponding to different products are assumed to be independent. As a

consequence, the learning process for a given product is not affected by the other

products that might be included in the assortment.

We adopt a standard Gamma-Poisson Bayesian learning mechanism (also used

for instance in Aviv and Pazgal 2002): The underlying demand rate 'ys for each

product s is initially unknown to the retailer, however he starts each period with a

prior belief on the value of that parameter represented by a Gamma distribution with

shape parameter ms and scale parameter a, (ms and ca, must be positive, and ms

is assumed to be integer'). Redefining time units if necessary, we can assume with

no loss of generality that the length of each assortment period is 1; the predictive

demand distribution under that belief for selling n, units of product s in the upcoming

assortment period is then given by:

1The model can be extended to consider non integer values of ms but the binomial coefficient
in equation (3.1) must be replaced with the corresponding F(.) terms, and the interpretation as a
negative binomial (to be given) would not be valid.
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Pr(n) (ns +ms -1)( + )n(as )ms (3.1)

which is a negative binomial distribution with parameters ms and a,(ac + 1)-1

When necessary, we will write n,(ms, as) to make the parameter dependence explicit.
If now product s is included in the assortment and n, actual sales are observed in
that period, it follows from Bayes' rule that the posterior distribution of qYs has a
Gamma distribution with shape parameter (ms + ns) and scale parameter (a, + 1).
In summary, for each product s and period t, the parameters of the prior distribution
on 7, are updated as follows:

(ms + ns, as + 1) If product s is in the assortment and ns sales

(ms, a,) ) are observed during period t
(mS as) If product s is not in the assortment

(3.2)
The intuition for the update procedure (3.2) is straightforward: the retailer initially
believes that ms units of product s will sell in a, periods on average, so that the
expected sales rate is E[ys] = ms/as; after observing then n, sales of product s he
subsequently expects (ms + n,) units of product s to sell in (as + 1) periods. Note
that the retailer's beliefs become more accurate with the number of observed sales,
since the variance of the prior is V[-ys] = ms/a2 so that its coefficient of variation
equals 1 / /n,.

3.1.3 Dynamic Programming Formulation

Given the discrete and sequential character of our problem, the natural solution
approach is dynamic programming (DP); the state at time t is given in our model
by the parameter vector I t = (, a), which summarizes all relevant information
including past assortments and observed sales2 (cf. Bertsekas 2001, Vol I. Chapter
6). In each period, the decision to include product s in the assortment or not can be
represented by a binary variable us c {0, 1}, where us = 1 means that product s is
included. The set U of all feasible assortments (i.e. the control space) corresponding
to the shelf space constraint described above can then be defined as = {u 

2For ease of notation, we omit the dependence of m and a on t.
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{o, 1is : ES us < N}.

The optimal profit-to-go function J(m, ct) given state (m, c) and t remaining

periods must then satisfy the following Bellman equation:

S

J (m, a) = mm Ers9+ En[Jt*- (m+ n usx+u)], (3.3)
S=l1 us<N s=1

where v u represents the componentwise product of two vectors, and the terminal

condition is J (m, a) = 0 for all states; the expectation En[] is with respect to the

product demand vector n with distribution s=1 Pr(nI), where Pr(nm) is given by

equation (3.1).

Note that the only link between consecutive periods in this model is the informa-

tion acquired about demand, and that different products are only coupled at a given

period through the shelf space constraint Es=1 us < N (clearly S > N, otherwise the

retailer would always include all available products in the assortment); this type of

problem is known as a weakly coupled DP. Observe also that the summation on the

right hand side of (3.3) includes the immediate expected profit associated with each

product and represents the exploitation component, while the expectation term that
follows captures the future benefits from exploration.

3.2 Model Discussion

This section begins with a discussion of the model realism grounded in a potential

application to the company Zara, and ends with comments on what we believe to be

our three most salient assumptions (independent products, no lost sales and stationary

demand).

At Zara, assortment periods (i.e. the time between two consecutive assortment

decisions) seem to correspond to one week (Ghemawat and Nueno 2003), and the

length T of the whole selling season thus falls between 12 and 24 periods (Zara has

only two seasons Spring/Summer and Fall/Winter); incidentally the assumption that

all periods have equal length can easily be relaxed in our model. A typical Zara store

is divided into three essentially independent sections (Women, Men and Children),

and each section is further divided into categories. As an example, the categories

for the Women section include: lower garment, upper garment, underwear, footware,

accessories, and suits. Within a category, the number N of different products seems
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to roughly vary between 20 and 60.3 These numbers do not take into account dif-

ferences in size, color and fabric however; more generally in our model a product

may represent an individual stock keeping unit (SKU) or a family of related SKUs

(e.g. different sizes or colors aggregated). Our shelf space constraint may reflect the

amount of space available for each section and category driven by the physical lay-

out of actual stores, but it may also result from deliberate operational or marketing

decisions. The assumption that all products require the same shelf space, which is

somewhat analogous to the equal capacity requirements assumed in the Sport Ober-

meyer study (Fisher and Raman 1996), could be relaxed at the cost of increased

model complexity. We note however that this assumption does seem realistic in the

case of a separate application of our model to each individual category as suggested

above, since products within the same category indeed have similar shapes.

Based on figures reported in Ghemawat and Nueno (2003), we estimate the total

number S of potential products in a category for the whole season to be of the order

of T times N, or 720, for Zara. While our formulation assumes that the corresponding

set S is known at the beginning of the season and does not change further on, in any

practical implementation new products may be added to S as they become available;

at Zara, new products are indeed designed during the selling season based on customer

feedback reported by store managers.

We now focus on what we think are the three most salient model assumptions:

Independent Products In contrast with most of the (static) assortment studies

discussed in the literature review §1.2, our basic model ignores all product

substitution and complementarity effects. In support of that assumption, the

absence of dynamic substitutions due to stockouts is consistent with the per-

fect inventory replenishment process we assume (see below). However, this

also saliently implies that the underlying customer demand for all products

offered is completely independent from the other products constituting the as-

sortment, a requirement clearly damaging realism. In practice, there may be

significant substitution effects between products from the same category (e.g.

two slightly different shirts may cannibalize each other when both introduced in

the assortment) and/or complementarity effects between products from differ-
ent categories (e.g. matching lower garments and upper garments). From that

3These observations are based on information provided on the company's website as well as visits
to various stores.
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standpoint, the demand learning model we use is relatively coarse; we observe

however that the current set of available tools for inferring demand dynamically

in the presence of substitution effects is very limited. We refer the reader to the

discussion in Chapter 4, where we also show how to use the index policy (to be

derived) in a setting with substitution effects.

No Lost Sales For the sake of model simplicity and tractability, we assume that the

inventory replenishment process (which we do not describe) is perfect, in the

sense that there are no lost sales under any assortment; we may thus focus on

assortment decisions as opposed to other operational issues such as inventory

ordering and service levels. In practice, Zara replenishes its stores twice a week

and seems to indeed experience fewer lost sales than other more traditional

retailers (Ghemawat and Nueno 2003). However, that assumption is clearly

very strong, and in fact Zara deliberately introduces some lost sales in order

to generate a feeling of "scarcity" among consumers (cf. Ferdows et al. 2003,

p. 66), a phenomenon which is not captured by our model where demand is

exogenous (see below). In this setting, ignoring holding costs seems consistent

with the assumption that inventory levels are exogenous as described just above.

More generally, we observe that holding costs are often ignored in the case of

seasonal products (see, for instance, Aviv and Pazgal 2002). In Chapter 5 we
introduce models that do consider lost sales and there we resume the current

discussion.

Constant Demand Rates In practice, the demand rate for fashionable products
usually follows some asymmetric "bell shaped" curve over time. However, our

model assumes that it is constant, mostly for tractability reasons - this is key in

particular to the fact that all relevant state information is captured by the pair

(m, c). While demand stationarity may be a particularly strong assumption in
some settings, we observe that it is consistent with some of our other assump-

tions. Specifically, an important reason why demand nonstationarity may arise

in practice is the use of dynamic pricing, but we assume that prices remain

constant throughout the season (the margin rs of every product s is fixed); note

that this is partly justified by the figures reported in Chapter ?? showing that

fast-fashion retailers rely less frequently on markdown policies, and that when

they do so their price markdowns are also lower. Likewise, another important
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driver for demand nonstationarity may be stockouts, but these do not occur in

our model since we assume a perfect replenishment process. Finally, our model

can be easily generalized to the case where all demand rates are multiplied by

the same deterministic time-varying factor, since this is equivalent to having

periods of different lengths. In Chapter 6 a model with variable demand rates

is presented and briefly discussed.

While we consider the above three assumptions to be quite strong, our approach is

partly motivated by the belief that the closed-form policy they allow to derive (in §3.3)

constitutes a useful starting point for designing heuristics or developing extensions

in more complex environments, as discussed in the next chapters. For example, we

describe in Chapter 4 a heuristic procedure for capturing substitution effects that is

based on the analysis of our basic model.

3.3 Analysis

3.3.1 Properties of the Profit-to-go Function

In this subsection we state two simple and intuitive properties of the profit-to-go

function of our assortment problem. The first result confirms the intuition that the

expected profit should increase if the prior beliefs are higher (i.e. the expected sales

rate for a product is larger), or more accurate (i.e. the coefficient of variation is

smaller); this follows mathematically from the fact that the negative binomial (3.1)

is stochastically increasing in ms and decreasing in as, so that the random vector

n(m, c) inherits the same properties4 (see Ross 1996). This is formalized by the

following Lemma, which will be used later on to establish further results:

Lemma 1 If m" > m' and a" < a', then J(m", a") > Jt*(m', a'), for all t. The
last inequality is strict if any of the former is strict.

The second result shows that dynamic assortment will do no worse on average

than implementing the optimal static assortment at the beginning of the season, and

no better than the optimal assortment under perfect information (see Aviv and Pazgal
2002 p. 25 for a comparable result):

4 For two vectors we write v > v 2 to denote that the given inequality holds componentwise.
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Lemma 2 For every state (m, a) and period t:

m ·. llS St*(m, ) c S

max rsE[Tys]u < [ max rY ], (3.4)Z1 u~~< N Z - Iy(mcr -
=1 uN 8=1 =1 s=1

where the s-th component of random vector y(m, a) follows a Gamma distribution
with parameters (ms, as).

Incidentally, the difference between J1t(m, ax) and the upper bound of (3.4 ) times

t is known as the Bayes risk or regret (see Lai 1987, p. 1092). It can be further

shown that J(m, a)/t is monotonically increasing in t, defining a bounded mono-

tone sequence which therefore converges when the planning horizon goes to infinity.

Empirical evidence and intuition suggest that it converges to the right hand side of

(3.4); we have not attempted to prove that conjecture however, since we are primarily

motivated here by situations where the opportunity to learn about demand is severely

limited by a finite selling horizon.

3.3.2 Remarks on the Dual Dynamic Program

The optimal dynamic assortment policy may conceptually be derived from the dy-

namic programming equation (3.3). The associated computational requirements are

overwhelming however, except for very small problem instances; even with a trun-

cated state space, only calculating the expectation in the right hand side of equation

(3.3) (which constitutes in fact the objective function of a discrete nonconcave op-

timization problem for which there is currently no standard solution method) is an

intensive numerical task. Therefore, we do not aim to solve the dynamic assortment

problem optimally; our motivation is rather to find a simple near-optimal policy that

can be easily implemented in practice.

We follow the solution approach outlined in Chapter 2. In the current subsection

we give some further remarks related to the particular dual DP obtained in the

dynamic assortment problem, and in the next subsection we show how the problem

decomposes when open-loop dual policies are considered.

Consider the parametric function defined in Proposition 2 (strong DP duality).

The following lemma shows that at least the increasing monotonicity is guaranteed.
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Lemma 3 If rs > 0 Vs, then ft(m, oa; C) is a strictly increasing function of C, with
C < S, for any state (m, a).

The lemma reflects the fact that the retailer can only do better given additional

shelf space, and ft(m, a; N) = J (m, a).
Except when t = 1, the pending concavity condition required by Proposition 2

may seem restrictive and difficult to verify. While finding weaker or simpler conditions

is the matter of future research, we have still found instances that provably satisfy

the one stated in Proposition 2, and we have also found a counterexample showing

that strong duality does not hold in general absent such a condition: For t = 2,

S = 2, N = 1, rl = r2 = 1, m = 44, m 2 = 4, a 1 = 10, and 2 = 1, it is easy

to verify that ft(m,c ; C) is not concave in C and J(m, a) < Ht*(m, a). As an

interesting observation, Proposition 2 does apply for any other value of ml, keeping

the other parameters constant. Moreover for C = 1 and m1 < 44 the optimal action

in the right hand side of equation (2.4) is to include product 2, but the optimal choice

switches to product 1 when ml > 44. We have observed that the non-concavity of

(2.4) always comes in hand with a similar discrete change in the optimal action of

the corresponding parametric optimization problem. However, the reverse is not true:

parameter values at which the optimal action changes do not imply ft(m, a; C) being

non-concave.

More generally, both our intuition and (limited) empirical observations suggest

that the cases where the parametric profit-to-go defined by (2.4) is non-concave are

somewhat pathological, and correspond to situations when both S and NT are small

and some of the initial beliefs have a high variance. In those cases, marginally increas-

ing the value of the shelf-space parameter C from a certain level may suddenly allow

to access both exploration and exploitation modes and result in a higher marginal

gain than the same increase from a smaller value of C, when only exploitation makes

sense. Because our subsequent analysis relies on an approximate solution to the dual

DP (2.3), our overall error will be the sum of the duality gap and an approximation

error. Proposition 2 and this discussion thus suggest that the latter error term will

dominate in most cases of practical interest.
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3.3.3 Single Product Subproblem

The next Lemma shows that with open-loop policies the dual DP decomposes into S

single-product subproblems:

Lemma 4 Consider an open-loop dual policy A = (At, At-1,..., A1), then the profit-

to-go can be written as: t s

HtX(m, a) = N A + E: HtX(ms, a8 ) (3.5)
T=1 s=1

where:

Hx (m, , = max lr8 - A .,± [H}(ms +n, as +1),Hi1(ma) }
t a,

us=l
(3.6)

The single-product subproblem defined by (3.6) is equivalent to a two-armed ban-
dit in which one arm provides a stochastic (unknown) reward, while the other is
deterministic and provides in each period t a reward equal to At. For a given open-

loop dual policy A, the values H x (ms, ac) can be calculated efficiently in a standard
recursive fashion. That is how we proceeded in our numerical experiments, but an

alternative would be to adapt the (polynomially solvable) LP formulation obtained
by Bertsimas and ifino-Mora (1996) for the infinite horizon case.

It is clear from (3.6) that for any fixed state (ms, as), H its(ms, as) in nondecreasing
with t . Also, it can be shown that H i (ms, as) is a convex and piecewise linear

function of (At, ... , A1), and the proof of Lemma 1 can be repeated replacing Jt*(m, a)
with H (ms, as), establishing the same monotonicity property with respect to ms

and as.
We now focus on the single-product subproblem and characterize its solution; the

following properties are insightful and can be used to reduce numerical computations.
For any open-loop dual policy A, let A l\' be the set of all states (ms, as) such that it

is optimal to include product s in the assortment in period t (i.e. us = 1 is optimal
in (3.6)), and define Bt'S as its complement (e.g., the stopping set in period t). The
next Proposition shows that Ai is a connected set which is separated from B i\ by astrictly increasing threshold function of , t.
strictly increasing threshold function of m,.
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Proposition 3 Let At > 0 Vt. For each period t there exists a strictly increasing
function 3tA(.) such that at state (ms, as) the optimal policy for the single-product
subproblem (3.6) is: us = 1 as < 3A(ms)

The next Proposition shows that the stopping sets decrease when the correspond-
ing shadow prices on shelf space increase:

Proposition 4 If At < At-l, then BA c BtXA,s.

When At < At-1 however, Propositions 3 and 4 imply that the optimal policy for
(3.6) is characterized by thresholds satisfying t s(ms) > Pt l,s(ms) for all ms. As a
result, when At < At-1 for all t subproblem (3.6) then becomes an optimal stopping
problem (cf. Bertsekas 2001, Vol. I p. 168). That is, for every initial state there is a
stochastic time 0 < t < t at which it is optimal to forever remove product s from the
shelf. If we further assume At = for all t, this becomes equivalent to the two-armed
bandit problem with one known arm (cf. Berry and Fristedt 1985, p. 92).

The inclusions of the stopping sets Bt's are not reverted when At > Atl since the
threshold functions OA.X(ms) might cross then. However, this can only happen for low
values of ms. In fact, the following Corollary (stated without proof) shows that the
threshold functions are linear for large values of ms:

Corollary 1 If At > Aq Vq < t - 1, and ms > A(t-q) Vq < t - 1, then pt(ms) =r (1 )--
rsms/At.

In Figure 3-1 we plot the threshold functions for a 3-period problem with rs = 1.
The top graph has (A1, A2, A3) = (4,5,6) and the bottom one has (A1, A2, A3) =

(4.6, 4.8, 5.0) . The continuous lines are obtained by interpolating the function values
for the integer points. In the bottom graph the threshold functions intersect around
ms m 13.
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Figure 3-1: The threshold functions when A3 > A2 > A1.

3.3.4 The Index Policy

In this subsection we derive a heuristic index policy for the dynamic assortment
problem. This is done in two steps:
First Step: a Closed Form Approximation for the Single-Product Profit-
to-go

* First, we impose At = A for all t, i.e. the shelf space opportunity cost is assumed
to be the same in all periods. The known arm in (3.6) is called in that case by
Gittins a standard arm, and it follows from Proposition 4 that:

HtAs(m 8, s) = max rs , - A + En (ms + ns, s + 1)], 0}. (3.7)
t' as · s a

* Second, we implement a lookahead horizon of length one (see Bertsekas 2001).
That is, in the recursive calculation of the expected profit at period t the profit-
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to-go of period t - 1 is approximated by the profit-to-go of stage 1. Formally,

the profit-to-go Ht,_l(m, as) is thus approximated by:

ft 1,s(ms as) = (t - 1) max {rsr - A, 0 (3.8)

Substituting (3.8) in (3.7) and using [x]+ to denote the positive side of x, we

see that the optimal strategy at period t in the approximate problem depends

on the sign of:

-Ax Ms ,\ T~ a8 ms + n ii
dts(m, a,) _rs _ _ + (t_ Ens S _ Ai 

as as + 

Sfs O+1 1) En r, s b b

where b = IE[ns] = s and V[ns] = E[ns] ( )rs a /m ' a a a 
(3.9)

The second equality above is obtained through direct algebraic manipulation

(similar to the example on p.12 in Berry and Fristedt 1985).

* Third, as a negative binomial with parameters ms and a,(a + 1)-1, n is the

sum of ms independent geometric random variables; we thus approximate ns by

a normal distribution with the same mean and variance, which is asymptotically

exact as ms increases by the Central Limit Theorem. This yields:

dMas(ms, a) ~ as m ((t-1). * '(bs) - bs) (3.10)

where 'I(z) = (x - z)q(x)dx is the loss function of a standard normal.

Since (z) is continuous, positive and strictly decreasing (cf. DeGroot 1970, p.
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247), the equation

(t - 1) 'I(zt) = Zt

36

(3.11)

has a unique solution for all t > 2 (in the following, we let z1 - 0 for com-

pleteness). Moreover, the values Zt, which are independent of the problem data,

are increasing and concave in t - see Table 3.1 and Figure 3-2 for the first few

numerical values of zt with four digits accuracy.

The policy for problem (3.6) resulting from these approximations is simple: if

bA < zt at period t, then include product s in the assortment (i.e. "pull arm s"

), otherwise do not include it. The corresponding profit-to-go is given by:

Ht s(ms, ) rsV; [(t- 1). T(bA)-b] + (3.12)
c o~ /~+l1

Table 3.1: First values of Zt.
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Figure 3-2: Plot of zt as a function of t.

t zt 0 t Zt

2 0.2760 8 0.8168
3 0.4363 9 0.8616
4 0.5492 10 0.9014
5 0.6360 11 0.9373
6 0.7065 12 0.9700
7 0.7658 13 0.9999

Zt
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Second Step: Linear Search in A
We now adapt to our problem a heuristic solution method initially developed

by Castafion (1997) that is essentially analogous to the heuristic method proposed

by Whittle (1998) for the infinite horizon restless bandit. Assume At = for all

t as before, and let ul be the optimal decision in the single-product subproblem

HtA s(ms, as) defined by (3.7). For any product s, we have that limo u = 1 and

limxAo ulAs = 0; moreover, it follows from (3.7) that H A,(ms, cs) is nonnegative and

nonincreasing in A. Consequently, there must exist rt, > 0 such that u = 1 if

and only if A < T t,$. The threshold ?Tt,s (multiplied by t) is exactly the equivalent of

Gittins' index for our version of the multiarmed bandit problem (where Gittins' index

is defined as the lump sum described in §1.2). Using the approximation derived in

the first step above, we obtain:

UA =1
ut,8 = 1

= a+/aT+ [(t - 1). T(bs) -b ] > 0 by definition of dt (m, ao) in (3.10);

X b5x zt by definition of zt in (3.11);

X A < r ms + t rs by definition of b in (3.9).

(3.13)

Substituting in the last expression of (3.13) the moments of y, (given at the end of

§3.1.2) and introducing the length of each period 6 (assumed with no loss of generality

to equal one everywhere else) in order to avoid the appearance of a unit inconsistency,

we finally obtain the following approximation for index Trt,s:

rt's ~ rsE[-yS]6 + Zt rV[Ys]6 (3.14)
/v[Y] +

= rs + Zt V[is]) (3.15)

In order to find a feasible policy for the original problem, Castafion suggests a lin-

ear search on the value of A so that the coupling constraint (in our case, Es=1 u <

N) is satisfied as an equality (ties can be solved with a lexicographic rule); in our

problem the resulting approximate policy therefore consists of selecting the N prod-

ucts with the largest indices t,s, calculated according to equation (3.14). In words,
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the index t,s represents the highest price at which one should be willing to rent some
shelf space in order to display (and sell) product s there; it is thus a measure of the
desirability of including each individual product in the assortment, and from that
standpoint the rationale behind Castafon's heuristic is to fill all shelf space with the
most desirable products. Note that the first term in the index expression (3.14) favors
exploitation, and the second term favors exploration, since it is increasing in both the
variance of -y and the number of remaining periods (through t). Intuitively, when
uncertainty about demand for a product s (captured by V[?8]) is high, there is more
benefit to learn from including s in the assortment because of the upside potential
from future sales. Because resolving this uncertainty does take some time however,
one may not be able to benefit from this learning with only few periods left before the
end of the season, since the associated upside potential then remains limited. That is,
one should increasingly favor exploitation over exploration as the remaining planning
horizon (and opportunity for leveraging exploration) shortens, which is captured by
the decrease with t of the multiplicative factor zt in (3.14).

Note that our index at,s takes the form of immediate expected profit plus some
function of the variance, and resembles in that way other indices defining policies
suggested for different versions of the multiarmed bandit problem by Ginebra and
Clayton (1995) and Brezzi and Lai (2002) for example. The fact that our policy thus
depends on only the first two moments of expected demand may be a desirable feature
from an implementation standpoint; in particular, the estimation procedure based on
experts opinions developed by Fisher and Raman (1996) for Sport Obermeyer could
be used to estimate the initial priors.

When the index formula is expressed as in equation (3.15) a salient feature is
made evident: learning term plays a role only if the uncertainty regarding the arrival
rate (V[y8 ]) is relevant with respect to the total uncertainty on demand (V[n8]). The
latter is affected by the fact that arrival rate "y is unknown, and also by the inherent
randomness of having stochastic demand, but only the first type of uncertainty can
be resolved by means of an dynamic assortment policy.

As an example, Table 3.2 describes some initial state data for which Figure 3-3
illustrates the behavior of our proposed index policy. In particular, Figure 3-3 shows
that the index policy generates different assortments depending on the length of the
planning horizon, as opposed to the greedy policy that always select products as if
there were only one period left to go. With N = 2 for instance, the index policy
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I s I r m, a, IE[y8 ] V[] I
1 4.0 4 0.98 4.1 4.2
2 4.0 6 1.44 4.2 2.9
3 4.0 9 2.10 4.3 2.0
4 3.9 3 0.74 4.1 5.5

Table 3.2: Data of the example in Figure 3-3.
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Figure 3-3: Graphical representation of the proposed index policy.

would select products 2 and 3 if t = 1, products 1 and 3 if t = 2, and products 1
and 4 if t = 3. In contrast, the greedy policy would always select products 2 and 3,

regardless of the number of periods remaining and the variance of the priors.

It might seem counterintuitive that the second term in the index formula (3.14)

is decreasing with respect to the expected demand rate E[y]. However, a similar

situation is observed in other approximations of the Gittins index (for instance, see

equation (16) in Brezzi and Lai 2002), and it is due to the particular relation between
the expectation and variance for a Poisson distribution. 5 Moreover, it is easy to prove

that, for E[Ky,] > -, the index formula is increasing in the expectation of the demand

rate (regardless of the variance). Note that this covers all reasonable values of the

5 The approximation to the Gittins index given by equation (16) in Brezzi and Lai 2002 is de-
rived for the general infinite horizon case with independent arms. If the rewards follow a Poisson
distribution, the learning term in the approximate index formula is increasing in the variance and
decreasing in the expectation of the unknown parameter.
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expectation. In fact, for t = 24 (and t = 1), the index formula is strictly increasing

in the range E[7y] > 0.06. Then, given two products with the same net margin and

variance, the retailer would prefer the one with a higher expected demand.

In the case when periods are not equal, for example when all demand rates are

affected by the same inflation/deflation factors during the season, the derivation of

the index formula is the same as above but using the following limited lookahead

horizon approximation:

- tm A '1H; T=1 max rs-- -, Oj
5t Os 5t, 

where t is the length of period t. We obtain the same index formula as in

equation (3.14) but with t replacing 6, and t comes from solving the equation
t-1

Zt- = 5 . ( t).
Finally, when assessing the performance of the index policy defined above, our

primary benchmark will be the greedy policy, which consists of selecting in each pe-

riod the N products with the highest immediate expected profit rsE[ys] (thus greedily

favoring exploitation over exploration). The greedy policy is also known in the mul-

tiarmed bandit literature as play-the-leader rule; note that it still involves learning

despite its myopic nature, since priors are still updated in each period with observed

demand with that policy, only the impact of assortment decisions on future learning

is ignored. As a result, several authors (e.g. Aviv and Pazgal 2002) also refer to it as

passive learning.

3.3.5 Assortment Implementation Lead Time

In this subsection we remove the assumption that the assortment decisions can be

implemented in the same period when they are made. Instead, we assume that there

is more generally a constant lag of e periods between the time when the assortment

decision is made and the time when it becomes effective in the store. That is, an

assortment decision made in period t will impact the store in period t - . In the

case of Zara, the implementation lag would likely be an integer value between 2

and 5, representing the same number of weeks since assortment decisions seem to be

made on a weekly basis. Although this implementation lag f arises in practice from

delays associated with all process steps between design and storage on the shelf (e.g.,

drawing, procurement, sewing, distribution, etc.), in the following we will only refer
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to as the "lead time".
The existence of a positive lead time makes the learning process slower since

anything that has been learned about demand can only be implemented periods

later. As a consequence, the number of remaining effective "learning periods" is

reduced to t - - 1. This has a direct impact on expected profits as it can be seen

in the following Lemma (the proof is by induction):

Lemma 5 Let Jte(m, ) denote the optimal expected profit-to-go when the lead time

is equal to I' periods. Let ' = (t - L l(f + 1)). Then for any state (m, a) and
horizon length t:

Jo(m, a) > Jt(m, a) > 'JOt ( m, a) + ( - e' + 1) J t (m, a) (3.16)

The left hand side of (3.16) confirms the fact that with a positive lead time the

expected profit can only deteriorate, and the right hand side shows that the store can

expect to do better (but never worse) than solving ' and ( - ' + 1) independent

subproblems with zero lead time and planning horizons equal to Fel] and LeJ

respectively.6

The incorporation of lead times is a common practice in the Operations Manage-

ment literature. The standard procedure is to expand the state definition. In some

few cases, a transformation is possible so that the problem with lead times can be

reduced to one with essentially no lead times. The most well known example is the

single installation inventory control problem with i.i.d. demands and backlogs (see

Clark and Scarf 1960). However, in that case the transformation relies heavily on the

backlog assumption and the fact that demand distributions are known in advance. In

the dynamic assortment problem, such a transformation is not available and we must

extend the state definition to keep track of past decisions.

We now reformulate the dynamic program. With a positive lead time e the state

is given by the vector (vt, ... , vt-e+l, m, a), where vt,..., v t- e+l are the assortments

that will be offered from the current period t down to period t - + 1, and (m, a)

are the distribution parameters of the beliefs about demand at time t. The decision

made at time t E {T + f,. .. , e + 1} is the assortment that will be implemented at

6In terms of notation, LxJ is equal to the largest integer lower than or equal to x, and x] is
equal to x if x is integer, otherwise x] = Lx + 1.
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time t - , and the first e assortments vT,..., vT - +1 must all be determined upfront

(i.e. before the season starts at time T) with the only knowledge of the initial prior

on demand. The optimal profit-to-go for a given initial state can be then obtained

through the following recursion:

S t

J(vt ... ,vt- +l , m, a) = m r v + Wt*(vt, . .), vt -e+ l , m, ca) (3.17)
s=1 -=at-+1l

where WO = ... = We = 0 for any state, and Wt*(.) satisfies for t > e:

S

t*(vt . V It- l m,a)= max rs us+IEn[i1 (Vt-1,... v I u, m+nvt OV)
Es=1 us<N =1 s

(3.18)

The summation in the right hand side of (3.17) shows explicitly that the expected

profit of the next e periods cannot be affected. Intuitively, the existence of a positive

lead time slows the learning process down (since any learning about demand may

only have an impact periods later), and the number of remaining learning periods

at t effectively reduces to t - - 1. Note that if e = 0 then Jt*(m, ae) = Wt*(m, a)

and (3.18) reduces then to the recursion (3.3) studied in the previous subsections.

As is clear from the expansion of the state space by a factor of 2Sxe, the existence

of a positive lead time increases the complexity of our dynamic program. However,

the duality concepts introduced earlier still apply and may be used to generate the

following upper bound for equation (3.18):

t-e S
Wt*(vt ,vt- + , ma) < min N A + Hs(vS,...,v ,ms, a),

r=1 s=l

where H = .. = H =0 and for t > :

HtS(vS, . . . vt-+l, mns, ao) = max {r, At-e + Er [H i - +l, s1, mS + n v, at+ vt)
rTEnS~X ~ t"'A m -+t)

En, [Ht-,8(V' I 0, ms - n s V s V
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If the components of the open-loop dual policy are nondecreasing (i.e. At <

At- 1 Vt), then a stopping time property similar to Proposition 4 can be formulated:

Proposition 5 Consider a nondecreasing open-loop dual policy. At period t, if prod-
uct s will not be part of the assortment in the next f periods (i.e. vs- 1 = ... = vs =
0), and it is not optimal to include it in the assortment of period t - f (i.e. the second
term in the right hand side of the equation above is optimal), then it is also optimal
not to include product s in the assortment of any period beyond t - .

In other words, Proposition 5 says that, if product s will not be part of the

assortment in the next f periods, and it is optimal not to include product s in period

t - , then it will be also optimal not to include product s in the assortment of

periods beyond t - . If product s will be included at least once in the next f periods
(equivalently, if the condition vt-e+l - = 0 does not hold), then Proposition

5 is no longer valid. If fact, consider for example an instance with three periods

(t = 3), one period of design-to-shelf lead time ( = 1), an open-loop dual policy with

A2 < A1, and parameters for a product s such that rsub < A2. Assume that product

s will be part of the assortment in period 3 (v 3 = 1). Since the expected immediate

profit r S- is less than the opportunity cost A2, and since after period 2 there are no

more decisions to be made, it can be seen (from solving single-product maximization

above for t = 3) that product s should not be included in the assortment of period

2 (i.e. us = 0 is optimal). However, the optimal decision in period 2 (for period 1)

will depend on ns, the sales of product s observed during period 3. Clearly, if n is
large enough so that rs mjs+n > A1, then it will be optimal to include product s in
period 1. By the contrary, if3 = 0, meaning that product s will not be part of the

assortment in period 3, then us = 0 is optimal in periods 3 and 2 (for periods 2 and

1 respectively) as stated by Proposition 5.

We can invoke arguments similar to the ones used in section §2.2 to obtain the

following upper bound for the maximization of JT(vT, .. , VT-e+l , m, a) with respect

to (vT, ... , vT - e+l) subject to the corresponding binary and shelf space constraints:

T S T
min NYT A+ max A, as)Ek ( E-~ (tsV-T)VT-Hs(vT ... ,vT-' +I s O s))

T=1 s=l E-U[--1 s(r=T-3
(3.19)
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which provides the upper bound that we will report for the performance of various

policies simulated in Section §3.5 in environments with a positive lead time.

Finally, our proposed policy may be heuristically adapted by introducing the two

following modifications to the index definition given by equation (3.14):

1. First, we substitute the term zt in (3.14) with

t > ZL(t), (3.20)

where L(t) = max{t - 2, 1}. The rationale is that in period t the retailer

must decide the assortment of period (t - £), and from then on he has fewer

periods to learn about demand. In particular, if e > then ZL(t) = 0 SO that

the adapted index policy coincides then with the greedy policy, which can be

shown to generate optimal actions in that case. Note that if f > T - 1 then no

learning is possible and the best the retailer can do is to implement the optimal

static assortment for the next T periods; this would exactly corresponds to the

"traditional retailer" described earlier in § 1.1.

2. The second modification in (3.14) concerns the variance V[7ys]. Recall from

section §3.1.2 that the prior becomes more accurate as more sales are observed.

Hence, the prediction made at time t for the variance of 'ys at time t - must

take into account whether product s is committed as part of the assortment in

any of the periods in between. Specifically, we substitute the variance term
in the index formula with:

t
TZs+VT

v[%J]= l ' (3.21)

=t-e+lhat product s is included

where as before Y=t-e+l vs is the number of times that product s is included
in the assortment during the interval of e periods starting with period t. Note

that ms and a, are thus replaced by a prediction of what their values will be at

time t - , considering how many times product s will have been part of the as-

sortment by then. Intuitively, substitution (3.21) captures the predicted gain in

information quality (or equivalently reduction in prior variance) resulting from
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the assortments already decided but not yet implemented. As a consequence

of (3.21), the second term in the index formula (3.14) now decreases with the

sum ZET v, expressing that when designing the assortment for period t - the
incentive to explore the demand for product s reduces when it already has a

large presence in the next e assortments.

In section §3.5 we report the performance achieved by the heuristic policy just

described in various numerical experiments.

3.4 Demand Distribution from the Exponential Fa-
mily

The DP model introduced in section §3.1.3 was derived under the assumption that

the demand learning process has a Poisson-Gamma structure. We will show that the

model is essentially the same for a much broader class of demand distributions and

initial priors.

Consider the exponential family of distributions with one unknown parameter.

Suppose that the demand distribution of each product s belongs to that family, and

let 7s be the unknown parameter. In other words, the probability (density) function

of product s can be written as:

dF(nsIsy) = exp (as(ns) + bs(ys) + c,(ns)ds(ys)) (3.22)

where a(.), b(.), cs (.), and d (.) are known functions. If c,(ns) = n, then the

distribution is said to be in canonical form.

The following distributions belong to this family and are in canonical form: (1)

the normal distribution with known variance (s is the mean); (2) the binomial and

negative binomial distributions, in this case y, corresponds to the success probability

of the Bernoulli trials; (3) the Poisson distribution, with %ys being the rate (or mean);

(4) the Gamma distribution with an unknown scale parameter ys. The lognormal

and Weibull distributions are also part of the exponential family but they are not in

canonical form.

Demand distributions from the exponential family have been widely used in in-
ventory/retailing problems that involve learning (see for instance Azoury 1985 and

Eppen and Iyer 1997), the main reason being the following property that can be easily
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verified: Let nl
1, n 2 , ... , n, n + be a sample of i.i.d. random variables from a distri-

bution that belongs to the exponential family. Let y be the corresponding unknown

parameter, and let W('y) be the (initial) prior distribution of y with support O. Then
we have that:

Pr (exp (a(nc'+) + ( + 1) b(y) + d(y) E +1 c(nr))W(-y)dy

fo exp ( b(7) + d(y) E= 1 c(nT)) W(y)dy

Pr (n" + 1 Z (), O)
T=1

From the equation above it is clear that, for any initial prior W(y), the pair

(T=l c(n), a) is a sufficient statistic for the posterior distribution of n"+1 given
a sample of past observations of size a. This result allows us to extend our basic

dynamic assortment model to any demand distribution from the exponential family

with arbitrary priors. In the Bellman equation (3.3) the fraction m/la, must be
replaced by E[v(y)], where v(y,) = IE[nly,], and the update rule is now:

(m + c8 (n8 ), a, + 1) If product s is in the assortment and n, sales
(7n, a8) - are observed during period t

(ms, as) If product s is not in the assortment

The duality results developed in Chapter 2 still apply and the Lagrangian re-

laxation can be used to calculate the corresponding Gittins indices and the upper
bound, thought the solving the single-product subproblems can be more demanding.
We might not be able to follow the same step used in the derivation of the closed-

form index formula (3.14). However, we can easily adapt it to this more general case.

In fact, let a2 (-7y) = E[n2lys]- 2 (y,) be the (inherent) variance of the stochastic
demand. Note that if the demand distribution is in canonical form, then we have
that c2(-y) = (3s)()(%)( %). The equivalent index formula can be written as
follows:
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rlt,s / rlE[(%y) ] + Zt rV[ )] (3.23)
/EP (%)] +

= Ts (E[lv(Ys)1 + Zt V[v(y)] () [Y ) ) (3.24)

As an example, suppose that demand for product s is normal with unknown mean

%y and known variance p2. In this case, the index formula would be:

rt, r E[7 + ztZ/ + V[%

3.5 Numerical Experiments

The objective of the simulation study we report in this section is to assess the relative
performance in various environments of our proposed index policy against the greedy
policy and the dual upper bounds derived in §2.2 and §3.3.5. Throughout this section
we assume the Poisson demand model. We describe our methodology in §3.5.1, then
discuss our experimental results in §3.5.2 to §3.5.6.

3.5.1 Methodology

There seems to be two accepted methodologies for evaluating policy performance in
environments involving learning, and in the two next subsections we adopt each one in
turn. Subsection §3.5.2 follows what is known in the multiarmed bandit literature as
the Bayesian approach, also adopted for example in Aviv and Pazgal (2002). It relies
on the assumption that the predictive Bayesian distribution updated in each period
(in our case, the negative binomial distribution characterized by equation (3.1)) is
essentially correct. In simulations, actual demand in each period is generated from
that negative binomial distribution (as opposed to a Poisson distribution), and those
experiments do not require the specification of any underlying demand rates. These
experiments thus allow to focus on the quality of the index policy as a solution to the
:self-contained dynamic programming formulation (3.3), independently of the Bayesian
framework under which it has been derived.

Subsection §3.5.3 follows the frequentist approach (see Lai 1987 and Brezzi and Lai
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2002), also adopted for example in Bertsimas and Mersereau (2004). In contrast, this

method relies on the specification of the real underlying distribution parameters (in

our case, the demand rates y,), and actual demand for each product in each period is

generated in simulations from the corresponding Poisson distribution. This approach

therefore allows to characterize how the relative performance of different policies may

be affected by the quality of the information initially available (e.g. accuracy and

bias).

For completeness, we define the frequentist approach in more formal terms. Let

rr = (pt, p t- -l, . . ., 1) be any feasible policy for the dynamic assortment problem.7

For a given vector of demand rates y, a given policy rr, and an initial information

vector I t, we define the (frequentist) regret as the difference between the expected

profit of the optimal assortment with full information (i.e. knowing y) and the

performance of policy rr. Formally, we define:

Rt('y) = t*(y) - St(y) (3.25)
S t S

where *(y)=: ma= x Zrs,us,, and S(y) = E[ r rn (IT) ]
s=l T=l s=1

For each product s, the random variables n' are i.i.d. following a Poisson distri-

bution with mean %y. The information vector is updated according to the equation

I - = I' U {n', 'u(IT)}. The Bayesian formulation, analyzed in the previous sec-
tions, is obtained by integrating f St(y)dF(y), where F(-y) is a prior distribution

for the unknown demand rates.

The goal of the frequentist version of the multiarmed bandit problem is minimize

regret, which is the same as maximizing the expectation on the right of equation

(3.25). Note that it is impossible to achieve this objective uniformly over all parameter

configurations (cf. Anantharam et al. 1987, p. 969), therefore usually the search is

narrowed to policies that are uniformly good. A policy is uniformly good if Rt(-y) =
0(logt). Many simple policies are not uniformly good. For example, the policy

that always plays the first N arms is O(t). The greedy policy is also O(t) (see

Kumar 1985). For the case of the multiarmed bandit with multiple plays per state,

Anatharam et al. (1987) derive a policy (or allocation rule, in their terms) that is

7To be precise, r is a sequence of random vectors with values in U such that the event { t =
u} with u E U is measurable with respect to the a-field generated by all past observations and
assortments.
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asymptotically uniformly good (as t goes to infinity), and which is also asymptotically

efficient, meaning that it achieves a lower bound for all uniformly good policies.

Even though our models are formulated in a Bayesian framework, and developing

a theoretical extension to the frequentist viewpoint goes beyond the scope of this

thesis, we are still interested in using this approach as another way of testing the

goodness of our index policy versus the greedy rule. We did not implement the policy

suggested by Anatharam et al. (1987) since it requires at least S. N periods in order

to have N initial observations per arm (cf. p. 972). In the assortment problem we

have described, typically the number of periods T is in the order of S/N.

We used similar data sets for the experiments reported in §3.5.2 and §3.5.3. Specif-

ically, we assumed that the available shelf space N is equal to 30 and that the number

of potential products S is equal to 720, roughly matching our estimates of these quan-

tities for one category of products (e.g. Women's upper garments) in a Zara store

(see our discussion in §3.2). We ran most experiments for values of the season length

T equal to 10, 20 and 40, and values of the assortment implementation lead time e
equal to 0 and 5. We generated upfront the net margin r for each product s S

through independent draws from a Uniform distribution U[2, 8], and used these num-

bers throughout. We also assumed that the retailer had the same initial prior for

all products. In particular, we fixed the initial expected demand rate E[^y] at 10

products per period, but we tested three different values for the initial variance V['ys]:

5. 50, and 100, corresponding to values for the distribution parameters (mS, as) equal

to (1, 1/10), (2, 1/5), and (20, 2) respectively. The lower and upper bounds given by

Lemma 2 for the expected total profits generated by the optimal policy for these data

sets are provided in Table 3.3.

V[y,8 ] Static Assortment Bayesian Full Info.
5 2376.10 3042.16
50 2376.10 5424.06
100 2376.10 7176.11

Table 3.3: Bounds of Lemma 2.

Finally, all numerical experiments were performed on a personal computer with

a 1.6 GHz Pentium processor with 768 MB of RAM. The simulations and the up-
per bound optimization problem were coded in the C programming language. We ran

11, 000 replications for each simulation data point, which was sufficient to ensure that

all reported results have an absolute relative error smaller than 0.5% for a confidence
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level of 955%. The running time of one simulation point (i.e. 11,000 replications)
increased with the horizon length T, reaching about 5 minutes for T = 40. When
computing the open-loop dual policy upper bounds the support of the negative bino-
mial distribution was truncated at values with probability less than 10-6. Solutions

to the corresponding non differentiable optimization problem (cf. (2.5)) were com-
puted using the Nelder-Mead simplex method. While this algorithm is not generally

guaranteed to converge to the minimum (see Lagarias et al. 1998), it does maintain a

best solution found to date, which in our case still yields a valid bound (this follows
from weak duality since solutions to (2.5) correspond to open-loop dual policies). In
some instances we tried different starting points for this algorithm, and report then
the best bounds we have found.

3.5.2 Bayesian Experiments

Table 3.4 summarizes our numerical results for this first set of experiments. The total

expected profit divided by the number of periods (hereafter referred to as "expected

profit per period") is shown for the greedy rule and our index policy in its fourth
and fifth columns respectively. The sixth column provides the upper bound for these
quantities derived using DP duality. The seventh column reports the relative im-
provement achieved by the index policy over the greedy policy, and the eight column
provides the associated suboptimality gap for the index policy.

Over the range of scenarios considered in Table 3.4, the relative gap between the
performance of the index policy and the dual upper bound is typically small, reaching

a maximum value of 5.2%. This not only suggests that the index policy is in fact
near optimal, but also that the upper bound is quite tight.

We also observe that the proposed index policy always outperforms the greedy
policy, and that its relative advantage increases with the number of periods and prior

variances. Our interpretation is that increases in the season length and initial prior
variances respectively increase the opportunity to learn about demand and the payoff
from doing so, both favoring the index policy which implements a more elaborate
(active) learning strategy than the (passive) learning used by the greedy policy. The
impact of the season length shown in Table 3.4 appears more clearly in Figure 3-
4, which specifically plots the expected profit per period of the index and greedy
policies as well as the corresponding upper bound against the total number of periods
IT for an initial state equal to (1, 1/10) (i.e. E[y,] = 10 and V[y,] = 100) and no
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ndx-Grdy 10 UpBnd--ndx 100|[y ] T le Grdy Indx UpBnd -Grdy 1 ndx1 100
5 10 0 2598.35 2604.19 2608.05 0.22% 0.15%

20 0 2670.37 2686.78 2693.97 0.61% 0.27%
40 0 2726.53 2766.50 2819.91 1.47% 1.93%

5 10 5 2429.44 2441.42 2456.12 0.49% 0.60%
20 5 2522.01 2588.84 2608.58 2.65% 0.76%
40 5 2617.38 2709.41 2753.84 3.52% 1.64%

50 10 0 3498.76 3635.11 3656.37 3.90% 0.58%
20 0 3753.40 4082.60 4133.26 8.77% 1.24%
40 0 3910.34 4479.50 4714.70 14.56% 5.20%

50 10 5 2609.78 2861.14 2864.40 9.63% 0.11%
20 5 2961.80 3791.60 3945.55 28.02% 4.06%
40 5 3334.55 4396.98 4625.55 31.86% 5.20%

100 10 0 4031.50 4273.81 4311.70 6.01% 0.89%
20 0 4420.36 4985.29 5130.00 12.78% 2.90%
40 0 4646.64 5632.36 5883.58 21.21% 4.46%

100 10 5 2706.58 3095.76 3206.80 14.38% 3.59%
20 5 3198.91 4580.76 4787.70 43.20% 4.52%
40 5 3757.42 5530.75 5754.43 47.20% 4.04%

Table 3.4: Index policy vs. greedy rule (Bayesian approach).

implementation lead time ( = 0).

In line with previous results, the expected profit per period shown in Figure 3-4
increases with the total number of periods faster overall for the index policy than it

does for the greedy policy. An important observation however is that the performance
advantage of the index policy relative to the greedy policy only becomes significant

when the number of periods is large enough (in this case T > 6): ripping the benefits
of active learning seems to require a minimum number of decision and observation

periods, below which the greedy policy does just as well - other studies involving

Bayesian learning models (e.g. Aviv and Pazgal 2002, or Brezzi and Lai 2002) report
similar findings. In addition, while the performance of both policies appearing in

Figure 3-4 for a single decision period (T = 1) is by definition exactly identical to
that of the static assortment reported in Table 3.3, the greedy policy (and a fortiori

the index policy) significantly outperforms the static assortment with two or more
periods to go. Specifically, the performance gain over the static assortment from

implementing passive learning with a single additional period of observation (i.e.
T = 2) is about 21%: passive learning is considerably better for this data set than no
learning at all. However, while that finding may apply to many situations of practical
interest, it does not have any obvious theoretical grounding: consider an environment
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Figure 3-4: Relative policy performance for various horizon lengths.

with a first group of more than N products having known average profit rates, and a

second group with uncertain demand and lower predicted profit rates but high prior

variances, reflecting that some of the products in this second group may in fact have

higher underlying profit rates; the greedy policy would then never include any of

the products from the second group in the assortment, thus never learning anything

about their demand, and its performance would then remain identical to that of the

static assortment regardless of the season length.

Although very long season lengths appear unlikely in the retail setting that initially

motivated this study, one may legitimately wonder how the results of Table 3.4 and

Figure 3-4 would change in the limit where the number of periods T is very large,

which is also the object of the brief discussion after Lemma 2. Other experiments

conducted for T = 500 (not reported here) support the conjecture that the expected

profit per period of the index policy converges to the full information upper bound

appearing in Table 3.3 as T goes to infinity. Note that the greedy policy does not have

this property in general, as illustrated by the environment described in the previous

paragraph.
Table 3.4 also suggests that the relative advantage of the index policy over the

greedy policy becomes even more significant with an assortment implementation lead

time ( > 0). To focus on this issue we plot in Figure 3-5 the performance of the
index and greedy policies as well as the corresponding upper bound against the lead

time for an initial state equal to (E[y7 ], V[y,]) = (10, 100) as before, and a season
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length T equal to 24 periods. Note that the range of lead times considered ({0, ..., 5})
as well as the season length assumed (about six months) roughly correspond to our
estimates for the corresponding quantities at Zara (see §3.2).

Figure 3-5: Relative policy performance for various lead times.

The performance of both policies as well as the upper bound values shown in Figure
3-5 all exhibit a general decreasing trend. Increasing the lead time while holding the
season length constant effectively reduces the number of periods where demand can be
observed and acted upon, and therefore the potential to learn throughout the season;
this decreasing trend and the overall increase of performance with T appearing in
Figure 3-4 thus indirectly follow from the same phenomenon. Also, the results shown
in Figure 3-5 confirm that the performance of the greedy policy relative to both the
index policy and the upper bound quickly deteriorates when the lead time increases.
We believe that the distinction between active and passive learning is key to this
phenomenon. Specifically, increasing the lead time augments the magnitude of future
changes in information quality (i.e. expected reduction of prior variances resulting
from the next assortments) that the greedy policy ignores but the index policy
captures (through (3.21)), thus yielding a larger relative advantage to active learning
over passive learning.
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3.5.3 Frequentist Experiments

The goal of our frequentist experiments was to assess how the relative performance
of the index and greedy policies is affected by the quality of the demand information
initially available, both in terms of accuracy and bias. We used the same data sets
as in the Bayesian experiments, but used instead real underlying demand rates and
associated Poisson distributions when generating actual demand in simulations.

The objective of our first set of experiments was to examine policy performance
in environments where the initial priors were unbiased and had various degree of ac-
curacy, in the following sense: we generated upfront three sets of underlying demand
rates through independent draws from a Gamma distribution with the same param-
eters (nms, cs) as the three different initial Gamma priors characterizing the retailer's
initial beliefs we assumed; furthermore, when performing a simulation run with given
initial priors we used the corresponding set of underlying demand rates.

Table 3.5 shows in its fourth and fifth columns the expected profit per period of the
greedy and index policies obtained in those experiments. The sixth column gives the
full information upper bound, i.e. the expected profit achievable by a decision-maker
with knowledge of the underlying demand rates that were generated as described
above. The seventh column reports the improvement of the index policy upon the
greedy rule, and finally the eight column shows the performance gap of the index
policy relative to the full information upper bound, or relative regret.

The results shown in the seventh column of Table 3.5 confirm the earlier finding
that the index policy performs better than the greedy policy over a range of envi-
ronments and that this superiority is particularly significant for large initial prior
variance, large number of periods and long lead times, indicating that this finding
is quite robust. This relative advantage seems to always increases with the leadtime

e as before, and the results in Table 3.5 suggest that the same holds for the total
number of periods T. We interpret the relative regret of the index policy reported in
the last column of Table 3.5 as follows: the benefit of having full information relative
to using the index policy increases with the initial prior variance (which measure the
quality of the partial information initially available), decreases with the number of
periods (because longer horizons provide for more opportunity to learn), and increases
with the lead time (which effectively reduces the number of periods when demand
observations can be acted upon).

The goal of our second set of frequentist experiments was to estimate the impact
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V[|y] T e | Grdy Indx Full lndx-Grdy . 100 Full -Indx 100Grdy n dx

5 10 0 2722.38 2732.87 3166.81 0.39% 15.88%
20 0 2802.85 2819.59 3166.81 0.60% 12.31%
40 0 2864.43 2892.12 3166.81 0.97% 9.50%

5 10 5 2533.15 2544.88 3166.81 0.46% 24.44%
20 5 2635.37 2716.01 3166.81 3.06% 16.60%
40 5 2731.94 2840.27 3166.81 3.97% 11.50%

50 10 0 3330.73 3577.49 5366.44 7.41% 50.01%
20 0 3602.94 4048.13 5366.44 12.36% 32.57%
40 0 3763.54 4450.54 5366.44 18.25% 20.58%

50 10 5 2414.05 2779.42 5366.44 15.14% 93.08%
20 5 2754.51 3755.01 5366.44 36.32% 42.91%
40 5 3142.28 4382.27 5366.44 39.46% 22.46%

100 10 0 3872.19 4112.01 7102.50 6.19% 72.73%
20 0 4121.11 4822.96 7102.50 17.03% 47.26%
40 0 4276.16 5422.32 7102.50 26.80% 30.99%

100 10 5 2825.25 3078.95 7102.50 8.98% 130.68%
20 5 3274.56 4450.35 7102.50 35.91% 59.59%
40 5 3694.57 5351.85 7102.50 44.86% 32.71%

Table 3.5: Index policy vs. greedy rule (frequentist approach).

of improved prior accuracy on policy performance. As in Bertsimas and Mersereau

(2004), we assumed that the retailer could perform some preliminary off-line exper-
iments before the beginning of the season in order to strengthen his initial priors.

That is, we generated for each product M random observations from a Poisson dis-

tribution with a mean equal to the real underlying demand rate, and performed the

corresponding Bayesian updates to obtain the priors from which we started our sim-

ulations. Table 3.6, which has the same structure as Table 3.5, shows our results for
M= 3.

As shown in Table 3.6, the performance of the greedy and index policies become

statistically indistinguishable when the quality of the information initially available

is improved as described above - in this environment where the payoff from learning

is significantly reduced, sophisticated learning strategies do not yield any advantage

over simpler ones. In addition, the regret associated with both policies (i.e. the
performance gap relative to the full information upper bound) is drastically reduced

compared to the values in Table 3.5. The main insight we thus draw from Table
3.6 is the speed at which estimation accuracy and policy performance improve with

the number of preliminary offline observations. This experimental finding suggests

that the potential benefits associated with leveraging sales data across multiple stores
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| V[Y8] T e| Grdy Indx Full I Indx-C;rdy . 100 Full-Indx 100
________________ ______________________________ Grdy Indx

5 10 0 3039.11 3041.21 3166.81 0.07% 4.13%
20 0 3060.50 3062.36 3166.81 0.06% 3.41%
40 0 3079.01 3080.09 3166.81 0.04% 2.82%

5 10 5 3007.48 3006.30 3166.81 -0.04% 5.34%
20 5 3023.18 3040.09 3166.81 0.56% 4.17%
40 5 3056.82 3069.62 3166.81 0.42% 3.17%

50 10 0 5278.74 5278.74 5366.44 0.00% 1.66%
20 0 5288.60 5289.18 5366.44 0.01% 1.46%
40 0 5299.09 5299.08 5366.44 0.00% 1.27%

50 10 5 5263.65 5267.45 5366.44 0.07% 1.88%
20 5 5272.17 5272.97 5366.44 0.02% 1.77%
40 5 5285.92 5291.31 5366.44 0.10% 1.42%

100 10 0 7019.44 7022.49 7102.50 0.04% 1.14%
20 0 7028.40 7035.03 7102.50 0.09% 0.96%
40 0 7035.50 7045.87 7102.50 0.15% 0.80%

100 10 5 6995.09 6995.83 7102.50 0.01% 1.52%
20 5 7012.79 7017.94 7102.50 0.07% 1.20%
40 5 7026.63 7038.89 7102.50 0.17% 0.90%

Table 3.6: Relative policy performance with improved accuracy of initial information.

confronted with similar demand patterns may be very large in practice (see Chapter

4 for a related discussion).

Finally, in our third set of experiments we explored the impact of introducing some

bias in the initial demand information on policy performance. Specifically, we first

generated another three sets of biased demand rate estimations Y's (one set for each

possible type of initial prior information) using the exact same procedure followed

to generate the real demand rates %y as described above. Secondly, we assumed

now that the M = 3 preliminary demand observations were generated from Poisson

distributions with mean equal to the biased demand estimates y', instead of the true

demand rates %y used at this stage in the previous set of experiments, performed

the corresponding Bayesian updates, and started each simulation with the resulting

priors. The results for T = 40 and £ = 0 are shown in Table 3.7.

V[y] T | | Grdy Indx Full Indx-crdy . 100 Full-Indx 100

5 40 0 2649.41 2672.12 3166.81 0.86% 18.51%
50 40 0 3414.14 3457.27 5366.44 1.26% 55.22%
100 40 0 3626.21 3666.61 7102.50 1.11% 93.71%

Table 3.7: Relative policy performance with biased initial information.

The performance of the greedy and index policies reported in Table 3.7 are almost

56



Chapter 3. Model without Lost Sales

identical. This suggests that in the presence of bias, there is no advantage from
performing active learning over passive learning - these two strategies distinguish
themselves from the relevance of what information is acquired over time, not from
their ability to detect erroneous prior information. This observation may motivate
the development of more robust learning models including the ability to challenge
existing priors, for example through dynamic goodness-of-fit tests.

Remarkably, for both policies the performance results in terms of regret shown in
Table 3.7 are substantially worse than their corresponding values in Table 3.5 (where
the gaps of the index policy relative to the full information bound are only 9.50%o,
20.58% and 30.99% in the three corresponding scenarios). That is, the retailer would
have been better off without doing any experiments at all, regardless of which policy
is followed -- while preliminary demand observations can be extremely valuable as
shown in Table 3.6, it is particularly important to ensure that they are not biased.
If such additional sales data is obtained by observing demand in another store for
example, it is paramount to establish that these stores indeed face similar customer
populations, or at least that any systematic bias is corrected.

3.5.4 Assortment Rotation

From a qualitative perspective it is interesting to measure how much "assortment
rotation" is induced by the suggested index policy. We define the assortment rotation
as the expected percentage of the assortment that changes in a given period with
respect to the previous one. For example, if in period t, the assortment has products
A, B, and C, and in period t+ 1 it was A, D, and E, then the assortment rotation with
t periods to go is 2/3 (66%). For a given policy, the expectation is with respect to
the probability of reaching each possible state under that policy, so we can calculate
the assortment rotation as the arithmetic average of the assortment change in each
period during our simulated experiments.

Table 3.8 shows the assortment rotation for different values of the initial variance
(assuming all products with the same initial prior), and several season lengths T. For
instance, for a planning horizon of 20 periods and starting with an initial variance
equal to 5, under the index policy, half way through the season only 13% of the
assortment is changed on average. Figure 3-6 plots the assortment rotation of the
index and greedy policies as a function of the periods to go for the case V[y,] = 100
and T = 40.
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V[y8 ] Policy T I Periods to go
lI ____I IfT-i 2T/3 T/2 1

5 Grdy 10 45% 19% 14% 8%
20 45% 10% 7% 3%
40 45% 4% 3% 1%

Indx 10 52% 25% 21% 8%
20 54% 18% 12% 3%
40 55% 12% 8% 1%

50 Grdy 10 53% 17% 12% 4%
20 53% 7% 3% 1%
40 53% 2% 1% 0%

Indx 10 68% 34% 28% 5%
20 73% 27% 15% 1%
40 75% 14% 6% 0%

100 Grdy 10 57% 19% 14% 4%
20 57% 8% 3% 1%

40 57% 1% 1% 0%

Indx 10 73% 38% 31% 4%
20 75% 31% 16% 1%
40 78% 15% 6% 0%

Table 3.8: Assortment rotation.

Figure 3-6: Assortment rotation with active and passive learning (N = 30).
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As expected, the index policy induces a higher assortment rotation than the greedy

policy, which is consistent with the fact that the former has active learning. The

assortment rotation is also higher when the initial prior variance is higher, since there

is more uncertainty to resolve via exploration. As a rule of thumb, the assortment

rotation should be high at the beginning, drop to the half of the initial value after

the first third of the season, and then quickly converge to a value close to zero. In

general, 5 to 10 periods are enough to learn about demand. Note that this rule

was derived under the assumptions of our model. In practice, a fast-fashion retailers

usually maintains a non-zero assortment rotation since that contributes to attract

customers to the store. This phenomenon cannot be captured by our model since we

assume exogenous demand. However, our model and the index policy can be easily

modified so that the assortment rotation never goes below a certain threshold.

3.5.5 Sensibility Analysis with Respect to S and N

It is intuitively clear that the improvement of the index rule upon the greedy policy

should be more relevant when the set of potential products is larger with respect to

the amount of shelf space.8 In Figure 3-7 we show a set of numerical experiments that

capture this effect. The simulations where done under the Bayesian approach ignoring

lead times and using the same data set as in the previous subsection but with the hori-

zon length 7' equal to 24. The number of potential products S remained fixed at 720

and the amount of shelf space N took the following values: 720,120, 60, 40, 30, 20, 10.

The top curve in Figure 3-7 represents the relative improvement of the index pol-

icy compared to the greedy rule as a function of the S/N ratio. The monotonicity

and concavity of the curve implies that the marginal improvement is positive and de-

creasing with respect to S/N (or equivalently, is negative and increasing with respect

to N). We obtained a similar curve by setting the shelf space N equal to 10 and then

letting S take the values 10, 60, 120, 180, 240, 360, and 720. This suggests that the

performance of the index policy depends on the ratio S/N rather than specific values

of S and N.

The lower curve in Figure 3-7 corresponds to the suboptimality gap as a function

of SIN. We observe that by using the index policy the improvement upon the greedy
rule is much more relevant than the possible regret from not implementing the actual

8 In the remaining part of this chapter we will refer to the index policy as the one that uses the
original index formula (3.14 with at = 1).
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Figure 3-7: Sensibility analysis with respect to S and N.

optimal policy. Recall that the descent method we use does not guarantee finding the

optimal open-loop dual policy. Hence, the true regret might be even lower.

3.5.6 Response Surface Bandits

In this subsection we compare our index policy with other heuristic index policies

that try to explicitly capture the exploitation vs. exploration trade-off. In particular,

we would like to asses the performance of the index policy that uses the following
index formula:

rt,s = r(E[y] + kiV[-]) (3.26)

where k is a parameter that must be defined by the decision maker. Equation

(3.26) is a heuristic index formula widely used in the literature. In particular, it
has the same structure as the index formula that is studied in Ginebra and Clayton

1995 for the response surface bandit (that is why we denote the index by 'RS'). In
general, the index given by equation (3.26) seems to perform well. However, it has
the complication that the parameter k must be calibrated somehow (see Cope 2004).
Note as well that index formula (3.26) can be obtained as an approximation from our
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Chapter 3. Model without Lost Sales 6

index formula (3.14) by ignoring the expectation in denominator of the learning term,
and by replacing the finite-horizon factor zt with the parameter k (we again assume

t = 1).

T I k Rule Grdy Indx Ilndx-G7rdy 1 0 0

10 zt AG 4031.50 4273.81 6.01%
RS 4031.50 4259.88 5.66%

z AG 4031.50 4245.55 5.31%
RS 4031.50 4234.67 5.04%

1 AG 4031.50 4219.47 4.66%
RS 4031.50 4223.16 4.75%

2 AG 4031.50 3914.63 -2.90%
RS 4031.50 4024.40 -0.18%

20 zt AG 4420.36 4985.29 12.78%
RS 4420.36 4969.87 12.43%
AG 4420.36 4952.63 12.04%
RS 4420.36 4938.90 11.73%

1 AG 4420.36 4983.32 12.74%
RS 4420.36 4966.80 12.36%

2 AG 4420.36 4819.90 9.04%
RS 4420.36 4894.15 10.72%

40 zt AG 4646.64 5632.36 21.21%
RS 4646.64 5577.03 20.02%
AG 4646.64 5578.40 20.05%
RS 4646.64 5537.60 19.17%

1 AG 4646.64 5552.47 19.49%
RS 4646.64 5505.96 18.49%

2 AG 4646.64 5686.93 22.39%
RS 4646.64 5686.31 22.37%

2000 zt AG 4898.52 7014.20 43.19%
RS 4898.52 7012.12 43.15%
AG 4898.52 6977.56 42.44%
RS 4898.52 6974.42 42.38%

1 AG 4898.52 6262.23 27.84%
RS 4898.52 6219.92 26.98%

2 AG 4898.52 6882.27 40.50%
RS 4898.52 6873.71 40.32%

Table 3.9: Approximate Gittins index vs response surface index.

In Table 3.9 we compare the performance of the index policy using two different

formulas for the indices. The first one is based on the approximation to the Gittins
index given by equation (3.15) and has the following structure:
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AG = TV1ri 8 ] (3.27)
rt,s (Ens] + k (3.27)

The second index formula is the RS rule given by equation (3.26). The simulations

were done under the Bayesian approach assuming all initial priors equal to (1, 1/10)

(i.e. V[s] - 100), N = 30, and using the same net margins r as before. The

table compares both index rules considering different values for the k parameter

and three horizon lengths: 10, 20 and 40. Under the column labelled k, zt means

that k was replaced with the time-dependent factors that are the solutions to the

equation Zt = (t - 1). T(Zt), and z means that k was replaced with the average value

(T1 zt) IT.
From Table 3.9 it can be seen that the for the horizon length T equal 10 and

20 the AG rule with the time-dependent Zt factor outperforms all the other policies.

For T = 40 the best performance is achieved with the AG rule and k = 2, but

when T = 2000 the AG rule with the zt factor is again the best. This indicates

that k = 2 might be a good factor (or is well calibrated) only for the case T = 40.

Hence, the data-independent zt factors are definitely more convenient. Note that the

full information upper bound (cf. Lemma 2) for this instance is equal to 7180.96,

meaning that when T = 2000 the suboptimality gap of our heuristic policy is less

than 3% showing also a very good "asymptotic" performance.

As a final comment on the zt factors, it is easy to show by induction that the

limited lookahead horizon approximation used when deriving the index formula (cf.

equation 3.8) actually underestimates the profit-to-go function. Therefore, the zt

factors are rather conservative and might not be the most appropriate weight for

the learning term in (3.27) when T is large. A possible is to consider the following

profit-to-go approximation instead of equation (3.8):

-~ (ms, cs)_~(t) r 14
Ht8-ls(msv, s) = d)max r - ,0} (3.28)

6'St a8es 6t

where v(t) is a function that increases faster than linearly in t. Then the zt factors

would be obtained as the unique solution of the equation zt = (t) (zt) for each t.

Note that originally we had v(t) = t - (for t = 1). If v(t) increases faster than
linearly, then the corresponding zt factors will give more weight to the learning term
when t is larger.
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Chapter 4

Incorporating Substitution Effects

4.1 Heuristic Procedure

As argued in §3.2, our model would gain realism if demands for different products were

no longer assumed independent, capturing instead substitution effects between prod-

ucts from the same category, and possibly complementarity effects between products

from different categories. However, designing and analyzing a dynamic assortment

model where learning concerns not only the demand rates of individual products but

also their correlation structure seems very challenging for at least two reasons. First,

even if a Bellman equation similar to (3.3) could be written for such a model, the cor-

responding DP would predictably no longer be weakly coupled because of the many

relationships between different products introduced by the correlation structure, so

that our decomposition approach would likely break down. Second and perhaps more

fundamentally, the number of parameters required to characterize such a correlation

structure would be a priori in the order of S2; a high value of S relative to N x T

(the total number of demand observations available) may thus create a discrepancy

between the amount of data required for estimation and the speed at which it can

be acquired -- this is related to the problem known as "overfitting" in the Machine

Learning literature (i.e. the model is too complex with respect to the available data).

Indeed, our rough estimates of these parameters in the case of Zara (see §3.2) indi-

cate that this problem could be an important one in practice. It is also revealing that
(static) assortment studies proposing practical methods for estimating demand corre-

lation structures (e.g. K6k and Fisher 2004 , Anunpindi et al. 1998) typically rely on

sales history from multiple stores with different assortments assumed to face the same
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demand characteristics, that is substantially more learning data than the single store

observations we consider. While coordinating dynamic assortment decisions across

multiple stores and leveraging the resulting data constitutes an important avenue

for future research in our view, we caution that studies such as Fisher and Rajaram

(2000) have established that demand characteristics faced by different stores of the

same firm may in practice be quite different.

But we believe that the dynamic assortment policy presented in §3.3.4 and §3.3.5,

even though its derivation required the assumption of independence, may still provide

a useful starting point when designing heuristics capturing substitution effects. One

such possible design path, which we now develop, is to assume that the correlation

structure across products is known (or can at least be estimated upfront), while

the individual demand rates of individual products must be estimated dynamically

as before. As in the substitution models of Smith and Agrawal (2000) and Kok and

Fisher (2004) we can use the concept of the original demand for each product, defined

as the demand that would be observed for that product if all the other products were

also included in the assortment. In addition, we also assume that the retailer knows

the probability q that a customer switches to product s given that he originally

wanted product i but it was not available in the assortment - as in the last two

papers cited, this model assumes that each customer only makes one such substitution

attempt, and E ,iqj < 1 capturing the fact that customer might leave without
buying. Our dynamic index policy can then be adapted heuristically by performing

the following two modifications:

1. The retailer now maintains Gamma Bayesian priors with parameters (m, ca) on

the original demand rates for each product, so the information updating rule

must be modified to reflect that observed sales for a given product may include

some to customers who only bought it because their favorite choice was not

part of the assortment. Let u E U represent the assortment that was available

in the store at period t, s be a product that was part of the assortment (i.e.

u = 1), and n, be the sales observed for s. An estimate of the original sales ni

of product s is then given by

isn as y -i s qisi (1-- ui) (4.1)
O ,~ ,u

as~~~~~~~~~O 
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In words, the fraction of original observed sales is estimated as the ratio be-

tween the expected contribution of the original demand for product s and the
total expected demand considering substitution. The information state for each
included product s is then updated from ms to ms + ns, and a, is updated to

a, + 1 as before. The demand estimates for products not included in the as-
sortment remain unchanged in this proposal, although an alternative approach

could consist of also updating priors based on the fraction of sales that is dis-

carded through equation (4.1).

2. The index Trt,s derived in §3.3.4 (and extended to the case of positive lead time in

§3.3.5) is a measure of the desirability of independently including each product
in the assortment, defined as the opportunity cost of the corresponding shelf

space. In the presence of substitutions, the desirability of including a product
must also take into account whether it is a good substitute for other products

not included in the assortment. The selection of the N most desirable products

becomes then a combinatorial problem, which we propose to address through

the following quadratic integer program:

S

max ( +r qisi1 -U))US. (4.2)

S=1 US<N S=l ins 

In words, the objective in (4.2) evaluates the profitability of including each
product s in the assortment at t by adding to the initial desirability index t,s

the expected profits following from substitutions to product s from all products

i not included in the assortment (represented by the inner summation term).
This formulation thus still captures the essential trade-off between exploration

and exploitation, but corrects the exploitation term for the expected sales re-

sulting from substitutions. Note that when substitution effects are ignored (i.e.

qi = 0 Vi, s), solving (4.2) results in our original index policy.

4.2 Numerical Experiments

In this section we test the performance of the heuristic procedure suggested above.
Let Li = ,i qi < 1 be the probability that a customer wanting product i does

not substitute at all when that product is not included in the assortment. Following
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Smith and Agrawal (2000), we assume that Li = L and consider three particular
substitution structures:

One-Item Substitution: this would be the case when there is a particular item

that serves as the substitute by default for any other item (some sort of "vanilla

flavor" that any one might take when they do not find there first choice).

Adjacent Substitution: here the assumption is that the products can be sorted

according to some attribute and every customer would consider as a substitute

the product that is slightly better and the one that is slightly worse than their

first choice.

Random Substitution: in the case the retailer assumes that when a customer does

not find her first choice she will randomly substitute among those that are

available at the store.

The corresponding substitution matrices for these three cases are shown in Figure

4-1. Note that the only parameter that must be estimated is L, the probability that
no substitution occurs.

One-Item Substitution Matrix Adjacent Substitution Matrix Random Substitution Matrix

0 o0 1- 0 0 IL 4 - 0 0 0 n-- n-1 n-] n--1
o o 1-L 0 O-L 0 0 0 I-L O I-L I--L

O0 0 0 0 , , ,-1 nl n-I
}- L O 0-!nO _ 0 'ft 0 

0 1 -L 0 0 - 0 L - 0 IL

I-L -L 0I-
n--In-I n-- n--I 1

Figure 4-1: Simple substitution structures.

Recall that the heuristic procedure involves two modifications: (i) a new state

update rule (we refer to it as 'NU') that deflates the observed sales taking into account

possible substitutions (cf. equation (4.1)), and (ii) a quadratic integer program (we

call it 'QP') that provides the assortment selection in each period (cf. equation (4.2)).

I:[n order to capture the individual impact of each modification, for each substitution

structure we simulated the following policies for different values of L:

* IndexNUQP: this is exactly the modified index policy described in §4.1.
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* IndexQP: this policy decides the assortment by solving QP but then updates
the state information based on the total observed sales instead of using NU.

* IndexNU: opposed to the previous one, this index policy uses the new update

rule NU but the assortment decision ignores substitution, i.e. the N products
with the highest indices are included in assortment instead of solving QP.

* Index: this corresponds to the original index policy that ignores substitution
and does not deflate observed sales.

* GreedyNUQP: same as IndexNUQP but the linear term in the objective func-

tion of the quadratic integer program is given by the immediate expected return

rs m instead of the active learning index rlt,s.

* Greedy: the original greedy policy that ignores substitution and does not deflate
observed sales.

We also provide the corresponding full information upper bound, which also in-

volves solving a quadratic program. As a minor observation, note that when the

state information is updated using the deflated observed sales, the ms component is

no longer an integer value.

We tested the performance of the policies for each one of the substitution structure

described above. We followed the frequentist approach since we do not have a DP for-

mulation for the problem with substitution (therefore, the Bayesian approach would

not be appropriate). As before, we used the data set with all initial priors equal to
(1, 1/10) (but now the "real" demand rates ys come into play). For the one-item and

adjacent substitution the products were sorted by the net margins r, (in descending

order). This would be equivalent to the case when the production costs are the same

for all products (in one category) and customers substitute according to price. The

horizon length was set equal to 24 and we assumed a zero lead time. The quadratic

integer program QP was solved using the callable library of CPLEX 9.3. We noticed

that the running times increased dramatically in the number of products (i.e. the size

of the quadratic problem). As a consequence, we restricted our study to instances
with S = 144 and N = 6 (note that S/N = T, which would be a reasonable ratio
for the case of Zara). In each simulation we performed 100 replications, which was

sufficient to ensure that all reported results have an absolute relative error smaller

than 0.5% for a confidence level of 95%.
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The next three figures show the numerical results. In each figure, the order of the

policies in the legend corresponds to the order of the curves in the graph.

For the one-item substitution case product number 80 was assumed to be the sub-

stitute by default, representing the situation when customers might choose a rather

inexpensive alternative when their first choice is not available. In this case the per-

formance of the IndexNUQP and IndexQP policies is the same and is represented by

the second curve with a slope (cf. Figure 4-2). The IndexNU and Index policies also

have an identical performance given by the first dark horizonal line. This shows that,

when there is a substitute by default, the key step of the heuristic procedure is to

solve QP since then the "vanilla flavor" is most likely to be included in the assort-

ment. It is intuitively clear that this action should be optimal, and the proximity of

the QP policies to the full information upper bound confirms this observation. Note

as well that the relative performance of the policies is invariant with respect to the

no substitution probability L.

Figure 4-2: One-item substitution.

Figure 4-3 shows the results under adjacent substitution. In this case both modi-
fications to the original index policy are relevant. The most important observation is

that IndexNUQP remarkably outperforms GreedyNUQP for all values of L, meaning

that active learning can provide a substantial improvement upon passive learning.
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However, the large gap with respect to the full information curve shows that there

would still be plenty of room for more learning if T were larger.
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Figure 4-3: Adjacent substitution.

The case with random substitution is shown in Figure 4-4. Opposed to the one-

item substitution case, the IndexNUQP-IndexNU and IndexQP-Index policy pairs

perform almost identically. This means that now the key step of the heuristic pro-

cedure is to update the state using the deflated observed sales. Note that the gap

with the full information upper bound is large (as in the adjacent case), but the
improvement of IndexNUQP upon GreedyNUQP is still quite significant (favoring

active learning).

The previous numerical results confirm what intuition would suggest in sense that

the one-item and random substitution structures are two extremes of all feasible

configurations. In the first case the second modification of the heuristic procedure is

crucial, while in the second case the first modification is the main driver. The adjacent

substitution fits right in between the other two and is finally the most interesting

and difficult case. In fact, Table 4.1 shows the corresponding running times (the
computational requirements for the other two substitution structures is at least an

order of magnitude lower). Note that the GreedyNUQP policy is harder to compute

possibly because the quadratic term in QP has a larger relative weight (compared to

0.4 0.5

- · · · ·
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Figure 4-4: Random substitution.

IndexNUQP).

L IndexNUNLP IndexNLP IndexNU GreedyNUNLP
0.4 1050 428 12 2806
0.5 654 293 12 1545
0.6 350 216 12 852
0.7 199 162 12 395
0.8 116 104 12 157
0.9 74 70 12 60
1.0 0 0 0 0

Table 4.1: Simulation running times for adjacent substitution (rounded to seconds).
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Chapter 5

Models with Lost Sales

In a model with lost sales, the product inventory levels become important to capture,

and in addition to assortment inclusion or exclusion decisions one should seemingly

also consider order quantity decisions. Furthermore, different assumptions about

the type of demand information available to the retailer can be made, and we have

formulated accordingly the following models and associated Bellman equations: (i)

lost sales are observable for products included in the assortment; and (ii) the only

information available about lost sales is whether or not they occur. A third model

that assumes that the retailer can register the epochs when stock occur is shown in

Section §6.2 as an extension.

In the following models the assortment is controlled through the stock level of

each product. A particular product is excluded from the assortment by setting its
stock level equal to zero. Inventory decision are now endogenous and a if a customer

arrives wanting to buy product s and there are none available, then she leaves and the

sale is lost. We assume that, besides the loss in revenue, lost sales are not penalized

since it is not clear what would be an appropriate value for the penalty parameter,

and moreover, as mentioned in the model discussion of chapter 3, penalizing lost sales

is not a usual practice among fast-fashion retailers.

In terms of cost, the procurement expenditure is only taken into account implicitly

via the net margins r. As before, we are ignoring any holding cost since our goal

is to focus on the assortment decisions. Similarly, we assume that the retailer can
dispose (at no extra cost) any amount of product that was not sold at the end of

a given period. The justification is that a retailer will never waste shelf space with

products that are not selling. If the assortment selected in the previous period was
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inappropriate, then the most likely is that the retailer will remove those products that

are overstocked. In other words, we can assume that in each period the stock-level

decisions are made regardless of product leftovers. We are aware that this assumption

would be valid in the case of Zara. In fact, Zara stores do not have a "back room"

where excess inventory can be stored, and products that sell slowly are "ruthlessly

weeded out by store managers with incentives to do so" (see Ghemawat, P. and Nueno

2003, and McAfee et al. 2004).

Under the previous assumption, our setting is closely related to inventory models

for unstorable/perishable products or with a full returns policy (i.e. when the retailer

can return any amount of unsold items at a cost equal to the procurement cost).

Throughout this chapter the decision variable us represents the inventory on hand

after ordering. We assume a zero lead time so that us units of product s are avail-

able at the beginning of the period. We also keep the independence assumption from

Chapter 3 for the demand of different products. For simplicity we assume that at the

store level all products have the same space requirement. The total amount of inven-

tory that the store can handle is restricted to N. Obviously, if demand is discrete,

then the control us should also be restricted to discrete values. Finally, the models

can be easily extended to the case in which there are upper limits on the amount of

shelf space that can be assigned to a particular product.

5.1 Total Demand is Observable

The first model assumes that, for those products included in the assortment, lost

sales are observable. That is to say, any customer that leaves due to a stockout is

registered at the point of sale. This is the case, for example, when sales are made

online, via catalogs, or whenever the seller can record customer requests for missing

items. As a consequence, demand is not censored and that information can be used

in the learning process. This assumption is a usual one in Bayesian learning models

for tractability reasons (see for instance Chen and Plambeck 2004).
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5.1.1 Model Definition

As before, we assume period of equal length, and the demand for product s is Poisson

with unknown mean y,, though the extension to the exponential family described in

the previous chapter also applies. We have that in this case, the Bellman equation

takes the following form:

Jt*(m, C) = max En [,(ns A us)rs + Jtl (m + n. 1I(u), a + I(u)EU:

sS=l US<N s=I

S

max ErsEn, [ns A us] + En [Jtl(m + n (u), a + (u)]
YS=1 us <N S=1

(5.1)

where A represents the (componentwise) minimum operator, and (u) is a vector

such that the i-th component is equal to 1 when us > 0, meaning that the demand

information update is done only for those products that were offered in that period

(i.e. were included in the assortment). Then learning is only affected by the binary

decision of including or not the product in the assortment regardless of the actual

amount of product that is stocked.

In the model (5.1) we have not specified the control set U. It could seem natural

to have U equal to the positive octant. However, in that case, even though the feasible

set in (5.1) is compact, the maximization might no be well defined since the objective

function is discontinuous. To avoid this technical complication, we introduce the

constraints us > I(us,) Vs, with £ > 0. Note that these constraints have a direct

interpretation: if the retailer decides to stock product s in the current period, he

must stock at least c units, this is the minimum amount that would allow the retailer

to learn about the respective product demand.
We can now relax the coupling constraint ZEs=1 u,s N in order to decompose

the problem by product. The analogue to equation (3.6) is given by:

ts { HtS { 'ls (m s (5.2)

where u°(At) = max{E, uv(At)}, and u (At) is the largest solution to the newsvendorS\ Y s \ l Sr L .J · _
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inequality Pr(ns > u) > At/rs. Clearly only At r makes sense. Note that once

the coupling constraint is relaxed, it is reasonable to add the (originally redundant)

constraints us < N Vs, otherwise there is no limit to the amount ordered in the single

product subproblem and that affects the tightness of the dual upper bound. With

the additional constraint we have that u(At) min { max{s, uv(At)}, N}.

It can be verified that when stationary open-loop dual policies are considered (i.e.

Xt = A Vt), then a stopping time policy as in Proposition 4 is optimal. Moreover, as

discussed in §3.3.4, there is a (unique) value of A at which the retailer is indifferent

between the 'include' and 'not include' actions in the single-product subproblem (5.2).

Let at,s correspond to that breakpoint. It is easy to verify that ?rt,s < r Vs, and that

limn 0 at,s = rs.
It is important to point out that even though we have followed the same steps as in

Chapter 3 in order to decompose the problem by product, the open-loop dual policies

have different interpretations. In Chapter 3 the Lagrange multipliers represent the

opportunity cost of carrying a certain product in the store with no restriction on the

amount that can be sold. Hence, the decision is what product lines to consider and

the shelf-space constraint says that at most N can be handled. The indices t,s in

that case can be seen as a proxy for the profitability (per period) of the product line

as a whole. As such, there is no limit on the value the indices can take. The situation

in. the present chapter is completely different. The Lagrange multipliers represent

the opportunity cost for one unit of stock in the store. Each unit has to pay that

cost (instead of the product line), so exploring becomes more expensive. The fact

that the shelf-space constraint restricts total sales to no more than N units limits the
opportunities to learn but also undermines its benefits and makes the "explore now

to exploit later" rule less effective. In a figurative way, if the retailer explores and

finds a "gold mine", he cannot take full advantage of it since he can sell (exploit) at

most N units in each period.

In order to find a feasible action for the current period in the original DP model

(5.1), we suggest solving a knapsack problem similar in spirit to the one in Chapter 4,

which in turn was a generalization of the index policy of Chapter 3. We assume that

demand is sold in discrete amounts. If demand is originally continuous, then it must

be discretized (possibly at a finer scale than the natural numbers). However, we will
describe the procedure having an integer demand process in mind (for example, the

Poisson model of Chapter 3).

74



Chapter 5. Models with Lost Sales

Consider the following (generic) knapsack problem: Let a,,, be the benefit from
including e units of product s in the assortment. We assume that E is a positive integer
value. Let ai,e+i with i = 1,..., N - be the marginal benefit of adding the ( + i)-th
unit of product s to the assortment. Let ,e and ,,,+i be binary variables that are
equal to one if the corresponding units of product s are included in the assortment.
With this data structure, the optimal assortment can be found by solving a knapsack
problem with precedence constraints:

S N-e

max E E as,e+ixs,e+i (5.3)
s=l i=O

subject to
S S N-e

E Xs,e + E E Xs,e+i N (5.4)
s=l s=l i=l

Xs,E+i > Xs,e+i+l Vs = 1, ... ,S, i = O..., N- E - 1 (5.5)

xs,E+i { ) 1 Vs = 1, ... ) S i = 0) . . . ),N-E (5.6)

The objective is to maximize profits subject to the available shelf-space N. Con-
straint (5.5) ensures that the (E+ i)-th unit of product s is included in the assortment
before the ( + i + 1)-th. The combinatorial problem (5.3)-(5.6) is NP-Hard but sev-
eral good approximation algorithms are available (see for instance Samphaiboon and
Yamada 2000).

We now relate the knapsack problem described above to our dynamic assortment
problem. At time t, it is clear that the marginal benefit as,e+i with i = 1,..., N -
obtained from including the ( + i)-th unit of product s in the assortment is equal

to r Pr(ns > E + i), where the probability is calculated according to the distribution
dictated by the current state (ms, as). What is not obvious is the appropriate value
for as,, since for the first E units of product s the retailer not only receives the direct
benefit from selling those units but also the benefits from being able to observe total
demand. As in previous chapters, we distinguish two possibilities that lead to two
different policies. In the first heuristic, a,, is equal to r ]iC= Pr(ns > i), and we call
it the greedy or passive learning policy in this context since the assortment decision
is made ignoring future benefits from learning. The second heuristic, which we call
-the active learning policy, is to set a,, equal to the breakpoint rlt,s . It is easy to show
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that Irt,s > r Ei=1 Pr(n > i), and the difference comes from the fact that t,s is
calculated taking into account the profit-to-go in the single-product subproblem.

Once the parameter values are set, the knapsack problem (5.3)-(5.6) can be (ap-

proximately) solved, and the solution determines the assortment to be implemented

in the current period. Note that if t = 1, then the assortment problem (5.1) is nothing

but a multiproduct newsvendor problem with a shared resource (see §6-4 in Hadley

and Whitin 1963). In that case, the active and passive policies provide the same

solution, which is optimal.

5.1.2 Numerical Experiments

We performed some numerical experiments in order to test the active and passive

learning policies. We used the Poisson demand model as in §3.5, and we assumed that

E = 1 since in that case the precedence constraints (5.5) are redundant and we obtain

an easy knapsack problem that can be solved with a simple greedy algorithm (see

Martello and Toth 1990). We considered the data set given in the Sport Obermeyer

case (see Hammond and Raman 1994), so the number of products is ten (N = 10) and

the net margin r is equal to the product price times 0.24. The number of replications

in each simulation was equal to 2, 500 in order to guarantee an absolute error less than

±:0.5% with a 95% confidence.

Table 5.1: Active vs. passive learning with lost sales.

Table 5.1 shows the simulated profit per period for both policies and the value

of the dual upper bound for a planning horizon of ten periods (T = 10). As in

V[] , N Passive Active UpBnd Active-Passive . I Upnd-Active . 100

10 10 383.43 383.44 384.75 0.00% 0.34%
30 986.96 987.84 988.23 0.09% 0.04%
60 1674.73 1677.11 1678.43 0.14% 0.08%
120 2525.99 2525.99 2527.76 0.00% 0.07%

50 10 369.44 369.52 376.00 0.02% 1.76%
30 955.02 959.74 976.42 0.49% 1.74%
60 1630.50 1629.87 1656.46 -0.04% 1.63%
120 2429.54 2439.65 2491.08 0.42% 2.11%

100 10 358.94 359.02 367.89 0.02% 2.47%
30 940.53 935.54 971.37 -0.53% 3.83%
60 1600.81 1601.98 1656.10 0.07% 3.38%
120 2348.84 2394.92 2487.69 1.96% 3.87%
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§3.5 we assume the same initial priors for all the products. Several observations can

be made. First, note that the performance of both policies and the upper bound

decreases with a larger variance. This means that the retailer is better off with less

uncertainty about the demand rates. This is a usual fact in newsvendor problems.

However, it notoriously contrasts with the result of the model with no lost sales (see

Table 3.4), in which a larger variance means more possible benefits from exploration

and therefore the expected profit larger. Second, the active learning policy performs

slightly better than the policy with passive learning, though the difference is far

from being substantial, and actually in many cases it can be regarded as being equal

to zero.1 And third, the small improvement of active upon passive learning might

suggest that the former is not a good policy. Nevertheless, the last column shows

that there is actually very little room for a better rule, and the active and passive

learning policies are both near optimal. This confirms the previous discussion in the

sense that exploring is not a major component of the optimal policy in the lost sales

model (5.1) with observed demand.

5.2 Censored Information

We now address the case when the retailer can only observe total sales (instead of

demand) at the end of a period.

In formulating the problem with censored information, we use a significantly dif-

ferent demand model. Specifically, we have adapted to our problem the Bayesian

learning model with censored observations initially developed by Lariviere and Por-

teus (1999), where the existence of unobserved lost sales is explicitly taken into ac-

count when updating information. Because the underlying demand in that model is

restricted to a rather narrow family of distributions however, we fear that the result-

ing assortment model may only be useful to obtain insights rather than for a practical

implementation.

In what follows, we assume that demand per period ns for product s has a newsven-

dor distribution with an homogenous unknown rate (an implicit consequence is that

all periods have the same length). Note that demand is now continuous so the pro-
curement decisions are also continuous (but still constrained by N). The family of

1A similar result between active and passive learning is obtained in Bertsimas and Mersereau
2004 under the frequentist approach for a direct marketing model.
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newsvendor distributions is a subclass of the exponential family and was introduced

by Braden and Freimer (1991). The functional form of the density is the following:

dF(nl y) = y, c'(n,) exp ( - c,(n,)y) (5.7)

where c(ns) is positive, differentiable, and increasing. For simplicity, we assume

that c(O) = 0.
In their paper, Braden and Freimer show that the newsvendor family can be

characterized as the class of distributions that admit a conjugate prior under censored

observations. The conjugate prior turns out to be a Gamma distribution. This means

that, in the case of censored information, if we want to take advantage of state space

reduction and sufficient statistics using a conjugate pair, we must restrict ourselves

to the class of newsvendor distributions. The downside is that this precludes us from

using the normal, Poisson and negative binomial distributions which seem to fit well

the sales pattern of a fashion retailer (see Agrawal and Smith 1996, and Eppen and

Iyer 1997).

An alternative approach would be to forgo the desire of having a sufficient statistic

and work directly with the posterior distributions as the state variable. We could

formulate a model similar in nature to the censored newsvendor model in Ding et al.

(2002), but then we would have a major loss in tractability and it seems unlikely that

the results would be easy to implement in practice.

Given a Gamma prior with shape parameter a, and scale parameter ms, we have

that the predictive (unconditional) demand density of product s is given by:

[me + d(n,)]as+l
Ims= [ +1

The information updating rule in this case works as follows:

(ms + cS(ns), a, + 1) If product s is in the assortment, ns sales are
observed in period t, and no stockout occurs

(ms as) 3
(m + cs(ns), as) Idem but with stockout
(mS, as) If product s is not in the assortment

The state components are the scale and shape parameters respectively of the

Gamma posterior belief for y,. Note that the roles of the scale and shape parameters
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are switched with respect to the previous models, i.e. now the scale parameter is

updated with the sales information and the shape parameter captures the notion of

time. This means that the coefficient of variation of the Gamma prior (or posterior)

is equal to 1/V,. Then the retailer gains precision in his estimation of the unknown

parameter y, only in the first case of the updating rule, i.e. when the product is

included in the assortment and it does not stock out. This clearly contrasts with the

learning model of Chapter 3 in which precision was gained with a larger amount of

observed sales.

We now write the corresponding Bellman equation for this case:

S

Jt* (m, a) max TI, En [nsA us] +En [Jtl(m + c(n A u), a + (n, u))] (5.8)
Es 1 Us<N S=1

where c(n) = (cl(nl),... , cs(ns)) and the s-th component of I(u, n) is equal to one
unless us = 0 or us < n. In this case the minimum order quantity E is not strictly

required.

Depending on the explicit functional form of c (ns), the expectations E, [ns A us]

might have a closed form formula. For example, in the exponential case c(ns) = n,

we get IES [ns A us] =m, (l (-( m )a-') Note that a, > 1 is required for the

expectation to be finite.

Let Gt(u, n m, a) = Es=1(us A ns)rs + Jt+l(m + c(u A n), a + I(u, n)), and as
in the previous cases, consider the single-product subproblem and an open-loop dual

policy A. The next proposition adapts the results of Lariviere and Porteus (1999) to

the dynamic assortment problem considered in this section:

Proposition 6 (a) Gt(u,nlm, a) is (componentwise) increasing in n and ms,
and decreasing in as.

(b) J(m, a) is increasing in ms and decreasing in cs.

(c) If the underlying demand distributions is Weibull, that is c(ns) = n k for some
known k, then the state reduction of Azoury (1985) applies to the single-product

subproblem.

(d) For the exponential case (cs(ns) = ns) with At < r Vt, J'X(ms, as) = p (a>),

where Pt,s(as) is obtained recursively from the equation:
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Pt,s(s) = rs - t- sAtyts(s) + Pt-l,s(Ls + 1

Yt(Js) = (rs Pt-ls(COs -I) - Pt-ls('s)) 1/s-

Part (a) of Proposition 6 is used to prove part (b), which in turn is equivalent

to Lemma 1 in the no lost sales model. Parts (c) and (d) can be used to facilitate

the calculation of the performance upper bound and the parameters of the knapsack

problem (to be described) for particular cases of the function c,(ns).

To solve the lost sales model with censored information (5.8) we suggest a pro-

cedure almost identical to the one in the previous section. First, demand must be

discretized. For simplicity we consider the integer numbers, but a finer partition

would work as well. At a given period, in a given state, the assortment decision is

made by solving the knapsack problem (5.3)-(5.6) with as,i+l = bs,i+l -bs,i, and bs,,

is equal to the root (breakpoint) of the following equation expressed in terms of the

unknown A:

r sEns [ns A i] - Ai + En. [HtxAl,s(ms + cs(ns A i), a, + E(ns, i))] = 0

where Ht 1-s( ) is the single product subproblem obtained from (5.8) when the

shelf-space constraint is relaxed using a stationary open-loop dual policy (At = A Vt).
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Chapter 6

Conclusions and Extensions

In this final chapter we first provide concluding remarks on the models introduced
and analyzed in the thesis, and then we discuss some possible extensions and future
research.

6.1 Concluding Remarks

We have developed in this thesis several discrete-time DP models for the dynamic
assortment problem faced by a fast-fashion retailer refining his estimate of consumer
demand for his products over time. In Chapter 3 the main assumptions made were:
(i) independent products; (ii) no lost sales; and (iii) constant demand rates. Under
these assumptions we have formulated this dynamic assortment problem as a multi-
armed bandit with finite horizon and multiple plays per stage. Using the Lagrangian
decomposition of weakly coupled DPs that was described in Chapter 2, we have de-
rived a closed form index policy characterized by equation (3.14) that depends on
only the first two moments of the priors on demand rates. Despite its simple form,
our proposed index policy captures two key features of the dynamic assortment prob-
lem, namely the trade-off between exploration and exploitation and the finite horizon
effect, and is amenable to an extension for the case with positive design-to-shelf lead
times. Also based on DP duality, we have derived an upper bound for the opti-
mal profit-to-go, which allows to assess the suboptimality gap of the suggested index
policy. The index formula (3.14) and the (numerical) performance guarantee are
applicable in general to any finite-horizon multiarmed bandit with Bayesian learning.

Our simulation study indicates that the index policy always performs at least
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as well as the greedy policy (or passive learning), and significantly outperforms it

in scenarios with diffuse or biased prior demand information. Also, numerical com-

putations of the bound mentioned above suggest that the index policy is close to

optimal. In general, the improvement of the suggested index policy upon the greedy

rule increases with the planning horizon length, the variance of the initial priors, and

the lead time. As a rule of thumb, the assortment rotation should be high at the

beginning of the planning horizon, drop to the half of the initial value after the first

third of the season, and then quickly converge to a value close to zero. In general, 5

to 10 periods are enough to learn about demand.

In Chapter 3 we have also considered the case when there is a lag in the imple-

mentation of the assortment decisions. This case can be seen as a multiarmed bandit

problem with a delayed response, which has not yet received much attention in the

literature. We adapt our index policy to fit the new setting via two modifications that

provide insights about the relevant factors that must be taken into account under the

presence of a positive lead time: (1) there is less time to learn and, (2) the prediction

of the future variability in demand must consider those assortment that are "on their

way to the store" since for those products exploration is already committed and some

learning will necessarily occur.

Although the three major assumptions listed above may be particularly strong in

some environments, our approach was partly motivated by the belief that the closed-

form policy they allow to derive constitutes a useful starting point for designing

heuristics or developing extensions in more complex environments. In Chapter 4 we

have thus proposed a heuristic for capturing substitution effects between products,

and we show how it performs under different substitution structures. In particular, if

customers substitute randomly or there is a clear substitute that any one would take,

then the dynamic assortment problem is relatively easy to solve. However, if product

substitution follows a more complex pattern, for instance when customers substitute

to products that are "adjacent" (in terms of the attributes) to their initial choice,
then selecting product assortment becomes a combinatorial problem that does not

have a simple solution.

In Chapter 5 we present models that consider the stocking decision and deal

with lost sales. The first model assumes that, despite lost sales, total demand is

observable, and the second model has censored information, that is, the retailer can

only observe sales but is aware when a stock out occurs. The inventory decision makes

82



Chapter 6. Conclusions and Extensions

the models more complex, especially under censored information, but furthermore,

since the shelf-space constraint is expressed in terms of stock units (instead of product

lines), learning becomes more expensive and is also limited by the fact that the total

sales are bounded. Therefore, the characteristics of these models are quite different

from the multiarmed bandit ones in Chapter 3, and the improvement of active upon

passive learning is less substantial.

Finally, although the models presented here focuses essentially on operational

issues, we point out that they may also have some design implications. Specifically,

the current financial success of fast-fashion firms like Zara suggests that the relative

benefits of increased supply flexibility, while considerably harder to quantify at the

design stage than the relative costs of local and overseas production, may still be

very large. Could it be that many traditional fashion retail firms have been mistaken

for years when assessing the trade-off between costs of production and benefits of

flexibility? A legitimate hypothesis is that the heavy historical reliance of the fashion

industry on overseas suppliers may have resulted in part from a lack of appropriate

quantitative models enabling to correctly predict the potential gains associated with

local production and a responsive supply network. In our models, the design-to-

shelf leadtime f may precisely reflect the procurement delays resulting from a given

supply-chain configuration, and studying the variation of retailer's profits with that

parameter (as shown in Figure 3-5) may thus inform the assessment of such trade-off.

We thus conclude that our models may also be useful to some practitioners when

designing supply-chains.

6.2 Model Extensions and Future Work

We conclude the thesis by briefly commenting on other potential applications of the

models and possible extensions.

6.2.1 The Multiarmed Bandit Beyond Retailing

In Chapter 3 we showed that the dynamic assortment problem is basically a version

of the finite horizon multiarmed bandit problem with several plays per stage. A

similar analogy is valid in other setting beyond the retailing industry, and the same

analysis would go through. The following example of "fashion" bedding products was
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provided by Professor Harvey Wagner from UNC Chapel Hill:
The example of 'fashion" bedding (sheets, pillowcases, draperies, etc.) is different

in several respects from fashion retailing. The span of time for sales is nearly two
years. The decision is not whether to stock a SKU in a specific location (store), but
whether or not to "support" a family of items by replenishing (that is, manufacturing)
warehouse stock. This decision involves allocating (scarce) production capacity to
replenishing inventories. In the manufacturing setting, the slow moving inventory
sits on the shelf until it is eventually remaindered; there is no necessity to dispose of
it right away. However, the manufacturer keeps focused on N families of products,
and as more sales information is obtained, may switch the components of N.

6.2.2 Lost Sales Model when Stock-out Epochs are Observ-
able

Here we describe a dynamic assortment model with the assumption of Poisson demand
and that the retailer cannot observe lost sales but can register the point in time when
a stock-out occurs. The demand information must be updated accordingly. In fact,
suppose that product s runs out of stock in period t, and it happens a units of time
after the beginning of the period, with 6 less than t, the duration of period t. If u is
the amount of inventory that was available after ordering, the posterior distribution
of % is obtained by letting d play the role of t, and the expectations must be taken
not only over demand but also with respect to the points in time in which the retailer
might run out of stock. The corresponding Bellman equation can be expressed as
follows:

S

J (ma) = max ,Es [ns A us] + En [EtI(nu) [Jt (m + u A n, a + (u))]
FS=I uS<N S=l1

(6.1)
where (n, u) is a random vector with density equal to H=ls= yt(ns, u, ), and

yt•(n u, ) = (6.2)
Yt (n I )-- -((n) - (t-)n)[ ] if u n .

The upper term in (6.2) is the usual Dirac delta function and the lower term is
the marginal density of the u-th arrival conditional on n > u arrivals happening in
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an interval of length 6t (obviously for a Poisson process).

When the shelf constraint is relaxed we obtain the following single-product sub-

problems:

Ht (ms, acs) max rEn [ns A us] - Atu, (6.3)

+ En, [E(ns, us) [Htl, s(ms + ns A us, as + ls(us))]]

and (ns, us) has density yt(ns, us, ).

Note that the policy described in Chapter 5 based on solving the knapsack problem

(5.3)-(5.6) is also applicable to the this case. However, solving the single-product

subproblem (6.3) via backwards induction is a non-trivial computational task because

now the second component of the state space takes values in a continuous range. Then

calculating the breakpoints might not be easy in practice.

6.2.3 Model with Variable Demand Rates

In our models, the unknown demand rates %ys remain constant during the season,

which results in a partially observed Markov decision process (POMDP) in which

the underlying state is fixed. Situations where product life-cycles are really short

compared to the season length (e.g. a couple of weeks versus six months) may however

be more faithfully described by time-varying demand rates. This feature could be

captured by a POMDP where the real underlying state would change over time with

some given transition probabilities; this basically amounts to extending our model

in. the same way that Aviv and Pazgal (2004) extend their initial dynamic pricing

problem (Aviv and Pazgal 2002).

We assume that for each product s, the demand environment follows an indepen-

dent Markov chain MS(t), called the core process, on a state space Qs. The transition

probabilities As k j, k C Qs can depend on whether the product is included in the

assortment or not. In the latter case we obtain a "restless" bandit and it should be

verified that the indexability property holds (see Whittle 1988).
The system state is given by all the available information. In particular, for

product s, the retailer knows the probability distribution Pt,s,k = Pr(Ms(t) = k) k E

.Qs, and each in period the information is updated according to Bayes rule:
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PEjkPn, As'jk ' Pr(nslM(t) - j,u ) Pt,s,j k E
Pt-l,s,k = Pt,s(Pt,s, us, ns) = ]'ZjEj,. Pr(ns I I(t) = j, us) ptsj

The retailer can learn about the core process of product s only if the product is

included in the assortment. Hence, if us = 0, then Pr(nslMs(t) = j, us) is independent

of MS(t).
We can now state the Bellman equation for the dynamic assortment problem with

variable demand rates:

S

Jt (pt) = max rsE[ns] + IE, [J*_ (ot(pt, u, n))] (6.4)
Es=1 Us<N s=l

where ,t(Pt, u, n)) is a vector function such that the s-th component is equal to

(Pt,s(Pt,s, us, ns), and the expectations are calculated by conditioning on the states of
the core processes. Note that Pt is a matrix (or a vector of vectors) that can have
infinite dimension, and we are assuming that the retailer knows the set of possible

states Q. for each core process.

As before, we relax the shelf-space constraint by introducing open-loop dual poli-

cies so the problem decouples into single product POMDPs, and the usual dual upper

bound is available (at least in theory).

While the theory of POMDPs allows for a transformation of the partially observed
state problem into one with perfect state information, this comes at the expense of

increase state space dimension, so that even the single product subproblems might be

hard to solve and further approximations would be necessary (as in Aviv and Pazgal
2004). However, the dynamic assortment policy based on our index (cf. equation

(3.14)) is still applicable and easy to implement.

6.2.4 Multiple Stores, Endogenous Demand, and Other Ex-
tensions

The dynamic assortment models in the thesis are based on the operations of fast-
fashion retailers (like Zara), and we claim that this is the first attempt in following

a quantitative/optimization approach. We introduced the basic model in Chapter 3
and then devoted the rest of the thesis to discuss, analyze, and provide guidance on
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how to remove what we considered to be the three major assumptions we made (see

§3.2). We now finally comment on model extensions based on the removal of other

assumptions that could also be important in the case of a fast-fashion retailer.

Multiple Stores It is a fact that fast-fashion retailers manage simultaneously sev-

eral store, some of them located within the same city or region, and therefore

what is learned about demand in one store might be relevant information for

another store with similar characteristics. In §4.1 we also discussed that consid-

ering multiple stores could be a path to follow when trying to overcome the lack

of data required in the estimation of demand rates and correlation parameters.

Then it seems natural to extend our model to multiple stores. The difficulties

we see are related to the fact that we would no longer have a weakly coupled DP

since there would be more than one coupling constraint, but most importantly,

the independence assumption would not hold. As we mentioned, the interesting

case is when the demands for the same product in different store are correlated,

otherwise we go back to the framework developed in this thesis. Another po-

tential issue that could arise is how to make local decision based on aggregated

data. We visualize this topic as rich source of unanswered research questions.

Endogenous Demand In §3.5.4 we showed that in our model the assortment rota-

tion tends to zero. In other words, at a certain point in time the assortment

stabilizes and remains almost fix until de end of season. This result is rea-

sonable given our assumption that demand rates are constant and exogenous.

The previous section discussed the extension to variable demand rates, but

still assuming that the actions of the retailer cannot stimulate demand. The

Zara managers claim that having a permanent assortment rotation attracts cus-

tomers to the store since they know that every four weeks they will find a new

selection of products. Our model could be modify to accommodate a constraint

that requires a minimum fraction of new products to be introduced in each

period. However, it would be interesting to study the case when the frequency

of changes in the assortment affects the arrival rate to the store. Then demand

would be endogenous and in some sense it would be a model for repeated in-
teractions between the retailer and his customers. Such type of models have

started to emerge and receive attention in the literature, see for instance the

pricing paper of Popescu and Wu 2005.
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Creation of New Products During the Selling Season In our model we use the
set S to represent all the potential products that can be included in the store

during the selling season. This is rather a conceptual construct that we need to

formulate the DP, but it implicity assumes that the retailer knows beforehand

all the available products, which is not exactly the case of a fast fashion retailer

that creates new products based on experts opinions and the feedback from

customers. Then it might seem more appropriate to allow the set S to evolve

over time. Such situation clearly resembles the "arm-acquiring bandit" studied

in Whittle 1981. However, the author states on the first page that the new

projects shall be regarded as being very much variants as the old ones, occurring

in a statistically homogeneous stream... by its nature, creative research (mean-
ing innovative products in our context) cannot be formalized. In other words,
the set S cannot change unpredictably, which certainly supports our assump-

tion. Moreover, our index policy does not depend on the set S, but it would be

interesting to see how it relates to the framework developed by Whittle.

Assortment Switching Costs We have assumed throughout the thesis that the
assortment can be changed at no cost. This seems reasonable for a fast fashion

retailer like Zara. If the switching cost were high, then it would be hard to

understand how they manage to introduce 11,000 different product per year

(compared to only 4,000 for a more traditional retailer). However, in other

contexts the switching cost might be relevant, for instance in the bedding ex-

ample described in §6.2.1. In that case we would have a multiarmed bandit with

switching cost, a variant that has been studied in the literature, mostly under

infinite horizon (see Agrawal et al. 1988). It has been shown that a bandit with

switching cost achieves the same asymptotic performance as the original bandit

without any costs. This is made possible by grouping together the samples in a

certain fashion. We presume that such result does not translate to our setting

because of the finite horizon, and then it would be important to study how

much the switching cost affects the exploring capability.
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On the concavity of ft(C)

We want to study the (discrete) concavity of the following parametric function with

respect to C:

S

ft(m, a; C) max S rs US + IE,[J 1_(m + n u, a + u)] (A.1)
ES1 u s=C =

For simplicity we will write ft(C). Provided that r > 0 Vs, from Lemma 3 we

know that ft(C) is strictly increasing in C, with C < S. We want to verify the

validity of the following inequality:

ft(C + 2)- ft(C + 1) < ft(C + 1)- ft(C) VC E 0, 1,..., (S- 2)}. (A.2)

Recall that N is the shelf space available in all the next periods (after t), and S

is the total number of products.

For t = 1, we have that (A.2) holds since for that case the greedy solution is

optimal, and therefore the marginal profit given by one additional unit of shelf space

must be nonincreasing.

The simplest (non-trivial) case is then with two periods, two products (that pro-

vide the same net revenue) and enough shelf space for only one product. In other

words, consider t = 2, S = 2, rl = r2 = 1, and N = 1. Then we have:
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f2(0) = max -, 2
Oe1 OZ2

a1 Oq + 1 a2 a2 aC1 2 2 + 1

(2) = - ±- +En max m + m 2 +n
a1 a 2 al+ I ' a 2 + 1

Using the fact that the products have independent demands and all random vari-
ables are nonnegative, we can rewrite the expectations above as:

n ni m2 ' } + 0 l( ) nEn, max m i m2 p( Pr > X dx
Ol + 1 a2 2 2 o1 +1 

maxC =m2 + n2 m1l o 1 m2 + n2 d
En2 max - , + Pr > da a21 2i + O Oal a2 + 1 >

e[ {max m + n m2 + 2 } m + n m2 + n ))dEn max{ 7 - (1-Pr (m <X) Pr( < X)) dxCl' + O l al+l+ a° + -+1 -
With no loss of generality, assume that m1 > m2. Recall that if ac < a2, then nl

is stochastically larger than n 2. Moreover, for that case we can show that:

ml+nl is stochastically larger than m2+ln2
a+1 '2+1

* It is optimal in period t = 2 to select product 1. This means that the maximum
in f2(1) is achieved by the first term.

* Inequality (A.2) is satisfied. This follows from using the two previous observa-
tions and the explicit formulas for the expectations given above.

Then a sufficient condition for (A.2) to hold is that nl and n 2 can be stochastically
ordered. By the contrary, when Oa1 > a 2, the function ft(C) is in general not concave
in C. In fact, we can provide a counterexample. Consider ml = 44, m2 = 4, al = 10,
and a 2 = 1. For this case it can be verified that f2(2) - 2f2(1) + f2(0) > 0. The
corresponding dual function is given by q2(A) = A + max{f 2 (2) - 2A, f2(1) - A, f2(0)}.
The next figure is a closeup of the graph of q2(A) around its minimum.
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Figure A-1: The dual function q2(A).

The horizontal line in Figure A-1 is the optimal profit of the two-period problem,
which is equal to f2(1). From the figure is can be seen that there is a (small) gap,
and then in this case Proposition 1 holds as a strict inequality.

As a final note, this small example also serves as a counterexample to show that
the Gittins index is not optimal in the finite horizon case. In fact, in period t = 2, the
optimal action is to include product 2 in the assortment. However, the Gittins indices
are r72 1 = 4.4556 and 7]2,2 = 4.4011, so if we choose the highest one we would include
product 1. Note that index values obtained using the closed-form approximation
(3.14) are 4.4552 and 4.3904 for products 1 and 2 respectively.

.... .......... .. .. .

8.83 l
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Proofs

B.1 Proof of Proposition 1

From the definition, it is clear that Ht*(x) < HtAt(x) for any dual policy At, therefore

we only need to prove the first inequality. We proceed by induction on t. Assume

that Jt_1(x) < Ht*_1(x) for all states x, then for any At > 0:

Jt* () max E +En(xu) [J((t(, u, n))]
alu<N s-l

< NAt + max
uEU:

a'u<N
gt(x, u) - Ata'u + En(x,u) [Jt 1(pt(x, u, n))]

< NAt + max gt(x u) - Ata'u + En(x,u) [Jtl(pot(x, u, n))]
uE N g(u + 

< NX + mx g(x, u) - XAa'u + En(,u) [Ht_(c (tx u, n))]
uEU

(B.1)

The first inequality follows from the fact that At > 0, and the second holds because

the feasible set is larger. The third inequality relies on the induction hypothesis.

Considering now the minimum of the right hand side of (B.1) yields the desired
result. 1

B.2 Proof of Proposition 2

We start with an intuitive duality lemma:
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Lemma 6 For a given state x at period t, consider the following dual function:

ht(At, x) = N. At + max gt(, u) - ta'u + En(,) [Jt-l(pt(x, u, n))]uEl

Let h(x) = minA,>o ht(At, x). If ft(x; C) is concave and increasing in C, then
J/; (x) = h'*(x).

Proof: Since the state x is fixed throughout the proof it will be omitted in the

notation.
Instead of following a standard duality proof (for example using a hyperplane

separation theorem, see Bertsekas (1999), we provide a short direct corroboration.

Let At be such that ft(N + 1) - ft(N) < At < ft(N) - ft(N - 1). The existence
of At is guaranteed from the concavity of ft(C) with respect to C, and also At is

nonnegative ft(C) is increasing. We will show that A* is a Lagrangian multiplier in

the sense that Jt* = ht(At) = h.

First, note that the dual function can be written as:

ht(At) = N. At + max ft(C) - C At. (B.2)
CE N

Suppose that for At the maximum on the right hand side of (B.2) is attained

strictly at some C > N. This means that ft(C) -C At > ft(N)- N A, or
equivalently, ft(C) - ft(N) > (C - N) At.

On the other hand, from the concavity of ft(C) we have that:

ft(C)-ft(N) = ft(C)-ft(C-1)+ft(C-1)-ft(C-2)+...+ft(N+1)-ft(N) < (C-N).A,

which is contradiction. If we now suppose that the maximum on the right hand side

of (B.2) is attained strictly at some C < N, then a similar contradiction is obtained,

and therefore we must have that ht(At) = ft(N).

To conclude, we know that Jt* = ft(N) because ft(C) is nondecreasing (cf. Lemma
3), and also J < ht(At). Then J = ht(At) = min>o ht(At) = h, and the proof is
complete. 
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Finally, to prove Proposition 2 we proceed by induction on t. The case t = 1 is
trivial so we assume that the property holds for t-1 > 0 and that fT(x'; C) is concave

in C for all T = t- 1,... , 1 and states x' reachable from x in period T. For any u E U

and any vector n we have that ct(x, u, n) is reachable from x in period t-1. Then, by
the induction hypothesis we have that J*(pt(x, u, n)) = Ht*1(pt(x, u, n)). Using
the latter we see that the last inequality in the proof of Proposition 1 (cf. B.1) is
actually an equality. If we now minimize with respect to At, from Lemma 6 and the

definition of the optimal dual policy (cf. (2.3)) we have that Jt*(x) = H(x), and the

proof is complete. Z

B.3 Proof of Lemma 1

We proceed by induction on t. The property is trivial for t = 0 so we assume it holds
for t - 1, with t > 1. Consider any vector u {0, 1}s such that Es1 Us < N. Let

n = n(m", a") and n' = n(m', a'). From the induction hypothesis J_(m" + n 
u, a" + u) > Jt*> (m' + n u, a' + u) for any n C NS, which in turn implies that:

En [Jtl(m" +n" u, a" +u)] > En// [Jt-l(m' +n" u, a' +u)]

> En' [Jtl(m' + n' u, a'u)].

The first inequality is strict if for any product s, ms ' > m' or a' < a'. The last

inequality follows from the fact that Jt 1 (m + n u, a + u) is a (componentwise)
increasing function of n (by the induction hypothesis), and from the relative stochastic

ordering of n(m, a). It follows that:

S S

rs us+En [Jt1 (m"+n".u, "u)] ,+En, [J (m'+n' +u)]
s=1 s s=1 s

Since the above inequality is valid for any feasible action u, invoking the definition

of the profit-to-go function (3.3) completes the proof. 
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B.4 Proof of Lemma 2

The lower bound follows from the fact that Jt*(m, a) is the expected profit-to-go of

the optimal dynamic assortment policy. In particular, the optimal policy performs at

least as well as a static policy implementing in each period the assortment given by

argmaxuu E =l rjE[7y]u,.

The upper bound follows from the fact that the frequentist regret is nonnegative

for any nonnegative parameter vector y (cf. Lai 1987, p.1092). The proof is complete.
El

B.5 Proof of Lemma 3

We need the following lemma:

Lemma 7 Let (m, a) be the system state at period t. For any i E S the following
holds:

E,, [Jt*(m + niei, a + ei)] > Jt*(m, a), (B.3)

where ni is a negative binomial with parameters (mi, ai).

Proof: We proceed by induction on t. Assume that (B.3) is true for some t - 1 > 0.

For any (random) vector v, let v-i = v - vie. For any given decision vector u E

{0, 1}s we denote the respective profit by:

S

gt(um, a ) = Z rs-us + En, [Jt* (m + n' u, a + u)]. (B.4)
s=1 l

We will show that Ei [gt(u, m + niei, a + ei)] > gt (u, m, a) by considering two

cases. First, assume that ui = 0, then we have that:
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S

IEn[gt(u,m+niei,c+ei)] = Zrs u Ene[En, [J(m + niei + n' u, a+e u)]]
s=1

r= srS u + En EIEn,[Jt*(m +niei+ni u,c+ei+u)]
s s

> rs-Us+ En'i [Jt ( m + n ri u, u + u)]
s=l

= gt(u,m, )

The first equality follows from (B.4) and the fact that we are assuming ui = O. The

expectation interchange in the second equality is a consequence of demands among

products being independent and Fubini's Theorem (all terms are nonnegative). In

the third step we used the induction hypothesis, and then in the last step we used

again (B.4) and ui = 0.

For the second case assume that ui = 1 and fix ni at a given (nonnegative) integer

value. Then we have the following inequality:

En, [Jt*(m+niei+n' -u,+ ei+u)] = Eni [En[Jt*_(m+niei +n' u,a + ei+u)]

E [Jt*(m + niej + n' ui, c ei + u_)]
(B.5)

where ni is a negative binomial random variable with parameters (mi + ni, ai + 1),

and in the second inequality we use the induction hypothesis. We now have that:

s
IEnj[gt(u,m+niei,t+aei) = rs Us+E [En[Jt*l(m+niei +n' -u,a e + u)]]

s=1
S

> rs Us+ E [En i [J-(m + n ±iei + n i u-i,c + e + u-i)
s=l s

gt(um,a)
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The first equality follows from (B.4) and the fact that IE,, [j+l = a. In the

second inequality we used (B.5), and the last step is also given by (B.4) and the

independence among product demands.

So we can conclude that:

Eni [gt(u, m + niei, a - ei)] > gt(u, m, a) Vu C {O, 1)S (B.6)

We can now prove the inequality of the lemma. In fact, we have the following:

En [Jt*(m + niei, a + ei)] = max gt(u m + i + e)
uE{O,1}S:

--- 1 us<N
> max Eni [gt(u, m n, c + +j)]

uEO,1)S:
SS=1 us<N

> max gt(u,m,a)
u6{0,1)S:
Sf1 us<N

= J(m, a)

The first and last equality are given by the definition of Jt*(.) and (B.4). The

second inequality can be seen as a consequence of Jensen's inequality and the fact

that the maximum norm is convex, and the third inequality follows from (B.6). Then

the proof is complete. 

We can now prove Lemma 3.

Consider C < S. Let u* be an optimal solution of the maximization problem in

the definition of ft(m, a; C) (cf. (2.4)), and let i be such that u = 0. Then we have
that:

s
ft(m, a; C) = Zr-u* + E, [Jt*_ (m + n u*, a + u*)] (B.7)

s=1

Let u = u* + ei, where ei is the i-th unit vector. By conditioning on all ns with

s i and using Lemma 7 we have that:

(B.8)

97

E, [t (m n , + U )] -> En [Jt* (m n u, +$ u*)].



Appendix B. Proofs

Since ri > 0, from (B.8) we get a strict inequality relating the objective values of
1u and u*:

S

rs Us+EnJt*(m+n , a+u)] > ft(m, a;C).
c-1 a

(B.9)

Since Es=I Us = C + 1, from (B.9) we have that ft(m, a; C + 1) > ft(m, a; C),
i.e. ft(m, a; C) is a strictly increasing function of C. 1

B.6 Proof of Lemma 4

We proceed by induction. Consider t > 1 and assume that (3.5) holds for t- 1. Then,
from equation (2.2):

Ms
max 

uE{O,l}S s= As

S
s~l

max E(rs
uE{O,l}S S=l as

S

- At)us + IEn[HtXl(m+ n * u, a + u)]
t-1 S

- At)u, +En[NZ
ST=

S

AT + E Ht,,S(ms + n~us, as + us)]
s=l

a81 s~l s=l
'r=1 = 1

max (rs -- t)U + E,
use{o,1} a [Ht-l,s(ms + nsUs, s + Us)]

= N AX,+EHt(ms, )
T=1 s=l

The second equation uses the induction hypothesis. The third equation comes
from the fact that all products are independent so the expectation is simplified, and
the final two equations rearrange terms in order to obtain the desired result. 1

B.7 Proof of Proposition 3

We first need the following two additional lemmas:

HtX(m, ) = Nt +

= NAt +

t

= N ,1+
T=1

t S
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Lemma 8 H(ms, as) < ()t V(ms, as).

Proof: Direct by induction since assuming that it holds for t- 1 we can bound

both terms in the right hand side of (3.6). In fact, we have that Ht>1x s(ms, as) <

(t- 1)rsms/a, and

r--A+En., [Ht-,s(ms+ns as+1l)] < rs m +En [r + (t-1)] )t-At.
ca a, + as

Lemma 9 HtXs(ms, a)= 0 V(ms, a,) such that ( --s)T < A, VT = t,. .. 1.

Proof: Consider t > 1 and assume that the claim holds for t - 1. Let (ms, as) be a

aspair that satisfies (I )T < Ag q7 = t,..., 1. Then, from the induction hypothesis,
Htx 1,(m, as) = 0, and from Lemma 8 we have that:

-s s) - <0.
a -A + Ens [ s(ns + ns, s + 1 < t(ra, At < 

Then, from equation (3.6) we have that us = 0 is optimal at time t and Ht (ms, as)

0, which completes the induction step. 

Now for the proof of Proposition 3, consider the following function:

d (ms, as) - Ars- t + En [H-, s(ms + n, as + 1)] - Ht-l,sa, t ,1s t-l,s as)

In a similar way than in Lemma 7 it can be shown that En [HtXl,(ms + n, as +

1)] > Ht _1s (ms, as). Then, for as sufficiently small ds(ms), as ) > rs -m- At > 0
On the other hand, when as - oc, from Lemma 9 we have that H xtjls(ms, as) - 0.
From Lemmas 9 and 8 and the Dominated Convergence Theorem it can be seen that

Ens [Ht >l,s(ms + ns, as + 1)] --+ 0, so we have that dA(ms, as) * -A < 0. If the
function dx '(ms, as) were strictly decreasing in as, then ts(ms) could be defined as

t,s s 

the unique solution of dX'(ms, as) = 0, and if dx (ms, as) were strictly increasing in

m., then <t (ms) would inherit the same monotonicity property.
We now prove by induction on t that d (ms, as) is indeed strictly decreasing

in as and strictly increasing in ms. The claim is trivial for t = 1 when clearly
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ls(ms) = rsms/A 1. Assume now that the claim is valid for t- 1 with t > 1; because
no ambiguity arises here in the following we omit the subscript s for simplicity. Let

a' < a", m' < m", n' = n(m', a'), and n" = n(m", ca"). Since dr(m, a) is continuous
in a, we only need to consider three cases:

*· ' < O" < Pt3_(m') P/- l(m')

In general, for any a < /3tl(m):

±Eni, a+ 1)]

(B.10)

From the induction hypothesis max { dt l (m"+, + n 1), " + 1), } > max {dA (m' +

n, oc' + 1), 0} for any integer n. Following now the same steps as in Lemma 1:

En, [max {dl (m" + n", a" + 1), 0} > En,[max {dtX (m' + n", a'+ 1),0}]

> En, [max {dt' (m' + n', a' + 1}1}l)

Note that the first inequality is strict if either a' < a" or m' < m". The second

inequality follows from the larger stochastic ordering of n(m, a). It follows then
from (B.10) that d/(m', ') < d(m", a").

* t31 t_(m') < t-1 l(m') < o' < a"

In general, for any >/ A l(m):IVLC~IYLt i t~~t-l

- At En [Ht(m+n, a+ 1)]- Ht-2(m, a)

|-En [Ht-2 (m +n, a+ T

= At--)it+En[max{dA (m+n,a+1),O0}] dl(m,a)

Then d'x(m', a') < d (im", a") follows from (B.11) and the induction hypothesis.
Again, the inequality is strict if either a' < a" or m' < m".

dt'(m, a)

d~t(m, (i)
m= r-
O

En [Hti (m + n, a + 1)] 1)] + dt-(m, )

Proofs 100
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0* tX-(m') < a' < acI < P-l(m')
In this case we have:

= Atl-At + En[max{dt-1(m'

< At- - At + En, [max {dt(m'

+ n', a'+ 1), O}]

+ n', a' + 1),

dtl(m', ')
o}]

< At-- At + En,, [max {dt 1l(m" + n", a" + 1), 0}]

= dX(m"' a")

The first inequality holds because c(m') < a' = d(m', a') < 0. The
second inequality follows from (B.11) and is strict if either a' < a" or m' < m".

The proof is now complete. El

B.8 Proof of Proposition 4

In order to solve ties, we assume with no loss of generality that when the retailer is

indifferent he will include the product in the assortment.

Consider a state (m, as) G B , necessarily:

rs--At + Ens (m, s) (B.12)
IOrs At + n,, 1 8(M n, a +)] < t-,S

Suppose that in period t -1 it is optimal to have us = 1, i.e. (ms, as) B X

Substituting the appropriate expression for Htj L1 (m, as) in (B.12) and rearranging
terms yields:

Ens [Ht_l,s(ms + ns, ots + 1)] - En [Ht_2,s(ms + ns, as + 1)] < (t - At+l) < 0,

contradicting the fact that H (ms, as) is nondecreasing with the horizon length.

Therefore us = 0 must be optimal in period t - 1, which completes the proof. 
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B.9 Proof of Lemma 5

Both inequalities are proved by induction, and as before, the proof for t = 1 is a

particular case of the induction step.

For the upper bound inequality we will show that for any state (m, a) and any

set of committed assortments vt, ... , vt- e+ l the following holds:

Jt(m, ) > Jt*(vt, . v. .- e l , a) (B.13)

In fact, since v t is a feasible assortment in period t, we have that:

S

J (m, ) > E r, tsv- + En[JtOl(m+n-vt, a+vt)]
s=1

S t

-Ž E E rTS En[ Wt* l(Vt1 ... , vt-£+l ", m+nv, avt t)]
s=l T=t-e

where we have used the inductions hypothesis and the definition of Jt-l(vt- 1,. . , vt-, m+

n vt, a + vt). We then maximize the second inequality with respect to vt- e to obtain

(13.13). The desired results follows from maximizing the right hand side of (B.13)

with respect to the committed assortments.
Now we prove the lower bound inequality in Lemma 5. In order to avoid excessive

notation, we will show the result for the case when the lead time is equal to one

period (f = 1). The extension to the general case is analogous.

Again, via induction, we prove that the following inequality holds:

Wt(v a) > J (m,,a)+EEn[JtJo (m+nvta+v t)] (B.14)F` .r ]y2~ ~~ ~~~... · 2c t ) (.4
In fact, assume that inequality (B.14) is valid for t. Then for t + 1 we have:
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S

s=l

> En [Jo (m + n vt+l, ct + vt+)] +1~~~~~~~~) 2 -
S 

a rmSvt +En [Jo ! (m+n
max s=l Zs 2

a+ v t)]

E [JL(m + n- vt+, a + vt+l)] + Jt] (m, a)

In the second inequality we have used the following property:

En [En [J t-li(m + n' vt+1 + n Vt + Vt+1 + Vt)]] > E [Jo (m + n vtavt)]

which can proved in a similar way as Lemma 7, and in the last equality we have

used the identities t-J + 1 = Ft1 and Ft1 = LJ.
Using the previous inequality we can finally prove the lower bound in Lemma 5:

S
rmax , v t + Wt*(vt, m, a)

vt E =1 as$=1

> Jo l(m,ce)2 i , a
+ max E

vt EU
s=1

rs V+en[JtiJ (m+n v, a+vt)]O ts

= JoJ (m, a) + Jo (m, a)

And the proof is complete. l

J (m, c)
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