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Abstract

The structural, dynamical, and thermodynamic properties of different carbon al-
lotropes are computed using a combination of ab-initio methods: density-functional
theory for total-energy calculations and density-functional perturbation theory for
lattice dynamics. For diamond, graphite, graphene, and armchair or zigzag single-
walled nanotubes we first calculate the ground-state properties: lattice parameters,
elastic constants and phonon dispersions and density of states. Very good agree-
ment with available experimental data is found for all these, with the exception of
the c/a ratio in graphite and the associated elastic constants and phonon disper-
sions. Agree:ment with experiments is recovered once the experimental c/a is chosen
for the calculations. Results for carbon nanotubes confirm and expand available,
but scarce, experimental data. The vibrational free energy and the thermal expan-
sion, the temperature dependence of the elastic moduli and the specific heat are
calculated using the quasi-harmonic approximation. Graphite shows a distinctive
in-plane negative thermal-expansion coefficient that reaches its lowest value around
room temperature, in very good agreement with experiments. The predicted value
for the thermal-contraction coefficient of narrow single-walled nanotubes is half that
of graphite, while for graphene it is found to be three times as large. In the case of
graphene and graphite, the ZA bending acoustic modes are shown to be responsible
for the contraction, in a direct manifestation of the membrane effect predicted by
I. M. Lifshitz over fifty years ago. Stacking directly hinders the ZA modes, explaining
the large numerical difference between the thermal-contraction coefficients in graphite
and graphene, notwithstanding their common physical origin. For the narrow nan-
otubes studied, both the TA bending and the "pinch" modes play a dominant role.
For larger single-walled nanotubes, it is postulated that the radial breathing mode
will have the! most significant effect on the thermal contraction, ultimately reaching
the graphene limit as the diameter is increased.
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Chapter 1

Introduction

The extraordinary variety of carbon allotropes, as well as their present and poten-

tial applications in such diverse fields as nanoelectronics [1] or bioengineering [2]

gives them a special place among all elements. Both experimental and computational

studies are still needed to characterize fully these materials. For instance, single crys-

talline forms of carbon such as diamond, graphite and graphene (i.e. a single graphite

layer) still lack a complete characterization of their thermodynamic stability under a

broad range of conditions (see e.g. Refs. [3, 4, 5, 6, 7] and citations therein). As for

fullerenes and the recently discovered carbon nanotubes [8] and their derivatives, even

more investigations are needed. In particular, experimental data on single-walled car-

bon nanotubes (SWNTs) with a defined chirality are both scarce and very difficult

to obtain, due the complexity of growth and manipulation of these low-dimensional

materials. While structural constants are well known, elastic and thermodynamic

properties are still under very active investigation (see e.g. Refs. [9, 10, 11, 12, 13, 14]

and citations therein).

In particular, vibrational properties play a crucial role in determining the thermo-

dynamic properties of all these materials. Indeed, diamond and semiconductor nan-

otubes exhibit a band gap (Eg= 5.5 eV for diamond, and for the typical semiconductor

SWNTs that we study here - of diameter less than 1 nm - Eg > 1 eV [15, 16, 17]),

so electronic excitations do not account for thermal properties up to high tempera-

tures. Graphite, graphene and certain SWNTs are metallic, but the gap vanishes only
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at isolated points in the Brillouin zone, where the two massless bands cross (see e.g.

Refs. [15, 16]); thus, electronic excitations can often be neglected in these materials,

and the phonon dispersions provide all the information that is needed to calculate

thermodynamic quantities such as the thermal expansion or specific heat.

The aim of this thesis is to provide a converged, accurate determination of the

structural, dynamical, and thermodynamic properties of diamond, graphite, graphene,

rhombohedral graphite and zigzag and armchair SWNTs from first-principles. Al-

though the phonon spectrum of diamond and its thermal properties have been stud-

ied extensively with experiments [18, 19] and calculations [20], the phonon spectra of

graphite [21, 22] and SWNTs [23, 24, 25, 26, 27] are still under active investigation,

as well as their thermal properties [28, 11, 10, 29, 12, 30, 31, 32]. Graphite in-plane

thermal expansion has long been recognized to be negative [33, 34], and it has even

been suggested [7, 34] that this may be due to the internal stresses related to the

large expansion in the c direction (Poisson effect).

To resolve some of the open questions, and to provide a coherent theoretical picture

for all these materials, we used extensive ab-initio density-functional theory (DFT)

and density-functional perturbation theory (DFPT) [35, 36] calculations. DFT is a

very efficient and accurate tool to obtain ground-state and linear-response properties,

especially when paired with plane-wave basis sets, which easily allow to reach full con-

vergence with respect to basis size, and ultrasoft pseudo-potentials [37] for optimal

performance and transferability. We adopted the PBE-GGA [38] exchange-correlation

functional, at variance with most of the ab-initio studies on diamond [20, 39, 40],

graphite [41, 42, 22, 23, 43, 24] and nanotubes [23, 24, 25, 27], which have been

performed using the local density approximation (LDA). GGA calculations have ap-

peared mostly for the cases of diamond (GGA-PBE, Ref. [40]) and graphene (GGA-

PBE, Refs. [21, 22]), with some data for graphite appearing in Refs. [44, 45, 22,

46] (GGA-PBE) and for nanotubes in Refs. [47, 48, 49, 50] (mostly GGA-PBE).

DFPT [35, 36] is then used to compute the phonon frequencies at any arbitrary

wave-vector, without having to resort to the use of supercells. The vibrational free

energy is calculated in the quasi-harmonic approximation (QHA) [20, 51], to predict

16



finite-temperature lattice properties such as thermal expansion and specific heat.

To the best of our knowledge, this is the first study on the thermodynamic prop-

erties of graphite, graphene or SWNTs from first-principles. For the case of diamond,

graphene and SWNTs, calculations are fully ab-initio and do not use any experimen-

tal input. For the case of graphite and rhombohedral graphite we argue that the

use of the experimental c/a greatly improves the agreement with experimental data.

This experimental input is required since DFT, in its current state of development,

yields poor predictions for the interlayer interactions, dominated by Van Der Waals

dispersion forces not well described by local or semi-local exchange correlation func-

tionals (see Refs. [52] and [53] for details; the agreement between LDA predictions

and experimental results for the c/a ratio is fortuitous). It is found that the weak

interlayer bonding has a small influence on most of the properties studied and that

forcing the experimental c/a corrects almost all the remaining ones. This allows us to

obtain results for all the materials considered that are in very good agreement with

the available experimental data.

This thesis is structured as follows. We give a brief summary of our approach

and definitions and introduce DFPT and the QHA in Chapter 2. Our ground-state,

zero-temperature results for diamond, graphite, graphene, rhombohedral graphite and

SWNTs are presented in Chapter 3: Lattice parameters and elastic constants from

the equations of state in Section 3.1, phonon frequencies and vibrational density of

states in Section 3.2, and first-principles, linear-response interatomic force constants

in Section 3.3. The lattice thermal properties, such as thermal expansion, mode

Griineisen parameters, and specific heat as obtained from the vibrational free energy

are presented in Chapter 4. Chapter 5 contains our final remarks.

17



18



Chapter 2

Theoretical framework

2.1 Crystalline structures studied

2.1.1 Diamond

The structure of diamond is that of an FCC Bravais lattice with a two-atom basis -

one at the origin and one at one-fourth of the cube diagonal. The carbon atoms are

bound together by sp3 bonds. The lattice constant a is the length of the side of the

conventional cubic unit cell. Fig. 2-1 shows the crystal structure of diamond.

I

a

Figure 2-1: Crystal structure of diamond, together with the conventional (cubic) unit
cell. a is the lattice constant.
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Figure 2-2: Crystal structure of graphene. a is the in-plane lattice parameter.

2.1.2 Graphene, graphite and rhombohedral graphite

Graphene is a two-dimensional monolayer of carbon atoms bound together by sp2

bonds. It exhibits a hexagonal "honeycomb" crystal lattice containing two atoms per

unit cell, as shown in Fig. 2-2. A single parameter characterizes this structure: the

distance a between two equivalent atoms in the lattice (which is also the distance

between an atom and its second nearest neighbors).

Graphite is made of graphene sheets bound together by Van der Waals forces. The

layers are stacked with a periodic pattern of type "ABABAB...": the B layers are

shifted with respect to the A ones such that the centers of the hexagonal cells of B lie

directly above an atom of A (see Fig. 2-3). Rhombohedral graphite is stacked "AB-

CABC..." (see Fig. 2-3). Both of these three-dimensional structures are represented

by an hexagonal lattice whose primitive cell contains four atoms for graphite and

six for rhombohedral graphite. Note that rhombohedral graphite can be equivalently

represented by a rhombohedral lattice whose unit cell contains only two atoms. Both

of these structures are fully characterized by the in-plane lattice parameter a (same

as in graphene) and the out-of-plane parameter c equal to two (graphite) or three

(rhombohedral graphite) times the interlayer distance.

2.1.3 Achiral nanotubes

A single-walled nanotube is a quasi-one-dimensional system obtained by rolling one

graphene sheet on itself in such a way that a graphene lattice vector c becomes the

20



A L

C, =

Figure 2-3: Crystal structure of graphite and rhombohedral graphite. c is the out-of-
plane lattice parameter

circumference of the tube. c is called the chiral vector, and its components in terms

of the two primitive vectors of graphene indicate the chirality of the nanotube. For

achiral nanotubes, these two chirality indices are either in the form (n, n) (armchair

SWNT) or (n, 0) (zigzag SWNT), where n is an integer. In Fig. 2-4 we show the chiral

vector on the graphene lattice for both armchair and zigzag nanotubes. Periodicity

of a SWNT occurs only in one dimension (along its axis); for achiral tubes (n, n) or

(n, 0) the unit cell contains 4n atoms. Such a unit cell is shown for the cases of the

armchair (5,5) and zigzag (8,0) nanotubes in Figs. 2-5 and 2-6. Once the chirality of

a SWNT is fixed, usually two parameters are sufficient to characterize its structure:

the radius r and the length 1 of the unit cell (see Figs. 2-5, 2-6, 2-7 and 2-8).

More details on the general structure of SWNTs can be found in Ref. [16].

2.2 Density-Functional Perturbation Theory

In density-functional theory [54, 55] the ground state electronic density and wavefunc-

tions of a crystal are found by solving self-consistently a set of one-electron equations.

In atomic units (used throughout the article), these are

21
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Figure 2-4: Chiral vectors for armchair and zigzag SWNTs. The primitive lattice
vectors of graphene (a, a2 ) are also shown (courtesy of Young-Su Lee, MIT).

Il

Figure 2-5: Structure of an armchair (5,5) SWNT. The primitive unit cell is high-
lighted in black.
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Figure 2-6: Structure of a zigzag (8,0) SWNT. The primitive unit cell is highlighted
in black

Figure 2-7: Axial view of an armchair (5,5) SWNT

23



Figure 2-8: Axial view of a zigzag (8,0) SWNT

(-!V2 + VscF(r))IlJ) = Eili0), (2.1a)
2

VscF(r) = ( ) d3r' + + Vion(r), (2.lb)Ir - rl 6(n(r))

n(r) = S Ikb(r) 2f(eF - Ei), (2.1c)
i

where f(EF - ei) is the occupation function, EF the Fermi energy, E,, the exchange-

correlation functional (approximated by GGA-PBE in our case), n(r) the electronic-

density, and Vi/n(r) the ionic core potential (actually a sum over an array of pseudo-

potentials).

Once the unperturbed ground state is determined, phonon frequencies can be ob-

tained from the interatomic force constants, i.e. the second derivatives at equilibrium

of the total crystal energy versus displacements of the ions:

aCi aj (R'-R) = 9u2E(R)RuI3(R I

= (ion - R1)Celec (R R')= ai,j- -i + ,j(2 - R')
(2.2)
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Here R (R') is a Bravais lattice vector, i (j) indicates the ith (jth) atom of the unit cell,

and a(3) represents the cartesian components. C.,ipj are the second derivatives [36]

of Ewald sums corresponding to the ion-ion repulsion potential, while the electronic

contributions Cel'"ij are the second derivatives of the electron-electron and electron-

ion terms in the ground state energy. From the Hellmann-Feynman theorem [36] one

obtains:

celecj (R-R') = an(r) &doj(r) + (r) (r) d3r (2.3)
L Ouai(R) Oufj(R') + ui(R)&uoj(R') 

(where the dependence of both n(r) and Vion(r) on the displacements has been omitted

for clarity, and Vijo(r) is considered local).

It is seen that the electronic contribution can be obtained from the knowledge

of the linear response of the system to a displacement. The key assumption is then

the Born-Oppenheimer approximation which views a lattice vibration as a static

perturbation on the electrons. This is equivalent to say that the response time of the

electrons is n:much shorter than that of ions, that is, each time ions are slightly displaced

by a phonon, electrons instantaneously rearrange themselves in the state of minimum

energy of the new ionic configuration. Therefore, static linear response theory can be

applied to describe the behavior of electrons upon a vibrational excitation.

For phonon calculations, we consider a periodic perturbation AVio, of wave-vector

q, which modifies the self-consistent potential VSCF by an amount AVSCF. The linear

response in the charge density An(r) can be found using first-order perturbation

theory. If we consider its Fourier transform An(q + G), and calling !bo,k the one-

particle wavefunction of an electron in the occupied band "o" at the point k of the

Brillouin zone (and o,k the corresponding eigenvalue), one can get a self-consistent

set of linear equations similar to Eqs. (2.1) [56]:

(Eo,k + V2 - VSCF(r))Abo,k+q = Pe k+qA cFI)ok (2.4a)
2
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An(q + G) = V E oke-i(q+G)OP n ,k+q) (2.4b)
k,o

AVscF(r) = n(Ir d3r' + An(r) [d E() + AViOn(r) (2.4c)

pk+q refers to the projector on the empty-state manifold at k + q, V to the total

crystal volume, and G to any reciprocal lattice vector. Note that the linear response

contains only Fourier components of wave vector q + G, so we add a superscript q

to AV SCF. We implicitly assume for simplicity that the crystal has a band gap and

that pseudo-potentials are local, but the generalization to metals [57] and to non-

local pseudo-potentials [36] are all well established (see Ref. [35] for a detailed and

complete review of DFPT).

Linear-response theory allows us to calculate the response to any periodic pertur-

bation; i.e. it allows direct access to the dynamical matrix related to the interatomic

force constants via a Fourier transform:

Dai, j(q) = 1 Mj E Cai,j (R) e 'R (2.5)

(where Mi is the mass of the ith atom).

Phonon frequencies at any q are the solutions of the eigenvalue problem:

W2(q)uai(q) = E uj(q)D[ai,,/j(q) (2.6)
pi

In practice, one calculates the dynamical matrix on a relatively coarse grid in the

Brillouin zone (say, a 8 x 8 x 8 grid for diamond), and obtains the corresponding

interatomic force constants by inverse Fourier transform (in this example it would

correspond to a 8 x 8 x 8 supercell in real space). Finally, the dynamical matrix (and

phonon frequencies) at any q point can be obtained by Fourier interpolation of the

real-space interatomic force constants.
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2.3 Thermodynamic properties

When no external pressure is applied to a solid, the equilibrium structure at any

temperature T can be found by minimizing the Helmholtz free energy F({ai}, T) =

U - TS with respect to all its geometrical degrees of freedom {ai}. If now the crystal

is supposed to be perfectly harmonic, F is the sum of the ground state total energy

and the vibrational free energy coming from the partition function (in the canonical

ensemble) of a collection of independent harmonic oscillators. In a straightforward

manner, it can be shown [58] that:

F({ai}, T) = E({ai}) + FVib(T)

= E({ai}) + E 2q + kT E Iln (1-exp - kT))
q,j q,j

(2.7)

where E({ ai}) is the ground state energy and the sums run over all the Brillouin zone

wave-vectors and the band index j of the phonon dispersions. The second term in

the right hand side of Eq. (2.7) is the zero-point motion.

If anharmonic effects are neglected, the phonon frequencies do not depend on

lattice parameters, therefore the free energy dependence on structure is entirely con-

tained in the equation of state E({ai}). Consequently the structure does not depend

on temperature in a harmonic crystal.

Thermal expansion is recovered by introducing in Eq. (2.7) the dependence of the

phonon frequencies on the structural parameters {ai}; direct minimization of the free

energy

F({ai},T) = E({aj}) + Fvib(Cq,j({ai}),T)

= E({ai}) + y: vwq,j ({ai}) + kBT E In ( - exp( kBT ) )2 qjBT
(2.8)
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provides the equilibrium structure at any temperature T. This approach goes under

the name quasi-harmonic approximation (QHA) and has been applied successfully to

many bulk systems [20, 59, 60]. The linear thermal expansion coefficients of the cell

dimensions of a lattice are then

1 0ai
oi =-a (2.9)

ai OT

The Griineisen formalism [61] assumes a linear dependence of the phonon frequencies

on the three orthogonal cell dimensions {ai}; developing the ground state energy up

to second order (thanks to the equation of state at T = OK) one can get from the

condition ( -0F) = the alternative expression

ai= c(q,j) Z o (Sj-ao,k Oqja ) (2.10)
q,j k

We follow here the formalism of Ref. [10]: c,(q, j) is the contribution to the specific

heat from the mode (q,j), Sik is the elastic compliance matrix, and the subscript

"O" indicates a quantity taken at the ground state lattice parameter. The Griineisen

parameter of the mode (q, j) is by definition

wao,l dwqj~o~g,j dak lo (2.11)?yk(q,j) = -ao,k 9Wq,j (2.11)

For a structure which depends only on one lattice parameter a (e.g. diamond or

graphene) one then gets for the linear thermal expansion coefficient

1 -ao OWq,j (2.12)
a2 82E /cv(q,J) j a (2.12)
a0 0a 2 0 q,j

In the case of graphite there are two lattice parameters: a in the basal plane and

c perpendicular to the basal plane (see Section 2.1.2), so that one gets

=a - 0 E cv (q, j) (Sll -12) -a 0 Oq,j + S13
- C

0 OWq,j (2.13a)
2 W0,q,j Oa o WO,q,j OC 0
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ac = EC, Cv(q,j) S1 3 a qj +S OWq,j ) (2.13b)
W0,q,j Oa WO,q,j C 0o

Finally, in the case of SWNTs, when calculating the thermal properties we will

use only one parameter, the length of the unit cell, and relax the other degrees of

freedom (in particular the radius). Therefore the linear thermal expansion coefficient

according to the Griineisen formalism is given by exactly the same equation as for

diamond and graphene (Eq. 2.12), substituting 1 to a wherever it appears.

The mode Griineisen parameters provide useful insight in the thermal expansion

mechanisms. They are usually positive, since phonon frequencies decrease when the

solid expands, although some negative mode Griineisen parameters for low-frequency

acoustic modes can arise and sometimes compete with positive ones, giving a negative

thermal expansion at low temperatures, when only the lowest acoustic modes can be

excited.

Finally, the heat capacity per unit cell at constant volume can be obtained from

C =-T( <dT2 ) v [58]:

C = c(q,j)= kB ( 2kBT) sinh ( ) (2.14)
qj BT)sinh 2BT

2.4 Computational details

All the calculations that follow are performed using the v-ESPRESSO [62] package,

which is a fuill ab-initio DFT and DFPT code available under the GNU Public Li-

cense [63], developed by a consortium of universities including our own group, and to

which several additions were made as a direct outcome of this work. We use a plane-

wave basis set, ultrasoft pseudo-potentials [37] from the standard distribution [64]

(generated using a modified RRKJ [65] approach), and the generalized gradient ap-

proximation (GGA) for the exchange-correlation functional in its PBE parameteri-

zation [38]. We also use the local density approximation (LDA) in order to compare

some results between the two functionals. In this case the parameterization used is

the one proposed by Perdew and Zunger [66].
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In all the calculations, periodic boundary conditions have to be set in all three

directions. The three-dimensional crystals diamond, graphite and rhombohedral

graphite are naturally fitting such boundary conditions, but the two-dimensional

graphene sheet and quasi-one-dimensional SWNTs are not. These are still period-

ically repeated in all the directions, but a large amount of vacuum is introduced

between periodic images. For graphene, periodic sheets are separated by a consider-

able interlayer distance - much larger than that of graphite. SWNTs are put into a

tetragonal lattice whose out-of-plane lattice parameter corresponds to the height of

the nanotube unit cell (see Section 2.1.3) while the in-plane lattice constant is set to

a large value compared to the radius of the SWNT.

For the semi-metallic graphite and graphene cases, we use 0.03 Ryd of cold smear-

ing [67], and 0.05 Ryd in the case of armchair metallic SWNT. We carefully and

extensively check the convergence in the energy differences between different configu-

rations and the phonon frequencies with respect to the wavefunction cutoff, the dual

(i.e. the ratio between charge density cutoff and wavefunction cutoff), the k-point

sampling of the Brillouin zone, and the vacuum spacing for graphene and nanotubes.

Energy differences are converged within 5 meV/atom or better, and phonon frequen-

cies within 5 cm-1. In the case of graphite, graphene and metallic SWNT phonon

frequencies are converged with respect to the k-point sampling after having fixed the

smearing parameter. Besides, for graphite and graphene values of the smearing be-

tween 0.02 Ryd and 0.04 Ryd do not change the frequencies by more than 5 cm - 1.

On the contrary some armchair SWNT phonon frequencies are more sensible to the

smearing, especially a few optical modes around F. This is due to the Kohn anoma-

lies [68, 46], but since these only affect high optical frequencies the influence on the

thermodynamic properties is negligible.

In a solid, translational invariance guaranties that three phonon frequencies at r

will go to zero. In our GGA-PBE DFPT formalism this condition is exactly satisfied

only in the limit of infinite k-point sampling and full convergence with the plane-

wave cutoffs. For the case of graphene and graphite we found in particular that

an exceedingly large cutoff (100 Ryd) and dual (28) would be needed to recover
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phonon dispersions (especially around F and the F - A branch) with the tolerances

mentioned; on the other hand, application of the acoustic sum rule (i.e. forcing

the translational symmetry on the interatomic force constants) allows us to recover

these highly converged calculations with a more reasonable cutoff and dual. The

same remark applies for the rotational invariance of SWNTs. Indeed, these one-

dimensional systems have a fourth phonon frequency going to zero at r, since they

are invariant for continuous rotations around their axis. Very high cutoffs and vacuum

separations would be needed to obtain numerically this zero-frequency limit; forcing

the corresponding rotational acoustic sum rule allows us to recover it with more

reasonable choices of computational parameters. Applying the rotational sum rules

is less straightforward than applying the translational ones, and we refer the reader

to Appendix A for a detailed explanation of our approach to enforce these.

Finally, the cutoffs used are 40 Ryd for the wavefunctions in all the carbon mate-

rials presented, except for SWNTs where 30 Ryd is used. The dual is 8 for diamond

and 12 for graphite, graphene and nanotubes, corresponding to a charge density cut-

off of 320 Ryd for diamond, 480 Ryd for graphite and graphene, and 360 Ryd for

SWNTs. We use a 8 x 8 x 8 Monkhorst-Pack mesh for the Brillouin zone sampling in

diamond, 16 x 16 x 8 in graphite, 16 x 16 x 4 in rhombohedral graphite, 16 x 16 x 1 in

graphene, 1 x 1 x 8 in zigzag SWNTs and 1 x 1 x 12 in armchair SWNTs. All these

meshes are not shifted (i.e. they do include F). The dynamical matrix is explicitly

calculated on a 8 x 8 x 8 q-points mesh in diamond, 8 x 8 x 4 in graphite, 8 x 8 x 2

in rhombohedral graphite, 16 x 16 x 1 in graphene, 1 x 1 x 4 in the nanotubes.

Finally, integrations over the Brillouin zone for the vibrational free energy or the

heat capacity are done using phonon frequencies that are Fourier interpolated on

much finer meshes. The phonon frequencies are usually computed at several lattice

parameters and the results interpolated to get their dependence on lattice constants.
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Chapter 3

Zero-temperature results

3.1 Structural and elastic properties

We perform ground state total-energy calculations on diamond, graphite, graphene

and SWNTs over a broad range of lattice parameters. The potential energy surface

is then fitted by an appropriate equation of state, and its minimum provides theo-

retical predictions for the ground state equilibrium lattice parameter(s). The second

derivatives at the minimum are related to the bulk modulus and elastic constants.

3.1.1 Diamond

The equation of state of diamond over a broad range of lattice parameters is plotted

in Fig. 3-1. We choose the Birch equation of state [69] (up to the fourth order) to fit

the total energy vs. the lattice constant a:

9
E(a) = -Eo + BoVo

+B [(ao) -

[(2 2 1] a[( ) 2 1]31 _ 1 + A -a a

4 ( ((ao)2) 5

where Bo is the bulk modulus, V the primitive cell volume (here V = ) and A

and B are fit parameters. The Murnaghan equation of state or even a polynomial
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Figure 3-1: Ground state energy of diamond as a function of the lattice constant a.
The zero of energy is set to the minimum.

would fit equally well the calculations around the minimum of the curve. A best

fit of this equation on our data gives us both the equilibrium lattice parameter and

the bulk modulus; our results are summarized in Table 3.1. The agreement with

the experimental values is very good, even after the zero-point motion and thermal

expansion are added to our theoretical predictions (see Chapter 4).

3.1.2 Graphene and graphite

The equation of state for graphene is shown in Fig. 3-2, fitted by a 4th order polyno-

mial. The minimum is found for a = 4.654 a.u., which is very close to the experimental

in-plane lattice parameter of graphite. The graphite equation of state is fitted by a

two-dimensional 4 th order polynomial in the variables a and c. To illustrate the very

small dependence of the ground state energy with the c/a ratio, we plot the results

of our calculations over a broad range of lattice constants in Figs. 3-3 and 3-4.

A few elastic constants can be obtained from the second derivatives of this en-

ergy [41]:
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Table 3.1: Equilibrium lattice parameter ao and bulk modulus Bo of diamond at the
ground state (GS) and at 300 K (see Chapter 4), compared to experimental values.

Present calculation Experiment (300 K)
Lattice constant ao

(a.u.)
Bulk modulus Bo

(GPa)

6.743 (GS)
6.769 (300 K)

432 (GS)
422 (300 K)

aRef. [70]
bRef. [71]

2

>1D
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Czl
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I).5

C

a (Bohr)

Figure 3-2: Ground state energy of graphene as a function of the lattice constant a.
The zero of energy is set to the minimum.
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Figure 3-3: Contour plot of the ground state energy of graphite as a function of a
and c/a (isoenergy contours are not equidistant).

Stiffness coefficients

Tetragonal shear modulus C

Bulk modulus B

C1 + C12 = a 2 E
2Vo a 2

C33= c 2EC3 3 =vO C2 (3.2a)

C13 = aoc 92 E13 2Vo Oac

' = [(C11 + C12) + 2C33 - 4C13]

C33(C11 + C12) - 2C13

6Ct

(3.2b)

(3.2c)

where Vo = -a 0co is the volume of the unit cell.

We summarize all our LDA and GGA results in Table 3.2: For LDA, both the

lattice parameter ao and the co/ao ratio are very close to experimental data. Elas-

tic constants are calculated fully from first-principles, in the sense that the second
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Figure 3-4: Ground state energy of graphite as a function of c/a at fixed a = 4.65 a.u..
The theoretical (PBE) and the experimental c/a are shown. The zero of energy is set
to the PBE minimum.

Table 3.2: Structural and elastic properties of graphite according to LDA, GGA, and
experiments

LDA fully GGA fully GGA using GGA with Experiment
theoretical theoretical exp. co 2 nd derivatives (300 K)

in Eqs. (3.2a) taken at exp. co/ao
Lattice constant ao(a.u.) 4.61 4.65 4.65 4.65(fixed) 4.65+0.003

I- ratio 2.74 3.45 3.45 2.725(fixed) 2.725±0.0011ao
C1l + C12 (G:Pa) 1283 976 1235 1230 1240+402

C3 3 (GPa) 29 2.4 1.9 45 36.5+1 2
C13 (GPa) -2.8 -0.46 -0.46 -4.6 15+5 2
Bo (GPa) 27.8 2.4 1.9 41.2 35.8 3
Ct (GPa) 225 164 207 223 208.8 3

aRefs. [72, 73, 74], as reported by Ref. [41].
bRef. [6]

CRef. [75], as reported by Ref. [41]
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derivatives of the energy are taken at the theoretical LDA ao and co, and that only

these theoretical values are used in Eqs. (3.2a). Elastic constants are found in good

agreement with experiments, except for the case of C13 which comes out as negative

(meaning that the Poisson's coefficient would be negative).

Fully theoretical GGA results (second column of Table 3.2) compare poorly to

experimental data except for the ao lattice constant, in very good agreement with

experiments. Using the experimental value for co in Eqs. (3.2a) improves only the

value of Cll + C12 (third column of Table 3.2). Most of the remaining disagreement is

related to the poor value obtained for c/a; if the second derivatives in Eqs. (3.2a) are

taken at the experimental value for c/a all elastic constants are accurately recovered

except for C13 (fourth column of Table 3.2).

In both LDA and GGA, errors arise from the fact that Van Der Waals interactions

between graphitic layers are poorly described. These issues can still be addressed

within the framework of DFT (as shown by Langreth and collaborators, Ref. [52]) at

the cost of having a non-local exchange-correlation potential.

3.1.3 Single-walled nanotubes

For achiral nanotubes we compute structural and elastic properties in two different

ways. The first one consists in calculating the energy of a pristine SWNT for different

values of the two parameters r and 1, without performing any structural relaxation.

This assumes that the atoms remain on a perfectly cylindrical shell, and that the only

degrees of freedom that matter are the radius and the length. The parameters r and

1 play then exactly the same role as a and c for graphite (see Section 3.1.2 above) and

after having fitted the equation of state by a two-dimensional 2 nd order polynomial

we obtain the stiffness coefficients using the same relations as for graphite (Eqs. 3.2),

simply replacing a by r and c by l:
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2 2 ECll + C12 = 2Vo Or2

Stiffness coefficients 33 = (3.3a)

rOco 2E
13 - 2Vo arOl

1
Tetragonal shear modulus Ct [(C11 + C12) + 2C33 - 4C13] (3.3b)

6

C33(C11 + C12) - 2C2
Bulk modulus Bo =13 (3.3c)

6Ct

VO is defined here as the surface of the nanotube (equal to 27rrolo) times the exper-

imental interlayer spacing of graphite (h = 6.34 a.u.), which plays the role of "wall

thickness". This convention is the one followed by numerous studies on the elastic

properties of nanotubes [76, 77, 78, 79] and facilitates comparison between different

results on nanotubes or graphite.

Another approach consists in relaxing the whole structure for different fixed values

of the unit cell height 1: the energy is minimized with respect to all the degrees of

freedom except 1, i.e. versus all the atomic positions in the cell. This gives the total

energy as a function of 1. When fitting this energy by a 2nd order polynomial, the

second derivative at the minimum lo gives us directly the Young's modulus in the

axial direction Y:

= 12 d2E (3.4)
Vo d12 (34)

where we take the same convention as above for VO, ro being in this case the "average

radius" of the SWNT, i.e. the average of the distance between each atom of the cell

and the center axis of the nanotube, after relaxation.

The two methods are equivalent in the sense that lo is the same in each case,

and the equilibrium value ro coming from the first approach is also the same as the

average radius of the relaxed structure in the second method (in each case, the error
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Figure 3-5: Contour plot of the ground state energy of an armchair (4,4) SWNT fitted
by a second order polynomial of r and 1 (isoenergy contours are not equidistant).

is less than 0.01%). In Fig. 3-5 we show a contour plot of the energy of an armchair

(5,5) SWNT versus both r and (first method). In Fig. 3-6 we show the equation of

state of an armchair (4,4) versus 1, where the second method is used.

Results for structural properties and elastic constants are summarized in Table 3.3.

We also include the quantity d2E which corresponds to the second derivative of the

relaxed energy per atom (second method) versus axial strain. This quantity is directly

proportional to the Young's modulus (the proportionality factor being V0 over the

number of atoms in the unit cell), and it does not depend on any arbitrary convention

concerning the wall thickness.

The radii obtained are in very good agreement with theoretical values obtained in

Refs. [76, 47, 79, 25], the difference being at most 1%. The height of the nanotube cell

is also in excellent agreement with values obtained in Ref. [47]. The elastic constants

depend on diameter only for very narrow SWNTs, where curvature reduces the C33

constant. Except for these narrow SWNTs, the elastic constants do not depend on
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Figure 3-6: Ground state energy of a relaxed armchair (5,5) SWNT as a function of
the unit cell length 1. The zero of energy is set to the minimum.

diameters nor on chirality, as also pointed out in Refs. [14, 76, 25]. The C33 elastic

constant is very similar to the in-plane C1l constant of graphite and the Cll constant

of diamond (respectively 1060 and 1076 GPa, see Section 3.2 below). The values of Y

and dE are in very good agreement with those obtained using ab-initio calculations

in Refs. [25, 47], empirical potential calculations in Ref. [76], and similar to those

calculated for long capped SWNTs using Hartree-Fock theory (Ref. [79]). Other

elastic constants such as C33 and the bulk modulus Bo agree well with the values of

Ref. [76]. Finally, our results are in good agreement with the experimental value of

the Young's modulus of SWNTs obtained as 1.25 - 0.35/ + 0.45 TPa in Ref. [77] and

1 TPa in Ref. [78].
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Table 3.3: Structural and elastic properties of several SWNTs: equilibrium radius ro
and unit cell length lo, stiffness coefficients C11 + C12, C33 and C13, bulk modulus Bo0,
Young's modulus Y, and second derivative of the strain energy with respect to the
axial strain d2Edes

ro lo C 1 1 + C12 C3 3 C13 Bo Y
(a.u) (a.u.) (GPa) (GPa) (GPa) (GPa) (GPa) (eV/atom)

Armchair (3,3) 3.972 4.655 529 946 88.4 235
Armchair (4,4) 5.224 4.653 502 980 78.2 223
Armchair (5,5) 6.486 4.653 539 1009 81.7 238 982 54.6
Armchair (6,6) 7.757 4.653 532 1017 79.7 235
Armchair (8,8) 10.307 4.653 526 1026 76.9 232

Armchair (10,10) 12.863 4.653 522 1030 75.5 231 988 54.5
Zigzag (8,0) 6.010 8.052 986 55

3.2 Phonon dispersion curves

3.2.1 Diamond and graphite

We calculate the phonon dispersion relations for diamond, graphite, rhombohedral

graphite and graphene. For diamond and graphene, we use the theoretical lattice

parameter(s). For graphite, we either use the theoretical c/a or the experimental one

(c/a = 2.725). We will comment extensively in the following on the role of c/a on

our calculated properties. In rhombohedral graphite, we use the same in-plane lattice

parameter and same interlayer distance as in graphite (that is, a c/a ratio multiplied

by 1.5 ). Results are presented in Figs. 3-7, 3-8, 3-9, 3-10 and 3-11, together with the

experimental data.

In Table 3.4 and 3.5 we summarize our results at high-symmetry points and com-

pare them with experimental data. In diamond, GGA produces softer modes than

LDA [20] on the whole (as expected), particularly at F (optical mode) and in the

optical F-X branches. For these, the agreement is somehow better in LDA; on the

other hand the whole r-L dispersion is overestimated by LDA.

The results on graphite require some comments. In Table 3.5 and Figs. 3-8, 3-9,

3-10 and 3-11, modes are classified as follow: L stands for longitudinal polarization,

T for in-plane transversal polarization and Z for out-of-plane transversal polarization.

For graphite, a prime (as in LO') indicates an optical mode where the two atoms in
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Figure 3-7: GGA ab-initio phonon dispersions (solid lines) and vibrational density of
states (VDOS) for diamond. Experimental neutron scattering data from Ref. [18] are
shown for comparison (circles).
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Figure 3-8: GGA (solid lines) and LDA (dashed line) ab-initio phonon dispersions
for graphite, together with the GGA vibrational density of states (VDOS). The inset
shows an enlargement of the low-frequency r-A region. The experimental data are
EELS (Electron Energy Loss Spectroscopy) from Refs. [80], [81] and [82] (respectively
squares, diamonds, and filled circles), neutron scattering from Ref. [83] (open circles),
and x-ray scattering from Ref. [21] (triangles). Data for Refs. [80] and [82] were taken
from Ref. [22].
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Figure 3-9: GGA ab-initio phonon dispersions for graphene (solid lines). Experimen-
tal data for graphite are also shown, as in Fig. 3-8.
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Figure 3-10: GGA ab-initio phonon dispersions for rhombohedral graphite. The inset
shows an enlargement of the low-frequency F-A region.
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Figure 3-11: GGA ab-initio phonon dispersions for graphite at the theoretical c/a.
The inset shows an enlargement of the low-frequency r-A region.

Table 3.4:
in cm- 1.

LDAa
GGAb
Exp.c

Phonon frequencies of diamond at the high-symmetry points F, X and L,

Io
1324
1289
1332

XTA
800
783
807

XTO
1094
1057
1072

XLO
1228
1192
1184

LTA

561
548
550

LLA
1080
1040
1029

LTO
1231
1193
1206

LLO
1275
1246
1234

aRef. [20]
bPresent calculation
CRef. [18]
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Table 3.5: Phonon frequencies of graphite and derivatives at the high-symmetry points
A, F, M and K, in cm-'. The lattice constants used in the calculations are also shown.

Functional
In-plane lattice ct. ao
Interlayer distance/ao

ATA/TO'
ALA/LO'
ALO
ATO

LDA
4.61 a.u.

1.36
31
80
897
1598

Graphite
GGA

4.65 a.u.
1.725

6
20
880
1561

GGA
4.65 a.u.

1.36
29
96
878
1564

Rhombo. graphite
GGA

4.65 a.u.
1.36

Graphene
GGA

4.65 a.u.
15

Graphite
Experiment

4.65 a.u.
1.36
351
891

rLOl 44 8 41 35 491
rzo, 113 28 135 117 952, 1261
rzo 899 881 879 879 881 8612

rLO/TO 1593 1561 1559 1559 1554 15902, 15756
1604 1561 1567

MZA 478 471 477 479 471 4711, 465, 4514
MTA 630 626 626 626 626 6304
MZO 637 634 634 635 635 6702
MLA 1349 1331 1330 1330 1328 12903
MLO 1368 1346 1342 1344 1340 13213
MTO 1430 1397 1394 1394 1390 13883, 13892
KZA 540 534 540 535 535 4824, 5174, 5305
KZO 544 534 542 539 535 5884, 6275
KTA 1009 999 998 998 997

KLA/LO 1239 1218 1216 1216 1213 11843, 12023
KTO 1359 1308 13197 1319 12887 13134, 12915

aRef. [83]
bRef. [80]
CRef. [21]

dRef. [82]

eRef. [81]

fRef. [84]
gNote that a direct calculation of this mode with DFPT (instead of the Fourier interpolation

result given here) leads to a significantly lower value in the case of graphite - 1297 cm- 1 instead of
1319 cm - 1 . This explains much of the discrepancy between the graphite and graphene result, since
in the latter we used a denser q-points mesh. This effect is due to the Kohn anomaly occurring at
K [46].
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each layer of the unit cell oscillate together and in phase opposition to the two atoms

of the other layer. A non-primed optical mode is instead a mode where atoms inside

the same layer are "optical" with respect to each other. Of course "primed" optical

modes do not exist for graphene, since there is only one layer (two atoms) per unit

cell.

We observe that stacking has a negligible effect on all the frequencies above 400

cm- 1 , since both rhombohedral graphite and hexagonal graphite show nearly the

same dispersions except for the r-A branch and the in-plane dispersions near r. The

in-plane part of the dispersions is also very similar to that of graphene, except of

course for the low optical branches (below 400 cm- 1 ) that appear in graphite and are

not present in graphene.

For graphite as well as diamond GGA tends to underestimate high optical modes

while LDA overestimates them. The opposite happens for the low optical modes, and

for the r-A branch of graphite; the acoustic modes show marginal differences and are

in very good agreement with experiments. Overall, the agreement of both LDA and

GGA calculations with experiments is very good and comparable to that between

different measurements.

Some characteristic features of both diamond and graphite are well reproduced

by our ab-initio results, such as the LO branch overbending and the associated shift

of the highest frequencies away from F. Also, in the case of graphite, rhombohedral

graphite and graphene, the quadratic dispersion of the in-plane ZA branch in the

vicinity of F is observed; this is a characteristic feature of the phonon dispersions of

layered crystals [85, 86], observed experimentally e.g. with neutron scattering [83].

Nevertheless, some discrepancies are found in graphite. The most obvious one is

along the F-M TA branch, where EELS [80] data show much higher frequencies than

calculations. Additionally, several EELS experiments [81, 82] report a gap between

the ZA and ZO branches at K while these cross each other in all the calculations.

In these cases the disagreement could come either from a failure of DFT within the

approximations used or from imperfections in the crystals used in the experiments.

There are also discrepancies between experimental data, in particular in graphite for
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the LA branch around K: EELS data from Ref. [81] agree with our ab-initio results

while those from Ref. [82] deviate from them.

Finally, we should stress again the dependence of the graphite phonon frequencies

on the in-plane lattice parameter and c/a ratio. The results we have analyzed so far

were obtained using the theoretical in-plane lattice parameter a and the experimental

c/a ratio for both GGA and LDA. Since the LDA theoretical c/a is very close to the

experimental one (2.74 vs. 2.725) and the interlayer bonding is very weak, these

differences do no matter. However this is not the case for GGA, as the theoretical

c/a ratio is very different from the experimental one (3.45 vs. 2.725). Fig. 3-11

and the second column of Table 3.5 show results of GGA calculations performed at

the theoretical c/a. Low frequencies (below 150 cm-1 ) between F and A are strongly

underestimated, as are the ZO' modes between r and M, while the remaining branches

are barely affected.

The high-frequency optical modes are instead strongly dependent on the in-plane

lattice constant. The difference between the values of a in LDA and GGA explains

much of the discrepancy between the LDA optical modes and the GGA ones. Indeed,

a LDA calculation performed at a = 4.65 a.u. and c/a = 2.725 (not shown here)

brings the phonon frequencies of these modes very close to the GGA ones obtained

with the same parameters, while lower-energy modes (below 1000 cm -1 ) are hardly

affected.

Our final choice to use the theoretical in-plane lattice parameter and the experi-

mental c/a seems to strike a balance between the need of theoretical consistency and

that of accuracy. Therefore, the remaining of this chapter is based on calculations

performed using the parameters discussed above (a = 4.61 for LDA, a = 4.65 for

GGA and c/a = 2.725 in each case).

Elastic constants can be extracted from the data on sound velocities. Indeed, the

latter are the slopes of the dispersion curves in the vicinity of F and can be expressed

as the square root of linear combinations of elastic constants (depending on the branch

considered) over the density (see Ref. [87] for details). We note in passing that we

compute the density consistently with the geometry used in the calculations (see

48



Table 3.6: Elastic constants of diamond and graphite as calculated from the phonon
dispersions, in GPa.

Diamond Graphite
Functional GGA Exp. LDA GGA Exp.
C1l 1060 1076.4 ± 0.22 1118 1079 1060 ± 201
C12 125 125.2 i 2.32 235 217 180 ± 201
C44 562 577.4 + 1.42 4.5 3.9 4.5 - 0.51
C33 - 29.5 42.2 36.5+1 1

aRef. [6]

bRef. [71]

Table 3.5 for details, first column for LDA and third one for GGA), and not the

experimental density. Our results are shown in Table 3.6.

The overall agreement with experiment is good to very good. LDA leads to larger

elastic constants, as expected from the general tendency to "overbind", but still agrees

well with experiment. For diamond, the agreement is particularly good. As for C13

in graphite, it is quite difficult to obtain it from the dispersion curves since it enters

the sound velocities only in a linear combination involving other elastic constants, for

which the error is almost comparable to the magnitude of C13 itself.

3.2.2 Armchair and zigzag nanotubes

Phonon dispersions of both armchair (5,5) and zigzag (8,0) are computed. We use

structures that have been fully relaxed, that is, the energy minimized versus all de-

grees of freedom, including the unit cell length 1 (see Section 3.1.3). Results are

presented in Figs. 3-12 and 3-13.

To achieve higher accuracy in the dispersions, we use a 1 x 1 x 8 q-point sampling

for the zigzag nanotube and 1 x 1 x 16 for the armchair one. Also, the k-point grid used

for armchair is denser than the standard set in Section 2.4, i.e. 1 x 1 x 16 instead of

1 x 1 x 12. In the case of armchair tubes this is needed because Kohn anomalies arise

in the phonon dispersions [68, 46, 27]. Even with such dense grids, a few high optical

frequencies at F might not be fully converged in our armchair (5,5) calculations. The
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Figure 3-12: GGA ab-initio phonon dispersions and vibrational density of states
(VDOS) for an armchair (5,5) SWNT. VDOS from experimental inelastic neutron
scattering data (Ref. [26]) is shown for comparison (circles).
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Figure 3-13: GGA ab-initio phonon dispersions and vibrational density of states
(VDOS) for a zigzag (8,0) SWNT. VDOS from experimental inelastic neutron scat-
tering data (Ref. [26]) is shown for comparison (circles).
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translational and rotational acoustic sum rules are applied to the interatomic force

constants before drawing the dispersion curves, following the methodology explained

in Appendix A.

As in diamond and graphite, the dispersions exhibit an overbending of the highest

optical frequencies, which is more visible for the armchair tube than for the zigzag

one. The lowest and doubly-degenerate acoustic modes (called TA bending modes)

have a parabolic shape near , in analogy to layered materials, as was inferred in

Refs. [86, 88] and explained for the case of SWNTs in Ref. [89]. An additional

acoustic branch, the "twisting" mode, appears in the vicinity of F, corresponding to

a twist of the nanotubes about their axis.

Our dispersions are in good qualitative agreement with other ab-initio calculations

on (10,0) and (10,10) SWNTs (Ref. [23]), on (4,4) and (10,10) SWNTs (Ref. [25]) and

on a (3,3) SWNT (Ref. [27]). All these results disagree with the ab-initio calcula-

tions on (5,5), (6,6) and (10,10) SWNTs of Ref. [24], where the overbending is not

present. Our vibrational density of states (VDOS) exhibits significant discrepancies

with respect to the experimental VDOS obtained from inelastic neutron scattering

data [26]. This is at least partly due to the fact that SWNTs of different diameters

and chirality were present in the experimental sample, which broadens and shifts the

VDOS peaks compared to the defined-chirality SWNTs of our calculations.

An accurate description of the phonon dispersions of all these materials allows

us to predict the low-energy structural excitations and thus several thermodynamic

quantities. Before exploring this in Chapter 4, we want to discuss the nature and

decay of the interatomic force constants in carbon based materials.

3.3 Interatomic force constants

As explained in Section 2.2, the interatomic force constants Ci,j(R- R') are obtained

in our calculations from the Fourier transform of the dynamical matrix Di,j(q) cal-

culated on a regular mesh inside the Brillouin zone (8 x 8 x 8 for diamond, 8 x 8 x 4

for graphite, 16 x 16 x 1 for graphene, 1 x 1 x 8 for zigzag (8,0) and 1 x 1 x 16 for
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Figure 3-14: Decay of the norm of the interatomic force constants as a function of
distance for diamond (thin solid line) and graphene (thick solid line), in a semi-
logarithmic scale. The dotted and dashed lines show the decay for diamond along the
(100) and (110) directions.

armchair (5,5) ). This procedure is exactly equivalent (but much more efficient) than

calculating the interatomic force constants with frozen phonons (up to 47 neighbors in

diamond, 74 in graphene, etc.). At a given R, Ci,j(R) is actually a 2nd order tensor,

and the decay of its norm (defined as the square root of the sum of the squares of all

the matrix elements) with distance is a good measure to gauge the effect of distant

neighbors. In Fig. 3-14 we plot the natural logarithm of such a norm with respect to

the distance from a given atom, for diamond and graphene. The norm is averaged on

all the neighbors located at the same distance before taking the logarithm.

The force-constants decay in graphene is slower than in diamond, and it depends

much less on direction. In diamond decay along (110) is much slower than in other

directions due to long-range elastic effects along the covalent bonds. This long-range

decay is also responsible for the flattening of the phonon dispersions in zincblende and

diamond semiconductors along the K-X line (see Fig. 3-7 and Ref. [36], for instance).

In Fig. 3-15 we show the decay plot for graphite and graphene, averaged over all
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Figure 3-15: Decay of the norm of the interatomic force constants as a function of
distance for graphite (thin solid line) and graphene (thick solid line).

directions. The graphite interatomic force constants include values corresponding to

graphene (in-plane nearest neighbors) and smaller values corresponding to the weak

interlayer interactions.

Finally, in Fig. 3-16 we show the decay for the interatomic force constants in

armchair (5,5) and zigzag (8,0) SWNTs, compared to the ones for graphene. The

three curves have the same trend, showing the great similarity between the force

constants of graphene and those of SWNTs.

It is interesting to assess the effect of truncation of these interatomic force con-

stants on the phonon dispersions. This can be done by replacing the force constants

corresponding to distant neighbors by zero. In this way short-range and long-range

contributions can be examined. The former are relevant for short-range force-constant

models such as the VFF (Valence Force Field) [15] or the 4NNFC (4 th Nearest-

Neighbor Force Constant) [90] used e.g. in graphene. Note however that a simple

truncation is not comparable to the VFF or 4NNFC models, where effective inter-

atomic force constants would be renormalized.
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Figure 3-16: Decay of the norm of the interatomic force constants as a function of
distance for graphene (solid line), armchair (5,5) SWNT (dashed line) and zigzag
(8,0) SWNT (dotted line).

Figs. 3-17 and 3-18 show the change in frequency for selected modes in diamond

and graphene as a function of the truncation range. The modes we chose are those

most strongly affected by the number of neighbors included.

For diamond, our whole supercell contains up to 47 neighbors, and the graph shows

only the region up to 20 neighbors included, since the selected modes do not vary

by more than 1 cm-l1 after that. With 5 neighbors, phonon frequencies are already

near their converged value, being off by at worst 4%; very good accuracy (5 cm-1 ) is

obtained with 13 neighbors.

For graphene, our 16 x 16 x 1 supercell contains up to 74 neighbors, but after the

30th no relevant changes occur. At least 4 neighbors are needed for the optical modes

to be converged within 5-8%. Some acoustic modes require more neighbors, as also

pointed out in Ref. [23]. As can be seen in Fig. 3-18, the frequency of some ZA modes

in the -M branch (at about one fourth of the branch) oscillates strongly with the

number of neighbors included, and can even become imaginary when less than 13 are

used, resulting into an instability of the crystal. This behavior does not appear in

55



DIUU

-^ 1000
.)

L 0

500

0

1290

1275

1260 

1035 

1020k

1005 

560

550

)10 15 20

Number of neighbors included before truncation

Figure 3-17: Phonon frequencies of diamond as a function of the number of neighbors
included in the interatomic force constants: Fo (solid line), XTO (dotted line), and
LTA (dashed line).

diamond. Also, the KTO mode keeps varying in going down from 20 to 30 neighbors,

though this effect remains small (8 - 9cm-1). This drift signals the presence of a

Kohn anomaly [68]. Indeed, at the K point of the Brillouin zone the electronic band

gap vanishes in graphene, so that a singularity arises in the highest optical phonon

mode. Therefore a finer q-point mesh is needed around this point, and longer-ranged

interatomic force constants. This effect is discussed in detail in Ref. [46].
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Figure 3-18: Phonon frequencies of graphene as a function of the number of neighbors
included in the interatomic force constants: rLO/TO (solid line), KTO (dot-dashed),
MZo (dashed), and for the dotted line a phonon mode in the ZA branch one-fourth
along the F to M line.
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Chapter 4

Thermodynamic properties

We present in this chapter our results on the thermodynamic properties of diamond,

graphite, graphene and SWNTs using the quasi-harmonic approximation and phonon

dispersions at the GGA level. As outlined in Section 2.3 we first perform a direct min-

imization over the lattice parameter(s) ai) of the vibrational free energy F({ai}, T)

(Eq. 2.8). This gives us, for any temperature T, the equilibrium structure, shown

in Figs. 4-1, 4-2, 4-3, 4-4 and 4-5. For diamond, graphene and SWNTs we use in

Eq. (2.8) the equations of state obtained from the ground state calculations pre-

sented in Section 3.1. For graphite this choice would not be useful or accurate, since

the theoretical c/a is much larger than the experimental one. So we force the equa-

tion of state to be a minimum for c/a=2.725 and a=4.65 a.u. (fixing only c/a and

relaxing a would give a=4.66 a.u., with negligible effects on the thermal expansion).

In particular, our "corrected" equation of state is obtained by fitting with a fourth

order polynomial the true equation of state around the experimental a and c/a, and

then dropping from this polynomial the linear order terms. Since the second deriva-

tives of the polynomial remain unchanged, we keep the elastic constants unchanged,

and the only input from experiments remains the c/a ratio. We have also checked

the effects of imposing to C13 its experimental value (C13 is the elastic constant that

is predicted least accurately), but the changes were small.

The dependence of the phonon frequencies on the lattice parameters is determined

by calculating the whole phonon dispersions at several values and interpolating these
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Figure 4-1: Lattice parameter of diamond as a function of temperature

in between. For diamond and graphene we use four different values of a (from 6.76

a.u. to 6.85 a.u. for diamond, and from 4.654 a.u. to 4.668 a.u. for graphene)

and interpolate them with a cubic polynomial. For graphite, where two independent

structural parameters are needed, we restrict ourselves to linear interpolations and

calculate the phonon dispersions for the three combinations of (a, c/a)=(4.659,2.725),

(4.659,2.9) and (4.667,2.725). We also use linear interpolation for SWNTs and com-

pute the phonon dispersions of fully relaxed structures (see Section 3.1.3) for two

different values of 1: the equilibrium one and a value 1% higher. The dispersions are

computed with the same q-point grids detailed in Section 3.2.

Before focusing on the thermal expansion, we examine zero-point motion. Indeed,

the effects of temperature up to about 1000 K remains small or comparable to the

zero-point expansion of the lattice parameters. In diamond, once the zero-point

motion is added the equilibrium lattice parameter a expands from 6.743 a.u. to 6.768

a.u., a difference of 0.4%. For graphene, a changes from 4.654 a.u. to 4.668 a.u. with

zero-point motion corrections (+0.3%); for graphite a increases from 4.65 to 4.664 a.u.

(+0.3%) and c from 12.671 to 12.711 (+0.3%); for armchair (5,5) nanotubes, goes
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Figure 4-2: :[n-plane lattice parameter of graphite (solid line) and graphene (dashed
line) as a function of temperature
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Figure 4-3: Out-of-plane lattice parameter of graphite as a function of temperature
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Figure 4-4: Axial lattice parameter of an armchair (5,5) SWNT as a function of
temperature
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Figure 4-5: Axial lattice parameter of a zigzag (8,0) SWNT as a function of temper-
ature
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Figure 4-6: Coefficient of linear thermal expansion for diamond as a function of
temperature. We compare our QHA-GGA ab-initio calculations (solid line) to ex-
periments (Ref. [19], filled circles), a path integral Monte-Carlo study using a Tersoff
empirical potential (Ref. [91], open squares) and the QHA-LDA study by Pavone
et al [20] (dashed line). The QHA-GGA thermal expansion calculated using the
Griineisen equation (Eq. 2.12) is also shown (dotted line).

from 4.653 a.u. to 4.667 (+ 0.3%) and from 8.052 a.u to 8.078 (+ 0.3%) for zigzag

(8,0). The increase is similar in each case, and even comparable to the discrepancy

between experiments and GGA or LDA ground states.

The coefficients of linear thermal expansion at any temperature are obtained by

direct numerical differentiation of the previous data. Results are shown in Figs. 4-6,

4-7, 4-8 and 4-9. For the case of diamond, we also plot the linear thermal expan-

sion coefficient calculated using the Griineisen formalism (Eq. 2.12) instead of directly

minimizing the free energy. While at low temperature the two curves agree, a discrep-

ancy becomes notable above 1000 K, and direct minimization should be performed.

This difference between the Griineisen approach and a direct minimization seems to

explain much of the discrepancy between the calculations of Ref. [20] and our results.

Finally a Monte-Carlo path integral study by Herrero and Ramirez [91], which does
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Figure 4-7: In-plane coefficient of linear thermal expansion as a function of tem-
perature for graphite (solid line) and graphene (dashed line) from our QHA-GGA
ab-initio study. The experimental results for graphite are from Ref. [33] (filled cir-
cles) and Ref. [7] (open diamonds).

not use the QHA, gives very similar results.

For graphite, the in-plane coefficient of linear thermal expansion slightly overesti-

mates the experimental values, but overall the agreement remains excellent, even at

high temperatures. Out-of-plane, the agreement holds well up to 150 K, after which

the coefficient of linear thermal expansion is underestimated by about 30% at 1000

K. In-plane, the coefficient of linear thermal expansion is confirmed to be negative

from 0 to about 600 K. This feature, absent in diamond, is much more apparent in

graphene, where the coefficient of linear thermal expansion keeps being negative up

to 2300 K.

Thermal contraction along the axis appears in both armchair (5,5) and zigzag

(8,0) SWNTs, in a temperature range from 0 to 450 K. The maximum contrac-

tion is reached at 200 K for the armchair (5,5) tube, 210 K for the zigzag (8,0) one,

compared to 220 K and 310 K for graphite and graphene respectively. At these tem-

peratures, the coefficient of linear thermal expansion is -0.7 x 10-6 K-1 in armchair
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Figure 4-8: Out-of-plane coefficient of linear thermal expansion as a function of tem-
perature for graphite from our QHA-GGA ab-initio study (solid line). The experi-
mental results are from Ref. [33] (filled circles), and Ref. [7] (open diamonds).

(5,5), -0.8 x 10- 6K -1 in zigzag (8,0), compared to -1.2 x 10- 6K -1 in graphite (in-

plane) and --3.6 x 10-6 K -1 in graphene. The thermal expansion curves of Fig. 4-9 are

very similar, suggesting that the thermal expansion does not significantly depend on

chirality. More likely, thermal expansion will depend on the diameter of the nanotube,

as also stated in Ref. [12]. Our study disagrees however with the results of Ref. [12]

(based, we stress, on an empirical interatomic potential), the most obvious discrep-

ancy being the thermal contraction of graphene, calculated to be half of the in-plane

contraction of graphite. Our calculations also disagree with results from molecular

dynamics simulations of Ref. [11], in which thermal contraction of a (10,10) SWNT

is found to be as large as 10 times higher than that of graphite. On the contrary, our

study agrees well with the values obtained from the molecular dynamics simulations

and Griineisen parameters calculations of Ref. [10], which exhibit a coefficient of ther-

mal expansion of -0.9 x 10-6K -1 at room temperature and 2.5 x 10-6 K-1 at high

temperature. Finally, to the best of our knowledge the only experiment to determine
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Figure 4-9: Temperature dependence of the coefficient of linear thermal expansion
along the axis for armchair (5,5) (solid line) and zigzag(8,0) (dashed line) SWNTs
from our QHA-GGA ab-initio study. Note that a(O) = 0, and that for T < 100K our
calculations are not fully converged with respect to q-sampling.
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Figure 4-10: Ab-initio mode Griineisen parameters for diamond

the thermal expansion of SWNT was done by Maniwa et al [29] on nanotube bun-

dles, in which a value of (-1.5 i 2.0) x 10- 6K -1 for the radial expansion was found.

From the study of Ref. [12] we can consider radial and axial thermal expansion to

be similar, and therefore this experimental value is in relatively good agreement with

our results.

To further analyze thermal contraction, we plot in Figs. 4-10, 4-11, 4-12, 4-13,

and 4-14 the mode Griineisen parameters (see Section 2.3) of diamond, graphene,

graphite and zigzag (8,0) SWNT. These are obtained from an interpolation of the

phonon frequencies by a quadratic (or linear, for graphite) polynomial of the lattice

constants, and computed at the ground state lattice parameter.

The diamond Griineisen parameters have been already calculated with LDA (see

Refs. [20, 39]); our GGA results agree very well with these. In particular, all the

Griineisen parameters are shown to be positive (at odds with other group IV semi-

conductors such as Si or Ge). The situation is very different in graphite and graphene,

where some bands display large and negative Griineisen parameters (we have used

the definition Yi(q) =- 2j(q) da )

While not visible in the figure, the Griineisen parameter for the lowest acoustic
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Figure 4-12: Ab-initio mode Griineisen parameters for graphene
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Figure 4-14: Ab-initio mode Griineisen parameters along the axis for zigzag (
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branch of graphite becomes as low as -40, and as low as -80 for graphene. Therefore,

at low temperatures (where most optical modes with positive Griineisen parameters

are still not excited) the contribution from the negative Griineisen parameters will be

dominant and thermal expansion (from Eq. 2.12) negative.

In graphene and graphite, the negative Griineisen parameters correspond to the

lowest transversal acoustic (ZA) modes, and in the case of graphite to the (ZO')

modes, which can be described as "acoustic" inside the layer and optical out-of-plane

(see Section 3.2). Indeed, the phonon frequencies for such modes increase when the

in-plane lattice parameter is increased, contrary to the usual behavior, because the

layer is more "stretched" when a is increased, and atoms in that layer will be less

free to move in the z direction (just like a rope that is stretched will have vibrations

of smaller amplitude, and higher frequency). In graphite these parameters are less

negative because of stacking: atoms are less free to move in the z-direction than in

the case of graphene.

This thermal contraction, named "membrane effect", was predicted by I. M. Lif-

shitz [86, 88] in 1952, when he pointed out the role of the ZA modes (also called

bending modes) in layered materials. In particular, several recent studies have high-

lighted the relevance of these modes to the thermal properties of layered crystals such

as graphite, boron nitride and gallium sulfide [92, 93, 28].

This picture changes somewhat in SWNTs. In the narrow nanotubes studied

the TA bending modes and the "pinch" modes contribute most significantly to the

thermal contraction. We represent these modes in Figs. 4-15 and 4-16. The bending

modes are playing a role comparable to that in graphene, that is, their frequencies

increase when the tube is stretched along it axis, due to a a behavior analogous to that

of a string. These modes will contribute less to the thermal contraction for tubes of

larger diameters. On the other hand, for larger nanotubes the radial breathing mode

(RBM), represented in Fig. 4-17, will start to dominate, since its contribution to the

thermal contraction will become more and more similar to that of the ZA modes

of graphene, to which it is equivalent in a zone-folding picture [16]. Moreover, the

RBM frequency decreases with increasing diameter [15, 16], thus enabling excitation
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Figure 4-15: Bending mode of a zigzag (8,0) SWNT

Figure 4-16: "Pinch" mode of a zigzag (8,0) SWNT in two different orientations

at lower temperatures.

Other relevant thermodynamic quantities can also be calculated from the vibra-

tional free energy. E.g., the dependence of elastic constants on temperature can be

derived from the second derivatives of the free energy (Eq. 2.8) taken at the respective

minimum for any given T. Our results are shown in Figs. 4-18 and 4-19 (diamond

and graphite respectively). Again, the zero-point motion has a significant effect on

the elastic constants; the agreement with experimental data for the temperature de-

pendence of the bulk modulus of diamond is excellent (upper panel of Fig. 4-18). We

note that the temperature dependence of the bulk modulus of diamond has already

been obtained by Karch et al [94] using LDA calculations.

Finally, we present results on the heat capacities for all the systems considered,

both at constant volume (Cv) and constant pressure (Cp). C has been computed

using Eq. (2.14), in which we use at each temperature T the interpolated phonon

frequencies calculated at the lattice constant(s) that minimize the respective free

energy. To obtain Cp, we add to C, the additional term Cp- C, = TVoBoc where
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Figure 4-17: Radial breathing mode of a zigzag (8,0) SWNT
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Figure 4-18: Lower panel: Bulk modulus Bo(T) of diamond as a function of tempera-
ture. The filled circle indicates the value of the bulk modulus (as in Table 3.1) before
accounting for zero-point motion. Upper panel: theoretical (solid line) and experi-
mental values (Ref. [95], open circles) for the ratio between Bo(T) and Bo(298K) in
the low temperature regime.
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Figure 4-19: Elastic constants of graphite (C11 + C12, C13, C33) and bulk modulus
(Bo) as a function of temperature. The filled circles (at 0 K) indicate their ground
state values (as in Table 3.2) before accounting for zero-point motion.

Vo is the unit cell volume, av the volumetric thermal expansion and Bo the bulk

modulus. All these quantities are taken from our ab-initio results and evaluated at

each of the temperatures considered. The difference between Cp and C, is very small,

at most about 2% of the value of C, for graphite and 5% for diamond. Note that Cp

and C, shown on the figures are normalized by dividing by the unit cell mass.

The heat capacity of diamond, graphite, graphene and SWNTs are almost identical

except at very low temperatures, in a manifestation of the law of corresponding states

for different materials with essentially very similar Debye temperature. In particular,

C, obtained for both (5,5) and (8,0) SWNTs and for graphite are indistinguishable

on the temperature range considered (Fig. 4-23). Agreement with experimental data

of diamond and graphite is very good.
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e 4-20: Constant pressure heat capacity for diamond (solid line). Experimental
s are from Refs. [70] and [96] (circles), as reported by Ref. [91].
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Figure 4-21: Constant pressure heat capacity for graphite (solid line).
results are from Ref. [97] (squares), as reported by Ref. [98].
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Figure 4-22: Constant volume heat capacity for graphite
(dashed line) and diamond (dotted line). The inset shows
low temperature region.
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Figure 4-23: Constant volume heat capacity for armchair
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Chapter 5

Conclusions

We have presented a full first-principles study of the structural, vibrational and

thermodynamic properties of diamond, graphite, graphene and armchair and zigzag

SWNTs at the GGA-PBE level and using the quasi-harmonic approximation to derive

thermodynamic quantities. All our results are in very good agreement with exper-

imental data: the phonon dispersions are well reproduced, as well as most of the

elastic constants. In graphite, the C33 elastic constant and the F to A phonon dis-

persions are found to be in good agreement with experimental results provided the

calculations are performed at the experimental c/a. Only the C13 constant remains in

poor agreement with experimental data. In SWNTs, the elastic constants are shown

to be independent on both chirality and diameter, except for very narrow nanotubes,

and agree well with both experimental values and other theoretical studies.

The decay of the long-ranged interatomic force constants is analyzed in detail. It

is shown that interactions in the (110) direction in diamond are longer-ranged than

these in other directions, as is characteristic of the zincblende and diamond structures.

For graphene and graphite, in-plane interactions are even longer-ranged and phonon

frequencies sensitive to the truncation of the interatomic force constants. Also, the

force constants of armchair and zigzag SWNTs are very similar to those of graphene.

Thermodynamic properties such as the thermal expansion, temperature depen-

dence of elastic moduli and specific heat are calculated in the quasi-harmonic approx-

imation. These quantities are all found to be in close agreement with experiments,
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except for the out-of-plane thermal expansion of graphite at temperatures higher than

150 K. Graphite shows a distinctive in-plane negative thermal-expansion coefficient

that reaches the minimum around room temperature, again in very good agreement

with experiments. This effect is found to be three times as large in graphene, and half

as large in both (5,5) and (8,0) SWNTs. In the case of graphene and graphite, the

mode Griineisen parameters show that the ZA bending acoustic modes are respon-

sible for the contraction, in a direct manifestation of the membrane effect predicted

by Lifshitz [86] in 1952. In narrow single-walled carbon nanotubes, the TA bending

modes and the "pinch" modes seem to have the most significant role on the thermal

contraction, while the radial breathing mode is likely to play dominant role in larger

tubes, for which the thermal contraction may tend toward the value in graphene. In

SWNTs, thermal contraction is currently under active investigation [10, 11, 99].
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Appendix A

Acoustic sum rules for the

interatomic force constants

The interatomic force constants (IFCs) of a material satisfy strict symmetry prop-

erties. Obvious ones are the symmetries with respect to a change of indices (index

symmetries), deriving from Newton's law of reciprocal action; many others originate

from invariance of the system with respect to discrete symmetry operations (e.g. the

point-group of the structure). Finally, invariance with respect to translations - and

in some cases, rotations as well - that are continuous and rigid also induces certain

constraints on the IFCs, often called acoustic sum rules (ASRs). While the discrete

symmetries of the system are usually taken into account in our DFPT calculations,

it is not the case for the index symmetries or continuous translations and rotations.

Therefore, the IFCs obtained using DFPT (see Section 2.2) do not rigorously satisfy

either the index symmetries or the ASRs unless one reaches full numerical conver-

gence with respect to the continuous k-point integration on the Brillouin Zone and the

basis-set cutoffs. As a consequence, to get more accurate results it is often desirable

to enforce these rules (ASRs and index symmetries) on the IFCs. We discuss in the

following a novel and general approach to impose such constraints.
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A.1 Preliminary definitions

We consider here a perfect crystal whose periodic Bravais lattice has primitive vectors

{a, a2, a3} . Any lattice vector is therefore expressed as:

RL =n1al+ -n 3a2 + n 3a3 , with L = (nl,n 2,n 3) (A.1)

where {ni, n2, n3} are integers.

The position of any of the P atoms in the unit cell is then given by:

i = eal + ea 2 + ea 3 , < i < P O < e < (A.2)

so that any atom in the crystal is located at:

RL,i = RL + ri (A.3)

These are the equilibrium positions of the ions in the crystal. Let us now consider a

set of lattice displacements that alter these positions by some small amount:

RL,i - RL,i + ui (RL) (A.4)

The total energy of the crystal will change, and we can develop it around the equi-

librium energy Eo using a second order Taylor expansion:

1
E = Eo + 2 E Uai(RL) Cji,/j(RL, RL') uj(RL') + (U 3 ) (A.5)

L, L',i,j, a, 

where a and can be either 1, 2 or 3 and refer to the cartesian coordinates, and i and

j refer to the atoms in the unit cell. The first order term is zero since the expansion

is done around the equilibrium configuration, where by definition the forces on the

ions are zero.

The coefficients Ca, Oj (RL,RL) are called interatomic force constants (IFCs)

and correspond to the second derivatives of the energy calculated at the equilibrium
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configuration:

°2E
CQi,pj (RL, RL)= 02 E (A.6)

aui (RL)Oufj (RL') equilibrium

The harmonic approximation consists in neglecting in Eq. (A.5) all the terms of order

higher than two.

The coefficient Cai, ,j(RL,RL,) represents the proportionality factor between the

displacement in the direction 3 of the atom j of the cell located at RL', and the

component a of the force induced by this displacement on the atom i of the cell

located at RL. For the total force on a given atom we have:

Fd1(RL) ,i(RL) E Ci, sj(RL,RL') u,3(RL') + (u 2 ) (A.7)
L',j, 

Due to the periodicity of the lattice, the IFCs must satisfy translational invariance,

and will depend only on the relative difference RL - RL':

Ci,Pj (RL, RL') = Ci, pj (RL - RL) (A.8)

We can therefore limit ourselves to the study of the following quantity:

a2ECC~j, # (RL)~ (A.9)
(Cai RL) ~J &U(RL)) Ui ( (O) equilibrium

In an (infinite) periodic crystal, the number of degrees of freedom is infinite, and the

extension of the IFCs over RL, is, in principle, infinite. In practice, we can study

systems only with a finite number of degrees of freedom. The natural approach to

address this problem is to use periodic boundary conditions: a supercell is defined, of

dimensions N1, N2 and N3 times the dimensions of the primitive unit cell, and only

perturbations of a wavelength compatible with this supercell are considered. The

number of inequivalent atoms is obviously N1 N2N3 times the number of atoms in the

primitive unit cell, and this number multiplied by 9, to account for the three cartesian

coordinates, is also the number of IFCs. If e.g. we calculate the dynamical matrix on
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a 8 x 8 x 8 grid in the first Brillouin zone, then its Fourier transforms are the IFCs

for a 8 x 8 x 8 supercell periodically repeated to cover all space.

So the IFCs can be represented by a vector C in the vector space R 9P2 N1N2N3 (P

being the number of atoms in the unit cell), whose components are

(Cmai,j(RL(n1, n2, n3)))1<a,j8<3, l<i,j<P, l<nk<Nk

This will also be written more compactly as

(Ca/Bijnn2n3)1<,B<3 , <i,j<P, l<nk<Nk

to describe the different components.

We define in 1R9P2 N1N2N3 the usual scalar product

a,!,,i,j,nl,n2,n3
UaPijnln2n3 Vclijnl n2n3

and the norm

Iull= i, jn3
V ,/, i,j,nl,n2,n3

U
2

aijnjn2na (A.11)

As a final note we stress that in all the following -RL corresponds to RL, with L' =

(N1 - ni, N 2 - n2, N3 - n3 ), since our periodic supercell has dimensions (N1, N2, N3 ).

A.2 Properties of the IFCs

The first and most obvious property is that of index symmetries between the IFCs.

By definition we have

Cai, /j (RL)
2E ) equil

aU"'i (RL) 9UI8j (°) quil

aUj(O)OUai (RL)

= Cpj,ai(-RL)
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These relations can therefore be compactly written as

V a, A, i, j, and L: Cai,/Bj(RL) - Cpj, ai(-RL) = 0 (A.13)

In addition, there is continuous translational invariance: if the atoms are all translated

by an identical amount, then the energy of the structure will not change (this is true

both for infinite periodic crystals and isolated systems). In the case of such a rigid

translation, the displacement vector of any atom j in the cell located at RL from the

origin is a constant that does not depend on j nor on RL. It can be written as

uj(RL) = u (A.14)

or in cartesian components

uj (RL) = (A.15)

The force Fi(O) acting on the ith atom of the unit cell located at the origin vanishes

for any such displacement; from Eq. (A.7) we obtain that for any a and i:

Fi (O) =-E Cai,j (-RL) Uj (RL)

- Cai,3j(-RL)UP
L, j,p

=- Ci,aj(RL) P
L,j,

(since a sum over L is equivalent to a sum over -L)

= 0 (A.16)

Since this is true for any uniform displacement field u, we can apply these relations

to the three cartesian basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). We finally obtain

9P relations that the IFCs should verify:

V a, and i: ZCai,pji(RL)= (A.17)
L,j
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These relations are called acoustic sum rules and ensure that the phonon frequencies

of the three acoustic modes vanish at r.

For some structures rotational invariance can also occur. Then, for any displace-

ment of the atoms corresponding to a uniform and rigid rotation of the system, the

total energy will not change. This is true only for systems where such a rigid rotation

is possible, which excludes infinite periodic 3D and 2D crystals. On the contrary,

ID crystals (e.g. infinite nanotubes) can rotate about their axis, and isolated finite

systems containing three atoms or more can also rotate about three independent

cartesian axes. Note that diatomic molecules can have meaningful rotations only

about two axes (the two independent axes perpendicular to the line connecting the

two atoms), because a rotation about the axis connecting the two atoms would not

change the atomic positions. (Of course we do not consider here the trivial case of a

single isolated atom for which the energy is a constant.)

To begin with, we consider the case of a system that has rotational invariance

about one axis, that we assume to be (Oz). With the notations defined above, we

have for any j and L

uj(RL) = _new _ Told (A.18)

where r' ld and TXew. are the positions of the atom j before and after rotation, respec-

tively. By definition the unperturbed position does not depend on L (the system is

perfectly periodic at equilibrium), and -rew does not depend on L either: if the system

is an isolated molecule, then the only possible value for L is 0 (N1 = N 2 = N3 = 1,

and the IFCs supercell is the unit cell); if the system is one-dimensional the only

possible invariant rotation is around the one-dimensional axis, so that for any L, RL

is collinear to (Oz) and the new positions in each cell do not depend on where the

cell is with respect to the origin. We call Ro z the matrix of rotations around (Oz)

by an angle 0; in cartesian coordinates we write

cos0 -sin0 0 x

R z sin cos 0 rld = (A.19)

0 0 1 X3
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For any j and L, we have therefore:

Uj(RL) = (R - I)Trld (I being the identity matrix)

x;cos 2 sin -x 1
3 3 i

-= xi sin 0 + x2 os 0-x 2

0

(A.20)

We can obtain the sum rule sought for by requiring that for any small angle of rotation

0 the force acting on the atoms of the unit cell is zero:

- E C-i, S j(-RL) uj (RL)
L,j,/

- -E ~[Cai, lj(-RL) (j cos - xj2 sin0 - x)
L,j

+ Cai,2j(-RL) (x sin 0 + xj2 cos 0- x2)]

- -E [Ci, lj (RL) (xj coS 0-j2 sin 0 - x)
L,j

+ C0,i,2j(RL) (x} sin 0 + x2 cos 0- x2)]

COS 0 [Cai, lj(RL)Xj + Cai, 2j(RL)X 2]

L,j

+sin0 [-Cai, lj (RL)x2 + Ci, 2j (RL)Xj]
L,j

[Ci, lj (RL)Xl + C,, 2j (RL)Xj2]
L,j

Since we are working in the limit of small displacements cos 0 = 1 and sin 0 = 0, and

we get

(A.22)V a and i: E -Ci, lj (RL)xj 2 + Cai, 2j(RL)Xj = 0
L,j

By simple permutation of the indices {1, 2} into {2, 3} and {3, 1} one can obtain

the relations for rotations about (Ox) and (Oy). So, depending on the number of

independent rotation axes present in the system, we get one, two or three sets of equa-

tions, corresponding to 3P, 6P or 9P relations between the IFCS, for one-dimensional
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systems, diatomic molecules or molecules containing more than three atoms, respec-

tively. This is in turn responsible for either one, two or three zero frequencies for

the vibrational modes at r (in addition to the three frequencies that are zero be-

cause of continuous translational invariance), corresponding to one, two or three new

rotational acoustic sum rules. Finally, we can write all these relations in a general

form:

V a, i, and V p among the possible rotation axes of the system:
(A.23)

EL,j -Cai,(P+l)j(RL)x+ 2 + C'i,,(,+2)J(RL)x2+ 1 = 0

in which the operations : + 1 and P + 2 are modulo 3 (i.e. 4 corresponds to 1 and 5

to 2). Note that Eqs. (A.17) and (A.23) were also obtained in Ref. [101] (Eqs. (3.2)

and (3.3)).

In summary the relations that have to be satisfied by the IFCs are given by

Eqs. (A.13), (A.17) and (A.23), corresponding to index symmetries, translational in-

variance and rotational invariance respectively. The IFCs coming from DFPT calcula-

tions will satisfy these relations only approximatively (and more and more accurately

as the Brillouin zone sampling and cutoffs are increased). There are two reasons why

it is advantageous to enforce - using a "post-processing" step - the ASRs on the

IFCs resulting from DFPT calculations:

1. The long wavelength limit of the acoustic modes will always be zero.

2. The thermodynamic and numerical limit (infinite k-points and cutoffs) will be

reached much faster for the renormalized IFCs than for the bare IFCs from

DFPT. This is particularly significant for e.g. the parabolic bending modes in

graphene or nanotubes, and the twisting mode in nanotubes.

In the next section we discuss our strategy to accomplish this task.
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A.3 A new approach to apply the acoustic sum

rules and index symmetry constraints

Usually the three translational acoustic sum rules and the index symmetries are im-

posed in the following way: the relations A.17 are enforced by calculating EL, j Ci,j (RL)

(approximatively _ 0) and subtracting this result from Ci,i (R(o,o,o)) (for any a, 

and i). Then, the index symmetries are applied: for any pair of non diagonal elements

(i.e. not in the form Ci,i(R(o,o,o))), the average Ci, j(RIL)+Cj (-RL) is calculated,

and both C,,i, j(RL) and Cj,,i(-RL) are set equal to it. This procedure is trivial

to implement, and obviously very fast, but it has some shortcomings:

* The two constraints (translational acoustic sum rules and index symmetries)

are treated separately and therefore one cannot assure that the sum rules will

remain unchanged when the index symmetries are applied (or vice versa).

* There is no guarantee that this procedure leads to "optimal" IFCs, i.e. IFCs

that are the least different from the initial ones (e.g. the optical frequencies can

be affected).

* To the best of our knowledge, no simple way has been found to incorporate the

rotational acoustic sum rules into this procedure. Even if this were the case,

the need of imposing all the sum rules simultaneously would become even more

apparent.

Our novel approach strives to overcome all these shortcomings, by obtaining the

IFCs the "nearest" to the original ones that verify all the relations (A.13), (A.17) and

(A.23). This problem can be easily recast in the language of linear algebra: given a

vector C of the space R9P 2 N1N2N3 (see Section A.1), we want to find the vector C'

such that:

* C' satisfies all the relations (A.13), (A.17) and (A.23),

* IC' - CI is minimum.
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Vectors of R9P2 NN2N3 that satisfy (A.13), (A.17) and (A.23) span a vector sub-

space F. The solution C' of our problem will then be simply given by taking the

projection of C onto F.

While this solution is very simple in principle, we also need to make this projection

as computationally efficiently as possible. To begin with, elements Q of the subspace

F are characterized by the following relations, valid for any a' and i' and equivalent

to (A.13), (A.17) and (A.23):

VA', (Q = 0

V :' among the rotation axes of the system,

VA' > ca', j' i', n, n, n, n such

(fi',j',n ,n, n') : (o', i, O O ),

where the components of the vectors ua" ' ' i, va' 'i' and

are defined as follow:

(Q = o

that
(Q .wa'ij n nn ) = 

(A.24)

wa' 'i 'ji n 2n 3 of R9P2N1N2N3

if a = a', i = i' and p = A'

in all the other cases

if a = a', i = i' and = '

if a = a', i = i' and = '

in all the other cases

+ 1 (mod 3)

+ 2 (mod 3)

Y',f'i'j'n'n 2 -

afijnl n2n3WatBinlnn3

X if = ', = ', i = i', j = j', nl = n, n2= n2 and n3 = n3

1 if = a', i = j, j =i', j =i', nl = N-n, (A.25c)
n2 = N2 - n' and n 3 = N3 -n

0 in all the other cases
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By definition, the subspace generated by the vectors Ua'pi, V''' and wa''i'nn'n 3

is F, the orthogonal of IF. To calculate C', projection of our initial vector C on F,

we choose first; to compute the projection C" of C onto IF; C' can then be readily

obtained from C' = C-C", since we know that I=9P2 NN2N3 = FeF'. The projection

on F is easier to compute than the direct projection on IF because we can obtain an

orthonormal basis set of F' from the family of vectors ('/ v l,'i', Wa' 'i'J'n n2n2)

which will allow us to calculate C" in a straightforward manner.

To build an orthonormal basis set ofF' we first notice that the vectors wa'2ii''3'nl2n3

-- defined for any a', i', ' > a', j' > i', n, n, n except for (',j', ', nn ) =

(a', i', 0, 0, 0) -- are orthonormal by definition (see Eq. A.25c). Then, one can or-

thonormalize the whole set by applying a Gram-Schmidt procedure. To simplify the

notations we order the vectors w 2 'i'j'nn~n from f to fq, the vectors ua' i '' from fq+l

to f, and the vectors va'' i' from fr+l to f (q, r, s are integers). From the set (fi)1 l<<s

we build the orthonormal set (gl)1<1<m (with m < s) using the following algorithm:

* For any 1 < I < q: g = f (since the vectors wa i 2 n 3 are already orthonor-

malized)

* For any I > q + 1, until there is no f left:

If (fi -- Et, (ft' g,) gl,) = 0 then f is not independent to (f1,)1<l,<1l_, so we

ignore it and reassign the subsequent f: fi = fi+l, f+ 1 = f+ 2, etc. 1

Otherwise, we set:

ft --1 (fi g1,) g (

The advantages of this orthonormalization procedure (with respect to e.g. methods

involving matrix diagonalization, that are more "symmetric") are

* Simplicity of implementation,

* Exploits trivially the notion that the vectors wa'fi ji nl3n are already orthonor-

malized,
1Note that this does not correspond to actual assignments in the computer program. In practice,

to save time we simply store the indices of such (fi) and skip those indices in all the succeeding
operations.
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* Vectors of the initial set that are not independent to those preceding them are

automatically removed during the process2 .

On the other hand, the Gram-Schmidt orthonormalization is known to be numerically

unstable [102] and its resulting basis set depends on the order of the initial set. These

do not seem to be serious drawbacks here, first because we are not concerned with

the basis set in itself but only as a basis to provide an inexpensive projection onto

F'. Second, in all our practical applications we did not notice any hint of numerical

instabilities.

Once one obtains the orthonormalized basis set (gl)1<1<m, C" (the projection of

C onto F') and then C' (the projection of C onto F) can be readily calculated from

m

C" =E (C gl)g, (A.27)
1=1

and C' = C-C" (A.28)

C' is the optimal solution of our problem: it satisfies all relations (A.13), (A.17) and

(A.23) and minimizes the distance (norm of the difference) with respect to the initial

ab-initio interatomic force constants C.

A.4 Complexity of the algorithm

A.4.1 Memory requirements

The standard algorithm used to apply translational acoustic sum rules (presented at

the beginning of Section A.3) obviously requires the least amounts of memory, i.e.

2In particular, some acoustic sum rules that would be "too much" for the system are taken
away automatically at this point. It is the case of e.g. diatomic molecules for which the three
rotation acoustic sum rules would have been initially applied: the one that should not be there will
disappear during the Gram-Schmidt orthonormalization. More generally, it can be shown that the
"translational" (u) and "rotational" (v) vectors are not independent if and only if all the atoms
are aligned on a single line at equilibrium (the proof of this result being quite tedious, we will not
provide it here). Therefore, even after having applied our procedure, linear structures might exhibit
less zero-frequency phonon modes at r than expected from what was outlined in Section A.2. A
simple remedy to this issue would be to displace slightly the atoms so that they are not exactly
aligned anymore.
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only the memory necessary to store the IFCs, which is 0 (P2 N1N 2 N3 ) (using the

definitions from Section A.1).

Our approach is more demanding. We choose to store the vectors uQ'p3 i and va'A'i'

(i.e. the vectors (fi)q<l<s) as full vectors of IR9P2 N1N2N3, i.e. as seven-indices arrays

containing 9P2N1N 2N3 components. These arrays are used first to store the vectors fi

(q < 1 < s) and are then gradually replaced by the vectors gl (q < I < m) during the

orthonormalization procedure. Since the latter vectors can have all their components

different from zero, we cannot gain space in memory, even if the initial vectors fi

(q < I < s) have most of their components equal to zero. The number s - q of vectors

ua' 'i' and v' r'i ' is at most 18P (see Section A.2) and each of them takes as much

space as the IFCs, so on the whole we have a memory requirement of 0 (P3 N1 N2N3).

On the other hand, the vectors wa i
3

jn; n n [ (i.e. the vectors (fi)li<<q) are stored

as compactly as possible. Indeed, these vectors have all their components but two

equal to zero (see Eq. A.25c), and they do not change during the orthonormalization

procedure. So we can store only the seven indices (a, , i, j, ni, n2, n3) of each of

the two non-zero elements, as well as the value of these two elements (instead of

storing all the 9P2 N1 N2 N3 coefficients of the vector). This corresponds to a memory

requirement of 0 (P2 N1 N2N3 ) (the number q of such vectors is of same order as the

number of coefficients in the IFCs).

Finally, the memory requirements are dominated by the storage of the u and v

vectors and are of order 0 (P3 N 1N2 N3 ). These allocations remain manageable even

for a system such as the (8,0) nanotube (P = 32) with a 1 x 1 x 8 q-points grid, and

are in any case negligible compared to the memory requirements of the corresponding

DFPT calculations.

A.4.2 Computational time

Again, the standard algorithm to apply the translational acoustic sum rules requires

negligible computation time. Only two loops on all the components of the IFCs (one

for the acoustic sum rules, one for the index symmetries) are sufficient, corresponding

to a complexity of 0 (P2 N1 N2 N3).
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Our method is computationally much more intensive and the time requirement

would rapidly dominate if several shortcuts were not used. Our optimal algorithm is

articulated in three steps:

1. We initialize the u, v and w vectors according to Eq. (A.25): this takes

an amount of time of the same order as the total memory requirement, i.e.

o (P3N1N2N3).

2. We perform the Gram-Schmidt orthonormalization, having to calculate as many

as s - q = 18P (which is the total number of u and v vectors, see Sec-

tion A.2) sums E-l (f gl,) grl for 1 between q + 1 and s (see Eq. A.26). Each

of these sums of vectors can be separated into two terms: Fl,= (f g 1) g1

and E'-lq+l (fl' gr,) gl,. The first one is a sum over 0 (P2 N1 N2N3 ) terms (the

number of w vectors), but where the scalar products can be programmed as

a 0(1) operation. Indeed, the vectors (gll)l<l<q are the w vectors and they

are coded indicating the indices of the two non-zero elements (as explained in

Section A.4.1); therefore there is no need to loop on all the coefficients of gl,

and only two operations are needed. At each step 1' of the summation only two

coefficients (corresponding to the non-zero components of g ) of the current

vector-sum being computed need to be reassigned. So this first sum of vectors

takes an amount of time of 0 (P2 N1 N2 N3 ).

The second term is a sum over 1 - q elements, that can be at most equal to

s - q = 18P. The scalar products can be simplified realizing that most of the

components of f are zero: only 3PN1 N2N3 components are non-zero (the ones

corresponding to a = a' and i = i' if f = Ua'pi), and the scalar product will

need only 0 (PN1 N2 N3 ) operations. On the other hand, all the components of

the current vector-sum being computed need to be reassigned at each step in

the summation, which represents a cost of 0 (P2 N 1N2N3 ). In the end we get a

total complexity of 0 (P3 N1 N2 N3 ), since there are 18P terms in that sum.

Since there are 18P sums, we have a total time requirement 0 (P4 N1 N2 N3 )

for the whole orthonormalization procedure. Note that if we had not used
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these shortcuts (especially regarding the management of the w vectors), the

complexity would have been much higher, of order 0 (P5 N1 N2N32).

3. We project C onto IF± . The sum En 1 (C gl) gl in Eq. (A.27) can be sep-

arated into two terms: CEi (C. gl) gl and ETq+l (C gl) gl. As above, in

the first term the g are the w vectors and the sum takes an amount of time

of O(P 2N 1 N 2N3 ), since both the scalar product and the reassignments are

0(1). The second term needs a full scalar product to be performed since we

do not; know in advance which of the components of gl will be zero, if any.

Both the scalar product and the reassignment of C" are 0 (P2NiN 2 N 3 ) in

time, and since this sum is over 18P terms at most, the computational time is

( (P3 N1VN 2N 3). So this final projection step takes an amount of time propor-

tional to 0 (P3 N1 N2N 3).

It is clear from the above that the most computationally demanding step is the

Gram-Schmidt orthonormalization. The complexity of the whole algorithm is there-

fore expected to be O (P4 N1N2N3 ). In our most dramatic cases, it proves to be still

negligible versus the time needed for DFPT calculations, but is certainly not as fast

as the standard algorithm usually implemented.

A.5 Conclusion

We have introduced a novel and general method to enforce consistently all the acoustic

sum rules and index-symmetry constraints of the IFCs. This approach can be applied

to different systems, ranging from 3D crystals (e.g. diamond) to D structures (e.g.

carbon nanotubes) and diatomic and triatomic molecules. In particular, using DFPT

we can compute the dynamical matrix in a regular mesh of q-points in the Brillouin

zone, calculate its Fourier transform (obtaining the real space IFCs), renormalize

the IFCs with the algorithm detailed above, and then Fourier interpolate back the

IFCs at any arbitrary wave-vector. The diagonalization of the dynamical matrix at

q = 0 provides three zone-center phonons with exactly zero frequency, and leaves
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all the remaining frequencies and eigenvectors largely unaltered when compared with

the original quantities obtained diagonalizing the unrenormalized dynamical matrix

at any q. This is a definite improvement compared to the standard algorithm which

affects higher-energy phonon frequencies and eigenvectors in a more appreciable man-

ner. This improvement is ultimately due to our approach representing the optimal

solution to the problem of enforcing all the ASRs, since the distance between the

initial IFCs and the renormalized ones is chosen to be minimum via the projection

technique. Even if the computational time and memory requirement become signif-

icantly larger, they still remain very manageable and fast compared to the DFPT

calculation itself. We did not notice any numerical instability in the Gram-Schmidt

orthonormalizations; were they to appear, we could still use the "modified" Gram-

Schmidt algorithm described in Ref. [102], which does not exhibit this drawback.
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