
ComicKit: Knowledge Acquisition of Story Scripts

by

Ryan Duane Williams

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

© Ryan Duane Williams, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

1 /

MASSACHUSETTS INSTffUTE
OF TECHNOLOGY

JUL 1 8 2005

IB r
A uthor i.. V .1....... 1.... '...3

Depak tent of Electrical Engineering and Computer Science
Jan 28, 2005

Certified by.
Glorianna Davenport

Principal Research Scientist
Thesis Supervisor

Accepted by ...
Arfiur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

................4 . . - - .- - ,

M -Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain text that
runs off the edge of the page.

(Pages 103 - 107)

A

ComicKit: Knowledge Acquisition of Story Scripts

by

Ryan Duane Williams

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 28, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

The field of Artificial Intelligence stands poised to make great leaps in emulating
human intelligence. The development of a way to acquire and use common sense
is the key to this advancement. This thesis describes the design and construction
of ComicKit, a tool for acquiring story scripts for a common sense knowledge base.
ComicKit's core mechanism is dragging and dropping icons into the panels of a comic.
As the user creates a comic, ComicKit makes common sense suggestions for the story.
ComicKit follows on the successful model of Open Mind Common Sense, a web-based
activity that thousands of people around the world contributed bits of common sense
knowledge to. It is hoped that many people will contribute a few hundred thousand
stories through ComicKit, and build a large corpus of common sense story knowledge.

Thesis Supervisor: Glorianna Davenport
Title: Principal Research Scientist

2

Acknowledgments

Many thanks are due to Glorianna Davenport for providing advice and support where

it was needed. It is much appreciated that Chuck Dages at Warner Brothers Inter-

active Entertainment supported this work. Thanks to Barbara Barry for giving me

lots of indispensable advice, and helping me stay on track. Push Singh helped me to

better understand common sense and human intelligence, which came in handy.

3

Contents

1 Introduction 7

1.1 Common Sense 8

1.1.1 Artificial Common Sense . 9

1.1.2 Applications 9

1.1.3 Difficulty of Artificial Common Sense 10

1.2 Open Mind . 11

1.3 The X-Nets . 12

1.3.1 ConceptNet . 12

1.3.2 LifeN et . 13

1.4 StoryN et . 13

1.5 Story Scripts . 14

1.6 Why comics? . 15

2 Goals of ComicKit 17

2.1 Natural Language . 17

2.2 Breadth . 18

2.3 Building Comics . 18

2.3.1 V isual . 19

2.4 The user experience . 20

3 ComicKit interface 22

3.1 Login screen . 23

3.2 Gallery screen . 24

4

3.3 Editing screen . 25

3.3.1 Panels . 27

3.3.2 Drag and drop mechanism . 28

3.3.3 Selection mechanism for appearance 29

3.3.4 Division into types . 29

3.3.5 Suggestions . 30

3.3.6 Java mockup . 32

4 ComicKit server 33

4.1 User management . 33

4.2 Story management . 35

4.2.1 Story representation . 37

4.3 Parsing a story for suggestions . 38

5 Related work 40

5.1 StoryW riter . 40

5.2 KidPad . 41

5.3 Daydreamer . 41

6 Evaluation 42

6.1 Comparison evaluation . 42

6.2 Formative evaluation . 45

7 Future directions 47

7.1 Templated Input . 47

7.2 Social . 48

7.3 Better storytelling . 49

7.4 Conclusion . 49

A Interface Code 52

B Server Code 152

5

List of Figures

2-1 Abstract versus representational objects .

Login screen

Gallery screen

Editing screen

Annotated panel

Appearance of objects

Appearance of actions

StoryNet Text interface

ComicKit mockup interface

User Evaluation Subjective Results

6

. . . . 19

3-1

3-2

3-3

3-4

3-5

3-6

6-1

6-2

6-3

. 2 3

. 2 5

. 2 6

. 2 7

. 3 0

. 3 0

. 4 2

. 4 3

. 4 4

Chapter 1

Introduction

The fifty-year-old promise of machines as intelligent as human beings has not yet

come to pass. A wide variety of factors have contributed to this situation. Initially

computers were not nearly powerful enough to solve the problems that human beings

can. The difficulty terrain of Artificial Intelligence (AI) problems has also not been

kind. Tasks that are simple and automatic for human beings, such as distinguishing

between two objects visually, still haven't been solved satisfactorily.

Current progress in AI has led to a huge variety of techniques, each of which tackles

its own particular problem. There is little commonality between these techniques, or

a way to cobble them together into a being that thinks like a human[8]. In part,

this situation stems from the natural tendency of AI reserachers to limit the scope

of the problem they they are looking at. It appears that human-level AI will not be

achieved without some approach that tackles all of the problem at once.

Marvin Minsky, among others, champions common sense computing as the ap-

proach that will lead to human-level AI[10]. Common sense computing is based on

the idea that meaning and understanding both come from the ability to provide com-

plex associations to other ideas. A common sense based solution relies on building a

large number of such associations.

This thesis describes the building and design of ComicKit, a knowledge-acquisition

tool for common-sense story scripts. Story scripts are a very specific type of narrative,

one whose purpose is to teach a machine a small piece of common sense. ComicKit is

7

an application that users interact with over the Web to create stories. These stories

become the basis for a corpus of common sense knowledge called StoryNet.

ComicKit uses a distributed knowledge capture method that was shown to be

effective in the Open Mind Common Sense project (OMCS) '. OMCS succeeded at

collecting about 700,000 simple commonsense facts from 15,000 contributors around

the world. ComicKit takes the same approach - casual, non-expert internet users

contribute commonsense knowledge via simple and engaging knowledge acquisition

activities on a public website.

To engage these users, ComicKit uses a drag and drop comic format that is easy

to learn and very expressive. In the base activity, users drag panels into a sequence,

and organize icons into scenes and events. Each story thus created is communicated

to a server which maintains StoryNet.

An innovative aspect of ComicKit is its use of existing common sense knowledge

bases to help the user in creating the story. Such common sense feedback makes the

story creation process more interactive[19].

1.1 Common Sense

Every person has some idea of what common sense is. It's what your mother told you

that you didn't have. It's the collection of knowledge that you've acquired throughout

your life that allows you to interact meaningfully with the world. Common sense is

the knowledge you get through experience. Common sense allows you to know what

to do when you're out of food (go to the store) or when you drop a glass (vacuum it

up), and where to find an extra roll of toilet paper at a stranger's house (under the

sink).

More formally, John McCarthy defines common sense thusly:

Common-sense knowledge includes the basic facts about events (including

actions) and their effects, facts about knowledge and how it is obtained,

lhttp://openmind.media.mit.edu/

8

facts about beliefs and desires. It also includes the basic facts about

material objects and their properties.[7]

1.1.1 Artificial Common Sense

Artificial common sense is the attempt to teach computers the large corpus of knowl-

edge that all humans acquire through the process of growing up. The common sense

corpus is enormous, and takes many years for each person to learn (and some people,

it seems, never learn common sense).

Part of the difficulty of acquiring common sense knowledge for computers is that

human beings do not have a very good grasp of the scope of their own common sense

knowledge. Describing it as a series of assertions, e.g., "the floor is beneath your feet,"

"buildings protect us from the wind and rain," "beer and water are liquids," shows

how closely common sense knowledge is tied to our internal models of the world.

The Common Sense Computing project 2 at the Media Lab is an effort to give

machines the ability to think about the world similarly to the way people do. One

aspect of this project is the creation of broad knowledge databases. The databases

are coupled with inference tools that allow AI to make sophisticated inferences about

the state of the world, problem solving, and the meaning of various inputs. There are

a huge variety of ways that common sense knowledge can advance the state of the

art in a variety of fields - a few are listed here.

1.1.2 Applications

A wide variety of present and future problems can be addressed with common sense.

This list attempts to show the breadth of potential applications of common sense

story knowledge, and is not exhaustive.

Detecting terrorists: A large corpus of common-sense knowledge could help to dis-

cover terrorist-exploitable weaknesses in an infrastructure or analyze a pattern

of behavior to detect a potential attack. It would help answer questions such
2http://csc.media.mit.edu

9

as "if a terrorist gains access to a water purifying facility, what items could

he use in a damaging way?"

- Search (Web, data mining, research): One of the problems with current search tech-

niques is that they require the user to know something about the knowledge

they are seeking.

- Computer Vision: One approach to computer vision involves working forwards from

an internal representation of an object, attempting to locate the object on the

scene via pattern-matching. Currently the approach is not feasible for general

object recognition because of the enormous number of objects that it would

have to try and discard. Common sense ties related objects together, so once

a knife is identified, the vision system will quickly look for knives, plates,

spoons, and glasses, instead of wasting its time trying to match computers,

cars, or trains.

- Game Characters: A robust common sense system would enable computer game de-

velopers to quickly create smart non-scripted AI characters. Such characters

could respond to novel circumstances in a reasonable way. Suppose your

hunting party is running out of arrows, but is far from a town - the common

sense characters may decide to cut off some branches and make some more.

- Step towards true Al: Common sense is a step towards developing programs that

can think like human beings. Many special-purpose AIs have been developed

to emulate human beings at any one particular task. Emulating humans at

a variety of tasks requires the sort of large corpus of general knowledge that

common sense can grant. In addition to the corpus of knowledge, which is

useless on its own, common sense techniques can provide inference methods

to draw conclusions and make decisions based on the knowledge.

1.1.3 Difficulty of Artificial Common Sense

Common sense is difficult even for human beings. Two of the problems of developing

common sense are acquisition and utilization.

10

Children take years to learn a usable body of common sense knowledge. A median

estimate of the amount of common sense required for a human being to go about their

daily business hovers around ten million elements of knowledge[11]. This is a lot of

knowledge, and worse, this counts only the useful knowledge. Knowledge that is

useless, or redundant, or wrong, or inconsistent, or insufficient, must be discarded.

When you start acquiring knowledge, you suddenly start to face the problem of

how to store it, and reference it. Common sense knowledge takes a huge variety of

forms, from simple facts to entire naive physics models. Common sense knowledge

also includes meta-knowledge about the quality of other knowledge, and about good

sources of knowledge, and knowledge about how to acquire knowledge. Keeping all

of these types of knowledge in a commonly-accessible format is very challenging. The

Cyc project developed an extremely complex and thorough knowledge representation

system, perhaps the most complete ever[5]. The Common Sense group intends to

use standard English fragments for their projects, but even then we've built various

different structures for sorting and coordinating these fragments.

Once you've acquired and stored a ton of knowledge, the problem becomes one

of using that knowledge effectively. It's not impossible to develop a program that

will answer a certain type of question or solve a certain type of problem effectively.

However, it remains an open problem to develop systems that can identify the problem

at hand, and choose a strategy to solve it.

1.2 Open Mind

Open Mind Commonsense3 is a website developed to address the acquisition of com-

mon sense knowledge[14]. Its approach is to get a large number of people to provide

semi-structured knowledge. The site contains a variety of activities based around

filling in the blanks in templates such as "A - is often used for ". The input

text is processed later and entered into a database of common sense. This

Because participants on the site are volunteers, essentially dabblers, the site has
3http: //openmind.media.mit . edu

11

been made in such a way as to encourage people to return often and enter more

information. The variety of ways users can input knowledge encourages them to

return to play with more. Often the activities allow the user to see what other people

have entered previously, providing a small reward for their participation. Though

there is not a strong emphasis on making the site fun, it has been successful at pulling

in knowledge. Roughly 15,000 users have entered some information at the OMCS site,

and the top contributors have entered tens of thousands of bits of knowledge each.

1.3 The X-Nets

The Common Sense group at the Media Lab has already produced several knowledge

bases and inference methods. The "-Net" terminology to describe the pairing of

a knowledge base with tools to use the information usefully is based on the name

of the WordNet project at Princeton '. Thus far the Common Sense group and its

collaborators has developed ConceptNet, LifeNet, ShapeNet, GoalNet, and StoryNet.

Each Net addresses a different aspect of common sense knowledge.

1.3.1 ConceptNet

The common sense contained in ConceptNet is a graph-like series of associations

between textual nodes. Each node is a 'concept' such as an object or an action, or a

state of being. Each pair of nodes can be linked by any of a set of link types. The

inference methods used on ConceptNet's knowledge traverse this graph structure,

using spreading activation.[6]

Among others, there are edges that relate actions to the objects they can be

performed on, edges that generalize from the specific, and edges that mean mere

closeness. There are around twenty different edge types.

ConceptNet is quite useful for generating synopses of text blocks, since the graph

structure lends itself to conceptual locality. The ConceptNet knowledge is essentially

4http://www. cogsci.princeton.edu/~wn/

12

static in time. It captures relationships such as "toothpaste is found in the bathroom,"

that convey an immediate, timeless bit of information.

ConceptNet's knowledge base was extracted from the OpenMind dataset. Ap-

proximately 1.6 million predicates were mined out of the hundreds of thousands of

OpenMind assertions.

1.3.2 LifeNet

LifeNet addresses transitions between states of being. It takes first-person proposi-

tions, such as "I am at the airport", and connects them to other propositions, e.g. "I

am boarding a plane". Each connection represents a probability of one proposition

happening after the other[17]. The links do not necessarily represent causality, or

even imply a strict ordering. For example, the propositions "I am outside" and "I

can see the sky" are linked with high probability, and don't have any direct causal or

temporal relationship.

LifeNet is intended to be used for context-related reasoning. Given some infor-

mation about a situation, LifeNet can use its knowledge base to suggest what other

things might be true, or what sorts of events might happen next.

1.4 StoryNet

StoryNet can be understood as a knowledge base of story scripts. The story scripts

serve as a representation for narrative-based knowledge. This knowledge tracks tem-

poral order, goals, and dependencies for resolution. By knowing the sequence of

events, StoryNet can begin to understand causality. The goals of the stories tell

StoryNet about what states might be desirable, and the way that goals are broken

down into subgoals tells it about methods of solving a problem. There is currently

no large-scale database of such story knowledge[15].

Stories are useful for case-based reasoning. Given a problem to solve, a case-

based reasoner searches through a database of stories to find the ones that solved

the most similar problem, and follows along. An important part of following along is

13

determining the differences between the example story and the current problem that

one is trying to solve. Solving a problem by referring to a similar story that solved a

similar problem is reasoning by analogy.

Using stories for reasoning does not involve much generalization. For each situ-

ation that StoryNet will attempt to reason about, it would need at least one story

that is very similar to the situation. Fortunately, StoryNet can rely on the common

sense knowledge captured in the other Nets to expand the meaningfulness of a single

story. For example, given the story about making a sandwich in the next section, it

could generate derivative stories where cheese is replaced by cold cuts, or egg salad.

1.5 Story Scripts

Jerome Bruner makes the case that narratives5 make up most of human memory and

experience[2]. An important aspect of narrative is that it is "irreducibly durative",

that the events happening in it must take place over time. The study of narrative

is particularly concerned with the construction of a narrative from a story - what

elements are included or left out and for what purposes.

A story script is a very particular form of narrative. They are to be distinguished

from Schank-Abelson scripts[13], and should be considered a more restricted form

of both narrative and script. The purpose of story scripts is to aid common sense

representation, in a more tightly constrained way.

Schank and Abelson describe scripts as the fundamental unit of memory. His

scripts are sequences of primitive actions, converted to a formalized representation.

Like Schank-Abelson scripts, story scripts also consist of a sequence of primitive

actions, but there are additional constraints:

" Story scripts presume the existence of a goal or set of goals, and the purpose of

the story script is to describe the accomplishment of these goals.

" Story scripts are focused and small.

5A story is a sequence of events. A narrative is the packaging of events for an audience

14

9 Story scripts are didactic.

9 Common sense is a major component of story scripts.

Here is a simple example story script:

" Eric took out a loaf of bread

" He saw that his fridge had no cheese in it

" Eric bought some cheese at the corner store

" He then cut slices off of the cheese and put them between bread

" Eric toasted the sandwiches, and ate them.

This simple story contains a lot of information about sandwich-making and the

purpose of things like stores. There were two obstacles to the achievement of the goal

- the fact that the bread and cheese were not combined or toasted, and the fact that

the cheese was still at the store. The steps taken to overcome these obstacles could

serve as a template for other sorts of sandwich-making problems, such as not having

any lettuce when making a BLT.

1.6 Why comics?

Examine McCloud's definition of comics: "juxtaposed pictorial and other images in

deliberate sequence" [9]. This definition emphasizes their sequential nature as well as

the deliberation required to make them. These characteristics fit in with the definition

of a story script.

Comics as a format have much to lend to the acquisition of stories. Comics are a

storytelling medium that most people are extremely comfortable with. A sequential

series of images, coupled with text, can convey things that no other medium can.

Comics can be very efficient in communicating their ideas.

The comic medium is useful for collecting story scripts because of its sequential

nature. Composing a comic is the art of arranging images in a sequence, each of which

15

conveys an idea. This format exactly matches the definition of story scripts. Casting

the story script creation task as a comic endeavour immediately sets the tone.

Visual images are very expressive, and can convey ideas that no words can hope to.

By using comics for our knowledge capture tool, we grant the users the expressiveness

of images in creating their stories. The major problem with this approach is that

computer interpretation of images is far behind computer understanding of words.

The ComicKit attempts to get around this problem by ignoring the visual aspect of

its user's creations. Words are an essential part of the ComicKit creation process,

and thus can serve in lieu of the images.

16

Chapter 2

Goals of ComicKit

ComicKit is quite ambitious in its goals. It is intended to be the primary knowledge

acquisition tool for a new and unprecedented knowledge base. ComicKit should make

it easy for non-experts to contribute sophisticated and clean story knowledge to this

knowledge base. It needs to be easy for a user to casually try it out, and plausible

that a user will spend hours of his or her time working on stories with it. Needless

to say, it is supposed to be fun to use.

2.1 Natural Language

Natural language is very difficult to work with. Common sense researchers would be

much happier if it were easy, because there are literally tons of pieces of common sense

knowledge distributed over the internet, books, and audio conversations. Indeed,

some are making attempts to tackle these resources with the limited natural language

tools that we have at our disposal now.

The very expressiveness of natural language makes it difficult to convert to a

knowledge representation. Natural language is context-heavy - most words change

meaning in difference circumstances, and pronoun references are sometimes difficult

even for human beings to resolve.

This problem with natural language means that researchers wishing to acquire

common sense knowledge must use some domain that is more limited. The Cyc team

17

developed an elaborate logical language that precisely specifies meaning[5]. The Open

Mind Common Sense project got most of its useful data from very rigid templates[16].

One of ComicKit's goals is to constrain the input of its users very tightly, so that

they do not stray into complex natural language. It is difficult to do this effectively,

since natural language is extremely well suited for telling stories.

The approach we are taking is to break the input we receive into categorizable

components. These components alleviate some of the burden of discovering the rela-

tionships between words in the story.

2.2 Breadth

Competing with the desire to constrain the user's input is the need to acquire a large

breadth of story knowledge. Like all common sense, story knowledge will be most

useful if it covers all domains of human experience. One of the concerns we had when

designing the ComicKit was that the drag-and-drop interface would unnecessarily

limit the scope of the stories people would contribute.

Early user testing suggested that the ComicKit strikes the right balance in this

regard. While testers definitely felt limited by ComicKit, they were also inspired to

overcome those limitations. Sometimes the limitations of the medium forced a user

to improve his or her storytelling, e.g., by breaking one very complex panel into two

or more simpler panels that showed the same actions in a clearer way.

2.3 Building Comics

Drag-and-drop comics seem to be a natural match with the goals of a StoryNet

acquisition tool. Comics are naturally structured much like the story scripts that we

wish to acquire. Building them by compositing them out of pieces takes away a great

deal of the complexity that is associated with creating visual images. Complexity

issues related to the structure of the story remain, and there is more emphasis placed

on the story as a result.

18

Figure 2-1: Abstract versus representational objects

2.3.1 Visual

One of the debates I had with others in the Common Sense group going into the

project was whether or not to use representational images in ther interface. The

advantage to using representational images is that they are much more "real" and

immediately lend a great deal of visual power to a created comic. Almost all artist-

created comics use representational graphics - they are pretty much the raison d'etre

of comics as a medium.

There are two huge downsides to using representational images for the compo-

nents of the stories. It would take a very great deal of energy to create or find the

thousands of graphics that would be required to represent the wide variety of common-

sense items that we wanted people to be able to use to construct stories. Additional

effort would also be required to associate common sense terms with the graphics, in

order to make the suggestions mechanism work properly (if the suggestion's label was

"hammer" and the graphic appeared to be a whale, it would be useless as either).

The other problem was that no matter how many graphics we acquired, we would

still leave enormous gaps in our coverage of common-sense items. It seemed unlikely

to us that users would go too far beyond the concepts contained in a set of graphics.

We elected to ambiguate the appearance of the graphics because we wanted to

keep users' imaginations running. If everything looked like a blob, the user would

be forced to rely more heavily on the text label to imagine how the story "really

happened". There is still a great deal of visual power in the arrangement of the

abstract shapes in a panel. Relative position plays a large role, as does the addition

of flavor in the text of captions and thought bubbles.

19

2.4 The user experience

The last challenge is how to make the experience rewarding enough that people con-

tinue to enter stories. The OpenMind project has had considerable participation

despite lacking explicit incentives. Perhaps users feel altruistic pleasure from further-

ing the progress of science, or have a desire to make it onto the top 10 list. Whatever

the reason, stories are a slightly tougher nut to crack, since creating a story is likely

to be more involved than anything currently on OpenMind. Several engagement

strategies are suggested by the richer nature of stories:

1. Make stories as easy to create as possible by letting the existing knowledge in

StoryNet and ConceptNet provide suggestions and guide the player.

2. Provide a social element to the activity, such as the ability to share comics, or

allow people to embed the comics in their web journals, or encourage coopera-

tion/competition by placing comics created by different people in opposition.

3. Create a challenge for the player. The Kit could provide a goal and challenge

the player to create a story that achieves it from a given starting condition. On

the creation of a new comic, the Kit could declare a subject area for the story

to evolve in ("create a story about finding your keys"). Human judges might

preside over a tournament of story creation.

At the current state of the program, only Item 1 is being implemented. In order

to implement it, the Kit relies heavily on the ConceptNet knowledge to suggest com-

ponents that are likely to be useful. The intent is to provide the objects and actions

the player might need without typing them. If the player uses a dog in a panel, the

Kit will suggest a dog. If the panel is set in the park, the Kit will make it easy to use

a frisbee or a bench.

This suggestion system also works to keep the player from entering too-complex

information for the nascent StoryNet. We've discovered from OpenMind that given

an empty text field, people will enter unparseably complicated thoughts. It is under-

standable that they do so - the level of knowledge we wish to capture with ConceptNet

20

and StoryNet is below the level of abstraction people normally operate at. In order

to reduce the incidence of unparseable input, the Comic Kit should be designed so

that it is difficult to create complex stories.

Another way to reduce the amount of effort required to create a story is to have

players only author part of the story. OMCS already has a similar concept, allowing

players to add a line to an existing story. Players are likely to experience a spirit of

cooperation when engaging in this sort of story creation. The OMCS story creation

encourages players to 'split' stories by suggesting alternative actions at each step,

which tends to prevent stories from getting too long, but also reduces the amount of

meaning associated with them. A strategy that make more of an effort to meaningfully

involve the player with the currently-unfolding story may yield better retention.

21

Chapter 3

ComicKit interface

The ComicKit interface has two purposes: for creating stories, and for viewing the

stories of others. It has a user management system, which tracks username/password

combinations, and associates each story with a username. Once logged in, a user can

create a story using the editing interface, the primary thrust of development.

As much as possible, the interface of the Comic Kit is designed so that the user

types as little as possible. The primary activity is dragging objects around on a

workspace, and it is hoped that sophisticated enough prediction on the part of the

program will obviate the need for the user to do anything beyond simply selecting

the proper component.

I've broken down the interface into four 'screens' each of which performs a specific

function. The login screen handles both new user registration and the authentication

of existing users. The gallery screen is a place where users can select stories to edit

or view. The viewer scree is for looking at but not editing a story. Most importantly,

the editing screen creates comics.

ComicKit is a two-part system: a simple client that handles the user interaction

and the graphics, and a server that stores persistent data and computes suggestions

for displaying in the client. An interaction with ComicKit is really an interaction

with the server mediated by the client. This chapter deals with the interface, also

referred to as the client. [insert userloop diagram here]

22

Figure 3-1: Login screen

3.1 Login screen

The login window allows existing users to authenticate themselves, and allows new

users to register a new account. Both of these functions are handled in essentially the

same way, since they differ very little in terms of the information required from the

user.

I decided that it was best to give each account a password to prevent users from

vandalizing each other's stories. An email address is also associated with each account,

so that if a user forgets her password it can be emailed to her. This is decidedly a

low-security affair, and no encryption is used in any stage of the process. I believe

there is little incentive for users to attack the security of the system, as there is

nothing of inherent value contained therein. The only plausible goal for an attacker

is to vandalize or delete a story that someone else made. If the ComicKit explodes

in popularity and people start using it as a service to keep personally important

information, this issue may need to be revisited.

The login process for an existing user is very simple: fill in the username and

password fields appropriately and click "Login". At the moment the interface does

not support pressing enter after entering the password - this seems to be a Flash bug.

The login process for a new user (i.e., a "registration") is equally simple: the user

types in the desired username, an email address, and a password, and clicks "Login".

23

ComicKit distinguishes the login of an existing user from the registration of a

new user by checking the server to see if the specified username already exists. It

does this with each user keystroke, providing a continually updated message alongside

the username box, saying "this username is in use", or "this username has not been

registered yet". The email address field appears and disappears based on whether or

not the username is determined to be new.

Once the user has clicked the 'login' button the Flash client checks with the server

to see if the login/password combination is valid. If it is not, the client displays an

error message in red. If it is valid, the client takes one of two actions. If the user

is new and has just registered, the client shows the editing screen with a new comic

opened up. If the user has already registered, they are taken to their gallery.

In anticipation of people who wish to simply create a story without the hassle of

registering a username, the login screen provides a "login anonymously" button. Each

screen, if evoked on its own without a login process, assumes that the user is logged

in as anonymous. Currently anonymous users can edit each other's stories, making

it less useful for common sense story script due to the possibliilty of vandalism or

aborted story creation attempts.

The anonymous username is thus a sort of sandbox for trying out the interface.

We may find that this is not advantageous, as the burden of registering (admittedly

a small burden) encourages users to be responsible with the stories they create.

3.2 Gallery screen

The gallery displays the stories created by each user. There are two main features of

the gallery display: a username selection interface on the left, and a story display on

the right.

If the user has logged in, the default value of the username selection box is the

user's own, so that she can view her own stories. The box is editable so that the

viewer can change its contents to view the stories of another person.

As the user types in the selection box, the client performs an incremental find

24

Figure 3-2: Gallery screen

on the set of usernames. An incremental find is a search that is performed on an

incomplete input from the user. Incremental find is often useful when searching for

a word in a large set of words where the user may not be certain of the spelling. As

they type more and more letters into the search box, the list of matches grows shorter

and shorter. At any time the user can click on a username in the list to have that

username fill the selection box and the stories associated with it displayed. Add ref-

The right side of the screen is a column of rendered stories by each user. Only the erences

first few frames of each story are shown - the exact number of shown frames depends to incre-

on the pixel size of the user's browser - enough to give the viewer an idea of the mental

contents of the story. The user can click on a story to edit it (if the user owns the search.

story), or for viewing (if the story was created by someone other than the user). In

the current interface the stories are shown at full size. A future consideration may be

to display the stories at a reduced size to fit more onto the page.

3.3 Editing screen

The editing screen is the primary tool of the ComicKit. Most of the development

effort has been spent on making this one screen work most effectively. I developed

a mockup version of the editing screen in Java over the summer of 2004. Lessons

25

Figure 3-3: Editing screen

learned from that interface were applied to newer Flash interface developed over the

fall of 2004.

The editing screen addresses the biggest goals of the ComicKit. By manipulating

the interface provided by the editing screen, the user should be able to easily create

as many stories of whatever type she wants. At the same time, the user should

be gently guided into creating stories that are common-sense oriented, and mesh well

with our existing knowledge bases, while also providing new information not provided

by existing stories.

The editing screen is divided into two main components: an upper workspace

where the comic is created, and a lower palette region where suggestions appear.

There is a clear if invisible line dividing the two sections, and the behavior of draggable

items is different depending on which section they've been dropped in.

The workspace is scrollable via the two arrow buttons at its left and right. Clicking

and holding one of the buttons causes the panels to move at a fixed rate away from the

button (the paradigm is similar to that of a regular scrollbar in that the arrows are

perceived as moving the camera and not the panels). The workspace scroll buttons

are always visible, even if all of the story's panels are visible onscreen.

Each palette in the lower region is vertically scrollable. The scroll buttons bear

a visual resemblance to the horizontal scroll buttons of the workspace. They only

26

Time field Background
selection

Place field,-, Sentence
Descrptive_ wAs OWso selection
caption

Figure 3-4: Annotated panel

appear if the palette has more contents than it can currently display. The scrolling

mechanism of the palettes is difference from the panel scrolling in that it is punctu-

ated. Each click on a palette scroll button moves the contents of the palette by one

row. Continued holding has no effect.

The editing interface does not require any explicit action on the part of the user to

preserve their story. Each time the user makes a change to the story, the entire story

is sent to the server and saved. This process happens at the same time as suggestions

are being generated for the palettes.

3.3.1 Panels

Comics are built as a sequence of panels. Each panel provides the setting for a scene.

ComicKit panels have the following elements: a background image, a time-of-event

text field, a place text field, and a caption. The user creates stories by filling in the

contents of those text fields, and dragging various labeled icons over the background

image to create a scene (not necessarily in that order).

Place: is the name of the physical location where the scene happens. It is loosely

correlated with the background image, insofar as the background image is

supposed to visually represent the place.

Time: is the comic creator's specification for the time at which the scene in the

panel takes place.

Caption: contains the textual description of the scene. It could be completely free-

form text, or it could be a literal transcription of the labeled icons in the

27

panel.

ComicKit arranges the panels so that they line up adjoining each other in a line.

By dragging the panels, it is easy to rearrange their order.

3.3.2 Drag and drop mechanism

The editing screen creates stories through direct-manipulation interaction. The pri-

mary activity in the story creation process is dragging and dropping labeled icons

into panels to compose a scene. The user can drag as many icons onto a panel as are

necessary to show the action, and label them with any text.

A labeled icon is an image overlaid with a text field. The user can change the

label of any labeled icon in ComicKit simply by hovering her mouse over the icon.

At the moment that her mouse rolls over the icon's boundaries, the text inside the

label is selected, and is editable using standard techniques. Note that the text is not

contained in a recessed, white-backgrounded text box, but instead is simply overlaid

on the graphic. The same strategies that would work with a text box will work with

editing the labeled icons (the HOME and END keys work as expected, it is possible to

use SHIFT and the arrow keys to select a portion of the text, etc.). As long as the

mouse pointer remains over the icon, the text will remain editable. Once the user

moves the mouse poitner away from an icon, that icon's text ceases to be editable.

Each labeled icon is draggable to anywhere on the screen. If dropped on the panel

portion of the screen, the labeled icon becomes associated with the nearest panel, and

moves to stay completely in the bounds of said panel. If it is dropped in a specific

position on the panel, the labeled icon always remains affixed to that spot on the

panel, even if the panel is moved, until the user drags that particular icon to a new

spot. When dropped on the lower, paletted, part of the screen, the labeled icon is

added to the correct palette for its type. If dropped on top of a special 'trash' icon,

the labeled icon deletes itself.

28

3.3.3 Selection mechanism for appearance

I discovered from the mockup that users wanted to be able to select the visual ap-

pearance of everything that they dragged onto the workspace. They wanted to select

the appearance of the labeled icons, the facial expression of the persons, and the

background images of the panels. I developed a mechanism that supports quick and

easy changing of the image of any labeled icon.

The image selection method I developed is a form of pie menu. To change the

image of a labeled icon, the user first clicks the yellow arrow. This yellow arrow

appears only when the user's mouse is over the labeled icon. Once the arrow is clicked,

the available image selections appear arranged in a full or semi circle centered around

the existing image. They are spaced far enough apart that there are no overlaps of

images. This is a sort of pie menu in the sense that this circle is now also nearly

centered on the mouse due to the location of the just-clicked arrow. To select a new

image for the icon, the user merely has to click on the desired image in the "pie".

The user can dismiss the pie without making a selection simply by clicking on the

arrow again.

3.3.4 Division into types

There are four primary icon types: objects, actions, persons, and thoughts/speech.

Categorizing them in this way allows each type to have its own set of images, so that

an action is always visually distinguishable from an object, for example. Person icons

have the additional distinction of expressing one of the seven Ekman emotions[4].

The objects/actions/persons type trio is intended to represent nouns and verbs in

simple declarative sentences. Accordingly, the graphics for each type are designed to

appear like their part of speech: persons look vaguely face-like, objects look thing-like,

and actions look active.

The simplest sort of sentence to parse is a declarative one. ComicKit facilitates

the construction declarative sentences through its limitations. It is difficult to ex-

press complex tenses, interesting conditionals, and other sentence constructions using

29

Figure 3-5: Appearance of objects

Figure 3-6: Appearance of actions

simple nouns and verbs.

3.3.5 Suggestions

A major component of the ComicKit is its ability to common-sensically provide sug-

gestions of labeled icons for use in the developing story. These suggestions are based

on the parts of the story that the user has already created. Their intention is twofold.

First, they sometimes anticipate the user's need. The user may be writing a story

about selling a car, and based on the words "sell" and "car", ComicKit would suggest

things like "windshield" and "engine", anticipating the user's intention of creating a

panel about how what shape the car's engine was in.

Second, they provide a feedback channel to the user. This channel delivers infor-

mation about the types of things that our common sense knowledge already knows

something about, and about what areas we would like people to create stories in. The

suggestions also form a sort of conceptual template for the "common sense mindset".

Comics are a hihgly symbolic medium, and it is common for one thing to represent

another (e.g. rain representing depression). By providing only suggestions that are

common-sensical (e.g. suggesting "water", "drink", "snow" when the user adds rain

to the story), the ComicKit shows the sort of relationship that it considers common

sense.

30

ComicKit always provides copies of the labeled icons that are being used in the

story, since it is likely that the user will want to use the more than once. In antici-

pation of users wanting to define their own labels fairly often, a labeled icon with no

text is always the first item in every palette.

Persons do not have a complicated suggestion method. We can presume that

the user is very likely to want to reuse the same character's icon in many panels.

Therefore the suggestions are limited only to multiple copies of each character in the

story. If the user creates a character "Bob", the persons suggestion palette becomes

filled with several "Bob" icons, plus the obligatory blank icon. If she adds a second

character, "Alice", the persons suggestion panel becomes filled with equal numbers

of Bobs and Alices.

Thoughts are never suggested. To some degree, the thought and speech bubbles

form an outlet for creative impulses that go beyond simple action sentences. ComicKit

merely provides a palette with sufficient thought and speech bubbles.

Action and object suggestions are complex, and based on the entire current con-

tents of the story. The actions palette is filled with ConceptNet words/phrases that

are either similar to the actions already in the story or can be performed on some of

the objects in the story. Similarly, object suggestions are either related to the story

objects or derived from the story actions.

Panel suggestions has not been incorporated into the ComicKit at the time of

writing, but I hope to be able to add it soon.

Sentences

ComicKit suggests captions for each panel, based on its contents. This suggestion

mechanism has much the same goals as suggesting labeled icons, but is handled

through a different interface. Instead of dragging and dropping sentences, users select

sentences by choosing from a list that flanks the panel, echoing the method for image

selection described in section 3.3.3.

When the server makes sentence suggestions for a panel (which is not all the time),

the panel subsequently gains an additional lighted arrow whose position is directly

31

above the caption (to be distinguished from the background-selection arrow, which

is located at the top of the panel). When this arrow is clicked, the panel displays

suggested sentences in two columns, one to either side. The sentences can be hidden

by either selecting one, or by clicking on the arrow again.

The caption can still be edited normally by hovering the mouse over it, regardless

of the suggestions.

3.3.6 Java mockup

Over the summer I developed a mockup in Java, my programming language of choice.

I used the graphical toolkit Piccolo1 to provide support for draggable icons and event

handling. For the most part the Java version was very similar to the final Flash

version, but the differences are listed here.

e The mockup's interface stacks the growing comics vertically on the left half,

with palettes full of suggestions on the right half. The space available for each

panel's caption was thus as tall as the panel itself and somewhat wider, and

much roomier than even the most loquacious caption needed.

e Even though the user could edit labels simply by hovering the mouse over

them, input is limited only to the alphanumeric characters. Punctuation is not

possible.

* Sentence suggestions are displayed in a palette all of their own, right next to the

thoughts/speech palette, and the user would drag a sugggested sentence over a

panel.

e The mockup provided no mechanism for changing the image of a labeled icon,

instead relying on random chance to provide the desired image in one of the sug-

gestion palettes. This became an enormous problem, especially for the person

labeled icons, where often the user wanted many copies of the same expression.

e User management is new to the Flash interface.

1http://www. cs.umd.edu/hcil/jazz/index.shtml

32

Chapter 4

ComicKit server

The ComicKit server provides an XML-RPC interface to the individual Flash clients.

The server keeps everything centralized and offloads some computation from the client

(though this creates a computational bottleneck at the server end). The server is

responsible for saving stories to disk, producing the suggestions, maintaining a table

of users, and returning stored stories for display.

I'll discuss the server's duties and interfaces by purpose. The first purpose is

to manage users, by validating logins, creating new accounts, and checking for the

username conflicts. The second purpose is to store and retrieve stories. The third

purpose is to generate suggestions from the common-sense knowledge in ConceptNet.

4.1 User management

User management is the most visible of the server's duties. The Flash client queries

the server for the existence of the username as the user is typing it in. The server vali-

dates the username/password combination before allowing the user to enter the other

parts of the program. When the user wishes to register a new username/password,

the server does that as well.

The server's interface to the client consists of four XML-RPC functions, delineated

here:

33

check-username

Arguments: String username

Return value: "1" if the username specified has been registered

before, "0" if not.

This function is called by the Flash client with each new character typed in

the username box on the login screen, thus allowing the client to remain up-

to-date as to whether the username is already registered.

get-incr-usernames

Arguments: String partialUsername The first part of a user-

name
Return value: A list of usernames that start with the specified

string.

This function is used on the gallery screen, to help the user find the username

they want quicker.

new-user

Arguments: String username, String password, String email

Return value: The string "done", regardless of status.

checklogin

Arguments: String username, String password

Return value: "1" if the username and password match one of the

registered username/password sets in the database,

"0" if they do not (either because of a nonexisting

username or because of the wrong password).

These four functions handle all of the requirements of the login page and of the

gallery's incremental username find feature.

The data storage that these functions manipulate is a table in a MySQL database.

34

The functions perform error checking and format an appropriate database query.

The table was created by the following SQL command:

create table user (

uid INT UNSIGNED NOT NULL AUTOINCREMENT PRIMARY KEY COMMENT 'User

ID field',

name CHAR(64) NOT NULL COMMENT 'Textual username',

password CHAR(64) NOT NULL COMMENT 'Plaintext password',

email CHAR(200) COMMENT 'Email address',

addedTime DATETIME NOT NULL DEFAULT 'NOW(' COMMENT 'Date/time that

user was added',

loginCount INT UNSIGNED NOT NULL DEFAULT 0 COMMENT 'Number of times

user has logged in',

UNIQUE (name),

INDEX nameIdx(name)

4.2 Story management

The story management aspect of the server maintains a list of stories and the user

who created each story. There are a few functions exported through XML-RPC.

createmnew-story

Arguments: String username

Return value: An integer representing the story ID for the newly

created story. This ID must be used when referring

to the story in the future.

This function creates a new story in the database.

get-user-stories

Arguments: String username

35

Return value: A list of story IDs.

This function returns the story IDs for all the stories created by the specified

user.

get-story

Arguments: int sid

Return value: A story in the representation discussed in the next

section.
If you know the ID for a story, you can use this function to get the story's

contents.

delete-story

Arguments: int sid

Return value: The value "1".

This function deletes the specified story. There is a real danger from vandal-

ism or mistakes, so in the future it should probably merely hide a story, not

delete it completely.

These methods operate on a MySQL story table, which was generated with the

following command:

create table story (

sid INT UNSIGNED NOT NULL AUTOINCREMENT PRIMARY KEY COMMENT 'Story

ID field',

uid INT UNSIGNED NOT NULL COMMENT 'ID of the user who owns the story',

numupdates INT UNSIGNED NOT NULL DEFAULT 0 COMMENT 'Number of

updates to the story',

created DATETIME NOT NULL DEFAULT 'NOW(' COMMENT 'Date/time that the

story was created',

modified DATETIME NOT NULL DEFAULT 'NOW(' COMMENT 'Date/time that

the story was last modified',

contents MEDIUMTEXT COMMENT 'The story representation.',

36

INDEX userIdx (uid)

);

4.2.1 Story representation

In being passed from the client to the server for storage and parsing, and for being

loaded by the client from storage, the the stories had to be formatted in a consistent

way. The storage format I've developed is perhaps not the most readable, but it

overcomes some of the limitations of the ActionScript XML-RPC implementation.

The representation is a list of mixed data types, a data structure native to both

ActionScript and Python. The following notation is a list is indicated by enclosing

brackets, and a list of variable length is indicated by an ellipsis. A variable's type

is indicated after the colon, e.g. <username: String> indicates a variable called

username which is a string.

<Representation> [<Story title> [<Panel>, <Panel>, ...]
[<selected:'0' or '1'>, [<Place:String>,

<image:String>, <x:fioat>, <y:float>],

<Panel> := <Caption:String>, <Time:String>, [<Person>,

<Person>, ...], [<Action>, <Action>, ...], [<Object>,

<Object>, ...], [<Thought>, <Thought>, ...]]
[<Name:String>, <image:String>, <x:float>,

<Person> :
<y:float>]

<Action> := [<Verb:String>, <image:String>, <x:float>, <y:float>]

[<Noun:String>, <image:String>, <x:float>,
<Object> :

<y:float>]
<Thought> := [<Text:String>, <image:String>, <x:float>, <y:float>]

This representation contains exactly the information required to restore a story to

the editing interface and little more. The Place, Time, and Caption components of a

Panel match the text fields in the client interface. Each Person, Action, Object, and

Thought sub-list represents the coordinates, text, and the icon used to represent that

particular component. The boolean value of the selected variable is used only by the

sentence suggestion part of the backend. It would be too computationally expensive

37

to generate sentences for every panel each iteration, so the sentences are computed

only for the most-recently-modified panel, which is indicated by the presence of a '1'

in its selected field.

4.3 Parsing a story for suggestions

Frequently, the client will request a set of suggestions from the server. It does so by

using the crunch method (which is labeled crunch3 in the XML-RPC interface for

historical reasons).

crunch3

Arguments: int sid, <story representation>

Return value: [<person suggestions>, <action suggestions>,

<object suggestions>, <sentence suggestions>]

This function returns a list of lists of icon representations. Each icon rep-

resentation is a list containing the label of the icon, and either an image for

the icon or the word "random". The sentence suggestions list only contains

strings.

This method also saves the story in the MySQL database. The server expects

crunch to be called as frequently as the user makes changes in the editing window.

To generate the person suggestions, the server constructs a list of the text labels

(i.e., names) of all of the persons from the story, and creates six copies of each name.

In generating the action suggestions, the server looks at both the actions and

objects in the story. It finds the analogous words to the actions in the story, and

compiles them into a list. If finds the actions that can be performed on each object

in the story, by searching the graph structure for "CapableOfReceivingAction" and

"CapableOf" links to and from those objects. The two lists (analogous actions and

actions performed by objects) are interleaved into a final list of action words, which

is then converted into a list of icon representations.

The server suggests objects by also examining both the actions and objects in the

38

story. It construst two lists. The first list is generated by following "CapableOf" and

"CapableOfReceivingAction" links from each of the actions in the story, resulting in

a list of objects that those actions can be performed on. The second list comes from

finding all the concepts that are analogous to each object in the story, and growing

the list still further by finding all the concepts that are analogous to those concepts,

i.e. concepts two degrees seperated from an object in the story.

The ComicKit server generates sentence suggestions based on the contents of one

panel. Sentence suggestions are generated more or less combinatorially. It treats

the actions in the panel as verbs, and the objects and persons as nouns. Using the

MontyLingua natural language toolkit to convert verbs into a standard tense (simple

past), the ComicKit server generates simple sentences in the following forms:

* (The/A) <Noun> <verbed> (the/a) <noun>

" (The/A) <Noun> <verbed> (the/a) <noun> (near the/on the/with the) <noun>

" (The/A) <Noun> was with (the/a) <noun>

" (The/A) <Noun> <verbed>

" <any of the previous sentence structures>, thinking <thought>

The server selects the proper pattern for the number of nouns and verbs in the

panel, and generates one instance of the pattern for each possible way to arrange the

nouns and verbs within it. For example, a panel containing the nouns "man" and

"dog", and the verb "bite", uses the first pattern, and generates the sentences, "The

man bit the dog", "The dog bit the man". This method often generates too many

possible sentences, especially when many variations simply change out "a" for "the".

39

Chapter 5

Related work

ComicKit is superficially similar to other story-related systems, but departs signif-

icantly in its purpose. The ComicKit can be thought of as a graphical knowledge

representation and generation tool, whereas other projects have focused on the learn-

ing of the user [18], fostering communication skills [3], and story authoring[1].

5.1 StoryWriter

ComicKit as a story creation tool is similar to StoryWriter because users construct

a story graphically using a palette of story elements and captions. ComicKit is

distinguished by its use of story suggestions and abstract appearance of story ele-

ments. ComicKit does not have representational objects like StoryWriter[18] does

- a ComicKit pear does not bear any visual resemblance to a real pear, whereas in

StoryWriter pears are identified and used based on their appearance. By deliberately

dissociating the appearance of the object from its meaning, we allow the scope of the

stories to be limited only by the user's imagination.

40

5.2 KidPad

KidPad is a collaborative tool for kids that allows them to draw stories on a zoomable

canvas. KidPad appears similar to programs such as Kid Pixl in its focus on kid-

friendly computer art. KidPad's uniqueness comes from its use of a zooming interface

and the ability to set up hyperlinks to tell a story. Emphasis is placed on honing motor

and drawing abilities. Though the use of hyperlinks in KidPad can create sequential

stories, they also could be used to create nonlinear experiences such as branching

storylines, or static scenes that can be explored in more detail. KidPad's interface

is designed to be as expressive as possible, in contrast with ComicKit's deliberate

limitations.

5.3 Daydreamer

Erik Mueller's Daydreamer project[12] is like an artificial story generator - almost

the opposite of ComicKit. Daydreamer's intent is to explore the creation of subgoals

to solve a "control goal", and the sequence of events that lead to resolution of those

goals. Goals are structured in a tree, and their relative importances can vary over

time. The emotions of the daydreamer program influence which goals are important

to it as it goes through a daydream. In effect, the daydreamer program simulates the

experience of a story.

StoryNet could use Mueller's techniques to generate derivative stories off of stories

in its corpus. Daydreamer's stories are heavy with metadata such as the identification

of which actions are taken in service of which goals, whereas stories entered via

ComicKit are bereft of such information.

'http: //www. riverdeep .net/products/kid-pix/kpd4. jhtml

41

Chapter 6

Evaluation

I performed two evaluations to test the effectiveness of the ComicKit interface, to see

whether it was enjoyable to use at all, and whether it generated higher-quality stories

than other interface attempts.

6.1 Comparison evaluation

We performed an initial evaluation of the mockup ComicKit interface in September

2004. The results of the evaluation were used for the subsequent IUI paper[19]. This

evaluation attempted to see whether the comic interface was more effective than

a plain text interface, and if the intelligent suggestions were helpful. We ran an

experiment that pitted three story-entry applications against each other.

Figure 6-1: StoryNet Text interface

42

Figure 6-2: ComicKit mockup interface

1. SN-Text The first was a Flash-based story generator that had users dragging

sentences into order. The sentences came from the LifeNet corpus[17], and

were not modifiable. In order to tell their story, users had to repeatedly search

the LifeNet database for the existing sentence that most closely matched their

intent. A screenshot of this interface in action is seen in Figure 6.1.

2. ComicKit-1 The second tested application was the Comic Kit's interface as

described, but with no suggestions of elements from the server side.

3. ComicKit-2 The last tested application was the fully intelligent ComicKit with

suggestions for elements and captions.

For each application, subjects were asked to create three stories, then rate the

application on three scales: entertainment value, helpfulness, and intelligence. We

collected data from five grad students/professors at the MIT Media Lab for the pre-

liminary study, and their average subjective responses are charted in Figure 6.1. We

believe that for this test at least one user was not able to connect to the server and

thus her experience for parts 2 and 3 were identical.

The evaluators found the ComicKit interface to be more rewarding than order-

ing sentences into a list to tell a story. They also found that the ComicKit with

suggestions was more intelligent, and more helpful.

43

5

3. 3

2.5

2-

1.5

1 S-TxtCarmicKik -1 ComricKft-2

mEntetainng 3.6 4.6 4.5

Winteractim 3 4.5 4,5

a 25 3.25 3.5

2.6 135 215

Figure 6-3: User Evaluation Subjective Results

It was fairly clear even during the experiment that the evaluators were using the

three applications in different ways. They spent about ten minutes total creating

stories on the text interface, and about two hours on the two versions of ComicKit,

much more than we expected or asked. Some of them needed to be reminded of the

time before they stopped. It is possible that the comic interface is very inefficient, and

thus it took the users much longer to create an equivalent story. The other possibility

is that the users found the comic interface more engrossing, and created longer and

more involved stories with it.

It is hard to compare the experience of creating a story with the ComicKit with

the text story creation utility. Users commented that the comic medium was richer,

allowing them to tell the story both graphically in the panels, and in the text captions.

They felt limited by the suggestions provided, and responded to this limitation in

two ways. Some let the suggestion engine inspire them when their own ideas were

running low, and sometimes they made choices they wouldn't have made on their own.

Others felt challenged by the limitations, and went out of their way to overcome them.

Because each label was completely editable, the only real limitation was in the amount

of typing the user was willing to do in order to tell their story.

Most people used the thought and speech bubbles much more than we had an-

ticipated - most people had at least one thought bubble in every panel. They were

the primary means for people to get around the simplistic subject-object-verb model

created by the objects in the interface. Thought bubbles provide an important insight

into the mental state of story script characters, but unfortunately they can take on

44

difficult-to-understand forms due to their freeform nature.

We tracked the number of scene elements that each person composed into their

comic strip, as well as the number of steps they took to generate each strip. The

average values of these are presented below for comparison.

ComicKit-1 ComicKit-2

Elements Used 13 17

Modifications 50 76
These values show that the users created comics with more elements when the

interface included suggestions, and they spent more time trying out combinations.

The interface afforded "playing", since virtually everything in it was interactive.

We believe that this study showed that ComicKit is likely to achieve our goals as

a knowledge acquisition interface for StoryNet. As we acquire story script knowledge,

we gain the ability to feed this knowledge back into the ComicKit through suggestions.

This feedback loop will improve the sophistication of the system, and encourage users

to play with it more. While we have yet to test the collected knowledge in an actual

case-based commonsense reasoning system, ComicKit gets us closer to our goal of

acquiring the very-large corpus of story-scripts that such a system would need to

reason robustly about a wide range of commonsense scenarios.

6.2 Formative evaluation

I performed a simple formative evaluation in January 2005 to test the subjective feel

of the Flash version of ComicKit. A primary concern was to find out whether users

would want to continue entering stories after the initial encounter. If fundamental

design issues kept the ComicKit from being fun to play with, this evaluation was

intended to find out.

I chose to carry out the formative evaluation via a web form, which I asked several

fellow MIT students to fill out. The subjects were asked via email to create a story

with ComicKit, and fill out the evaluation form afterwards.

This evaluation revealed that even though Flash was chosen for its commonality,

45

about half of the people asked to participate did not have a recent enough version

of Flash to use the ComicKit. Unfortunately, if the user does not have a recent

enough version of Flash, the ComicKit fails by behaving erratically and corrupting

data, rather than informing the user about the version mismatch. This issue should

be addressed by including version-detection code in either the ComicKit itself or on

the navigation page that leads to it.

The other major flaw revealed by this evaluation was that ComicKit does not

degrade gracefully if the server is not available. Currently, ComicKit relies on the

server to keep the palettes stocked with labeled icons, and to save the state of the

comic as the user builds it. If the server is not available for some reason, the user

will find that the palettes run out of labeled icons, and that the server is not saving

the user's work. Perhaps the best way to address this issue is to completely halt the

user's experience if the server is not available or unresponsive. Care should be taken

to ensure that there are no false positives and that the server remains robust enough

to serve for long periods of time.

The last issue revealed by this evaluation was that most people did not understand

the interface right away, and required some explanation and demonstration before

they understood its purpose. Despite the presence of a demonstration video on the

website, this hurdle was too great for some people, and they spent their time idly

dragging icons around without any direction. Visual hints, a simplified interface with

clearer visuals, and a smoother way of presenting suggestions could help address this

problem.

46

Chapter 7

Future directions

The existing interface should be thought of as a platform rather than an activity of

its own. The platform allows the user to create stories by dragging icons into panels

and occasionally typing new labels. Around this platform can be built a variety of

activities. These activities could restrict the input from the user in a certain way,

much like the templates in OMCS[16]. By creating puzzle-like activities, we could

make comic creation more fun for participants, as well.

Other directions include expanding the social reach of the ComicKit. The gallery

screen's ability to look at the comics created by other people hints at this ability.

There is a lot of room to explore collaborative storytelling or collaborative teaching.

The richness of the existing program could use some deeper features. More ex-

pressive ways of associate the labeled icons with each other would help the creation

of complex stories.

7.1 Templated Input

Some activities based on ComicKit could involve feeding existing StoryNet knowledge

back to the player. The Kit could provide story facets as suggestions for the currently

unfolding story, much in the manner of the labeled icon suggestions already extant in

the program. These suggestions need not be limited to single panels - with a robust

corpus of story knowledge, StoryNet would have the ability to produce several panels

47

worth of story.

More game-like activities would challenge the player to combine story fragments

in a coherent way. Some example activites are listed following.

Connect the dots: This activity would start the player off with a beginning panel (or

set of panels), and an ending set of panels, and the player would coherently

join them.

Missing steps: Much like the templates of OMCS[16], this activity would ask the

player to fill in gaps in a already-mostly-generated story.

As noted, these activities could be made to be very template-like.

For entertainment purposes, ComicKit could have a feature which creates a modi-

fied version of a player's story. Modifications would consist of making a minor change

to one panel and attempting to propagate the results of that change through the

rest of the story, e.g. changing a story about looking for keys into a story about

looking for bananas. Already the suggestions from the ConceptNet backend provide

entertainment, a sort of 'guess what the computer knows' exercise.

7.2 Social

Another approach is to cast the Comic Kit as a communications medium - players

would have access to each other's story components and be able to send whole groups

of stories to each other and would be able to follow how a story changes as it's passed

around.

The server could help in the development of characters that participate in many

stories. Already the server knows about the player's characters enough to provide

them as suggestions. To extend the concept further, the server could infer personality

characteristics from the actions that a particular character tends to take over several

stories. The player could also specify character traits, perhaps in a special character-

editing interface.

ComicKit could extend its reach beyond the confines of its own website. It would

48

be very simple, for example, to build a small Flash application that merely displays a

stored comic, which players could download and use on their own websites to display

comics they have created. The community would then have more control over the

ways they interacted with the comics, and new and interesting interactions could

result.

7.3 Better storytelling

One weakness of the existing ComicKit is that much of the story is left implicit.

Subject-object relationships within a panel, overall identification of protagonists, and

goals must be inferred from the captions. It would be very powerful to give the user

the ability to explicitly state goals and subgoals, since that would increase the user's

didactic power.

It should also be possible to tie ShapeNet, a corpus associating concepts with

two-dimensional contours, into the framework, by providing contours to objects that

look like the actual object. To some degree, doing so would violate some of the

intentions behind leaving the icons abstract. ShapeNet does provide a large corpus of

shapes, indexed by common-sense concept, saving a lot of work that would otherwise

be necessary to use representational icons.

7.4 Conclusion

ComicKit has great potential to serve as the acquisition front-end for a large StoryNet

corpus. Selecting a comic-based interface has made it possible to acquire simple,

parseable stories from people who may not know very much about common sense or

story scripts.

49

Bibliography

[1] Kevin M. Brooks. Do story agents use rocking chairs? the theory and imple-

mentation of one model for computational narrative. In Proceedings of the fourth

ACM international conference on Multimedia, pages 317-328. ACM Press, 1996.

[2] Jerome Bruner. The narrative construction of reality. 18, 1991.

[3] Allison Druin, Jason Stewart, David Proft, Ben Bederson, and Jim Hollan. Kid-

pad: a design collaboration between children, technologists, and educators. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 463-470. ACM Press, 1997.

[4] P. Ekman, W. V. Friesen, and S. S. Tomkins. Facial affect scoring technique: A

first validity study. 3:37-58, 1971.

[5] Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure.

Communications of the A CM, 38(11):33-38, 1995.

[6] H. Liu and P. Singh. Conceptnet: a practical commonsense reasoning toolkit.

BT Technology Journal, 22(4):201-210, 2004.

[7] John McCarthy. Formalization of common sense, papers by John McCarthy

edited by V. Lifschitz. Ablex, 1990.

[8] John McCarthy. From here to human-level ai. http: //www-f ormal. stanf ord.

edu/jmc/human.html, 1996.

[9] Scott McCloud. Understanding Comics. Kitchen Sink Press, 1993.

50

[10] Marvin Minsky. Commonsense-based interfaces. 43(8):67-73, 2000.

[11] Erik T. Mueller. http: //www.signiform. com/erik/pubs/cshumans.htm, 2001.

[12] Erik T. Mueller and Michael G. Dyer. Towards a computational theory of human

daydreaming. In Proceedings of the Seventh Annual Conference of the Cognitive

Science Society, pages 120-129, 1985.

[13] Roger C. Schank and Robert P. Abelson. Scripts, Plans, Goals and Understand-

ing: an Inquiry into Human Knowledge Structures. L. Erlbaum, Hillsdale, NJ,

1977.

[14] P. Singh. The public acquisition of commonsense knowledge. In AAAI Spring

Symposium: Acquiring (and Using) Linguistic (and World) Knowledge for In-

formation Access, Palo Alto, CA, 2002. AAAI.

[15] P. Singh and B. Barry. Collecting commonsense experiences. In Proceedings of

the Second International Conference on Knowledge Capture, 2003.

[16] P. Singh, T. Lin, E. Mueller, G. Lim, T. Perkins, and W. Zhu. Open mind

common sense: Knowledge acquisition from the general public. In Proceedings of

the First International Conference on Ontologies, Databases, and Applications

of Semantics for Large Scale Information Systems, Irvine, CA, 2002.

[17] P. Singh and W. Williams. Lifenet: a propositional model of ordinary human

activity. In Proceedings of the Workshop on Distributed and Collaborative Knowl-

edge Capture (DC-KCAP), 2003.

[18] Karl E. Steiner and Thomas G. Moher. Graphic storywriter: an interactive

environment for emergent storytelling. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 357-364. ACM Press, 1992.

[19] Ryan Williams, Barbara Barry, and Push Singh. Comickit: Acquiring story

scripts using common sense feedback. In Proceedings of the 2005 Internation

Conference on Intelligent User Interfaces, pages 302-304. ACM Press, 2005.

51

Appendix A

Interface Code

This is the Python source code for the Flash ComicKit interface.

Listing A.1: Comiclcon.as

class ComicIcon extends MovieClip {
/7 descriptive data about this object

var text : String ;

var imageText: String;

var name;

var tf-format

var tf ;

var tf-name;

function onLoad() {

// measure size of desired text

tf-format = new TextFormat()

tf-format . font = " Arial"

tf-format . size = 10;

tf-format.bold = false;

// create movie clip to hold text

var uid = _root . getNextHighestDepth()

name = " comiclcon -"+text+" _"+uid;

52

t fname = " comiclcon -"+text+" i"+uid+" _t f"

var defaultWidth = 400;

var defaultHeight = 50;

createTextField (tf-name , 10 , 0, 0,

defaultWidth , default Height)

this [tf-name] .text = text;

this [tf-name]. textWidth = defaultWidth;

this [tf-name] . textHeight = defaultHeight;

this [tf-name] . textColor = "0x000000"

this [tf-name]. type = "dynamic";

this[tf -name]. wordWrap = true;

this [tfname] . setTextFormat (tf-format)

7/ event handler, called when object is

released (mouse button up)

this. onRelease = releaseMethod;

}
function releaseMethod() {

7/ go to look at that comic

}
function getCenterX() {

return _x+.width /2;

}

function getCenterY() {

return _y+_height /2;

}
}

Listing A.2: EditableText.as

class EditableText {
static var etid:Number = 0;

53

var myName;

var parent;

var format: TextFormat;

var metrics:Object;

function EditableText (par: MovieClip , depth : Number,

contents: String , xPos:Number, yPos:Number, width:

Number, height:Number) {
parent = par;

myName = "editableText _"+etid

format = new TextFormat ;

format. font = " Arial"

format. size = 10;

format. bold = false;

parent. createTextField (myName, depth , xPos ,

yPos , width, height) ;

metrics = format. getTextExtent (contents)

parent [myName].

setNewTextFormat (format);

parent [myName]. text = contents ;

parent [myName]. textWidth = width;

parent [myName]. text Height = height

parent [myName]. text Color = "OxOOOOOO"

parent [myName]. type = "input";

parent [myName]. wordWrap = true;

parent [myName]. et = this;

parent [myName]. onChanged = function (txt:

TextField) {

txt._parent.text = txt.text;

txt . et . reFormat () ;

54

etid++;

}
function reFormat () {

var txt = getText Field () ;

// capitalize the text

txt . text = txt. text . toUpperCase()

// keep the text synced

txt . setText Format (format);

// keep good metrics

metrics = format. getTextExtent (txt . text)

}

function getTextField () : TextField {

return parent [myName];

}

function

}

function

getText () :String{

return parent [myName]. text . toUpperCase ()

setEditable (me: EditableText) {
if (Selection. getFocus () == ""+me.

getTextField ()) {
return;

} else {

Selection . setFocus (me. getTextField ())

}

}
function set Uneditable (me: EditableText) {

if (Selection.getFocus () == "+me.

getTextField ()) {
Selection . setFocus (null) ;

55

}
}
function remove() {

getTextField () removeTextField()

}
function setText (newtxt :String) {

getText Field () text = newtxt toUpperCase ()

}
}

Listing A.3: Gallery.as

import XMVLlRPC.*;

class Gallery {
var rpc : Connection;

var myroot;

var server;

static var labelColor = Ox88BBFF;

static var errorColor = 0xFF5555;

static var storyHeight = 220;

var originalUser: Boolean;

var sindex:Number;

var sids : Array;

var storyReps : Array;

var increment als : Array;

var intToken: Number;

function Gallery (remote: String , root: MovieClip) {
root.stop();

myroot = root;

server = remote;

// types n shit

56

var prefix: String "http://xnet .media. mit .

edu/comickit/" ;

new Type(" person" , prefix+"images/faces/"

prefix+" images/ faces /" , ["backgroundl . swf"

3, ["1.sswf" , "2.swf" , "3.swf" , "4.swf" , "

5. swf" , " 6.swf" , "7.swf"]) ;

new Type(" action" , prefix+"images/" , prefix+"

images /" , [" genericbackground . swf"] , ["

greenarrow . swf" , "yellowthing . swf" ,)

pinksplash . swf" , " greensplash . swf"]);
new Type(" object" , prefix+"images/" , prefix+"

images /" [" genericbackground . swf"] , ["

gblob. swf" , "gsquare . swf" , " oblob . swf" , "

psquare . swf" " tsquare . swf" , "rblob . swf"

" rsquare . swf") ;

new Type(" thought" , prefix+"images/" , prefix+

" images /" , ["genericbackground . swf"] , [7"

thought . swf"]);

Panel.panelType = new Type(" panel" , prefix+"

images/backgrounds/" , prefix+" images/

backgrounds/" , ["ocean.swf"] , ["greenplace

.swf" , "brownplace . swf" , "greyplace . swf" ,

"indoors.swf" "ocean.swf" , "brickwall.swf

"]) ;
Stage.scaleMode = "noscale";

Stage. align = "LT" ;

//LT- Left Top [0,0]

if (myroot . usernameStr == undefined) {
myroot. usernameStr = "anonymous";

}

57

originalUser = true;

fillSid s L ist (myroot usernameStr)

myroot. attachMovie (" newstory" , " newstory"

, 117) ;

myroot. newstory. gallery = this;

myroot. newstory. onRelease = function () {
this . gallery . myroot. loadMovie ("

edit interface . swf?usernameStr="+

this . gallery . myroot . usernameStr,

POST");

myroot. attachMovie (" TextInput"

usernameSearch" , 208) ;

myroot. usernameSearch. text = myroot.

usernameStr ;

myroot. createTextField (" usernameDisplay"

, 209, 10, 2, 200, 50);

myroot.username Dis play. selectable = false;

myroot. usernameDisplay. text = "You are "+

myroot. usernameStr ;

myroot. createTextField (" searchLabel"

, 210, 10, 30, 200, 50);

myroot . searchLabel . selectable = false;

myroot . searchLabel . text = "Search:"

var nameListener = new Object ();

nameListener . gallery = this;

nameListener . change = function (eventObject) {

this. gallery .nameChanged ();

58

myroot . usernameSearch . addEvent Listener ("

change" , nameListener) ;

// the incremental list is interesting

myroot . createEmptyMovieClip (" incr List" , 211);

myroot. incr List . gallery = this;

myroot. incr List . quality = "HIGH";

myroot. incrList . format = new TextFormat ()
myroot . incrList . format. font = " Arial"

myroot . incrList .format. size = 14;

myroot . incrList .format. bold = true;

myroot . incr List . maxHeight = myroot . incr L ist .

format. getTextExtent (" anonymous") . height ;

myroot. incr List . createTextField (" content"

1, 0, 0, 150, 100);

myroot. incr List . content . setNewTextFormat (
myroot . incrList . format) ;

myroot. incrList . content . multiline = true;

myroot. incrList . content . selectable = false ;

myroot . incrList . content . textColor =

labelColor;

myroot . incrList . content . text =

myroot. incrList .onMouseMove = function () {

if (this. hitTest (root . _xmouse , _root

._ymouse , false)) {
var x: Number = -root . _xmouse-

this. _x;

var y: Number = _root . _ymouse-

this. _y;

var index:Number = Math. floor

(y/this.maxHeight);

59

if (index<this. gallery.

incrementals. length &&

index>=O) {
this. oldIndex = index

this .drawBoxAt (index)

}
}

myroot. incrList .drawBoxAt = function(index:

Number) {

this . clear ()

this. lineStyle (0, OxOOGOOG, 0)

this. beginFill (0x224488);

Drawing. drawRect (this , 0 , index*this.

maxHeight , this. format.

getTextExtent (this. gallery .

incrementals [index]) . width+5, this

. maxHeight, 6);

this. endFill()

myroot. incrList . onRollOut = function() {
this . clear ()

} ;

myroot. incr List . onRelease = function () {
var y:Number = _root . ymouse-this. _y;

var index:Number = Math. floor (y/this.

maxHeight) ;

60

if (index>=0 && index<this. gallery .

increment als . length) {
this . gallery . selectName (this.

gallery . incrementals [index

}
1;
/7 now create a special storyStage clip for

holding the stories

myroot . createEmptyMovieClip (" storySt age"

, 220);

myroot. storyStage.

myroot. storyStage.

myroot . storyStage.

, -1, 0, 0, 150

myroot . storyStage.

myroot. storyStage.

myroot . storyStage.

labelColor;

myroot . storyStage.

// resizing things

myroot. onResize =

gallery

stories

createTe

, 150);

content.

content.

content.

content.

to the

function

= this;

xtField (" content"

multiline = true;

selectable = false

textColor =

text =

proper

() {

" Stories :"

size

usernameSearch. _x = 10;

usernameSearch . y = 50;

usernameDisplay. x = 10;

usernameDisplay. y = 2;

newstory._x = 150;

newstory._y = 2;

searchLabel._x = 10;

searchLabel.-y = 30;

61

root

root

root

root

root

root

root

root

root .incrList ._x = 10;

root. incrList ._y = 80;

root. incrList . content. .width = 200;

root. incrList .content. height = Stage

. height -90;

root . storyStage. content . _width =

Stage. width -200;

root . storyStage. content. height =

Stage. height ;

root.storyStage._x = 300;

root.storyStage._y = 0;

root . storyStage. -width = Stage . width

-200;

root . storyStage. height = Stage.

height;

// make this onResize method be called

Stage. addListener (myroot) ;

// call up stuff for the current username

//selectName (myroot . usernameStr);

myroot. onResize ()
}
function selectName (name: String) {

myroot. usernameSearch . text = name;

incrementals = ;

myroot. incrList . content . text ="

fillSidsList (name) ;

for (var i = 0; i<myroot.storyStage.stories.

length ; i++) {

62

myroot. storyStage . stories [i].

removeMovieClip ()

}
}
// this function assumes that there are some sids in

the thing

function populateFirstStories() {

var viewable :Number = Math. round (myroot.

storyStage. -height /storyHeight) +1;

for (var i = 0; i<viewable && i<sids . length;

i++) {

myroot . storyStage.

createEmptyMovieClip (" story -"+i

myroot. storyStage.

getNextHighestDepth()

var current Story: MovieClip = myroot.

storyStage [" story."+i;

currentStory._x = 0;

currentStory. _y = i*storyHeight+15;

currentStory. width = myroot .

storyStage. -width ;

currentStory. height = storyHeight;

currentStory. sid = sids [i];

currentStory . browser = this;

myroot . storyStage. stories . push(

currentStory);

showStory(storyReps [i] currentStory)

currentStory. onRollOver = function ()

{

63

this. clear () ;

this .lineStyle (2

, 100);

0x224488

this. beginFill (0x224488, 15);

Drawing. drawRect (this , 2 , 2

this . width -5, this. height

-5, 6);

this. endFill()

currentStory.onRollOut = function() {
this . clear () ;

this. lineStyle (2, 0x224488

, 100);

this. beginFill (0x224488 , 5);

Drawing. drawRect (this , 2 , 2 ,

this. width -5, this. height

-5, 6);

this. endFill ()

currentStory.onRelease = function () {

if (this . browser. originalUser

trace ("editing"+this.

sid+" "+this.

browser) ;

this . browser . myroot.

loadMovie ("

editinterface . swf?

usernameStr="+this

. browser . myroot.

64

usernameSearch .

text+"&sid="+this.

sid , "POST");

} else {

trace (" viewing"+this.

sid);

this. browser. myroot.

loadMovie (" viewer.

swf?sid="+this . sid

"POST");

}

}}
}}

7/ this function loads a story into a movieclip

function showStory (storyRep: Array, parent: MovieClip)

{
trace("show story "+storyRep)

parent.createTextField("title" , 1, 5, 5,

parent. width , 20) ;

parent . title . text = storyRep [0];

parent. lineStyle (2, 0x224488, 100)

parent . beginFill (0x224488 , 5);

Drawing. drawRect (parent , 2 , 2, parent . width

-5, parent.height -5, 6);

parent . endFill ()
var xpos = 10;

for (var i = 1; i<storyRep . length; i++) {
createNewPanel (parent , storyRep [i]

xpos , 25) ;

65

xpos += 180;

}

}
function

Array

createNewPanel (parent: MovieClip , panelRep

xpos:Number, ypos:Number) {
var place:String = panelRep[1][0];

var foreground:Number = panelRep [1][1];

var caption: String = panelRep [2];

var time: String = panelRep [3];

var nextName = " panel-"+parent.

getNextHighestDepth ();

parent . attachMovie (" Panel" , nextName , pare

getNextHighestDepth () , { type: Panel.

panelType , fgindex: foreground , _x: xpos,

:ypos, enabled: false });
var currentPanel = parent [nextName];

currentPanel . caption . setText (caption)

currentPanel . time. setText (time);

currentPanel . place. setText (place)

/7 parent. panels. push(

currentPanel) ;

/7 create the people

var people : Array = panelRep [4];

for (var i = 0; i<people . length ; i++) {
createNewTextNode (people [i],

currentPanel , Type.getByName("

person"))

}
/7 create the actions

var actions:Array = panelRep [5];

66

nt.

-y

for (var i = 0; i<actions .length; i++) {
createNewTextNode (actions [i],

currentPanel , Type. getByName("

action"))

}
/

var

for

}
/

var

for

create the objects

objects:Array = panelRep [6];

(var i = 0; i<objects.length; i++) {
createNewTextNode (objects [i] ,

currentPanel , Type. getByName ("

object"));

create thoughts

thoughts: Array = panelRep [7];

(var i = 0; i<thoughts . length; i++) {
createNewText Node (thoughts [i],

currentPanel , Type. getByName("

thought"))

}

createNewTextNode (nodeRep: Array , parent:

type:Type) {
var title = nodeRep[0];

var foreground:Number = nodeRep [1];

var x: Number = Number (nodeRep [2])

var y:Number = Number (nodeRep [3])

var canonicalName : String = tit 1e+TextNode. uid

parent. attachMovie ("Node" , canonicalName

parent . getNextHighestDepth () , { text : title

67

}
function

Panel

type: type, fgindex: foreground , typeIndex

:Type. getlndex(type) , _x:x, _y:y, enabled:

false });

TextNode. uid++;

}
function isLoaded (v: MovieClip) : Boolean {

return (v. getBytesTotal ()>4 && v.

getBytesLoaded() == v. getBytesTotal());

}

// remote-call methods

function

}

function

nameChanged () {
trace (" changed "+myroot . usernameSearch . text);

originalUser = (myroot.usernameSearch.text

== myroot . usernameStr) ;

var rpc = new XMLRPC. Connection (;

rpc. gallery = this;

rpc . OnLoad = function (result : Array) {

this . gallery . fillIncremental (result);

} ;

rpc. Server = server

rpc .AddParameter(" string" , myroot.

usernameSearch . text) ;

rpc . Call ('getincrusernames ')

fillIncremental (names: Array) {

trace(" fillIncremental "+names)

incrementals = names;

var longString : String = ""

for (var i = 0; i<increment als. length; i++) {

68

longString += incrementals [i]+" \n" ;

var metric = myroot . incrList . format.

getText Extent (increment als [i])

}
myroot . iner List . content . text = longString;

}
function fillSidsList (name: String) {

var rpc = new XMLRPC. Connection ()
rpc. gallery = this;

rpc. OnLoad = function (result : Array) {
this . gallery . fillSidsListCB (result)

};

rpc.

rpc.

rpc.

Server = server;

AddParameter(" string" , name);

Call('get-user-stories ');

}
function fillSidsListCB (sids :Array) {

trace(" fillSidsListCB "+sids)

this . sids = sids

sindex = 0;

storyReps = new Array(sids . length);

if (sids . length >0) {
getStories ()

}

}

function getStories () {
var rpc = new XMLRPC. Connection (;

rpc. gallery = this;

rpc. OnLoad = function (result : Array) {
this. gallery . getStoriesCB (result)

69

};
rpc. Server = server

rpc .AddParameter(" int" , sids [sindex])

rpc. Call('get-story ')

}
function getStoriesCB (storyRep :Array) {

trace("getStoriesCB "+storyRep)

storyReps [sindex] = storyRep;

sindex++;

if (sindex<sids.length) {

getStories ()

} else {

populateFirst Stories()

}
}

}

Listing A.4: Login.as

import XMLPC.*;

class Login {
var rpc: Connection;

var myroot;

var server ;

static var labelColor = Ox88BBFF;

static var errorColor = OxFF5555;

function Login (remote: String , root: MovieClip) {

createWindow (root);

server = remote;

}
function createWindow (root :MovieClip) {

70

myroot = root;

root . stop () ;

Stage . scaleMode = "noScale"

Stage. align = "LT" ;

//LT- Left Top [0,0]

root . usernameStr =

root . passwordStr =

root . attachMovie (" TextInput" , "username"

root . getNextHighestDepth() , {x:0 , _y :0,

-visible :true});

root . attachMovie (" TextInput" , " password"

root. getNextHighestDepth() , {x:0 , _y:0,

visible : false }) ;

root . attachMovie (" TextInput" , " email" , root

getNextHighestDepth() , {x0 _y:0,

-visible : false }) ;

root . username. tabIndex = 1;

root. password. tabIndex = 2;

root . focusManager . setFocus (root . username);

root . password. editable = false;

root. password. password = true;

root . attachMovie (" login" , "loginbutton" , root

. getNext Highest Depth() {_x:231 , _y: 2 5 0,

visible : false }) ;

root . attachMovie ("anonymous"

anonymousbutton" , root . getNextHighest Depth

() , {_x:50, _y: 2 5 0, _visible :true})

root.newUser = false ;

root . createTextField ("messageBox" , root .

getNextHighestDepth () , 50, 50, 100, 100)

71

root. messageBox.multiline = true;

root .messageBox. wordWrap = true;

root . messageBox. selectable = false;

root . messageBox. textColor = Login. labelColor;

root. createTextField ("nameMessage" , root.

getNextHighestDepth() , 0, 0, 0, 100);

root . nameMessage. multiline = true;

root . nameMessage . wordWrap = true;

root . nameMessage. selectable = false;

root . nameMessage . text Color = Login . labelColor

root .nameMessage . text = "Type your existing

username , or make up a new one!";

root . createText Field (" usernameLabel" , root.

getNextHighestDepth() , 0, 0, 60, 20);

root . usernameLabel. selectable = false;

root . usernameLabel. text Color = Login.

labelColor;

root . usernameLabel. text = "username";

root . createTextField (" passwordLabel" , root .

getNextHighestDepth () , 0, 0, 60, 20)

root . passwordLabel. selectable = false

root . passwordLabel. textColor = Login.

labelColor ;

root . passwordLabel. text = "password"

root . createText Field (" emailLabel" , root .

getNextHighestDepth() , 0, 0, 60, 20);

root . emailLabel . selectable = false

root . emailLabel . _visible = false ;

root . emailLabel . textColor = Login . labelColor;

72

root . emailLabel . text = "email";

var usernameListener = new Object ()
usernameListener . change = function (

eventObject) {
changed(true, false);

};

root .username. addEvent Listener ("change"

usernameListener) ;

// password listener (more simple)

var passwordListener = new Object () ;

passwordListener . change = function (
eventObject) {

changed(false , true);

};

root . password. addEvent Listener ("change",

passwordListener);

function changed (unamChanged: Boolean,

pwChanged: Boolean) {
var name:String = root .username .text;

if (name.length == 0) {
root .nameMessage . text = "Type

your existing username,

or make up a new one!";

root .password. edit able =

false ;

root. password. -visible =

false ;

root . anonymousbutton. -visible

= true;

root . password. tabIndex = 2;

73

root .password. _visible

root . password. editable

if (unamChanged)

= true

= true

{
root . login . nameExists

(name) ;

root . nameMessage.

textColor = Login.

labelColor;

}

}
var pass: String = root .password. text ;

if (pass.length

!= 0) {

!= 0 && name.length

root. loginbutton. -visible =

true;

root .anonymousbutton. _-visible

= false;

root . focusManager.

defaultPushButton = root.

loginbutton;

} else {

root . loginbutton. visible =

false;

}
root . usernameStr = root . username . text

74

} else {

root . passwordStr = root . password. text

}
root . loginbutton. onRelease = function () {

root . nameMessage . text = "Checking

name and password"

if (root.newUser) {
root . login . makeNewUser (root .

usernameStr, root .

passwordStr root . email .

text);

} else {

root. login .checkLogin (root.

usernameStr , root .

passwordStr);

}

root . anonymousbutton. onRelease = function () {
r o o t . username . t e xt = "anonymous"

root . password. text = "password";

changed(true, true);

root . loginbutton. onRelease ()

root . onResize = function () {
var leftOfInputs = Stage.width/2-50;

var topOfInput = Stage. height /2-50;

var inputSpacing = 7;

root . username. _x = left OfInputs;

root . username. -y = topOfInput;

root . email._x = leftOfInputs;

75

root . email. _y = topOfInput+root .

username. _height+input Spacing;

root . password. _x = leftOfInputs

if (root . email. _visible) {

root . password. _y = root . email

. -y+root . email. _height+

input Spacing;

} else {

root .password. _y = root.

username . _y+root . username.

_height+inputSpacing;

}
root . nameMessage . _width = Stage . width

/3;

root . nameMessage .- x = Stage. width/3;

root . nameMessage. _y = topOfInput-root

. nameMessage. -height -inputSpacing;

root. usernameLabel._x = leftOfInputs-

root . usernameLabel. -width-

inputSpacing ;

root . usernameLabel. _y = topOfInput

root. passwordLabel.-x = leftOfInputs-

root . passwordLabel. -width-

inputSpacing;

root . passwordLabel. _y = root . password

root . emailLabel. -x = left OfInputs -

root . emailLabel . _width-

inputSpacing ;

root . emailLabel . _y = root . email. _y;

76

var bottomOfInput = root . password. -y+

root . password. height;

root. loginbutton. _x = leftOfInputs;

root . loginbutton. _y = bottomOfInput+

inputSpacing;

root . anonymousbutton. =

left OfInputs ;

root . anonymousbutton. _y = root .

loginbutton. y+root . loginbutton.

height+input Spacing;

// make this onResize method be called

Stage. addListener (root);

myroot. onResize ()
}
function nameExists (name: String) {

var rpc = new XML3RPC. Connection (;

rpc. login = this;

rpc. OnLoad = function (result : Number) {

this. login .nameExistsCB ((result == 1)

rpc. Server = server

rpc. AddParameter(" string", name);

rpc. Call ('check-username ')

}
function nameExistsCB (result :Boolean) {

if (result) {
myroot . nameMessage . text = " '+myroot.

username. text+" ' has registered

77

here before .";

myroot. anonymousbutton. _visible

false ;

myroot. newUser = false;

myroot. email ..visible = false;

myroot. emailLabel. -visible = false;

myroot. onResize ()
} else {

myroot. nameMessage . text = "The

username "'+myroot . username . text+"

' is not in use. If you enter a

password and click 'login ' you

will create an account with this

name." ;

myroot. newUser = true;

myroot. anonymousbutton. -visible =

true;

myroot. email. _visible = true;

myroot. emailLabel. -visible = true;

myroot. email. tabIndex = 2;

myroot. password. tabIndex = 3;

myroot. onResize ()

}
}
function checkLogin (name: String , password: String) {

var rpc = new XMLRPC. Connection (;
rpc.login = this;

rpc. OnLoad = function (result :Number) {
this. login . checkLoginCB ((result == 1)

78

};
rpc. Server = server

rpc. AddParameter(" string" , name);

rpc . AddParameter (" string" , password)

rpc. Call('check-login ') ;

checkLoginCB(result :Boolean) {

trace (" checkLogin"+result)

if (result) {
loginSuccessful ()

} else {

myroot . nameMessage . text = "The

password you typed is incorrect

Try again.";

myroot. nameMessage. text Color = Login

error Color ;

myroot. password. text =

myroot . focusManager . setFocus (myroot.

password);

}

makeNewUser (name: String , password: String

String) {
var rpc = new XMLfC. Connection ()
rpc.login = this;

rpc . OnLoad = function (result : String) {

this. login . makeNewUserCB (result);

} ;

rpc.Server = server;

rpc. AddParameter (" string" , name);

79

}

function

}
function

email

rpc. AddParameter(" string"

rpc. AddParameter(" string",

rpc. Call('new-user ');

}

function

}

function

password);

email) ;

makeNewUserCB(result: String) {
if (result == "done") {

loginSuccessful ()

} else {

myroot . nameMessage . text = "Problem

creating your username"+result ;

myroot . nameMessage . text Color = Login.

errorColor

}

loginSuccessful() {

i f (myroot . newUser) {

myroot. loadMovie ("editint erface . swf?

newStory=true&usernameStr="+myroot

usernameStr , "POST")

} else {

myroot . loadMovie ("browser . swf?

usernameStr="+myroot . usernameStr,

"POST");

}

Listing A.5: Palette.as

class Palette {
static var spacing:Number = 1;

80

}

}

static var standardWidth = 54;

static var standardHeight 40;

var x:Number;

var y: Number;

var width: Number;

var height :Number;

var type:Type;

var typeIndex: Number;

var visibleSet :Array;

var nodes: Array;

var roster : Array;

var no Layout: Boolean;

var top: Number;

var bottom: Number;

var upbutton: MovieClip;

var downbutton : Movie Clip;

var root : MovieClip;

function Palette(xpos:Number, ypos:Number, w:Number,

h:Number, mytype:Type, troot:MovieClip) {
x = xpos;

y = ypos;

root = troot;

width =w;

height = h;

type = mytype;

noLayout = false;

nodes =

typeIndex = Type.getIndex(type);

root . attachMovie (" ScrollUpButton" , "upbutton"

+type .name, 10000+typeIndex , { -x : (x+33) ,

81

-y :(y-10) , typelndex :typelndex ,visible

false }) ;

root . attachMovie (" ScrollDownButton"

downbutton"+type .name, 10010+typelndex , {

_x: (x+33) , y: (y+height -17) , typelndex:

typeIndex , -visible :false })

upbutton = root ["upbutton"+type .name];

upbutton. palette = this;

upbutton. onPress = function () {
this. palette .scrollUp()

} ;

downbutton = root ["downbutton"+type .name];

downbutton. palette = this;

downbutton. onPress = function() {
this. palette . scrollDown ()

}}

function re scale (xpos: Number, ypos:Number, w:Number,

h: Number) {

x = xpos;

y = ypos ;

width = w;

height = h;

// trace("rescale " + x + " " +

y + " " + width + " " + height);

upbutton ... x = (width-upbutton. _width)/2+x;

upbutton._y = ypos-10;

downbutton. -x = (width-downbutton. _width) /2+x

downbutton. -y = ypos+height -17;

82

// calculate number of objects to show

var totalToAdd = Math. floor (width/

standardWidth)*Math. floor (height/

standardHeight);

7/ show previously-hidden objects

for (var j = top; j <totalToAdd+top && j <nodes

length; j±++) {
nodes[j]. visible = true;

}
7/ hide previously--shown objects (if this was

a shrink)

for (var j = totalToAdd+top; j <nodes. length;

j++) {

nodes [j _visible =

}
bottom = top+totalToAdd;

displayScrollBars ()

layoutNodes () ;

false ;

}
function displayScrollBars () {

upbutton. _visible = canScrollUp()

downbutton. _visible = canScrollDown (;

}
function canScrollUp () Boolean {

return top>1;

}

function scrollUp () {

7/ trace ("Scroll

7/ remove the bottom row from

move everyone down one unit

UP ");

the nodes ,and

83

if (not this. canScrollUp () {

return;

}

noLayout = true;

var oneRow = Math. floor (width/standardWidth);

// move the bottom visible row to oblivion

for (var i = bottom-oneRow; i<bottom; i++) {
nodes[i]. visible = false;

nodes[i]._x = x;

nodes[i]._y = y+height +20;

}
bottom -= oneRow;

for (var i = top-1; i>=top-oneRow and i>=O; i

--) {
nodes[i]. visible = true;

}
top-= oneRow;

noLayout = false;

displayScrollBars ()

layoutNodes (;

}
function canScrollDown () :Boolean {

return bottom<nodes. length;

}

function scrollDown() {
//trace ("Scroll down");

// remove the top row from the nodes , and

move everyone up one unit

if (not this. canScrollDown () {

return;

84

}

noLayout = true;

var oneRow = Math. floor (width /standardWidth);

// move the top visible row to oblivion

for (var i = top; i<top+oneRow; i++) {
nodes[i]. visible = false;

nodes[i]._x = x;

nodes[i].y = y+height +20;

}
top += oneRow;

for (var i = bottom; i<nodes.length and i<

bottom+oneRow; i++) {
nodes[i]. _visible = true;

}
bottom += oneRow;

noLayout = false;

displayScrollBars ()

layoutNodes(;

}
function manageSet (names: Array) {

roster = names;

// clean out the nodes in the palette

for (var i = 0; i<nodes.length ; i++) {
nodes [i]. removeMovieClip ()

}

unmanageAll (;

noLayout = true;

createNewTextNode ("" , "random")

for (var j = 0; j<names. length; j++) {

if (names[j]. length<2) {

85

createNewTextNode (names [j

]10] , "random");

} else {

createNewTextNode (names [j

][0] , names[j][1])

}
}
var totalToAdd = Math. floor (width/

standardWidth) *Math. floor (height /

standardHeight);

for (var j = 0; j<totalToAdd; j++) {

nodes [j]. visible = true;

}
top = 0;

bottom = totalToAdd;

noLayout = false;

layoutNodes () ;

for (var j = 0; j<nodes.length; j++) {

if (nodes[j]. _visible) {

nodes [j]. _x = nodes[j].parX+

this .x;

nodes [j]. _y = nodes[j].parY+

this.y;

}

}

}
function createNewTextNode (title :String

representation : String) {

// for right now, all are random

86

// var fgIndex:Number

getFGlndex (representation);

var canonicalName : String =t i t Ie+TextNode. uid

-root . attachMovie ("Node" , canonicalName, 100+

TextNode. uid ,{ text: title , type : type

typelndex:typeIndex , -x:x, -y:(y+height

+20) , imageText : representation , width:

standardWidth , height : standardHeight

_visible : false }) ;

var currentNode = eval (canonicalName);

_root .nodes. push (currentNode);
this.manageNode(currentNode);

TextNode. uid++;

}
function containsNode (node: TextNode) : Boolean {

for (var i in nodes) {
if (nodes[i] == node) {

return true;

}
}
return false;

}
function manageNode (newNode: TextNode) {

nodes. push (newNode);

layoutNodes(;

}

function unmanageAll() {
nodes =

}

87

function unmanageNode (oldNode: TextNode) {

// copy the old list to a new

var newlist = [I;
for (var i = 0; i<nodes. length; i++) {

if (nodes [i] == oldNode) {
continue;

}
newlist .push (nodes[i])

}
nodes = newlist

layoutNodes()

}
function layoutNodes() {

if (noLayout) {
return;

}

var row:Number = 0;

var maxheight:Number = 0;

var currX:Number = spacing;

var currY:Number = spacing;

for (var i = 0; i<nodes.length; i++) {
if (not nodes[i]. _visible) {

continue;

}
var n:TextNode = nodes[i];

//trace ("Laying out "+i +", "+n) ;

// set this row's maximum height

if (maxheight<n. height) {
maxheight = n. height;

}

88

7/ if this child will make the row

too wide, drop it to the next row

if (currX+n .width>t his. width) {

row++;

currX = spacing;

currY += maxheight+spacing;

maxheight = 0;

}
n.parX = currX;

n.parY = currY;

currX += n.width+spacing;

/trace ("Has new position "+n.parX

+" "+n.parY+" "+maxheight);

}
}

}

Listing A.6: Panel.as

class Panel extends SelectNode {
static var panelType:Type;

static var defaultWidth = 150;

static var defaultHeight 170;

static var changeId = 0;

static var sentHeight:Number = 32;

var sentences :Array;

var shownSentences : Array;

var overTime: Boolean;

var overPlace: Boolean;

var overCaption: Boolean;

var capsExpanded: Boolean;

89

var order:Number;

var children = [];
var name;

var tf-format

var tf ;

var t fname;

var links ;

// blinky link movie

var sentLink: MovieClip;

var intFunc2;

// for relaxation procedure

var changedTime: Number;

var arrangeWidth : Number;

var offset :Number;

var toX: Number;

var toY: Number;

// other stuff

var text;

var creationtime;

var generation;

var quality;

// text

var time: EditableText;

var place: EditableText;

var caption : EditableText;

// constructor

function Panel() {

/7 these settings make things fan out

downwards

startAngle = -Math.PI;

90

endAngle = 0;

this. quality = 0;

// for ranking nodes for removal

this. dragging = false;

overTime = overPlace=overCaption=false;

toX = -x;

toY = _y;

time = new EditableText (this , 103, "TIME"

, 0, 0 , defaultWidth , 16) ;

place = new EditableText (this, 104, "PLACE"

, 0 , defaultHeight -16, defaultWidth , 16)

caption = new EditableText (this , 105, "

CAPTION" , 0, defaultHeight -2, defaultWidth

, 32) ;

markChanged (;

this . arrangeWidth = 150;

this . offset = 0;

// create link button

createEmptyMovieClip (" sentLink" , 111);

sentLink . loadMovie (linkUrl) ;

intFunc2 = setInterval (this , "sentLinkLoaded"

, 1000/12);

/7 create event handlers

this. onRelease Outside = onRelease;

}
7/ event handler, called whenever mouse is moved

function onMouseMove() {
if (!enabled this.dragging) {

return;

}

91

if (this. hit Test (_root . _xmouse , root . _ymouse

false)) {

var x = _root . xmouse--x;

var y = _root . _ymouse--y;

// show caption link

showSentLink (true) ;

7/ check if it 's over any of the text

fields

if (y<time. metrics. height && x<time.

metrics.width) {
if (!overTime) {

overTime = true;

overTimeHandler (true)

}
return;

}
if (y>place . getText Field () . _y && y<

place . getTextField () . .y+place .

metrics . height && x<place . metrics.

width) {

if (!overPlace) {
overPlace = true;

overPlaceHandler (true

}
return;

}
if (y>defaultHeight) {

if (!overCaption) {

92

overCaption = true;

over Capt ionH andler

true);

}
return;

}
not Over Anything (;

} else {

// not over the clip at all

showSentLink (false);

not OverAnything (;

}
}
function sentLinkLoaded () {

if (isLoaded(sentLink)) {

sentLink .visible = false;

sentLink . _x = (foreground. _width-

sentLink. width)/2;

sentLink. -y = default Height -2-

sentLink . _height ;

sentLink .- alpha = 50;

clearInterval (intFunc2)

// give it some functionality

sentLink . mypanel = this;

}
}
function onLoad() {

}
function showSentLink (toShow: Boolean) {

if (toShow && sentences . length >0) {

93

} else {

sentLink. visible

sentLink. visible

}

}
function notOverAnything ()

- true;

- false;

{
if (overTime) {

overTime = false;

overTimeHandler (false);

}
if (overPlace) {

overPlace = false;

overPlaceHandler (false)

}
if (overCaption) {

overCaption = false;

overCaptionHandler (false);

I

overTimeHandler (over: Boolean)

if (over) {

time. setEditable (time)

I

{

else {

time. setUneditable (time);

I

overPlace Handler (over: Boolean) {
if (over) {

place . setEditable (place);

} else {

94

}

function

I
function

place .set Uneditable (place);

}

}
function

}
function

}
function

over CaptionH andler (over: Boolean) {
if (over) {

caption . setEditable (caption);

} else {

caption . set Unedit able (caption);

}

getSentPerSide () :Number {
return Math. floor (height/sent Height)

showSentences () {

if (sentences.length>O) {

markChanged () ;

shownSentences =

// how many can we stack on one side?

var sideCount = getSentPerSide(;

// show left side

for (var i = 0; i<sideCount && i<

sentences . length ; i++) {
trace("showing left "+i+" "+

sentences [i);
var curr: EditableText = new

EditableText (this , 25+i

sentences[i], -

defaultWidth , i*sentHeight

defaultWidth , sentHeight

95

shownSentences push (curr);

}
for (var i = sideCount ; i < 2*

sideCount && i<sentences . length ; i

++){

trace ("showing right "+i+" "+

sentences [i]) ;

var curr: EditableText = new

EditableText (this , 25+i ,

sentences [i] , defaultWidth

(i-sideCount)*sentHeight

defaultWidth , sentHeight

shownSentences .push (curr);

}
offset = defaultWidth

arrangeWidth = 3*defaultWidth;

capsExpanded = true;

}
}
function unshowSentences () {

if (sentences length >0) {

markChanged () ;

for (var i = 0; i<shownSentences.

length ; i++) {
shownSentences [i]. remove ()

}
shownSentences = [3;
arrangeWidth = defaultWidth;

offset = 0;

96

capsExpanded = false;

}

}
function

}
function

markChanged () {

changedTime = changeld++;

startToExpand () {

markChanged () ;

arrangeWidth = defaultWidth *3;

offset = defaultWidth

super. startToExpand ();

}
function startClosing () {

markChanged () ;

arrangeWidth = defaultWidth;

offset = 0;

super . startClosing ()

}
function onPress () {

markChanged () ;

if (sentLink . hitTest (_root . _xmouse

_ymouse , false)) {

sentLink. _alpha

}

super .onPress ();

= 100

}
function onRelease () {

markChanged () ;

super . onRelease ()
if (isOverTrash()

97

_root .

{

this . removeMovieClip ()

}

if (sentLink . hitTest (root . _xmouse , -root

_ymouse , false)) {

sentLink .- alpha = 50;

if (capsExpanded) {

unshowSentences (;

} else {

showSentences ()

}
}
if (capsExpanded) {

// check to see if we clicked on a

sentence

var x = -root . xmouse-_x;

var y = _root . ymouse--y;

if (x<0) {

// on the left side

caption. setText (sentences

Math. floor (y/ 3 2)])

unshowSentences () ;

} else if (x>defaultWidth) {

// on the right side

caption. setText (sentences

getSentPerSide() + Math.

floor (y/32)]) ;

unshowSentences ()

}
}

}

98

function getCenterX() {
return _x+_width /2;

}
function getCenterY() {

return -y+-height/2;

}
}

Listing A.7: Relaxation.as

class Relaxation {
static var BIGNUM = 1000666;

static var running = false;

static var spacing = 20;

static var yheight = 35;

static var slowness = 12;

static var scrollSpeed :Number = 5;

static var lastChanged:Number = 0;

static function relaxNodes (nodes) {

if (running) {
return;

}
running = true;

for (var i = 0; i<nodes. length ; i++) {

// set original center points

var n = nodes[i];

if (n.dragging IH !n.-visible) {

continue;

}
n.x = n. getCenterX ();
n.y = n. getCenterY ;

99

var distX:Number;

var distY:Number;

var parDragging = false;

if (n.parent != null) {

/7 look at relative distance

to final destination

distX = n. parent. -x+n.parX-n.

_x ;

distY = n. parent. -y+n.parY-n.

parDragging = n.parent.

isDragging ;

} else {

7/ it 's part of a palette if

the parent is null

//trace ("Object using palette

" + n. type .name + " " +

-root. palettes/n. typelndex

]. x) ;

distX = _root . palettes [n.

typeIndex]. x+n. parX-n. _x;

distY = -root . palettes In.

typelndex]. y+n. parY-n. _y;

}
7/ set position

if (Math. abs (distX) >2 && !parDragging

) {

n. _x += 2*distX/slowness;

} else {

n._x += distX;

100

}

if (Math. abs (distY) >2 && !parDragging

n. -y += 2*distY/slowness;

} else {

n. -y += distY;

}
}
running = false;

}
7* static function relaxPanelsold (nodes, s crol

if (running) {

return;

}
running = true;

var i :Number;

var j :Number;

var n: TextNode;

var xdist :Number;

var dx: Number;

var dy:Number;

var nl:Panel;

var dlen:Number;

//trace (" R elaxing");

// set original center points

for (i=Q; i<nodes. length; i

++) {

n = nodes[i];

n.x = n.getCenterX();

101

//n.mc. -x;

n.y = n.getCenterY();

//n.mc. _y;

n. dx = 0;

n.dy = 0;

}
for (i=O; i<nodes. length; i

++){

n1 = nodes[i];

if (ni. isDragging ()
{

continue;

}
dx = 0;

dy = 0;

var closestDist:

Number;

var closest:Panel;

var secClosestDist:

Number;

var secClosest:Panel;

// find the closest

node to this one

closestDist =

secClosestDist=

BIGNUM;

for (j=0; j<nodes.

length ; j++) {

7/ ignore

nodes that

102

are being

dragged

if (i == j

nodes[

ii.
isDragging

)) {
continue

}
xdist = nodes

[j].x-nl.x

if (Math. abs (a dist

)<Math. abs (

closestDist

)) {
secCl sestDist

closestDist

secCl sest

closest

closestDist

xdist

103

closeS

nod

[j]

} else if (Mal

.abs (xdist)

<Math. abs(s

)) {
secCl<

xdi

secClc

nod

[j]

}
}
7/ check to see if we

're the only one

if (closestDist ==

BIGNUM) {

closestDist

= spacing

}
7/ compute the

distance to the

t

es

ecClosestD

sestDist

st

sest

es

104

desired location

var myspace = spacing

+n1. arrange Width

/2;

if (closestDist>O) {
dx = 1.5*-(my

+(closest .

/2)- closest

)/slowness;

} else {
dx = 1.5*(mysp

+(closest. a

/2)+closest

)/slowness;

}

/7 if we're close

enough to the

destination , look

at the next-

cos est

if (Math.abs(dx)

<1&&

secClosestDist !=

BIGNUM) {

if ((secCloses

>0 && close

<=0) (se

<0 && close

'pace

rrange Width

Dist

lace

rrange Width

Dist

tDist

stDist

cClosestDis

tDist

105

cClosestDi

dx

myspat

secCl

arrang

/2)

secCl

)

slowne

dx

myspa(

secCl1

arrang

/2)

>=0)) {
if (se

>0)

{

} else

{

106

}
}

}
// the y position

needs to be

corrected as well

dy = (yheight-nl.-y)/

slowness ;

//trace ("x: " + nl.x

+ " dx " + dx);

if (ni.stayPut>O) {

ni. stayPut

-= .05;

}
if

}

(!nl. fixed && !(nl

.stayPut>0)) {
n1. x += dx;

nl.x += 3* scroll

nl.y += dy;

nl.-x = nl.x-nl.

-width/2;

nl._y = nl.y-nl.

-height/2;

secCl

)

slown

107

;

}
running = false;

static function relaxPanels (panels , scroll) {

if (running) {
return;

}
running = true;

// see which is the latest-modifed panel

var latest :Panel;

var tempCh:Number = -1;

for (var i = 0; i<panels . length; i++) {
//trace ("Looking for latest" + panels

if (panels [i].changedTime>tempCh &&

panels [i]. isDragging ()) {

latest = panels[i];

tempCh = lat e s t changedTime;

}
}
7/ is this a new latest?

if (latest .changedTime>lastChanged) {
lastChanged = latest changedTime;

layoutPanels (panels , latest);

}
7/ move the panels to their destinations

for (var i = 0; i<panels . length ; i++) {
driftPanel (panels[i] , scroll);

}

running = false;

108

}
static function layoutPanels(panels , fixedPanel) {

panels . sort (comparePanels) ;

// layout the toXs relative to zero

var currX = 0;

for (var i = 0; i<panels . length; i++) {
panels[i]. toX = currX;

currX += panels [i]. arrangeWidth+

spacing;

}
7/ set all of these relative to the

fixedPanel

var correction: Number = fixedPanel._x-

fixedPanel . toX;

for (var i = 0; i<panels . length; i++) {
panels [i] . toX += correction+panels [i

]. offset -fixedPanel. offset

panels [i]. toY = yheight;

}
}
static function driftPanel (panel: Panel, scroll Number

if (panel. isDragging()) {

return;

}
panel.toX += scroll*scrollSpeed

var driftAmt = 8;

if (Math. abs (panel. _x-panel . toX)<driftAmt) {
panel. -x = panel . toX;

} else {

109

if (panel. _x<panel.toX)

} else {

{
panel. -x += driftAmt;

panel. -x -= drift Amt;

}
}
if (Math. abs (panel .- y-panel.toY)<driftAmt)

panel.-y = panel.toY;

} else {

if (panel. -y<panel . toY) {
panel. -y += driftAmt;

} else {

panel. y -= driftAmt;

}
}

{

}
static function comparePanels (a, b) {

var ax = a. getCenterX ()
var bx = b. getCenterX ()

{

return -1;

else if (ax>bx) {}

} else {

return 1

return 0

}

}

}

Listing A.8: SelectNode.as

110

if (ax<bx)

import EnumeratedType;

class SelectNode extends MovieClip {
static var linkUrl = "images/link.swf";

// static definitions

static var margin:Number = 5;

static var defaultWidth :Number = 54;

static var defaultHeight:Number = 40;

public static var states = new EnumeratedType(" idle"

hover" , "waitforload" , "expansion" , "selection"

"closing");

// descriptive data about this object

var type:Type;

var parent: Panel;

var name;

// background image

var background: MovieClip;

// foreground image

var foreground: MovieClip;

// index into the type 's array of image filenames

var fgindex:Number;

var bgindex: Number;

// blinky link movie

var link : MovieClip;

// reference to the interval function

var intFunction;

// info about how to layout the exploded view

var startAngle:Number;

var endAngle: Number;

111

// these are for tracking the exploded view of all

the movieclips

var state:Number;

var shownClips: Array;

var movedOut: Number;

var tempClip: MovieClip;

// disable everything?

var enabled: Boolean;

// for pushing to the top when hovered over

var oldDepth: Number;

// physical variables

var dragging: Boolean;

var fixed = false;

var x;

var y;

var dx;

var dy;

var width;

var height;

var parX;

var parY;

/* variables that you want to set:

112

function SelectNode () {

if (enabled == undefined) {

enabled = true;

}
..quality = "HIGH";

dragging = false;

/7 the default is that they spread from -PI

/6 to 7/6PI

if (startAngle == undefined) {

startAngle = -Math.PI/6;

}
if (endAngle == undefined) {

endAngle = 7*Math.PI/6;

}
/7 if the foreground/background indices aren

t specified , select them randomly

if (fgindex == undefined or !type.

isValidFGIndex(fgindex)) {

fgindex = randRange(O, type.

foregrounds . length -1);

}

if (bgindex == undefined or !type.

isValidBGIndex (bgindex)) {
bgindex = randRange (0 , type.

backgrounds. length -1);

}

113

7/ we can assume that the indices are c

, so let 's load some movies

create EmptyMovieClip (" background" , 101)

background. loadMovie (type. backgrounds [b

]) ;

createEmptyMovieClip (" foreground" , 102)

foreground. loadMovie (type . foregrounds [f

]) ;

7/ load that linky thing

createEmptyMovieClip(" link" , 110)

link . loadMovie (linkUrl) ;

intFunction = set Interval (this , "linkLo

, 1000/12) ;

7/ set up some shit

this . width = defaultWidth;

this. height = defaultHeight;

7/ event handler, called when object is

released (button up outside object)

this. onReleaseOut side = onRelease;

state = states.idle;

orrect

gindex

gindex

aded"

}
function showState() {

trace ("state: "+state)

}
function linkLoaded () {

if (isLoaded (link) && isLoaded (foreground))

link .visible = false ;

link . _x = (foreground. _width-link .

-width)/2;

link. _y = -link. -height /2;

{

114

clearInterval (intFunction)

}
}
function isLoaded (v: MovieClip) : Boolean {

return (v. getBytesTotal ()>4 && v.

getBytesLoaded() == v. getBytesTotal());

}
function isOverTrash (): Boolean {

return _root .thetrash. hitTest (root ._xmouse

_root . _ymouse , true);

}
function onLoad() {

}
public static function randRange (min:Number, max:

Number): Number {
var randomNum: Number = Math. round (Math. random

() *(max-min))+min;

return randomNum;

}
function onRollOver () {

if (state == states.idle) {

link. .visible = true;

oldDepth = getDepth () ;

//swapDepths (-parent.

getNextHighestDepth ());

if (state == states.idle && enabled)

{
state = states.hover;

}
}

115

}
function onRollOut () {

if (state == states.hover) {
link . -visible = false;

//swapDepths (oldDepth);

if (state == states.hover) {

state = states . idle

}
}

}
7/ event

mouse

function

handler, called when object is released (
button up)

onRelease () {
if (! link . hitTest (_root . _xmouse , root.

_ymouse , false)) {

// stop dragging

this . stopDrag (;

dragging = false;

}
}
7/ event handler, called when object is pressed (

mouse button down)

function onPress() {
7/ begin a drag operation on the movie clip (

handled by Flash automatically)

if (!enabled) {

return;

}
if (link . hitTest

false)) {
(_root . _xmouse , _root . _ymouse

116

switch (state) {
case states-hover

startToExpand();

break;

case states expansion

// stop calling moveClipsOut

clearInterval (intFunction)

case states . selection

startClosing ()
break;

default :

// this should not happen

trace("unknown state at press

"+state)

}
} else {

this.dragging = true;

this.startDrag()

switch (state) {

case states expansion

// stop calling moveClipsOut

clearInterval (intFunction)

case states . selection :

// pick the right face

pickForeground (localX ()-

foreground. _width /2,

localY ()-foreground. _width

/2);

startClosing ()

break;

117

default

/7 this is just a random

click -- ignore it

}
}

}
7/ this assumes that the x and y are relative to the

center of the thingy

function pickForeground (x: Number, y :Number) {
var dist :Number = Math. sqrt (x*x+y*y);

if (dist <radiusOfClip (foreground)) {
7/ pick nothing -- it 's a cancel

action

} else {
var angle: Number = Math. atan2(-y, x);

var wedge:Number = computeWedge(

shownClips. length) /2;

if (angleBetween (angle , startAngle -

wedge, endAngle+wedge)) {
var index:Number = 0;

var done: Boolean = false;

while (!done && index<

shownClips . length) {

var testAngle :Number

= computeAngle (

index , shownClips.

length);

if (angleBetween (
angle , testAngle-

wedge , test Angle+

118

wedge)) {

done = true;

break;

}
index++;

}
if (done) {

fgindex = index;

foreground. loadMovie(

type . foregrounds

fgindex])

}
}

}

}
function startToExpand ()

// first

shownClips

instantiate all the foregrounds

=];
for (var i = 0; i<type. foregrounds. length;

createEmptyMovieClip (" tempClip"+i

, 100- i) ;

this ["tempClip"+i]. loadMovie (type.

foregrounds [i])

shownClips. push (this [" tempClip"+i])

}

movedOut = 0;

state = states . waitforload ;

intFunction = setInterval (this

1000/12) ;

119

"waitForLoad"

{

i

}
function waitForLoad() {

var allDone: Boolean = true;

for (var i = 0; i<shownClips length; i++) {
allDone &= isLoaded (shownClips [i]);

if (allDone) {
shownClips [i]. xscale = 75;

shownClips [i]. yscale = 75;

}
}
if (allDone) {

clearInterval (intFunction)

state = states .expansion;

intFunction = set Interval (this

moveClipsOut" , 1000/30)

moveClipsOut (;

}
}
function moveClipsOut () {

if (movedOut>l) {
state = states selection

clearInterval (intFunction)

return;

}
movedOut += 1/12;

var radius:Number = computeRadius (;

var myRad:Number = radiusOfClip (foreground);

for (var i = 0; i<shownClips .length ; i++) {
var angle: Number = computeAngle (i

shownClips . length) ;

120

var distOut :Number = movedOut*radius;

shownClips [i]. _x = foreground. _width

/2+dist Out*Math. cos (angle)-

shownClips [i]. _width /2;

/7 flip the y for screen coordinates

shownClips [i]. _y = foreground. -height

/2-dist Out*Math. sin (angle)-

shownClips [i]. _height /2;

}
}
function start Closing () {

state = states . closing

movedOut = 1;

intFunction = setInterval (this , "moveClipsIn"

, 1000/30)

moveClipsIn ()

}
function moveClipsIn () {

if (movedOut<0) {

// unload all of these movies

for (var i = 0; i<shownClips . length;

i++) {
shownClips [i]. unloadMovie (;

}
clearInterval (intFunction)

state = states.hover;

if (this . hitTest (-root . _xmouse , root

Symouse , true)) {
this. onRollOver()

} else {

121

this .onRollOut ()

}
return;

}
movedOut -= 1/12;

var radius : Number = computeRadius ()
for (var i = 0; i<shownClips . length ; i++) {

var angle: Number = computeAngle (i

shownClips . length) ;

var distOut :Number = movedOut* radius;

shownClips [i]. _x = foreground. -width

/2+dist Out*Math. cos (angle)-

shownClips [i]. _width /2;

7/ flip the y for screen coordinates

shownClips [i]. -y = foreground. -height

/2-dist Out *Math. sin (angle)-

shownClips [i]. _height /2;

}
}
7/ the angle for a particular foreground image

function computeAngle(i :Number, total :Number) :Number

{
return (endAngle-st art Angle

startAngle;

) /(total -1)*i+

}

7/ the angle of the wedge subtended by each thingy (
same for each of them)

function computeWedge(total:Number):Number {
return (endAngle-startAngle) /(total -1);

}

122

/7 reads the shownClips array for the largest size

and computes the radius thereby

function computeRadius(): Number {
var maxDist:Number = 0;

for (var i = 0; i<shownClips . length; i++) {
var dist :Number = radiusOfClip(

shownClips [i])

if (dist>maxDist) {
maxDist = dist;

}
}
// this strategy doesn 't work so well for n

close to 1 , since we translate those sizes

into arclengths , which only makes sense

if there are enough that it approximates

return (shownClips . length *maxDist) /(endAngle-
startAngle)

}
function radiusOf Clip (v: MovieClip) :Number {

var w:Number = v._width/2;

var h:Number = v._height/2;

return Math. sqrt (w*w+h*h);

}
function localX(:Number {

return -root . -xmouse--x;

}

function localY() :Number {

return _root . _ymouse-_y;

}

function isDragging (): Boolean {

123

return dragging;

}
function getCenterX() {

return -x+foreground. _width /2;

}
function getCenterY() {

return -y+foreground. -height /2;

}
// brings an angle to being within +-PI

function normalizeAngle (a: Number): Number {
while (a>Math.PI) {

a -= 2*Math. PI;

}
while (a<-Math. PI) {

a += 2*Math. PI;

}
return a;

}
/7 returns true if a is between the two angles b and

c

/7 the angle is 'between ' if you can rotate

counterclockwise from b and hit a then c in that

order

function angleBetween(a:Number, b:Number, c:Number):

Boolean {
//trace ("abc "+a+" "+b+" "+c);

a = a+Math.PI*2;

b = b+Math.PI*2;

c = c+Math.PI*2;

if (a<b) {

124

a += Math. PI * 2;

}

if (c<b) {

c += Math. PI *2;

}
//trace ("abc2 "+a+" "+b+" "+c);

return (a>b && a<c);

}

}

Listing A.9: StoryRep.as

class StoryRep {

public static function createStoryRep (title String

nodes : Array , panels: Array , changed: Panel) : Array {

7/ trace(" Calling story rep");

// let 's organize the panels by x value

panels . sort (comparePanels) ;

for (var i = 0; i<panels . length; i++) {
7/ mirror this order in the panel

itself for convenience

panels[i].order = i

}
/7 now let 's build up our response, panels

first

var cr = new Array (panels . length+1);

cr .isArray = true;

// first element is experiment data

cr [0] = title ;

for (var i = 0; i<panels length; i++) {

var panel: Panel = panels [i];

125

var flag :Number = 0;

if (panel == changed) {

flag = 1;

}
cr[i+i] = [flag , [panel. place. getText

() , panel. fgindex] , panel. caption.

getText () , panel . time. getText ()
, [] , [] , 1[] , []] ;

cr [i+1]. isArray = cr [i +1] [1]. isArray=

cr [i +1][4]. isArray=cr [i +1][5].

isArray=cr [i + 1] [6]. isArray=cr [i

+1] [7]. isArray=true;

/

/7
+ " in " + (

}

// now go through the nodes

var typeOffset = 4;

trace("Going through nodes");

for (var i = 0; i<nodes.length; i++) {
var n:TextNode = nodes[i];

//trace (" Compiling node "+n);

if (n.parent != null) {
var index:Number = n.p

order;

var nodeInfo: Array =

getText () , n. fginde

parX, n.parY];

/trace ("Node sending:

nodeInfo);

nodelnfo.isArray = tru

trace ("installing " +n

type Offset+Type. getIndex(n. type)));

n

e

126

arent .

n.

t+

text

cr [index +1][typeOffset+Type.

getlndex (n. type)]push(

nodeInfo);

}
}
// done!

return cr;

}
static function comparePanels(a, b) {

if (a._x<b._x) {
return -1;

} else if (a._x>b._x) {
return 1;

} else {

return 0;

}
}

}

Listing A.10: TextNode.as

class TextNode extends SelectNode {

// unique ID counter

static var uid:Number = 0;

// static definitions

static var margin:Number = 5;

static var defaultWidth:Number = 54;

static var defaultHeight:Number = 40;

// descriptive data about this object

var text:String;

var typelndex: Number;

127

m i

var image ext : String;

var quality ;

var parent: Panel;

var name;

var et ;

// for relaxation procedure

var fixed = false;

var x;

var y;

var dx;

var dy;

var width;

var height;

var parX;

var parY;

// this compensates for a I

var middling : Boolean;

function addToAPanel() {

if (not -visible) {
return;

lash bug

}
var oldparent = parent;

parent = null;

var dsq = Relaxation .BIGNUM;

var closest = null;

for (var i in _root.panels) {

/7 check to see if we actually touch

a panel

if (_root . panels [i] hitTest (this)) {

if (oldparent == null) {

128

/7 remove s elf from

the palette it

belonged to

_root . palettes [this.

typeIndex].

unmanageNode (this)

}
parent = _root . panels [i];

-root.changed = true;

_root . changedPanel = parent;

}
7/ simultaneously find the distance

to the center of the panel

var dx = _root . panels [i]. getCenterX()

-this. getCenterX ()

var dy = _root . panels [i]. getCenterY()

-this. getCenterY ()

var dist = dx*dx+dy*dy;

if (dist<dsq) {

dsq = dist;

closest = _root . panels [i];

}

}

/7 if we're

either t

palette

if (parent

if

outside of a panel, then we go

o the closest parent, or to a

== null) {

(this .getCenterY ()<_root

workspaceDivider) {

129

_root . palettes [this. typeIndex

I . unmanageNode (this);

parent = closest ;

_root.changed = true;

-root . changedPanel = parent;

} else {

/7 add to a palette only if

it 's not already in it

if (! root. palettes [this.

typeIndex]. containsNode

this)) {

_root . palettes [this.

typeIndex].

manageNode(this);

if (oldparent != null

root . changed

= true;

root . changedFanel

= oldparent

}
}
return;

}
}
// see if we're completely in the selected

panel

7/ X first

130

if (this. -x+t his. width>parent . _x+parent .

_width) {

/7 case : to the right of the parent,

at least a little bit

parX = parent. _width-this. width;

//trace("Out on right , parX = "+parX)

} else if (this. _x<parent . _x) {

7/ case : to the left of the parent, a

little bit or more

parX = 0;

//trace (" Out on left , parX = "+parX);

} else {

// not out at all

parX = this. _x-parent . _x;

//trace ("OK X = "+parX);

}
/7 Y next

if (this. _y+this . height >parent. _y+parent .

-height) {

/7 case: below the parent , at least a

little bit

parY = parent ._height -this . height;

//trace ("Out on bottom, parY = "+parY

} else if (this. _y<parent. _y) {

7/ case: above the parent, a little

bit or more

parY = 0;

//trace ("Out on left , parY = "+parY);

} else {

// not out at all

parY = this. -y-parent. _y;

//trace ("OK Y = "+parY);

}
}
function onLoad() {

this. quality = 3;

// create movie clip to hold text

et = new EditableText (this , 103, text , margin

margin, defaultWidth-margin,

defaultHeight -margin);

x =x;

y =_y;

this .width = defaultWidth;

this .height = defaultHeight;

/7 event handler, called when object is

released (button up outside object)

this. onReleaseOut side = onRelease;

/7 final act : add to a panel or palette or

whatever

///addToAPanel ();

middling = false;

}
function onRollOver() {

super. onRollOver ()
activateText ()

}
function onRollOut () {

super. onRollOut ()

132

deactivateText () ;

}
function activateText () {

if (middling == false)

} else {

{

et .setEditable (et)

middling = true;

middling = false;

}

}
function deactivateText () {

if (middling == false) {
et . setUnedit able (et) ;

}

}
function onRelease () {

super . onRelease () ;

if (isOverTrash() {
this . removeMovieClip ()
return;

}
addToAPanel(~;

}
function

}
function

getCenterX() {
return -x+_width /2;

getCenterY() {

return _y+-height/2;

}
function getText () : String

133

{

return et . getText ()
}

}

Listing A.11: Type.as

/*
* This is to be distinguished from an enumerated type . This

Type is for distinguishing the graphics shown

by the various draggable components in the EditInterface .

*/
class Type {

/7 track all the created types in this array, sort of

converting them into an enumerated type

private static var typeArray:Array = [I;
public var name:String;

public var backgrounds: Array;

public var foregrounds: Array;

function Type(myname: String , bgprefix : String,

fgprefix :String , bgs:Array, fgs:Array) {

name = myname;

foregrounds = [];

for (var i = 0; i<fgs.length; i++) {
foregrounds . push(fgprefix+fgs [i])

}
backgrounds = [1;

for (var i = 0; i<bgs.length; i++) {
backgrounds . push (bgprefix+bgs [i]);

}

typeArray .push (this);

}

134

function

}
function

isValidF GIndex(i :Number): Boolean {

return (i>=O and i<foregrounds length)

isValidBGIndex (i :Number): Boolean {

return (i>=O and i<backgrounds. length);

}
static function getIndex (t: Type) :Number {

for (var i = 0; i<typeArray. length; i++) {
if (t.name == typeArray [i]. name)

return i;

}

}
trace (" Could

return -1;

not find type: "+t);

get (index :Number): Type {
return typeArray [index];

}
static function getByName(name: String) :Type {

for (var i = 0; i<typeArray. length; i++) {
if (name == typeArray [i] . name)

return typeArray [i];

}

}
trace (" Could not find type: "+name);

return undefined ;

}

}

Listing A.12: Viewer.as

135

{

}
static function

{

class Viewer {
var myroot: MovieClip;

var server :String;

function Viewer (remote: String , root : MovieClip , sid

Number) {

server = remote;

myroot = root;

// create some types

var prefix : String = "http:// xnet . media. mit.

edu/ comickit /" ;

new Type(" person" , prefix+" images/faces/"

prefix+" images/ faces /" , ["backgroundl . swf"

I , ["1.swf" , "2. swf" , "3.swf" , "4.swf"

5. swf" , " 6. swf" , " 7. swf"]) ;

new Type(" action", prefix+"images/" , prefix+"

images /" , [" genericbackground . swf"] , ["

greenarrow . swf" , "yellowthing . swf"

pinksplash . swf" , " greensplash . swf"])

new Type(" object" , prefix+""images/" , prefix+"

images /" , [" genericbackground . swf"] , ["

gblob . swf" , "gsquare . swf" , "oblob . swf" , "

psquare . swf" , "tsquare . swf" , "rblob . swf"

" rsquare . swf") ;

new Type(" thought" , prefix+" images/" , prefix+

" images /" , [" genericbackground . swf"] ,

thought . swf"]) ;

Panel.panelType = new Type(" panel" , prefix+"

images/backgrounds/" , prefix+" images/

backgrounds/" ," ocean. swf"] , ["greenplace

136

Sswf" , " brownplace . swf" , " greyplace . swf" ,

indoors . swf" , " ocean. swf" , " brickwall . swf

") ;

getStory (sid)

}
function createNewPanel (panelRep: Array, xpos :Number,

ypos:Number) {
var place: String = panelRep [1][0];

var foreground:Number = panelRep [1][1];

var caption: String = panelRep [2];

var time: String = panelRep [3];

var nextName = " panel-"+myroot.

getNextHighestDepth ();

myroot. attachMovie (" Panel" , nextName , myroot.

getNextHighestDepth () , { type: Panel.

panelType , fgindex: foreground , x : xpos , -y

:ypos, enabled: false });

var currentPanel = myroot [nextName];

currentPanel . caption . setText (caption);

currentPanel . time. setText (time) ;

currentPanel . place . setText (place)

myroot. panels .push (myroot. currentPanel);

// create the people

var people : Array = panelRep [4];

for (var i = 0; i<people. length ; i++) {
createNewTextNode (people [i] ,

currentPanel , Type. getByName("

person"))

}

7/ create the actions

137

var actions :Array = panelRep [5];

for (var i = 0; i<actions length ; i++) {
createNewTextNode (actions [i] ,

currentPanel , Type.getByName("

action"))

}
// create the objects

var objects : Array = panelRep [6];

for (var i = 0; i<objects . length ; i++) {
createNewTextNode (objects [i] ,

currentPanel , Type. getByName("

object"))

}
/

var

for

create thoughts

thoughts: Array = panelRep [7];

(var i = 0; i<thoughts . length; i++) {
createNewTextNode (thoughts [i] ,

currentPanel , Type. getByName("

thought"));

}
}
function createNewTextNode (nodeRep: Array, parent:

Panel, type:Type) {
var title = nodeRep[0];

var foreground:Number = nodeRep [1];

var x: Number = Number (nodeRep [2])

x += parent . -x;

var y : Number = Number (nodeRep [31);
y += parent . _y ;

138

var canonicalName: String title+TextNode.uid

myroot . attachMovie ("Node" , canonicalName,

myroot . getNext HighestDepth () , { text: title

, type:type, fgindex: foreground , typeIndex

:Type.getIndex(type) , _x:x, -y:y, enabled:

false }) ;

var currentNode = myroot [canonicalName];

myroot. nodes.push(currentNode);

TextNode. uid++;

}
function

}
function

getStory(sid:Number) {

var rpc = new XML3RPC. Connection ()
rpc . viewer = this ;

rpc. OnLoad = function(result :Array) {
this . viewer .getStoryCB (result)

} ;

rpc. Server = server

rpc . AddParameter (" int" , sid)

rpc . Call('get.story ')

getStoryCB (storyRep : Array) {

trace("getStoryCB "+storyRep)

var xpos = 10;

for (var i = 1; i<storyRep . length; i++) {
createNewPanel (storyRep [i] xpos, 10)

xpos += 200;

}

}

139

function reflect () {
var newRep: Object = new Object()

newRep. random = " f ork s;

newRep.anum = 10;

newRep. panels = ["wang" , "schlong" , 10, 25];

var rpc = new XMLRPC. Connection (;

rpc . viewer = this;

rpc. OnLoad = function (result : Object) {

this . viewer . reflectCB (result)

rpc. Server = server

rpc. AddParameter(" struct" , newRep)

rpc. Call ('dump-params');

}
function reflectCB (res :Object) {

trace (" got back an object: "+res .random+" "+

res.anum+" "+res.panels);

}
}

Listing A.13: editinterface.fla

#include "XMLRPC/xml-rpc. as"

import XMLIRPC.*;

var server : String = 'http:// xnet . media . mit .edu:8055';

Stage. scaleMode = "noScale";

Stage. align = "LT" ;

Stage . addListener (_root);

//LT - Left Top [0,0]

// create some types

if (usernameStr == undefined) {

140

usernameStr = "anonymous";

}

//var prefix: String = "http ://xnet . media. mit. edu/comickit/";

var prefix: String = "";

new Type(" person" , prefix+"images/faces/" , prefix+"images/

faces/" , ["backgroundl . swf"] , [" 1. swf" , " 2. swf" , " 3. swf" ,

" 4. swf" , "5. swf" , " 6. swf" , " 7.swf"]) ;

new Type(" action" , prefix+"images/" , prefix+"images/" , [

genericbackground . swf"] , ["greenarrow . swf" "yellowthing.

swf" , " pinksplash . swf" , " greensplash . swf"])

new Type(" object" , prefix+"images/" , prefix+"images/" , ["

genericbackground . swf"] , ["gblob. swf" , "gsquare . swf"

oblob . swf" , "psquare . swf" , "tsquare . swf" , " rblob . swf" ,'

rsquare . swf"]) ;

new Type(" thought" , prefix+"images/" prefix+"images/" ,

genericbackground . swf"] , ["thought . swf"]) ;

Panel. panelType = new Type(" panel" , prefix+" images/

backgrounds/" , prefix+" images/backgrounds/" , ["ocean. swf"

] , ["greenplace.swf" , "brownplace . swf" , "greyplace . swf" , "

indoors . swf" , " ocean . swf" , " brickwall . swf"]) ;

-root . createTextField("usernameDisplay" , 55, 10, 2, 400, 50)

usernameDisplay . selectable = false;

usernameDisplay. text = usernameStr;

root . createTextField ("messageBox" , root. getNextHighestDepth

() , 100, 0, 100, 32);

root . messageBox. multiline = true;

-root . messageBox. wordWrap = true;

root .messageBox. selectable = false;

-root . messageBox. text Color = Login. labelColor;

141

-root. attachMovie ("TextInput" , "title", 56, {-x:150, y: 2 ,

_width:300, -visible :true});

attachMovie ("trash" , "thetrash" , 2 , {x:200, .y:(

workspaceDivider -thetrash . _height })

var scroll:Number = 0;

var changed: Boolean = false;

var wait ingForResponse = false;

var changedPanel: Panel;

var panels =

var nodes = [];

var panelID:Number = 0;

var nodeID:Number = 0;

var delay = 0;

// the y value where the workspace begins

var workspaceDivider:Number = 260;

//var currentNode;

var palettes = [];
// persons palette

palettes . push (new Palette (110 , 220, 110, 200, Type. getByName(

" person") , _root));

7/ actions palette

palettes . push (new Palette (220, 220, 110, 200, Type. getByName(

" action") , _root))

7/ objects palette

palettes. push (new Palette(330, 220, 110, 200, Type.getByName(

" object ") , _root));

7/ thoughts palette

palettes. push (new Palette(440, 220, 110, 200, Type.getByName(

"thought") , -root)) ;

7/ add the left/right scrollbars

142

attachMovie (" ScrollRight Button" , "ScrollRight Button"

, 10100, {-x:543, -y:50});

attachMovie (" ScrollLeftButton" , "ScrollLeft Button" , 10101 , {

_x:0 -y:50}) ;

function unscroll() {
-root . scroll = 0;

}
var scr = eval (" ScrollLeftButton")

scr . onPress = function () {
_root. scroll = 1;

};

scr onRelease = unscroll;

scr onReleaseOutside = unscr ol;

scr = eval (" ScrollRightButton")

scr onPress = function () {
_root . scroll = -1;

scr onRelease = unscroll

scr onReleaseOutside = unscr oll

// gallery button

attachMovie (" gallery" , "gallerybutton" , 56, { _x:400

gallerybutton. onRelease = function () {
loadMovie ("browser .swf?usernameStr="+-root .

usernameStr , _root , "POST") ;

};
function removeNode

// copy the

var newlist

for (var i

if

, y:0}) ;

(oldNode: TextNode) {
old list to a new

= 1];
= 0; i<nodes.length; i++) {

(nodes[i] == oldNode) {

143

continue;

}

newlist .push (nodes [i])

}
nodes = newlist

}
function createNewPanelAt Origin (dragging: Boolean) {

var nextName: String = 'panel- '+panelID;

createNewPanel(nextName, 14, 252, dragging);

}
function createNewPanel (nextName: String , xpos:Number, ypos:

Number, dragging: Boolean) {
attachMovie (" Panel" , nextName, -100-panelID , { type:

Panel. panelType , _x:xpos, .y:ypos});

root . currentNode = eval (nextName) ;

root . panels . push(-root . currentNode);

if (dragging) {

//currentNode. onPress ();

}
panelID++;

}
// XML-RPC shite

function serverResponse(errorCode , result) {
_root . messageBox. text = " Response received ."

waitingForResponse = false ;

/7 t race ("CALLBACK VALUE: "+ result);

var ordinary = result [0];

// fill the palettes with stuff

for (var i = 0; i <3; i++) {

144

// trace("Size of response: " +

i + " is " + ordinary[i]. length);

if (ordinary [i]. length >0) {

palettes [i]. manageSet (ordinary[i])

}
}
trace(" Sentences "+ordinary [3]);

changedPanel. sentences = ordinary [3];

}
rpc = new xmlrpc ("http://xnet.media. mit. edu:8055");

rpc.AUTOJUORMAT = true;

rpc. callBack = serverResponse;

// the animation every frame

function animation() {
Relaxation . relaxPanels (panels , scroll)

Relaxation . relaxNodes (nodes) ;

// trace("nodes: " + nodes);

if (delay>0) {
delay -=1;

} else {

if (changed && !waitingForResponse) {
changed = false;

delay = 75;

var thelist :Array = StoryRep.

createStoryRep(-root. title .text

nodes , panels , changedPanel)

trace("the list "+thelist);

var packagedsid = rpc. setParameter(

sid);

145

var sending = rpc. setParameter (
thelist);

rpc . send (" crunch3" , [packagedsi

sending]) ;

waitingForResponse = true;

.root . messageBox. text = "Conta

server ...

d ,

cting

}
}

}
interval = setInterval (animation , 15) ;

if (sid != undefined) {
trace (" loading "+sid)

loadUpAStory(sid);

palettes [0].manageSet([[""]]) ;

palettes [1].manageSet([[""]]) ;

palettes [2].manageSet([[""]]) ;

palettes [3]. manageSet ([[""] , [""] , [""]])

} else {

trace ("new story for "+usernameStr)

newStory (usernameStr) ;

createNewPanelAt Origin(false)

panels [0]. sentences = [" Sentence A" , "Sentence B"

Sentence C" , "Sentence D" , "Sentence E" , "Sentence

F" , "Sentence G" , "Sentence H" , "Sentence I",

Sentence J" " Sentence K" , "Sentence L"]
panels [0 . markChanged () ;

p alet t es [0]. manageSet ([["SAILOR"] , ["CHRIS"], ["BOB"

] , ["SALLY"] , ["ALICE"]) ;

146

palettes [1] . manageSet ([["FLOAT"] , ["ROCK"] , ["SAIL"

] , ["BIDW' 7 [" DRIVE"] , [)" TIE"7] [1 "KICK"],[1"

SPLASH"] , ["TIHROW'] , ["WAVE'] , ["BLOW HORN"] ,

LOK") I , ["DRINK"] TASTE"7] GEI SEASICK"] , 7

OPEN"]]) ;

p ale t t e s [2]. manageSet ([["SHIP"] , ["WATER"], ["BEACH"

I , ["SAILOR"] , ["OCEAN"] , ["ENGINE"] , ["SAIL"] ,

DIESEL" , ["WAVES"] , ["CANOPY"] , ["POOL"] , [)"

CHAMPAGNE'] , ["MAGICIAN"], ["PORTHOLE"] , ["POSH"

1 , ["TITANIC"]]) ;

palettes [3]. manageSet ([[""] , [""] , [""]])

}
..root . onResize = function () {
7/ _root. messageBox. text = "resizing " + Stage. width

+ " " + Stage.height;

thetrash. _x = Stage. width-thetrash. _width;

thetrash ._y = workspaceDivider-thetrash . -height;

ScrollRightButton. _x = Stage. width-ScrollRightButton.

_width;

ScrollLeft Button . _x = 0;

gallerybutton. _x = Stage. width-gallerybutton. _width;

var palWidth = Stage.width/(palettes . length+1);

/7 trace (" rescale "+Stage.width+" "+palWidth);

for (var i = 0; i<palettes . length ; i++) {
palettes [i]. rescale (palWidth*(i+1),

workspaceDivider , palWidth , Stage . height-

palettes [i]. y)
}
root . messageBox. _x = galleryButton . _x - messageBox.

_width;

147

_root .messageBox. _y = galleryButton . _y + 5;

} ;

-root . onResize ()
function loadUpAStory (sid: Number) {

var rpc = new XMLRPC. Connection ()
rpc.ef = this;

rpc . OnLoad = function (result :Array) {
this. ef. getStoryCB (result);

r;

rpc

rpc

rpe

Server = -root . server ;

AddParameter (" int" , sid)

Call ('get-story ')

}
function

}
function

xpos:

getStoryCB (storyRep :Array) {

trace ("getStoryCB "+storyRep)

title.text = storyRep [0];

var xpos = 10;

for (var i = 1; i<storyRep . length; i++) {
createNewPanelB (this , storyRep [i] xpos , 25)

xpos += 180;

}
changed = true;

createNewPanelB (parent: MovieClip , panelRep: Array,

Number, ypos:Number) {

var place : String = panelRep [1] [0];

var foreground:Number = panelRep [1][1];

var caption : String = panelRep [2];

var time: String = panelRep [3];

var nextName = " panel-"+panelID;

148

trace (" creating panel"+nextName+" "+xpos+" "+Panel.

panelType. foregrounds [foreground]) ;

parent . attachMovie (" Panel" , nextName, -100-panelID , {

type : Panel . panelType , fgindex: foreground -x: xpos

-y : ypos }) ;

var currentPanel = parent [nextName];

current Panel. caption .setText (caption);

currentPanel. time. setText (time);

currentPanel. place. setText (place);

parent. panels .push(currentPanel);

panelID++;

// create the people

var people : Array = panelRep [4];

for (var i = 0; i<people . length ; i++) {
createNewTextNode (people [i], parent

currentPanel , Type.getByName(" person"))

}

// create the actions

var actions : Array = panelRep [5];

for (var i = 0; i<actions . length; i++) {
createNewTextNode (actions [i] , parent

currentPanel , Type. getByName(" action"));

}

// create the objects

var objects : Array = panelRep [6];

for (var i = 0; i<objects . length; i++) {
createNewTextNode (objects [i] , parent

currentPanel , Type.getByName(" object"))

}

// create thoughts

149

}
function

panel

}
function

var thoughts : Array = panelRep [7];

for (var i = 0; i<thoughts .length; i++) {
createNewTextNode (thoughts [i], parent

current Panel , Type . getByName(" thought"));

}

createNewTextNode (nodeRep: Array, root :MovieClip,

:Panel, type:Type) {
var title = nodeRep[0];

var foreground:Number = nodeRep [1];

var x:Number = Number (nodeRep [2]);

var y: Number = Number (nodeRep [3]);

var depth = root . getNextHighestDepth();

trace("node at "+depth);

var canonicalName :String = title+TextNode. uid;

root . attachMovie ("Node" , canonicalName , depth , { text:

title , type:type , fgindex: foreground , typeIndex:

Type. getIndex (type), parent:panel, _x:0, _y:0,

parX:x, parY:y});

root . nodes . push (root [canonicalName])

TextNode. uid++;

newStory(username: String) {

var rpc = new XMLBPC. Connection (;

rpc.ef = this;

rpc. OnLoad = function (result :Number) {

this. ef. newStoryCB (result) ;

r;

rpc

r pc

.Server = _root . server ;

AddParameter (" st r in g " , username)

150

rpc . Call('create -new-story ');

}
function

/

newStoryCB (newsid:Number) {
trace ("newStoryCB "+newsid)

this. sid = newsid;

-root. usernameDisplay. text += newsid;

changed = true;

}

151

Appendix B

Server Code

This is the Python source code for the ComicKit server.

Listing B.1: cn2server.py

#!/usr/bin/env python

import SocketServer

import xmlrpcserver

import xmlrpclib

import ConceptNetDB

import os

import sys

import time

import string

import daemonize

import MySQLdb;

file-dir = "/home/breath/data/"

stdoutfile = "output"

logfile = " logfile"

true = 1

152

false = 0

port = 8055

def interleave(lol):

retval = []
idx = 0

avelen = len(lol)

if(avelen < 1):

return []
while(avelen/len(lol) > idx):

avelen = 0

for list in lol:

avelen += len(list)

if(idx >= len(list)):

continue

retval.append(list [idx])

idx = idx + 1

return retval

def remove-dupes (list):

for x in list:

for i in range(1,list.count(x)):

list .remove (x)

return list

class ConceptNetXMLServer (xmlr pcserver. Request Handler):

allow-reuse-address = 1

dupnum = 7

palsize = 35

153

def call(self , method, params):

limit = 0

if (method. endswith(" Aimit'"))

method = method [: -6]

limit = params[-1]

params = params [: -1]

find the appropriate method

print "Dispatching : " , method, params

sys stdout flush()

sys .stderr .flush()

try:

server-method = getattr(self , method)

except:

try:

If I don 't have it , try the cndb

server-method = getattr(cndb, method)

except:

try:

If the cndb doesn 't have it , try the

nitools

servermethod = getattr (cndb. nitools

method)

except:

try:

Try the MontyLingua beast

server-method = getattr (cndb. nltools.

m, method)

except:

154

raise AttributeError , "Server does

not have procedure %s" % method

make the call

if (limit > 0):

return servermethod (*params) [: limit]

else :

return server _method (* params)

def dump-params(self , params):

return params

user methods

def check-username (self , us

print "Username:" , user

db. execute(" select uid

username+" ';") ;

result = db.fetchall()

if(len(result) == 1):

return 1

ername)

name;

from user where name='"+

else:

return 0

def get-incr-usernames (self ,

print " getIncrUsernames"

db.execute(" select name

'^-"+Partial+" . * ';"))

result = db. fetchall ()

print "matching:" , resul

partial)

partial

from user where name regexp

155

return self . mapfirst (result)

def new-user (self , username , password , email) :

print "new user" , username , password , email

if (s e lf . check-username (username)) :

return "cannot add existing user"

db. execute(" insert into user set name="'+username+"

' , password="'+password+" ' , email="'+email+"'

addedTime=NOW(")

return " done"

def check-login (self , username , password)

print " checkLogin" , username , password

db. execute(" select password from user where name="'+

username+" ';")

result = db.fetchall()

if(result [O][0] == password):

return 1

else:

return 0

def get-uid(self , username):

db. execute(" select uid from user where name="'+

username+" ';")

result = db.fetchall();

return result [0][0];

story methods

def create-new-story (self , username):

156

print "create.-new-story" , username

uid = s eIf . get _uid (username)

db.execute("insert into story set

db.execute("select sid from story

= '0 ')
sid = db. fetchall () [0][0]

db. execute ("update story set numu

numupdates=O and uid='%s ';" % u

return sid

uid='%s ';" % uid)

where numupdates

pdates=1 where

id)

def save (self , sid , storyrep):

print "save " , sid , " contents=%s" % MySQLdb.

string-literal(storyrep)

sys . stdout . flush ()

db. execute ("update story set contents=%s, numupdates=

numupdates+1 where sid='%s ';" % (MySQLdb.

string-literal(storyrep) , sid))

def get-story(self , sid):

print "get-story" ,sid

db.execute(" select contents from story where sid='%s

';" % sid)

results = db. fetchall () [0] [0]

print " results " , results

sys . stdout . flush ()

return eval(results , {'_builtins_ ': {}})

def get -user-stories (self , username):

print " get _user -stories" ,username

uid = s e lf . get _uid (username)

157

db. execute(" select sid from story where uid='%s ';" %

uid)

results = db. fetchall()

print "results " , results

sys . stdout . flush ()

return results

def delete-story (self, sid):

print " delete-story" , sid

db. execute (" delete from story where sid='%s ';" % sid)

return true

def save-state(self , lop):

print >> log , lop

log . flush ()

def crunch(self , *args):

return self crunch2 (args)

def crunch3 (self , sid , args)

self.save(sid ,args)

return self crunch2 (args)

def crunch2(self , args):

personsuggestions = []

actionsuggestions = []
objectsuggestions = []
sentencesuggestions = []
objectsused = []

personsused = []

158

actionsused = []
self.save-state(args)

correct for added experiment element

args = args[1:]

for panel in args:

(selected , double , sentence , temporal , persons

actions , objects , thoughts) = panel

objectsused

personsused

actionsused

.extend(objects)

.extend(persons)

.extend(actions)

sentence suggestions

print " Selected " , selected

if(selected == 1):

print "Have

sent encesuggestions = self.

se lf . mapfirst (persons) ,

actions) , self . mapfirst (

)

print sentencesuggestions

make-sentences (
self . mapfirst (

objects) , thoughts

person suggestions

personsuggestions = interleave ([self . dupe(x, self.

dupnum) for x in self. mapfirst (personsused)]) [:

self . palsize]

159

personsuggestions = self. convert _to-randoms (
personsuggestions)

object suggestions

object suggestions = remove-dupes ([string . upper (x) for

x in interleave ([self. get -analogous-words (string

lower (x)) for x in self . mapfirst (objectsused)])])

[: self . palsize]

objsfromactions = remove-dupes ([string . upper (x) for x

in interleave ([self. get-word-actionable-objects(

string . lower (x)) for x in self. mapfirst (

actionsused)])])

objsfromactions2 = remove-dupes ([string . upper (x) for

x in interleave ([self. get-word-actions (string.

lower (x)) for x in s elf . mapfirst (actionsused)])])

objectsuggestions = interleave ([objectsuggestions

interleave ([objsfromactions , objsfromactions2])])

objectsuggestions = self .convert -to-randoms(

remove-dupes (objectsuggestions))

action suggestions

act ionsuggest ions = remove.dupes ([string . upper (x) for

x in interleave ([self. get-actions (string . lower (x)

self . palsize/len(objects)) for x in self .

mapfirst (objectsused)])]) [: self . palsize]

actionsfromactions = remove-dupes ([string . upper (x)

for x in interleave ([self. get-actions (string . lower

(x) , self . palsize) for x in interleave ([

objsfromactions , objsfromactions2])])]) [: self .

160

palsize]

actionsuggestions = self convert -to-randoms (

interleave ([actionsuggestions , act ionsfromact ions

]))

personsused. extend (persons uggest ions)

if (len (act ionsuggest ions) > 0) :

actionsused . extend(actionsuggestions)

else:

actionsused = F]

if(len(objectsuggestions) > 0):

objectsused . extend(objectsuggestions)

else :

objectsused = []

return [personsused ,

remove-dupes (objectsused) ,

remove-dupes (actionsused)

sentencesuggestions I

functions

def convert -to-randoms (self ,

return [[x, "random"]

list):

return map(lambda x: x[0] , list)

obj , num):

for i in range (1,num)]

161

utility

list) :

def mapfirst(self ,

for x in list]

def dupe(self,

return [obj

def make-sentences (self , persons , actions , objects

thoughts):

result = []
sent = cndb. nit ools .m. theMontyNLGenerator.

generate-sentence

lowercase the inputs

persons = map(string . lower , persons)

actions = map(string .lower , actions)

objects = map(string .lower , objects)

if(len(persons) == 0 and len(actions) != 0 and len(

objects) != 0):

for x in actions:

for y in objects

result .append(sent ([x,y]))

elif (len (actions) == 0 and len(persons) != 0 and len(

objects) != 0):

for x in persons:

for y in objects

result . append ("%s IS WITH %s" % (x, y))

elif(len(objects) == 0 and len(actions) != 0 and len(

persons) != 0):

for x in persons:

for y in actions:

result .append(sent ([y,x]))

elif(len(objects) != 0 and len(actions) != 0 and len(

persons) != 0):

prepositions = ["on the" , "with the" , "next to

the"]

162

for x in persons:

for y in actions:

for z in objects:

for a in objects:

if(a != z):

for p in prepositions:

result .append(sent ([y,x,"

the " +z,p+" "+a]))

result .append(sent ([y,x,"

a " +z,p+)" "+a]))

result.append(sent ([y,x,za])

)
result.append(sent ([y,x,"the " + z

result.append(sent ([y,"the " + zx]))

elif(len(persons) != 0 and len(thoughts) != 0):

result . extend ([x + " was" for x in persons])

else:

result .append(" ")

add ", thinking x" and ", saying x" to all of

these

additions = []
if(len(thoughts) > 0):

for thought in thoughts:

remember that each thought is a list of two

elements

clause = self. thought-verb (thought[1]) + " \"

" + string. strip (thought [0]) + "\""

additions . extend([self . add-trailing -clause (x

, clause) for x in result])

163

additions . extend (result)
result = additions

result = map(string . upper , result) # uppercase it

for the return

return result

def add _trailing _clause (self , sent , clause)

sent = sent.replace("." , " ,")
return sent + " " + clause

def thought-verb(self , image):

if (image. count (" thought") > 0):

return "thinking"

if(image.count("speech") > 0):

return " saying"

def get-context-words(self , query):

"""This method is essentially the same as get-context

except it returns a list of strings."""

temp = cndb.get-context (query)

result = []
for x in temp:

result .append(x[0])

return result

def get-analogous-words(self , query):

"""This method is essentially the same as

get-analogous except it returns a list of strings.
))1)1

164

temp = cndb. get-analogous-concepts (query)

result = []
for x in temp:

result .append(x[O])

return result

def get word.-actions (self , word):

temp = self. get -edges -of-word (word)

actions = []
for list in temp:

for x in list

if(x[0] == "CapableOf" or x[O] ==

CapableOfReceivingAction"):

actions. append(x[1])

return actions

def get-word-actionable-objects(self , word)

temp = self. get _edges _of-word (word)

print "Edges of ", word,"---------

print temp

objects = []

for list in temp:

for x in list:

if(x[O] == " ConceptuallyRelatedTo")

objects .append(x[1])

return objects

def get actions(self , query , limit):

165

""" Gets concepts related to the parameter via

"CapableOfReceivingAction" or "CapableOf" links . Gets

actions from a

'getAnalogous ' with the given word."""

searchwords = [query]

searchwords . extend(self. get _analogous -words (query)

[:5])

retval = remove-dupes (interleave ([self .

get -word-actions (word) [:(limit /len (searchwords)+2)

] for word in searchwords])) [: limit]

return retval

def get-edges-of-word(self, textnode):

returns a list of tuples of outgoing edges from a

word

decode -node , encode.-node , decode -word = cndb.

decode-node , cndb. encode-node , cndb. decode-word

zipped2nodeuid , nodeuid2zipped = cndb. zipped2nodeuid ,

cndb. nodeuid2zipped

zipped2edgeuid , edgeuid2zipped = cndb. zipped2edgeuid ,

cndb. edgeuid2zipped

fw-edges ,bw-edges = cndb. fw-edges , cndb. bw-edges

textnode=textnode . strip ()
encoded-node = encode-node (textnode)

node-uid = zipped2nodeuid(encoded-node)

166

fes = map(edgeuid2zipped , fw-edges . get (node-uid , [])
[:1000])

fes.sort(lambda x,y:y[2]+y[3]-x[2]-x[3])

bes = map(edgeuid2zipped , bw-edges. get (node-uid , [])
[:1000])

bes.sort(lambda x,y:2*(y[2]-x[2])+*(y[3]--x[3]))

pp-fw-edges = map(lambda x:(decodeword(x[0]) ,

decode-node(nodeuid2zipped(x[1])),str(x[2:])),fes)

pp-bw-edges = map(lambda x:(decodeword(x[0]) ,

decode-node(nodeuid2zipped(x[1])),str(x[2:])),bes)

output = (pp-fw-edges , pp-bw-edges)

return output

Main method, which loads the ConceptNet d6

__name_ == '-main__':

detach the process from this terminal,

in the

background, forever

print " Daemonizing"

daemonize. createDaemon ()

redirect standard out to

fsock = open(file._dir + st

sys.stdout = fsock

sys. stderr = fsock

open other peripheral fi

convention)

print "Opening save files"

tabase

meaning it runs

a logfile

doutfile , 'w')

les (gotta work on my naming

167

if

log = open(file-dir + logfile , "a")

pred-filename = "/home/breath/game/conceptnet2 /predicates

. txt"

print " Loading Predicates from %s ... "%pred-filename

os. chdir ("/home/breath/game/conceptnet2 /")

cndb = ConceptNetDB . ConceptNetDB (None, pred.filename)

os . chdir ("/")

sys . stdout . flush()

sys . stderr . flush()

print "Opening a connection to the database"

conn = MySQLdb. connect (user='comickit ',passwd='xxxxxx' ,db

='comickit ' ,host='localhost ')

db = conn.cursor()

done = 0;

while(not done):

try:

server = SocketServer . TCPServer ((' ' , port)

Concept NetXMLServer)

server . allow-reuse-address = 1

done = 1

except:

print "Could not open socket , sleeping 120

seconds"

sys . stdout . flush()

sys . stderr . flush()

done = 0

time. sleep (120)

print " Retrying"

print "Serving"

168

sys stdout flush ()

sys stderr flush ()
try:

server serve-forever ()
except:

print Exiting due to exception"

conn. close ()
sys . stdout . flush ()

sys . stderr . flush ()

log . flush ()

server .server-close ()

sys . exit (0)

169

