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Abstract

In this thesis we present LaSLAT, a sensor network algorithm that uses range mea-
surements between sensors and a moving target to simultaneously localize the sensors,
calibrate sensing hardware, and recover the target's trajectory.

LaSLAT is based on a Bayesian filter that updates a probability distribution over
the parameters of interest as measurements arrive. The algorithm is distributable
and requires a fixed amount of storage space with respect to the number of measure-
ments it has incorporated. LaSLAT is easy to adapt to new types of hardware and
new physical environments due to its use of intuitive probability distributions: one
adaptation demonstrated in this thesis uses a mixture measurement model to detect
and compensate for bad acoustic range measurements due to echoes.

We present results from a centralized implementation of LaSLAT using a network
of Cricket sensors. In both 2D and 3D networks, LaSLAT is able to localize sensors
to within several centimeters of their ground truth positions while recovering a range
measurement bias for each sensor and the complete trajectory of the mobile.

Thesis Supervisor: Jonathan Bachrach
Title: Research Scientist
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Chapter 1

Introduction

This thesis presents LaSLAT, an algorithm for localizing and calibrating a sensor

network while simultaneously tracking a moving target. LaSLAT performs these

tasks using range measurements between the sensors and the target. LaSLAT does

not require sensor nodes with known positions, ranging information between sensors,

or constraints on the path of the target.

1.1 Localization

Many sensor network applications require that the locations of the individual sensors

be known, since sensor readings are in general of little use without geographic context.

However, the same attributes that make sensor networks attractive make obtaining

this information difficult. By placing a large number of relatively cheap sensors, it

is possible to obtain many accurate measurements from sensors close to phenomena

of interest; however, the sheer number of sensors and the need to minimize costs

precludes manually recording the sensors' locations. It also precludes brute force

solutions such as equipping each sensor with a GPS unit.

Consequently, we would like the sensors to determine their own positions after

placement. This is known as localization, and is typically achieved by having each

sensor compute range measurements to its neighboring sensors, then algorithmically

embedding the graph formed by these ranges into a coordinate system (see chapter
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2). This coordinate system is then used to perform location-dependent tasks such as

geographic packet routing or target tracking.

Localization is often complicated by the difficulty of obtaining enough accurate

pair-wise range measurements between sensors. Inter-sensor ranges can be corrupted

by noise or lost entirely due to occluded line-of-sight. Thus, consistently accurate

localization requires robustness in the face of missing or low quality measurements.

Nevertheless, localization is rarely if ever the purpose of a network. Sensor net-

works are typically deployed to observe active phenomena in the environment, and

require accurate localization as a means to that end. As a result, there is pressure in

localization research to achieve accuracy and robustness using as little hardware as

possible.

1.2 Tracking

Target tracking is one of the motivating localization-dependent applications of sensor

networks. In tracking applications, sensors jointly observe phenomena, which may

be people or objects passing through the network or physical effects such as bullet

shock-waves or anomalous sounds. Once a phenomenon is detected, the sensors col-

laborate to determine its spatial location. This estimate is reported to a computer

or person monitoring the network. Target tracking networks can provide indoor nav-

igation services to hand-held users or mobile robots, track friendlies and hostiles on

a battlefield, or monitor movement of inventory in a store or warehouse.

Tracking is a well-understood problem (see chapter 2). Given the locations of

the sensors and accurate range information to the target, it is straightforward to

determine the target's position. Consequently, traditional tracking applications tend

to be split into two separate phases. First, the network is localized using a specialized

algorithm. After localization completes, the network enters a target tracking phase

in which target positions are estimated based on the discovered sensor positions.

14



1.3 Calibration

In an ideal world, sensors would arrive from the factory fully calibrated to begin

taking accurate measurements of their surroundings. However, this ideal situation

is rarely achieved. For instance, deployment conditions such as temperature affect

the accuracy of ranging algorithms based on acoustic time-of-flight by altering the

speed of sound. Furthermore, as shown in [35], differences between sensors can also

result in mis-calibrations that are difficult to correct before deployment. Calibration

in the field can therefore offer meaningful improvement in both localization and target

tracking accuracy. As with localization, there is considerable economic incentive to

develop auto-calibration algorithms that allow sensors to self-calibrate in the field

without external intervention.

1.4 Simultaneous Localization and Tracking

For sensor networks deployed to track moving targets, some authors have suggested

using a moving target (or mobile) to assist in localizing the network [8,12,27]. This

approach is attractive for several reasons:

* It requires no additional localization-specific hardware on the individual them-

selves, potentially reducing both their size and cost.

" Unlike sensors, a mobile can move freely in the network. This provides a larger

number and a greater diversity of measurements for use in localization, which

helps reduce the effect of noisy measurements and static environmental obsta-

cles.

" Use of a mobile means that the sensors are no longer constrained to have line of

sight to each other. This enables a broader range of network deployments: in

particular, it allows sensors to be placed to optimize tracking coverage rather

than to facilitate localization. This is especially significant because many types

of ranging hardware are directional. Traditional localization algorithms there-
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fore introduce a deployment conflict: sensors must be oriented so that they can

range to several other sensors in addition to observing areas where targets are

likely to appear. This wastes sensing resources and limits deployment options.

SLAT eliminates this problem, since it works best when sensors use their full

field of view to sense targets.

e Localization using a mobile potentially allows localization estimates to contin-

uously improve, even after the network begins tracking targets. In particular,

sensors that are closest to high traffic areas can be localized very precisely. In

turn, this facilitates high precision target tracking in these areas.

Existing methods fail to realize the full potential of mobile-based localization.

In particular, most require that the position of the mobile be known at all times.

Consequently, the mobile must be constrained to a well-known trajectory or equipped

with a GPS-like system. Furthermore, existing methods ignore the sensor calibration

problem entirely.

We consider a more general scenario, in which the mobile is allowed to move

arbitrarily on an unknown path. As it moves, the mobile periodically emits a signal

that allows sensors in the network to compute their range to the mobile. These ranges

are expected to be corrupted by noise. Using solely these noisy range measurements,

the objective is to localize the sensors in the network, calibrate the sensors' ranging

hardware if necessary, and track the position of the mobile. Accordingly, we label

this problem Simultaneous Localization and Tracking (SLAT).

1.5 LaSLAT

Our solution to the SLAT problem takes the form of a Bayesian filter. The filter uses

range measurements taken by the network to update a joint probability distribution

over the positions of the sensors, the trajectory of the mobile, and the calibration

parameters of the network. To avoid some of the representational and computational

complexity of general Bayesian filtering, we use Laplace's method to approximate our

16



state with a Gaussian after incorporating each batch of measurements. As a result,

we call our algorithm LaSLAT.

LaSLAT inherits many desirable properties from the Bayesian framework. The

probabilistic model used in LaSLAT insures that measurement noise is averaged out

as more measurements become available, which improves localization and tracking

accuracy in high-traffic areas. The filtering framework incorporates measurements

in small batches, providing on-line estimates of all locations, calibration parameters,

and their uncertainties. This allows the mobile to be tracked in near real-time. It

also speeds up the convergence of the algorithm and reduces impact on the network.

Since LaSLAT maintains estimate uncertainties, mobiles can be dispatched on-line

if desired to improve localization estimates in regions where localization uncertainty is

high. As we required in the problem statement, mobiles may move arbitrarily through

the environment, with no constraint on their trajectory or velocity. Furthermore,

multiple mobiles may be used in conjunction to expedite initial localization.

If available, ancillary localization information such as position estimates from

GPS, anchor nodes, or radio-based ranging can be easily incorporated into our frame-

work. Our algorithm avoids expensive matrix operations by operating on sparse in-

verse covariance matrices rather than operating directly on dense covariance matrices.

This helps LaSLAT run quickly and facilitates performing the LaSLAT computations

distributedly in the network.

The user deploying the network may specify a coordinate system for LaSLAT to

honor when localizing sensors. If no coordinate system is specified, LaSLAT recovers

locations in a coordinate system that is correct up to a translation, rotation, and

possible reflection.

We demonstrate these features by accurately localizing a dense network of 27

sensors to within one or two centimeters. The sensor nodes are wireless Crickets

[1] capable of measuring their distance to a moving beacon using a combination of

ultrasound and radio pulses. In a larger and sparser network, we localize sensors

to within about eight centimeters. In both cases, a measurement bias parameter is

accurately calibrated for all nodes. Finally, we present results from two experiments
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in three dimensions, in which nodes were localized to within seven centimeters.
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Chapter 2

Related Work

2.1 Localization

Localization is a well established problem in sensor networks, and many approaches

have been developed in the literature. The vast majority of these techniques treat

localization as a stand-alone procedure that takes place in advance of or concurrently

with other operations in the network. In the traditional localization problem, sensors

are capable of determining the distance between themselves and other nearby sensors.

This may be done using relatively accurate methods such as acoustic time-of-flight

(TOF), or using imprecise but cheap methods such as radio signal strength indicators

(RSSI). In dense networks, radio hop count (DV) may be used as a surrogate for

distance.

Several authors [10,17,31] have used multidimensional scaling (MDS) as a local-

ization technique. MDS is very effective at recovering sensor topologies when accurate

distances are available between all pairs of sensors. Its performance degrades sub-

stantially when some distances are unavailable.

Many algorithms [4, 5, 20, 23, 25, 30, 32] also depend on the presence of anchor

nodes, which are sensors that know their true locations a priori through out-of-band

means such as pre-programming or GPS. These algorithms localize non-anchor nodes

by construction using distances from each non-anchor node to several anchor nodes.

However, anchor nodes are expensive, and not always perfectly accurate (i.e. GPS).

19



Furthermore, many of these algorithms suffer from propagation of errors: sensors

several hops from a beacon often accumulate considerable position error.

Priyantha et al. [29] suggest a two-phase approach that is similar in some ways

to the approach proposed in this thesis. An initialization phase uses an imprecise

technique based on radio connectivity between nodes to embed the sensors in a plane.

Once initialization is complete, a second phase uses precise time of flight ranges

between adjacent sensors to make local position adjustments.

Ihler et al. [16] treat localization as an inference problem on a graphical model.

This allows them to use nonparametric belief propagation (NBP) to produce an es-

timate of sensor positions. This offers several advantages, many of which are also

offered by our LaSLAT technique. NBP allows the use of non-Gaussian measurement

models. It also produces an uncertainty measure that provides a context for use of

its sensor position estimates.

A number of authors [7,21,22,24,31] have proposed algorithms based on coordinate

system stitching. These algorithms follow a three step divide-and-conquer process.

First, the network is split into small overlapping subregions. Next, each subregion

computes a local map, which is simply an embedding of the subregion in a relative co-

ordinate system. Finally, adjacent subregions are registered into a common coordinate

system using the overlapping nodes between local maps. By performing registration

recursively, all the subregions are incorporated into a single global coordinate system.

Moore et al. [22] suggest a particularly sophisticated approach to subregion forma-

tion, in which the subregions are chosen based on their likelihood of forming accurate

local maps. This technique has the advantage of producing a more homogeneous

accuracy level across the network. However, it achieves this by refusing to localize

sensors that cannot be positioned using pair-wise ranges to nearby nodes.

This illustrates a fundamental problem with localization based on inter-sensor

ranges: the limited availability of inter-sensor range data means that some sensors

may prove impossible to accurately localize. The advantage of simultaneous localiza-

tion and tracking (SLAT) is that these nodes may become localizable in the future

after additional sightings of the mobile. Furthermore, SLAT offers highest accuracy
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where mobiles move most frequently, whereas inter-sensor range-based algorithms

typically offer highest accuracy where sensor density is greatest or in areas where

ranging between sensors is easiest. In an ideal world, these regions would coincide,

but in an ad-hoc deployment, this may not be the case.

2.2 Tracking

Like localization, target tracking is a well established problem in sensor networks.

However, most literature on the subject assumes that localization information is avail-

able before tracking begins. As a result, most of the literature on tracking considers

cluster formation [9], power economy [36], or related problems such as target identi-

fication and classification [3].

In this thesis, we assume that targets are easy for sensors to identify, allowing us

to focus purely on tracking. This is reasonable in any circumstance where the targets

are tracked voluntarily - for instance when the network is guiding a mobile robot or

providing in-building location information to a hand-held computer user. We also

ignore concerns such as power conservation, and focus instead on what information

can be extracted from sensor measurements once they are obtained.

2.3 Calibration

Several authors [6,35] have researched automatic calibration in sensor networks. By-

chkovskiy et al. [6] calibrate photo-sensors in a dense network by making use of the

fact that adjacent sensors are likely to observe the same level of stimulus.

The most directly relevant work to this thesis is the Calamari Ad-hoc Localiza-

tion System by Cameron Whitehouse [35]. Calamari uses acoustic time difference of

arrival (TDoA) ranging between sensors to perform localization. Whitehouse showed

that post-deployment calibration of the acoustic sensors dramatically improved local-

ization accuracy. He also developed a macro-calibration technique in which individual

sensor parameters are chosen to optimize the performance of the network as a whole.
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2.4 SLAT

Various authors have used mobiles to localize sensor networks [8,12,26-281, but these

methods assume the location of the mobile is known. One exception is [12], which

builds a constraint structure as measurements become available. Compared to [12], we

employ a very extensible statistical framework that allows more realistic measurement

models. Priyantha et al. [28] show how to guide a mobile to form rigidly localizable

structures. Our problem differs from the one discussed in [28] in that we make no

assumptions about the trajectory of the mobile.

Our method is most similar to [26], which used an Extended Kalman Filter (EKF)

to track an underwater vehicle while localizing sonar beacons capable of measuring

their range to the vehicle. We replace the EKF's approximate measurement model

with one based on Laplace's method. This provides faster convergence and greater

estimation accuracy. We also demonstrate that the Bayesian filtering framework can

calibrate the sensor nodes, and that the computation is capable of distributing over

the sensor nodes in a straightforward way.

2.5 SLAM

The SLAT problem is similar to SLAM and the 3D Structure from Motion (SFM)

problem in computer vision. In these problems, two sets of unknown variables are

coupled in such a way that jointly estimating the two sets is relatively difficult, while

estimating one set with the other set given is relatively easy. In sensor network

localization, knowing the position of the nodes significantly simplifies tracking, and

knowing the position of the mobile significantly simplifies localization. In SLAM and

SFM, this relationship holds between the pose of the robot or camera and that of

features in the scene.

Our solution to SLAT adopts various important refinements to the original Ex-

tended Kalman Filter (EKF) formulation of SLAM [33]. LaSLAT processes measure-

ments in small batches and discards variables that are no longer needed, as demon-
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strated by McLauchlan [19]. Following [34], LaSLAT operates on inverse covariances

of Gaussians rather than on covariances directly to accelerate updates and facilitate

distributed computation.
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Chapter 3

LaSLAT

LaSLAT uses a Bayesian filtering framework. Under this framework, as each batch

of measurements becomes available, it is used to update a prior distribution over

sensor locations, the mobile trajectory, and various sensing parameters. The resulting

posterior distribution is then propagated forward in time using a dynamics model to

make it a suitable prior for use with the next batch of measurements.

In LaSLAT, after incorporating each batch of measurements the posterior distribu-

tion is approximated with a Gaussian using Laplace's method [13]. Consequently, the

amount of state saved between batches is constant with respect to the number of mea-

surements taken in the past. The Gaussian approximation also simplifies propagation

using the dynamics model and incorporation of the next batch of measurements.

3.1 Approximate Bayesian Filtering for SLAT

As the mobile moves through the network, it periodically emits events which allow

some of the sensors to measure their distances from the mobile.

Let ej denote the location of the mobile when it generated the jth event. The tth

batch et is a collection of consecutive events et = {em ... em+n}, with e denoting the

jth event in the tth batch. Each LaSLAT iteration incorporates the measurements

from a single batch of events.

Let si = s s represent the unknown parameters of sensor i, with s- denoting
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the sensor's position and sq its calibration parameters. Then s = {si} is the set of all

sensor parameters. The scalar y denotes the range measurement between sensor i

and the jth event in batch t, so yt = {yJ} is the collection of all range measurements

in batch t.

For each batch t, et and s are the unknown values that must be estimated. We

aggregate these unknowns into a single variable xt = [s eti for notational simplicity.

Note that as defined, e and s' may be vectors of either 2D or 3D points, allowing

LaSLAT to be run easily in either two or three dimensions.

The Bayesian filtering framework is a non-linear, non-Gaussian generalization of

the Kalman Filter. For each batch t, it computes the posterior distribution over sensor

parameters, s, and events locations, et, taking into account all range measurements

taken so far:

p(xtjyl, y2.. t)

In LaSLAT, we wish to update this distribution as range measurements become

available, and discard measurements as soon as they have been incorporated. To

do this, one can rewrite the distribution in terms of a measurement model and

a prior distribution derived from the results of the previous iteration. Rewriting

p(xtlyl, y2, yt) as p(xt old, yt), we get by Bayes' rule:

pXx ty"I yol 7 ) OC p(yt, x t Iyold)

0c p(ytxt, yold)p (XIyOld)

Oc p(ytlxt)p(x yOM), (3.1)

where proportionality is with respect to xt. The final equality follows because when

the sensor and mobile locations are known, the past measurements do not provide any

additional useful information about the new batch of measurements. The distribution

p(ytlxt) is the measurement model: it reflects the probability of a set of observations

given a particular configuration of sensors and event locations (Section 3.2).

The distribution p(xtIlY"M) summarizes all information collected prior to the cur-
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rent batch of measurements, in the form of a prediction of x' and an uncertainty

measure. It can be computed from the previous estimate, p(xt-jyo"d), by applying a

dynamic model:

p(xt 1yod) = p(xt-1 Iyold)p(xtlxt-) dx t- 1. (3.2)

The distribution p(Xtxt-1) models the dynamics of the configuration from one batch

to another by discarding old event locations and predicting the locations of new events

(Section 3.4).

When the measurement model p(ytlxt) is not Gaussian, the updates (3.1) and

(3.2) become difficult to compute. We handle the non-Gaussianity of the measure-

ment model by approximating the posterior p(xt yold) with a Gaussian distribution

q(xtlyold) using Laplace's method (Section 3.3). This Gaussian becomes the basis

for the prior distribution for the next batch. q is much simpler to save between

batches than the full posterior - in particular, it allows all the old measurements to

be discarded. Table 3.1 summarizes the steps of LaSLAT.

Other approximate Bayesian filters such as the Extended Kalman Filter (EKF) or

particle filters could also be used in place of our Laplacian method. The EKF differs

from our algorithm because it does not perform a full optimization when incorporating

each event. In many cases this is a helpful optimization; however, as we show in

chapter 6, on the SLAT problem it sacrifices accuracy and speed of convergence.

Particle filters allow a closer approximation of the posterior distribution, especially

when the distribution is multi-modal. However, our algorithm seems to perform well

in practice while requiring significantly less computation.

3.2 Measurement Model

New measurements influence localization and calibration estimates via the measure-

ment model. A measurement model is a probability distribution p(ytlxt) over a batch

of range measurements, given a particular choice of the calibration parameters and
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1. Observe a new batch of measurements yt.

2. Represent the posterior p(xtlyt, yold) in terms of the prior p(x1yold) and the
measurement model p(y'xt) using Equation (3.1).

3. Using Newton-Raphson [14], compute curvature at the mode of p(xtlyt, yoId)
and use it to construct the approximate posterior q(xt Iy, y"1d). This posterior
is the estimate for the batch t (Section 3.3).

4. Compute the prediction p(xt+ljyt, yoU) using q(xtlyt, yold) (Section 3.4).

5. Using the prediction as the new prior, return to step 1 to process batch t + 1.

Table 3.1: One iteration of LaSLAT. Incorporates batch t and prepares to incorporate
batch t + 1.

positions for the sensors and the mobile. One advantage of the LaSLAT framework is

that this measurement model can be tailored to specific measurement hardware and

deployment parameters. The measurement model encapsulates details such as the

kind of data being observed (angle of arrival, distance, radio signal strength, etc), as

well as the types of noise that are possible in the environment.

In this thesis, we develop a measurement model that reflects the characteristics

of the popular acoustic time difference of arrival (TDoA) ranging technique. In most

TDoA implementations, the transmitter (in this case the mobile) emits a tagged

radio message, then a short time later produces an acoustic signal. Upon hearing the

radio message, the sensors in the network activate their microphones and listen for

the arrival of the acoustic signal. Once the acoustic signal arrives, the sensors use

the difference in arrival time between the acoustic signal and the radio message to

estimate the distance between the sensor and the transmitter.

This technique can be quite accurate, especially when line-of-sight exists between

the transmitter and the receiver. The Cricket ranging system [1], which uses a single

inaudible ultrasound pulse, can measure distances up to ten meters with error as

small as 1-2 centimeters.

However, TDoA measurements are susceptible to several types of error. First,

various random delays in the ranging process introduce small (sub-centimeter) er-

rors, which take the form of a variance from measurement to measurement. Second,
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mis-calibration can result in a measurement bias. For instance, temperature or hu-

midity can cause the actual speed of sound to be different from the pre-calibrated

constant used by the sensor. The measurement bias can easily vary from deployment

to deployment, making accurate pre-calibration at the factory nearly impossible. In

the Cricket ranging system, we have observed biases of between 3 and 10 centime-

ters. The biases vary only slightly from sensor to sensor, but are typically consistent

throughout a deployment area. Finally, TDoA measurements can be vulnerable to

both echoes and ambient noise. In both cases errors occur because the time of flight

observed by the sensor does not correspond to the straight line distance from the

sensor to the event; instead, it corresponds to a longer path (in the case of an echo),

or no path at all (in the case of an ambient noise). In one test environment, a security

system produced 40 kHz ultrasound that occasionally interfered with the Crickets'

ranging system.

In this section, we ignore echo effects, and assume that each measurement is a

corrupted version of the true distance between the event and the sensor that took the

measurement:

y~j = ||si - e3j1 + si + W4, (3.3)

where | indicates the vector 2-norm, giving the Euclidean distance between sT and

et. w. is a zero-mean Gaussian random variable with variance o-, and sq is a bias

parameter that models an unknown shift due to sensor mis-calibration. In section 4.1

we present a richer model that performs better in the presence of echoes.

As defined in equation (3.3), p(yjgIsi, e') is a univariate Gaussian with mean |jsi -

e ||+ s and variance o 2 . Since each measurement y . depends only on the sensor si

that took the measurement and the location e of the mobile when it generated the

event, the measurement model factorizes according to

p(ytIxt) = F p(yt Isi, et), (3.4)
i j

where the product is over the sensors and the events that they perceived in batch t.

Equation (3.4) is the complete measurement model for a batch of measurements.
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Though LaSLAT is designed to operate in their absence, LaSLAT can make use

of inter-sensor range measurements if they are available. These can be encoded using

a generative model similar to equation (3.3):

yi = 1s - sT|| + s4 + W&, (3.5)

where Sk and s, are the sensor pair that generates the inter-sensor range measurement

yt1, and wt, is additive zero-mean Gaussian noise. The resulting probability distribu-

tion p(yi I sk, si) becomes an additional factor in the product (3.4). This demonstrates

the ease with which LaSLAT can rigorously incorporate additional sources of local-

ization information.

3.3 Incorporating Measurements

The measurement model derived in the last section can be combined with a prior dis-

tribution p(xtly"ld) using equation (3.1) to find the posterior distribution p(xtlyold, yt).

This posterior has no compact representation - in particular, it takes up space

proportional to the total number of measurements observed by the network since the

first batch. To curb this complexity, we save only a Gaussian approximation of the

posterior. This Gaussian representation requires constant space with respect to the

number of measurements observed, which allows LaSLAT to run indefinitely without

requiring additional memory. It also has the advantage of being easy to distribute

across the sensor network (chapter 5).

This approximate Gaussian posterior q(xtlyold, yt) can be obtained from the prior

distribution p(xt yold) and the measurement model p(ytIxt ) using Laplace's method

[13].

To fit an approximate Gaussian distribution q(x) to a distribution p(x), Laplace's

method first finds the mode x* of p(x), then computes the curvature of the negative

log posterior at x*.
92

A- x2 log p(x) .
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The mean and covariance of q(x) are then set to x* and A respectively. Notice that

when p is Gaussian, the resulting approximation q is exactly p. For other distributions,

the Gaussian q locally matches the behavior of p about its mode.

The mode finding problem can be expressed as:

x = arg max p(xt|y, yod)
Xt

= arg min - log [p(ytlxt)p(xlyold)]
xt

= arg min(xt -bt)TQA(x --t) + ZIsi -e| +si -yf/ 2 , (3.6)

where p = E [xtIyt, yold], and RX = Cov-1 [xtjyold].

We use the Newton-Raphson iterative optimization algorithm [14] to find the

mode x'* and the curvature H (Appendix B). Following Laplace's method, the mean

E [xt|yold, yt] of q is set to xt* and its inverse covariance Cov- 1 [xt|yold, yt] is set to H.

Representing q using its inverse covariance allows us to avoid computing the matrix

inverse H-1 after adding each measurement, which significantly improves performance

and facilitates a distributed implementation of our algorithm (Chapter 5).

The Gaussian approximation described in this section works well when the pos-

terior distribution has a single strong mode. However, when the posterior contains

several equally probable modes, the Gaussian approximation effectively discards all

but one. Consequently, this algorithm is vulnerable to substantial errors when the

measurements and prior do not favor a unique estimate. This can occur if the mobile

does not move very much during a batch and the prior distribution is mostly unin-

formative. In that case, the Gaussian approximation risks committing too quickly to

a particular parameter estimate. In our experience, this problem can be avoided by

using larger batch sizes when the prior's covariance is large. It can also be solved

by using a Gaussian mixture model or a particle filter to approximate the posterior

distribution between batches. These alternatives are able to fit a multi-modal poste-

rior; however, they are more complex and consequently require greater computational

power to manipulate.
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3.4 Dynamics Model

In this thesis, we assume mobiles can move arbitrarily and that sensors are stationary.

When propagating the posterior q(xtlyold, yt) forward in time, we need only retain

the components that are useful for incorporating the next batch of measurements.

Thus, we may remove the estimate of the mobile's trajectory from batch t, but we

must incorporate a guess for the mobile's path during batch t + 1. Therefore, the

prediction step of Equation (3.2) can be written:

p(x t+1 yold yt ) = p(s, et+1 Yold, yt) = p(et+l)q(syold I yt) (3.7)

q(syoldI yt) - q=&tIyold , yt) det.

The Gaussian q(xt Iyold yt) captures the posterior distribution over sensor locations

given all measurements taken so far, and has already been computed by the method

of section 3.3. We obtain q(slyold, yt), by marginalizing out the mobile's trajectory

during batch t.

The prior p(et+l) is Gaussian with very broad covariance, indicating that the

future trajectory of the mobile is unknown. In some applications, it may be possible

to use past trajectories to make better guesses for et+l. For example, p(et+l) could be

used to require events to form a smooth path. This can help accurately position events

with few quality measurements. For maximum generality, we will not attempt to do

so in this section, meaning that the mobile is allowed to move arbitrarily between

events. In section 4.2, we present a method of requiring that events follow a smooth

trajectory.

The operations of Equation (3.7) can be carried out numerically by operating on

the mean and inverse covariance of q(xtlyold). First, partition according to s and et:

E [xt yold] =

-E[etly old I
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Cov- 1 [xt lyold] = .:ej

Marginalizing out et produces a distribution q(slyold) whose mean is the s component

of the mean of q(xt Iyod) and whose inverse covariance is:

Cov-1 [slyold] = Qs - Qset Q 1e tets. (3.8)

The parameters of p(xt+1 yold) are those of q(slyold), augmented by zeros to account

for an uninformative prior on et+l:

E [x t +1 yold] = [E [Syold]
0

Cov- 1 [xt+1 yod] = Cov.lyold 0 (3.9)
L 0 0

The components of the inverse covariance of p(xt+1 yold) corresponding to et+1 are

set to 0, corresponding to infinite variance, which in turn captures our lack of a priori

knowledge about the location of the mobile in the new batch. The mean is arbitrarily

set to 0. If some information is known a priori about et+1, then the 0 components of

E [xt+1 yold] and the bottom right 0 components of Cov-1 [xt+1 yold] can be used to

capture that knowledge.

3.5 Prior Information and Initialization

Prior information about the sensor parameters is easy to incorporate into LaSLAT.

Such information might be available because the sensors were placed in roughly known

positions, or because another less accurate source of localization is available. Prior

information may also be used to define LaSLAT's global coordinate system, by fixing

the relative positions of several sensors. In addition, calibration in the factory might

supply prior information.

33



If such prior information is available it can be supplied as the prior when incor-

porating the first batch of measurements. We set the covariance of this prior to U-0I,

with o a large scalar, which makes the prior diffuse. The large covariance allows

measurements to override the positions prescribed by the prior, but provides a sen-

sible default when few measurements are available. The mode of this prior (or for

subsequent iterations, the mode of p(slyold)) is also used as the initial iterate for the

Newton-Raphson iterations. To obtain the initial iterate for an event, we use the

average estimated location of the three sensors with the smallest range measurements

to the event.

In our experiments, we utilize the radio connectivity of the sensors to obtain prior

localization information. The initialization step described by Priyantha et al. [29] (see

Appendix A) provides rough position estimates to serve as a prior before any measure-

ments are introduced. This prior takes the form p(s') oc exp [- I |is7 - X?12],

where x9 is the position of the ith sensor as predicted by the initialization step and

o is a large variance.

We have observed empirically on Cricket hardware [1] that though measure-

ment biases vary between deployments, they tend to be fairly consistent from sensor

to sensor. This information can be used as a prior over the sensor measurement

biases s'. We encode this information as a distribution with the form p(so) Oc

exp [- (s - sq)2] , where the summation is over sensors that are in close

proximity to each other, and Ub is a constant used to tune the impact of this prior on

the measurement biases. This illustrates a important attribute of LaSLAT: it is easy

to add platform-specific optimizations to improve performance. In many localization

algorithms this is impossible: a change in hardware or deployment environment often

necessitates a completely new approach.

34



Chapter 4

LaSLAT Extensions

In the last chapter, we described the core LaSLAT algorithm. In this chapter, we

consider several useful enhancements. First, we describe a measurement model that

provides robust detection and elimination of erroneous range measurements. Then,

we show how to require that LaSLAT's event position estimates follow a smooth path.

4.1 Robust Measurement Outlier Rejection

When using time difference of arrival (TDoA) acoustic ranging, many external fac-

tors can cause non-Gaussian measurement error. For instance, in some environments,

ambient sounds can cause completely spurious measurements. In addition, environ-

mental echoes can cause substantial delays in the sound pulse's time of flight, resulting

in highly errant measurements. This effect is illustrated in figure 4-1. In these types

of environments, it can be helpful to define a more robust measurement model. We

propose a mixture model for this purpose. Let W be a Bernoulli random variable

that is 1 with probability p. Then a generative model of measurements might be:

JJZ e , hig = 0

where ul, is a uniform random variable over all possible range measurements. Equa-

tion (4.1) produces an accurate measurement with probability p, and an uninformative
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Figure 4-1: An example of outlying range measurements. This data was generated
by rotating a beacon cricket at a fixed distance from a sensor. This histogram plots
the range measurements taken by the sensor. Notice that the majority of the mea-
surements are reasonably close to the true distance (much of the variance is caused
by the movement of the ultrasound transmitter on the beacon with respect to the
sensor); however, a few measurements are nearly half a meter too long. These outly-
ing measurements can dramatically decrease localization and tracking performance,
so it is desirable to detect and discard them.

and therefore useless result with probability 1 - p. Physically, when a measurement

occurs, there are three possible results:

" The radio message is received, and the sensor's microphone is activated. How-

ever, before the acoustic pulse arrives at the sensor, an unexpected environmen-

tal sound reaches the sensor, causing a short measurement.

" The radio message is received, and the sensor's microphone is activated. How-

ever, the acoustic pulse is deflected by an obstacle. Before the microphone

deactivates due to a timeout, an echo of the acoustic pulse arrives, causing a

long measurement.
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* The radio message is received, and the acoustic pulse arrives at the microphone

without incident. The measurement is accurate.

Equation (4.1) models this as a Bernoulli trial: the third case occurs with proba-

bility p, and one of the error cases occurs with probability 1 - p. h, is the random

variable representing the outcome of this trial for measurement yf,. Equation (4.1)

leads directly to the probability distribution:

1 Is- ei _ 2

p(y Isse) = p(h = 1) exp 2. 2  + p(ht = 0) , (4.2)

where Z1 and Z 2 are normalization constants. This changes the structure of equation

(3.6), since each measurement y - now has an unknown explanatory variable h .

This new structure is straightforward to optimize using an Expectation Maximization

(EM) algorithm [13]. Let 6 = [xt]. EM finds a maximizing 0 repeatedly applying the

following update step:

9 k+1 = arg max Ep(htlyt, k) [log p(yt, ht10, yod) + log p(9yold)]

arg max Zp(htlyt, 6 k) [logp(yt, ht|O, yold) + logp(|yod)]

ht

= arg max logp(O|yold) + E Ep(h |yl , 0k) log p(yl , ht 10) (4.3)

4.1.1 E-step

In the E-step, we must compute p(hWIy., 0k) for all i and j. Since log p(yl,, h, =

010) is constant with respect to 0, the corresponding terms have no effect on the

maximization (4.3). Consequently, we need only calculate:

p(y., h - = 1 10k)
9(M -=1|lyt7,0k ) -

Ehp(y , ht Ok)
p( hf =1)p(yf-jhf, = 1, 0k)

Zhp(h)p(y-Ih, 9k)
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This expression is easy to compute since it is in terms of the measurement model

conditioned on h and the Bernoulli distribution p(h):

Ah 6 = IIyt , 0k)= pNM 1 pN + (1 - p)/Z 2 ' (4.4)

where

1 (y,0s- )| s)2
N = -exp -

Z1 2o.2

4.1.2 M-step

In the M-step, we optimize equation (4.3) to find a new estimate 6 k+1. Let w! -

p(h, = l|y ., ek) as computed in the E-step by equation (4.4). Equation (4.3) reduces

to:

0k+1 = arg max logwp(jyo') + log p(yt,, ht, = 110)

= arg min (x t - A)T Q.(x t - /) + w l(|sI - e 11 + sq yfY) 2 . (4.5)

The M-step (4.5) is therefore a re-weighting of the original LaSLAT optimization

problem (equation (3.6)). As a result, it can be performed analogously using Newton-

Raphson (see Appendix B). Note that the weight 0. of a measurement y after the

final EM iteration corresponds to the probability that the measurement is accurate

given the current parameter estimates. Thus, accurate measurements are assigned

weights close to one, and highly inaccurate measurements are assigned weights close

to zero. This accomplishes the goal of rejecting outlying measurements.

4.1.3 Outlier rejection summary

When the update step (4.3) is performed repeatedly, the 0 k's converge to xt*, an

optimal estimate of sensor parameters and event locations that detects and ignores

outlying measurements. This improves LaSLAT's performance in the presence of
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environmental ambient sounds or echoes due to physical obstacles.

4.2 Specifying Mobile Dynamics

In section 3.4, we assumed that the mobile moved arbitrarily. However, in some cases

(for instance when tracking targets that move continuously and trigger events fre-

quently), one may improve performance by explicitly requiring that successive events

occur close to each other. In this section, we present a technique for adding such a

constraint to LaSLAT.

As shown in section 3.4, the prior distribution for LaSLAT p(xt+1 yt, yoId) is com-

puted according to:

p(xt+1 1yod, yt) = p(et+1)q(syold, yt). (4.6)

Until now, we have defined p(et'+) to be a Gaussian with high covariance. Let

ej+1= [e-T ej ej], where ej and ej represent the velocity and acceleration of the

mobile at the time of event j, and define e'g+1 to be the estimated parameters of the

event immediately preceding batch t + 1. Then we can express p(et+l) as follows:

n

p(et+1) = flp(et 1 e +') (4.7)
j=1

We enforce smoothness by setting p(et+lejli) to a Gaussian with mean Aej+

and covariance oI. A is a matrix that expresses the expected physical motion of the

mobile. We assume that events occur at a constant rate, and ignore quadratic terms,

allowing us to use the matrix:

I 1 0

A= o I I

0 0 1
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as the dynamics matrix. This matrix has the advantage of being computationally

straightforward while having the desired effect of smoothing the event positions. ad

is a tunable constant that allows us to vary the effect of the smoothness prior versus

the effect of measurement data on the events' position estimates.

Thus, we can rewrite equation (4.7) as:

p(et ) oc exp [2 Iet - Aet-I2

This term can be rewritten in the form:

p(et+1) ox exp (e- Td)B(et - PId)1

where the block tridiagonal matrix B and vector Pd are constants expressible in terms

of A and et+1:

I +ATA -AT
-A

1 -A '- .
B= -APd=B-1 0 e*+

d-. I+ATA -AT

-A I - -

B and vector pd can then incorporated into equation (3.9) as follows:

E [X t+1 C -yold] = E [soldy]

Cov- 1 [xt+1 yold] = [Cov1[sIYold] 1
0 B

As we demonstrate in chapter 6, this smoothness constraint can noticeably im-

prove performance on occasional poorly measured events.

Unfortunately, the smoothness constraint complicates the marginalization step

shown in equation (3.8), since the inverted matrix Q-1 is no longer diagonal. Conse-
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quently, the smoothness prior is recommended for use only when LaSLAT computa-

tions are being performed centrally.
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Chapter 5

Implementation

Our current implementation sends measurement batches to a central computer; how-

ever, we show here that LaSLAT can be feasibly distributed if desired. We also

explore running time bounds for both a distributed implementation and a centralized

implementation. Finally, we discuss the trade-off between centralized and distributed

processing in LaSLAT.

5.1 Definitions

In order to quantify LaSLAT's performance, several definitions are required. Let

niocal be the expected number of sensors within a one-hop neighborhood of a sensor

s. The one-hop neighborhood can be thought of as a circle around s whose radius

is two times the sensor's maximum sensing range. Thus, the one-hop neighborhood

contains all sensors that can sense an event in common with s. We assume that s

can communicate directly with all of the sensors in this one-hop neighborhood.

Furthermore, we define nevents to be the number of events observed by s in a single

batch of measurements. nevents can be held constant by varying the amount of time

between batches.

Note that niocal and nevents are constants fixed at deployment by the network

designer. This means that asymptotic bounds in niocal and nevents are in some sense

constant bounds, since they enable sensors to be provisioned with an amount of
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memory and processing power that is guaranteed sufficient no matter how many

events the network observes.

5.2 Graph Locality

The Gaussian prior p(xtlyold) is completely summarized by a vector of means x'* and

an inverse covariance Q.

The symmetric inverse covariance matrix Q = [' ; defines an undirected

graph between sensors and events. Two vertices in this graph are connected if their

corresponding block in Q is non-zero. We say Q has local connectivity if the cor-

responding graph only connects sensors that are within one hop of each other and

connects events only to the sensors that measured the event. As we will show, in

LaSLAT Q always has local connectivity.

5.3 Distributability of the Prior

The mean vector is straightforward to distribute: each sensor simply stores its own

mean, those of its one hop neighbors, and those of all nearby events. Thus, storage

for means requires at most O(niocal + nevents) per sensor.

Q requires more careful consideration, but is also distributable. If Q has local

connectivity, each row of Q corresponding to a sensor has about nIocai+nevents non-zero

entries. Each row corresponding to an event has less than nlOCa non-zero elements,

since only sensors within the neighborhood of the event obtain measurements to it.

Locally connected matrices are therefore easy to distribute. Each sensor stores its

own rows in Q. Event rows are delegated randomly to a sensor for storage, leaving

sensor storing about nevents/niocal event rows. The amount of data stored by each

sensor is consequently O(niocal + nevents). If the computation is performed centrally,

then the central computer must store this same amount of data per sensor in the

network.
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5.4 Performing Computations

LaSLAT consists of two significant computational steps: incorporating measurements

and applying the dynamics model. As formulated in this paper, these steps can be

performed using only local communication between sensors that have witnessed a

common event. Furthermore, these operations retain local connectivity in the prior

inverse covariance matrix Q.

5.4.1 Measurement incorporation

The principal operation involved in incorporating new measurements is a Newton-

Raphson iteration, shown in equation (B.3). Each Newton-Raphson iteration has

two parts. First a matrix and vector must be computed based on equation (B.3).

Then, a least squares optimization must be performed.

The matrix and vector can be computed locally, since they require only the parts

of Q and x'* that are found locally and the measurements to any local events. The

communication and time costs for each are proportional to nevents * niocal, which is the

minimum time required for each sensor to broadcast new measurements to neighboring

sensors and receive their measurements in return. It is similarly the minimum time

for all sensors to transmit their measurements to a central computer.

Once the matrix and vector are computed, the least squares optimization can be

performed using Gauss-Seidel iterations [2]. Gauss-Seidel is guaranteed to converge

when solving symmetric positive definite systems of equations like those found in

LaSLAT. Each iteration of Gauss-Seidel requires O(niocai) computation and 0(1)

radio messages per sensor and event when distributed, or O(n * nfocal) computation

when centralized, where n is the total number of sensors and events. In practice,

we find that Gauss-Seidel converges in a few tens of iterations for our systems, since

LaSLAT does not require high precision convergence.

Gauss-Seidel requires that sensors perform their processing in a consistent order,

which diminishes the potential parallelization of the least squares computation. How-

ever, with a constant bound on the number of Gauss-Seidel iterations, the total time
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required for each distributed Newton-Raphson iteration is O(n * niocai). Note that

this is not a tight upper bound: as the sensor parameters begin to converge, many

parameters will not need to be updated every batch. This increases the amount

of parallelism that can be exploited, allowing the total running time to approach

O(nocal), the amount of time required to simply locate the newest events. See [2] for

more details and an in-depth description of Gauss-Seidel iterations.

5.4.2 Event marginalization

Marginalization is performed using equation (3.8):

Cov- 1 [slyold] = Qs - QstQ- 1Qts.

It is distributable because each sensor row is updated only on behalf of local events.

Since Qset and Qet, are sparse and Qet is block diagonal, the total time required is

only O(ntocai * nevents) per sensor. All the computations can occur in parallel.

Unfortunately, the smooth dynamics extension developed in section 4.2 produces

an fet that is block tridiagonal and has a dense matrix inverse in general. As a result,

the smooth dynamics extension ruins local connectivity. Thus, smooth dynamics may

only be employed when LaSLAT computations are performed at a central computer.

5.4.3 Preservation of local connectivity

It remains to be shown that the LaSLAT computations retain local connectivity in

Q when the smooth dynamics extension is not employed. This is easily confirmed

by induction on Q.. The initial prior has Q, = o-oI, which is diagonal and therefore

locally connected. As we show in the appendix, the measurement incorporation and

Gaussian approximation steps do not change the connectivity of Q. The connectivity

of Q. only changes when events are marginalized out of the Gaussian prediction by

equation (3.8). It can be verified, however, that the -Qe -Qlje term added to

Q, only affects elements of Q, whose corresponding sensors observed an event in

common during the most recent batch. As a result, Q, retains local connectivity
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during LaSLAT operations.

5.4.4 LaSLAT convergence

Each LaSLAT batch requires at least one Newton-Raphson optimization, which con-

sists of several iterations. However, these iterations need not continue until the so-

lution is fully converged. In fact, if each LaSLAT batch performs only one Newton-

Raphson iteration, then the resulting algorithm is almost precisely the Extended

Kalman Filter (EKF) form of SLAT. As we show in chapter 6, additional Newton-

Raphson iterations substantially improve performance. However, little performance

is lost if the number of iterations is bounded at a small constant. In our experiments,

Newton-Raphson often converged in less than ten iterations. In two dimensions, fre-

quently as few as three or four were required for convergence. Thus, the number of

iterations may be treated as a constant factor.

When using measurement outlier rejection (section 4.1), even less Newton-Raphson

iterations are required per optimization, since the EM optimization runs Newton-

Raphson repeatedly. The EM optimization remains distributable, since the only

additional processing step is the computation of measurement weights.

5.5 Centralized vs. Distributed Implementation

As we have demonstrated, LaSLAT is amenable to both centralized and distributed

implementation. In a centralized implementation, the network must transport all

range observations to a central computer, which performs LaSLAT computations and

optionally returns position estimates to the network. In a distributed implementation,

the LaSLAT computations are performed in-network.

Consider a small network in a controlled environment such as a building. The

experiments in chapter 6 are all representative of such a scenario. In this case, the

central computer can be positioned within a single radio hop of all or nearly all sensors.

In this case, the best performance is obtained by transferring all the measurements

to the central computer. Centralization in this case reduces the radio bandwidth,
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memory, and processing requirements on the sensors, decreasing the hardware cost

of the network. Currently, sensors remain somewhat expensive and radio bandwidth

remains a scarce commodity, so centralization is very desirable.

As the network grows larger distributed computation begins to look compelling.

When multiple hops are required to transmit data to the central computer, the energy

and bandwidth cost of centralization increases, particularly for nodes near the central

computer. In this case, distributing LaSLAT may save power by keeping computa-

tion and communication local. Furthermore, in some scenarios (such as battlefield

applications), it may be impossible to provision the network with a central computer,

in which case distributed computation is necessary.

In many cases, however, centralized computation is straightforward and desirable

even in large networks. For instance, in large indoor networks, it is possible to use pre-

existing high-speed wireless or wired networks to transmit data rapidly to a central

computer, which need not be co-located with the network. In these environments, the

network forms a hierarchy in which sensors transmit directly to a base station, which

in turn transmits to the central computer over a high-speed link. This architecture

has the advantage that the individual sensors need relatively few capabilities. The

tracking sensor required for LaSLAT, for example, could be little more than a radio,

an ultrasound receiver, and a tone detector. Such a limited sensor is likely to be

cheaper and require less power than a sensor with enough processing power, memory,

and radio bandwidth to perform distributed computations. The savings may be used

to provision a smaller number of computation nodes or base stations with a high

speed link or fast processor and a more substantial power supply. Furthermore, the

hierarchical network is better suited to delivering tracking data from the network to

end users, since end users are more likely to be connected to a high speed network

than to the sensor network's radio system.

LaSLAT has been designed to perform well with either a centralized or a dis-

tributed implementation. The results in this thesis were all computed using the cen-

tralized variant. The distributed variant performs exactly the same computations,

and can therefore be expected to achieve the same results.
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Chapter 6

Results

Our experiments use the Cricket ranging system [1] (see figure 6-1). Sensor Crickets

are placed in an area, and one Cricket is attached to a mobile. The mobile Cricket

periodically emits an event (a radio and ultra-sound pulse) at a rate between one and

three per second. At each sensor, the difference in arrival time of these two signals

is proportional to the distance between the sensor and mobile. The crickets can

therefore estimate ranges from these arrival times. No range measurements between

the sensor Crickets are collected. The measurements are transmitted to a desktop

machine, which processes them in batches using LaSLAT, which we implemented in

Java. The ultra-sound sensor on a Cricket occupies a 1 cm by 2 cm area on the circuit

Figure 6-1: The Cricket sensor node used in our experiments.
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Figure 6-2: Small network setup. Six sensors (squares) are arranged around a rect-
angular enclosure. A camera captured the ground truth trajectory of the ROOMBA.
The ROOMBA followed the trajectory depicted.

board, so it difficult to estimate the ground truth location of a Cricket beyond that

accuracy.

In all of the experiments, LaSLAT recovered sensor locations in a relative coor-

dinate system that can be aligned to a global coordinate system using a single rigid

transformation (a rotation and translation). In order to compare LaSLAT's results

to measured ground truth, we computed the necessary rigid transformation using the

method described in [15].

6.1 ROOMBA Experiment

Our first experiment used the same setup as [22]. Six sensor crickets were placed

around a rectangular enclosure 2.1 meters by 1.6 meters. A ROOMBA robotic vac-

uum cleaner with the mobile Cricket attached was allowed to move freely within the

enclosure, generating about 250 events. See Figure 6-2.

Most events were measured by all 6 sensors. An initial localization guess was ob-

tained from radio connectivity information using the initialization routine of [29]. The

resulting average localization error in this initial guess was 66 cm. This initial guess
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Figure 6-3: Recovered trajectory and sensor positions. Circles are guesses of initial
sensor locations obtained from radio connectivity (appendix A). LaSLAT processed
measurements in batches of 30 events, and recovered sensor locations depicted by
crosses. The trajectory is also correctly recovered. LaSLAT improves considerably
on the initial localization guess obtained from connectivity. After a global rotation
and translation, the average localization error for the sensors was 1.8 cm, which is
within the error tolerance of the ground truth.

was used as a prior and an initial iterate for LaSLAT. LaSLAT incorporated range

measurements in batches of 30. Each mode finding operation required an average of

only 2.8 Newton-Raphson steps. Figure 6-3 shows the estimated sensor localizations

and trajectory. Since the output had an arbitrary rotation and translation, it was

rigidly aligned to fit the rotation and origin of the ground truth using the algorithm

described in [15]. The final localization error was 1.8 cm, averaged over the sensor

nodes. This is within the error tolerance of the ground truth.

6.2 Two Dimensional Experiments

In the remainder of our two dimensional experiments, sensors were placed facing

upwards on the floor of the coverage area. The mobile cricket was manually moved

through the network. It was suspended at a constant height of about 190 centimeters,

and oriented facing the floor. Due to the conical propagation of ultrasound from

the mobile, this approximated a radial spread of sound in two dimensions. Range

51



Figure 6-4: Sensor locations and mobile trajectory for a medium size network. Circles
outline each of the 27 sensor nodes. Markers on the trajectory depict the location
of events. 250 of the 1500 events are shown, with consecutive events connected by
a line. The mobile was offset from the ground plane and could pass over nodes. To
generate this figure, a homography that accounts for the camera transformation was
used to project real-world coordinates to image coordinates.

measurements gathered in these experiments were adjusted in a pre-processing phase

to remove the effect of relative height.

6.2.1 27 node experiment

Our second experiment involved a larger network with 27 Cricket sensor nodes de-

ployed in a 7 m by 7 m room. Whereas in the previous experiment the nodes were

on the perimeter of the ROOMBA mobile's trajectory, in this experiment, we manu-

ally pushed a mobile through the network, generating about 1500 events. Figure 6-4

shows the location of the sensors and part of the trajectory of the mobile projected

on a top view picture of the setup.

Each event was heard by about 10 sensors. Figures 6-5(a)-(d) show localization

and tracking output as event batches are processed, along with the ground truth

and estimated mobile trajectories for that batch. Error ellipses show unit standard
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Figure 6-5: The output of LaSLAT after incorporating (a) 50, (b) 120, (c) 160, and
(d) 1510 events. The batch size was 10. Recovered mobile trajectory (crosses) and
ground truth mobile trajectory (solid line) for the latest batch are connected by a

line to show correspondences. Estimated mobile locations (dark rectangles) and the

ground truth mobile locations (light rectangles) are also connected with a line to

show correspondence. Error ellipses shrink as more data becomes available. Between

events 120 and 160 (sub-figures (b) and (c)), the mobile swept around the bottom of

the network, and the error ellipses and localization error diminished for those sensors.
Tracking improved as sensors became better localized.
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Figure 6-6: Final LaSLAT localization result, with batch size of 10. Crosses show
estimated sensor locations. These are correctly estimated to fall on the corresponding
sensor. Average localization is 1.9 cm.

deviation contours for each sensor node. Nodes have high uncertainty at early stages,

but when the mobile passes near a node, its error ellipse shrinks appropriately. In

this experiment, a measurement bias of about 23 cm was computed for each sensor

node. Figure 6-6 shows the final localization of the nodes, reprojected on the picture

of the setup. This experiment used batches of 10 measurements and produced a

final localization error of 1.9 cm. Since the ground truth is only accurate to a few

centimeters, localization performance is best examined visually via Figure 6-6.

We compared LaSLAT using varying batch sizes to the Extended Kalman Filter

(EKF), which is identical to LaSLAT limited to one Newton-Raphson iteration. Fig-

ure 6-7 shows average localization errors as events were processed. The EKF performs

best with no batching (batch size = 1). LaSLAT converges faster and also exhibits

lower steady state localization error. As batch sizes are increased, so does the rate of

convergence of LaSLAT. Batching also improves the final localization error. LaSLAT,

with batch sizes of 1, 10 and 40, produced final localization errors of 3 cm, 1.9 cm,

and 1.6 cm respectively. On average, LaSLAT took 3 Newton-Raphson iterations
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Figure 6-7: Localization error as a function of the number of events observed for EKF

and various batch sizes for LaSLAT. LaSLAT converges more quickly and attains a lower

steady state error than the EKF. Furthermore, larger batch sizes improve the convergence

rate and the steady state error of LaSLAT.
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Figure 6-8: A sparser 2D sensor network with 49 nodes in a 10m by 17m environment.

to incorporate each batch. The EKF's final localization error was 7.5 cm, which is

outside the error tolerance for the ground truth.

6.2.2 49 node experiment

Figure 6-9 shows localization results on a larger network (49 sensors) deployed over a

larger area (10 m by 17 m). For comparison, the experiment setup is shown in figure

6-8. With about 0.3 sensors per square meter, this network is about half as dense

as the one shown in Figure 6-4, which had about 0.5 sensors per square meter. As

a result, on average only 5 sensors heard each event, and the localization error was

about 7.5 cm. The algorithm also determined a measurement biases of about 20 cm

for all nodes. For all batch sizes, the EKF produced an average localization error of

about 80 cm, showing that the improvement due to Laplace's method can be very
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Figure 6-9: LaSLAT localization result on a sparser sensor network with 49 nodes in a
10m by 17m environment. Crosses indicate the recovered sensor locations, projected
onto the image. The average localization error was 7.5 cm.
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Figure 6-10: The omnidirectional cricket used in three dimensional experiments.

significant.

6.3 Three Dimensional Experiments

It is possible to use LaSLAT to localize and track sensors and mobiles in a three

dimensional environment. We performed two experiments designed to test LaSLAT

in reasonable three dimensional deployments.

For these deployments, crickets were placed on the floor as in the two dimensional

experiments. In addition, crickets were attached to walls using Velcro. A few sensors

were also placed atop furniture in the area. We also modified the mobile cricket

by attaching two additional ultrasound transducers. These transducers more closely

simulate an omnidirectional acoustic pulse than the conic emanation of the standard

cricket transducer. See figure 6-10 for a picture of this modified cricket.

The three dimensional environments present two obstacles that are not present in

the two dimensional experiments. First, the furniture in the area drastically increases

the effect of echoes on range measurement quality. These echoes are suppressed using

the measurement outlier rejection scheme presented in section 4.1. Second, the ini-

tialization algorithm we used in two dimensions [29] does not provide for localization
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Figure 6-11: Smaller environment used for 3D localization experiments.

in 3D. However, we developed a simple extension (see appendix A) to allow us to

initialize LaSLAT satisfactorily.

6.3.1 40 node experiment

In our first three dimensional experiment, we placed 40 crickets on the floor and walls

of a 4 x 6 meter room, which contained all of its normal furniture: tables, chairs,

printers, and a refrigerator. This mobile was carried by hand through the room and

moved completely arbitrarily, including changes in speed, loops, and twists. Each

event was observed by on average 17 sensors. The network is shown in figure 6-11.

Localization results are plotted in figure 6-12. LaSLAT localized sensors to within

7 cm while successfully tracking the path of the mobile in 3D. Much of this error is

accounted for by the difficulty of measuring ground truth in this environment.

The best 3D results were obtained using a relatively large batch size of 250 events.

Smaller batch sizes lose too much information in the Gaussian approximation used to

preserve state between batches, causing LaSLAT to converge slowly. In 3D, the opti-

mization (3.6) has a more complicated structure due to the additional unknown pa-

rameters, which larger batches help clarify. Thus, a large initial batch helps LaSLAT
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Figure 6-12: LaSLAT results plotted on a picture of the network. Plus signs indicate
the estimated 3D positions of the sensors. A small portion of the mobile trajectory
(about 80 events) is plotted as asterisks connected by a dotted line. LaSLAT localized
sensors to within 7 cm.

make rapid progress towards an accurate estimate. After the first few batches, the

batch size may be decreased to speed computation, since the later batches need only

refine the already fairly high quality estimate.

The 3D environment shown in figure 6-11 is considerably less sanguine to ultra-

sound time-of-flight ranging than the two dimensional environments. Most events

caused several very erroneous measurements. Figure 6-13 shows a partial screen cap-

ture from our Java-based LaSLAT implementation. The dark line indicates a portion

of the trajectory recovered by LaSLAT. The light line is recovered using multilat-

eration on the ground truth sensor positions and the raw measurement data, and

therefore serves as a baseline tracking algorithm. LaSLAT's improved tracking per-

formance is due to the combination of sensor calibration (section 3.2), measurement

outlier rejection (section 4.1), and smooth dynamics (section 4.2). Some of these

techniques can be and have been adapted to pure tracking applications. However,

LaSLAT is able to perform the same high fidelity tracking while simultaneously lo-

calizing and calibrating the network.

We ran LaSLAT both with and without smooth dynamics and outlier rejection to
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Figure 6-13: Sample LaSLAT 3D tracking results. The black line shows the mobile
trajectory recovered by LaSLAT on the 40 node 3D topology. The gray line shows the
mobile trajectory recovered using multilateration on raw measurements and ground
truth sensor positions. Stars represent the position of the mobile at the time of an
event. Approximately three events occurred every second. Note that LaSLAT very
noticeably outperforms the naive tracking algorithm, even though it does not know
the sensor positions a priori.
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observe the techniques' impacts on localization accuracy. The results for the 40-node

3D experiment are graphed in figure 6-14. Note that LaSLAT with smooth dynamics

and outlier rejection performs best, with a final accuracy of less than 7 centimeters.

Smooth dynamics makes relatively little difference to sensor localization, as its

final average position error is 8 centimeters. This is accounted for by the fact that

smooth dynamics primarily affects events that deviate from their neighbors. Since

most events tend to be accurately placed without requiring smooth mobile dynamics,

correcting the few deviants events has only a small effect on the sensor position

estimates.

However, measurement outlier rejection makes a very substantial difference on

this data set. Without outlier rejection, the final localization estimate has a mean

error of 31 centimeters. This suggests that the outlier rejection technique presented

in section 4.1 is effective at detecting and de-emphasizing errant measurements.

For reference, we also plot the performance of the Extended Kalman Filter (EKF)

on this 40-node experiment. The final EKF estimate has on average over half a meter

of localization error.

6.3.2 55 node experiment

In our second 3D experiment, we used 55 sensors to cover the floor and walls of a

7 x 10 meter room. Since the sensors were packed less densely, on average only 11

sensors witnessed each event. A portion of the network is shown in figure 6-15, and

the results are plotted in figure 6-16. LaSLAT localized the sensors to within 7 cm,

consistent with the previous experiment.

This environment was better suited to the Cricket ultrasound ranging system since

it contained few obstacles. Consequently, sensors reported fewer bad measurements.

Nevertheless, enough poor measurements were taken that outlier rejection improved

performance noticeably.
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Figure 6-14: Performance impact of dynamics and outlier rejection on a 3D dataset.
Note that all four variants of LaSLAT outperform the Extended Kalman Filter (EKF)
implementation.

Figure 6-15: Part of the 55 node network for 3D localization experiments. Sensors
are circled in blue.
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Figure 6-16: Results for the 55 node 3D experiment. Estimated positions are plotted
with crosses, and a portion of the recovered mobile trajectory is plotted using asterisks
and a dotted line. LaSLAT localized this network with a mean error of 7 centimeters.
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Chapter 7

Future Work

In addition to the features developed in this thesis, LaSLAT raises several interesting

possibilities for future work.

7.1 Hallway Alignment

As we demonstrated in chapter 6, LaSLAT performs very well in networks that have

a reasonably convex shape. However, its performance diminishes when the network is

divided into convex areas separated by narrow connections: for instance, two rooms

separated by a narrow hallway. In these topologies, LaSLAT accurately localizes

sensors in the rooms with respect to other sensors in the same room. However,

it cannot always orient the rooms as a whole with respect to each other. It appears

that the measurements gathered from events in and around the hallway area typically

fail to unambiguously resolve the alignment. Augmenting LaSLAT using a coordinate

system stitching approach similar to [7,21,22,24,31] could help resolve this ambiguity.

7.2 Stationary Targets

In our experiments, the mobile moved continuously for the majority of the experiment.

However, real mobiles can be expected to remain stationary, potentially for lengthy

periods of time. After LaSLAT has been running for some time, this poses no problem.
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However, during the first few batches of LaSLAT difficulties can arise. A stationary

mobile causes a large number of highly similar events. This results in a batch of

events that resolves few ambiguities in the sensor positions. This leads in turn to a

multi-modal posterior whose complexity is lost in LaSLAT's Gaussian approximation.

As a result, LaSLAT's estimate may converge artificially to a very poor estimate. The

corresponding prediction has low covariance since it is the product of many events,

but is nevertheless quite inaccurate.

There are a number of techniques available to resolve this problem. First, it may

be possible to use a heuristic over the collected measurements or the LaSLAT results

to detect uninformative batches of events. Bad batches can then be ignored. In effect,

LaSLAT would wait to begin localization until good quality data becomes available.

Alternatively, we could use a multi-modal posterior approximation instead of the

Gaussian approach detailed in this thesis.

7.3 Multi-modal Posterior Approximation

The Gaussian approximation described in section 3.3 has an important disadvantage:

it cannot accurately represent a multi-modal posterior distribution. Consequently,

LaSLAT requires that the initial measurement batches identify a single high prob-

ability mode. This necessity can be diminished by using a different approximation

such as a mixture of Gaussians or a particle filter. These approximations can model

multi-modal distributions; however, they increase the processing load for a LaSLAT

batch.

We were not able to experiment with these types of representation for this thesis.

However, they may be necessary for accurate localization of some networks, especially

when areas have few measurements or the mobile is somewhat stationary. They may

also permit reduced batch sizes when performing three dimensional SLAT.
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7.4 Low Quality Hardware

In this thesis, we used the Cricket platform [1] for all of our experiments. The Cricket

ranging algorithm is highly accurate in the absence of echoes, achieving 1-2 centimeter

accuracy on ranges of up to ten meters. However, we suspect that LaSLAT will remain

effective when less accurate hardware is used.

One significant cause of error in some acoustic time of flight ranging systems can

be manufacturing differences between sensors. In our experiments with the Cricket

system, we encountered no need to model such inter-sensor differences explicitly. In

fact, as we indicated in section 3.5, we found it helpful to encourage sensor measure-

ment biases to be similar. However, [35 shows that some types of acoustic ranging

can benefit from careful modeling of individual sensor characteristics. LaSLAT seems

well-suited to perform this type of analysis.

We have shown in this thesis that LaSLAT performs very well on Cricket networks

that are deployed with reasonable density in indoor environments; however, we are

very interested in determining the minimal hardware profile required for effective use

of LaSLAT. This means performing additional experiments on networks with reduced

sensor density, event frequency, and measurement accuracy. The low density exper-

iments presented in chapter 6 represent initial research in this area. Nevertheless,

much remains to be done, especially with regard to the use of cheaper and lower

quality sensor hardware.

7.5 Sensor Dynamics

LaSLAT is well-suited to localizing moving sensors. In section 3.4, we stated the

assumption that sensor positions are stationary. However, LaSLAT could easily be

adapted to use the more relaxed constraint that sensors may move over time. This

sensor mobility constraint might resemble the smooth dynamics extension discussed in

section 4.2. This would allow LaSLAT based tracking networks even greater flexibility:

a user could move sensors after deployment to optimize the network. If sensors were
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able to move autonomously, sensors could automatically migrate to achieve the desired

quality of sensor coverage.

7.6 Acoustic-only LaSLAT

This thesis has been written under the assumption that sensors compute ranges using

Time Difference of Arrival (TDoA) ranging; thus, the mobile emits a tagged radio

pulse followed by an acoustic pulse. Sensors use the difference in time of arrival

between the radio message and the acoustic pulse to estimate distance.

However, the measurement model (section 3.2) can be adapted to use an acoustic

pulse alone. In this case, the sensors must be time synchronized, which can be done

using an off-the-shelf time synchronization system such as [18]. The sensors measure

the arrival times of acoustic pulses, which they report to LaSLAT. These arrival times

can be seen as a function of the true distance between the event and the sensor and

the true time of the event. The event time becomes an additional parameter to be

estimated by the Bayesian filter. Such a measurement model would allow SLAT to

localize and track using only acoustic time of arrival. More generally, it may be

possible to localize using ambient environmental noise, as long as recognizable noises

are witnessed by enough sensors.

7.7 Distributed Implementation

The results provided in chapter 6 were generated using a centralized implementation.

Measurements were taken in a real network, then exfiltrated to a laptop for processing.

However, as we show in chapter 5, LaSLAT can be feasibly distributed to perform

the necessary computations in-network. As we argue in that section, it is not always

desirable to distribute LaSLAT processing; however, a distributed implementation

will allow LaSLAT to be of assistance in networks where centralized computation is

infeasible.
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Chapter 8

Conclusion

In this thesis we presented LaSLAT, a sensor network algorithm that simultaneously

localizes sensors, calibrates sensing hardware, and tracks unconstrained moving tar-

gets using only range measurements between the sensors and the mobile. On both

two- and three-dimensional networks using the Cricket ranging system, LaSLAT was

able to localize sensors to within several centimeters of their ground truth positions

while recovering a range measurement bias for each sensor and the complete trajectory

of the target.

LaSLAT is based on a Bayesian filter, which updates a probability distribution

over the quantities of interest as measurements arrive. The algorithm is distributable,

and requires only a constant amount of space with respect to the number of mea-

surements incorporated. LaSLAT is easy to adapt to new types of hardware and

new physical environments due to its use of intuitive probability distributions: one

adaptation demonstrated in this thesis uses a mixture measurement model to detect

and compensate for bad acoustic range measurements due to echoes.

Localization and calibration using an unconstrained mobile offers several advan-

tages over localization and calibration using inter-sensor ranges. Since the mobile

may move freely, the measurements taken by the sensors have greater diversity and

therefore diminished likelihood of systematic errors. In particular, the mobile can

help overcome interference from fixed obstacles such as furniture.

Use of a mobile also means that the sensors are no longer constrained to have
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line of sight to each other. This enables a broader range of network deployments: in

particular, it allows sensors to be placed to optimize tracking coverage rather than to

accommodate the peculiarities of a localization algorithm.

LaSLAT in its current form could be used to facilitate deployment of indoor nav-

igation systems, either for human use or as a guidance system for mobile robots.

Using LaSLAT, the sensors for such a system could be deployed in an ad-hoc fash-

ion on walls, floors, or ceilings. They could then use the movements of persons to

be tracked (i.e. targets) to localize and calibrate in-place, forming a high-precision

location service with little human effort.

LaSLAT also suggests an interesting automated sensor deployment system using

a mobile robot. Such a robot would survey its environment, periodically dropping

sensors. The sensors would provide high quality landmarks for the robot's mapping

system, while the robot provided a moving target for LaSLAT-based localization

of the sensors. The sensors could even provide a long term record of the mapping

operation, which they could propagate to other robots not tasked with surveying.

While many impediments remain, LaSLAT is an important step toward cheap,

easily deployable, and accurate sensor networks for target tracking.
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Appendix A

Initialization

Initialization plays an important role in LaSLAT. As several authors [22,29] have ob-

served, inferring locations using distance measurements can suffer from local minima.

The Newton-Raphson optimization described in appendix B does not always find the

globally minimal positioning. Rather, it finds a minimum near its initial value, which

may or may not be the global minimum.

This problem is typically solved in one of two ways. The first method involves

running the optimization several times using different random choices of initial value.

The best result from these optimizations is taken as the global minimum.

In the second method, which we use in LaSLAT, the initial iterate is chosen intelli-

gently to be close to the true solution. As a result, the Newton-Raphson optimization

converges to the global minimum on the first try. After the first LaSLAT iteration,

the estimate from the previous iteration is generally a good initial iterate for Newton-

Raphson. However, we depend on a separate initialization algorithm to provide an

initial iterate for the first LaSLAT iteration. In particular, we use a distributed initial-

ization algorithm suggested by Priyantha et al. [29]. We have also experimented with

techniques such as gradient multilateration [23] and multidimensional scaling [17]. In

our experience, the algorithm from [29] offered the best performance. This algorithm

provides a coarse position estimation for the sensors in the network by defining a

polar coordinate system based on hop counts between specially chosen sensors. It is

described in detail below.
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A.1 Initialization Using Radio Connectivity

Let hij be the minimum number of radio hops required to forward a

sensor i to sensor j. Perform the following steps:

1. Choose node no to be the sensor with minimal ID. Propagate a

no to compute ho,k for all k.

2. Choose node ni to be the sensor k with maximal ho,k, breaking

is one "corner" of the network. Propagate a gradient from nj.

3. Choose node n2 to be the sensor k with maximal hl,k, breaking

is the corner opposite nj. Propagate a gradient from n 2 -

4. Choose node n 3 to be the sensor k that minimizes Ih2,k

by the sum h2,k + hl,k (any further ties are resolved by

between ni and n2. Propagate a gradient from n 3 .

5. Choose node n 4 to be the sensor k that minimizes Ih2,k

by maximizing h3,k (any further ties are resolved by ID).

Propagate a gradient from n4.

- hi,ka,

ID). n.-

message from

gradient from

ties by ID. ni

ties by ID. n 2

breaking ties

is the corner

- hl,kl, breaking ties

n 4 is the final corner.

6. Choose node n 5 to be the sensor k that minimizes 1h2,k - hi,kl +-h4, - h3,kI,

breaking ties by ID. This sensor is closest to the center of the network. Propa-

gate a gradient from n5 .

7. For each sensor k, define Pk = hs,k * R, and tan(Ok) = , where R is the

maximum range of the sensor's radio. Compute the position s' by converting

the polar coordinate (pk, Ok) to rectangular coordinates.

This initialization algorithm tends to be highly inaccurate (see figure A-1). How-

ever, the chosen positions tend to help the LaSLAT optimization avoid local minima

that decrease accuracy. Our specific choice of initialization is somewhat irrelevant -

any reasonably accurate localization algorithm could be substituted.
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Figure A-1: Initialization results for the 27 node 2D experimental topology. Initial
position estimates are marked with circles. Lines are drawn from these estimates to
the corresponding ground truth sensor locations. The average position estimate error
is 70 cm.
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A.2 Initialization in 3D

The algorithm described in the previous section is not designed to localize sensor

configurations that have height differences. In general, most two dimensional local-

ization algorithms extend poorly to practical three dimensional topologies. Most two

dimensional topologies resemble a "cloud" of sensors - sensors are evenly scattered

throughout a generally convex area. In three dimensions, this is typically infeasible,

especially indoors. Instead, practical deployments look more like figure 6-11, where

sensors are placed mostly on walls and either the floor or the ceiling. As a result, naive

three dimensional extensions to 2D localization algorithms such as [11, 17,22, 29, 31]

tend to perform badly on real networks.

We have developed a simple method of extending these algorithms to three dimen-

sions, using a single additional bit of information that indicates whether a sensor is

placed on a floor or a wall. This information could be obtained by a relatively cheap

and imprecise orientation sensor on each node or by manual configuration. Also, it

is probable that in an indoor environment the form factor of the sensors will vary

between wall sensors and floor sensors, making manual configuration straightforward.

If the radio range is sufficiently small (this may be accomplished by temporarily

reducing the power of the sensors' radios), a 3D topology like figure 6-11 will appear

to be two dimensional from the perspective of radio connectivity, where wall sen-

sors appear at the outer extremities of the topology. In this case, a two dimensional

localization algorithm such as the one described in the previous section may be ap-

plied. As a post-processing step, the regions of the two dimensional plane containing

wall sensors may be "folded" upwards into the height dimension to approximate the

structure of the 3D environment.

In our experience so far, this trivial modification allows algorithms such as [29] to

be successfully used in 3D LaSLAT.
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Appendix B

Newton-Raphson

In this appendix, we show how to optimize equation (3.6) using the Newton-Raphson

iterative optimization algorithm. We also derive the curvature of the negative log

posterior required for Laplace's method (section 3.3), and show that mode finding

preserves local connectivity.

B.1 Finding a Mode

Equation (3.6) can be expressed in the form of non-linear least squares. Let fij(x) =

||sT - ej 1| + sq, and define f(x) as a column vector consisting of all fij(x). Using

QX = Cov- 1 [xtlyoId], and px = E [xtlyold], we can write equation (3.6) as:

1
arg min 12 11f (x 2 'l + (x - p-x)'Qx(x - px) (B. 1)x a

Each iteration of Newton-Raphson maps an iterate x(t) to the next iterate x(t+1) by

approximating (B.1) with a linearization about x(t), then optimizing over x:

x(t+1) = arg min - Vf tax - b 2 + (x - Px)TQx(x - px), (B.2)

where the matrix Vf W is the derivative of f with respect to x at x(t), and the column

vector b = Vf M x(') - f(x(t)) - yt.
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Equation (B.2) is a linear least squares problem in terms of x. Its solution can be

found by setting the derivative with respect to x to zero. This leaves a linear problem

that can be solved by matrix inversion:

1 _1[Q 1Vf(t)T Vf(t)1 x ~~ Vf ()Tb[Qx + 02 JX = x + 2 b. (B.3)

Furthermore, differentiating (B.2) one more time results in H = Qx+ Vf(t)TVf(t),

which is required for Laplace's method (section 3.3). Since (B.2) is an approximation

to the negative log posterior (3.6), H serves as an approximation to its Hessian at

x(t).

B.2 Locality of Mode Finding

Because the true distance fij depends only on sensor i and event location j, each

row of Vf(t) is made up of zeros, except at locations corresponding to the ith sensor

and the jth event. Thus Vf(t)TVf(t) has local connectivity. If Q, = Cov- 1 [xt yold]

has local connectivity, then the updated covariance matrix Cov- 1 [xtlyod] = Qx +

Vf(t)TVf(t) /a 2 also has local connectivity. Therefore as claimed in chapter 5, incor-

porating a batch of measurements preserves local connectivity.
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