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Abstract
Malignant pleural mesothelioma is a rare and lethal form of cancer affecting the
external lining of the lungs. Extrapleural pneumonectomy (EPP), which involves the
removal of the affected lung, is one of the few treatments that has been shown to have
some effectiveness in treatment of the disease [39], but this procedure carries with it
a high risk of mortality and morbidity [8]. This paper is concerned with building
models using gene expression levels to predict patient survival following EPP; these
models could potentially be used to guide patient treatment. A study by Gordon et
al built a predictor based on ratios of gene expression levels that was 88% accurate
on the set of 29 independent test samples, in terms of classifying whether or not the
patients survived shorter or longer than the median survival [15]. These results were
recreated both on the original data set used by Gordon et al and on a newer data
set which contained the same samples but was generated using newer software. The
predictors were evaluated using N-fold cross validation. In addition, other methods
of variable selection and machine learning were investigated to build different types
of predictive models. These analyses used a random training set from the newer data
set. These models were evaluated using N-fold cross validation and the best of each
of the four main types of models - decision trees, logistic regression, artificial neural
networks, and support vector machines - were tested using a small set of samples
excluded from the training set. Of these four models, the neural network with eight
hidden neurons and weight decay regularization performed the best, achieving a zero
cross validation error rate and, on the test set, 71% accuracy, an ROC area of .67
and a logrank p value of .219. The support vector machine model with linear kernel
also had zero cross validation error and, on the test set, a 71% accuracy and an ROC
area of .67 but had a higher logrank p value of .515. These both had a lower cross
validation error than the ratio-based predictors of Gordon et al, which had an N-fold
cross validation error rate of 35%; however, these results may not be comparable
because the neural network and support vector machine used a different training set
than the Gordon et al study. Regression analysis was also performed; the best neural
network model was incorrect by an average of 4.6 months in the six test samples. The
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method of variable selection based on the signal-to-noise ratio of genes originally used
by Golub et al proved more effective when used on the randomly generated training
set than the method involving Student's t tests and fold change used by Gordon et al.
Ultimately, however, these models will need to be evaluated using a large independent
test.

Thesis Supervisor: Lucila Ohno-Machado
Title: Health, Science and Technology, Associate Professor
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Chapter 1

Introduction

Malignant pleural mesothelioma (MPM) is an extremely rare and lethal form of can-

cer which affects the external lining of the lungs. Generally associated with exposure

to asbestos, the disease spreads rapidly; following diagnosis, median survival of pa-

tients with MPM is between nine and thirteen months [8]. Treatment of MPM has

met with very limited success, in part due to the ineffectiveness of radiotherapy and

chemotherapy. Furthermore, the rarity of the disease, coupled with the lack of a

universal staging system for MPM, has made organizing standardized clinical studies

difficult [26].

One treatment that has shown some promise in extending patient life is extrapleu-

ral pneumonectomy (EPP), which involves the removal of the entire affected lung. At

least one study has shown a significant increase in patient survival following EPP; fur-

thermore, chemotherapy and radiotherapy have been shown to be more effective when

used in combination with EPP [39]. However, the high rate of mortality and mor-

bidity associated with the procedure dictates that eligible patients be selected with

care. Ideally, patients with a long expected postoperative survival would undergo

EPP, while those with a shorter expected postoperative survival would be treated

differently to avoid the risks associated with the procedure. Although patient age

and the tumor subtype are loosely correlated with postoperative survival, there are

no reliable predictors of this survival.

The goal of this paper is to build a predictive model for postoperative patient
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survival using the gene expression levels of extracted tumors. The gene expression

levels were collected using microarray slides, which allow for the analysis of thousands

of genes in a single experiment. While the gene expression levels potentially hold a

wealth of information, analysis of expression levels for thousands of genes can be very

difficult, especially when the number of samples is small.

A research study by Gordon et al addressed the problem of predicting postopera-

tive patient survival using gene expression levels. Gordon et al built a simple predictor

based on ratios of gene expression levels; with only four genes, the ratio-based pre-

dictor was able to accurately predict all of the training samples as having a survival

greater than or less than the median survival, and was able to predict an independent

test set with 88% accuracy as well [15]. The analysis described in this paper recre-

ates the results of Gordon et al using both the original data set and a newer gene

expression level data set, which includes the same samples but was produced from

the microarray slides using newer software and so is hopefully more precise.

This paper also describes other machines learning methods for building predictive

models, as well as variable selection techniques for eliminating irrelevant genes. Since

this paper is focused on computer science and artificial intelligence rather than biology

and oncology, the biological roles of the genes used in the predictive models will not be

discussed. Models are built using four popular machine learning methods - decision

trees, logistic regression, artificial neural networks and support vector machines -

and models using different parameters are compared to one another using N-fold

cross validation. The best of each type of model is then applied to a small set

of test samples excluded from the training set; these models are compared based on

sensitivity and specificity, as well as logrank and Cox proportional hazard regression p

values. While this paper is mainly concerned with classification - that is, determining

whether a patient will survive shorter than or longer than the median survival - some

regression analysis - that is, predicting actual survival in months - is preformed as

well; regression model performance is given in terms of average sum of squares error.

The ultimate goal of this analysis is to positively affect quality of life and length of

survival among patients with MPM, since a reliable model could be used in practice to
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guide patient treatment. However, the current unavailability of a large independent

test set means some additional data collection and testing of the constructed models

must be done before any of the predictive models can be safely used in practice.
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Chapter 2

Background

This chapter introduces a number of important concepts used in this paper. Sec-

tion 2.1 introduces the disease being studied, malignant pleural mesothelioma, and

Section 2.2 describes the microarray technology used to collect gene expression data.

Section 2.3 describes the machine learning methods used to build the prognostic mod-

els. Section 2.4 describes the approaches used to narrow down the number of genes

to use as inputs to the predictive models. Lastly, Section 2.5 describes the methods

used to compare the various models built using different machine learning techniques

and different sets of genes.

2.1 Malignant pleural mesothelioma

MPM is a rare form of cancer affecting the pleural cells that form the external lining

of the lungs. As mentioned in Chapter 1, MPM is incurable and extremely aggressive,

spreading rapidly over affected surfaces; median survival after diagnosis is between 9

to 13 months and the five-year survival rate is only 3% [8]. MPM is most often caused

by exposure to asbestos, and the highest incidence of the disease is found among

former shipyard and construction workers, asbestos miners, and workers involved in

insulation and automobile brake manufacturing [2, 8]. While these types of workers

are at risk for a high level of exposure, even a minimal amount of asbestos exposure

in the house can lead to development of the disease [2]. Due to the lengthy latency
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period of the disease - over 30 years in most cases [2] - the average age of affected

patients is approximately 60 years [8].

Besides asbestos, other minerals such as erionite, the simian 40 virus, and exposure

to radiation have been associated with MPM [24]. There may also be a genetic factor

involved in the development of the disease [36]. Despite these other potential causes,

asbestos exposure can be found in approximately 80% of patients with MPM [2]. The

significantly increased use of asbestos following World War II [8], coupled with the

relatively recent ban on the use of asbestos and long latency period of the disease,

means that the incidence of MPM is likely to increase continually in industrialized

countries for the next few decades [36]. Furthermore, asbestos is still being mined in

many parts of Asia [36], suggesting that frequency of MPM will increase soon in that

part of the world as well.

The most common symptoms of MPM include localized chest pain, generally

caused by the cancer invading the chest wall, and shortness of breath. Liquid discharge

from the lung lining, called pleural effusion, will likely be discovered upon clinical

examination. Other symptoms include fatigue, weight loss, coughing, fever, and

profuse sweating [2]. Generally, a biopsy is needed for diagnosis, and can be performed

either by open surgery or by video-assisted thoracoscopy [8]. Due to the non-specific

nature of the symptoms and the invasive procedure needed for diagnosis, it can take

as long as 2 to 3 months from the time symptoms are presented to a physician to the

time when the disease is correctly diagnosed [39].

As the cancer progresses, it will likely invade the chest wall and eventually more

vital areas such as the heart and esophagus [2]. While metastases in distant parts

of the body are found in as many as 80% of patients [26], most patients die of local

complications. These complications include difficulty breathing, inability to eat due

to narcotics needed for pain relief as well as the cancer spreading to the esophagus,

and heart failure due to the cancer invading the heart wall [26].

Treatment for MPM is aptly described as "disappointing" [2]. The rarity of the

disease, along with the lack of uniformity in mesothelioma staging standards, has

made running studies and evaluating treatments difficult [26]. Radiotherapy is gen-
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erally difficult because of breadth of the tumors, not to mention the number of vital

organs in the proximity of the cancer. MPM has also proven very resistant to most

types of chemotherapy [36].

Surgical procedures, however, can be used to control pleural effusions and to reduce

the bulk of the cancer. When used in combination with other types of treatment,

these procedures have been shown to significantly increase patient survival [39]. The

less radical of two available treatments, pleurectomy, involves removal of the pleural

layer. This procedure is effective in controlling effusion and has a mortality rate

of less than 2%; major complications are also fairly uncommon. The more radical

procedure, EPP, involves the removal of an entire lung, and carries a much higher risk

of morbidity and mortality. The mortality rate for EPP is close to 10% [8], and major

complications occur in 24% of patients [26]. However, EPP is able to remove more

of the bulk of the cancer and makes radiotherapy more feasible due to the removed

lung. When used in combination with radiotherapy and chemotherapy, EPP has been

shown to significantly increase patient survival, with one study producing two-year

and five-year survival rates of 38% and 15%, respectively [39]. Furthermore, in the

same study, patients who had the epithelial subtype of MPM - the three subtypes of

MPM are epithelial, sarcomatoid and mixed - had an impressive median survival of

51 months [39].

While EPP has considerable promise in extending patient life and eventually pro-

viding a cure for MPM, the significant risk of morbidity and mortality associated

with the procedure warrants that patient selection be done with care. Although ep-

ithelial subtype and young age are associated with a relatively good prognosis, there

are really no known factors that are reliable predictors of patient survival; one of

the purposes of this work is to find predictors of postoperative patient survival based

on gene expression. Certainly, the ability to preoperatively predict patient survival

following EPP - using, for example, gene expression levels measured from a tumor

biopsy - would be very beneficial to the treatment of MPM; patients who are likely

to have long postoperative survival times will undergo the procedure in spite of the

risks, while those with shorter predicted survival times will be given less radical treat-
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ments. In this way, an accurate prognostic model for MPM survival following an EPP

procedure would help to improve patient life expectancy and quality of life.

2.2 Using microarrays to analyze gene expression

While nearly all the cells in an organism contain identical DNA, the genes expressed

within the cells can vary substantially. Cells produce different proteins based on their

functions or in response to various stimuli. Although not a perfect indicator, the

amount of various molecules of mRNA within a cell is correlated with the expression

levels of corresponding genes [7].

A microarray is a glass slide with thousand of spots, with each spot containing

a strand of DNA replicated millions of times [7]. Each of these DNA strands, called

probes, tests for the presence of the corresponding complimentary mRNA molecule.

The most common type of microarrays, called spotted microarrays, compare the

relative expression levels of a test sample and a reference sample. The mRNA strands

from two the samples are labeled with opposing colors, generally red and green, and

the mRNA is allowed to hybridize with the probes. If a spot is red, presumably the

target mRNA molecule is in greater abundance - and hence the corresponding gene

has a higher expression level - in the red-labeled sample; the opposite is the case if

the spot is green. If the spot is yellow, the two samples have the same gene expression

level. Greater color intensity indicates higher gene expression level [7].

Another method used in microarrays is that of the Affymetrix company's GeneChipTM

22 to 40 oligonucleotides are used for each gene, each 25 nucleotides long. 11 to 20

of these oligonucleotides are perfectly complimentary to various sections of the target

mRNA. These oligos are the so-called perfect match strands. Each of the other 11 to

20 oligonucleotides is identical to a corresponding perfect match strand, except the

nucleotide at the central location is replaced by the complimentary nucleotide. These

oligos are the mismatch strands, which help to identify background hybridization.

Thus, the true hybridization can be quantified by subtracting the mismatch value

from the perfect match value. The early versions of Affymetrix software calculated
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the overall gene expression for a single gene as the average difference for all pairs of

oligos, using the formula

Average Difference Z Z PMiMMi (2.1)
n

where PMi and MMi are the perfect match color intensity and mismatch color in-

tensity, respectively, for the it h oligo, and n is the number of oligo pairs used to

measure the given gene [7]. This formula, however, can produce negative values for

gene expression levels if the mismatch values are large enough. Newer versions of

the software give weights to each pair of perfect match and mismatch values; pairs

with large mismatch values are given smaller weights to lessen their impact, causing

expression levels to always be nonnegative [7].

The Affymetrix company has developed a manufacturing process similar to that

used in producing silicon chips [21]; the production of oligonucleotides within the

spots is much more uniform than with spotted arrays. However, in spotted arrays,

any oligonucleotide strand can be designed and included in the array, which is not

possible with a mass-produced GeneChipTM [21].

Whichever type of microarray is used, once hybridization is complete, the microar-

ray slide is scanned, the resulting digital image is then analyzed to calculate color

intensities. The resulting data is then normalized to produce comparable measure-

ments. This process of converting the physical microarray slide into a usable data set

is not a trivial one and is increasingly becoming the job of specialists [7]. The end

result is a gene expression matrix, in which each column represents a single sample

and the rows contain expression level values for each of the target genes. Each sample

is often annotated with other patient information relevant to the problem being ad-

dressed [7]. The gene expression matrices can offer a vast amount of information, and

researchers could potentially use differentially expressed genes to aid in determining

the diagnosis or prognosis of various conditions [7]. Although microarrays have been

in use for less than a decade, they have already been used extensively in oncology

research to classify tumor types, discover new subtypes of cancer, and predict patient
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prognostic outcome [7].

Effectively analyzing a gene expression matrix can be a difficult and time-consuming

task. Researchers generally wish to identify genes that are differentially expressed

across various sets of samples, such as healthy and sick patients, or build models

which can help decide the diagnosis or prognosis for a patient.

Since microarrays are a new technology, there are few universally accepted analy-

sis methods, and many of the methods used in research reports are seemingly ad hoc.

Because they generally contain a limited number of samples and a huge number of

independent variables (the expression levels for thousands of genes), these data sets

suffer what is known as the "curse of dimensionality" [16]. Because of the dispropor-

tionately large number of variables compared to the number of samples, a model can

always be built to perfectly classify one set of samples from another; the difficulty

lies in building models which can accurately and reliably predict previously unseen

samples. Methods of machine learning used to build these models are discussed in

Section 2.3, and variable selection methods used to reduce the dimensionality of the

data are discussed in Section 2.4.

2.3 Machine learning methods

The machine learning methods used to analyze gene expression matrices are rarely

supervised learning methods; that is, training is guided by an outcome variable. In

contrast, the use of unsupervised learning methods, such as clustering, which do not

use an outcome variable, is popular. Since the data set used in this research work

contains an outcome variable, patient survival, supervised learning methods are used.

In general, the goal of supervised machine learning is to build a predictive model for

an outcome variable using a number of input variables for the samples in a partic-

ular training set [16]. The outcome variables can be either categorical or ordered.

Categorical variables are those that can take one of a number of values which have

no natural ordering, thus separating the samples into a number of classes; whether

or not a patient has a particular disease, signified with a 0 or 1, is an example of a
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categorical variable. Modeling a categorical variable is known as classification, and

can also be viewed as creating one or more decision boundaries in the input space

that separate samples of the various classes. Ordered variables, on the other hand,

can take a continuous or discrete range of values, which have a natural ordering; the

number of clays a patient survives following a treatment would be an ordered vari-

able. Modeling an ordered variable is known as regression. Some machine learning

techniques are suited for both categorical and ordered outcome variables, while others

can only handle one type or the other.

As examples, two simple types of machine learning are linear regression and K-

nearest neighbors. Linear regression attempts to fit a line to the training data, so the

predictor has the form

f(Xi) = OZ + E PkXik, (2.2)
k

where xi is the input vector for sample i, Xik is the kth input variable for sample i, a

is a constant and ok is the coefficient for the kth input variable. The best-fit line is

found by minimizing some error measure, generally residual sum of squares, defined

as
N

Residual Sum of Squares = a (y, - f(xi)) 2, (2.3)
i=l

where yi is the outcome variable for sample i and N is the number of training samples.

Residual sum of squares is generally chosen because it is differentiable as well as

simple to calculate [16]. This model is very restrictive, and cannot handle non-linear

relationships unless input transformations are explicitly added.

K-nearest neighbors uses the K nearest points in the input space to predict the

outcome of a sample. Formally, the K-nearest neighbors model is

1
f(xi) = A EZ Yj, (2.4)

j ENk (xi)

where Nk(xi) is the set, or neighborhood, of K closest training set points to the input

vector xi [16]. The distance between points is often calculated as Euclidean distance.

This type of model, especially when K = 1, is overly flexible and sensitive to the
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particular choice of training set; that is, the predictions can change significantly if

one training sample is added or removed.

In general, for a training set of finite size, there are an infinite number of models

which can predict or classify the outcomes of this set perfectly. Because of this,

nearly every type of machine learning makes some assumptions about the structure

of the underlying data and places some restrictions on the type of models which can

be generated [16]. The goal of machine learning is not to model the training set

perfectly, but to attempt to model the underlying function which generated the data;

a more complex and flexible model can perform better on the training set than a

simpler model, but may not generalize well to new samples because it may become

too sensitive to the noise in the training set [3]. When a model is too restrictive and

cannot reasonably model the data, the model is said to underfit the data. When a

model is overly complex and captures the noise in the training set rather than the

true underlying function which generated the data, the model is said to overfit the

data. Thus, the complexity of a model must be balanced carefully.

The types of machine learning described in Sections 2.3.1 through 2.3.4 are some

of the most commonly used methods. Each is generally more flexible than linear

regression but not as flexible as K-nearest neighbors.

2.3.1 Logistic regression

Similar to linear regression, logistic regression attempts to model the probability that

a sample belongs to each of the various classes. Because it models class probability,

logistic regression is used only for classification problems. Only the equations for the

two class problem will be presented here, although the logistic regression for three

or more classes is not significantly more complicated. Let 7r(xi) be the probability

that patient with input vector xi suffers some event of interest. In logistic regression,

these probabilities are modeled using the equation

ea+k kXik
7r(Xi) 1 + e k Pkik (2.5)
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where again xi is the input vector for sample i, Xik is the kth input variable for sample

i, ca is a constant and /k is the coefficient for the kth input variable. This equation

is known as the logistic probability function [10]. This equation produces values that

range from 0 to 1; clearly, if e+k 3
kxik is small, the numerator is close to zero

while the denominator is close to one and, if eO+k 3
kxik is large, the numerator and

denominator are approximately equal.

Using r(xi), the odds that the patient suffers the event is given by the equation

odds = - = e'+ kkXik (2.6)
1 - 7r(xi)

Taking the natural logarithm of this equation gives

log odds = log[ ( = _) + 'kXik (2.7)

Note that the logit function is defined as

logit(p) = log[ P (2.8)

where p can be any value from 0 to 1. Using this definition,

logit(r(xi)) = a + ZI3kik- (2.9)
k

Thus, the logit of the probability of the event is modeled as a linear function of the

input variables [10]. However, in this case, the coefficients are often found using

maximum likelihood rather than residual sum of squares.

The coefficients Ok have an interesting interpretation in logistic regression. Con-

sider a patient that originally has input vector xi. This patient's log odds of suffering

the event is given by

log odds = + ZE kXik- (2.10)
k

Now, if one of the patient's input variables, xij, increases by 1, giving a new input
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vector x', the patient's log odds become

log odds'= + P/kx'ik = a + PkXik + ij. (2.11)
k k

Thus, the coefficient /3 is equal to the increase in log odds associated with a 1 unit

increase in jth input variable. Furthermore, the value e3j is the odds ratio - or the

factor by which the odds increase or decrease - associated with a 1 unit increase in

the jth input variable. In logistic regression, this property is true for all values of all

input variables. Also note that logistic regression is a multiplicative model, in the

sense that, if both xij and Xik increase by 1 unit each, the resulting odds ratio is

e;ek, or the product of the two individual odds ratios [10].

It is sometimes necessary to include additional variables that capture the interac-

tion between input variables. That is, it may be the case that two variables, when

changed at the same time, have a significantly greater or lesser effect on the odds

than the product of the two effects. In this case, it would be necessary to include an

additional 3new X Xj X Xk term in the exponent of both the numerator and denominator

of the logistic probability function from Equation (2.5). Then, when both variables

increase by one, the odds increase by a factor of enewePiek, rather than simply a

factor of ei efk [10].

Logistic regression is a useful machine learning technique because the coefficients

have a natural interpretation. In logistic regression, it is common to transform a

K-class categorical input into K corresponding binary variables; however, this is only

a minor nuisance. Lastly, most statistics packages that can handle logistic regression

can also handle stepwise forward and backward variable selection, which makes finding

a good model a simple task when there are a large number of potentially informative

input variables; stepwise variable selection is discussed in Section 2.4.3.

2.3.2 Classification and regression trees

Decision trees are most commonly used for classification problems but can be applied

to regression tasks as well. Building a decision tree amounts to repeatedly splitting

26



subsets of the training data, starting with the entire training set, into two distinct

subsets, until each subset meets some stopping criterion [4]. When splitting is com-

plete, each of the undivided subsets, also called terminal subsets, is assigned a class

based on the training samples contained in the subset. In general, finding the overall

optimal set of splits is intractable, so a greedy algorithm is used instead. At every

stage of the greedy algorithm, the best split is chosen based on the samples in the

current subset; then, each of the resulting subsets is examined in the same way until

the entire tree is created. Splitting is generally determined by some measure of node

impurity so that the split with the most pure resulting subsets is preferred. Thus, only

three separate features of the building algorithm need to be specified: the method to

determine each split, the criterion for stopping, and the process for assigning a class

to each terminal subset [4].

When viewed as a tree graph, the nodes of the tree represent the subsets of the

training data, with the root of the tree as the entire training set. The split at each

node determines which samples are filtered to the left subtree and which samples

are filtered to the right subtree. Each leaf node represents a terminal subset, and is

labeled with a particular class assignment. Classifying a new sample is easy and can

often be done by hand; starting at the root node, classification is done by taking the

appropriate splits based on the sample input data and following the tree to a leaf

node. The class label of that leaf node is the new sample's predicted classification.

To make calculating splits tractable, some restrictions need to be placed on the

types of splits that are allowed. First, each split can depend on only one variable. For

an ordered variable, a split must have the form xij < c, where c is a constant. For N

samples, this restriction limits the number of possible splits to N- 1. For a categorical

variable, a split must have the form xij E S, where S is a subset of the possible values

of xij. If xij can take a total of M values, there are a total of 2
M-1 possible subsets

and thus a total of 2
M -1 possible splits. However, if the outcome variable is binary,

the number of possible splits can be significantly reduced. This is done by first sorting

the M classes of the categorical variable according to the proportion of samples in

each class that have outcomes of 1; that is, if a higher proportion of samples with
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xsj = k have outcomes of 1 than samples with xij = k2, class kl will come before

class k2. If Si denotes the subset of classes with the i lowest proportions of samples

with outcomes of 1, the optimal split will always have the form xij E Si, thus giving

a total of Il - 1 possible splits [16].

These restrictions force all splits to be binary. Some algorithms allow for multi-way

splits, but multi-way splits fragment the data too quickly, leaving too few samples in

each of the resulting subsets to make good subsequent splits [4]. Furthermore, multi-

way splits bias variable selection in favor of those variables with a large number of

different values. For instance, each of the N samples could have a different value for

a particular variable, and so the tree could be split into N subsets, each containing

one sample. While the resulting subsets are completely pure, such a split is unlikely

to generalize well to new samples [31].

To determine the best split, some measure of impurity is generally used, and

the split generating the purest subsets is chosen. For a function to be a suitable

impurity measure, the function must have a maximum when all classes have equal

numbers in a subset. The function must have a minimum when a subset contains

only samples from one class. Also, the function should be symmetric, so that, in the

binary outcome case, (p1,P2) = I(P2,P1), where 1) is the impurity measure, p is

the proportional of samples in class 1 and P2 is the proportion of samples in class 2.

Functions that are concave - that is, V' < 0 - are preferred, although concavity is not

a strict requirement. Functions of this type tend to give preference to splits resulting

in one very pure subset and one very impure subset, rather than those resulting in

two equally impure subsets. The former type of split has been shown in practice to

result in better trees. In general, however, the resulting tree is fairly insensitive to the

choice of impurity measure, and so any reasonable measure can be safely chosen [4].

There are three commonly used impurity measures: misclassification rate, cross

entropy, and the Gini statistic. The misclassification rate is

Misclassification Rate = 1 - Pk,max = 1- max Pk,m, (2.12)
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cross entropy is given by

Cross Entropy = - Pk,mlogpk,m (2.13)
mEM

and the Gini statistic is calculated by

Gini Statistic = A, Pk,mPk,m' = E Pk,m(l - Pk,m), (2.14)
mom' mEM

where Pk,m is equal to the proportion of samples with class m in node k, and M is

the set of possible classes. Cross entropy and the Gini statistic are differentiable and

therefore are used more commonly than misclassification rate [16]. Misclassification

rate is also not concave and may not produce good trees.

Another feature that must be specified when building trees is the class assignment

method within leaf nodes. In most cases, the most common class of sample contained

within a leaf node determines that node's class assignment. This implicitly assumes

that the cost of misclassifying a sample of class i as class j is the same for any two

classes i and j, where i ~ j. However, this assumption may not always hold. In

medical situations, misdiagnosing a sick patient as healthy is likely to be much more

costly than misdiagnosing a healthy patient as sick, since, in the absence of proper

treatment, a sick patient could ultimately die. These varying costs can be captured in

a cost matrix, C, where Cij is the cost associated with classifying a member of class i

as class j. Note that Cii should always be equal to zero. Then, the class assignment

for a leaf node can be calculated by minimizing the total misclassification cost, using

the equation

Node Class = arg mmn CimPk,i. (2.15)
i

The class assignment within the nodes can be influenced without the use of a cost

matrix by increasing - perhaps artificially - the prevalence of the certain classes of

samples within the training set [4].

The third and final feature that needs to be specified to build a classification tree

is the stopping method. Building can continue until all leaf nodes are completely pure
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- that is, until each contains samples of only one class. However, a model using this

stopping method may be overly complex and may not generalize well; methods for

early stopping may help to reduce this overfitting. Such stopping methods include

stopping when a node size falls below a certain amount or when a node purity reaches

some percentage level. While attractive in theory, early stopping methods do not work

well in practice. It is generally better to build a full tree, stopping when nodes are

pure, and then prune the tree to the appropriate size [4].

A classification tree effectively divides the input space into a number of regions,

one for each leaf node. The decision boundaries between regions must be perpendic-

ular to the dimensions because of the restrictions placed on the possible splits.

Pruning decision trees

The most common method of pruning is cost-complexity pruning. Before describing

the pruning method, it is necessary to give several formal definitions. The total

misclassification cost for tree T is given by

R(T)= E min Ci mpk,i, (2.16)
kEleaf(T) i

where leaf(T) is the set of leaf nodes of tree T. Adding an additional measure to

penalize the size of tree T gives the cost-complexity measure

R,(T) = R(T) + alleaf(T) , (2.17)

where ca is a constant. A larger value of a gives a larger penalty for tree size. For

a given value of a, let T(a) be the subtree of T that minimizes the cost-complexity

function R,(T). If two distinct subtrees have the same value of T(oa), the smaller of

the two subtrees is selected so that T(a) is always unique. Note that, when a = 0, the

"optimal" subtree is T, and as a increases, the size of the optimal subtree decreases

until only the root of the tree remains [4].

For one final definition, let Tk be the subtree of T rooted at node k, and let k}
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be the subtree of consisting only of node k. Then,

R,(Tk) = R(Tk) + clleaf(Tk)l (2.18)

and

R, ({k}) = R(k) + oa. (2.19)

For some critical value of c, these two equations will be equal, at which point the

single node k is preferred to the subtree Tk. This value of c is given by the formula

R(k) - R(Tk)
acritical I lea f(Tk) (2.20)

This calculations forms the basis of cost-complexity pruning [4].

The cost-complexity pruning algorithm starts with the full tree T and finds the

internal node - an internal node is any non-leaf node - with the smallest value of

Ocritical. The tree is pruned at this node, and the resulting tree, T1, is stored. Then,

starting with T1, the remaining internal node with the lowest value of Oxcritical is found,

the tree T1 is pruned at this node, and the resulting tree, T2, is stored. This process

continues until only the root node of the original tree remains. The process is known

as weakest link pruning. The result is a list of trees in decreasing order of size - T,

T., T2, ... , {t}, where {t} is the tree containing only the root node of T. A hold-out

set can then be used to evaluate the performance of each of these trees, and the one

with the best performance on the hold-out set is selected [4].

Regression trees

Regression trees work in much the same way as classification trees. The goal is to

divide the input space into a number of regions, and assign each region an outcome

value. With regression trees, however, the outcome assigned to each region is not a

class assignment, but rather a constant value to approximate the ordered outcome

value. Minimizing an error measure, typically sum of squares, is used to determine

the outcome value associated with each region. That is, the constant outcome value
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k assigned to a region R is

k = argmin E (yi- k)2 = averagez Ryi, (2.21)
iER

since the arithmetic mean minimizes the sum of squares error, giving a total error of

Error = , (y, - k)2. (2.22)
xiER

Thus, when making splits, the goal is to minimize the total error in the two resulting

regions. For a split that separates the samples into two regions R1 and R 2, the total

error is given by

Error = [ 3 (yi - kl)2 + E (Yi - k2)2], (2.23)
xiER 1 xi ER 2

where k and k2 are the means of the outcomes of training samples in regions R1

and R2, respectively. The best split can then be found by searching all variables

and all possible split points to find the variable and split point which minimizes

Equation (2.23) [16].

As in classification trees, a method is needed to determine when to stop build-

ing a regression tree. It is possible to stop early, perhaps when the decrease in sum

of squares error from a split is less than some threshold; once again, however, it

is generally better to build a full tree and prune back using cost-complexity prun-

ing. Cost-complexity pruning for regression trees is equivalent to method used for

classification trees except the cost-complexity measure is now

E,(T) = ( E E (yi - kk)2) + cleaf(T)L (2.24)
kEleaf(T) xi ERk

A hold-out set is again needed to determine which of the resulting list of trees performs

the best on predicting new sample values [16].
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Advantages and disadvantages of decision trees

Classification and regression trees offer a number of advantages over other types of

learning methods. First of all, the algorithm to build trees is very fast computation-

ally, and can handle a large number of input variables, since there are a limited num-

ber of splits for each variable. Second, there are very few parameters to specify when

building a decision tree [4], none of which require a great deal of fine-tuning. Third,

decision trees make no assumptions about the distribution of variables or about the

independence of variables [31]. No additional parameters, like the interaction terms

needed in logistic regression, are needed to handle variables in decision trees. Lastly,

and perhaps most importantly, some decision trees are easy for a human to interpret;

in many cases, a surprisingly simple tree may be generated to handle a seemingly

complicated classification or regression problem [31].

There are a number of disadvantages associated with decision trees as well. First

and foremost, because of the restriction places on possible splits, all decision bound-

aries must be perpendicular to one of the dimensions, making all decision regions

hyperrectangular [31]. This means that decision trees cannot directly handle some

simple linear relationships, such as decision boundary of the form il - i2 = 0, and

some more complicated, non-linear relationships. A tree will likely have to make a

number of inaccurate splits to handle such a decision boundary, and these splits are

likely to generalize poorly. Some tree-building algorithms explore linear combinations

of variables when making splits, but this can significantly increase computation time

and, more importantly, reduce the interpretability of the resulting tree. Second, trees

are instable; a small change in the training set can lead to a completely different tree,

since changes in higher splits propagate to lower splits in a tree. Third, while trees

are easy to interpret, they may not always give a complete description of underlying

structure of the problem due to variable masking. That is, while one variable may

have been selected for a particular split, another variable may be able to generate a

split that is almost as good [4]. The tree gives the false sense that the first variable is

very relevant to the problem while the second variable is useless, when in reality the
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two may be almost equally important.

Decision trees cannot easily handle problems that, by their nature, have a large

number of decision regions. For example, classifying a disease that is present if and

only if p out of a potential q factors are present would require a very large number of

decision regions, and a classification tree would be unlikely to find the true structure

of the problem [31]. Furthermore, while decision trees are computationally suited to

handle a large number of input variables, having a large number of input variables

increases the chance of finding an irrelevant input that can split a given subset well,

and so decision trees suffer, to some extent, the curse of dimensionality that plagues

other machine learning methods [31]. Lastly, the greedy algorithm chooses the optimal

split based on the current subset of training samples; there is no reason to believe

that each split is optimal for the overall tree structure [4].

Despite their limitations, trees have proven to be fairly effective in practice and,

because of their interpretability, often give some insight into the underlying nature

of the problems being solved.

2.3.3 Artificial neural networks

Artificial neural networks have a strong relationship to biologic neural structures, and

indeed their original motivation stems from the mathematical formulation of a neuron

by McCulloch and Pitts in the 1940's [32]. A biological neuron is a cell containing

a long offshoot called an axon, which branches off at the end to form synapses with

other neurons. Chemicals released at the synapse increase or decrease the potential

of the connected neurons. If this potential within a neuron exceeds some threshold,

a pulse called an action potential travels down the axon and causes the release of

chemicals at the synapses, which in turn excite or inhibit other neurons [17].

An artificial neural network consists of a number of interconnected artificial neu-

rons. Each artificial neuron, except those which are connected to the inputs of the

network, receive inputs from a number of other neurons. These inputs are weighted

and summed, and the output of the neuron is calculated by passing this weighted

sum through an activation function. A constant, called a bias, is often added to the

34



weighted sum. Mathematically, the output of a neuron j is given by

yj = fj(aj + E Wzijyi), (2.25)
i-j

where fj is the activation function, aj is the bias, wij is the weight for the connection

between neuron i and neuron j, and y, is the output of the it h neuron [32]. Note that

the neuron output yj should not be confused with the outcome variable for a sample;

the distinction between the two will be clear by context.

In most cases, networks are separated into layers, such that each neuron in a

layer receives inputs only from the neurons in the previous layer. The first layer

is connected to the input values and the final layer generates the network output

values. Layers between the input and output layers are referred to as hidden layers.

Networks containing connections from nodes in later layers to nodes in the earlier

layers, thus forming loops, are called recurrent networks. Feed-forward networks, on

the other hand, do not contain loops. A feed-forward network with one hidden layer

using the appropriate activation functions can approximate any continuous function

with arbitrary accuracy if enough hidden neurons are used, and a network with two

hidden layers can approximate any function [3]. Only feed-forward networks will be

discussed here.

There are many common activation functions used in neural networks. For hidden

layer neurons, the sigmoid function, defined as

f(x) = 1 - (2.26)

is the most common function. This function ranges from 0 to 1, with the parameter

a determining how fast it goes from one extreme to the other. Another common

activation function for hidden neurons is the hyperbolic tangent function, given by

ex _- e-x
f(x) =ex + e (2.27)

The hyperbolic tangent function is similar to the sigmoid function, but, because of
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the shape of this function, networks using hyperbolic tangent activation functions

tend to train faster than those using sigmoid activation functions. Lastly, the linear

function

f(x) = (2.28)

can be used in hidden nodes; however, training a network that contains only linear

activation functions is equivalent to performing linear regression. For output neurons,

the sigmoid activation function is frequently used for classification problems, since its

output ranges for 0 to 1. For a K-class classification problem, one output neuron is

needed for each of the K classes. For regression problems, output neurons often use

linear activation, since the output values are not limited to the range [0, 1].

Note that input neurons are generally just used to pass input values to neurons

next layer and so can be seen as using linear activation with no bias.

Training artificial neural networks

The most common algorithm used to train neural networks is back-propagation. Back-

propagation effectively calculates the error gradient with respect to each weight, and

updates each some small amount in the negative direction of the gradient. To see this

mathematically, let xj denote the weighted, summed input to neuron j, given by

Xj = ~aj + E WijYi, (2.29)
i-j

and let yj denote the output of the neuron, as given in Equation (2.25). Again, xj

should not be confused with the input vector for sample j; the meaning will be clear

from context. Then, the error with respect to weight wij is

AE OE Ax; aE tE Oyj , 3E
=wE - Ex1 - i = aYi Y i fj'(xj) Yi j, (2.30)

dWij aXj Wij Xj 9yj aXj adj

where 6j is defined as

i = fj(Zj)OE (2.31)
O yj
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The error measure is often chosen as sum of squares. For output neurons, 6 can

be calculated directly from the derivatives of the error measure and the activation

function. For neurons in earlier layers, can be calculated using the 6 values for

neurons in subsequent layers, using the formula

OE _ fwEj = f(xj) = f(xj) E Wjk = fj(xj) Y Wjk6k. (2.32)f; 9yj =J\jk &Xk j-*k

Finally, once the values have been calculated, the weight changes are given by

Awij = -7l6jYi, (2.33)

where ir is known as the learning rate [32].

Using Equation (2.32), the 6 values for each neuron depend only on values of

neurons in subsequent layers. Thus, back-propagation is a two-pass algorithm; the

first pass starts with the network inputs and propagates the neuron outputs forward

until the network output is calculated, and the second pass starts at the output

neurons and propagates the values backward until all are calculated. When the

weights are updated after each training sample, the training process is said to be

online or incremental. Each training sample can be selected randomly, making the

process stochastic. The weights may be updated only after a number, potentially all,

of the samples, in which case the training is said to be batch, and the formula used

to update the weights is

Awij = -/71 EA yyl, (2.34)

where 65 and y are the 6j and output value, respectively, for neuron j and training

sample [17]. Online training, whether stochastic or not, is generally preferred to

batch training because gradient movements tend to cancel in batch training, making

online converge faster, and batch training is more likely to get stuck in local minima,

instead of finding the global minimum of the training error [32].

A momentum term is often added to Equation (2.34), making the formula to
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update the weights

Awij,new = P-7i z 5Y + (a* AWij,old, (2.35)

where a, the momentum coefficient, must be greater than or equal to 0 and less than

1, and AWij,old is the weight change from the previous iteration of the algorithm.

The momentum term helps to accelerate large drops in the error function, while

minimizing oscillations [17].

There are a number of methods to determine when to stop network training.

Training can be stopped after a set number of epochs - iterations through the complete

training set -- or after a set amount of computation time. Training can also be stopped

when the error, either for the training set or hold-out set, falls below some constant

value or decreases by less than some constant amount after a given epoch. Lastly,

training can stop once the error on the hold-out set begins to increase [3].

Overfitting is often a problem in neural networks, especially when the training set

is small or the network size is overly large. Some form of early stopping may be used

to prevent overfitting, but, as in classification trees, determining the appropriate time

to stop is difficult, and early stopping generally performs poorly in practice. A more

effective way to combat overfitting is known as regularization, in which a penalty term

is added to the error function to penalize large weights. The most common form of

regularization is called weight decay, which adds a penalty term to the error measure,

effectively making the new error measure

1
=E + v( 2' w..), (2.36)

where v is a constant which controls how much of an effect the regularization penalty

has. Adding the penalty term to the error measure effectively adds an additional

term -vwij to the weight update equation given in Equation (2.35). Using weight

decay regularization, unless they are reinforced by training, the network weights decay

exponentially to 0. This helps to avoid overfitting [3].

Pruning can also be used to help prevent overfitting. In neural network pruning,

the network is completely trained, then one or more weights are removed and the
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network is completely trained again. This process can be repeated one or more times.

A simple type of pruning simply removes the weights with the smallest magnitudes.

While this is easy to calculate, it performs poorly in practice. A more sensible ap-

proach attempts to calculate how much the total error would increase if each weight

was removed and prunes the weights with the smallest such values. While this type of

pruning performs significantly better in practice, it requires significantly more com-

putation. Two implementations of this type of approach are known as optimal brain

damage and optimal brain surgery [3].

Choosing the appropriate values for the parameters used in building neural net-

works is generally not an easy task. There are a large number of parameters that need

to be set, including the network size, learning rate, momentum, regularization con-

stant v, the stopping method and the method to generate the initial weights. Small

changes in one or more of these factors can significantly change the learning process.

For example, too small of a learning rate can cause training to proceed too slowly,

whereas too large of a learning rate can cause training to overshoot minima in the

error function, thus causing it not to converge [17]. Likewise, choosing a network size

that is too small will not allow the network to approximate the appropriate function,

and choosing too large a size will make the network more likely to overfit the data;

generally, however, it is better to choose too large of a size and avoid overfitting by

using regularization or pruning [3]. While there may be guidelines to determine ap-

propriate values for each of the network parameters, a sizable amount of trial and

error is needed to find the optimal values.

Advantages and disadvantages of neural networks

Neural networks have received a lot of attention over the past few decades for their

ability to approximate any function with arbitrary accuracy; this is by far their biggest

strength as a machine learning technique. Training, while often time-consuming,

proceeds automatically. Furthermore, neural networks can also easily handle both

classification problems and regression problems.

However, there are a number of drawbacks to using neural networks. First of all,

39



neural networks are not easily interpretable. By looking at a network graph or, even

worse, a list of network weights, it is nearly impossible for a human to determine the

relationships of the various input variables to the outcome variable. Secondly, there

are a large number of parameters that need to be set; choosing appropriate parameter

values that can generate a network which will generalize well to new samples can be

a difficult process. Third, training, especially back-propagation, can proceed very

slowly, especially when there are a large number of input variables or a large number

of training samples. Lastly, training has a tendency to overfit the training data or to

get stuck in local minima, preventing the network from finding the global minimum

of the training error.

Despite their drawbacks, artificial neural networks are generally a very powerful

and flexible machine learning technique, and are very common in practice.

2.3.4 Support vector machines

A support vector machine (SVM) attempts to classify a number of samples by nonlin-

early mapping the input vectors into a higher-dimensional space, and then finding the

optimal separating hyperplane between classes in the new space, which is also called

the feature space. The linear separator in the feature space generally corresponds to

a nonlinear separator in the original input space [33]. The mapping from the input

space to the feature space can be seen as a function h(xi), defined as

h(xi) = (hi(xi), h2 (xi), ... , hm(xi)), (2.37)

where hm(xi) is known as the mth transformation of xi [16]. SVMs are generally

applied to classification problems; only two-class classification problems will be dis-

cussed here, although SVMs can be extended to handle both multiple classes and

regression problems.

The general theory behind optimal separating will be discussed before highlighting

their use in combination with nonlinear mappings. Note that, for the discussion of

separating hyperplanes and SVMs, the outcome variable yi will be assumed to be
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equal to -1 or 1, rather than 0 or 1, depending on the class; this helps to simplify

many of the formulas.

Optimal separating hyperplanes

A separating hyperplane, generally defined as f(xi) = b + xjw = 0, divides the input

space into two region, with each region containing samples belonging to only one

class. With this definition, the vector w* = w is normal to the hyperplane, and

the signed distance from a point xi to the hyperplane is given by ii-11f(xi) [16]. For

a given set of linearly separable samples, there are an infinite number of separating

hyperplanes.

The optimal separating hyperplane is defined as the separating hyperplane with

the largest distance to the closest point in each of the two classes; equivalently, the

optimal separating hyperplane has the widest separating margin between the two

classes. The optimal separating hyperplane is an attractive solution because it is

unique and it is the most likely to generalize well to new samples. The optimal

separating hyperplane can be found by solving the optimization problem

maximize C w.r.t. b, w (2.38)
(2.38)

subject to 1 x1yi(b + xTw) > C, for each training sample i,

where b is a constant, w is a vector of constants, xi is the input vector for training

sample i and yi is the outcome variable for training sample i. Since yi = ±1t, the

constraints require that all points are on the correct side of the separating hyperplane,

and that each is at least a distance of C away from the hyperplane. The hyperplane

defined by f(xi) = 0 is unchanged for any constant multiple of b and vector w, and

so, setting IIwII = , the optimization problem given in (2.38) simplifies to

minimize mrlw.2 w.r.t. b, w
subject to y(b + w) > 1, for all (2.39)

subject to yi(b + xTw) > 1, for all i.
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The equivalent Lagrange primal function is

Lp= Iw 2 - oi[yi(b + xTw)- 1], (2.40)
2

where ai is the ith Lagrange multiplier. Equation (2.40) is to be minimized with

respect to b and w. Setting the derivatives with respect to b and w equal to zero gives

W = Ei otiYiXi, and (2.41)

0 = i oiYi, (2.42)

which can be substituted into Equation (2.40) to the give Wolfe dual problem, which

is

maximize LD = i ai - Ei j aiajyiyxTx (2.43)2 (2.43)
subject to ai > 0 and Ti aiyi = 0.

This can be solved by many common software packages [16].

A property of the solution to the optimization problem (2.43) is that it must

satisfy the Karush-Kuhn- Tucker complementarity conditions, one of which is given

by

oai[yi(b + x'w) - 1] = 0, for all i. (2.44)

This implies that, for every point xi with a nonzero value of ai, yi(b + xiTw) = 1, in

which case xi lies on the margin and is called a support vector. All other points have

ci = 0 and yi(b + xiTw) > 0, so they do not lie on the margin; the constraints for

these points do not factor into the optimization problem, nor are these points used

in the solution for b or w [33].

Once the optimal values of aci are found, w can be calculated using equation (2.41)

and b can be found by applying equation (2.44) to any support vector. The resulting

classifier is given by

G(xi) = sign(b + XTW); (2.45)

that is, all points on one side of the hyperplane are classified as one class, and all on
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the other side of the hyperplane are classified as the other [33].

The method for finding the optimal separating hyperplane given in previous para-

graphs can only be applied to linearly separable problems. It is often useful to be

able to find the optimal separating hyperplane when the classes are not linearly sep-

arable by allowing some amount overlap between the two classes. This is done by

introducing slack variables i into the optimization problem (2.38), thus giving a new

optimization problem

maximize C w.r.t. b, w

subject to 1-yi (b + xTw) > C(1 - ), for all i, (2.46)

(i > 0 for all i and Ei i < K,

where K is a constant. Here, i is proportional to the amount by which the ith sample

is on the incorrect side of the margin, and so limiting the sum of all the slack variables

to be less than a constant limits the total amount by which all samples are allowed

to be on the incorrect side of the margin [16]. Again setting Ilwl = 1/C, gives the

optimization problem

minimize 1wl 2 + -y Zi i w.r.t. b, w

subject to yi (b + x'w) > 1 - , for all i (2.47)

and i > 0, for all i,

where y has replaced K from the problem given by (2.46); the effects of the two

parameters are inversely proportional [16]. The method used to transform and solve

the optimization problem given in (2.47) is equivalent to the method used to solve

the problem given in (2.39); the description is omitted here for brevity.

For the optimal separating hyperplane problem where some overlap is allowed

between the classes, the y parameter can be adjusted to give various separating

hyperplanes. If y is large, the -y i (i term in problem (2.47) has a large effect on

the minimization, and so very little overlap is allowed between the points and the

margin; when y is equal to infinity, all points must be on or outside the margin, as in
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the original optimal separating hyperplane. Likewise, if -y is small, the -y i (i term

in problem (2.47) has a small effect on the minimization, and so considerable overlap

is allowed [16].

SVMs using feature space mappings

SVMs add more flexibility to the linear optimal separating hyperplane method by

calculating the separating hyperplane in a higher-dimensional feature space. The

separating hyperplane in the feature space often corresponds to a nonlinear separating

boundary in the original input space.

Given a mapping h(x), as defined in Equation (2.37), the Wolfe dual function that

needs to be maximized to find the optimal separating hyperplane is

1
LD = E ai - I E E oaiajyiyjh(xi)Th(xj), (2.48)

i 2 j

and so the optimization problem depends only on the dot product of two transformed

vectors, rather than the actual transformed vectors themselves. Because of this, the

mapping h(x) itself is never needed, rather only the Kernel function

K(xi, xj) = h(xi)Th(xj) (2.49)

is needed [16].

There are many common kernels used in SVMs. The polynomial kernel of d

dimensions is given by

K(xi, xj) = (XXj)d. (2.50)

The polynomial kernel

K(xi, xj) = (1 + xiTj)d (2.51)

includes all dimensions up to and including d. Two other common kernel functions

are the sigmoid kernel

K(xi, xj) = ((xTZj) + O), (2.52)
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where N and E are constants, and the radial basis kernel

-l:._-¢ .112

K(xi, xj) = e 2a2 , (2.53)

where a is a constant. The appropriate choice of kernel depends on the specific

problem being classified and often requires trial and error to find the one which

performs the best [33].

Given a Kernel function K(xi, xj), the Wolfe dual becomes

1
LD = i - 2 E E aiajyiyjK(xi, xj), (2.54)

i j

which can be solved to give the optimal separating hyperplane in the new feature

space. The resulting optimal separating hyperplane in the feature space is given by

f(xi) = h(xi)Tw + b = a jyjK(xi, xj) + b. (2.55)

As always, the classifier based on this separating hyperplane is given by the sign of

f(xi).

In a higher-dimensional space, there will generally always be a hyperplane which

can completely separate the training set without any overlap between the classes, so

the y parameter is used as a type of regularization to avoid overfitting. If y is very

large, the separating hyperplane will not contain much overlap between the classes,

and so the resulting separator in the original space will likely be highly curved and

may overfit the training samples. If y is small, the separating hyperplane will be less

sensitive to the particular choice of training set, and so the boundary will be much

smoother in the original input space [16].

Advantages and disadvantages of SVMs

SVMs have become popular recently, in part, because they take advantage of the

theoretically attractive method of optimal separating hyperplanes. Also, with the

appropriate choice of Kernel function, an SVM can classify any function and can
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avoid overfitting with use of the y parameter.

When using an SVM, the choice of Kernel function requires either prior knowledge

of the problem or some amount of trial and error. Also, while it has been claimed that

SVMs avoid, at least partially, the curse of dimensionality, this is generally false [16];

that is, SVMs suffer many of the same problems as other methods when the number

of inputs is proportionally much larger than the number of samples.

2.4 Variable selection methods

Both a gift and curse of microarray analysis is the vast amount of data that is gener-

ated. However, when thousands of genes are analyzed, and thus thousands of values

are generated for each sample, there are likely to many irrelevant genes which can

complicate the data analysis. In fact, in most cases there are only a few truly rel-

evant genes and thousands of irrelevant ones. With thousands of extraneous genes,

it is likely that some of these genes, due to chance and noise in the data, will be

highly correlated with the outcome variable but they are, in fact, completely unre-

lated. Sorting through the vast number of irrelevant genes to find the truly relevant

ones is not a trivial task.

The goal of variable selection in the analysis of gene expression matrices is two-fold.

First, variable selection allows models to be built using machine learning techniques

that are both simple and accurate. Even some of the more simple machine learning

methods cannot build a model using thousands of inputs in a reasonable amount of

time due to the massive amount of computation required; perhaps the only exceptions

is decision trees, which can handle a vast number of inputs because of the heavy

restrictions placed on the possible splits. However, even if a model could be built in a

reasonable amount of time using all of the available genes, the resulting model would

likely be overly complex and generalize poorly to new samples. Such a model would

likely be built using very small contributions from a large number of genes, making

the model highly sensitive to noise in the training set and therefore causing the model

to overfit the training data and generalize poorly. Furthermore, the resulting models
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will be more easily interpretable.

The second goal of variable selection in gene expression analysis is to discover the

genes that are most important to the problem being solved. This would allow further

research to be done on a limited number of genes, which could potentially help to

determine the role, if any, of theses genes in the disease or problem being studied.

Since microarray studies began in the late 1990's, a variety of different variable

selection methods have been tried. Since the field of microarray gene expression

analysis is in its infancy, there are few established methods for variable selection

and many of the methods used are seemingly ad hoc. Sections 2.4.1 through 2.4.3

describe a few methods that can be used for variable selection; these methods are

geared towards gene expression analysis.

2.4.1 Selection based on signal-to-noise ratio

Many variable selection techniques use some form of correlation between each gene

and the outcome variable. The genes are ranked according to their correlation with the

outcome variable, and a number of the most positively correlated genes are selected

along with a number of the most negatively correlated genes. In general, if N of the

most informative genes are desired, N positively correlated genes and 2 negatively2 2negatively

correlated genes are selected. This method for variable selection is attractive not only

because it retrieves the genes which are likely to be the most related to the outcome

variable, but also because the number of genes can easily be varied by simply selecting

fewer or more genes from the ranked list.

In what has become a seminal work on microarray data analysis, Golub et al used a

measure of correlation known as the signal-to-noise ratio (SNR) to select informative

genes. The SNR for a gene g is defined as

SNR(g) = g,1 - L9tg,2 (2.56)
rg,1 + Og9,2

where ,ug,i and ag,i are the mean expression level and the sample standard deviation,

respectively, of gene g for samples in class i. A positive value of SNR(g) means that
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gene g is more highly expressed in class 1, and, similarly, a negative value means

that g is more highly expressed in class 2. Furthermore, a large absolute value of

SNR(g) means that gene g is highly correlated with the outcome class. By using

the 25 genes with the most negative values of SNR(g) and the 25 genes with the

most positive values, Golub et al were able to build a model that could accurately

distinguish between acute myeloid leukemia and acute lymphoblastic leukemia [11].

A number of other measures exist for determining the correlation of each gene

with the outcome variable. For example, the t-statistic is similar to the SNR and is

defined as

t statistic(g) = '- g,2 (2.57)
2N + N2

where Atg,i and ua,i are again the mean expression level and the sample standard

deviation, respectively, of gene g for samples in class i and Ni is the number of

samples in class i [25]. Some authors believe that the Pearson correlation coefficient

is a reasonable choice for regression problems - or for classification problems, for that

matter - and is given by

r=- cy (2.58)

where crx and y are the sample standard deviations of x and y, and axy is the sample

covariance between the two [7], although there are several instances in which this

would not work.

The signal-to-noise ratio is used here over other correlation measures primarily

because of the success of the famous Golub et al study. The same method has proven

effective in more recent microarray analysis studies as well [28].

2.4.2 Selection based on Student's t tests and fold analysis

Many studies also use a Student's t test in combination with other discrimination

methods, such as fold analysis, as a means for variable selection [13, 15, 34]. A

Student's t test determines the probability p that two sets of measurements, each

sampled from a normal distribution, were actually sampled from the same normal
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distribution [10]. Here, the two sets of measurements are the gene expression levels

for a particular gene for samples of the first class and samples of the second class,

respectively. If the p value is low enough for a particular gene, there is a statistically

significant chance that the gene is differentially expressed between the two classes.

Generally, a test is considered statistically significant if p < .05.

There are drawbacks to using a Student's t test as the sole means for variable

selection. First of all, if the differential expression of a gene is considered statistically

significant if p < .05, then, in a gene expression matrix containing 10,000 irrelevant

genes, approximately 500 genes would be identified simply by chance; however, a

number of methods exist to mitigate this effect. Furthermore, using a Student's t

test may not be an appropriate approach because gene expression levels are generally

not normally distributed. When used, a Student's t test is often used in combination

with another selection method such that a variable is selected if and only if it has

a statistically significant p value and is also selected by the complimentary selection

method.

2.4.3 Stepwise variable selection

One of the benefits of using logistic regression to build a classifier model is that most

statistical software packages that support logistic regression also support stepwise

forward and backward variable selection. In stepwise forward variable selection, a

one-input model is built using each of the input variables. The models are then

ranked according to some criterion; in logistic regression, this is often the probability

p that the true variable coefficients are zero. The input variable that generates the

best one-input model is kept, and a two-input model is built using this input and

each of the other input variables. The additional input variable that generates the

best two-input model is kept, and this process continues until the number of inputs

in the model reaches some specified size [10]. Other criteria, such as cross validation

error or the Akaike Information Criterion (AIC), are also used in stepwise selection.

Stepwise backward variable selection in logistic regression works in the opposite

fashion. That is, a model is built using all inputs and the input variable is with the
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largest p value in the model is removed. Then, starting with the new model, the input

variable with the largest p value in the new model is removed. This process continues

until the number of input variables in the model reaches some set size or until the p

value of the next variable to be removed is below some threshold [10].

In the case of gene expression analysis, the number of input variables generally

needs to be reduced prior to using stepwise selection, so another form of variable

selection is first applied, followed by stepwise selection. Similar methods of stepwise

forward and backward selection can be applied to types of models other than logistic

regression, but software to perform such analysis is often not readily available.

2.5 Comparing model performance

When a large number of models are built using various machine learning techniques,

various parameter values, and various input variables, it is necessary to have stan-

dardized methods to compare the numerous models. A number of accepted methods

exist for both regression and classification models. Furthermore, there are methods

are available for right-censored survival data which allows even right-censored sam-

ples to be used in model comparisons; right-censored data and survival analysis are

discussed in Section 2.5.3. These methods can be used to evaluate model performance

using the training set as well as using a separate test set.

2.5.1 Evaluating regression models

Regression models are typically evaluated based on the model error, which is some

measure of the total or average difference between the model predictions and the

actual outcomes. The are a number of suitable error measures, but sum of squares is

most often used, and is given by

Error = E (f(xi) - yi)2 (2.59)
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The term in Equation (2.59) makes this an average error over the set of samples, so

that the performance of models on sets of varying sizes can be meaningfully compared.

2.5.2 Evaluating classification models

Accuracy - the proportion of samples classified correctly - seems like a natural and

intuitive measure of a classification models performance. However, there are a number

of drawbacks to using accuracy to evaluate classification models. First of all, accuracy

may be deceptive when there are significantly more samples in one class than the

other. For example, suppose that, in a set of patients, 1% of the patients have a

particular disease. Then, a completely uninformative model could simply classify all

patients as healthy and achieve a seemingly good 99% accuracy. Furthermore, even

if the number of samples in each class are relatively equal, reporting accuracy as a

measure for a model's performance doe not give any sense as to whether a model is

more likely to classify a sick person as healthy or a healthy person as sick. Therefore,

while accuracy, or perhaps misclassification cost, is a reasonable measure for the

performance of a multiple class classification problem, there are more informative

measures for two-class models.

Before discussing other performance measures for two-class classification models,

it is necessary to first give a few definitions. Suppose a data set consists of patients

from two classes; one class contains patients with a particular disease, also called the

sick patients, and the other class contains patients without that disease, also known

as the healthy patients. Then, for a given classification model, a true positive is a sick

patient that the model correctly classifies as sick; a false positive is a healthy patient

that the model incorrectly classifies as sick; a true negative is a healthy patient that

the model correctly diagnoses as healthy; and finally a false negative is a sick patient

that the model incorrectly diagnoses as healthy.

For medical diagnostic tests, and two-class classification models in general, per-

formance is often reported in terms of sensitivity and specificity. Sensitivity is defined

as the proportion of patients with the disease who are classified as sick, and can be
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calculated using the formula

(true positives)
(true positives) + (false negatives)'

Conversely, specificity is defined as the proportion of patients without the disease

who are classified as healthy, and can be calculated by

(true negatives)
(true negatives) + (false positives)'

Occasionally, the positive prediction value (PPV) and negative predictive value (NPV)

of a test or model are reported; these are defined as

PPV = (true (true positives) (2.62)
(true positives) + (false positives)'

~NPV (true negatives)
(true negatives) + (false negatives)'

In many cases, a diagnosis test or classification model has a continuous output,

and the cutoff point to determine which patients are sick and which are healthy

can often be varied. In general, the sensitivity and specificity of a test or model

vary inversely with one another; that is, as the cutoff point is changed to make a

test more sensitive, the test also generally becomes less specific and vice versa. A

receiver operating characteristic (ROC) curve is used to capture this tradeoff between

sensitivity and specificity. For a given test, an ROC curve plots (sensitivity) vs. (1 -

.specificity), and can be used to pick the appropriate cutoff point, taking into account

the misclassification costs. A 45° line is often included on the ROC plot because it

represents a completely uninformative test - that is, a test that performs no better

than one which randomly assigns patients to classes. The amount by which a test or

model's ROC curve is above the 45° line is a good indication of how informative or

powerful the test or model is. A test or model whose ROC curve consistently falls

below the 45° line can be made more powerful by simply reversing every prediction

the test or model makes. In this way, the area underneath the ROC curve, a value
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that is also known as the C-statistic, is a good measure of the performance of a test

of classification model. An ROC area of .5 means the particular model is completely

uninformative, while an ROC are of 1 means the model can perfectly discriminate

between the two classes.

In this paper, the performance of classification models will, in general, be reported

in terms of their ROC areas. However, because the problem being solved involves

right-censored survival, there are additional methods, discussed in Section 2.5.3,

which can make use of even the censored samples in the model evaluation.

2.5.3 Survival analysis

Survival analysis is concerned with the length of time it takes before each patient

suffers some event of interest; this event will be considered death for the rest of the

discussion on survival analysis, but could include a number of other things, such as

recurrence of a particular disease. Given a set of patients, a survival function, which

gives the probability a patient will survive to a given time, can be constructed as

S[t] =Mt (2.64)N'

where mt is the number of patients who have not died by time t, and N is the

total number of patients in the data set. Depending on the problem, time t can

be measured in, for example, hours, days, or months. In contrast to the survival

function, the cumulative mortality function gives the probability a patient will have

died by a given time, and is defined as

D[t] = 1 - S[t]. (2.65)

However, since the length of follow-up time with patients is often limited, some pa-

tients will still be alive when patient follow-up ends. These patients are said to

be right-censored. Without modification, the survival function in Equation (2.64)

would overestimate the probability of being alive at a given time, since some of the
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right-censored patients may have died by that time, without the data reflecting that

fact [10].

The Kaplan-Meier survival function is constructed in a different way from the

survival function given in Equation (2.64) and better approximates the true survival

probability when there are some right-censored samples. Let Pi be the probability of

dying during the ith time period, which can be calculated by

ni - di
Pi = , (2.66)ni

where ni is the number of patients at risk - that is, the number of patients that have

not yet died or been censored - at during time period i, and di is the number of

patients who die during this time period. Then, the Kaplan-Meier survival function

is is given by

S[t] = fpPt. (2.67)
i=O

Note that Pi = 1 for time periods during which patients do not die, so these values

are frequently omitted from Equation (2.67). The Kaplan-Meier cumulative mortality

function is then given by

D[t] = 1- S[t]. (2.68)

Most statistical software packages can calculate Kaplan-Meier curves, as well as their

corresponding confidence intervals. Note that the accuracy of Kaplan-Meier curves

decreases as time increases, because each estimate is based on fewer samples as

more samples become right-censored; equivalently, the confidence intervals around

the curves widen as time increases. A Kaplan-Meier survival curve accurately reflects

the underlying true survival curve if the patients are representative for the population

as a whole, and the censored patients have the same risk of dying as non-censored

patients [10].

Given two Kaplan-Meier survival curves, a test known as the logrank test can be

used to determine the probability p that the two curves were actually derived from

the same underlying survival function [10]. A logrank test can be used to evaluate
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the performance of a classification model. That is, two Kaplan-Meier survival curves

can be constructed, one for each of the two classes, as using the classification model

to place samples into the two classes; a lower p value between the two resulting

Kaplan-Meier curves means a model has found a more significant division of classes.

Similarly, a method derived from Cox proportional hazard regression can also be

used to evaluate classification models. Related to the survival function, the hazard

function A[t] is the instantaneous rate of death for patients in the data set. For a

small time period At, A[t]At can be seen as the probability that a patient who is alive

at time t will die by time t + At. The hazard function and the survival function are

related by

Sit] = e- fJA[]dx. (2.69)

Furthermore, two groups of patients are said to have proportional hazards if

Al = RAo, (2.70)

where Al1 and A0 are the hazard functions for the two groups, and R is called the

relative risk between the groups. A Cox proportional regression model assumes that

the ith patient has an instantaneous rate of death of the form

Xi = AoeEk 3kxik (2.71)

where Xik is the kth input variable for the ith patient and k is the coefficient for

this input variable. Similar to logistic regression, the value of ek is the relative

risk increase associated with a one unit increase in Xik. The probability p that each

coefficient p3 k is actually zero can be found using statistical software [10].

To use Cox hazard regression to compare models, xi in Equation (2.71) does not

contain the input variables for sample i; instead xi only contains a single binary

variable which denotes the class of sample i as predicted by a classification model.

Then, the p value for the coefficient o0 will equal the probability that samples from

the two predicted classes actually have the same relative risk; a lower p value means a
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model has found a more significant division of the two classes. Classification models

can be compared using this value of p in the same way that the models are compared

using the logrank p values; for the most part, the two tests produce similar results.

Note that, for either the logrank test or Cox proportional hazard regression, the

classification model being evaluated has found a statistically significant distinction

between groups if p < .05.

2.5.4 N-fold cross validation

When the training set is small, cross validation can be used to evaluate the perfor-

mance of various models. In cross validation, the training set is broken into K equally

sized sets. A model is built using K - 1 of these sets and is then tested using the

samples in the hold-out set. This process is repeated K times, with each set begin

used as the validation set once. The model performance is then reported as the total

performance - or sometimes the average performance - of the model on all of the

validation sets. In this way, each training sample is used both to build and test the

model, so the model can be evaluated without reducing the size of the training set.

In N-fold cross validation, also called leave-one-out cross validation, each valida-

tion set consists of only one sample. Thus, each model is built using all but one of

the training samples and is then used to predict the excluded sample. This process is

repeated so that each sample is used as the validation set once. N-fold cross validation

is particularly useful when the training set is extremely small, so that each model is

built using as many as possible of the available training samples.

In classification problems, cross validation performance is often reported as the

error rate - or, conversely, the accuracy - of the model when applied to the validation

samples. In regression problems, cross validation performance is typically reported

as the average sum of squares error of the validation samples.
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Chapter 3

Materials and Methods

This chapter describes the specific data set and software used in this paper, as well

as exact methods for variable selection, machine learning, and model comparison.

3.1 Mesothelioma data set

Collected at the Brigham and Women's Hospital (BWH) in Boston, the data set

used in this paper consisted of microarray gene expression data for 31 patients who

underwent an extrapleural pneumonectomy as a result of malignant pleural mesothe-

lioma, without additional preoperative treatment. A total of 60 tumor specimens

were collected; the remaining 29 samples were saved to be used as a test set for the

model built by the Gordon et al study [15]. Unfortunately, at the time this paper

was written, the data for this test set was unavailable. However, the data for these

additional samples would not have been very helpful to the current analysis since, for

the test set, only a select few genes were analyzed using the more precise method of

polymerase chain reaction; any model using any other genes would have been unable

to take advantage of the test set. The expression data was collected using Affymetrix

U95A chips and the resulting gene expression matrix was generated using Affymetrix

Microarray Suite, version 5. All of this preprocessing was done at BWH [14].

Note that the gene expression data set used by the Gordon et al study was gen-

erated using an earlier version of the Affymetrix Microarray Suite and therefore con-
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tained negative values for some of the expression levels. The matrix generated using

the newer version contains no negative values and so was preferable to the older data

set.

For two of the patients in the study, three separate microarrays were used to collect

expression information and so the gene expression matrix contained three separate

columns for each of the two samples. The median of the three values for each gene

expression level was used; using the median for each gene used more of the available

data than using only one of the three columns and was less sensitive to outliers and

incorrect values than using the mean would have been.

Each of the patients contained in the gene expression data was annotated with

several patient and tumor attributes in addition to the gene expression levels and

patient survival information. This additional information included patient age and

sex, as well as tumor stage and histology. The tumor histology described the tumor

subtype as epithelial, sarcomatoid, or mixed.

3.2 Recreating the results of Gordon et al

The first goal of this paper was to recreate and verify the results of the Gordon et

al study, using both the original data set and the newer data set - that is, the data

set generated with a newer version of the Affymetrix software. The Gordon et al

study built a predictive model based on the geometric mean of three ratios of gene

expression values. To recreate these results, the samples were first ranked according to

their survival. Patients with survivals in the 25th percentile or less and patients with

survivals in the 7 5
th percentile or more formed the poor and good outcome classes,

respectively.

For each gene, a two-tailed, unpaired Student't t test was performed between the

expression levels in the poor and good groups. A gene was considered informative if

it had a t test p value of less than .05, if the mean expression level in at least one of

the two groups was greater that 500, and if the mean expression level in one of the

two groups was at least twice that of the other group. The last two criteria seemed
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somewhat ad hoc, although the justification was that these criterion helped to select

genes which were less sensitive to noise [15]. This method of variable selection will

be referred to as the Gordon method.

From the list of informative genes, the four genes which were most statistically

significantly overexpressed in the poor outcome group - that is, the four genes with

the lowest t test p values among those whose mean expression level in the poor group

was at least twice that of the good group - and the four genes which were most

statistically significantly overexpressed in the good outcome group were used to form

sixteen ratios of genes overexpressed in the good group to those overexpressed in

the poor group. The resulting ratios were used to predict the classes of training

set samples. Using the most accurate of these ratios, new predictors were created by

calculating the geometric mean of all possible three ratio combinations. The resulting

predictors were again applied to the training set, and the most accurate were kept [15].

The analysis described in this paper, this process of choosing the good and poor

groups, selecting the informative genes based on these groups, and finally creating the

predictive ratios was performed on both the original data set and the newer data set.

Cross validation was performed in each case by leaving each of the training samples

out in turn, selecting genes and constructing the most accurate three ratio geometric

mean predictor with the remaining training samples, and using this predictor to

predict the outcome of the excluded sample [15]. Since the independent test set was

unavailable, the predictors were applied to the remaining samples in the data set that

were not used in the training set. However, since all of these samples have survivals

close to the median, they were the most difficult to predict and certainly were not

randomly chosen, so the performance on these samples was generally not indicative

of the ability of the models to generalize to new samples.

While the Gordon et al study achieved good results, both on the training set and

independent test set, their method used only 17 of the available 31 samples in training.

The analysis methods described in Section 3.3 divided the data set randomly into a

training and test set so that all samples could be used. For the classification problem

-- that is, trying to predict good or poor outcome based on dying before or after the
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median survival, respectively - 21 samples were used in the training set and ten were

left to use as a test set. For the regression problem - that is, predicting the actual

survival time - only 17 samples could be used in training set and six in the test set

because a number of the samples were right-censored.

All calculations used to recreate the results of Gordon et al were done in Microsoft

Excel.

3.3 Additional gene expression analysis

The second goal of this paper was to apply other variable selection and machine learn-

ing techniques to the same prediction problem that was studied by Gordon et al. Since

the independent test set was unavailable, as many as possible of the available samples

needed to be included in either the training or test sets. The analysis described in

this paper was concerned with building both classification models to classify samples

as being above or below the median survival and regression models to predict actual

survival in months; because many of the samples were right-censored, some are not

suitable for use in one or both types of models. In order to identify suitable samples,

first the median survival needed to be calculated. Of the 31 samples contained in

the gene expression matrix, a total of 8 were right-censored. The median survival

was calculated by first calculating the median for all of the uncensored samples and

then including each of the right-censored samples one by one, from the longest known

survival to the shortest, until the next censored sample to be added had a known

survival time less than the current median. This method used as much as possible

of the available data without biasing the calculation. The resulting median survival

was 11 months; this, for the classification problem, patients were considered to have

a poor outcome if they had survived less than 11 months and were considered to have

a good outcome if the survived for 11 months or longer. Only those samples that

were right-censored before reaching 11 months could not included in either the poor

or the good groups. A total of 28 samples were qualified for use in the classification

problem; the remaining three samples, which were right-censored prior to reaching the
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median survival, could only be used to construct Kaplan-Meier curves and compare

the various classification models using the logrank test.

For the regression problem, no right-censored samples could be included in either

the training or test set, because doing so would have biased the results. Thus, a total

of 23 samples were suitable for use in the regression problem.

The unavailability of an independent test set necessitated that the already small

data set be separated into a training set and an independent test set. Seven samples

were excluded from the samples suitable for the classification problem to be used as

a test set, resulting in a training set of 21 samples. While this training set is small, it

still four samples larger than the training set used by Gordon et al. Six of the excluded

samples were also samples suitable for regression, leaving a total of 17 samples for

use in regression training. Thus, the training sets for classification and for regression

were as similar to one another as possible. To choose the specific training and test

sets, the training and test set labels were randomly permuted until the absolute value

of the correlation between the training set label and the good or poor outcome label

for classification samples was less than .05 and the absolute value of the correlation

between the training set label and the survival outcome for regression samples was

also less than .05.

All of the analysis methods described in this section and in Sections 3.3.1 through 3.3.3

used the newer data set since it contained no negative expression level values.

3.3.1 Variable selection

In addition to being used to recreate the results of Gordon et al, the Gordon method

of variable selection described in Section 3.2 was applied to the new training set; the

set of selected genes was used as inputs to a variety machine learning methods to

generate predictive models.

In contrast to the Gordon et al study, Golub et al ranked genes according to

the signal-to-noise ratio (SNR) of the log expression values. In keeping with this

approach, the logarithm of all of the expression levels were calculated; the SNR was

calculated for each gene using the training samples. Genes were ranked according to
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the resulting SNR values and this ranking was used to select genes as inputs for the

machine learning methods used. When N genes were needed, the genes with the

most positive values and the N genes with the most negative values of the SNR were

selected. This method of gene selection will be referred to as the Golub method. A

total of four gene sets were generated using the Golub method, containing the best

4, 10, 30, and 50 genes, respectively.

Although there was some justification, the choice of 4, 10, 30, and 50 genes was

somewhat arbitrary. A gene set with 50 genes was chosen as the largest set because

using significantly more than this number of genes maked the computation time,

especially in neural networks, prohibitively long; Golub et al also used a total of

50 genes in their predictive model [11]. Similarly, the gene set with 4 genes was

chosen because Gordon em et al used only 4 genes in their prognostic predictor of

mesothelioma [15]. Sets with 10 and 30 genes were reasonable compromises between

the two extremes.

A total of five different gene sets - the one using the Gordon method and the four

using the Golub method - were generated to use as inputs to the machine learning

methods. In order to examine the effects of the additional patient information -

such as age, sex, tumor subtype and tumor histology - on the performance of the

of constructed models, two input variable sets were generated for each gene set,

one containing the additional patient information and one without these additional

variables. Thus, a total of ten different input variable sets were generated to use in

all the types of machine learning.

Lastly, although decision trees can handle a large number of input variables, with

over 12,000 total genes in the gene expression matrix, it is necessary to reduce the

number of inputs to speed up computations and reduce the chance of finding irrelevant

genes that produce good splits. Thus, an input variable set containing the 500 genes

with the lowest Student's t test p values, which included all genes with a p value of

less than .05, was also generated to use to build a decision tree model.

All calculations needed for variable selection were done using Microsoft Excel.
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3.3.2 Machine learning

Classification trees were built using each of the ten different input variable sets and

N-fold cross validation was performed to assess the ability of the trees to generalize

to new inputs. A tree was also built using the 500 genes with the lowest Student's

t test p values. Each tree was built until the leaf nodes were completely pure and

no pruning was performed. The best classification tree model, based on the cross

validation error rate, was then applied to the independent test set; if two or more

trees had the same error rate, the one based on the fewest input variables was chosen.

Classification trees were built using the demonstration version of See5, release

1.20a. This software was unable to handle regression trees.

Four neural networks for classification were trained for each of the ten input

variable sets. All neural networks used batch learning with a learning rate of .25 and

a momentum coefficient of .9 and all networks were training for a total of 500 epochs.

All the networks used hyperbolic tangent activation functions in both the hidden and

output layers; the hyperbolic tangent function was chosen over the sigmoid function

because networks with hyperbolic tangent activation functions trained faster than

those using sigmoid activations. All inputs, including both gene expression levels

and additional patient information variables, were standardized to have zero mean

and one variance, and the initial network weights were generated from the uniform

distribution ranging from -.7 to .7. This initial weight distribution generally produces

good results when the inputs are standardized [16].

One of the four neural networks trained for each input variable set contained eight

hidden neurons and used no regularization; the relatively large number of hidden

neurons presumably allowed every training set to be perfectly modeled. The second

network used only two hidden neurons and had no regularization; the small size of this

network presumably forced the model to assume a simpler structure and thus avoided

overfitting the training set. The final two networks used eight hidden neurons,but

used weight decay regularization with v coefficients of .5 and 2.5, respectively, to

avoid overfitting.

63



N-fold cross validation was used to assess the performance of each network. Since

the neural networks produced continuous results, the cutoff value to determine which

samples were predicted as poor and which were predicted as good could be varied

to change the sensitivity and specificity of the network. For each of the N networks

used in N-fold cross validation, this cutoff value was chosen to maximize the sum

of the training set sensitivity and specificity and the excluded training sample was

predicted using this cutoff value. Since the neural network cross validation results

were due, in part, to the random starting weights of the networks, cross validation was

performed five separate times for each network configuration and the resulting error

rates were averaged. The best neural network configuration, based on the average

cross validation error rate, was then applied to the independent test set; if two or more

neural networks had the same average error rate, the one based on the fewest number

of inputs, with the smallest structure, or with the highest regularization coefficient

was chosen.

Four neural networks for the regression problem were also created using each of

the ten input variable sets. These four networks used the same parameters as those

used for the classification problem, except linear activation functions were used in

the output neurons. N-fold cross validation was then used to find the average sum of

squares error for each network. The N-fold cross validation was applied a total of five

times and the resulting error values were averaged, thus helping to reduce variance

in the cross validation error due to the random starting weights of the networks.

The best network in terms of average cross validation error was then applied to the

independent test set.

All of the neural networks used in this paper were created using GAINN software

written by Jonathan Jackson [19]; minor modifications were necessary in order to

perform all of the required calculations.

Four support vector machines were generated for each of the ten input variable

sets, using a linear kernel, a degree-two polynomial kernel, a degree-four polynomial

kernel, and a radial kernel, respectively. All of the support vector machines were

created using SVMight software, version 6.01, with learning module 01.09.04. As in
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the case of neural networks, each input was standardized to have zero mean and one

variance. The default value of the regularization coefficient, which is set dynamically

by the software based on the choice of kernel function, was chosen in all cases and

estimates of the cross validation error for each SVM were produced automatically by

the software. The best SVM, based on the estimated cross validation error rate, was

then applied to the independent test set; if two or more support vector machines had

the same estimated error rate, the one based on the fewest input variables or with

the simplest kernel function was chosen.

A logistic regression model was also generated using each of the ten data sets. The

gene expression level inputs were standardized to have zero mean and one variance.

N-fold cross validation was done by constructing a logistic regression model with the

included 20 samples and predicting the class of the excluded sample using .5 as a

cutoff between the poor and good classes. Additionally, logistic regression models

were built using stepwise forward and backward variable selection with a p value

threshold of .25 for inclusion or exclusion. N-fold cross validation was also done for

the stepwise logistic regression models. Due to the limited number of samples in the

training set, the software was unable to perform stepwise variable selection for the

larger input variable sets. The best logistic regression model based on cross validation

error rate was then applied to the independent test set.

All logistic regression calculations were done using Intercooled Stata for UNIX,

version 8.2.

3.3.3 Model comparisons using the test set

A total of four models - the best classification tree, neural network, support vector

machine, and logistic regression model, based on cross validation performance - were

applied to the independent classification test set. The sensitivity and specificity was

calculated for each of these models based on the seven test samples that were not

right-censored prior to the median survival. Furthermore, using these seven samples

and the three samples that were right-censored prior to the median survival, two

Kaplan-Meier curves were constructed for each model based on the predicted class;
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the logrank test for these two curves was then calculated.

One model, the best neural network regression model, was applied to the indepen-

dent regression test set. Results were given in terms of the average sum of squares

error for the six test cases.
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Chapter 4

Results and Discussion

This chapter presents and discusses the results from the various analyses which were

performed. Section 4.1 presents the results from recreating the Gordon et al analysis,

using both the original data set and the newer data set generated with a more recent

version of Affymetrix software. Section 4.2 presents the results from the additional

variable selection and modeling analyses performed. Lastly, Section 4.3 provides a

discussion of these results.

4.1 Recreated results of Gordon et al

A total of 17 samples were included in the training set used by the Gordon et al

study; nine of these samples had poor outcomes and eight had good outcomes. The

complete list of all 17 samples is given in Table 4.1. It is interesting that sample

34 was not included in this training set. This patient had a survival of 34 months,

well above the 7 5th percentile, and, although it was right-censored, there were several

other right-censored samples in the training set. In order to recreate their results

exactly, this sample was excluded from the training set in this analysis.

Using this training set, the Gordon method of variable selection, described in

Section 3.2, identified a total of 46 differentially expressed genes, 24 of which were

overexpressed in the good outcome group and 22 of which were overexpressed in the

poor outcome group. The full list of identified genes is given in Table 4.2.
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Table 4.1: Set of training

Patient age at
diagnosis, yr

51

69
62
55
33
39
55
66
49
67
62
60
61

44
48
40
46

Sex
M
M
M
M
F
M
M
M
F
M
M
F
M
F
M
F
M

samples used by the

Tumor Tumor
histologya stage

mixed 2
mixed 2
sarc 2

mixed 2
ept 2
ept 2

mixed 2
sarc 2
ept 2
ept 1

ept 2
ept 2
ept 2
ept 2
ept 2
ept 1

mixed 2

Gordon et al study

Patient Patient
survival, mon statusb

2 3

2 3

2 3

3 3

5 3

5 3

6 3

6 3

6 3

17 3

19 3

20 3

21 3

26 2

28 2

51 2

53 3

aFor tumor histology, ept = epithelial and sarc = sarcomatoid.
bFor patient status, 1 = alive without mesothelioma, 2 = alive with mesothelioma, 3 = dead from

mesothelioma, 4 = dead from other causes and U = unknown [15].

The four most statistically significantly overexpressed genes in the good group and

the four most statistically significantly overexpressed genes in the poor group were

used to construct 16 ratios, using all possible combinations with one gene from each

group of four. The resulting ratios were used to predict the classes of the training

samples; a sample was considered good if the ratio was greater than one and was

considered poor if the ratio was less than one. The full list of calculated ratios and

their accuracies on the training set are given in Table 4.3. A total of five such ratios

had an accuracy of 88% in classifying the training set, and the 16 ratios had an

average accuracy of 77%. Since no expression level standardization - for example,

converting every gene expression level to have zero mean and one variance - was done

in this analysis, it is interesting that this method works so well to predict the training

set. For example, without expression level standardization, a sample could have a
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Sample
No.
114
133
159
89
22
6

130
166
67
76

109
33
68
2

90
74
72
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Table 4.2: Genes identified by the Gordon et al study

Description
Selenium binding protein 1
KIAA0977 protein
Zinc finger protein 151 (pHZ-67)
Protein tyrosine phosphatase
Hyaluronan synthase 1
I factor (complement)
BCG-induced gene in monocytes, clone 103
Histone 1, H2bk
Sema domain, immunoglobulin domain (Ig)
Cytochrome b-5
Transmembrane 4 superfamily member 1
DKFZP586H2123 protein
Alcohol dehydrogenase 1A
Retinoic acid receptor responder
Phospholipase A2, group IIA
Sulfotransferase family
Retinoic acid receptor responder
Carboxypeptidase B1 (tissue)
Poly(rC) binding protein 2
Calbindin 2, 29kDa (calretinin)
Histone 2, H2aa
Secretory leukocyte protease inhibitor
Kallikrein 11
KIAA1055 protein
Pyruvate kinase, muscle
S100 calcium binding protein All (calgizzarin)

Rho GDP dissociation inhibitor (GDI) alpha
Transgelin
MLL septin-like fusion
Zyxin
Apolipoprotein C-I
PDZ and LIM domain 1 (elfin)
Insulin-like growth factor binding protein 3
Plectin
Actinin, alpha 1
Actin, alpha 2, smooth muscle, aorta
Keratin 18
Complement component 1, q subcomponent
Tubulin, beta, 5
Keratin 8
LIM domain only 4
Collagen, type IV, alpha 2
Midkine (neurite growth-promoting factor 2)
Myosin, light polypeptide 9, regulatory
Insulin-like growth factor binding protein 4

Ratio of Student's
good to t test

poor mean p value
2.8 0.0033
2.1 0.0065
3.0 0.0073
2.0 0.0077
6.0 0.0094
3.6 0.0103
3.7 0.0103
3.5 0.0142
2.3 0.0181
2.5 0.0182
2.8 0.0256
2.1 0.0257
14.8 0.0288
3.4 0.0291
2.7 0.0302
2.3 0.0305
3.7 0.0327
4.5 0.0329
2.2 0.0368
2.3 0.0390
2.2 0.0439
2.9 0.0461
2.3 0.0483
2.1 0.0496

0.38 0.0013
0.43 0.0041
0.35 0.0046
0.47 0.0063
0.33 0.0068
0.49 0.0069
0.43 0.0105
0.40 0.0131
0.49 0.0132
0.30 0.0135
0.33 0.0170
0.40 0.0216
0.42 0.0234
0.46 0.0234
0.48 0.0238
0.44 0.0286
0.38 0.0288
0.43 0.0324
0.25 0.0371
0.28 0.0375
0.29 0.0399
0.34 0.0456

69

Probe
ID

37405_at
41755_at
41531_at
36204_at
32424at
35698_at
40456_at
32819_at
376_at

38459_gat
892_at

40016_gat
34637_fat
33505_at
37017_at

32317_sat
1042_at
41210_at
35754_at
37157_at
286_at

32275_at
40035 at
39400_at
32378_at
38138_at
1586_at

40164_at
36931 at
41220_at
36958_at
41764_at

36937-_at
37319_at
38021 at

39330sat
32755_at
35766_at
38796_at
429_f-at
33824_at
1451 sat
36659_at
38124at
39145_at
1737s_at

Gene
sequence

No.
U29091

AB023194
Y09723
Y00815
D84424
Y00318

AL049963
AJ223352
AB000220

L39945
M90657

AL050214
M12963

AI887421
M22430
U34804
U27185
M81057
X78136
X56667
L19779
X04470

AB012917
AB028978
M26252
D38583
M35878
X69550
M95787

AB023208
X95735

AA976838
U90878
M35878
U53204
M95178
X13839
M26326
X03084
X00734
X74929
U24576
X05610
X55110
J02854
M62403

-
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Table 4.3: Ratio predictors and corresponding accuracies for the original Gordon et
al data set

Gene
overexpressed

in good
41531_ at
41755_at
41755_at
41531 at
36204_at
41755_at
36204_at
37405_at
36204_at
37405_at
41531 at
37405_at
41531 at
36204_at
41755_at
32378_at

Gene
overexpressed

in poor
32378_at
1586_at

40164_at
40164_at
40164_at
38138_at
38138_at
1586_at
1586_at

40164_at
38138_at
32378_at
1586_at

32378_at
32378_at
38138_at

Training
set

accuracy, %
88.2
88.2
88.2
88.2
88.2
82.4
82.4
82.4
82.4
82.4
76.5
70.6
70.6
58.8
52.9
47.1

gene that was related to good prognosis expressed at levels above its mean and a gene

related to poor prognosis expressed below its mean, but if the overall means of these

two genes were very different, the sample could still have a ratio of less than one. The

fact that this method works so well without data standardization may be a result of

the seemingly ad hoc restrictions placed on the genes in the variable selection process.

Using only the five most accurate individual ratios, new predictors were formed

by taking the geometric mean of every possible combination of three ratios. Again,

the training samples were classified using these predictors such that a sample was

predicted to have a good prognosis if the predictor value was greater than one. The

ten predictors had an average accuracy of 94% and none had an accuracy of less than

that of the best single ratio accuracy. Two of the resulting geometric mean predictors

achieved 100% accuracy on the training samples. The list of ten predictors and their

accuracies in predicting the training samples are given in Table 4.4; the first predictor
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Table 4.4: Geometric mean predictors and corresponding accuracies for the original
Gordon et al data set

Ratio 1 Ratio 2 Ratio 3 Training
Good Poor
gene gene

41531_at 32378_at
41531_at 32378_at
41531_at 32378_at
41531_at 32378_at
41755_at 1586_at
41755_at 1586_at
41755_at 40164at
41531_at 32378_at
41531_at 32378_at
41755at 1586_at

Good Poor
gene gene

41755_at 40164_at
41755_at 1586_at
41755_at 40164_at
41531_at 40164_at
41755_at 40164_at
41531_at 40164_at
41531_at 40164_at
41755at 1586_at
41755_at 1586_at
41755_at 40164_at

Good Poor
gene gene

41531_at 40164_at
41755_at 40164_at
36204at 40164_at
36204at 40164_at
36204_at 40164_at
36204_at 40164_at
36204at 40164_at
41531_at 40164_at
36204_at 40164_at
41531_at 40164_at

set
accuracy, %

100.00
100.00
94.12
94.12
94.12
94.12
94.12
88.24
88.24
88.24

listed is the one selected by Gordon et al to test on the independent test set. Note

that neither of two most accurate ratios predicted the remaining ten samples excluded

from the training set - which did not include the four samples right-censored prior

to the median - with an accuracy of greater than 27%, using the median survival of

11 months as the cutoff between poor and good groups. However, this accuracy was

not a good measure of the ability of these ratios to generalize to new samples, since

these remaining samples could not be considered randomly selected; they tended to

have survivals clustered close to the mean and thus were likely to be the most difficult

samples to predict.

All of these reported results were generated specifically for this paper and matched

the results of Gordon et al exactly.

The N-fold cross validation error rate was then calculated for this type of model.

That is, one training sample was excluded and the variables were selected using the

Gordon method with the remaining 16 training samples. The four most statistically

significantly overexpressed genes in each of the two classes were used to create 16 ratio

predictors, the three most accurate of which were then used to form one geometric

mean predictor; the resulting predictor was then used to predict the remaining sam-
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pie. This process was repeated a total of 17 times, with each training sample being

excluded once. In many cases, there were more than three equally accurate individual

ratios; in this case, geometric mean predictors were created using all combinations of

three ratios and the class of the excluded sample was determined by a majority vote

of these predictors.

Gordon et al reported an 88% accuracy using this process; however, only a 65%

accuracy was calculated in the recreation of their results. Gordon et al were somewhat

vague in their description of the cross validation process, so it is possible that the

discrepancy in the reported results was due to slight differences in exact methods

used. This could have included, for example, how the excluded sample was predicted

when more than three ratios are equally accurate. It is also possible that there

were differences in the data set used in the current analysis from the data set used

by Gordon et al. These errors could have come from a number of sources, such

as transcription errors or the matrix being improperly sorted. However, since all the

other values, including Student's t test p values and mean expression level ratios, were

identical to those reported by Gordon et al and since the data set used in this paper

was obtained directly from researchers at BWH, it is unlike that the discrepancy in

the reported cross validation error rates was caused by data set errors.

However, another discrepancy arose when recreating other results of Gordon et al.

Since the epithelial subtype is associated with relatively good patient outcome, Gor-

don et al performed a logrank test on two Kaplan-Meier curves containing epithelial

samples and non-epithelial samples, respectively, to determine the statistical signifi-

cance of the difference in survival between these two groups of patients. In recreating

these results, the constructed Kaplan-Meier curves were different from those pub-

lished in the Gordon et al paper. The two Kaplan-Meier curves constructed in the

current analysis are shown in Figure 4-1. Of course, since the Kaplan-Meier curves

were different, the logrank p values were different as well; Gordon et al reported a p

value of .129, while the current analysis found a p value of .399.

While there may have been errors in the data set, this represented a mistake by

Gordon et al. In their paper, they listed the set of training samples with patient and
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Figure 4-1: Kaplan-Meier survival curves based on tumor histology.

tumor information; this set included the patient with the longest known survival of

54 months - sample number 72 - who also happened to have a mixed subtype tumor.

However, this patient was clearly included in the epithelial subtype Kaplan-Meier

curve [15] when the patient should have been included in the non-epithelial subtype.

However, this was not a serious mistake by any means and did not affect their end

results.

4.1.1 Recreated results using the newer data set

After recreating and verifying the results of Gordon et al on the original data set,

the same process was repeated on the newer data set, generated with a more recent

version of Affymetrix Microarray Suite software. This newer data set contained the

same samples and patient information; only the expression levels were different. The

same 17 samples were used as a training set and the same method for selecting

variables and building ratio-based predictors was used. In this case, only 29 genes

were identified as differentially expressed; these genes are listed in Table 4.5. Of

these 29 genes, 24 were also identified by the original Gordon et al. The four most

statistically significantly overexpressed genes in each group were then used to form
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16 expression level ratios; these ratios were then used to predict the classes of the

training set samples. The ratios formed using the newer data set and their accuracies

in predicting the training set are listed in Table 4.6. Of the eight genes used to build

these ratios, only two genes - genes with probe identification numbers of 32378_at

and 40164_at, respectively - overlapped with the eight genes from the original data

set; since both of these genes were overexpressed in the poor group, none of the same

ratios from Table 4.6 were included in the analysis on the original data set. Therefore,

none of the predictors built using the newer data set were the same as the predictors

built using the original data set.

With the newer data set, one ratio had an accuracy of 94%, better than any of the

individual ratios using the original data set, and seven others predicted the training set

with 88% accuracy. New predictors were built using the geometric means of the most

accurate ratio and every possible combination of two of the seven next most accurate

ratios. The resulting 21 predictors are listed in Table 4.7. Unlike the geometric means

built using the original data set, none of these had a training set accuracy of 100%,

although they did perform very well with an average accuracy of 89%. Even using

all possible three ratio combinations did not produce a single predictor with 100%

accuracy on the training set; these results are not presented. None of the five best

predictors, which all had a training set accuracy of 94%, predicted the remaining

samples - not including samples which were right-censored prior to the median -

with greater than a 36% accuracy; again, however, this is not a good indication of

the ability of any of these ratio-based predictors to generalize to new samples.

The same method for calculating the N-fold cross validation error rate was then

applied to the newer data set. The N-fold cross validation accuracy was calculated as

65%, the same as in the original data set. Thus, the ratio-based method was equally

accurate, in terms of cross validation, in both the original data set and the newer

data set.

It would be very informative to be able test one or more of the most accurate pre-

dictors listed in Table 4.7 against the predictor used by Gordon et al. Unfortunately,

an independent test set is unavailable. The results on the newer data set do seem
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Table 4.5: Genes identified by Gordon method using original training set and new
data set

Gene Ratio of Student's
Probe sequence good to t test

ID No. Description poor mean p value
37405_at U29091 Selenium binding protein 1 2.8 0.0036
32424_at D84424 Hyaluronan synthase 1 3.4 0.0080
41210_at M81057 Carboxypeptidase B1 (tissue) 4.3 0.0209
892_at M90657 Transmembrane 4 superfamily member 1 2.6 0.0314
376_at AB000220 Sema domain, immunoglobulin domain 2.3 0.0339

40456_at AL049963 BCG-induced gene in monocytes, clone 103 3.1 0.0375
41531 at AI445461 Transmembrane 4 superfamily member 1 2.7 0.0405
37157_at X56667 Calbindin 2, 29kDa (calretinin) 2.3 0.0406
33505_at AI887421 Retinoic acid receptor responder 3.6 0.0434

34637_f-at M12963 Alcohol dehydrogenase 1A 13.2 0.0485

32378_at M26252 Pyruvate kinase, muscle 0.41 0.0001
40164_at X69550 Rho GDP dissociation inhibitor 0.44 0.0015
36958_at X95735 Zyxin 0.49 0.0030
36931 at M95787 Transgelin 0.37 0.0044

39330sat M95178 Actinin, alpha 1 0.40 0.0083
32755_at X13839 Actin, alpha 2, smooth muscle, aorta 0.36 0.0127
39145_at J02854 Myosin, light polypeptide 9, regulatory 0.38 0.0142
35766_at M26326 Keratin 18 0.42 0.0149
38796_at X03084 Complement component 1, q subcomponent 0.46 0.0162
37319_at M35878 Insulin-like growth factor binding protein 3 0.31 0.0244
35905_sat U34995 Glyceraldehyde-3-phosphate dehydrogenase 0.46 0.0253
33824_at X74929 Keratin 8 0.50 0.0278
1451_sat D13666 Osteoblast specific factor 2 (fasciclin I-like) 0.38 0.0308
36659_at X05610 Collagen, type IV, alpha 2 0.25 0.0310
1664_at HG3543-HT3739 - 0.30 0.0390

1737_sat M62403 Insulin-like growth factor binding protein 4 0.30 0.0409
769_sat D00017 Annexin A2 0.50 0.0439
38418_at X59798 Cyclin D1 0.39 0.0448

36675rat J03191 Profilin 1 0.49 0.0483

very comparable to the results on the original data set; for example, the ratio-based

predictor list at the top of Table 4.7 uses two of the same genes as the ratio-based

predictor used and tested by the Gordon et al study and only two new genes. N-fold

cross validation gives an identical error rate between the two data sets, and, although

none of the geometric mean predictors predicted the training set in the newer data

set with 100% accuracy, the accuracies of the individual ratios and geometric mean

predictors are very similar between the two data sets. In fact, the most accurate

individual ratio in the newer data set was more accurate than the most accurate in-
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Table 4.6: Ratio predictors and corresponding accuracies for the newer data set

Gene
overexpressed

in good
37405_at

892_at
32424_at

892_at
37405_at
32424_at

892_at
37405_at
32424_at
37405_at
41210 at
41210 at

892_at
41210 at
41210 at
32424_at

Gene
overexpressed

in poor
40164_at
32378_at
40164_at
40164_at
36958_at
36958_at
36958_at
36931 at
36931 at
32378_at
40164_at
36958_at
36931 at
32378_at
36931 at
32378at

Training
set

accuracy, %
94.1
88.2
88.2
88.2
88.2
88.2
88.2
88.2
82.4
76.5
76.5
76.5
76.5
64.7
64.7
52.9

dividual ratio in the original data set. While Gordon et al may have found a good

predictive model, ratio-based models from the newer data set may perform as well

or better as the original model, since the data used to generate these newer models

was created using a newer and presumably more precise method of calculating gene

expression levels from microarray slides. Only an additional two genes - those with

probe identification numbers of 37405_at and 892_at, respectively - would need to be

analyzed using PCR in order to test one of the newer ratio-based predictors. Note

that, although there is a chance that the probe identification numbers for various

genes changed between the two data sets, the list of probe identification numbers

and corresponding genes cited from the author's website [12] and the equivalent list

obtained directly from researchers at BWH were equivalent for a number of randomly

selected genes; thus, it is likely that the probe identification numbers did not change

between the two data sets.
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Table 4.7: Geometric mean predictors and corresponding accuracies for the newer
data set

Ratio 1

Good Poor
gene gene

37405_at
37405_at
37405_at
37405_at
37405-at
37405_at
37405-at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at
37405_at

40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at
40164_at

Ratio 2
Good
gene

892_at
892_at
892 at

32424_at
892_at
892_at
892_at
892_at

32424_at
32424_at
892 at
892_at
892_at

37405_at
37405_at
37405_at
32424_at
32424_at

892_at
32424_at
32424_at

Poor
gene

32378_at
32378_at
32378_at
40164_at
40164_at
32378_at
32378_at
32378_at
40164_at
40164_at
40164_at
40164_at
40164_at
36958_at
36958at
36958_at
36958_at
36958_at
36958_at
40164_at
40164_at

Ratio 3
Good
gene

892_at
32424_at

892_at
37405_at
37405_at
32424_at
37405_at
37405_at
32424_at

892_at
32424_at

892_at
37405_at
32424_at

892_at
37405_at

892_at
37405_at
37405_at
892_at

37405_at

Poor
gene

40164_at
36958_at
36958_at
36931_at
36958_at
40164_at
36958_at
36931 at
36958_at
36958_at
36958_at
36958_at
36931 at
36958_at
36958_at
36931 at
36958_at
36931 at
36931 at
40164_at
36958_at

Training
set

accuracy, %
94.1
94.1
94.1
94.1
94.1
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
82.4
82.4

4.2 Results of additional analysis

Additional analyses were performed to identify other differentially expressed genes

and build predictive models for survival in patients with malignant pleural mesothe-

lioma. The absence of an independent test set dictated that the data set be split into

training and test sets in such a way as to use as much as possible of the available

data. Thus, a training set with 21 patients was randomly generated from the suitable

samples; eleven of these samples had a good outcome - that is, a survival of 11 of

more months - and ten had a poor outcome. Seven of the remaining samples were

used as a test set and the final three samples, which were right-censored prior to the

median survival, were left to be used in logrank tests. The training set, test set, and
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set to be used in logrank tests are shown in Table 4.8; these sets were used in all of

the additional analyses. All of the additional analyses used expression levels from the

newer data set.

4.2.1 Results of variable selection

The top 50 genes, 25 of which were overexpressed in each of the two outcome classes,

as identified by the Golub method of variable selection are listed in Table 4.9. Inter-

estingly, none of the these 50 genes were the same as any of the 46 genes identified by

the original Gordon et al study or any of the 29 genes identified by recreating their

results using the newer data set.

Applying the Gordon method of variable selection to the new training set identified

a total of nine genes; these are listed in Table 4.10. Two of these genes were also

identified by the original Gordon et al study, although neither of these genes was

among the eight used to build the ratio-based predictors. Likewise, one of the genes

listed in Table 4.10 was also identified by the recreated Gordon et al results on the

newer data set but again was not among the eight used to build the predictive models.

Lastly, none of these nine genes were among the top 50 genes as identified by the Golub

method.

It appears that the Gordon method of variable selection is not well suited for use

on randomly selected training sets. When applied to the new training set, the method

identified only nine genes and only two of these genes were overexpressed in the poor

outcome group. This method of variable selection seems to work best when only the

best and worst samples are used for training; for many of the genes, the samples

with survivals close to the median must pull the mean of the expression levels in each

group closer to the overall mean, thus causing the method to identify fewer genes.

4.2.2 Cross validation results from machine learning models

The N-fold cross validation error rates for classification trees are shown in Table 4.11.

Notice that, for the Golub set containing 4, 10, and 30 genes, both with and without
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Table 4.8: Samples used in training and test sets for additional analysis

Patient age at
diagnosis, yr

Tumor Tumor
Sex histology stage

Patient Patient
survival, mo statusa

51

62
55
33
39
55
66
49
53
42
55
71

49
52
67
62
60
44
48
40
46

Training set
M mixed
M sarc
M mixed
F ept
M ept
M mixed
M sarc
F ept
M ept
F ept
M mixed
F ept
M mixed
M ept
M ept
M ept
F ept
F ept
M ept
F ept
M mixed

2

2

3

5

5

6
6

6

7

9

11

11

13

15

17

19

20
26
28
51

53

3

3

3

3

3

3

3

3

3

3
11

3

3

3

3

3

3
21

21

21

3

Test set
133 69 M mixed 2 2 3
57 61 M ept 2 7 3
42 64 M mixed 1 10 3
105 66 M mixed 2 12 3
212 62 F mixed 2 12 3
68 61 M ept 2 21 3
34 52 F mixed 2 34 41

Right-censored samples used for logrank test
82 68 F mixed 2 1 41
118 74 M mixed 2 7 41
116 70 M ept 2 9 U1

aFor patient status, 1 = alive without mesothelioma, 2 = alive with mesothelioma, 3
mesothelioma, 4 = dead from other causes and U = unknown [15].

aRight-censored samples are excluded from regression analysis.
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= dead from

Sample
No.

114
159
89

229
6

130
166
67
167
86

213
101

51

93
76

109
33
2

90
74
72
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Table 4.9: Top 50 genes identified by Golub method using new training set

Probe Gene
ID Seq. No. Description SNR

32629_f-at U90552 Butyrophilin, subfamily 3, member Al 1.042596
33428_sat AF034957 Attractin 1.035815
37973_at AB018256 Sorting nexin 13 0.875127
41174_at AF012086 Similar to RAN-binding protein 2 0.841515
39414_at L23849 - 0.839765
31315_at D84143 Homo sapiens immunoglobulin lambda light chain 0.83609
304_at HG961-HT961 - 0.823303

40060_rat AF061258 LIM protein 0.792319
35475_at U37251 Zinc finger protein 177 0.768456
36072_at AF025770 Zinc finger protein 189 0.76337
31413_at AF000990 Testis-specific transcript, Y-linked 1 0.758292

37288_gat U55258 Neuronal cell adhesion molecule 0.756127
40743_at M60092 Adenosine monophosphate deaminase 1 0.753599
39815_at AA883101 Secreted protein of unknown function 0.739854
37142_at AF038421 GDNF family receptor alpha 1 0.731596
636_at L43338 - 0.720407

39440_f-at AA962207 - 0.717747
40606_at U88629 ELL-related RNA polymerase II, elongation factor 0.716377
39980_at AB000449 Vaccinia related kinase 1 0.710041
1895_at J04111 - 0.698625

40292_at AF027734 Deleted in bladder cancer chromosome region candidate 1 0.694958
35783_at H93123 Vesicle-associated membrane protein 3 0.693607
35549_at L05096 Ribosomal protein L39-like 0.692348

35071sat AF042377 GDP-mannose 4,6-dehydratase 0.691798
36501_at S87759 Protein phosphatase 1A 0.690801
40489_at D31840 Dentatorubral-pallidoluysian atrophy (atrophin-1) -1.08847
35151_at AF089814 Tumor suppressor deleted in oral cancer-related 1 -1.0085
38729_at M88279 FK506 binding protein 4, 59kDa -0.96146

33285_iat W26762 Hypothetical protein FLJ21168 -0.86635
34541_at L02867 Paraneoplastic antigen -0.86036

37386at X55885 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein -0.81889
1797_at U40343 Cyclin-dependent kinase inhibitor 2D -0.79297

38429_at U29344 Fatty acid synthase -0.79098
2047_sat M23410 Junction plakoglobin -0.78672
32181_at M60922 Flotillin 2 -0.78316
33909_at L35013 Splicing factor 3b, subunit 4, 49kDa -0.78009
1796ssat U05681 - -0.7781
38647_at AJ131182 Coatomer protein complex, subunit epsilon -0.76184
207_at M86752 Stress-induced-phosphoprotein -0.75549
419_at X65550 Antigen identified by monoclonal antibody Ki-67 -0.74995
1801_at U76638 BRCA1 associated RING domain 1 -0.74814

38269_at AL050147 Protein kinase D2 -0.74517
38828_sat AA628946 KH-type splicing regulatory protein -0.7272
37365_at X63368 DnaJ (Hsp40) homolog, subfamily B, member 2 -0.7266
40195_at X14850 H2A histone family, member X -0.72482
40619_at M91670 Ubiquitin carrier protein -0.7223
33014_at AF059194 V-maf musculoaponeurotic fibrosarcoma oncogene -0.72116

39704sat L17131 High mobility group AT-hook 1 -0.71493
1486_at L37127 Polymerase (RNA) II (DNA directed) polypeptide -0.71294

40580 r at M24398 Parathymosin -0.71203
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Table 4.10: Genes identified by Gordon method using new training set

Gene Ratio of Student's
Probe sequence good to t test

ID No. Description poor mean p value
33273_fat X57809 Immunoglobulin lambda locus 3.3 0.0163
33274fat M18645 Immunoglobulin lambda joining 3 3.1 0.0210
41827fat AI932613 Hypothetical protein LOC51233 2.7 0.0212
33499sat AF067420 Hypothetical protein MGC27165 2.9 0.0227
33501_rat S71043 Partial mRNA for immunoglobulin 2.8 0.0232

286_at L19779 Histone 2, H2aa 2.2 0.0306
32609_at AI885852 Histone 2, H2aa 2.4 0.0478
35766_at M26326 Keratin 18 0.47 0.0068
41294_at AJ238246 Keratin 7 0.21 0.0332

additional patient variables, the resulting classification trees performed the same. The

N-fold cross validation error rate increases, however, when the 50 best Golub method

genes were used; presumably, the tree building process began to overfit the training

data. Notice also that the Gordon method performed very poorly, even worse than

simply using the 500 genes with the lowest Student's t test p value.

Furthermore, the additional patient variables - such as age, sex, tumor stage and

tumor histology - had little effect on the cross validation error rate, since the error

rate was the same for each gene set regardless of whether additional patient variables

were included. This is not surprising because, if none of these variables generated

good splits, they were simply not included in the classification tree model.

Among all of the input variable sets that gave a cross validation error rate of 9.5%,

the input variable set using the best four genes as identified by the Golub method

and no additional patient variables was selected to be applied to the test set because

it contained the fewest number of input variables.

The cross validation error rates for the neural networks applied to the classification

problem are given in Table 4.12. Notice that all of the eleven networks which achieved

a mean error rate of zero used regularization, with a coefficient of either 2.5 or .5.

All of the top 16 networks either used regularization or had a smaller size to avoid

overfitting. In fact, for all input variables sets with the exception of the Gordon

gene set, networks with regularization performed better than those with a small size,
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Table 4.11: N-fold cross

Gene set
Golub, top
Golub, top
Golub, top
Golub, top
Golub, top
Golub, top
Golub, top.
Golub, top

Lowest 500 p 
Lowest 500 p 

Gordon
Gordon

validation results for classification trees

Additional CV CV
patient error error

variables rate, % St. dev.
4
4
10

10

30
30
50
50
value

valui

No 9.5 6.6
Yes 9.5 6.6
No 9.5 6.6
Yes 9.5 6.6
No 9.5 6.6
Yes 9.5 6.6
No 28.6 10.1
Yes 28.6 10.1
e No 28.6 10.1
e Yes 28.6 10.1
No 47.6 11.2
Yes 47.6 11.2

and both of these types of network structures performed better than the networks

with large size and no regularization. It seems that the large network size with no

regularization caused the training to overfit the training data.

Both the heavier regularization with a coefficient of 2.5 and the lighter regulariza-

tion with a coefficient of .5 performed reasonably well, achieving identical results with

seven of the ten input variable sets; only in the Golub set with ten genes with addi-

tional variables and in both Gordon input variable sets did the heavier regularization

perform better than the lighter regularization.

In the case of neural networks, the additional patient variables seemed to increase

the cross validation error rates. Except for those built using the Gordon gene set, the

networks using the gene set without the additional patient variables performed as well

or better than the networks using the same gene set with the additional variables.

However, networks using regularization performed equally with or without the addi-

tional patient variables, except for those using the Gordon set and the network using

the best ten Golub genes with lighter regularization. Apparently, the regularization

was enough to counteract the confounding effects of the additional variables.

As was the case with classification trees, the networks using the Gordon gene set
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Table 4.12: N-fold cross validation results for neural networks used for classification

Additional
patient

variables

Parameters
Hidden Reg.

size coefficient

CV error rate, %

Mean St. dev. 95% CI
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 50
Golub, top 50
Golub, top 50
Golub, top 50
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 30
Golub, top 50
Golub, top 10
Golub, top 30
Golub, top 10
Golub, top 50
Golub, top 30
Golub, top 50
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4

Golub, top 30
Golub, top 50

Gordon
Golub, top 4
Golub, top 4

Gordon
Golub, top 4
Golub, top 4

Gordon
Gordon
Gordon
Gordon
Gordon
Gordon

Gene set
No
No
Yes
No
No
Yes
Yes
No
No
Yes
Yes
No
Yes
Yes
No
No
No
No
Yes
No
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
No

8
8
8
8
8
8
8
8
8
8
8

2

8
2

2

2

8

8

8

8

2

2

2

8

8

8

8

8

8

8

8

8

2

8

2

8

2

8

8

8

2.5
0.5
2.5
2.5
0.5
2.5
0.5
2.5
0.5
2.5
0.5
0

0.5
0

0

0

0

0

0

0

0

0

0

2.5
0.5
0

0

0

2.5
2.5
0.5
0.5
0

0

0

0

0

2.5
0

0.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.9
1.9
2.9
3.8
3.8
4.8
4.8
7.6
7.6
8.6
8.6
9.5
9.5
9.5
9.5
9.5
9.5
11.4
14.3
14.3
16.2
19.0
21.9
21.9
22.9
23.8
23.8
25.7
26.7

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4.3
4.3
2.6
2.1
4.0
4.8
5.8
6.4
6.4
4.0
2.1
0.0
0.0
0.0
0.0
8.2
6.7
2.6
0.0
0.0
2.6
4.8
2.6
9.9
4.0
0.0
0.0
4.3
4.3

[0.0, 0.0]

[0.0, 0.0]

[0.0, 0.0]

[0.0, 0.0]

[0.0, 0.0]
[0.0, 0.0]

[0.0, 0.0]
[0.0, 0.0]

[0.0, 0.0]

[0.0, 0.0]
[0.0, 0.0]

[0.0, 5.6]

[0.0,5.6]
[0.6,5.1]

[1.9,5.7]
[0.3, 7.3]

[0.6,8.9]
[0.0, 9.9]

[2.0, 13.2]

[2.0,13.2]
[5.1, 12.1]

[6.7,10.4]

[9.5,9.5]
[9.5, 9.5]

[9.5,9.5]
[9.5,9.5]

[2.3, 16.8]

[3.6,15.4]
[9.1,13.7]

[14.3,14.3]
[14.3,14.3]
[13.9, 18.5]

[14.9, 23.2]
[19.6, 24.2]

[13.2, 30.6]
[19.4, 26.3]
[23.8, 23.8]
[23.8, 23.8]
[22.0, 29.4]

[22.9, 30.4]
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performed poorly compared to those using any of the Golub gene sets. Networks

using the Gordon gene set made up the six worst networks in terms of mean cross

validation error rate, and all eight networks using the Gordon set were among the

worst twelve networks. Networks using the gene set with the best four Golub genes

performed uniformly poorly as well. With the Gordon gene set, using the additional

patient variables improved network performance, except in the large network with

no regularization. It appears that the genes included in the Gordon set generalized

so poorly that including the additional patient variables - which proved to degrade

performance in many of the other networks - actually improved the performance of

networks.

It also appears that regularization was able to counteract the effects of overfitting

and high dimensionality when the number of input variables was increased. Look-

ing at the Golub gene sets without additional patient variables, the cross validation

error for both large networks with no regularization and small networks reached a

minimum with ten genes and gradually increased as more genes were added. With

regularization, however, the error reached zero with ten genes and stayed constant as

the number of genes increased. The same was generally true for the Golub gene sets

with additional variables; for large networks with no regularization and for small net-

works, the mean cross validation error reached a minimum at ten genes and increased

as more genes were added. With regularization, however, once the minimum error

was reached, the error stayed constant as more genes were added; with the smaller

regularization this minimum was reached with 30 genes and with heavy regularization

this minimum was reached with ten genes.

If two or more networks had equal mean cross validation error rates, the one with

smallest number of inputs, the heaviest regularization, and finally the smallest size

was preferred. Therefore, although a total of eleven of combinations of input variable

sets and network structures achieved a zero mean cross validation error rate, the

network using the best ten Golub genes with no additional variables and having a

large size with a large regularization coefficient was chosen to be applied to the test

set. In order to reduce the variance of the output due to the random starting weights,

84



the final model contained a total of five neural networks with identical structure; the

final output for each sample was given by the average of the outputs of the individual

networks.

The cross validation error rates for the various logistic regression models are given

in Table 4.13. Notice in logistic regression that including the additional patient

variables did not necessarily lead to degraded performance. For models using forward

and backward stepwise variable selection, this is not surprising; if a particular variable

was unimportant to the classification problem, it was not included in the final model.

Furthermore, Stata software automatically removed many variables due to colinearity,

so, even when stepwise variable selection was not used, many of the least important

variables were removed before the logistic regression models were built. Notice also

that models using the Gordon gene set performed very poorly; the best model using

the Gordon gene set had a higher cross validation error than the worst model using

any of the Golub gene sets.

It appears that models built with stepwise variable selection, either forward or

backward, did not perform consistently better or worse than models built without

stepwise selection. For the Golub set with four genes, backward stepwise selection

performed the better than any other model but forward stepwise performed no better

than simple logistic regression. For the Golub set with ten genes, forward and back-

ward stepwise selection performed worse than the simple models and, for the Gordon

gene set, forward and backward selection performed better than simple logistic re-

gression with additional variables but worse than simple logistic regression without

these variables. It would be interesting to see the results of stepwise selection on the

larger gene sets, perhaps even one containing hundreds of genes, but unfortunately

there were too few training samples for Stata software to perform stepwise analysis

on these larger input variable sets. This is limitation is specific to Stata software,

since many other programs such as SAS are able to perform stepwise selection with

large number of input variables.

Although two models had a cross validation error rate of zero, the Golub set with

four genes and no additional variables was applied to the test set because it contained
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Table 4.13: N-fold cross validation results for logistic regression models

Gene set
Golub, top 4
Golub, top 4
Golub, top 50
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 10
Golub, top 10
Golub, top 30
Golub, top 50
Golub, top 4
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 30

Gordon
Gordon
Gordon
Gordon
Gordon
Gordon

Additional
patient

variables
No
Yes
Yes
No
No
Yes
No
Yes
Yes
No
Yes
No
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes

fewer input variables than the other model with zero cross validation error.

The estimated cross validation error rates for support vector machine models are

given in Table 4.14. A curious result of the support vector machines was that the

estimates of cross validation error rates were the same for each input variable set

regardless of the kernel function. This was most likely caused by the fact that the

SVMlight software only used a select few samples to produce its estimates of the error

rate; while this may be a reasonable approach for large training sets, it is not accurate

with a small training set like the one used here. Unfortunately, this property could

not be changed within the software. The software also produced another estimate,

called the XiAlpha estimate, of the model error; this estimate was also constant for
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Stepwise
variable
selection
Backward
Backward

None
None

Forward
Forward

None
None
None
None
None

Forward
Backward
Forward

Backward
None
None

Backward
Forward

Backward
Forward

None

CV
error

rate, %
0.0
0.0
9.5
14.3
14.3
14.3
14.3
14.3
14.3
14.3
19.0
19.0
19.0
19.0
23.8
23.8
28.6
33.3
33.3
38.1
38.1
38.1

-
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each input variable set regardless of kernel function. The fact that the error was

constant for each input variable set may have been caused by the regularization

coefficient, which was set automatically by the software based on the kernel function.

This regularization may have effectively regularized each kernel to the point that each

gave comparable results. The actual output was different for each kernel, however.

Varying this coefficient did not change the results in any noticeable way.

Because the cross validation and XiAlpha estimates for the error were constant

for each input variable set, the results from support vector machines were, for the

most part, uninteresting. Using a Golub set with ten or more genes and any kernel

function gave a cross validation error estimate of zero and, except for the Golub set

with ten genes and additional patient variables, these all gave the same XiAlpha error

estimates. Notice again that the Gordon gene set performed worse than all other gene

sets with or without additional patient variables.

All other things being equal, the model using the smallest input variable set or

simplest kernel function was preferred. Thus, the model using a linear kernel function

and the Golub set with ten genes and no additional patient variables was chosen over

the other models with cross validation error estimates of zero to be applied to the

test set.

Regression results

Results for the regression analysis using neural networks are given in Table 4.15. The

error is reported as the average sum of squares error for each of the N-fold cross

validation samples. Notice that five of the top six models used a small network size

to avoid overfitting. In fact, for five of the ten input variable sets, the network with

a small size performed significantly better than any of the other network structures.

Networks with the larger regularization coefficient performed better than networks

with the smaller regularization coefficient in all but one case and this difference was

significant in all but one of the case; in the one case where the smaller coefficient

performed better - the Golub set with 50 genes and no additional variables - the

difference was negligible.
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Table 4.14: Cross validation error estimates for support vector machine models

Additional
patient

variables
Kernel

function

CV
error

estimate, %

XiAlpha
error

estimate, %
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 10
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 30
Bolub, top 50
Bolub, top 50
Bolub, top 50
Bolub, top 50
Bolub, top 50
Bolub, top 50
Bolub, top 50
Bolub, top 50
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4
Golub, top 4

Gordon
Gordon
Gordon
Gordon
Gordon
Gordon
Gordon
Gordon

No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No

Linear
Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
Linear

Polynomial, degree 2
Polynomial, degree 4

Radial basis
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.5
9.5
9.5
9.5
14.3
14.3
14.3
14.3
19.1
19.1
19.1
19.1
23.8
23.8
23.8
23.8

28.6
28.6
28.6
28.6
38.1
38.1
38.1
38.1
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
42.9
42.9
42.9
42.9
28.6
28.6
28.6
28.6
42.9
42.9
42.9
42.9
52.4
52.4
52.4
52.4



Table 4.15: N-fold cross validation results for neural networks used for regression

Additional
patient

variables

Parameters
Hidden

size
Reg.

coefficient

CV average
sum of squares error

Mean St. dev. 95% CI
Golub, top 50
Golub, top 50
Golub, top 10
Golub, top 30
Golub, top 30
Golub, top 30
Golub, top 50
Golub, top 50
Golub, top 50
Golub, top 30
Golub, top 30
Golub, top 50
Golub, top 10
Golub, top 10
Golub, top 30

Gordon
Golub, top 10
Golub, top 10
Golub, top 30
Golub, top 50
Golub, top 10

Gordon
Golub, top 50
Golub, top 4

Gordon
Golub, top 30
Golub, top 10

Gordon
Golub, top 10
Golub, top 4
Golub, top 4

Gordon
Gordon

Golub, top 4
Golub, top 4

Gordon
Golub, top 4
Golub, top 4
Golub, top 4

Gordon

Yes
No
No
No
Yes
No
No
No
Yes
Yes
No
Yes
No
Yes
No
Yes
No
No
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
No
Yes
Yes
No
No
No
No
Yes
Yes

2

2

2

8

2

2

8

8

8

8

8

8

8

2

8

8

8

8

8

8

8

2

8

8

8

8

8

8

8

2

8

2

8

8

8

8

2

8

8

8

0

0

0

2.5
0

0

0.5
2.5
2.5
2.5
0

0.5
2.5
0

0.5
2.5
0

0.5
0.5
0

2.5
0

0

2.5
2.5
0

0.5
0.5
0

0

2.5
0

0.5
0.5
0.5
0

0

0

0

56.5
58.3
62.6
65.9
66.2
67.5
70.0
70.9
71.8
72.8
74.0
76.2
80.5
82.0
84.0
86.1
87.8
88.0

100.6
101.7
106.0
106.4
107.9
108.9
114.5
115.0
119.4
127.6
130.3
130.4
132.0
139.2
147.3
155.0
195.7
201.6
202.9
224.7
262.9

5.2
4.0
9.2
6.3
4.2
11.1

7.1

9.7
3.9
3.7
17.3
14.0
10.9
22.1
15.5
10.0
19.7
7.8

29.3
30.6
6.7
18.0
9.8
5.5
14.5
19.4
6.7
15.3
26.5
30.7
4.6

39.7
31.0
29.8
15.0
54.4
48.1
39.1
79.1

[52.0,61.1]
[54.8,61.8]
[54.6, 70.7]
[60.4, 71.4]

[62.5,69.9]
[57.8,77.2]
[63.8, 76.1]
[62.3, 79.4]

[68.4, 75.2]
[69.6, 76.1]
[58.9, 89.2]

[63.9,88.5]
[71.0,90.0]
[62.6,101.4]
[70.4,97.6]

[77.3,94.9]
[70.5,105.1]
[81.2,94.8]

[75.0,126.3]
[74.9,128.6]

[100.2,111.9]
[90.6,122.2]
[99.3,116.5]

[104.1,113.6]
[101.8,127.2]
[98.0,132.0]

[113.5,125.3]
[114.2,141.0]
[107.0,153.5]

[103.5,157.4]
[128.0,136.0]
[104.4,174.0]
[120.1,174.5]
[128.9,181.1]
[182.5,208.9]

[153.9,249.2]
[160.7,245.1]
[190.4,259.0]
[193.5,332.3]

0 307.0 122.4 [199.7, 414.3]
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A networks with a large size and no regularization only performed better than

another type of network structure in one case, the Golub set with ten genes and no

additional variables. Thus, it appears that this network structure was very sensitive

to overfitting, as was the case in the networks built for the classification problem.

Again, the Gordon gene set generated very poorly performing models; the worst model

used the Gordon gene set and none of the Gordon models were among the best 15

models. Additional variables did not seem to be very helpful in the regression problem

either. In the 20 comparable networks between networks using input variable set with

additional variables and those not using additional input variables, the network using

the additional variables performed better in only six of these cases, and this difference

was significant in only two cases. On the other hand, in twelve of these cases, the

network without the additional variables performed significantly better.

As can be seen from Table 4.15, the best network in terms of mean cross validation

error performs significantly better than all but the second best network. Thus, the

network using the Golub set with 50 genes and additional variables and having a small

size was applied to the test set. The final model contained a total of five networks

with identical structure; the final output was given by the average of the individual

networks.

Classification results using the test set

A total of four models were applied to the test set; the results of these model are

given in Table 4.16. The sensitivity, specificity, and accuracy were calculated using a

total of seven samples; the logrank and Cox proportional hazard regression tests were

calculated using these seven samples plus an additional three right-censored samples.

The final classification tree model uses only two genes, 40489_at and 33428_at, and,

in the final logistic regression model, backward stepwise variable selection eliminates

all but a single variable, the gene with probe identification 35151at.

The neural network and support vector machine models performed the best in

terms of both combined sensitivity and specificity and ROC area. The logistic re-

gression model results suggest that it was a completely uninformative test since all
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Table 4.16: Results of the best of each type of model when applied to the test set

Training set performance
Add. ROC Logrank Cox

Model type Gene set var. Sens. Spec. Acc. area a p value p value
Neural network, Golub, top 10 No 1.00 0.33 0.71 0.67 0.219 0.265

8 hidden neurons, reg coeff of 2.5
Logistic regression, Golub, top 4 No 1.00 0.00 0.57 0.50 0.432 _b

Backward stepwise selection
SVM, Golub, top 10 No 1.00 0.33 0.71 0.67 0.515 0.529

Linear kernel function
Classification tree Golub, top 4 No 0.50 0.33 0.43 0.42 0.235 0.296

aROC area is calculated using the single point (1 - specificity, sensitivity) so that calculations
will not favor models that support a range of cutoff values over models with only one possible cutoff.

bTest did not converge.

test samples were classified as good outcome, thus giving the test an ROC area of

.5. The classification tree model performed even worse than the logistic regression

model, achieving an ROC area of .42; thus, the ROC curve actually falls below the

45° line.

The logrank and Cox proportional hazard regression p values used more samples

than the sensitivity and specificity calculations, and so may be more reliable measures

of model performance. Although the support vector machine model performed well

in terms of ROC area, it performed the worst in terms of logrank and Cox hazard

regression p values. The logistic regression model also performed poorly in terms of

logrank p value - note that the Cox proportional hazard regression p value is not

given for the logistic regression model because the calculations failed to converge in

Stata software. The classification tree model, despite performing poorly in terms of

ROC area, had lower p values than both the logistic regression and support vector

machine models. The neural network model, however, performed the best in terms of

both ROC area and logrank and Cox hazard regression p values. The Kaplan-Meier

survival curves used to perform the logrank tests are shown in Figures 4-2 through 4-5.

Note that none of these four models produced a split with a p value of less than .05;

thus, none produced a statistically significant split in terms of patient survival between

the two predicted classes. However, since so few samples were used to generate these
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Figure 4-2: Kaplan-Meier
dictions
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Figure 4-3: Kaplan-Meier
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Figure 4-4: Kaplan-Meier survival curves based on the neural network model predic-
tions

Figure 4-5: Kaplan-Meier
predictions

survival curves based on the support vector machine model
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Table 4.17: Regression results of the best neural network applied to the test set

Additional
patient

Model type Gene set variables
Neural network, Golub, top 50 Yes

2 hidden neurons, no reg

Average Average
training set CV sum

sum of of squares
squares error error

35.3 56.5

Average Average
test set sum test set
of squares absolute

error error
16.0 4.6

values, it is not surprising that these p values were not small, even if the models were

very good. In general, since the test set was extremely small, these results have a

very high variance. These results are not meant to provide conclusive assessments of

the four final models; rather they are given simply to provide some basic evaluation

and comparison between the four models.

Neural network regression results using the test set

The results of the final neural network regression model when applied to the test set

are given in Table 4.17. The average test error is given both in terms of average sum

of squared error, which is the typical error measure, and in terms of average absolute

error. Notice that the average sum of squared error on the test set was much lower

than both the mean cross validation sum of squares error and the training set sum

or squares error; the training set error refers to the error calculated on the training

samples using the predictions from the final model. Most of the training set and

cross validation error comes from a single sample - sample number 72 - which has

a survival much higher than the next training sample. In N-fold cross validation,

the network trained using the other samples did not generalize well to this outlying

sample; in the final model, the simple structure of each individual network, which

helped to avoid overfitting, did not allow this sample to be modeled well.

The neural network model appears to have predicted the survival of the test

samples reasonably well; on average, the predictions were off from the actual survival

by only 4.6 months. However, as was the case in the classification models, this test

set was so small - containing only six samples - that the variance of the test set error
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was likely to be extremely high. Thus, these results cannot be trusted as a reliable

measure of the ability of the model to generalize to new samples; rather, they are

meant only as a simple evaluation of the model's performance on a small number of

previously unseen samples.

4.3 Discussion of results

Many of the individual results were discussed as they were presented in Sections 4.1

and 4.2. In general, it appears that the Gordon method did not do well in general

to identify differentially expressed genes that build robust predictive models. While

the method appears to have performed reasonably well when only the best and worst

samples in terms of survival were included in the training set, it only identified a

very limited number of genes in the randomly selected training set used throughout

much of the analysis. Furthermore, in almost all cases, models built using the genes

identified by the Gordon method were clearly inferior in terms of cross validation

error to those built using the any number of genes identified by the Golub method.

The Golub method had the added benefit of being able to identify any number of

genes without needing to change constraints, since more genes can be easily selection

from the list ranked by signal-to-noise ratio.

As for the various types of machine learning used to build predictive models,

neural networks performed the best in general on a number of different types of input

variable sets. Both a small number of hidden neurons and some form of regularization

were effectively used to avoid overfitting the training samples, leading to models that

generalized fairly well regardless of the dimensionality of the input data. The best

neural network model achieved a cross validation error rate of zero and correctly

classified five of the seven test samples into good and poor outcome groups. While

they performed well, one of the biggest downsides to neural network models, however,

is the fact that they are very difficult to interpret.

Several support vector machines also had a cross validation estimate of zero, al-

though this estimate did not actually use all of the training samples. The best SVM
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also correctly predicted five of the seven test samples correctly. A curious result of

the support vectors machines was that all of the kernel functions produced identical

results on every one of the input variable sets.

Classification trees did not perform overly well, either in cross validation or on

the test set. The best classification tree model had a reasonable cross validation

error rate of 9.5% on the training set but had an ROC area of less than .5 on the

test set. The logistic regression also did not perform well, although the stepwise

variable selection which can be performed by many statistical software packages was

an attractive option. A logistic regression model with backward stepwise selection

achieved a zero cross validation error rate but did not generalize well to the - albeit

small - test set.

The additional patient variables - such as age, sex, tumor type and tumor histol-

ogy - did not appear to be helpful in predicting survival for mesothelioma patients.

In almost all cases, including these variables led to equivalent or worse performance

compared to the corresponding model without these variables. This was expected,

however, since the one among these variables that is most often used as a predictor

of patient outcome, epithelial tumor subtype, gave a logrank p value of .399 for all of

the data set samples, well above the statistically significant level.

The method of building the ratio-based predictors seemed somewhat sensitive to

the software used to generate the gene expression matrix, since the most accurate

predictors with both the older and newer data sets did share some, but not all, of

the same genes. Furthermore, none of the predictors generated using the newer data

set classified the training set with 100% accuracy and the variable selection method

identified far fewer genes in the newer data set than in the original data set.

Without an independent test set, it is difficult to compare the ratio-based pre-

dictor created by Gordon et al to any of the other models built with the various

machine learning techniques. The method of building these ratio-based predictors

did have a high N-fold cross validation error rate of 35%, much higher than the best

model built with any of the four machine learning techniques. While this result may

be biased because of the different training sets, the method of building ratio-based
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predictors may not be the best choice because it does not take advantage of all of the

training data - only the samples in the 75 th percentile and above and samples in the

25 th percentile and below are used - and because it imposes some seemingly ad hoc

restrictions during gene selection. However, the ratio-based predictors of Gordon et

al are interpretable and easy to calculate and have been shown to have good perfor-

mance on a relatively large independent test set. Furthermore, among other benefits,

the use of ratios allows gene expression levels collected using various methods to be

used in the same analysis [15].
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Chapter 5

Future Work

New ratio-based models were built by applying the method of the Gordon et al study

to the newer and presumably more accurate gene expression matrix; furthermore,

using various machine learning methods, four models were built using a randomly

generated training set and compared using N-fold cross validation and a small test

set. Ultimately, these models will need to be compared to one another - and to the

ratio-based predictor originally created by Gordon et al- by using a large independent

test. A large independent test set would reduce the variance in the results and allow

for meaningful and reliable comparisons between the various models. The best model

could then be selected to be used in practice to predict survival for patients with

mesothelioma, thus helping to guide treatment of the disease.

Therefore, the next step in this analysis is to collect and analyze tumor samples

to be used as a test set. Since 29 samples have already been collected at BWH which

were not included in the data set [15], these samples only need to be analyzed using

microarrays in order to generate a test set; PCR could even be used since a very

limited number of genes - ten or less genes in most cases and only four genes in

some - were used in each of models. Collecting and analyzing these samples using

microarrays or PCR is a job for biologists rather computer scientists, however.

Without an independent set of samples to use to test these models, none of the

constructed models can safely be used in practice to guide patient treatment. These

models were built based on at most 21 samples and, apart from cross validation,
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tested using at most seven uncensored samples; in the absence of a larger test set,

the results of these models are unreliable at best. Thus, the collection and analysis

of a large test set of new mesothelioma tumor samples are crucial to the success of

using variable selection and machine learning methods to positively affect the quality

of life of patients with malignant pleural mesothelioma.

Application of the methods in another domain may give some indication of whether

the ratio-based classifier has a more general use than the one described by Gordon et

al. As large data sets become available, extension of the experiments described here

to other biomedical domains would help to answer this type of question.
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Chapter 6

Contributions

This thesis investigated a number of different methods for building models to predict

postoperative survival for patients who underwent extrapleural pneumonectomy as

a result of malignant pleural mesothelioma. A patient was classified as having a

poor outcome if his or her survival was less than the median survival length of 11

months and as having a good outcome if his or her survival was greater than or

equal to 11 months. The method of building ratio-based predictors originally used

by Gordon et al was recreated using both the original data set and a newer data

set which contained the same samples but was generated with a newer version of

Affymetrix software. In addition to recreating these results, several variable selection

methods and machine learning techniques were explored using the newer data set and

a randomly chosen training set. These machine learning techniques included decision

trees, logistic regression, artificial neural networks, and support vector machines.

The results showed that neural networks generalized the best of the four main

types of models, achieving an N-fold cross validation error rate of zero and a logrank

p value on the test set of .219. The best support vector machine model also performed

very well. Logistic regression and decision trees generalized poorly, for the most part.

Furthermore, the Gordon method of variable selection was shown to perform very

poorly compared to the Golub method on the random training set, since models

built using the Gordon method genes performed among the worst in terms of cross

validation error for all model types.

101



Lastly, many of the neural network, support vector machine, logistic regression,

and decision tree models achieved an N-fold cross validation error of, or close to, zero.

However, the ratio-based predictors had a much higher cross validation error of 35%.

While the ratio-based method used a different training set than the other models,

it would seem that the other models generalize better than the ratio-based ones; an

independent test set would be needed to confirm this speculation.

These results may help guide future researchers to select methods appropriate for

variable selection and machine learning in microarray data analysis. Furthermore,

since a number of tumors have already been collected to be used as a test set, the

results presented in this paper may used to guide researchers as to which new genes

to analyze in these samples using PCR. This data could then be used to compare the

performance of the new models with that of the ratio-based model originally built by

Gordon et al. The best performing model could then be used reliably in practice to

predict patient survival following EPP, thus helping to guide treatment and improve

overall survival for patients with MPM. Such a predictor could eventually lead to new

types of treatment for a disease which is currently incurable.
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