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Abstract

This thesis describes the design and implementation of the Genetic Programming
Intrinsic Circuit (GPIC) design system. Inspired by a number of recent advances in
the field of Evolvable Hardware, the intended purpose of GPIC is to automate the
design of analog circuits with minimal domain knowledge, computational resources,
and cost using Genetic Programming with candidate solutions implemented in real
hardware. This system has been constructed out of commercially available hardware
and software, and the components were integrated through the development of a
modular device-independent software system. The fitness evaluations of the candidate
solutions of the Genetic Programming module are realized through a C interface to a
National Instruments Data Acquisition Card. This Genetic Programming approach
to analog circuit design decreases the fitness evaluation time of previous approaches
by substituting expensive circuit simulation for real-time hardware testing. Since
performing fitness evaluations in simulation is limited by the known model for a
given environment, intrinsic testing provides additional benefit through the inherent
incorporation of any unknown environmental conditions during tests. This feature is
especially important for autonomous systems in unknown environments, and systems
that must perform well in extreme environments.
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Chapter 1

Introduction

1.1 Motivations

Inspired by a number of recent developments in the field of Evolvable Hardware, this

project commenced in the Fall of 2004 as an investigation into the capabilities and

merit of Intrinsic Evolvable Hardware as a routine design methodology. We feel that

the combination of evolutionary algorithms and reconfigurable hardware has great

potential for achieving very robust systems design, and have thus set forth on the

design of a testbench for investigating these capabilities.

We also realized early an interest early in the project in focusing on evolution

of analog circuits and applications. Since real signals and systems are analog and

continuous in nature, we did not want to restrict ourselves to working on problems

abstracted to the digital domain. Also, since evolvable hardware techniques are chal-

lenging many traditional methods for routine hardware design, it was our intention

to start our investigation at a very fundamental level of abstraction.

Another major goal for this project was to learn the known capabilities and lim-

itations of digital and analog evolvable hardware, to allow us to formulate the right

research questions. Since this work represents the first initiatives at the MIT Com-

puter Science and Artificial Intelligence Laboratory in Evolvable Hardware, an ex-

tensive literature search was needed to gauge the directions and trends in the field.

Understanding that much of the important information could not be extracted solely
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from text, it was important to work with existing researchers on overcoming some of

the technical challenges of developing this testbench, and to share our insights into

our challenges.

Once the next design phase of the testbench are complete, it is my hope that

this work will lead to continued initiatives in the area of adaptive control systems

through the use of evolvable hardware. As described in Chapter 5, controls is a good

match for solutions from Evolutionary Algorithms, primarily since it is a problem of

multi-objective optimization.

1.2 Requirements

There were a number of bare-minimum requirements we set forth early in the project

that served as guiding principles:

" Human design level abstraction and techniques should not be ignored.

Although an evolutionary approach to design often requires little to no domain

knowledge, it is our belief that what is currently known about a given problem

provides important clues to reducing the search space.

" An evolutionary algorithm must be provided with the right building

blocks. Similar to the first guiding principle, we placed a great deal of emphasis

on understanding the tradeoffs between choosing a specific set of primitives, or

building blocks, for evolutionary search. The goal is to find solutions with

minimal computation resources within the search space implied by composition

of these primitives, and to reuse known configurations.

* Parameter or bitstream search is not enough. Determining the topology

of a circuit as well as parametric aspects of a given topology is necessary in

order to obtain powerful, scalable solutions to difficult circuit design problems.

" Physical instantiation of candidate circuits is key. Although simulation

of candidate solutions can be more reliable across reconfigurable devices, the
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true value of evolvable hardware comes in evaluating fitness in a real environ-

ment. Copmared to simulation, intrinsic instantiation also offers a speedup and

reduction of computation resources.

" Careful consideration should be made to scoping the project cor-

rectly. Although the MIT Computer Science and Artificial Intelligence Labo-

ratory would be able to provide us with a wealth of resources, it is important for

the scope of this Master's thesis remain manageable for one graduate student

and advisor, less than $5K of funding, and one year's timeframe.

" Any work should be as extensible and as portable as possible, but

not one bit more. Since this project represents potentially the first of many

student projects, we realized the need to keep our hardware and software devel-

opment, and tools modular and platform-independent. Even though choosing

a specific field programmable device dictates the lowest level circuit building

blocks, few explicit device-dependent accommodations should be made in the

evolutionary algorithm. Future projects may leverage some of our work on

any number of platforms, from embedded systems to robots with a variety of

field programmable devices implementing solutions. As described in Chapter

3.1, developing a system that incorporates commercial parts while reducing the

number of dependencies on specific software packages is a particular challenge.

However, it may be necessary to adopt specific dependencies if the alternatives

are too costly to development time or other resources.
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Chapter 2

Background

2.1 Evolutionary Computation

What better place to find inspiration for design of robust systems than nature? In

observing living systems in our environment, it is clear the great accomplishments

natural evolution has achieved. Using the inspiration of neo-Darwinian evolution,

Evolutionary Computation is a field of research that aims to solve complex search,

design, and/or optimization problems through adaptive, population and genetics-

based search. Most of these techniques fall under the umbrella of Evolutionary Algo-

rithms (EA). Early evolutionary computation work in the 1960's [3] established that

evolutionary algorithms could be applied to solve problems in a variety of domains,

including design automation, robot learning, and the benchmark Traveling Salesman

Problem. The most widely known class of EAs fall under the category of Genetic

Algorithms (GA). In general, Evolutionary Algorithms, simulate evolution through

the natural selection of individuals within a population of candidate solutions, whose

characteristics are described by simulated chromosomes. The genes of individuals

in each population are mutated and crossed-over with other members to create new

solutions, in an iterative procedure [8]. Members of each population "survive" to

the next simulated generation if they are valued highly by a specified "fitness" func-

tion. After a large number, often millions, of generations, this process can converge

to very unique and fascinating designs. Many of these solutions cleverly exploit re-
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Figure 2-1: Steps in an Evolutionary Algorithm.

sources in the environment, occasionally "cheating" to achieve the solution. The use

of computers speeds up the evolutionary process from millions of years to milliseconds.

A complete description of evolutionary algorithms, including Genetic Programming,

Evolutionary Strategies, and Evolutionary Programming is beyond the scope of this

paper. Instead, I will focus on a sub-domain of Evolutionary Computation known as

Evolvable Hardware to attack problems in robust system design.

2.2 Evolvable Hardware

Evolvable Hardware (EHW) is used to describe the use of Evolutionary Algorithms

(EA) to search for solutions for some of the most difficult problems in the design

space of electronic circuits and systems. The power of this approach lies in giving

the designer the ability to let artificial evolution search for the best solutions to a

given specification, without requiring much knowledge of the problem domain. (See

[10] for examples of evolved designs that are considered "human competitive" given

enough search time and computational power) The main tasks for the designer are:

1) defining an appropriate measure of "fitness" from an abstracted functional level,

2) providing an appropriate functional mapping of chromosomes for the algorithms,

and 3) selecting appropriate parameters of the Evolutionary Algorithm for a given

application. Some knowledge of the problem domain is critical to completing these

tasks successfully.
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Another major selling point for evolvable hardware is its unique ability to incor-

porate any number of environmental factors and process variations when the evolu-

tionary process is carried out in a real environment. This ability becomes incredibly

useful when systems require long life under changing environmental conditions, po-

tential degradation of components[18], or changing requirements, such as those elec-

tronic systems designed for space missions. These types of applications represent a

large portion of the emphasis of evolvable hardware work today.

Design by evolution is a proven effective method for many simple, somewhat

isolated applications. Its capabilities are somewhat limited in capacity compared

to more traditional, modular engineering of circuits and systems. This limitation

becomes especially apparent when designing large integrated systems. The major

drawback to evolvable hardware (and evolutionary computation in general) is that

the user or designer frequently has very little knowledge of how evolution has solved

a given problem. The process often results in a design that is incredibly difficult

to analyze, port to other physical platforms, and/or scale. Researchers have taken

different approaches to address these difficulties.

Notation and Conventions It is important to keep a consistent naming conven-

tion when describing many of the concepts in this field of research. Some researchers

have chosen to make a distinction between evolutionary circuit design and evolvable

hardware [17], indicating the latter term should be reserved for use when the EA

will be run over the lifetime of a system. Others [22] have attempted to classify the

landscape of evolvable hardware into more descriptive categories. This breakdown

is important for understanding the possibilities within evolvable hardware. For our

purposes I will adopt a less restrictive definition of evolvable hardware. I will use

evolvable hardware in a more general sense to describe all of the above, to be con-

sistent with the literature pertaining to the NASA/DoD Conference on Evolvable

Hardware. However, I will distinguish between members of our population realized in

software or hardware, known as extrinsic vs. intrinsic evolution. Evolution which in-

volves the simulation of candidate solutions is known as extrinsic evolution. Using
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software simulation, the designer can outline the design space and fitness evaluations

in simulation, with only the best solutions from the final generation implemented in

actual hardware. This approach is safe because unusable or poor designs are never

tested on actual hardware. It is also more analytical, since the simulation can be

customized to provide feedback to the designer about any aspect of the state of the

evolutionary process. In addition, for circuit design, any internal node or state in-

formation can be extracted from the simulation and incorporated into the fitness

evaluations. These features are not available to intrinsic evolution. For intrinsic

evolution, all candidate solutions are implemented on real devices in their intended

environment. This approach allows the algorithm to search for solutions exploiting a

rich set of inputs from the environment or the specific device. Often, the results are

surprising. Intrinsic evolution often converges to solutions that are particular to the

specific chip used, creating designs that are neither portable nor scalable. Techniques

have been devised for addressing these issues. Most involve evaluating candidate so-

lutions across multiple FPGAs or different parts of the logic array within the same

FPGA. It is believed that evolution may be taking advantage of specific properties of

the silicon chip and environment (i.e. subtle capacitive effects, asynchronous logic)

not typically used or understood by human designers. Because the candidate so-

lutions may be utilizing aspects of the underlying hardware architecture in unique

ways, these techniques show promise for very novel, adaptable utilization of hard-

ware resources. Another drawback of this approach is the unpredictability of circuit

response under underspecified inputs and environmental conditions once a particular

design is chosen. For example, it is well known that intrinsically evolved designs often

only satisfy specified behavior under low temperature ranges tolerance, and do not

always degrade gracefully outside of this specified range. It is also important to note

that the distinction between intrinsic and extrinsic evolution we adopt only describes

where the candidate solutions are implemented, not necessarily where or when the

fitness evaluations take place. For example an intrinsic solution can evaluate fitness

in software by sampling signals, or by specialized testing hardware. In addition, in-

trinsic evolution can take place at design-time or at run-time. These distinctions do
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not currently have a convenient nomenclature.

2.3 EHW Platforms

The limits of Evolvable Hardware have traditionally been bounded by the hardware

and software technologies available to the evolutionary designer. This section de-

scribes the most popular evolvable hardware platforms that have been used, along

with a number of platforms that remain unexplored. Although a number of factors

are taken into consideration when choosing a platform, the main consideration is

speed. Because evolutionary algorithms usually require evaluation of many genera-

tions of large populations, a great deal of emphasis is placed on having a platform

that can instantiate and evaluate each individual as quickly as possible. Also, having

a platform with building blocks that match the granularity of the desired application

is also key.

Extrinsic Platforms: SPICE simulators are the ubiquitous tool of the circuit de-

signer. They allow for design and simulation of circuits at the device(transistor,

capacitor) level, based on well-known mathematical models of transistor behavior.

The syntax describes and parameterizes each element, and the interconnects between

those elements. This representation is well suited for the paradigm of Genetic Pro-

gramming. Unlike traditional Genetic Algorithms which search a design space for

candidate solutions, genetic programming searches for a program, or sequence of prim-

itive design steps, to generate that design.[10] For an excellent selection of Genetic

Programming applications and examples, see [143. In the case of circuits, a Cartesian

Genetic Programming approach also works particularly well. The goal of Cartesian

Genetic Programming is to evolve a graph of nodes, addressed by Cartesian coor-

dinates [13]. Since a circuit can easily be represented as a two dimensional graph,

evolving the position and connection of available components allows evolution to gen-

erate a topology for the circuit. However, other methods must be used to generate

parameters and/or sizing of these devices.

Extrinsic circuit evolution does have a large benefit in spite of the expensive
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simulation. Because extrinsic evolution is confined to exploring well-modeled areas

of electronic circuit design space, evolved designs achieve a higher levels of reliability

across temperature and other environmental variations when deployed in real systems.

The main problem with evolving circuits in simulation, however, is that SPICE

is very computationally intensive and inherently slow, due to the number of com-

putations that must be performed in modeling the complex physical, chemical, and

electrical properties of semiconductors. Any large design becomes impossible to at-

tack using an evolutionary approach without immense computational resources. For

that reason, most digital integrated systems are not designed at the circuit level.

Because of this, Hardware Description Languages are used to abstract away much of

the circuit details so that designers can focus on a functional description of a desired

circuit. The key challenge is to evolve complex designs in HDL simulation, that are

synthesizable for your target platform, much in the same way high level programming

languages can be compiled for different instructions sets. The two most widely used

HDLs are VHDL and Verilog.

Intrinsic Platforms: The introduction of the Xilinx 6200 series Field-Programmable

Gate Arrays in 1995 gave birth to the intrinsic evolvable hardware camp. Researchers

now had an evolution-friendly, relatively fast, robust device with which to experiment.

Adrian Thompson is credited with much of the initial EHW work with these devices

[21]. Although FPGAs are intended for use as digital devices, he found that evolu-

tion could take advantage of the underlying array of transistors to implement many

analog functions. Through this and other early work, it was apparent that many

features of the 6200 series were conducive to online hardware evolution: partial chip

reconfiguration and the guarantee that a random configuration bitstreams would not

damage the FPGAs. Unfortunately, these evolution-friendly FPGAs are no longer

manufactured. Another line of Xilinx FPGAs, Virtex, are easily damaged by the

random configuration bitstreams generated by EAs. The workaround is to model a

Virtex line FPGA as a 6200 series FPGA, and perform evolution as one would on a

6200 series. Another option is to use the notion of a virtual reconfigurable device [17],

which evolves a design at the HDL level where can be implemented on almost any tar-
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get device. Field Programmable Analog Arrays are the FPGAs of the analog domain.

They can be dynamically reconfigured to create circuits of moderate complexity. One

FPAA, the Field-Programmable Transistor Array(FPTA), developed by JPL, is the

first reconfigurable device designed specifically for artificial evolution. The FPTA

uses an array of CMOS transistors as the building blocks, so it can be used for digital

and analog circuits. While this level of granularity generates a vast design space for

an evolutionary algorithm to search, scalability problems emerge. Some groups have

addressed this problem by using predefined building blocks on the FPTA device [12]

rather than evolving from scratch. While one could imagine using pre-defined CMOS

opamps as building blocks, the workarounds and difficulty in procuring this device

make COTS FPAAs a more attractive option. The Anadigm AN220E04 chip, pro-

vides dynamic reconfigurability at the granularity of the opamp and provides a C++

Application Programming Interface(API) to program the device. A similar device,

the ispPAC from Lattice Semiconductors has been evaluated in [4], while another

evolution-specific device, the Programmable Analog Multiplexor Array has been pro-

totyped for intrinsic evolution from Bipolar transistor building blocks[15].Based upon

a number of factors including building block granularity, bandwidth, availability, and

programmability, we have chosen the Anadigm product for our evolvable hardware

platform. See chapter 3.1 for a full description of our testbench.

2.4 Choosing a Field Programmable Analog De-

vice

The capabilities of evolvable hardware have been limited by the availability of recon-

figurable devices since the inception of the idea. Within the scope of digital circuits, a

wide variety of FPGA devices are commercially available. This market is very broad,

and companies (e.g. Xilinx) have been successfully developing these reconfigurable

technologies for a number of years. Unfortunately, for our domain of interest, ana-

log and mixed-signal circuit design, field programmable devices are a niche market,
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and very few devices are easily obtainable. The literature (with the commendable

exception of [9]) tends to describe the design application achievements which these

devices support rather than devote deserving attention to comparison and evaluation

of them for their evolvable hardware capabilities, and the difficulties in creating an

environment or testbench to perform experiments with each of these devices. The

most recent and informative evaluation of analog options was published in 2001, [20].

We considered the following devices:

e a field programmable transistor array (FPTA). JPL experiments use a device

called FPTA-2 which is an implementation of an evolution-oriented reconfig-

urable architecture (EORA) and part of the SABLES system [20, 19]. U. of

Heidelberg experiments use an apparently older version we shall refer to, in

context, simply as FPTA [11].

* PAMA, Programmable Analog Multiplexor Array, developed at Catholic Uni-

versity of Rio de Janeiro([15])

e the Lattice Semiconductor ispPAC10 FPAA [4]

e the Anadigm FPAA family. [1]

In Table 2.4 we compare these devices on the basis of technology for programming

('Technology'), operational bandwidth, interconnection versatility ('Topo'), device re-

sources, configuration time and relative cost. Programming technology is important

because it can limit how many times a device can be reconfigured. The Anadigm

AN221E04 use of SRAM is advantageous in this respect. Operating bandwidth con-

tributes to application versatility. The specific problem domain and the building

block vocabulary and representation of desired solutions for the evolutionary algo-

rithm are device independent because mapping can generally be implemented. The

device resources and, when available, their interconnection options, constitute the

lowest level vocabulary and expressions of solutions. Stoica et al ([20]) would term

this the lowest level of granularity.
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Device Notes Bdwdth Topology ResourceS C-Time Availability
Anadigm SRAM 500 kHz free 4 CABs 3.8 ms commercial
AN221E04 of 2 op-

amps
each

ispPAC10 EEPROI 200 kHz limited opamps, 100 ms commercial
caps,
resistors

FPTA-2 SRAM unknown within MOS .008 ms limited
cell, transis-
inter-cell tors

PAMA muxes unknown limited BJTs, re- .08 ms unknown
sistors

Table 2.1: Comparison of different analog field programmable devices.

The PAMA, [15], can function as a fine-grained architecture, similar to an FPTA,

or as a coarse-grained architecture when a human designer manually configures cer-

tain of its switches. It is a custom board-level design, that was created for the primary

usage as an evolvable hardware platform. Therefore, it can accept random configu-

ration and not sustain any damage. One of its unique characteristics is that, rather

than using CMOS transistors like the FPTAs, it uses bipolar transistors. BJTs tend

to be more suited for analog functions. Because it is a research platform, however,

many of the features, availability and support for this platform are uncharacterized.

Heidelberg's FPTA ([11]) is a switched network of 256 (16 X 16) programmable

CMOS transistors (half NMOS and half PMOS) arranged in a checkerboard pat-

tern. Typically, with this FPTA, a genetic algorithm with a fixed length bit string

genome directly represents a 'design' as a vector of routing bits, transistor terminal

connections and channel geometry in the network. Like FPTA, FPTA-2, shown in

Figure 2-2, is a 'sea of transistors' interconnected by other transistors that act as

signal passing devices. It consists of an 8X8 array of cells. A cell's reconfigurable

circuitry consists of 14 transistors connected through 44 switches. Each bit in the

genome controls the opening of a switch. A cell also includes 3 fixed capacitors and a

small number of directly configurable resistors. In assessing the FPTA as an option,

25



one issue is whether it offers sufficient flexibility in design expression. Though both

the FPTA and FPTA-2 genome schemes technically constitute a form of topological

search, the range of circuit topologies is limited because a cell can only connect to

a neighboring cell. The low level nature of transistors and the density per cell con-

tribute to flexibility. But, certainly in the analog circuit domain, humans designs are

not connections of meshes of transistor arrays. It could be that the human conceptual

organization of the resources into designs is key to exploiting them. In addition, this

mismatch of organization makes the FPTA evolved designs difficult to comprehend.

P11S7 S 1

32 $5

P3 p
S3 $13 S9

I S13 S14

S11 r S16 11 17 NJ 15 1 B 6 B 6
119 B1 N 4 I 6 Overall Chip

S20 S23 321 15 6 3 6

16 6 6 I C

One quadrant

Figure 2-2: Left: FPTA-2 cell schematic showing 24 switches and 8 transistors, Right:
FPTA-2 upper left quadrant of 16 cells. From [20].

Another issue one must consider is the absence of the design standard of small-

signal modeling. Typically, human designers model the non-linear characteristics of

transistors as linear through biasing techniques. By selecting a DC reference voltage

to bias an input signal in the transistor's near-linear operating range (with respect to

the range of small signal perturbations), many non-linear devices can be modeled as

linear, and have stable and predictable performance characteristics. This linear be-

havior makes constructing approximately linear circuits out of nonlinear components

tractable.

Although it is conceivable that evolution may converge to solutions with appropri-

ate operating points, nothing in the FPTA's direct genome specification ensures this.

Instead, evolution could find arbitrary biases in combination that yields a behavior
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that fulfills the fitness objective to some degree. And although this individual may

perform well with respect to a particular fitness evaluation, there is no guarantee this

design will be robust or scalable.

This highlights a general problem in evolving circuits intrinsically, in that solutions

may not be as stable across temperature and process variations of physical devices

as conventional human designs. The lack of biasing is especially relevant problem for

MOS devices, since their transconductances are generally lower than that of BJTs

throughout their operating regions.[23]

In addition to these technical reservations, we [2] learned the price of the full

FPTA-2 development system, SABLES would exceed our intended budget at around

$16000. Obtaining the FPTA-2 device alone was also not a viable option, due to

unresolved licensing problems. Also, additional work would have also been needed

to fabricate a custom-designed printed circuit board to mount the device. Thus we

continued our investigation of alternatives.

An array of op-amps, capacitors and resistors is a viable alternative to a transistor

array because it offers programmable granularity. The array's primitive resources are

versatile as building blocks. Recall that the output of an op-amp is the differential

amplification of its inputs. An op-amp in closed feedback loop achieves stable linear

amplification. If a capacitor is in series with the resistor in the feedback loop, a

continuous integrator is obtained. Only slight topological changes will lead to the

op-amp configured as an adder. Unlike transistor-level amplifiers, there is no need to

bias input signals with dc offsets.

In discussion with Eduardo Torres-Jara, a graduate student at CSAIL, we consid-

ered a printed circuit board version of an op-amp array, with switchable resistors and

capacitors and versatile topological interconnect switching. With additional PCBs

and switches, this setup would scale to larger designs well. However, despite also

being transparent to configure, a board-level reconfigurable device implementation

would be slow and require other special purpose hardware to integrate into a test-

bench. Therefore, we turned our consideration to the two COTS FPAAs: Anadigm

AN221E04 and the Lattice Semiconductors ispPAC10.
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The ispPAC10, see Figure 2-3, has very limited interconnects between a small

quantity of resources. It consists of 4 programmable analog modules (4 op-amps,

and 8 input amplifiers total) interconnected with programmable switching networks.

In [4] a non-minimal (and non-intuitive) implementation of a lead compensator was

configured with the ispPAC10 that used 3 analog modules. The parameters (i.e.

gains) of the compensator were optimized using simple parameter search via a GA.

Greenwood has stated in [4] that the range of available capacitors was constraining.

Through personal communication, [5] we learned that a partnership with a Lattice

Semiconductor staff member enabled the team to write a simple conversion program

to map the genome to an appropriate bitstream format. Without this partnership,

configuration from EA software would be an issue. Because the Anadigm AN221E04

has more resources based on op-amps and more designer support software that might

help us configure the device, we chose it. In the next section, we describe the GPIC

in more detail.
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2.5 Anadigm FPAAs

Anadigm currently offers a number of commercial FPAAs, available under the Anadig-

mvortex product line. These devices represents the second generation of chips of this

type from Anadigm, and feature a very flexible architecture containing coarse-grained

analog building blocks. At the core of this architecture is an array of these configurable

analog blocks(CABs), each of which contain two opamps, 8 capacitors, a comparator,

and a Successive Approximation Register(SAR), to perform 8-bit analog-to-digital

conversion of signals. The chip also contains one programmable lookup table that

can be used to store information about the generation of arbitrary waveforms, and is

shared amongst the CABs. See the left hand block diagram of Figure 2-3. The FPAAs

within the product line share a common general architecture, although they vary in

their I/O capabilities, their reconfiguration capacity, and the number of CABs on a

chip. All but one of the FPAAs in this line, contain a 2x2 array of CABs, which can

be freely connected to one another. In addition, any signal can be routed to the I/O

pins of the device through 4 programmable I/O interface blocks and two dedicated

outputs, each of which can also act as filters or amplifiers.

The AN221E04 comes in an industry standard 44 lead Quad Flat-Pack(QFP)

package, and is available either unmounted or mounted on a development board. The

development boards provide an easy RS-232 serial port interface to a PC through the

AnadigmAssistant Software. In addition, they can be easily daisy-chained to other

development boards, to facilitate the generation of larger reconfigurable structures.

This daisy-chaining can be achieved by attaching similar development boards with

jumpers. The Anadigm GUI supports configuration of daisy-chained development

boards.

The AnadigmDesigner software abstracts the configuration, switching, and wiring

of low-level components in these CABs into higher-level building blocks known as

Configurable Analog Modules(CAMs), such as amplifiers, filters, rectifiers, and a

host of other functions. The human designer uses these CAMs as building blocks

for his/her circuit. See Table 2.6 for the list of available CAMs, and Figure 2-4
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Figure 2-4: Implementation of PID controller via CAMs.(From: AnadigmDesigner2
GUI)

for a diagram of the resource allocation done for routing a signal through a simple

example of a circuit implementing a PID controller. Also note that the GUI provides

a convenient listing of available resources (op-amps, capacitors, comparators, and

register memory elements).

Although the software provided a convenient graphic interface for designing topol-

ogy and parameters for circuits, its capabilities for automating this process were lim-

ited. Initially, it seemed possible for the software package to generate C code for this

automation, but this proved to be misleading. While the software allows for the gen-

eration and routing of signals between these high-level building blocks at design time,

the software only allows dynamic reconfiguration of the parameters of a topology.

The reconfiguration of new topologies themselves is not supported. Alternatively,

this control could be obtained by writing directly to the configuration bits, although

the mapping of configuration bits to switch values is not publicly available. It turns

out that the predefined CAMs are an ideal set of course-grained building blocks for

Genetic Programming. Section 3.1.3 describes our efforts to control this device in a

portabile manner using Genetic Programming.
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Another unique feature of these FPAAs is their utilization of 'switched capacitor'

technology. As illustrated in Figure 2-5, these chips achieve dynamic, run-time, re-

configurability of routing and parameters through controlling switches. In addition,

the configuration bits for these devices are stored in SRAM, which is more reliable

than other FPAAs based on EEPROM technology. For a more detailed description

of these features, see Anadigm Datasheet.

S14 S? S3 SICl * f~LT
Cl 1k
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'5si -V52S C2 - 4

Figure 2-5: Sample Anadigm CAM, Inverting Gain block illustrating 'switched ca-
pacitor' configuration

2.6 Genetic Programming in Hardware

Most work on intrinsic evolvable hardware can be characterized as evolutionary search

on configuration bits for reconfigurable device that results in achieving some function.

However, Genetic Programming has introduced the option of evolving an indirect

representation of a design, which can be much more powerful than evolving a set of

configuration bits. This power comes from the inclusion of helpful abstractions from

the problem domain, which improve an algorithm's effectiveness by setting up the

best representations for expressing solutions.

For circuits, these representations take the form of block diagrams, program trees,

math functions, Lisp expressions, and SPICE netlists. However, nearly all work

done in Genetic Programming with intrinsic fitness evaluations has been done in the

digital domain. Managing the mapping between designs and their corresponding chip
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resources in digital reconfigurable hardware(i.e. FPGAs) is a much simpler problem

than it is for analog design, since FPGAs today have millions of gates, while analog

reconfigurable devices feature up to dozens of components.

Also, general purpose tools for transferring a design to the hardware resource level

are not available for analog reconfigurable circuits. Therefore, a genetic representation

for intrinsic analog circuit design must incorporate information about the resource

limitations of the intended platform. Key to this mapping is an understanding of the

actual resources with which a design can be created, and modeling the resources on

a chip in such a way that the genetic representation can synthesize a valid design.

Similar to Biological systems, electronic systems are often composed of many sub-

systems and components. However, circuits feature a key difference in that, at the

lowest level, these designs are composed from the same resources: mostly MOS and

Bipolar transistors, capacitors, resistors, and other fundamental components. There

are many abstraction layers defined for human designers to manage the complexity

of designing these systems. Engineers design with the respective building blocks

from different levels of this abstraction hierarchy, and understanding the tradeoffs

associated with describing a design using those components is critical. Using low-

level resources allows a design to be fully customized down to each component, but

is often infeasible for humans to design large systems at this level. By using some

level of pre-defined circuit sub-structures (i.e. gates, op-amps, adders) as building

blocks for more complex designs, engineers choose to tradeoff design complexity with

customization. Depending on the domain of interest and end-product requirements,

a designer must choose an appropriate level of representation.

In order for evolution to perform efficient and routine design of entire systems, an

evolutionary algorithm must, like humans, be able to target multiple levels of abstrac-

tion and handle mapping between levels of representation. It must span the range of

sufficiency for solution expression, through sufficiency for genome expression, search

and genetic operators, to sufficiency for instantiation for testing and deriving fitness

information. For example, it must be able to express its synthesized designs in terms

of resources that are appropriate to a particular problem domain. These solutions
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might have direct genome representations. Or, some additional interpretation must

be added to express them as genomes. The genome representation must facilitate

implementation of crossover and mutation operators. It also crucially determines the

fitness landscape of the search space. Then, if the genomes cannot be directly instan-

tiated, they must be mapped one or more times to derive a representation that can

be realized physically or in simulation testing.

The EAs of Evolvable Hardware have ranged from using direct representations

that are very specific to a particular device, to using indirect representations that

map between multiple representations and thus isolate much of the device specific

information from the EA. A prominent example of the former extreme are the projects

by A. Thompson ([21] and others who used the Xilinx 6216. Fortunately, the 6216

had no configurations that could possibly short it. Thus, Thompson was able to

employ a GA that used a bit vector that directly encoded the configuration vector .

Although devices that have this robustness in configuration have reemerged recently,

the complexity and gate count of that configuration has become intractably large. To

address the issue of evolving more intelligent designs on these new FPGAs, recent

work has described the idea of evolving designs for an abstraction of that hardware,

described as a Virtual Evolvable Device. [16]

Traditionally, there have been two types of structures generated by genetic pro-

gramming. Most commonly, genetic programming generates a set of instructions to

execute, whose execution results in the steps for construction of a design. Alter-

natively, in the developmental approach, genetic programming generates a sequence

of operations to perform on a 'seed', which can be manipulated using operators, to

generate the structures of interest. However, recently in [10] a third representation,

specific to controllers, has been described. This representation is motivated by the

similarity between the block diagram representation of signal processing circuits and

the program trees of genetic programming. This representation works very well for

circuit design, since block diagrams are universal for describing circuits at any level

of the design hierarchy. Essentially, this representation is nearly a direct-mapping

between a block diagram and a program tree, with cycles in the block diagram ad-
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Building Block(CAM) GP Function GP Parameters
Inverting Gain Block GAIN gain value

Integrator INTEGRATOR integration constant, ref. voltage
Bilinear Filter FILTER type: {lowpass, highpass, allpass }
Comparator COMPARE reference voltage

Table 2.2: Sample Anadigm CAMs to be used to define a GP Function Set

dressed by Automatically Defined Functions. See figure 2.6 for an illustration of this

mapping.

P

-7C)-+ I +-+Plant -

D
Controller

Defun Values

ADO LIST Values

Rel +214.pADF GAIN GAIN

+1000.0 ADFO .15.5 ADFO

Figure 2-6: Mapping of Controller Block Diagram to Equivalent Program Tree for
Genetic Programming from [10]

In Genetic Programming, a problem is typically described through defining a

repertoire of functions, terminals, fitness measures, parameters, and termination cri-

terion. For intrinsic testing, because all candidate solutions must be realizable on the

platform of choice, special attention must be paid to the choice of these components

of the Genetic Programming algorithm. To fulfill this requirement, one can begin

defining the function set as the resources on chip, and ensuring that each design does

not exceed the number of each type of resources through each of the possible genetic

operators. A table of a number of sample Anadigm building blocks(CAMs) can be

found in Table 2.6 along with their respective parameters.
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Chapter 3

Results

This chapter describes the major contributions and results of this project through (1)a

description of the design and implementation of our GPIC system, (2)a case study

describing to what extent our current implementation achieves a specific end-to-end

genetic programming run.

3.1 GPIC Design Summary

This section serves as a comprehensive guide to the design and implementation of

GPIC. The purpose of this guide is to provide future developers and users with

a description of its features, and the motivation and tradeoffs that went into these

choices. In addition, each section highlights the areas of the system that were realized

in the scope and time constraints of this phase of development.

3.1.1 System Overview

GPIC is composed of three major hardware components, and the software to configure

and control these devices. The central unit of control for this system is the PC, which

compiles and executes the reconfiguration algorithm, configures the FPAA via the

serial port, and programs the DAQ PCI card. The DAQ has a bus which terminates

at a connection block, to which we have connected BNC cables. A quick description of
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the specifications of each of these components, their prices, and support information

can be found in Table A.1. See also figure 3-1 for an image of the major components

of the system.

Note that our design features a number of Commercial Off-the-shelf components(COTS).

One of the problems in choosing COTS devices is that a systems designer must rely

on specific product vendors for documentation and support throughout the lifetime

of the end-system. When using very specialized components, this dependency may

be problematic. Often times, certain product lines may become discontinued, or the

product vendor may go out of business, leaving the systems designer or end-user with

an unsupported product. In making our decisions regarding the integration of these

components, we were highly motivated by the need to reduce this dependency on

vendors.

Figure 3-1: Image of Evolvable Hardware Testbench
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3.1.2 Reconfigurable Hardware

We decided upon the Anadigm family of FPAAs for our target hardware based upon

the features described in Section 2.4. Once this family of devices was chosen, we had

a number of options for integrating the hardware into our test environment.

The first option we considered was populating a custom fabricated of a printed

circuit board populated with one or more of the FPAAs. The advantage of this

approach was that we could customize the interconnects between a desired number

of FPAAs. We could also include a range of switchable building blocks for a given

configuration to take advantage of. Although the design of this component would

allow us a high degree of component customization in our system, it was clear this

development cycle could span the length of one or more semesters. This would vi-

olate the design principles set out in chapter 1. We then began our investigation

of the commercial mounting options offered by Anadigm, sacrificing another degree

of independence from the product vendor. The most attractive offer for getting our

testbench running quickly was to purchase the Anadigm Development Kit, which

comes populated with one of their top-of-the-line FPAAs, the AN221E04 FPAA,

mounted onto a Development Board. It also comes packaged with a license for the

AnadigmDesigner2 software to configure this device. For $200, we were able to have a

"Plug and Play" reprogrammable analog device. There was a slightly more expensive

third-party board available, but we opted to go with the Anadigm solution.

3.1.3 Configuration of the FPAA

In selecting the Anadigm AN221E04, it was unclear how to reconfigure it from our

intended platform. We also knew it would not necessarily accept random configu-

rations, as 'evolution safe' devices could. The first alternative we considered was to

ignore vendor software, and interface to some custom designed software sending con-

figuration bitstreams to the serial port. In order to achieve our desired level of control

of on-chip resources, we needed a specification sheet for how to map configuration

bits to CAB switches. Since their signal routing technology is one of the key distin-
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guishing features of their product line, Anadigm would not release this information.

Without an explicit mapping of the configuration, our software could only attempt to

repeat known good configuration streams to the chip, based upon extracting patterns

from previous good configurations. These patterns were not easily discernable from

a preliminary investigation of sample configurations.

Our investigation proceeded by looking at the vendor's software to achieve the

desired runtime reconfigurability. Anadigm sells the Anadigm Designer-2 EDA tool

which offers a simple drag-and-drop GUI for designing circuits using a vendor-defined

library of building blocks. This software has a graphical interface and links up to a

built-in simulator, and configuration software. The challenge was to generate these

types of design and configuration events in an evolutionary algorithm. One potential

solution was the AnadigmDesigner2 software's feature of 'Dynamic Configuration'.

Specifically the supported 'Algorithmic Method' of code generation would allow us

to auto-generate C++ code from a given circuit configuration. This code could be

compiled into an executable, which could be used to perform the circuit configuration.

In addition, the generated code featured functions that could be used to dynamically

reconfigure the parameters of CAMs in a given circuit topology. This feature would

be very conducive to online parameter tuning, (i.e. PID control), but would not

satisfy the requirements that we set forth. Specifically, it was not possible to call

functions to change the topology of a given circuit configuration. Recall that one

of the guiding principles in this thesis is to be able to perform topological search as

well as parameter search. Furthermore, the GUI package gave no indication and little

documentation as to how the auto-generated C++ code was created from a given

topology.

Finally, through a special agreement with Anadigm, we obtained a documenta-

tion package for how to automate events on the GUI. This package included an API

description of how to automate events, as well as a description of the object models

used to organize the interface between components of a given design. This package

had been developed to test the GUI during product development,and was not in any

product release. Generating events on the GUI was achieved through control of the
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application as an Active-X object. With this package and a Microsoft C++ compiler,

we were able to send designs from our GP module to the Designer-2 GUI by translat-

ing them in the GP system to a series of method calls published by the Automation

API. Unfortunately, adopting this scheme of control of the chip introduced another

dependency. In order to compile the code for Active-X control, we were required to

port our development environment over from the GNU C++ compiler to Microsoft

C++ compiler. Once we achieved Automation of the GUI, it was clear the solu-

tion proved to be conducive to demonstration, since the automation process actively

displays each steps in designing a circuit on the actual GUI.

However, in order to achieve a Genetic Programming representation that could be

investigated on a number of given target platforms (or future generations of Anadigm

FPAAs) an abstract representation for the chip interface was needed. To address

this problem, I designed a software class hierarchy that would promote portability.

The key feature of this design is the use of abstract building blocks from which to

create circuits. These 'Resources' would act as primitives in a Genetic Programming

representation, and the tracking of these resources would be done through the abstract

'ResourceManager' class. This class could keep track of the state of resources on chip,

such as the state of a switch, or the availability of an op-amp. In this model, a Genetic

Programming system would not be given information about the function of particular

resources. Rather, it would be presented with a finite number of each resource type,

along with rules for connecting the devices to form topologies. From these, it could

search for different topologies guided by the fitness metric. The most basic rule for

chip resources is to describe their input/output relationships. For example, an opamp

can be modeled with two inputs and one output. To genetic programming system,

this device could be substituted for a MOS transistor, which can also be modeled as

a two-input, one-output device. The distinction between the two would be made by

their effect on the performance of the circuit during fitness evaluation.

There was also a need to represent the parameters of given resources in an equally

abstract manner. Since parameters of a chip resource can range from a finite set

of discrete values(i.e. a switch), to a continuous range of values(i.e. amplifier gain),
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generalizing the representation was not a trivial task. In addition, the requirements on

this representation are further complicated by the fact that certain parameters could

affect the status of other parameters. For example, on the Anadigm AN221E04 FPAA,

an IO block has a parameter describing its up as either an input or an output block.

When configured as an output block, all filtering functionality, which is normally

determined by resource parameters, is disabled. Therefore, Parameters were designed

in such a way that they could be described by either their range of valid values, or

a set of discrete valid values. For the sake of programming, these categories were

further broken down into those parameters that took on integer values or 'double'

precision values. The relationships between parameters is addressed through the

design of a 'ParameterManager' class. A genetic programming system could update

the parameters of a given resource by interfacing with the ParameterManager. A

ParameterManager could be instantiated in a way that allowed it to link together

related parameters of a given resource. The Anadigm version of each of these abstract

'Manager' classes was also implemented. Figure 2.6 describes this class hierarchy

through an inheritance diagram.

ParameterManager

Resource

AnadigmResource

InventoryGain DiscreteRange

Integrator

-4 - Wires C- onfinuo~usRange

ResourceManager

ChipXResourc
AnadigmResourceM

Capacitor ChipXResourceMgr

Figure 3-2: Class Hierarchy for Device-Independent Resource Abstraction.

gr

40



3.1.4 Fitness Evaluation Module

In order to determine the fitness of circuits in a given application, the GPIC sys-

tem needed a way to apply stimulus signals to candidate solutions, and sample the

time and frequency domain responses corresponding to these inputs. For example, in

designing a low-pass filter, one would look to apply a range of frequencies to deter-

mine the frequency response of a given circuit. To achieve our signal generation and

test, two options were considered. The least expensive option would be to generate

and sample signals with the sound card. This approach has a number of drawbacks

rendering it unusable for many applications. Although many modern sound cards

feature high grade D/A and A/D converters, the limitations of the device are many.

For example, inputs to the card are DC coupled, with capacitors immediately follow-

ing, the inputs. Since capacitors cannot pass DC currents, sound cards cannot sample

dc values. As many of the applications we will be looking to investigate may require

sampling of DC values, this approach proved to be unfit. The standard solution to

generation and test of signals from a PC is the use of a Data Acquisition Card(DAQ).

NI Data Acquisition System

In investigating the features of Data Acquisition Cards, it was apparent that National

Instruments provided the widest range of solutions in their product lines. It is impor-

tant to have a solid gauge for the end application of interest when choosing a DAQ,

since deciding upon features often involves trading off numerous performance metrics,

such as sampling rate, accuracy of sampling, number of IOs and cost. Fortunately for

our application, there was a 'low-cost Multifunction' solution, the NI PCI-6221 within

the 'M Series' product line. Our intention was to test frequencies up to hundreds of

kilohertz, and this solution provided that capability with a sampling rate of 833kS/s

on up to 16 input channels. According to the Nyquist criterion, this rate would be

sufficient for our task. For applications working in the higher frequency ranges, one

might consider the 'S-series' product line. The only special requirement we had was

for the DAQ to be able to generate arbitrary waveforms in addition to sampling. This
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feature would be necessary when performing fitness evaluations.

In order to interface the signals generated on the DAQ with other hardware in

our testbench, we were required to purchase a connection block and associated cable.

Since these items, the SCB-68 Noise Rejecting Block and SHC68-68-EPM Noise Re-

jecting cable, were the items available for us to interface with this DAQ, the choice

was simple. The combined cost of these two components totalled around $350.

To configure the DAQ in software, National Instruments provides a number of

tools and drivers. For prespecified tests, the DAQ can interface with a number of

available packages including Labview, NI Measurement and Automation(MAX), and

VI Logger. For code-driven tests(i.e. fitness evaluations), they also provide a C API

and drivers for the device. This method proved to be the most convenient way for us

to integrate the control of the DAQ into our environment.

3.2 Fitness Evaluation Case Study

A good way to describe the characteristics and end-goal of GPIC is through a case

study. This section also serves as an evaluation of the current state of its implemen-

tation

Suppose one wanted to evolve a controller for a plant with an unknown transfer

function, using GPIC. Figure 3.2 illustrates the textbook feedback control loop for

achieving control. See also figure 3.2 for an illustration of a unity feedback system.

This scenario would be common for systems in unknown and potentially hazardous

environments, where the likelihood of having sustained hardware damage from that

environment is considerable. This damage would manifest itself in changed charac-

teristics and transfer functions of hardware. See figure 3.2 for an illustration of the

typical description of these transfer functions, using Laplace transforms.

Simulating this scenario in the lab, the plant implementation could be a real

plant(i.e. servo motor), a breadboard/PCB instantiation of a circuit(see Figure 3.2,
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or a simulation of the transfer function in software.1

In the feedback loop block diagram, the FPAA would take the place of the con-

troller and the adder, as described in figure 3.2. It would take as inputs the setpoint

and feedback, and generate the input to the plant. Using Genetic Programming, we

would hope to evolve a structure that would take advantage of the benefits of major

and minor loop feedback.

In general, the goal of a controller is to have the output of a plant follow the input

to the system. This goal would drive the evaluation of fitness of a controller. In

controls, determining the performance of a given controller is done by applying a step

input in the form of a square wave. By evaluating the error between the input and

output, one can gauge this performance. A 'good' controller achieves performance

according to metrics such as rise time, overshoot, and settling time. In our current

implementation, our system has not yet defined a multi-objective fitness function

which balances these metrics. At its current phase, we can custom tune a controller

in the Anadigm GUI for a second-order plant, as implemented in Figure 3.2. We now

have the tools and software control of all of the components in the system. The next

phase of the design will involve automating this process from end-to-end.

'Although not currently supported, the DAQ would have to provide the input-output interface
to a software-simulated plant.
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Figure 3-8: Breadboard implementation of third-order transfer function from [4]
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Chapter 4

Discussion and Conclusions

This section will highlight the major issues that arose in designing this evolvable

hardware system, some of the lessons learned regarding evolvable hardware, and some

of the unresolved research questions.

4.1 Merits of Evolvable Hardware

The idea of applying evolutionary algorithms to design circuits on actual hardware

has been around for almost fifteen years. The ideas from this area of research have

spawned two conferences dedicated solely to these ideas,and many of these ideas are

featured as workshops in a handful of other conferences. Through our investigation

and initial design cycle, I have developed a more clear understanding of the current

trends in this field of research. From this understanding, it is clear that although

there have been a number of key achievements in the field, but there are still many

of the original challenges set forth from the inception of the idea. These issues are

primarily related to speed of fitness evaluations, convergence of solutions, and scala-

bility/portability of evolved designs to name a few. Although genetic programming

and other developmental approaches show a great deal of potential for increasing the

efficiency and scalability of evolutionary search, the path toward routine evolvable

hardware is not yet in sight. The challenges of realizing even one run of intrinsic

evolution have been highlighted by the history of obstacles faced during this project.
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Also, since the end-goal for our evolvable hardware system is to evolve adaptive con-

trollers, we have placed a great deal of emphasis on choosing a representation and

problem domain that will allow us to achieve that end. However, the issues related to

evolving feasible, safe real-time adaptive control systems have not been investigated

beyond [7] [6]. A more thorough investigation is needed to determine the merits of ap-

plying evolvable hardware hardware techniques to this problem, especially in relation

to robotics and other autonomous systems.

4.2 On Intrinsic Genetic Programming for Analog

Circuits

In examining the existing work on Genetic Programming and Evolvable Hardware,

it is clear that the niche of the problem space most interesting to our group has

been somewhat overlooked. The emphasis of existing work in Genetic Programming

for analog circuit design has used circuit simulation to perform fitness evaluations

on candidate solutions. As we have described in this thesis, intrinsic fitness eval-

uations have the potential to reduce the simulation time and complexity of a GP

approach. However, all intrinsic Genetic Programming work has been restricted to

the digital domain. Fortunately for digital intrinsic evolvable hardware, the problem

of resource mappings is much more manageable. In the design of our system, we

have addressed the problem of resource tracking, through a modular abstraction of

'Resources'. Although this choice of representation shows a great deal of promise,

further investigation is needed into the feasibility of this approach.
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Chapter 5

Future Work

Since this thesis represents the first documented initiatives at the MIT Computer

Science and Artificial Intelligence Laboratory in Evolvable Hardware, this project

has opened up a number of directions for research into this and related fields. These

areas include additional iterations in the development of our system, design of new

reconfigurable hardware platforms, characterization and development of evolution-

ary algorithms on GPIC. These avenues of work, and some potential solutions, are

highlighted in sections below.

5.1 Development Cycle - Phase 2

The major contributions of this first phase of the design cycle is the design, implemen-

tation, and modular integration of components for an evolvable hardware testbench.

Through this process we have increased our understanding of the requirements and

problems associated with getting started in evolvable hardware. Now that these tech-

nical challenges have been understood, we can move forward with the next phase in

implementation of this system. This phase will begin with addressing the number

of issues have yet to be resolved in our current implementation. This development

cycle may begin with the implementation of a module for synchronizing events on the

Data Acquisition System. Our current implementation has the ability to generate

arbitrary signals on the analog out bus, and sample inputs on any of the 18 analog
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inputs, but cannot yet synchronize these two events. This synchronization is critical

for fitness evaluations, since those evaluations require simultaneous signal generation

and sampling.

5.2 The Problem of Representation

In nearly every area of artificial intelligence, the computer scientist is faced with

choosing a concise and intuitive representation for the problem statement. The ma-

jor difficulty lies in the expression of domain knowledge in the programming languages

and data structures of today's digital computers. With Genetic Programming, this

information is captured in choosing a valid syntax for designs, and by defining fit-

ness functions and primitives in the form of function sets and terminal sets. Also,

unlike traditional genetic algorithms, Genetic Programming prevents the search from

exploring invalid areas of the design space through enforcement of syntax.

We have a number of choices for representing the topology and parameters of our

circuits, given a chosen platform. Many of these options remain unexplored. The

representation issue is further complicated by the fact that we have a prespecified

number of components available on-chip from which to generate designs. This issue

of choosing appropriate building blocks as primitives for circuit designs was examined

in Chapter 2, and represents the beginning of a set of decisions that must be made

regarding representation.

Koza's Program Trees

A good starting point for our system would be to attempt to replicate this type

of representation, with fitness evaluations in hardware. Some of the merits of this

approach depend on rigorous testing during fitness evaluations, large population sizes,

and parallel fitness evaluation. These features would not be achievable in our system,

unless parallel fitness evaluations could be achieved on multiple chips. Understanding

ways overcome these challenges would provide a great deal of benefit to the evolvable

hardware community.
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Cyclic Graphs

A similar representation which could be investigated is the use of cyclic graphs to

represent controller circuits. The motivations for this approach are rooted in the

need for minor loop feedback in a controller design. This approach would eliminate

the need for Automatically Defined Functions(ADFs) to describe this minor loop

feedback. Since ADFs are correlated with large population sizes, this approach would

result in a tremendous increase in the efficiency of the evolutionary algorithms.

Another simplification would be to separate topology search and parameter tuning

in Genetic Programming. This part of the search could be more easily done by Hill-

Climbing, especially since the realizable numerical parameters in actual hardware fall

under specific predetermined bounds.

Furthermore, a design system could adopt ideas from Lamarkian evolution, by

allowing the evolution system to select the best nodes on a given circuit to be the

inputs or outputs. Since a cyclic representation would have no root node, a traversal

of the tree could be done to find the appropriate nodes. Also, a cyclic representation

would result in difficulty in performing genetic operators like crossover on different

designs, since matching parts of two different designs would involve a search on the

nodes of the structure(i.e. A*). A fair amount of work can be done on investigating

and implementing this and other proposed representations for circuits, and tested on

our evolvable hardware testbench. The key to this choice of representation is being

able to perform useful mutation and crossover operations. Again, knowledge of the

domain of interest can be incorporated to improve the efficiency of the representation.

5.3 New Reconfigurable Hardware Platforms

The development of our system highlighted the fact that there is a lack of available

options for reconfigurable analog hardware. Also, the requirements and available fea-

tures for existing devices had not been documented or well understood at CSAIL prior

to this project. Leveraging some of the understanding that we have gained through

this work, future work can be done to develop platforms that address the demands of
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evolvable and reconfigurable analog hardware further. One direction to take this work

is in developing printed circuit boards containing numerous reconfigurable devices,

and a mixture of low-level circuit components like resistors and capacitors. Another

direction would be to fully integrate a solution on a single integrated circuit.

5.4 Evolutionary Algorithm Evaluation and De-

velopment

As described in Chapter 4, there are a number of questions that have yet to be resolved

regarding the feasibility of evolvable hardware for adaptive control. Part of solving

this problem is understanding the space and memory requirements of current well-

known evolutionary algorithms in hardware. A number of projects can be outlined

to characterize evolutionary algorithms on our platform. In addition, evolutionary

algorithms for evolving controllers remain highly uncharacterized.
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Appendix A

Component Documentation,

Support, and Notes
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Component Specifications Procured From Price Support Notes

Dell Dimension 8400 3.6Ghz P4 CPU, www.dell.com $2200+cost of 3 year on-site replaced heat

2GB RAM monitor service sink, cpu fan,
and mother-
board May
2005

FPAA Development PCB w/ FPAA and www.anadigm.com $200 w soft- tech sup- none

Kit 2 Signal Condition- ware port through

ing Dual-opamps Anadigm
AnadigmDesigner2 Configuration Soft- www.anadigm.com packaged with same as above none

ware For Win32 development
Platform kit

AutomationDoc Documentation Anadigm Support free none obtained

for Anadigm GUI through

Scripting special agree-
ment with
Anadigm

NI 6221 DAQ Multifunction DAQ www.ni.com $430 tech sup- none

w Analog Output, port through

PCI Card NI.com

NI Connect Block Shielded Connection www.ni.com $350 tech sup- none

and Cable Block with Cable port through
to Interface to PCI NI.com

DAQ card

Table A.1: System Components
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