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Abstract

Systems are often restricted to have higher transmission frequency than required by
their data rates. Possible constraints include channel attenuation, power require-
ments, and backward compatibility. As a result these systems have unused band-
width, leading to inefficient use of power. In this thesis, I propose to slow the internal
operating frequency of a cochlear implant receiver in order to reduce the internal
power consumption by more than a factor of ten. I have created a new data encoding
scheme, called ”N-7 Shift Encoding”, which makes clock division a viable solution.
This clock division technique can be applied to other similarly constrained systems.
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Chapter 1

Introduction

I have designed a cochlear implant receiver which uses clock division to reduce its
power consumption by more than a factor of ten. This power reduction takes advan-
tage of the fact that power is often wasted in unused bandwidth, and merely cuts
down the bandwidth so that less excess power is required. In this thesis, I discuss the
receiver as an example of this power reduction technique, though the technique can be
used in any system constrained in a similar fashion. The rest of this chapter provides
the background necessary to understand and motivate the design of the receiver.

Chapter two discusses several reasons for which a system can be constrained to
have a much higher transmission frequency than data rate, and thus motivates clock
division as a more widely applicable power solution than just to the receiver.

Chapter three details the implementation and operation of the original receiver,
before clock division is applied to reduce power.

Chapter four discusses the effects of clock division on the system, as well as prob-
lems that arise when clock division is applied directly, with a straightforward binary
phase-shift keyed (BPSK) encoding scheme.

Chapter five describes what I call ”N-7 Shift Encoding”, the solution that makes
clock division possible. I also provide a simple digital implementation of the encod-
ing. Finally, I perform a frequency analysis to show that the carrier signal is not
significantly disturbed by this encoding scheme and that high-Q transmission is still

possible.
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1.1 Origins of the Project

The original focus of this project was to build a low power cochlear implant receiver.
I was given the constraint that the data would be BPSK encoded, and PSK signals
require a coherent decoder, as I discuss further in Chapter 3. In general, coherent
receivers burn much more power than non-coherent receivers and the power specifi-
cation was that the system should run under 100uW total. When the initial PLL
design exceeded the power spec by itself, I realized that the easiest way to cut down
the power was to reduce the internal operating frequency of the system. The chapters
in this thesis approximately coincide with the chronological evolution of clock division
as a power saving strategy. As such, the relevant background for this project is that
of the receiver itself, rather than clock division. Understanding this background will

lead to an understanding of both the need and application of clock division.

1.2 Low Power and Implantable Devices

A large body of research throughout electrical engineering is dedicated to reducing
power consumption in systems. Lower power means lower energy costs for large sys-
tems. It is very important in computer processors, to prevent overheating. The field
with the largest stake in the research, however, is portable electronics, like laptops,
audio devices, and especially biological implants.

The drive toward lower power is fueled by the need for longer lasting and smaller
batteries. This is especially critical for biological implants, which cannot occupy
much space or be replaced easily. Surgery once every ten years is really the lowest
acceptable level of battery life for implants. Since typical rechargeable batteries can
be recharged on the order of 500-1000 times, each charge must last at least 3.65 days

in the best case.

Assuming cost is not an object in implants, and since space is at such a premium,
many implants will use lithium-ion batteries, since they have the highest energy

density of the commercially available batteries. The energy density of lithium-ion
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batteries is 200 Watt-hours/liter, and a typical pacemaker uses about 10mL on the
battery [6]. That equates to 2 Watt-hours per charge, meaning that if the device
takes even 20mW, the charge will last only 4 days, very near the best-case acceptable
limit.

Cochlear implants, on the other hand, are significantly smaller than pacemakers
and defibrillators. Currently, they require external batteries and processors because
they have ounly the space between the skull and skin be implanted. However, with
new advances in battery design, very flat batteries will fit there, but the implant will
need to be very low power (~ 5004W) to run for the required time. When that mark
is achieved, in addition to a measure of compactness, the system can become fully
implantable. My receiver is part of a fully implantable system (FIS), and should
therefore use less than 100uW even when combined with the transmitter. Since the
receiver should be able to rectify the incoming signal as its power source, this really
sets the limit for the transmitter power, which will be greater than the receiver power

due to losses in transmission.

1.3 Cochlear Implants

It is important to understand the motivation for building a working FIS. First, remov-
ing the system to recharge the battery every night, as most current cochlear implant
patients do, is not an ideal solution. A FIS should require no additional thought once
implanted, except the occasional wireless recharge. In addition, it requires only one
piece and no wires, so there are fewer pieces to break.

Second, and perhaps more important, is the social aspect of the FIS. There is a
stigma associated with being deaf, even if the cochlear implant “repairs” the damaged
ear. With a behind-the-ear (BTE) system, the implant is obvious, but a FIS will
only manifest itself as a small bump behind the ear, usually covered by hair. This
way, cochlear implant patients will more easily integrate into society, with no stigma
attached.

Since the receiver I designed is actually meant for a FIS, I must make the distinc-
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tion between my receiver and the one in the current cochlear implant technology. In
the current standard, a microphone is placed inside the ear, and the signal is sent to
the BTE signal processor. The battery is also contained in the BTE unit. The signal
processor then outputs spectral envelope information, used to stimulate the appro-
priate electrodes in the cochlea. The stimulation information is sent via wireless link
from the BTE unit to the implant, and then the proper electrodes are stimulated.
In a FIS, the processor is implanted, so the stimulation information is sent directly
to the electrodes. However, the microphone is still embedded inside the ear, since it
cannot be implanted; the skin muffles the sound too much to be clear. Thus the data
sent over the wireless link is compressed audio data, rather than stimulation data.
The main implementation difference is an increase in data rate, but to figure out the
correct rate, it is important to understand that the receiver is capturing audio data.
For reasons discussed extensively in Chapter 2, both types of receivers have carrier

frequency fy = 27.12MHz, but a much lower data rate.

1.4 Receiver Requirements

A cochlear implant’s function is to recover speech, so it is not important to include
the entire audio spectrum in the data. In order to preserve all the components of
speech, the data needs about a 5kHz bandwidth [5]. If the cutoff comes earlier, it
may not be possible to hear the correct sibilants, and an “s” could very well sound
like an “f”. Therefore the sample rate was set to 10kHz, giving a bandwidth of 5kHz,
and retaining all the important speech information.

The only part of the FIS front end to come before the transmitter is the data
compression. The audio data has a dynamic range of about 80dB to start, and the
compression reduces that to a 60dB internal dynamic range before sending the data
across the wireless link. 60dB of data quantizes to about 10 bits per sample. At 10kHz
sampling, the data rate r4 for my system is 100kbps. Due to Manchester Encoding,
which I discuss in Section 3.1.1, the data rate doubles to 200kbps. Since one data

bit is one whole period of the associated clock, the fastest the data can switch is
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rq/2. Thus the upper frequency bound is only 100kHz, which still resides within the
allotted bandwidth of 163kHz (see Section 2.3). Some of the energy in the data does
exist outside of the bandwidth, but the peaks are about 30dB below the main peak.

In the next chapter, I motivate clock division specifically, but this background
should help to understand why this system is important in its own right, and how it

is supposed to work. I discuss the specific implementation thoroughly in Chapter 3.

17



18



Chapter 2

Transmission Constraints

The cochlear implant receives data at ry = 100kpbs, fo = 27.12MHz. The trans-
mission frequency, therefore, is almost 2.5 orders of magnitude greater than the data
rate. It is exactly the ratio fd‘l that motivates the need for this project. The following
discussion of the restrictions should also make it clear that the same technique can

be applied applied to an entire class of systems with similar constraints.

2.1 Channel Characteristics

The first and often most important constraint on f; is that of the channel. Features
of different channels can vary greatly, and researchers spend significant amounts of
time characterizing them. In the cochlear implant, as with most wireless systems,
the transmission channel is just a medium, such as air or water. Other systems use
various waveguides, such as transmission lines or coaxial cable, and have very different

properties.

2.1.1 Frequency Specific Attenuation

A channel can be viewed as a complicated filter, usually with a gain much smaller
than unity. Often these filters have resonances or notches which will change the

gain significantly at only certain frequencies. The easiest example is for any wireless
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channel. Without a common ground, DC energy cannot pass through, so all wireless
channels cut out very low frequencies.

Some parts of the channel can be designed, such as a high-Q band-pass filter at the
receiver’s front end. However, some channel properties cannot be accounted for, like
the clouds for radio, or the resonances due to the laboratory walls, or the attenuation
of a flap of skin for cochlear implants. These considerations often determine the
desirable transmission frequencies to within a certain range. Cochlear implants are
designed to operate in the tens of megahertz because that is fast enough that a thin
flap of skin will look transparent to it, but slow enough so there is not too much

power burned in transmission and reception.

2.2 Power Constraints

A second important physical consideration is power consumption. Since the overall
goal of the project is to lower power consumption, it makes sense to lower f, as much
as possible. If not for the other constraints then, this would be the solution, and this
thesis would be uninteresting.

There is one situation when power actually requires a system to have a higher
transmission frequency. Some wireless systems, including the one in this thesis, rectify
the incoming signal to power the circuits. Low frequency carriers are difficult to rectify
because the capacitors must be very large in order to hold the peak value long enough.
An integrated rectifier, however, cannot reasonably have capacitors greater than 1nF,

so low frequency carriers are impractical.

2.3 Practical Considerations

Two of the constraints on the transmission frequency are not physical, but rather are
imposed by the government or by industry. The FCC regulates the use of bandwidth
for broadcasting, and has allocated certain bands for industrial, scientific, and med-

ical applications (ISM bands). Because the cochlear implant falls into each of those
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categories nicely, it was important that I stayed within an ISM band. The band I
used is centered at 27.12MHz, and has a bandwidth of 163kHz. Some other ISM
bands exist at 6.78MHz, 13.56MHz, and 40.68MHz, all of varying bandwidths. For
further band allocations, see [7]. All systems that broadcast fall into some particular
set of frequency bands which are pre-allocated by the FCC.

The second practical constraint is backward compatibility, or the idea of an in-
dustry standard. Once a standard is set, it is important to keep operating frequency
constant in order to upgrade whatever the new system is replacing, without having
to change all the surrounding systems. This is a weak constraint in terms of scientific

progress, but nonetheless important to keep production costs low.

2.4 Required Bandwidth

For most systems, the bandwidth required to transmit the data is a very important
factor in determining carrier frequency. Generally, fo must be at least as fast as
rq in order to transmit with fidelity. Otherwise the data could be aliased upon
modulation, as the mirrored negative frequency information will be pushed into the
positive spectrum.

Though the systems discussed here are by assumption not constrained by this
requirement, I have included it for completeness. In fact, because of the other con-
straints, many systems have excess bandwidth and solve the problem of wasted band-
width by trying to maximize the data output given a band. My approach is just the

opposite, to simply cut out the excess internal bandwidth caused by the fixed ry.
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Chapter 3

Binary PSK Receiver

In this chapter I describe the implementation and operation of the basic BPSK re-
ceiver, before clock division is applied. The receiver has three main parts: the clock
and data recovery (CDR) PLL, the data recovery circuitry (an XOR gate), and the
power supply. Figure 3-1 is the block diagram of the circuit. The implementation
assumes the properties of the incoming signal that were discussed in Section 1.4.
The receiver would work as I describe it here, but it consumes more power than is

acceptable in this application.

Power Supply

Rectifier AN /l/ : 2-Volt

Regulator

Encoded e o e e e e e e e e e e e e e e e e ———— e e e o e |
Data

Freg_ref FLL CLK_out

CLK

Recovered
Data Data g

/.

Figure 3-1: BPSK Receiver Block Diagram
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3.1 Phase Locked Loop

A coherent receiver is necessary to decode PSK signals, since all the information is
encoded in the phase. This is in contrast with FSK or FM signals, in which the
information is stored in the frequency, the time derivative of phase. Since absolute
phase has no meaning without a reference point, it is naturally easier to decode the
derivative of the phase; a coherent receiver does the extra work to set up that starting

point. As a result, a coherent receiver typically requires more power.

—-—Up-—; Loop Fiiter
_m—)g?—‘) Dmygeytgcet;hase Charge Pump  r—fout=3t (75 deg PM, 1kHz |—
L—Down«} BW)
Ring \?égllator Vofrl -
CLK out

>

Figure 3-2: Block Diagram of CDR PLL

I chose to build a CDR PLL to create the coherence. The important difference
between CDR PLLs and other types is that the PLL remains active while data is
transmitted, rather than having separate locking and reading phases. The only way
that a PLL can continue to operate while reading data is to reject the disturbances
that the data creates in the lock. This can be accomplished by setting the loop
bandwidth to a lower frequency than most of the data energy. In addition, CDR
PLL’s are made with very high phase margin (~ 75°), so that any disturbances that
are inside the loop bandwidth settle smoothly. Figure 3-2 is the block diagram of my
PLL.

However, because the data is a simple random sequence with rectangular bits, its
power spectral density is a squared sinc function centered at zero. No matter how

small the loop bandwidth becomes, there will always be energy present in the data at
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a lower frequency. The next section on Manchester Encoding explains how to encode

data to minimize its content at low frequencies.

3.1.1 Manchester Encoding

It makes sense to first think of the low frequency energy in the time domain. A
random bit sequence can generate an arbitrarily long chain of zeros or ones so that
in the limit, the data begins to look like a DC signal. The simplest solution to the
problem is Manchester Encoding: a scheme in which a bit is represented by either a
falling or rising edge [2]. In other words, a “0” is represented by “01” and a “1” is

represented by “10”. A sample data sequence is given in Figure 3-3.

Data

2 [ T T T T
g 1.5 .
14}
g . ]
S o5} ; -

0 i i i i ]

0 10 20 30 40 50
time (us)
Manchester Encoded Data
of T T T T

—_
(&)
T
I

Voltage (V)

0 10 20 30 40 50
time(us)

Figure 3-3: A Demonstration of Manchester Encoding. The original data (top) is
multiplied by a square wave at frequency equal to the data rate , r3. In the Manchester
Encoded data (bottom), a logical “0” is represented by “01” and a “1” is represented
by “10”. The dashed lines are the bit boundaries.
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Encoded in this fashion, the lowest frequency data now corresponds to a string of

alternating ones and zeros. Here is a depiction:

10101 — 10 01 10 01 10

Since each bit in the encoded sequence is half the length of an original bit, the
frequency of this sequence looks the same. The slowest frequency of the new waveform
is equal to fastest possible frequency in the old.

For frequency domain analysis, this encoding can be seen as multiplying the data
sequence by a square wave with frequency at r4. Normally, the power spectrum of the
data is a squared sinc function, centered at OHz and with nulls at every multiple of
rq4/2. Due to the Manchester encoding, this power spectrum is then convolved with
the Fourier transform of the encoding square wave, which consists of delta functions
at odd multiplies of r4. The resulting spectrum has its main lobes at +r4 and a null
at 0. The low frequency components of the data are thus eliminated, allowing the

PLL to reject the disturbances due to the data.

3.1.2 Duty Cycle Phase Detector

The phase detector I used in this project was originally designed by a classmate of
mine, Colin Weltin-Wu, for a class project. I call it the “Duty Cycle Phase Detector”
(DCPD) because it operates with 50% duty cycle outputs in lock. This design is
more robust than many standard sequential phase detectors that turn the charge
pump completely off in lock. Since the system is not ideal, the edges of the reference
and local oscillator do not appear exactly simultaneously, even in lock.

In the standard detectors, such as the Tri-State Phase-Frequency Detector [4],
when an edge of either the local oscillator or the reference comes, one of the control
signals, either Up or Down, immediately turn on. The signal is then reset when
the other edge comes. However, due to injection in the charge pump, a small, fixed
amount of current will escape the pump for however short a time it is turned on. The

net effect is a spike of current which can look the same for several values of the phase
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difference near lock, or more simply, a dead zone.

Phase Detector Output (normalized to VOD)
o
Phasa Datector Output {normatized to VOD)

1 " i i i 05 IR
—2pi  -3plz  -pl —pif2 [ pi2 pi 3pii2 2pi Zpi -3pid —pi2 ~pid o pu4 w2 3pia pi
Phase Ditference Phase Difference

(a) Tri-State Phase-Frequency Detector (b) Duty Cycle Phase Detector

Figure 3-4: Nonlinear Phase Characteristics of Two Phase Detectors (Dead Zones
Exaggerated for Illustration)

This nonlinearity will exist whenever the charge pump turns on only momentarily.
However, in the DCPD, that same nonlinearity occurs when the signals are 180° out
of phase, and thus it is not critical. Instead, there is a smooth line through zero
phase. The two different phase detector characteristics, including the non-linearities,
are given in Figure 3-4.

The DCPD is presented in Figure 3-5. It generates its control signals in the
following manner: When both the local oscillator, Vo, and the PLL input, Vi,
are high, both Up and Down transition high. Next, when the detector encounters
a falling edge of the local oscillator, Up goes low, and when the reference generates
a falling edge, Down transitions low. These last two events are independent of the
order in which they happen. By turning both signals on at the same time, the system
guarantees that the output that is active longer corresponds exactly to the input that
falls second. Thus if that local oscillator is high longer, then the frequency is too slow,
and Up is held longer than Down. One side effect of this detector is decreased range
in detection, since it only has half the cycle to work with. This effect is reflected in
Figure 3-4(b), in the decreased maximum output and range. The gain, however, is

unchanged.
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Figure 3-5: Duty Cycle Phase Detector. The local oscillator and reference inputs are
compared and the outputs, Up and Down are sent through equal delays.

28



3.1.3 Charge Pump

Because the DCPD causes the charge pump to burn current half the time, even in
lock, it is very crucial that the up and down currents be matched and charge injection
be limited, in order to avoid phase error. After several iterations, the charge pump
design I used focuses on minimizing charge injection with a differential current scheme.
Figure 3-6 provides the circuit diagram.

The two branches of the pump merely move the currents around, rather than
shutting them off entirely. The charging current switches between charging the filter
capacitor and draining to ground. The same is true of the discharging current and
the power supply. This way, the voltage at the sources of the switches (Nodes 1 and
2 in Figure 3-6) remain at a nearly constant voltage, reducing charge injection from
the switches. With a single ended circuit, each time the current turns off, charge
is deposited on the parasitic capacitance of the switch, due to the changing voltage
across it. In a differential scheme, the switch source voltage remains nearly constant,
as does the output voltage of the filter capacitor, so there is virtually no charge to
deposit.

An added benefit of the differential scheme is that cascode transistors come for free.
When the switch is off, it acts as a cascode transistor, increasing output resistance and
reducing early effect. The cascodes are not ideal because the cascode bias is all the
way at the rails, but the effect is still present. It should be possible to switch between
a cascode bias and fully on, rather than between the rails, but the implementation
has other complications and proved unnecessary for the accuracy required.

The final aspect of this charge pump is that all the transistors are large in order

to reduce threshold mismatch during fabrication.

3.1.4 Loop Filter and VCO

The loop filter is the part of the circuit that makes it a CDR PLL. I implemented
a third order passive loop filter with 75° of phase margin and a loop bandwidth of

1kHz. All but the dominant pole in this filter are beyond crossover, and there is also
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Figure 3-6: Differential Charge Pump. Redirects charging and discharging currents
between the two branches. Top and bottom half are independent. Nodes 1 and 2

stay nearly constant due to the differential nature of the circuit. JTout connects to the
loop filter charging capacitor.
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a zero to counteract the pole created by the change from phase to frequency present
in all PLLs. The 1kHz bandwidth is a factor of 100 slower than rg, ensuring that the
loop will be unaffected by the data. The structure of the filter and component values

I chose are given in Figure 3-7.

232k |
[ charge pump |

6o == 26p== 26p—= Vctrl >
U =100k

ks N NS
NS

Figure 3-7: Third order loop filter designed by Lee’s “cookbook” method. All poles
except one are beyond crossover.

In his textbook, Tom Lee gives a “cookbook formula” for creating third order loop
filters with the right parameters [4]. I used his method to create the basic loop filter.
I added a level shifter after the filter, which is necessary for correct DC voltages. It
acts as a very high frequency pole that, for the purposes of this filter, can be ignored.

The VCO that provides the eventual clock is also a standard circuit. I used a

current-starved ring oscillator, controlled by a transconductance amplifier. The gain

of the VCO is about SOM\?Z.

3.1.5 PLL performance

The PLL performance was only tested after clock division at 27MHz/16 and is de-
scribed in Chapter 4.
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3.2 Power Supply and Data Recovery

The rest of the receiver’s implementation is less critical to the central project, but 1

discuss it here for completeness.

3.2.1 Power Supply

Coil
Coil_

4

M=100 M=100

l°
|

Figure 3-8: Ghovanloo and Najafi’s rectifier. The extra PMOS transistors set the well
potential to the highest point. This reduces the gain of parasitic bipolars, and thus
reduces latchup [3]. The measure M is the equivalent transistor width, with M=1
being one 12 x 6 transistor.

B
»
hl=100

The power supply is one of the reasons that this system fits the constraints of much
higher transmission frequency than data rate. It consists of a MOS rectifier and a
2V regulator to supply Vpp. I borrowed the rectifier design from Maysam Ghovanloo
and Khalil Najafi [3], and it is presented in Figure 3-8. The paper has an interesting
trick to avoid latch-up by keeping the p-well at the highest available potential. The
rectifier will also include a band-pass filter, tuned to 27.12MHz, at the front end. The
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tuning capacitor is part of the rectifier, and the inductor will be built on a testing
board. The inputs Coil+ and Coil- are the two ends of the inductor. The filter will
have as high a Q as possible, but not greater than 4, due to the resistance in the coil.
Node Vout feeds into the voltage regulator to set Vpp. The voltage regulator uses a
current reference to set the gate-to-source voltage of an N-FET, and through sizing
and a Widlar mirror, uses the same current to set a P-FET’s gate-to-source voltage.
Finally, a comparator turns on a pull-down transistor connected to Vpp until the two
gate-to-source voltages voltages add to Vpp. The resistor and FETSs are sized so that
Vn = .8V, V, =12V, and Vpp = 2V. The circuit diagram is included in Figure 3-9.
Thanks to Soumyajit Mandal for the design.

3.2.2 Data Recovery

All that is needed in the data recovery is an XOR gate. I also added a register to
clean up the data, since a small amount of phase error causes the XOR gate to pulse.
This works because the data is only coded to one bit per symbol. Comparing with the
clock, the data is either identical or inverted, the definition of BPSK (see Figure 3-
10). If the data were to shift by some fraction of 7, such as in quadrature PSK|
where jumps of 7/2 indicate data, more work would needed to detect it, and perhaps
a faster clock. This smaller shift is one pitfall of clock division, and is discussed in

depth in Chapter 4.
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Figure 3-9: 2V Voltage Regulator. The current reference sets V., and sets
Vop = V, +V,.  The voltage regulator portion turns the shunt transistor on if
Va # V,. This in turns burns more current through Vpp, changing V, and com-
pleting the feedback loop. The capacitors in the current reference are for startup and
filtering, and the capacitors in the regulator are for compensation.
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Recovered Clock (from PLL)

BPSK Encoded Data

Recovered Data = Encoded Data @ Clock

Figure 3-10: An XOR gate decodes BPSK data by comparing the clock (top) and a
encoded signal (middle). The resulting waveform (bottom) is exactly the data.
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Chapter 4

Clock Division and Its

Consequences

Clock division is a very simple physical technique with some very interesting results.
It involves running the received input signal through a counter with value IV, where N
is the frequency divide ratio. For 2271 < N < 2% this is a a-bit counter. Figure 4-1
is a new block diagram of the receiver with the clock divider included. The result is
an input to the PLL with frequency fy/N. The only strict constraint on values of
N is that fo/N > ry. However, often several clock cycles will be needed for robust
data detection, so N should not usually approach that limit. In the cochlear implant
system, N = 16 (o = 4) and fo/rq = 271.2, so there are about 17 clock cycles per
data bit.

The first consequence of clock division is the predicted one: it reduces power.
Since the PLL never sees any signal but the divided one, it behaves as if the signal
were transmitted at fo/N. Thus, in my system, the PLL locks at about 1.7MHz, or
fo/16, just as if a 1.7MHz signal were transmitted through the air. It is obvious that
due to slower switching in the ring oscillator, a slower PLL will use less power. The
exact relationship between power and frequency becomes important when a system
approaches the limit of fy/r4, which this system does not. That is because until that
limit is approached, the bit error rate remains close to constant, while the power

consumption is reduced consistently with increasing N. The power consumed by
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Figure 4-1: BPSK Receiver Block Diagram. The clock divider has been added. This
is the complete block diagram.

the 1.7MHz PLL is 5.8uW and the clock divider consumes an overhead of 7.8uW.
Together, this is a factor of 10 improvement over the estimate of 1354W in the faster

PLL.

The overhead cost of the divider is important in order to evaluate the value of
clock division. Because the divider is a digital circuit that switches constantly, the
power cost of each piece is given by CrorV2p f, where f is the switching frequency.
For the LSB of the counter, f = f,, and for the next, f = fo/2, and so on. The
total power is the sum of each. Thus the divider power is a linear function of f; and
a logarithmic power of N. For a given fy, then, as the limits of clock division are
approached, the power consumption of the divider increases in order log N, while the
PLL power decreases in order /N. Therefore, clock division is still viable for increasing

N.

A second, qualitative effect of clock division is that a slower PLL will lock more
easily given a fixed bandwidth. Since ry is fixed, the bandwidth of the PLL cannot
increase, or the PLL will try to lock to the data. Thus as f, increases, the bandwidth

becomes a smaller fraction of fy. In addition, the VCO gain increases with fy, making
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the PLL more sensitive to changes on the control line, Vetrl. All this makes the system

less stable, and makes it more difficult to retain a lock.

4.1 Detection Difficulties

4.1.1 Short Pulse OQutput

There are inherent complications associated with applying clock division to a PSK
signal. As an example, take BPSK data modulated on a pure sine wave carrier of
radial frequency wq, where wy = 27 f;. Let us also assume, for the sake of simplicity,
that the signal has zero initial phase. There is no loss of generality in using this
assumption, since absolute phase is unmeasurable. The transmitted form of a “0” is
in this case

A cos{wyt),

while a “1” is represented by

A cos(wpt ).

When the input is passed through the clock divider, the entire argument of the

cosine is divided by N so that the waveforms look as follows:

W0\ _ g cos (40

0 — Acos (W>_ACOS(Nt> (4.1)
wotE 7w\ Wo s

1 — Acos( N )—Acos(Nt:i:N) (4.2)

Because the divider is a digital counter, it also acts as a limiter so the wave is no
longer a cosine, but rather a cosine with all the odd harmonics added in. However,
the argument is unchanged by that fact. As relation 4.2 shows, the new divided data
has a 7 /N shift, rather than a a full shift of 7 (an inversion), as originally expected.
The 7 /N shift is depicted in Figure 4-2. With a full shift of 7, the waveforms would
be inverted. Instead, the data waveform lags only by 7/N in phase.

This smaller shift is more difficult to detect, as an XOR gate will now only give
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Figure 4-2: The data (top) lags the clock (bottom) by /16 in phase to represent a
p’

short pulses after each edge. Since the XOR gate is comparing the two signals in
Figure 4-2, the output is a pulse of width matching the dashed lines. As the pulses
are narrowed by a factor of N, the bit error rate increases by a factor of N, due to
the smaller detectable pulse width. In addition, because the pulses are so narrow,
jitter in the PLL becomes much more important: {z = only 11.25° of phase, and the
the jitter can be as much as 10°. Phase noise of the data itself is not a significant
problem because the system requires a signal with large enough amplitude to power
it. This automatically makes the SNR large enough for the noise in the data to be
overwhelmed by the jitter in the PLL.

4.1.2 More Than One Possible Output

If the output or the XOR appeared as either zero phase or a short pulse, it would
be a small matter to design a detector for it. However, that is not the case. In fact,
there are many different possible pulse lengths as outputs. To understand the reason

for this, it is important to first discuss one important aspect of the data encoding
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in the transmitter. In the previous section I discussed the form of the data bits in
BPSK. In doing so, I stated that a “1” is represented by a phase shift of £7. We'll
see shortly why this is the case.

Normally, to encode one data bit, the intuitive idea would be to add 7 to the
carrier phase, advancing the signal. And then to return to zero phase, the encoder
would delay the carrier. This makes sense; it would cause the data to be represented
by phases of zero and =, or zero and n/N when divided. However, the physical
encoding of the signal is not done with advances and delays in phase. Instead, since a
full shift in BPSK is the same as multiplying the carrier by -1, the encoding actually
multiplies the carrier by 1 and -1 to encode “0”s and “1”s, respectively. Thus any
data transition is encoded by changing the sign of the carrier.

The net effect here is that every time an inversion of the data comes it creates an
extra edge in the carrier. This is what is supposed to happen; the carrier immediately
flips sign. Note that these transitions are asynchronous with the carrier, since fy/rq
is not an integer. In effect, this advances the data every time, since the next rising
edge, and thus the next flip flop trigger comes earlier. Figure 4-3 is a depiction of the
arrival of two data bits. For the purposes of illustration, the data rate in the figure is
much closer to the carrier frequency than it is in reality. In addition, N = 4 in this
figure.

As I mentioned briefly earlier, the carrier is actually a sine wave. However, for
the purposes of the following discussion, let us assume that the it has already been
limited as it will be in the divider. Figure 4-3 first shows the raw carrier inside
the transmitter, along with the modulated carrier. The next two waveforms are the
modulated waveform after the first flip flop, clock divided by two, and then, after a
second flip flop, divided by four. The clock division occurs with each toggle flip flop
triggering on the rising edges of the previous waveform. This illustrates why adding

an extra edge always advances the signal; the rising edge comes earlier.
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Another important point illustrated in the figure is that it does not matter whether
the inversion causes a rising or falling edge in the modulated carrier, even though the
detector only triggers on rising edges. This is because if a rising edge is created, the
latches immediately respond, and if a falling edge is created, the following rising edge
occurs where there would have been a falling edge before. Either way, the net effect
is a rising edge that appears earlier than it would have if no data transition occurred.
In Figure 4-3, the first edge created is a rising edge, yet the second is a falling edge.
Both have the same result of accumulating phase. This can most clearly be seen in
the XOR output, which increases pulse width by 7/N = 7/4 for every transition.

So now we understand that the phase actually advances on every data transition,
and thus as the bits change, the phase cycles through all its possible values. But
this is still a relatively well-behaved system, with a few more complications than
predicted. As long as the phase predictably accumulates, a detector can be created
to decode the data.

However, in simulation I discovered that the phase does not always accumulate,

but rather it sometimes decreases, too. As I mentioned earlier in this chapter, the

VANV
\

/'f/ A /“\ /N
S IAVAVAV.VAV,

«—Data edge

Figure 4-4: The limiting threshold in the divider is uneven. As a result, inversions do
not always add an edge, but sometimes remove them. The sine wave does not cross
the threshold due to the inversion, and as a result, the limited signal is delayed rather
than advanced.

transmitted signal is not actually a square wave, but it is a sine carrier, which is
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limited by the first flip flop in the divider. This is significant because the flip flop
is not ideal, and the limiting threshold is not exactly halfway between the rails. In
Figure 4-4, I show how a threshold that is 75% of Vpp can cause an edge to be skipped
rather than added. If the data transition had not come, the sine wave would have
crossed the threshold much earlier than it did. As a result, the limited signal loses
an edge and is delayed, rather than advanced as it should be.

Since the phase can move in either direction, the system is not as predictable as it
might be, and we need a solution to phase dividing that prevents this from happening.
In the next section I explain why the phase moving in both directions can end up in

system malfunction, with the PLL losing lock.

4.2 Phase Transitions and the Random Walk

Since there is a certain probability of adding or subtracting phase on any given tran-
sition, the data output, or more correctly, the phase difference, is able to wander.
Specifically, it behaves as a one-dimensional, simple random walk, where the phase

difference ¢, is defined as

where z; € {—1,1}, with probability p and 1 — p respectively, and n is the number of

data transitions that have occurred.

The random walk implies that ¢, has a binomial distribution on [—m, %] at all
multiples of /16 (See [1] for a further discussion of binomial distributions).

Since phase is periodic in 27 and 27 is a multiple of 7/16, ¢, has a finite number
of states, as if constrained on a circle. What this means is that for very large n,
¢n becomes uniformly distributed on the interval [—m, 2¥] (see Appendix A for the
proof). So after enough time has passed, the phase is just as likely to be in any of its
32 possible states.

Since a binomial distribution is memoryless, the distribution looks the same start-

ing from any value of n. And after a long time, or a large value of n, the state of ¢,
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could be any one of 32. So at a given time, the likelihood is for the phase to stay
close to its current state, which could be any of them.

The problem with this it that the PLL could potentially be caught in a state where
the phase difference is something other than zero for a significant amount of time. As
a result, the PLL could try to lock to a new value of the phase, causing data errors.
This can be easily seen in Figure 4-2. If the clock in the bottom graph moves even
7/16 due to a change in the lock, then the data and clock will be perfectly aligned,
and the data “1” will be read as a “0”.

In Section 3.1.1, I cited an analogous problem as the reason for Manchester Encod-
ing. In that case, a long string of “1”s can be represented as ¢, = 7 for an indefinite
time, which we wanted to avoid. Again, the reason was that the PLL would try to
lock to the new value of the phase, ¢, = 7, causing data errors. The main difference
now is that we have N times less tolerance for phase error, because the data pulses
are that much shorter.

In light of the problems that come with phase division, a solution is needed that
will provide clock division for power reduction, but will not divide the phase-encoded

data. In the next chapter, I discuss “N-7 Shift Encoding”, which does exactly that.
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Chapter 5

N-7m Shift Encoding

In order to recover the proper signal after clock division, the system must counter the
phase division associated with it. Since it is not possible to do this in the receiver
without significantly changing the hardware, the solution is to encode the transmitted
waveform differently to account for the problem. The original data should be encoded
such that after phase division the data transitions consist of advancing or delaying
the carrier by exactly one half period, or adding or subtracting exactly = from the
phase. Since the receiver divides by a factor of IV, a data transition must be encoded

by a shift of N7 in phase. I have called this encoding scheme “N-7 Shift Encoding”.

In this chapter I discuss first what it means to subtract N7 from a signal. I then
provide a simple implementation that can be added to the back end of a typical BPSK
transmitter. Next, I perform a frequency analysis of the new waveform in order to
determine that transmission through a narrow channel is reasonable. This frequency
analysis is important because the scheme relies on digital encoding, which can result
in a great deal of spectral waste. In this system, however, simple filtering can reduce
the waste to decent levels while preserving the data in the signal. Finally, I will
suggest a few possibilities for future work to expand this project to more complex

data transmisston systems.
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(a) Typical transition: adding an edge and thus adding

(b) Thresholded transition: skipping an edge and subtracting m

Figure 5-1: Demonstration of the phase counting model of edge detection. The change
in data (thick dashed line) causes either an addition or subtraction of m by adding or
subtracting edges compared to the clock (not shown). The expected falling edge is
marked by the thin dashed line.
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5.1 Adding N7 To the Phase

Before entering into the discussion of N-x Shift Encoding, it is important to under-
stand one major difference between this encoding scheme and most others. Whereas
most encoding schemes modify the data before modulating it onto a particular carrier,
it is necessary in this scheme to modify the carrier directly. This is the main reason
that the frequency analysis in Section 5.3 becomes necessary - there is no longer a
pure carrier modulating data, so the newly encoded data could very well have a large

bandwidth.

The need for carrier modification is directly due to the need to delay by more
than one full period. In a sine wave, there is no way to do this, since it looks the
same after every period. This holds for any periodic input to a detector that counts
phase directly, in an analog sense. An example of this would be a mixer, which has
an immediate output directly corresponding to the phase difference. However, the
divider does not count phase directly, but rather only samples phase at each edge. It

is this distinction that allows the system to subtract more than 27 from the input.

The model of phase that an edge detector employs is that every edge marks the

passing of one half period and 7 in phase.

This model works when compared with what the original BPSK signal was doing;:
the data would change in the middle of a clock cycle, causing the an extra edge to
appear, resulting in inversion. This is illustrated in Figure 5-1(a). Figure 5-1(b) is the
an example of the thresholded signal, where the inversion delays the carrier, removing
an edge. The thick dashed line is the data transition and the thin line is where the
next edge would have come if not for the data. Both methods work in this case, since

adding and subtracting 7 amount to the same thing, as I discussed in Section 4.2.

Using this model, it’s easy to see that if a data transition causes the signal to skip
N edges, N7 of phase will be subtracted, which is exactly what we want. In order
to add N7 to the phase, N extra edges would have to be inserted in a single clock
cycle. The generation of these extra edges would require a clock at f,, which is what

the system is trying to avoid. So for practical purposes, N-m Shift Encoding only
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subtracts N7 for each data transition, no matter what the absolute value of the data

is. Absolute “0”s and “1”s will be determined by convention before data is sent.

When the signal is clock divided, ZZ = 7 will be subtracted from the phase.
Figure 5-2 is a demonstration of this for N = 16, which is the case for my example
system. The top graph shows a downward data transition that causes the encoded

waveform to skip 16 edges, or 8 full clock cycles. The same happens with rising edge

transitions.
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Figure 5-2: On the data transition (top), the encoded signal (bottom) skips 16 edges,
or 8 full cycles.

It is interesting to note that an analog frequency divider, such as a subharmonic
mixer, would still encounter both the phase division and random walk. This is because
these effects are only dependent on when the data changes relative to the carrier,
phase can either be added or subtracted from a sine wave exactly the same as in a
square wave (See relation 4.2). However, there would be no simple solution to these
problems because it is impossible to add more than 27 to a sine wave. Thus we were

lucky that the system uses a digital divider, allowing this scheme to work.
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5.2 Simple Digital Implementation

In constructing a circuit to implement this scheme, I started with only two signals: a
27.12MHz clock and the data. The key to this solution is that the new waveform is
merely a Boolean addition of the clock with a signal that rises on any data edge and
lasts N/2 full cycles (two edges per clock cycle). A block diagram of this solution is
included in Figure 5-3, and the circuit schematic itself is given in Figure 5-4. The
initial state of all toggle-configured flip flops is low. In the following discussion of how
the encoder works, refer to Figure 5-5, which gives samples of each of the internal

waveforms discussed.

First, I needed to be able to detect an edge of the data, and since it’s unimportant
which kind of edge passes, the detector consists only of a register and an XOR gate.
The register delays the incoming signal by one clock cycle, and then the XOR gate
compares the two signals. If the data changed, the XOR gate will output a pulse of
exactly one clock cycle on Data_Pulse.

This signal, which I call Data_Pulse in the diagram, has two functions. First, it
acts as a start bit for the a-bit counter. (Recall from Chapter 4 that N = 2*.) The
second function is to act as the start bit for the register which outputs Long_Pulse.

The a-bit counter counts to N, and with an a-input AND gate, stops itself.
The same internal signal used to reset the counter is then output to the Long_Pulse
generating flip-flop.

The boolean addition of Data_Pulse and the counter output create Dbl Pulse,
which as the name suggests, consists of two pulses. These two pulses toggle the flip-
flip, so that it outputs a pulse that lasts N/2 total cycles. It lasts N/2 cycles, as
opposed to N, because the LSB in the counter is the clock itself.

Finally, Long_Pulse and the clock are input to an OR gate, and the result is the
encoded output, Waveform.

There is a small amount of circuitry not included in the block diagram. The first
of those extra pieces is another register, used to clean up the signal, since the final

OR gate could potentially have glitches. The rest of the extra circuits are startup
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Figure 5-4: N-7 Shift Encoder. Takes data in and outputs the digital waveform with
N edges skipped. Needs to be filtered before transmission.
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transistors to make sure that all toggle flip-flops in the counter and the main circuit
start in the right state.

The results of N-7 Shift Encoding, are exactly what we would have had if there
were no clock division at all - simple data recovery with just an XOR gate and
a register to clean up the waveform. But with clock division, the whole recovery
system still operates at much lower power. The only remaining question is whether

or not this waveform can be transmitted easily and without too much spectral waste.

5.3 Transmission of an Encoded Signal

Below is a partial FFT of Waveform with a random bit input. Figure 5-6(a) spans
several harmonics of the carrier, while Figure 5-6(b) is zoomed in to the first spike in
energy, at 27.12MHz. A pure square wave would include only the odd harmonics, but
since a perfect square wave is impossible to produce, the even harmonics also contain
energy, though smaller. This remains true even without the extra encoding.

The important knowledge that can be obtained from this figure is that almost all
of the energy is concentrated around the harmonics of the carrier, even with the extra
encoding. This makes a lot of sense if one examines the fastest and slowest frequencies
of the encoding, which is equivalent to modulating the carrier by a random sequence.

The fastest base frequency component of the random sequence comes when there
is a data transition on every bit, because the N-7 shift is keyed on transitions. In this
case, the period of the waveform is the length of one entire data bit, meaning that
the frequency is 2ry;. This implies that the new encoding uses twice the bandwidth
of the old data, meaning that the system will no longer fit within the allotted ISM
band.

The slowest frequency in the encoding scheme corresponds to the slowest allowable
switching. But recall that Manchester Encoding does not allow switching slower than
the original data rate, or half the new data rate. By the argument above, if the slow
data rate is r4/2, then the slowest possible frequency is r4.

The length of the hold time created by Long_Pulse is only a small fraction of the
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Figure 5-6: FFT of N-r Shift Encoded Waveform. Most of the energy is contained at
or below 27.12MHZ. This makes it easy to low-pass filter the data and still maintain

high fidelity
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total bit period. Specifically, it is Wh’ because fy/7q is the total number of cycles
per data bit. In the case of the receiver, this fraction is about 10%. This fraction of
a period is analogous to a square wave with 10% duty cycle; the fraction only affects
the amplitude of higher harmonics of the waveform. This causes small spurs at every
multiple of r,.

A closer examination of Figure 5-6(b) reveals two things. First, the main spike is
contained entirely within the 163kHz bandwidth of the ISM band, but the larger of
encoded spurs, with a magnitude of -24dB, is a full 200kHz away from f,. This could
be a problem for bandwidth requirements, though the extra spikes appear exactly
where predicted. Second, everything between the carrier and its second harmonic
is suppressed by at least 24dB. This means that in order to avoid spectral waste, a
simple low-pass filter with a cutoff in between f, and 2f,, at 40MHz for example, will
do, as long as the 24dB is enough suppression. If not, the filter would need to cut
off more sharply. In the time domain, this filter will soften the edges of the digital
waveform while preserving the encoded shape, since no high frequency components

appear during that time.

5.4 Conclusions and Future Work

With the aid of N-w Shift Encoding, clock division is a good technique to drastically
reduce power in systems appropriately constrained. It reduced the power consumption
of a simple BPSK receiver by approximately a factor of twenty, with NV = 16. Because
the scheme takes advantage of previously wasted bandwidth, there are no real design
tradeoffs to consider, except when nearing the functional limits of the technique.
Then the tradeoff becomes further power reduction versus data fidelity. In addition,
the holds in the encoding become proportionally longer compared to the carrier, and
frequency spreading may prevent transmission.

There are several things to consider for expansions to this project. The first and
simplest one would be to extend the idea to a higher order PSK system, with more

bits per symbol. It should work exactly the same way, but the tradeoffs against noise
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will come sooner. A more interesting idea would be to really push the limits of clock
division, to measure the tradeoffs accurately, both for bit error rate and to see at
what fraction of the input bandwidth a PLL can still retain lock.

On this project itself, the remaining work is to fabricate the chip, and get clock
division working in a physical system. The chip will be fabricated and tested after

the completion of this thesis.
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Appendix A

Discussion of the Circular Random

Walk

In this section I will describe a proof that the probability density function of a discrete
circular random walk becomes uniform for a large number of transitions. The actual
proof involves computing large powers of a matrix symbolically, which I will not do

here.

First, I define the discrete circular random walk as a system for which the state

Sp, 18 given by the following expression:
n
Sp = (so + Zz,) mod M,
=1
where n is the number of transitions, z; € {1, —1}, with probabilities p and 1 — p, M

is the total number of states, and sy € [0, M — 1] is the initial state.

The difference between the circular random walk and a simple random walk is

that state M transitions to state 0, which is equivalent to state M.

This system can be represented as a simple Markov process, defined by the fol-
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lowing transitions:

P{sj, 811} = p, je0,M~1)
P{sj,sj-1} = 1-p, je{0,M -1
P{M-1,0} = p

P{O,M -1} = 1-p

In this system, the PMF of z,, is given by

X, = A™Xg,

where A is the M x M matrix of transitions described above.

As n becomes large, A™ has one of two tendencies. If M is odd, then A™ approaches
a matrix where every entry is 1/M. This means that independent of the initial

conditions, or value of p, x, is uniform for large n.

For even values of M, the parity of s, is exactly the parity of s¢ plus the parity of
n. This is because at every transition, the parity is guaranteed to change. The result
is that for even n, A® is a matrix where every entry (j, k), with j — k even, is 2/M.
The same is true for odd values of n, with j — k odd. For arbitrarily large values,
n is as likely to be odd as even, so the limit of the transition matrix is given by the

average of the two, which gives the same result as for odd M.

Here is an example with M = 5 and p = 0.5. The values were chosen to allow the
reader to easily follow the trend. The proof works for any value of M or p. First we

begin with A.

0 3 00 3
5 01200
A=10 201 0
0030 3
3 0030



Then we continue with A%, A5 and A!°. Observe as the matrix entries all converge

towards 1/5.

o
g

<o

O
[ N

A2

< NI
[ I N
[ N I N

N L
QO oI

TS

O Nl

[

\0 3/
0.063 0.313 0.156 0.156 0.313
0.313 0.063 0.313 0.156 0.156
A®=0.156 0.313 0.063 0.313 0.156
0.156 0.156 0.313 0.063 0.313
0.313 0.156 0.156 0.313 0.063

(0.248 0.161 0215 0.215 0.161)
0.161 0.248 0.161 0.215 0.215
A= 10215 0.161 0.248 0.161 0.215
0.215 0.215 0.161 0.248 0.161
\0.161 0.215 0215 0.161 0.248

Finally, A% has reached our limit to more than three decimal places.

0.200 0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200 0.200
A =10.200 0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200 0.200

Relation to the System

To connect this back to the system discussed in the main text, there are 32 different
values of the phase, so the system has M = 32. A M = 32 system converges to three

decimal places after n = 400. At the slowest, there is one transition every 10us, due
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to the Manchester Encoding. Thus the current value of phase will be completely
randomized no later than 4ms after receiving data. After 4ms, the phasc-divided

system has a great chance of losing lock, as discussed in the text.
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