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Abstract

This report studies physiological signals measured from patients in the Intensive Care
Unit (ICU). The signals explored include heart rate, arterial blood pressure, pulmonary
artery pressure, and central venous pressure measurements. Following an introduction to
these signals, several methods are proposed for visualizing the data using time and
frequency domain techniques. By way of a patient case study we motivate a novel
method for data clustering based on the singular value decomposition and present some
potential applications based on this method for use within the ICU setting.
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Chapter 1

Introduction

1.1 Motivation

The use of physiological signals in the clinical setting has been of invaluable importance
over the last hundred years. The signals, ranging from electrocardiogram tracings to
blood pressure measurements, provide physicians with a wealth of information
concerning the ongoing processes within the human body. Based on these signals,
patient conditions are assessed and lives are saved on a daily basis.

One of the most important settings for physiological signals is the intensive care
unit. The intensive care unit, or ICU, is the hospital unit responsible for patients with
life-threatening conditions. These patients are kept under close watch to ensure their
return to good health.

In the past much of patient monitoring within the ICU was done by doctors and
nurses, who manually recorded vital signs such as pulse rate, body temperature,
respiration rate, and blood pressure with few electronic aides. As technology evolved,
more tools became available, capable of recording an ever increasing amount of signals.
With the advent of the microprocessor many of the measurements became automated,
thus reducing the burden of data acquisition, storage,
and computation on the doctors and nurses. Despite
these improvements, a substantial bulk of the work

still remains on the doctors’ and nurses’ shoulders,

as it is their job to interpret the acquired data. @l
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Because human resources are limited, there is a genuine demand to automate some of the
monitoring tasks to aid physicians and nurses with their jobs [Shortliffe & Perreault,
2001, Chapter 13].

To this day, the major successes in the monitoring front have come in the area of
arrhythmia monitoring, which, in the most general definition, involves the automatic
detection and classification of irregular rhythms of the heart. The basis for this kind of
monitoring is the electrocardiogram, or ECG, which describes the electrical activity of
the heart'. Because the ECG is a relatively clean signal with a countable number of
features, it is possible to detect and classify arrhythmias with a high level of confidence
by extracting features from the ECG and matching them with previously established heart
beat patterns [Weinfurt, 1990]. Even in the presence of noise, arrhythmia monitoring is
quite successful because a redundant amount of information is available from the
multiple leads used in the ECG [Shortliffe & Perreault, 2001, pp. 451-465].

Unfortunately, the success of arrhythmia monitoring has not yet been carried over
to general-purpose physiological monitoring systems. This is mainly due to the fact that
other signals measured in the ICU (such as blood pressures and blood oxygenation
measurements) are much noisier than ECG signals and do not have clear-cut patterns that
distinguish good segments of data from bad ones. The present solution for monitoring of
these signals is to establish numerical thresholds that define the acceptable ranges for the
data. Whenever the signals depart from the established region of normality, the
nurses/doctors are notified. These alarms are often unreliable, resulting in false positives
that call nurses over to the patient’s bedside unnecessarily. Some studies have shown
that false alarm rates in the ICU are as high as 80 to 90 percent [Tsien & Fackler, 1997]!

In addition to improving automated monitoring, there is a continual interest for
developing better data visualization schemes. Current monitors use numerical displays
for the measured signals and in some models also include a history of the signals
displayed as a time-series. These monitors may even give additional information about
the present trajectory of the signals (increasing or decreasing) along with the slope of the

trajectory. With the ever increasing amount of information displayed to doctors and

! For more details on the electrocardiogram, see Section 2.3.1.
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nurses it is important develop displays that convey more meaningful information to
nurses and doctors in the ICU to reduce the amount of data cluttering the monitors.

In an effort to help address the necessity for more sophisticated monitoring
systems, a bioengineering research partnership (BRP) made up of several MIT groups,
Philips Medical Systems, and Beth Israel Deaconess Medical Center, was established to
develop and test a patient monitoring system capable of improving the precision and
efficiency of clinical decision-making in the ICU. Some of the major issues being
addressed by the BRP project include data acquisition, database annotation and
development, signal processing, signal modeling and estimation, data visualization, and
clinical and expert reasoning systems. Recent BRP work can be found in [Abdala et al.,
2004], [Saeed et al., 2002], [Saced & Mark, 2000], [Douglass et al., 2004], and [Zong et
al., 2004] as well as on the BRP website (http://mimic.mit.edu/).

1.2 Goals of Thesis

The work within this thesis is aimed to supplement the ongoing efforts within the signal
modeling and estimation initiative, whose goal is to develop quasi-static and dynamic
models of the cardiovascular system to better understand the underlying physiology of
patients in the ICU. Furthermore, this thesis devotes time to the area of data visualization

for data from the ICU. Specifically, this work had four major contributions:

(1) To present a concise description of the types of physiological signals available in
the ICU and to explain what these can tell us about the patient.

(2) To investigate and present new methods for visualizing data from the ICU, both in
the time and frequency domain.

(3) To develop, implement, and analyze a methqd to cluster multiple physiological

varidblesin their phase space. ' T L e

(4) To explore and offer some practical

?
applications of the clustering method within é
1
E

the scope of the intensive care unit.

i I i i i i i
60 70 a0 a0 100 110 120 130
HR (bpm)
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1.3 Thesis Outline

This thesis is divided into six chapters.

Chapter 2 gives a detailed description of the signals typically measured in the
ICU. In addition to describing what the signals can tell us about the health of the patient,
we discuss the nominal ranges of the signals and the different temporal resolutions of the
data. We then go into a brief discussion about noise in data and highlight some methods
for artifact removal and noise attenuation. The chapter concludes with a section on data
visualization.

Chapter 3 explores the area of data visualization in more detail and also sets the
stage for the analysis done in Chapter 4. By way of a case study we introduce the power
and practicality of data visualization using two specific techniques. The first method,
phase space plotting, looks at time-domain characteristics. Following a detailed
description of phase space analysis, we introduce the application of power spectrum
analysis as a useful frequency domain technique for variability analysis of physiological
signals.

Motivated by phase space visualization from Chapter 3, Chapter 4 introduces a
novel data clustering method based on the singular value decomposition (SVD). After
reviewing the basics of the SVD, we describe in detail the clustering algorithm. We
conclude with a discussion about the effectiveness of the clustering method and address
some of its limitations.

Chapter 5 expands on SVD clustering and explores some potential applications of
the clustering method within the scope of the intensive care unit. Finally, Chapter 6

concludes this thesis and presents directions for future work.
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Chapter 2

Physiological Signals from Intensive Care

2.1 Introduction

In this day and age, it is almost certain that the reader has come in contact with some
device to measure signals emitted from his/her body. Perhaps the signal was body
temperature to check for a fever. Maybe it was arterial blood pressure to check for high
blood pressure. In either case, a measurement was taken of some signal generated by the
body and an assessment about health was made based on the measurement.

If we think of the body as a large, complicated system, we can view the recorded
measurements as samples from this system, giving insight into what is happening inside
the body at a specific point in time. These signals are important because they provide a
direct means of probing the body and observing its behavior under different conditions,
such as illness or disease. With these measurements, changes in the body can be mapped
to changes in signals. Ultimately the measured values can then be used to establish
baselines for normal signal behavior and to make assessments about the current health of
an individual.

Because the system governing our bodily functions is very complex, it is

Evolution of Elipse Center of Mass. Relative Time = 69 mins.

impossible to understand exactly how the whole T

8

body works together. Fortunately, it is often

g

possible to make good assessments based on

Systolic ABP (mm Hg)

8

relatively few signals measured from the body. For

-]

this reason, bodily signals are invaluable for

=1

L I I L i i i i
€0 70 60 %0 100 110 12 130
HR (bpm)
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understanding the conditions of human beings.

The use of physiological signals is not limited to evaluation of the current health
of an individual. These signals can also be used to predict the future health of a person,
to measure the effects of medications, and to develop models that mimic the behavior of
certain bodily functions. All of these applications are important and are actively being
researched.

One of the most important places where physiological signals are used on a daily
basis is at the intensive care unit. In the ICU, signals are measured regularly to monitor
the present condition of patients. Depending on the values of the measured signals,
patients may be given treatment in order to improve their condition.

Although the exact collection of signals recorded in ICUs may vary, there are a
few signals that almost always get measured. These typically include electrocardiogram
(ECG) readings, heart rate measurements, blood pressure (both arterial and venal),
respiration rate, and blood O, saturation. These signals, measured using specialized
equipment, are by no means perfect (as will be described in more detail later in this
chapter). However, even in the presence of noise, the signals can provide sufficient
information for doctors to make decisions about what treatment is best for their patients.

This chapter gives a brief overview of the types of data used during the course of
this project. After covering the background on the signals, we briefly discuss the issues
of noise and signal artifacts. We present some techniques to reduce this noise and

conclude with a brief look into data visualization techniques.

2.2 Signals on Different Time Scales

Before getting into the specifics about the signals explored in this thesis, it is first
important to understand that patient data can contain a varying level of detail about the
underlying processes occurring within the human body. This level of detail is primarily
dictated by the rate at which the underlying processes are sampled and by the amount of
averaging performed on the sampled signals. In other words, depending how often we
take measurements of particular signals and how much of this data we average together

over time, we can vary the type of detail that we capture about the signal.
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In this work, three types of signal detail are explored: waveform, beat-by-beat
averaged, and trend data. While waveform data consists of signals recorded at a rate of
125 samples per second (or 125Hz) and trend data captures signal information at a much
lower rate of 1 sample per minute (or 1/60 Hz). More specifically, trend data is derived
by averaging waveform data, or selected features thereof, over consecutive one minute
intervals.

The waveforms examined in this thesis came from bedside monitors
manufactured by Philips Medical Systems. Trend data was derived from the waveforms
using algorithms implemented by Philips. Although the specific algorithms are
proprietary and not at our disposal, we do not think that the signal quality is assessed
prior to single-channel averaging of the waveforms or feature extraction. This in part
may contribute to noise in the trend data, explained in more detail in Section 2.4.

In between these two ranges of signal resolution is beat-by-beat averaged data.
This data is derived by averaging waveforms, or extracting features, over a single cardiac
cycle—the sequence of events that occur over one heart beat—using open-source
algorithms created by Zong et al. (2003) and Zong, Moody, and Jiang (2003). To derive
beat-by-beat heart rate data, we use the algorithm wgrs, which detects and annotates the
onsets of the QRS complexes in a single-channel ECG. Beat-by-beat systolic, mean, and
diastolic arterial blood pressures are calculated using wabp, which detects and records the
onset of each blood pressure pulse. Prior to applying these algorithms, artifacts are
rejected by visual inspection. Finally, in order to make the signals more processing-
friendly, they are then resampled to an integer sampling rate. In our case, we chose to
resample at 2Hz.

Knowing that different levels of detail exist, it is also important to understand that
one form of data is not necessarily better than another. Their use depends on the type of

information one is trying to explore. For example if

Evolution of Eflipse Center of Mass. Relative Time = 99 mins

one is interested in developing an algorithm for

accurately detecting ventricular  fibrillation—

]

characterized by irregular and uncoordinated

8

Systolic ABP (mm Hg)

activity of the ventricular muscle fibers leading to

the inability to pump blood to the body [Berne & :




Levy, 2001, pp.50]—it makes more sense to look at electrocardiogram (ECG)
measurements, instead of trying to observe heart rate trend data. However, if one is more
interested in detecting long-term trends—for example how heart rate and blood pressure
of a patient vary over several hours—it makes more sense to look at trend data, which
gets rid of the finer details but preserves the slow-acting processes governing patient
condition.

Having discussed the details of data on different time scales, it is now possible to

get into the specifics of the typical signals measured in the ICU.

2.3 Physiological Signals from the ICU

It should be clear that there is an enormous value in physiological signals. However, in
order to derive the useful information from these signals, it is first important to
understand what they tell us about the condition of the patient, how they are measured,
and over what values they range. Excellent resources for more in-depth information are

the texts written by Berne and Levy (2001), Martin (2004), and Marino (1998).

2.3.1 Electrocardiogram

The electrocardiogram (ECG) is a signal measuring the electrical activity of the heart. It
is measured by placing a set of electrodes on the body and recording electrical impulses
emitted by the heart.

At a bare minimum, the ECG is usually recorded by placing three bipolar
electrodes (meaning they measure a change in electric potential between two points) on
the left arm, right arm, and left leg. With this setup, the differentials between the left arm
and right arm, left arm and left leg, and right arm and left leg can be measured. These
three differentials form what is often called Einthoven's triangle, named after the Dutch
doctor who first described the relationship between the differentials [Berne and Levy,
2001, pp. 44].

In addition to these 3 signals, 3 more measurements can be recorded by
referencing the individual electrodes to a null point. The null point is calculated by the

sum of the potentials from the other two electrodes. Because the ECG measures six
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different signals, it is sometimes called a 6-lead ECG. Beyond 6-lead ECGs are 12-lead
ECGs, which place another six unipolar electrodes over different locations of the chest.

An example of the ECG is shown in Figure 2.1 [Yanowitz, 2005].

b phey

i PR—i QRS}—

Figure 2.1: An illustration of the ECG waveform [Yanowitz].

As shown in the figure, the ECG waveform consists of several parts. These
include the P wave, QRS complex, ST segment, T wave, and U wave.

The P wave describes the spread of the electrical activity across the atria of the
heart, responsible for pumping blood into the ventricles. During the P wave the atria
begin to contract, sending blood into the ventricles via the mitral and tricuspid valves
(found at the exit of the left and right atria, respectively).

Following the P wave there is a period of time during which the ventricles fill up
with the blood from the atria. This segment is then e G i e 2 i
succeeded by the QRS complex, which describes ‘N
the depolarization across the ventricles. A short

?
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time after the QRS complex, the right and left i

ventricles contract, pumping oxygen-rich blood to
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the body through the aortic valve and oxygen-poor blood to the lungs via the pulmonary
valve.

Blood continues to be ejected from the ventricles during the ST segment,
representing the re-polarization of the ventricles. Some time after the T wave has
occurred, the ventricular exit valves close and the heart enters its relaxation period (also
known as diastole), allowing newly-circulated blood to enter the atria in preparation for
the next contraction. Finally, the U wave, although not completely understood, is
believed to represent some further depolarization occurring in the ventricles. This entire

cycle is summarized in Figure 2.2 [From Berne and Levy, 2001].
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Figure 2.2: The link between the ECG and the mechanical activity of the heart. The top
plot annotates the mechanical activity of the heart, reflected in the left atrial and
ventricular pressure waveforms. The bottom plot shows the corresponding electrical

activity of the heart (the ECG) [Berne and Levy, 2001].
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The ECG provides an incredible amount of information about the on goings of the
heart. Because of its rich structure, the ECG is helpful for monitoring many
cardiovascular conditions including heart arrhythmias2 and for investigating heart

disease.

2.3.2 Heart Rate

Heart rate 1s a description of the frequency at which the heart beats and is quoted in beats
per minute (bpm). Although the values of heart rate can vary depending on physical
fitness, current level of activity, illness, and many other factors, typical values of heart
rate range from around 70 beats per minute at rest to values well over 100 (180 bpm is
not an unreasonable value) during periods of activity or illness.

A typical heart rate signal for a patient in the ICU is shown in Figure 2.3.
Because the heart rate signal is already in the form of one sample per minute, it is clearly
trend data. The signal is typically derived by counting the number of QRS complexes in
the patient’s electrocardiogram waveform over the period of one minute [Bianco, 2004].
The reason for using the QRS is because it is the most prominent feature of the ECG,
making it the easiest to detect.

Heart rate signals like the one shown in Figure 2.3 can give us a hint about the
long-term variations of heart rate activity, cycles of activity and rest, and potential cases

of certain heart arrhythmias.
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Figure 2.3: Typical heart rate signal for a patient in the ICU. This plot contains

60

approximately 3.5 days of data.

2.3.3 Arterial Blood Pressure

Arterial blood pressure (ABP) is a measure of the effort required to pump blood from the
heart into the aorta, the main trunk of the systemic arteries responsible for transmitting
oxygen-rich blood from the left ventricle to the rest of the body. Measurements of ABP
give insight into cardiovascular function. In particular, they can tell us how hard the
heart is working to pump blood throughout the body; they also provide an indication of
whether or not organ perfusion is adequate.

An example of the ABP pressure waveform is shown in Figure 2.4. This signal
was measured by placing a fluid-filled tube inside one of the major arteries in the body
(typically the radial artery) and bringing the fluid column in contact with a pressure
transducer, which converts the pressure measurement into a voltage. ABP can also be

measured non-invasively, but is typically not as accurate as invasive methods.
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Figure 2.4: Example of an arterial blood pressure waveform.

Because the cardiac cycle is quasi-periodic, the pressure waveform is also quasi-
periodic. For each cycle, the peak occurs during contraction of the heart muscle and the
trough appears during cardiac relaxation. These maxima and minima are called the
systolic and diastolic pressures, respectively. Typical values range from 100 to 140
millimeters of mercury (mm Hg) for systolic pressure, and 60 to 90 mm Hg for diastolic
pressure. In individuals with obstructed arteries, these pressures can be significantly
higher.

In addition to the systolic and diastolic
pressures, two other derived blood pressures are

pulse pressure and mean blood pressure.3 Pulse

? Systolic, mean, diastolic, and pulse pressures are not unique to
the ABP. They can also be found for the central venous and .
pulmonary artery pressure waveforms, which will be described - IR

later in this section. ; ) o
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pressure is defined as the difference between systolic and diastolic pressure. Mean blood
pressure is calculated by finding the average value over one cycle of the blood pressure
waveform. However, to a very good approximation, the mean of the arterial blood

pressure waveform can also be calculated by the following equation,

ABPM = %ABPS + %ABPD

where ABPM, ABPS, and ABPD are the mean, systolic and diastolic arterial blood
pressures [Berne & Levy, 2001, pp. 142]. Typical values for mean blood pressure are in
the range of 70 to 105 mm Hg. Figure 2.5 shows an example of the systolic, mean, and

diastolic ABP signals plotted together.
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Figure 2.5: An example of trend data for ABP over a stretch of approximately 1.5 days.

The trends (from top to bottom) denote systolic, mean, and diastolic pressures.

One thing to note about Figure 2.5 is that the systolic, mean, and diastolic

pressures are highly correlated in the positive sense. That is, changes in one of the
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variables are reflected positively in the other two. If the systolic pressure goes up, for
example, the diastolic and mean tend to increase also. Changes in the degree of
correlations in the signals are good indicators that either (1) there is noise or artifacts

present in the segment of data or (2) the patient state may be changing.

2.3.4 Diastolic Pulmonary Artery Pressure

While measurements of arterial blood pressure tell us about the load the left ventricle
experiences, the pulmonary artery pressure measurements can be used to assess the
pressure in the left atrium, which is responsible for pumping oxygen-rich blood from the
lungs into the left ventricle. This measurement is useful, for example, for checking of left
heart failure in patients.

Pulmonary artery pressure is measured by placing a catheter into one of the main
pulmonary arteries of the heart. To reach its final destination, the catheter begins at the
subclavian or internal jugular veins (near the neck), travels via the great veins into and
through the right atrium and right ventricle, and is finally placed in one of the pulmonary
arteries.

Because the pulmonary arterial resistances are much less than their systemic
counterparts and because the right heart generates much lower pressures than the left
heart, pulmonary artery pressure is much lower than arterial blood pressure. Typical
values range from 15 to 28, 10 to 22, and 5 to 16 mm Hg for systolic, mean, and diastolic

pressures, respectively. Figure 2.6 shows a plot of the diastolic PAP trend waveform.

Ewolution of Elipse Center of Mass. Relative Time = 219 mins

I | b el
80 70 80 40 0 10 120 13

27



30 T T T T T T

'
25 ¢ |F¥rlv \ 5“4 | af

II
. !
m"?lf‘»*‘*«»ﬂg’h"‘-j | b

I .

15+ 'i L '’ ﬂLj% WL\JJL‘ ll‘*} “ﬂ

1l |5 —~ }r
‘ LM

10+

Diastolic Pulmonary Artery Pressure (mm Hg)

0 I I 1 ! L I 1 ! 1 y
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Time (min)
Figure 2.6: Diastolic pulmonary artery pressure trend data. The plot contains

approximately 3.5 days of data.

2.3.5 Central Venous Pressure

Central venous pressure (CVP) is a measure of the pressure in the thoracic vena cava,
which is near the right atrium. Like the other pressures discussed so far, the CVP is
measured using a catheter which is typically guided into the body through one of the
veins in the neck. An approximation of right ventricular end diastolic pressure4, the CVP
gives insight about right ventricular function (Recall that the right ventricle is responsible
for sending oxygen-deficient blood to the lungs, where oxygen is picked up and carbon
dioxide is released). Typical values for CVP are less than 10 mm Hg and greater than 1
mm Hg [Martin, 2004].

Figure 2.7 shows a plot of central venous pressure trend data. Note that although
some of the data is within the typical range of values for CVP, there is a lot of data

slightly over this range. This could be due to some genuine patient condition or a loss of

* Right ventricular end diastolic pressure — The pressure exerted on the right ventricle at the end of
ventricular filling.
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calibration in the measurement equipment. In general, CVP signals are not as reliable as

other hemodynamic measurements because they are sensitive to, for example, movements

by the patient. These changes introduce baseline offsets into the signal that must be

corrected through regular recalibration of the equipment [Faucy et al., 1998].
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Figure 2.7: Central venous pressure trend data.

2.4 Signal Noise and Artifacts

|
2200

As is evident from the plots in the previous section, physiological signal measurements

are not perfect; they all contain some degree of noise as well as signal artifacts. Noise

can be introduced into signals in many different ways. For example, imperfections in the

measurement equipment (such as the probes and

processing hardware) and improper use of the tools

(for example: the poor placement of ECG
electrodes or arterial lines) can lead to noisy
measurements. Furthermore, noise can be
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introduced by poor performance of signal processing software (such as false ABP
detections), sudden movements by the patient, or even by the patient physically removing
probes from his or her body.

There is an important distinction to be made between signal noise and signals
artifacts. Whereas noise in the scope of this thesis refers to any undesired uncertainty of
the signal, signal artifacts are noise instances in a signal, which can be confused for
actual physiological events. In other words, signal artifacts are a subset of signal noise.
In medicine we are most concerned with signal artifacts since these can lead to icorrect
interpretations of the data. Any of the sources of noise mentioned above can potentially
generate signal artifacts.

In some cases artifacts are easily detected. For example, if one sees the CVP
signal jump to a value of 200 mm Hg, this is clearly an artifact. In other cases, however,
noise artifacts can be much harder to spot. As an example, if we were to look at the heart
rate trend data in Figure 2.8, it is hard to say for sure whether the spikes around minutes
2000 and 4000 are genuine or artifactual. The only way to check would be to look at the
underlying ECG data.

2.5 Methods for Reducing Noise and Removing Signal
Artifacts

In exploring the different types of signals, we experimented with several methods for
detecting and eliminating some of the noise artifacts. The two methods we found most

effective were threshold detection and median filtering.

2.5.1 Threshold Detection

For any patient signal, there are limits on the ranges of values that the signal can take.
Any values exceeding these limits are likely due to noise artifacts. Care has to be taken
to ensure that the limits are large enough to take into account extreme values that may

arise in the population distribution.
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Figure 2.8: Example of heart rate trend data with potential noise artifacts.

A good example of where threshold detection comes into play is CVP trend data.
As mentioned earlier in this chapter, the CVP measurement is very sensitive to noise.
Even natural body functions such as breathing or movement can shift the baseline of the
signal to unreasonably high or even negative values’, as shown in Figure 2.9. Because
CVP cannot be significantly less than zero and is usually less than 10 mm Hg, regions
where the signal is exceeding these bounds are highly questionable. Therefore it is better
to ignore these regions when any form of analysis is done.

Bounds for the signals, as suggested by Wong (2003), are shown in Table 2.1.
These bounds are not very tight, but ensure that any | s T

values outside these ranges are artifactual.

3 Referenced to atmospheric pressure.
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Figure 2.9: CVP trend data with many noise artifacts.

Table 2.1: Sug

ested limits for different physiological signals

Signal Upper Bound Lower Bound
Heart Rate 250 bpm 20 bpm
ABP (Sys, Mean, Dia) 300, 250, 200 mm Hg 0 mm Hg
PAPD 50 mm Hg 0 mm Hg
CVP 30 mm Hg 0 mm Hg
2.5.2 Median Filtering

Another useful method for removing some of the noise in the trend data is median

filtering. This technique has been successfully applied in many signal processing and

image processing applications.

Median filtering is a nonlinear signal processing technique, which looks at each

point in a set of data along with a window of points around it. The median of the window

is calculated and its result replaces the value of the point in the middle of the window.

The key benefit of median filtering is its ability to remove outliers in the data while still

preserving the structure of the signal.
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Like any other type of filter, there is a tradeoff between noise removal and signal

distortion. In the case of median filtering, this tradeoff is addressed in the choice of

window length. Figure 2.10 illustrates an example of median filtering. In the top panel

of the figure it is almost impossible to differentiate the original signal from its median-

filtered version. However, if we take a closer look, as shown in the bottom panel of

Figure 2.10, we see that outliers are removed from the data with minimal distortion of the

original signal shape. Whether the spike in the bottom panel is due to an arrhythmic

event can only be determined by analyzing the corresponding ECG.
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Figure 2.10: Effects of applying median filtering to a heart rate signal. The top plot

shows the entire signal and the bottom plot shows the effects of filtering on a shorter time

EvnhldeInuClMllo(Mns Relative Time = 309 mins

scale.

2.6 Data Visualization Techniques

With all the data recorded in the ICU, one question

that arises naturally is how to best visualize the
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recorded information. This section attempts to give some insight into techniques

currently being explored in the field.

2.6.1 Time Series Visualization

The most commonly used method for visualizing ICU data is time series plotting. This
method involves plotting a dependent variable measured at a specific time against an
independent variable, time. Examples of time series can be found throughout this
chapter.

Within the domain of time series, there exist different types of time series plots.
Three of the most commonly used in the ICU are linear plots, stem plots, and sample-
and-hold plots.

Linear plots are often used for continuously recorded variables, such as ECG and
blood pressures (Figures 2.3 — 2.10 are all examples of linear plots). On the other hand,
stem plots make more sense for measurements that are discrete in nature; such as fluid
bolus administered to a patient in need of fluid resuscitation. Finally, in cases where a
measurement is in the form of a rate, such as a saline drip or a drug given intravenously,
it makes most sense to use a sample-and-hold plot, whose level changes when the drip

rate changes. Examples of these three types of plots are shown in Figure 2.11.

2.6.2 Plotting of Functional Relationships

Although time series plotting is a nice way to emphasize temporal correlation among
multiple data streams, it is of limited use when one is more interested in the dependencies
between variables or the dynamics of the underlying process being observed. In these
cases it is more useful to explore functional relationships between signals.

Some examples of functional plots include plots of one variable versus another,
plots of one variable against a time-delayed version of itself, and plots of changes in one
variable versus itself. Each of these plots have names associated with them (phase space
plot, time-delay embedded phase portrait, and phase portrait, respectively). Figure 2.12

shows an example of each of these plots.
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Many excellent references on phase space plotting, time-delay embedded phase
portraits and phase portraits can be found in texts by Kantz and Schreiber (1997), Jackson
(1991), and Abraham and Shaw (1989). Within the scope of ICU signals, work has been
done exploiting some of these functional plotting methods ([Saeed & Mark, 2000],
[Zimmerman et al., 2003], and [Narayan et al., 2004]).
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Figure 2.11: Examples of time-series data for a Y S et i b

patient in intensive care. The first three plots

display measured physiological variables and the

last two plots show examples of two fluids (a drug

and red blood cells, respectively) administered to

the patient. o
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Figure 2.12: Examples of three types of functional plots. (1) A time-delayed
reconstruction of a synthetic ABP waveform. (2) The same ABP waveform, but this time
plotted versus its first difference. (3) A phase space plot of systolic and diastolic ABP

trend data.

2.7 Conclusion

Having presented a brief overview of the signals used in the rest of the project, we are
now ready to discuss how we can exploit these signals to make inferences about the
condition of a patient. In the next chapter, we present a case study for a patient in the
intensive care unit and then make use of two techniques, phase space plotting and power
spectrum analysis, to observe and analyze the evolution of the patient’s condition during

her stay in the ICU.
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Chapter 3

Visualization and Analysis of Patient Data

3.1 Introduction

This chapter explores the power of data visualization and analysis as a tool for
formulating interpretations about patient data. Specifically, we focus on the application
of phase space plotting and spectral analysis to cardiovascular data. With help from a

real-world example, we explain the potential benefits of using these analysis techniques.

3.2 Analysis Tools

Before presenting the case study, we introduce the details of the two analysis tools we

worked with.

3.2.1 Phase Space Analysis
Phase space analysis is not a new discovery. It has been in use for some time in the field
of physics as a tool for viewing trajectories of dynamic systems [Jackson, 1991, Chapt.

2].

In its simplest definition, a phase space is a L R R e

coordinate system whose axes represent the

measured variables of some system. In other im i’
. 3 &
words, a phase space is created by taking a set of is-

variables and using these as the axes of a plot.
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Figure 3.1 shows an example of a phase space formed by three variables.
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Figure 3.1: A simple example of a phase space formed by three variables.

In plotting a set of variables in phase space, there is an underlying assumption that
the variables are all sampled at the same rate. If they are not, it is difficult to make an
interpretation. To graph a set of variables in their phase space one must think of the
variables sampled at each time step as the coordinates for a point in the space. For
example, if the three variables are displacement, velocity, and acceleration, a point in
phase space is defined by the coordinates (d(t),v(t),a(t)), where t is the time at which the
variables were sampled.

An interesting aspect of the phase space is that by plotting the measured variables
against each other, the explicit time dependency is lost in the process.® In loosing this
time dependency, we gain a new type of information describing the spatial behavior of
the variables corresponding to the underlying system. By further noting the sequence in
which points are plotted, we gain a description of the trajectories in phase space. It is
these features that make phase space plotting particularly attractive for visualization of
dynamical systems.

Furthermore, as we will see in the sections that follow, phase space plotting

provides a very succinct way of visualizing the dynamic history of the variables being

8 Although the explicit time dependency disappears from the phase space plot, it is possible to encode time
into the phase space by introducing color gradients (darker colors represent more recent data points, lighter
shades are older time points), symbols, or numbers into the plot.
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observed. Whereas a time series requires one to view multiple streams of variables over

(possibly) hours of recorded data, phase space plotting condenses all this information into

a single plot. Such a method is very powerful, allowing one to make assessments about

changes in a set of variables over some period of time very quickly. Because of its ability

to compress so much information into one plot, there is great potential for using phase

space plotting in the ICU as a quick means for evaluating the medical history of a patient.

3.2.2 Power Spectrum Analysis

The power spectrum of a signal describes how the power of the signal is distributed over

its frequency content. For example, the power spectrum for a cosine with a frequency of

60 Hz will be an infinitely-narrow pulse concentrated around 60 Hz in the frequency

domain, as shown in the figure below.
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Figure 3.2: Power spectrum of a 60 Hz cosine.

For more complicated signals consisting of

many (or possibly an infinite amount of) frequency
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valuable tool for both modeling and visualization purposes, since it allows us to
characterize the variability of physiological signals, like beat averaged heart rate and
blood pressure data.

Many methods exist for power spectrum estimation. These can be divided into
two major categories: parametric and nonparametric. Parametric methods rely on an
underlying model, with parameters that can be adjusted to better estimate the power
spectrum. Nonparametric methods do not have a fixed structure and simply require
mathematical computation. While nonparametric algorithms are typically simple and
computationally fast (since they often involve the FFT), parametric methods usually yield
smoother results and can do a good job of estimating the power spectrum even with a
small amount of data. One disadvantage of the nonparametric method is that it often
requires a large dataset to get good results. Parametric methods, on the other hand, may
not always be suitable for the spectra being modeled and can suffer from over-fitting if
the order of the model is too high.

In this work, the Welch method for power spectrum estimation was used.
Welch’s method is a nonparametric algorithm that takes a signal, divides it into multiple
overlapping segments, computes the power spectrum for each segment, and then averages
together the individual spectra to produce a single power spectrum. Specifics about the
Welch algorithm we used can be found in the documentation for the Matlab signal
processing toolbox [Mathworks, 2005, keyword: “pwelch”]. For more details about

spectral analysis see [Oppenheim, 1999, pp. 730-742].

3.3 A Patient Case Study

To bring the data visualization techniques into the perspective of physiological signals,
we now present a case study on a patient who spent some time in the intensive care unit.

The subject, an 83 year old female, first arrived at the hospital after complaining
of pains in her left hip and knee caused by a fall she took at her nursing home. Upon

arrival, her vitals were taken. All readings were normal (temperature was 97.9°F; heart

7 Over-fitting — A phenomena where a model begins to fit the data so well that it starts to capture the
undesirable aspects (such as noise) of the signal or process being modeled.
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rate was 64 beats/min; respiration rate was 16 breaths/min), with the exception of her
blood pressure (158/96), which hinted at possible hypertension®.

Subsequently, her knee and hip were examined more closely. There was some
tenderness over the left knee and the range of motion for the hip was limited. An x-ray
was taken of the hip area, revealing a loose acetabular shell’, with a possible loose
femoral head. Because the patient was on anticoagulants due to a recent aortic valve
replacement, no immediate surgical action could be taken to correct the problem.

While waiting for the anticoagulants to wear off, the patient began complaining of
pains in her lower-right abdomen. On examination, a 6-by-6 cm mass of fluid was found
near the area the patient pointed out. Since the last examination the patient’s vitals had
changed significantly. Her temperature dropped to 94°F — indicating hypothermia — and
her hemotocrit'® level, fell from 29.3 to 20 to 16 over the course of 2 days. Her blood
pressure also fell significantly.

Worried by the low hematocrit levels, the doctors conducted a further
examination, which uncovered that the patient was suffering from a bleed in her lumbar
artery. She was rushed to interventional radiology to have the bleed embolized and then
returned to the ICU for recovery.

During the recovery period, the patient was treated for hypovolemic shock''. She
was given fluid resuscitation, including several units of packed red blood cells and fresh
frozen plasma, to compensate for the blood loss. She was also given levophed, a

vasoactive drug, to help raise her blood pressure by constricting the blood vessels.

¥ Hypertension — Also known as high blood pressure.
? Acetabular shell — A cup-like socket in the pelvic bone
where the head of the femur (the “thigh bone™) articulates.

' Hematocrit — A measure of the percentage of red blood cells
in the blood. Typical values range from 36 to 42. Because
red blood cells are responsible for carrying oxygen in the e Ty D]
body, a low hematocrit can lead to anemia — characterized by S i R s R S
dizziness, low blood pressure, and shortness of breath — and
even death.

.

2

g

' Hypovolemic Shock — A condition brought about by a
decrease in the volume of blood in the body. Typical indicators
of hypovolemia include: tachycardia (high heart rate),
hypotension (low arterial blood pressure), low CVP, low
pulmonary artery pressure, low hematocrit (if bleeding), high P P
hematocrit (if dehydrated), hypothermia (body temperature [l A T I I A
below 95 degrees), and reduced pH levels in the body. 5 )

Systolic ABP (mm Hg)

-]
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Eventually the patient was weaned from levophed and fluid resuscitation and stabilized

on her own.

3.4 Plotting Patient Data in Phase Space

3.4.1 Analysis

With an understanding of the patient’s background we proceeded to visualize some of the
data measured during her stay in the ICU using phase space plotting. We focused on
heart rate and arterial blood pressure trend data (1 sample/min), since the CVP and PAPD
trends were unavailable for the majority of the stay.

Because we were interested in seeing how different states of the patient affected
the trajectories in phase space, we segmented the data into regions. With help from a
surgeon—who carefully examined the signals, along with other pieces of information,
such as nurses notes, discharge summary information, input-output fluids, medications,
and lab results—the data was separated into three states labeled as: “hypovolemia”,
“intermediate recovery”, and “steady state.”

The region labeled “hypovolemia™ denoted the period of time during which the
patient suffered blood loss through her lumbar artery. This segment began when the
patient first entered intensive care and ended when she was removed from the ICU to
have the bleed embolized. Upon return to the ICU, the patient entered the “intermediate
recovery” stage, where she began recovering with aid from drugs and fluid resuscitation.
Once all the fluids and drugs were weaned, the patient entered the “steady state”, where

she stabilized on her own. These states are labeled in Figure 3.3.
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Figure 3.3: Trend data segmented into hypovolemia, intermediate recovery, and steady
states.

Having segmented the data, we then plotted it in phase space. Figure 3.4 shows

four combinations of the variables we plotted.

Some interesting observations can be made about the data in Figure 3.4. First,
note how we have taken the 3 days of data from Figure 3.3 and condensed it all into a
single plot. This illustrates the power of phase space plotting to concisely represent a set

of data.
Looking at Figures 3.4.1 — 3.4.3, the

the states. This suggests that states can be

20 :

different states are almost separable. In other
- Rttt SR B

words, if one were to draw a few lines, as shownin | & | é
gt

Figure 3.4, one could do a good job of separating | § |
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separated by thresholding based on a linear combination of heart rate and blood pressure.
Furthermore, the variance of the data during the steady state is considerably less
than during the hypovolemia and intermediate recovery states. This observation is

comforting, since at this resolution (1 sample/min) it implies that the body is settling

down to a more stable and better regulated state.
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Figure 3.4: Four views of patient data in phase space. Red crosses denote the

“hypovolemia™ state, green asterisks denote the “intermediate recovery” state, and blue

circles denote the “steady state”.

Finally, observing Figure 3.4.4 (enlarged in Figure 3.6), we notice another nice

characteristic of phase space plots. For signals that are inherently correlated, such as
systolic and diastolic arterial pressures, it is possible to visually gauge the degree of

correlation between two signals by observing how well a line approximates the
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distribution of the data. As seen in Figure 3.6, the correlation between signals seems to

improve as the patient approaches steady state.
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Figure 3.5: A good linear separation of states using HR and systolic ABP as the axes of

the phase space plot.
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Based on these observations, we see that there is some added value to using phase
space plots to visualize physiological data. In addition to providing a means to concisely
summarize a history of physiological measurements, phase space plotting allows us to
observe the trajectories of physiological variables, visually assess correlations between

physiological signals, and easily inspect the level of variation in the data.

3.4.2 Conclusions

In this section we made use of phase space plotting to efficiently condense the
information of multiple variables into a single plot. In addition to allowing us to make
quick assessments about the evolution of the patient state, phase space plots revealed the
possibility of detecting significant changes in patient health by observing an adequate set
of variables.

Because only one patient has been studied in detail, it is hard to form any concrete
conclusions. For the particular patient examined in this chapter, the heart rate and blood
pressure were a good choice of variables to formulate the phase space. [t is not quite
clear if for different patients with different illnesses these variables would be the best
ones to observe. In the future, more patients will be looked at to verify these conclusions.

Assuming that a proper set of variables can be chosen to distinguish between
patient states, it might be possible to detect transitions between states automatically.
Furthermore, by introducing physiology into the picture in the form of
favorable/unfavorable directions in phase space (shown for the case of HR and systolic
ABP shown in Figure 3.7), it may be possible to develop alarms that perform better than
the current threshold-based alarms. In the following chapters we begin to explore some

of these possibilities.
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Phase space plot for patient 3333
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Figure 3.7: Physiologically favorable/unfavorable directions in phase space for systolic

ABP and HR measurements.

3.5 Variability Analysis Using Power Spectra
3.5.1 Background

The idea of using spectral analysis to examine the variability of physiological signals,
particularly heart rate, has been around for some time. However, it wasn’t until the early
1980s that the scientific community began to understand how to interpret the signal
spectra.  Akselrod et al. (1981) were the first
suggest that the variability in hemodynamic
parameters could be explained by dynamic

responses of the cardiovascular control systems in

the body. Specifically, they concluded that the




spectra of heart rate fluctuations, averaged on a beat-to-beat basis, consisted on three
major peaks: A low-frequency, mid-frequency, and high-frequency peak (see Figure 3.8).
The presence of the mid and high-frequency peaks was attributed to parasympathetic
control, while the low-frequency peaks were modulated by both the sympathetic and

parasympathetic nervous systems as well as the renin-angiotensin system. '’
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Figure 3.8: Structure of the HR power spectrum from a canine [Akselrod et al., 1981].

Since its pioneering, spectral analysis has been studied extensively and has
produced many interesting findings ([Pomeranz et al., 1985], [Winchell & Hoyt, 1996],
[Goldstein et al., 1998]). Much work has gone into establishing standards for heart-rate

variability analysis in order for the scientific community to collaborate [Malik et al.,

12 Details about the sympathetic, parasympathetic, and renin-angiotensin systems can be found in Fauci et
al. (1998).
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1996] and work has also been done to begin to understand the variability in other signals
such as the ABP [Shi et al., 2003]. To this day, this area continues to attract substantial

research interest.

3.5.2 Processing

Our purpose for looking into spectral analysis of physiological signals was to explore the
variability of our data. In particular, we focused on analysis of beat-to-beat averaged
heart rate and arterial blood pressure data sampled at 2Hz.

The procedure for analyzing the data was as follows. We began by taking a
portion of beat-averaged heart rate data from the patient described in Section 3.3. Since
we were mainly interested in the higher frequency fluctuation of the signals, the low-
frequency trends were removed by subtracting a best-fit linear approximation to the data
over consecutive 30-second windows (see Figure 3.9). Next, the data was visually
inspected to separate it into segments with different levels of variability. The power
spectrum for each of these segments was computed using Welch’s method and the results
were plotted (see Figure 3.10)." These steps were repeated for the beat-averaged ABP
data (see Figures 3.11 and 3.12).

3.5.3 Analysis and Conclusions

Examining the resulting spectra for the heart rate we see that with the exception of
segment 1 — containing a substantial amount of high frequency noise — all the spectra
have large amount of their frequency content concentrated around 1 or 2 frequencies.
Furthermore, the spectral peaks are all at similar frequencies (roughly .25 Hz). This peak
corresponds to the respiration rate of the patient, which based on the spectrum is

approximately 15 breaths/min.

Evolution of Elipse Center of Mass. Relative Time = 549 mins

Finally, comparing the heart rate spectra

.

with the mean blood pressure spectra of the same

Systalic ABP (mm Hg)

" In computing the spectra via Welch’s method we divided data
into 8 segments, with a segment overlap of 50 percent. The
underlying FFT contained 1024 points. Each data segment was
approximately 15 minutes in length and the data sampling rate B RS I O (NG e e
was 2Hz. | HR (o)

)
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segments, we see that the two are very similar. This suggests that autonomic functions

that affect variability in heart rate are al

so often reflected in the mean ABP. It may be

interesting to investigate under what conditions, if any, these spectra will differ from each

other.
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Figure 3.9: A linear approximation to the heart rate (middle plot) was subtracted from the

original signal (top plot) to remove low frequency trends from the data.
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in heart rate variability studies by Pomeranz et al. (1985) and that our procedure for
analyzing power spectra works properly. In the future we hope to use these methods to
view the variability of the heart rate and ABP spectra as a function of time to see how the

results correlate with the physician’s interpretations of what is going on with the patient.

3.6 Conclusion

In this chapter we presented two methods to visualize and analyze physiological signals
taken from a real patient. We introduced the power of phase space analysis to condense
multi-parameter data into a single display and used spectral analysis to interpret
variability of the physiological data. In the next chapter we build on some of the
observations made using phase space analysis to expand on our set of visualization and

analysis techniques.
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Chapter 4

Data Clustering Using Singular Value

Decomposition

4.1 Introduction

In the previous chapter, we showed that by observing an appropriate set of cardiovascular
variables in phase space, it was possible to differentiate between significant patient states
(summarized in Figure 4.1). Motivated by this observation, we took on the problem of
characterizing a state in phase space, with the ultimate goal of developing an analytical
method for tracking the evolution of patient state.

In this chapter, we propose a method for capturing the information of a particular
state by geometrically clustering the data in phase space. The method is based on the
singular value decomposition (SVD). We first introduce the basics of the SVD, followed
by a detailed description of the application of the technique to clustering. Finally, we
discuss limitations of the clustering method along with possible solutions to these

limitations.

4.2 Defining a State e i et

To begin tackling the problem of state
characterization, we first need to develop the notion

of what a state is. Unlike the definition of state

often used in dynamic systems theory, we define a

i 1 L I L i i L
| &0 70 &0 0 10 110 120 12
| HR (bpm)
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state as a set of points residing within some region of an N-dimensional space, where N
corresponds to the number of variables being observed. As long as the trajectory of
points remains close to the designated region in phase space, the state is said to remain
stable. If at some point in time the trajectory of points begins to drift outside this region,
the state is said to have changed. Exactly how much deviation from the region is

necessary for the state to change will be discussed in more detail later.
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Figure 4.1: Summary of patient case study from Chapter 3. Notice how the hypovolemic,
intermediate recovery, and steady states are well separated in phase space formed by

heart rate and systolic ABP.

For the moment, the definition outlined above, depicted graphically in Figure 4.2

[from Castiglioni, 2004] is sufficient.
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Figure 4.2: State representation in phase space for the case of two-dimensional data
[Castiglioni, 2004].

Assuming we can determine a set of points that give a good representation of the
range of values within a state, one way to approximate the region covered by a particular
state is to geometrically cluster the data. Restricting the problem to the case of two-
dimensional data for the time being, the cluster pattern could be as simple as a tightly
fitting box or ellipse, as shown in Figure 4.3."*

Although either geometry could be used as the basis for clustering, we adopt the
ellipse in our work because it ties in well with the geometric interpretations of the
singular value decomposition. Because the SVD comprises the underlying groundwork
for our clustering, we will review the basics of this technique before describing its
application. A more thorough description of the SVD can be found in numerous texts,
including those by Strang (1998), Trefethen and Bau (1997), and Golub and Van Loan
(1996).
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Figure 4.3: Two examples of how to geometrically cluster a set of data.

4.3 Singular Value Decomposition Basics

The singular value decomposition is one of the most powerful tools in linear algebra. Tt
allows us to diagonalize any matrix, rectangular or square, by choosing an appropriate set

of orthonormal bases. For real matrices, the factorization is typically written in the

15
form ”:

A=UzV" (4.1)

where U, X, and V are matrices whose properties are listed in the table below:

Table 4.1: SVD Matrix Properties

Matrix Name Dimensions Special properties
A M-by-N Real matrix
U M-by-M Orthogonal matrix (U'U =1)
4 N-by-N Orthogonal matrix (V' 'V =1)

. %, Uil 0;i# j
Diagonal matrix § _~

L, =05i=]
z M-by-N _ _ _
Diagonal entries sorted by size

(e O 2 0s 202 Oy =0)

'S In the case of complex matrices, the matrix properties are slightly different. For more information about
SVD, see [Strang].
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If the rank of the 4 matrix is r (i.e. rank (A) = r), the decomposition can be further

reduced to the form:
A=U32V. (4.2)

where U« and V» are the first r columns of U and V, and Z.is an r X r diagonal matrix

with valueso, too, along its diagonal'®. By design, the columns of the Us and V-

matrices span the column and row spaces of 4, respectively. Furthermore, we can show
that the columns of U+ give the directions of maximum variation for the vectors formed
by the columns of 4 and that £ gives the standard deviations in the directions of U7 tis
these two properties of the SVD that we will exploit in our data clustering.

Finally, to tie the idea of the ellipse with the SVD, we go to the geometric
interpretation of the decomposition. In the context of linear transformations, the 4 matrix
is a linear operator that maps a vector in M-dimensional space (or input space) to an N-
dimensional space (or output space). Re-examining Equation 4.1, the singular value
decomposition simply breaks down this transformation into simpler transformations,
namely rotations (performed by the U and V matrices) and a scaling (performed by the
¥ matrix). The geometric interpretation of these simpler transformations is illustrated for
the 2D case in Figure 4.4 [from Muller, Magaia, and Herbst, 2004].

As shown in the figure, the image of a 2-dimensional sphere centered about the
origin under any non-singular 2-by-2 matrix is an 2-dimensional ellipse. The sphere is
first rotated such that the vectors defined by the columns of the V' matrix (v,and v,)
line up with the coordinate axes. It is then scaled by the matrix of singular valuesX,
which corresponds to scaling along the directions of v, and v, byo,and o, , respectively.
Finally, the resulting ellipse is rotated once more, such that the coordinate axes line up

with the columns of the U matrix.

- P Aoy

8

Systolic ABP (mm Hg)

'® Equation 4.2 is sometimes referred to as the thin SVD
[Golub & Van Loan, 1996].

'" Both of these statements are verified in Appendix A. e e
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Figure 4.4: The geometrical interpretation of the SVD. The circle under matrix

multiplication becomes an ellipse [image from Muller, Magaia, and Herbst, 2004].

A consequence of the geometrical interpretation is that the resulting ellipse
characterizes the matrix 4. The ellipse is aligned along the direction of u,and u, -
which span the column space of 4 — and has principal semi axes of length ¢ andg,,

describing the magnitude of the spread of A in the directions of the u,. Note that the

principal axis corresponds to the largest singular value o, and that the semi-minor axis of

the ellipse corresponds to the second-largest singular value. If this picture were
generalized to M dimensions, the m™ largest singular value would describe the length of
m" principal axis of a hyper-ellipse.

Having established the basic ideas of the SVD along with its geometrical link to

the ellipse, we are now ready to develop the clustering method.
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4.4 Application of SVD to Data Clustering

Say we have a set N elements of 2-dimensional data X whose mean, defined

i ) . .
as X = ﬁ E X, , is the zero vector.'® Each dimension of the data could, for example,
=1

correspond to a cardiovascular variable.
If we define a matrix 4 such that the columns of 4 are the set of points x;, then

computing the SVD gives us a decomposition that looks like

_V,T_ MVI ;
VT v!
o, 0 0 .. 0] ° ?
[xl X Xy [SUEPT =lu, uz][ 0' o 0 0} :[clul o,U, 0..0] ... (4.3)
"
v

where the U,Z, V have dimensions 2-by-2, 2-by-N, and N-by-N, respectively.

The rightmost equality of Equation 4.3 tells us that oju;and ou; span the space
occupied by the x;; that is, any of the x; can be recovered by the linear combination of the
weighted oju;and o,u; vectors. For example, to recover x; we simply scale oju; by v]T,
oou; by v>' and then add the two vectors.

Using the fact that the vectors oju; and c,u; are the directions of maximum
variation for the data x;, we know these vectors capture the directions that best
approximate the distribution of points x; in the mean-squared sense. By using the oju; as
the principal semi-axes of an ellipse and then scaling the axes appropriately, we can
generate an ellipse that fits tightly around the x;. Figure 4.5 graphically summarizes these

steps.

Evolution of Ellipse Center of Mass. Relative Time = 639 mins

13 1fX does not have zero mean, we can define a new set of

A _ . L L i 1 I i i L
vectors X; = X; — X, which does have zero mean. LR e R T
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Figure 4.5: Graphical summary of SVD clustering. (4.5.1) We begin with a set of points
Xi. (4.5.2) We then calculate the SVD and use the o;u; vectors as the principal axes of our

ellipse. (4.5.3) Finally, the ellipse is rescaled for a tighter fit.

The final step of scaling the ellipse by a constant is necessary because the oiu;
increases with the number of points being clustered. This effect is shown in Figure 4.6
and has to do with the projection from an N-dimensional space onto an M-dimensional
space, where N>M. Fortunately, because the SVD gives us the correct proportions for

the deviations, we only need to find one scale factor by which to rescale all the axes.
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Figure 4.6: Effect of number of points on the size of the clustering ellipse. Points were
generated using a 2D uniform distribution with the x axis varying between -2 and 2 and

the y axis varying between —1 and 1.

To see how the problem can be corrected, we go back to Equation 4.3, rewritten

and expanded below:

Vll VIZ V]?’ V]N
Voo Vo V¥ Von

x, x, x, .. x)J=lom, om, 0 .. 0] (4.4)
LV

Looking at the right side of the equality, we
see that only the v;;’s and v»;’s contribute to the x;’s.
To capture all the points, we need rescale the

principal directions of the ellipse such all the points

lie within the 2-norm of the o;u; vectors. The newly
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scaled vectors o,U; are defined by the following equations:

o, = (Giui)* (K) 4.5)
K = |maxy (v, ) (4.6)

4.5 Summary of SVD Clustering Algorithm

With all the major steps defined in the previous section, we now summarize the

clustering algorithm:

Subtract center of mass from data and store this value.
Compute SVD and store U, %, and V matrices.
Rescale o;u; vectors by factor defined in Equations (4.5) and (4.6)

Generate clustering ellipse using o;u; vectors as principal semi-axes

A e

Shift ellipse by center of mass computed in step 1.

Although most of the work presented to this point was for the two dimensional case,
the algorithm can be easily extended to higher dimensional data.
The algorithm was implemented using MATLAB. The commented code can be found

in Appendix B.

4.6 Limitations of SVD Clustering

In evaluating the SVD clustering method we observed several limitations. These are

outlined in the sections below.

4.6.1 Sensitivity to Outliers

Because the clustering technique calculates an ellipse that captures all the points it is
given, the method is very sensitive to outliers. As shown in Figure 4.7, even a single

outlier will expand the ellipse significantly.
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Figure 4.7: The effect of outliers on the clustering ellipse.

One way to address this problem is to alleviate the constraint that requires all
points to be clustered by the ellipse. We incorporated this solution into our algorithm by
adding an input parameter to specify the minimum percentage of points that must lie
within the ellipse. This value was set to 95%.

Although this feature helps eliminate some of the sensitivity of the clustering
technique to outliers (see Figure 4.8), it is not a perfect solution. The best way to address

this issue is to preprocess the data prior to using the clustering algorithm to remove as

many outliers as possible.
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