
Detecting and Parsing Embedded Lightweight

Structures

by

Philip Rha

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science

at the MASSACHUSES INSTITUTE
OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOT
JUL 18 2005

June 2005

@ Philip Rha, MMV. All rights reserved. LIBRARIES

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Department of Electrical Engineering and Computer Science

May 19. 2005

Certified by.................
I-or ivinier

Accepted by..........
Artnur u. amitn

Chairman, Department Committee on Graduate Students

BARKER

2

Detecting and Parsing Embedded Lightweight Structures

by

Philip Rha

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science

Abstract

Text documents, web pages, and source code are all documents that contain language
structures that can be parsed with corresponding parsers. Some documents, like JSP
pages, Java tutorial pages, and Java source code, often have language structures that
are nested within another language structure. Although parsers exist exclusively for
the outer and inner language structure, neither is suited for parsing the embedded
structures in the context of the document. This thesis presents a new technique for
selectively applying existing parsers on intelligently transformed document content.

The task of parsing these embedded structures can be broken up into two phases:
detection of embedded structures and parsing of those embedded structures. In order
to detect embedded structures, we take advantage of the fact that there are natural
boundaries in any given language in which these embedded structures can appear.
We use these natural boundaries to narrow our search space for embedded structures.
We further reduce the search space by using statistical analysis of token frequency
for different language types. By combining the use of natural boundaries and the
use of token frequency analysis, we can, for any given document, generate a set of
regions that have a high probability of being an embedded structure. To parse the
embedded structures, the text of the region must often be transformed into a form
that is readable by the intended parser. Our approach provides a systematic way to
transform the document content into a form that is appropriate for the embedded
structure parser using simple replacement rules.

Using our knowledge of natural boundaries and statistical analysis of token fre-
quency, we are able to locate regions of embedded structures. Combined with replace-
ment rules which transform document content into a parsable form, we are successfully
able to parse a range of documents with embedded structures using existing parsers.

Thesis Supervisor: Rob Miller
Title: Associate Professor

3

4

Acknowledgments

I would like to thank Professor Rob Miller, without whose invaluable advice and

guidance this thesis would never have been possible. Thanks also to the members of

the User Interface Design Group whose feedback and support were sources of constant

improvement.

5

6

Contents

1 Introduction 13

1.1 Embedded Structure Documents . 14

1.2 Applications . 16

2 Related Work 19

2.1 Text Classification . 19

2.2 LR parsing . 20

2.3 GLR parsing . 20

3 Design Goals 23

4 System Overview 27

4.1 LAPIS . 27

4.2 Type Detection . 28

4.2.1 URL Testing . 29

4.2.2 MIME type testing . 29

4.2.3 Byte sampling . 30

4.2.4 Parser success . 30

4.2.5 Token analysis . 30

4.3 View Transformation . 34

4.4 Parsing Application . 37

4.5 Rules File . 37

5 Evaluation and Results 43

7

6 Applications 53

7 Conclusion 61

7.1 Contributions . 61

7.2 Future Work . 61

7.2.1 Type support . 61

7.2.2 Rule generation . 62

7.2.3 Error Tolerance in Parsers . 63

A Full Listing of Results 65

8

List of Figures

1-1 Example Java documentation comment with embedded HTML struc-

tures [31 .. 14

1-2 Example web tutorial page with HTML embedded in HTML 15

1-3 Example Java Server page with Java embedded in HTML 16

3-1 Java web tutorial loaded into a web browser 24

3-2 User queries the system for Java expressions 25

3-3 Java expressions highlighted by the browser 26

4-1 Rules file specification of Java type 40

4-2 Rules file specification for Java Documentation view transformation . 41

4-3 System Overview . 41

5-1 Performance results for Java structures embedded in HTML (Java Tu-

torial P ages) . 48

5-2 Performance results for HTML structures embedded in HTML (HTML

Tutorial Pages) . 49

5-3 Performance results for Java structures embedded in HTML (JavaServer

P ages) . 50

5-4 Performance results for HTML structures embedded in Java (Java

Source Files) . 51

6-1 Java web tutorial in Firefox with Chickenfoot sidebar 54

6-2 Close-up view of embedded Java structures in Java web tutorial . . . 55

6-3 Java web tutorial modified by Chickenfoot 56

9

6-4 Java types replaced with hyperlinks 57

6-5 Java API page resulting from navigation from modified tutorial page 58

6-6 JavaScript code that modifies the web page using the embedded Java

type 59

10

List of Tables

4.1 Example URL tests across types . 29

4.2 Token sets for various language types 32

4.3 Token frequency statistics over a representative corpus 33

4.4 Marked boundaries for embedded structures 34

4.5 Natural boundaries for embedded structures 34

5.1 Corpora for evaluation test bed . 45

A.1 Java tutorial evaluation results . 66

A.2 HTML tutorial evaluation results . 67

A.3 JSP evaluation results . 68

A.4 Java source evaluation results . 69

11

12

Chapter 1

Introduction

Text documents, web pages, and source code are all documents that contain language

structures that can be parsed with corresponding parsers. Some documents, like JSP

pages, code tutorial webpages, and Java source code, often have language structures

that are nested within another language structure. [1] These embedded structure

documents pose an interesting parsing problem. Although parsers exist exclusively

for the outer and inner language structure, neither is suited for parsing the embedded

structures, or nested language structures, in the context of the document. Established

techniques of signaling the boundaries of embedded structures using explicit markers

[2] provide parsers with entry points for a second grammar, but there has been no

established technique to parse embedded structures whose boundaries have not been

explicitly marked.

This thesis presents a new technique for selectively applying existing parsers on

intelligently transformed document content with embedded structures. The general

goal of this body of work is to make syntactic information that is inherent to the em-

bedded structures available for other tools and applications. A lightweight approach

to this problem is used to parse embedded structures as they are detected without

constructing custom parsers.

13

1.1 Embedded Structure Documents

A key to detecting and parsing embedded structures lies in the nature of embedded

documents themselves. The embedded structure, or snippet, is nested within another

language type. This encompassing language is known as the containing structure.

There are many types of embedded language documents, and each type embeds its

structures in different ways.

Some examples of embedded structure documents include:

* Java Documentation. One feature of Java documentation is the ability of

the author to automatically generate web pages for API documentation. HTML

formatting tags may be included in these Java documentation comments in

order for the author to format the resulting web pages to his or her liking. As

a result, many Java files end up having HTML structures embedded within the

containing Java code.

" Graphics is the abstract base class for all graphics contexts
* which allow an application to draw onto components realized on
* various devices or onto off-screen images.

* A Graphics obJect encapsulates the state information needed
* for the various rendering operations that Jv'a supports. This
* state inrormation includes:
* Cui>

* <liThe Component to draw on
* A translation origin for rendering and clipping coordinates
* The current clip
* <1i>The current color
* The current font
* The currentL logical pixel operation function (XOR or Paint)
* The current XOR alternation color
* (see setX ORMode)
*

* @author Sami Shaio
* @author Arthur van Hoff
* @version %I%, %G%
* @since 1.0

public abstract class Graphics

Figure 1-1: Example Java documentation comment with embedded HTML structures

[3]

14

* Web Tutorials. The Web has become a great resource for code developers to

learn from others experience. A large part of this involves educating developers

by displaying sample code in web tutorials. This requires that it be embedded

within another language, namely HTML. HTML is an interesting language as

a container for embedded structures. This is because the primary purpose of

HTML is to provide structural information to web browsers for visual rendering

of web pages. The text of the HTML document source code can differ greatly

in appearance from the text of the rendered web page. This can be seen in the

following example, which is a web tutorial for writing HTML. Even though both

the containing code and the embedded code are HTML, it is possible to embed

HTML within HTML because the embedded structure exists at the rendered

level, not at the source code level.

Three kinds of lists

HTML supports three kinds of lists. The first kind is a bulletted list, ofte
and tags, for instance:

the first list item

the second list item

the third list item

Note that you always need to end the list with the end tag, but th,
The second kind of list is a numbered list, often called an ordered list.

Figure 1-2: Example web tutorial page with HTML embedded in HTML

* Web server pages. Many server pages like Java Server Pages (JSP) or Active

Server Pages (ASP) embed other languages in HTML in order to enhance their

web pages with dynamic content created. This embedding is invisible to the

viewer of the served web page, but developers still must embed their code within

15

the HTML structures of the page in such a way that the server can find and

interpret it.

<TR>
<TD> </TD>
<TH valign="TOP">Month
(1-12)</TH>

<TH valign="TOP">Day</TH>
<TH valign="TOP">Year</TH>

<TH valign="TOP">Time (2400)</TH>
</TR>

java.utii.Calendar cal = new GregorianCaendar(;
int year = cal.get(java.util.Calendar.YEAR);

<TR>

<TH>Start</TH>
<TD><INPUT name="startmonth" size="2"></TD>
<TD><INPUT name="startday" size="2"></TD>
<TD><INPUT name="startyear" size="4" value="<%= year %>"></TD>
<TD><INPUT name="starttime" size="4"></TD>

</TR>

Figure 1-3: Example Java Server page with Java embedded in HTML

1.2 Applications

One of the goals of this body of work was to outline a technique for parsing embedded

structure, serving as a framework for a variety of applications. Of particular interest

are applications that make use of syntax information of parsed embedded structures

with unmarked boundaries. Some applications for this work include syntax coloring,

indexing and information retrieval, and advanced web navigation.

e Syntax coloring. One simple application that uses the syntax information

gained from parsing embedded structures is syntax coloring. Syntax coloring

is a tool used to help developers write and understand source code. For those

developers writing source code with embedded structures, syntax coloring can

help preserve consistency of how text editors treat similar language structures.

16

" Indexing and information retrieval. By indexing documents by their em-

bedded structures, users can search specifically for content that is embedded in

another language. A scenario that demonstrates the usefulness of this indexing

is as follows: A developer wishes to develop a piece of code in Java using the

Swing toolkit. In order to maximize efficiency, developer would like to make

use of similar work has already be done and is documented on the web. The

developer searches for Java swing sample code which yields many discussions,

articles, and advertisements on the topic, but the developer must dig through

the search results in order to find actual sample code that will help him. With

embedded structure indexing, the developer could have searched the same topic

but with the stipulation that all the pages returned contain embedded struc-

tures of the desired Java type. Furthermore, the developer could make use of the

Java syntax and request pages with embedded structures that contain the Java

type JButton. Indexing parsed embedded structures enhances the experience

of developers searching for specific sample code.

" Advanced web navigation. Using web scripting tools, it is possible to make

use of syntax information from parsed embedded structures to enable advanced

web navigation. One example would be to automatically detect Java types in

sample Java code embedded within web tutorial pages. Using a tool that allows

dynamic end-user webpage modification [4], a user could script all web pages

with sample Java code in it to hyperlink the Java types it encounters to the

appropriate API documentation pages. A prototype of this feature has already

been implemented, and is outlined in Chapter 6.

The rest of this thesis explains the principles of this technique and how it was

applied. Chapter 2 describes similar work related to parsing embedded structures.

Chapter 3 talks about the design goals of this system. Chapter 4 discusses the actual

embedded structure parsing system, including the type detection, view transforma-

tion, and parser application phases. Evaluation of the embedded structure parsing

system is described in Chapter 5. A description of an implemented application of

17

embedded structure parsing is discussed in Chapter 6. Finally, Chapter 7 talks about

future work that can be done to improve the current system.

18

Chapter 2

Related Work

2.1 Text Classification

One area of research related to the detection of embedded structures is text clas-

sification. The problem of embedded structure detection can be reduced to a text

classification problem where the type classification of a region in the document must

be different from the classification of the rest of the document. A well-known subset

of text classification research is the development of effective spam filtering.[5] The

task that spam filters face is to determine whether a given email message is either a

legitimate message or a spam message. These two types of messages can be consid-

ered two language types. The current standard for spam filters is the Bayesian filter

algorithm outlined by Paul Graham.[6] In this spam filter, the message is tokenized

and and a probability of the message being spam is calculated based on these proba-

bilities. Due to the unstructured and evolving nature of documents that spain filters

must examine, spain filters must use sophisticated techniques such as probabilities

for individual tokens, which is natural given the assumption that feature probabilities

are independent.

In embedded structure parsing, statistical classification methods are used to detect

where embedded structures are located. Our classification types are well-structured

languages with an established syntax, so we deemed the overhead of Bayesian filtering

as too computationally intense for a tool that must classify the large number of

19

possible regions in which embedded structures can occur.

2.2 LR parsing

YACC, also known as Yet Another Compiler-Compiler, is a parser generation tool

that imposes user-specified structure on an input stream. This structure is specified

by a collection of grammar rules, which pair input descriptions with code that is called

when input text structures that meet those descriptions are encountered. YACC con-

verts this input specification into an actual parser, which works in conjunction with

a lexical analyzer to check that the input stream matches the specification. [7] This

parser acts as a finite state machine that operates left to right on tokens that are

passed to it from the lexical analyzer. The nature of the parser operating incre-

mentally from left to right yields the term LR parsing. [8] YACC generates the code

for its parser in the C programming language. Many parser generation tools related

to YACC have since been developed, like GNU Bison[9], Berkeley YACC[10], and

JavaCC for Java[11].

2.3 GLR parsing

Generalized LR, or GLR, parsing algorithms have certain advantages over standard

LR parsers like YACC. Two key advantages of GLR parsing algorithms are the fact

that they allow unbounded look-ahead, and that they handle input ambiguities. GLR

handles parsing ambiguities by keeping multiple potential parses until the ambiguities

can be resolved. It is forking the parsers in order to keep track of each potential parse.

Blender[12j, developed in the Harmonia project, is a combined lexer and parser

generator that is able to handle ambiguous boundaries for embedded languages and

parsing the corresponding structures according to the appropriate structural rules.

Blender uses GLR parsing to resolve ambiguities at the boundaries of embedded

structures. It does this by providing a framework to write modular, lexical descrip-

tions including rules for embedding structures. These lexical descriptions support

20

multiple grammars that are merged to create a single parser. This parser, provided

with the appropriate embedding rules in its lexical description, is now able to parse

documents with embedded structures by handling ambiguities between languages the

same way it handles other lexical ambiguities.

Similarly, MetaBorg[13], developed using a grammar called syntax definition for-

malism (SDF), is a method that to embed and assimilate languages to provide scan-

nerless parsing of documents with embedded structures. MetaBorg provides two

advantages over Blender: reduction in parse tree size, and a more concise parser

grammar in the form of SDF. By adopting a scannerless approach, MetaBorg can

use the context of lexical tokens to resolve ambiguities. This reduces the size of the

parse tree. Using SDF for a grammar formalism provides support for all context-free

grammars, including ambiguous grammars. One feature of SDF that is useful for

parsing embedded languages is that instead of forcing the syntax definition into a

non-ambiguous state, SDF creates filters to prioritize different parse interpretations.

This allows for more flexibility across different types of embedding.

One difference that the technique outlined in this paper has from Blender and

MetaBorg is the fact that it abstracts away the knowledge of how to write parser

specifications from the user. In Blender and MetaBorg, the user must construct a

custom parser by specifying possible embedded structures in the lexical definitions

for the grammars. This requires the construction of a new parser each time a new

type of embedding is added. This is because Blender and MetaBorg require that

its single parser has full knowledge over all the possible lexical structures across the

different languages in order to resolve ambiguities. In contrast, our approach keeps

the embedded structure rules separate from the parsers, and composes each parser

by transforming its input and mapping its results back to the original document.

21

22

Chapter 3

Design Goals

As stated before, the main purpose of this thesis is to outline a new technique for

selectively applying existing parsers on intelligently transformed document content

with embedded structures. More simply, the system outlined in this paper should be

able to detect and parse syntax embedded within another syntax. The input to the

system is a document which contains text and certain document metadeta (filename or

URL, MIME type). The output of the system is a mapping between syntax concepts

and a set of regions in the document to which they correspond . In this thesis, a

region is a representation of a start offset and an end offset of a document. The text

in a region can easily be determined using the start and end offsets and the full text

of the document.

The following scenario sketches an example of the desired functionality of the

system:

1. The user loads an HTML document with embedded Java structures into the

system. See Figure 3-1.

2. The system creates a mapping between Java syntax concepts and regions in the

embedded structures.

3. The user queries the system about Java expressions. See Figure 3-2.

4. The system returns a set of regions in the document corresponding to Java

23

L APIS -HoeD TheseConcptsraste into Coe
Fie Edit Go Selection Scripts Toots Debug U*el

,onwid iltpttava suni.coaidocsbooksAutoriaI~avetonceptsracticel.Mit

represents the custom component is an istance of clickie, an e spot is represent y an istance a Spot

Because the object that represents the spot on the screen is very simple, let's look at its code. The spot class df
instance variables: size contains the spot's radius, x contains the spot's current horizontal location, and y conta

spot's current vertical location. It also declares two methods and a constructor 0 a subroutine used to initialize r
created from the class.

public class Spot

//instance variables

public Int x, y;

private Int size;

/constructor

Figure 3-1: Java web tutorial loaded into a web browser

expressions. See Figure 3-3.

In addition to this functionality, there are a few key characteristics of our desired

system:

" Automatic detection of embedded structures. It is imperative that the

system automatically detect the embedded structures and parse them without

prompting from the user. This maintains a level of abstraction that removes

the notion of embedding and simply presents syntax of embedded structures at

the same level as syntax of containing structures. In other words, the imple-

mentation of how structures are parsed in the document should be invisible to

the user. From the users perspective, there should be no distinction between

parsing embedded structures and parsing non-embedded structures. If the user

needs to prompt the parsing of embedded structures by selecting them, the user

could very well copy and paste the embedded structure into a dedicated edi-

tor. Automatic detection offers the user the ability to view parse results in the

context of the document without having to do any work.

* Lightweight detection of embedded structures. The detection of embed-

ded structures should be lightweight. Instead of maintaining large, complicated,

24

Figure 3-2: User queries the system for Java expressions

potential parse trees for ambiguities, the system should deterministically locate

the embedded structures and parse them as they are encountered.

* Extensible support for other embedded language documents. Exten-

sibility is an important consideration for our system. New rules for embedding

structures should be easily added to the system. In contrast to Blender or

MetaBorg, the user should not have to know anything about writing grammars

to support embedded structure parsing.

* Use of existing parsers. In order to parse embedded structures, this system

should use existing parsers in a modular way. In Blender and MetaBorg, the

grammar definitions for each parser was modular, but they were always used

to construct a single, custom parser that had to be reconstructed every time a

rule was added or changed.

25

Pattern: Go [Clear History

IkJava.Expression

LMatch Case F]Match Whole Word(

0 regions selected

JJ10 431 L1. UJ1k.1. u4101 I 1.j1 1.31411 1411, U. 3j UL I L411. 3OW11.11 10 U1.1 OJIlijil., L1. 3 1UUZI.QL CI 11 LIU U.

instance variables: size contains the spot's radius, x contains the spot's current horizontal l
spot's current vertical location. It also declares two methods and a constructor 0 a subrouti
created from the class.

public class Spot

//instance variables

public Int x, y;

private Int size;

//constructor

public Spot()
r rr

r rr

sizs = 1

//methods for access to the size instance variable

public void setSize (int newsize)

if (newSiz- >=)
r r
size = newSize;

Figure 3-3: Java expressions highlighted by the browser

26

Chapter 4

System Overview

In this chapter, the overall design and implementation of this embedded structure

parsing technique is discussed. LAPIS[14], the developing environment for this em-

bedded structure parsing technique is described. We then discuss the three conceptual

phases that make up the process of parsing embedded structures: type detection, view

transformation, and parser application. Type detection answers the question of what

kind of document the system is trying to parse. It further answers the question of

what kind of embedded structure the system is trying to parse, and where those em-

bedded structures might occur. View transformation is responsible for transforming

the content of the embedded structure for the appropriate parser. Parser applica-

tion is the application of existing parsers to this transformed input and mapping the

results back to the original context of the document. Finally, we discuss the embed-

ded structure rules file, which is a formal specification which embodies these three

concepts of type detection, view transformation, and parser application.

4.1 LAPIS

The main body of this system was developed within the framework of LAPIS, a

programmable web browser and text editor. LAPIS maintains a library of parsers

which it runs on every document that is loaded. One interesting and useful feature

of LAPIS is its use of text constraints, a pattern language that allows the user to

27

specify regions of the document with respect to structures detected by its library of

parsers. This pattern language provides the user with a level of abstraction from

actual regions of a specific document. As a result, text constraints, or TC, can be

used as a high-level pattern to describe a region of text in a document.

In LAPIS, patterns are abstractions for text structures in a document. These

abstractions can be populated by parsers, regular expressions, manual selections, and

TC patterns. The output of each of these patterns is a set of contiguous text regions

in the document, called region sets. The parsers that LAPIS keeps are thus run on

entire documents and return region sets for each pattern they are responsible for

populating.

In LAPIS, the notion of a view of a document is one in which different aspects of

the content of the document can be viewed. For example, an HTML document will

have a default view called the raw view that is the plain HTML source code. But an

HTML document also has a cooked view, which presents the content that would be

visually shown in a browser, without all the tags and metadata. Views can present

different content from the default view, but each of these views must contains some

internal mapping that associates each region in the view with a region in the default

view. We will discuss later in this chapter how views are used to present only relevant

syntax to appropriate parsers in the context of parsing embedded structures.

4.2 Type Detection

Much of the process of how to detect and parse embedded structures is tied to the

type of the containing code. One of the goals of our system was to provide automatic

detection and parsing of embedded structures. This requires automatic type detection

of the document.

There are a number of tests that can be applied to a document to determine its

type. In this section, we will discuss a number of these tests and describe a framework

in which both whole documents and code fragments can be type tested. The ultimate

goal of this type detection is to determine the type of the document and the types of

28

Table 4.1: Example URL tests across types

all its embedded structures.

4.2.1 URL Testing

One way to test the type of a document is to examine the Uniform Resource Locator,

or URL of the document. The URL is a unique identifier for the document, which tells

a lot about where the document is from as well as how the viewer of the document

should interpret it. The domain name of a web URL can often identify a certain corpus

of files. For example, I can expect that a majority Google[15] search results pages are

HTML documents with Javascript embedded within it. Upon the loading of a new

document, I can check to see if the URL prefix is "http://www.google.com/search?" to

see if I can expect the document to be an HTML document with Javascript structures.

The file extension of the document is also helpful in determining the documents type.

URLs generally end with an extension indicating the type of the document.

4.2.2 MIME type testing

Another way to check the type of a document is to examine the MIME (Multipur-

pose Internet Mail Extension) property that is associated with the document. This

property gives the system a cue as to how to handle the binary data. In other words,

the MIME property can directly tell us the type of the document.

29

Type File extension

Java *.java

HTML *.html, *.htm

Java Server Page *.jsp

XML *xml

4.2.3 Byte sampling

Given a document of unknown MIME type and location, it is impossible to use URL

or MIME property testing to determine the type of the document. Instead, the actual

content of the document must be tested. One way of doing this is to take the first

100 bytes of the document and examine it for any telltale features. For example, if

the system encounters the tag (html) within the first 100 bytes of the document, it

can make the assumption that this is an HTML document.

4.2.4 Parser success

One way of typing a region of text is to run parsers over that region of text, to check

to see if the parser can find any structural information. For example, if the HTML

parser is run over a given section of text, one indication that the text is HTML is

to see if the HTML parser can detect any tag structures. Using parsers to test for

type, however, can be extremely costly in terms of performance time. To effectively

check the type of a given region using this testing method, the parser corresponding

for every possible embedded type must be run on the region.

4.2.5 Token analysis

Every language has a different syntax, yielding different keywords and punctuation in

some structured order. In turn, that set of keywords and punctuation, also known as

tokens, characterize that language type. By analyzing the frequency of these tokens,

we could attempt to differentiate between two language types.

Token Sets

For each language, we selected a set of tokens that characterized that language. To

characterize a language, tokens must occur in that language with high frequency and

in other languages with low frequency. This is so that the frequency of a given token

set can distinguish two languages. Tokens that would appear frequently across all

language types, such as spaces and carriage returns were excluded from all token sets.

30

Characteristic tokens for Java, HTML, and XML, and C were chosen by examining

the reserved keyword set as defined in the associated parser. The characteristic tokens

for English were chosen by examining the most frequent tokens used in the English

language based on the root of the word.The token sets that were used are shown in

Table 4.2.5.

Using these token sets, we can generate statistics of relative frequency for each

type of language over a corpus of representative files. The corpora chosen must be

large to account for any outliers of unusual token frequency. For our type detection

system, we chose corpora of at least 500 files, resulting in over 1 million tokens. Once

the corpora has been chosen, we can find the frequency of tokens in the characteristic

token set for each language. For example, we can find the average percentage of all

words and punctuation that are characteristic HTML tokens for each document in a

set of 1000 HTML documents. The mean along with the standard deviation of token

frequency can be used as a profile for HTML files. Assuming a normal distribution,

we can use this profile to calculate the probability that an unknown document is

HTML. Generalizing this approach across all types, we have an effective statistical

method for typing unmarked regions of text.

Detecting embedded structures

Parsing embedded language documents requires the system to have parsers that are

able to parse both the embedded structure and the containing structure. Furthermore,

the system must be able to recognize where the embedded structures occur in the

document, so that it is able to invoke the appropriate parser.

Embedded structure boundaries

Detecting the boundaries where embedded structures begin and end is a key to actu-

ally parsing them. Many embedded language documents make this task very simple

by using markers to explicitly define where the embedded structures are. For exam-

ple, in HTML files with Javascript, the HTML tag (script language=javascript) tag

is always used to mark where the embedded Javascript begins, and the corresponding

31

HTML It a abbrev acronym applet area author b banner base basefont bgsound

big blink blockquote bq body br caption center cite code col del dir div

dl dt dd em embed fig fn font form frame frameset hi h2 h3 h4 h5 h6

head hr html i iframe img ins kbd lang lh Ii link map marquee menu

meta multicol nobr noframes note ol p param plaintext pre q range

samp script select small spacer strike strong sub sup tab table tbody

td textarea textflow tfoot th thead title tr tt u ul var href src quot gt

Java abstract boolean break byte case catch char class const continue default

do double else extends false final finally float for goto if implements im-

port instanceof int interface long native new null package private pro-

tected public return short static super switch synchronized this throw

throws transient true try void volatile while) (. ; / = * { }

English the is was be are were been being am of and a an in inside to have has

had having he him his it its I me my they them their not no for you

your she her with on that this these those do did does done doing we

us our by at but from as which or will said say says saying would what

there if can all who whose so go went gone goes more other another one

see saw seen seeing know knew known knows knowing ' , . "

C continue volatile register unsigned typedef default double sizeof switch

return extern struct static signed while break union const float short

else case long enum auto void char goto for int if do -) (. ; / = * [] &

XML cdata nmtoken nmtokens id idref idrefs entity entities xml () / -

Table 4.2: Token sets for various language types

32

Table 4.3: Token frequency statistics over a representative corpus

K/script) tag is always used to mark where the structure ends. This marker not only

indicates where the embedded structure occurs, but also indicates that the structure

is Javascript. A similar example is the (%= code) tag in Java Server Pages. The

tag not only marks where the Java code occurs, but also indicates that the embedded

structure is indeed Java, specifically, a Java expression.

While our system can use these explicitly marked boundaries to locate embedded

structures within documents that make use of them, there are still many documents

that do not use such markings. For example, many web tutorials do not use explicit

tags to demarcate where sample code will be displayed. For such documents, our

system must use other cues to detect where the embedded structures are.

One method of detection is to inspect the natural regions where embedded struc-

tures can occur. Virtually every language has a set of regions in which it is acceptable

to embed other language structures. This effectively reduces our search space from an

arbitrary number of start and end points to a fixed set of regions. Once we have the

set of regions to inspect, we must detect the type of each region in order to determine

whether or not it is an embedded structure.

Applying type detection to embedded structures

Type detection of embedded structures differs from type detection of documents

mainly in that the system can no longer take advantage of the information gleaned

from document properties. The associated URL and MIME property of a document

33

Type Mean Standard deviation

Java 0.509 0.180

HTML 0.639 0.222

English 0.512 0.072

XML 0.548 0.187

C 0.639 0.161

Table 4.4: Marked boundaries for embedded structures

Document Outer Type Inner Type Boundary ({start, end})

Java Java HTML {/**, *}

JSP HTML Java {(%, %)} {(%=, %)}
HTML HTML Javascript {(script language=javascript), (/script)}

Table 4.5: Natural boundaries for embedded structures

provide cues to type the containing code, rather than the embedded structures. Be-

cause parser success and analysis of token frequency depend only on the content of the

regions text, they are essential for determining the type of the embedded structure.

4.3 View Transformation

Once the embedded structures have been detected, the appropriate parser can be

invoked to parse its syntax. This is done by producing a new view of the document

which only presents the embedded structures. The system uses the results of the

embedded structure detection to transform the original view of the document to a

view containing only the structures that have the embedded syntax. This embedded

structure in the context of the view transformation phase is known as the extraction

region. This is due to the fact that the region must be extracted from the original

content.

Once we have created a new view with just the extraction region, we must still

apply transformations before passing it to the parser. The embedded structure, by

34

Type Natural Boundary

Java Comments, Strings

C Comments, Strings

HTML Elements

English Lines, Paragraphs

the very nature of having been embedded in another language, is often in a state

where it cannot be sent directly as input to a parser. One example is the leading *

that begins each line within a Java documentation comment. Although the embedded

structure detection algorithm can locate the Java comment in which this embedded

structure is located, it cannot remove the * characters that occur within this comment

structure. In order to parse the content within each comment as HTML or English,

these * characters must be removed. Our approach to this problem utilizes rule-based

view transformations, applying simple replacement rules to original view content to

produce a new view with parsable content.

One of the design goals of our system is to be easily extendible by the user. This

means that users should be able to easily add support for parsing other embedded

language documents. Each type of embedded language document may need to be

transformed in different ways. Because these transformations must be specified by

the user, we need a simple and rigorous way of describing these view transformations.

View transformations support three types of simple transformations: insertions,

deletions, and replacements. Insertions add regions to the new view that the old

view did not have. Deletions remove regions from the new view that that the old

view did have. Replacements replace regions from the old view with new regions in

the new view. We can map the set of possible insertions and deletions to the set of

possible replacements by thinking of insertions as the replacement of a zero-length

region with a nonzero-length region, and by thinking of deletions as the replacement

of a nonzero-length region with a zero-length region. By doing this, we can break

down each view transformation into a set of simple replacement rules.

Our system applies transformations by using fixed rules that substitute regions

of the document with replacement strings. For example, in the case of the Java

documentation comment the required transformation for parsing embedded structures

could be reduced to the following set of replacement rules:

1. /** symbol beginning a comment -- empty string

2. */ symbol ending a comment ---+ empty string

35

3. * symbol beginning a line in a comment -+ empty string

Although the regions are described informally in the above example, our system

requires a formal description for regions in the document. Fortunately, LAPIS pro-

vides just such a description with its text constraints pattern language. Using TC

patterns, the user can describe any set of regions in the document in a systematic

way. TC patterns have been shown to be easy to learn, and users of LAPIS, in which

this system was developed, should be comfortable using this pattern language. Using

TC patterns, we can rewrite our replacement rules as such:

1. /** starting Java.Comment -+ empty string

2. */ ending Java.Comment -+ empty string

3. * starting Line in Java.Comment -+ empty string

One large concern with applying multiple transformation rules to a single view is

how collisions are handled. In the Java comment example, the system must apply

three transformations to the original view. To illustrate the problem that collisions

pose, consider the following extraction region:

* This is a comment.

The last * symbol in the extraction matches Rule 3, but it also matches the first

part of Rule 2. Depending on which of these rules are applied to the conflicting

symbol, the transformed view will either look like this:

This is a comment.

or this:

This is a comment.

36

One possible way of resolving this problem is to apply all of the rules sequen-

tially, requiring the user to specify the order in which they should be applied. This

unnecessarily burdens the user with additional constraints on the replacement rule

specification. Our approach eliminates the need for rule ordering by resolving con-

flicts using the basis of precedence and size. In general, if the region matching Rule

A begins before the region matching Rule B, then Rule A is applied. If the regions

matching Rules A and B both begin at the same point, the rule matching the larger

region is applied. This eliminates the need for rule ordering and the view transforma-

tion algorithm can incrementally scan the region for replacement matches and apply

rules as they are needed as opposed to applying individual rules sequentially.

4.4 Parsing Application

Once the embedded structures have been located in the type detection phase and

the appropriate view has been generated in the view transformation phase, those

embedded structures are ready to be parsed. In order to apply the parser to these

embedded structures, the system must first know which parser to invoke. This can

be determined in the type detection phase. Once the appropriate parser has been

selected, the parser can then parse the structure and return mappings between syntax

patterns and the regions of the view to which they match.

The regions that this parser returns are all defined in terms of offsets of the

content presented in the transformed view. For the system to have useful data it can

share with other applications, it must map these offsets to correspond to the original

document content. This is done by using the internal map stored in the constructed

view that relates offsets from one view to the other.

4.5 Rules File

In the actual implementation of this system, most of the knowledge for parsing em-

bedded structures is placed in a rules file. This is done primarily for the purpose of

37

extensibility and modularity. The user can extend the system to support new types

of embedded documents by adding a new rule set to the rules file. Also, this design

enabled modularity between rule generation and the actual embedded structure pars-

ing. The rules file can be explicitly written by the user, or it could be automatically

generated by some other program.

The rules file was written as an XML to reinforce the fact that it can be auto-

matically or manually generated. Rules files that followed the specified XML schema

could be read by the system to actually implement the embedded structure parsing.

The rules file encapsulated the following ideas: natural boundaries type tests, token

sets, type parsers, and view transformation replacement rules. These concepts make

up the two elements that can appear in the rules file: type elements and transformer

elements.

Each type element is a representation for a particular language type. The type

element contains a single attribute name which takes a string as a value. The type

element contains a number of children. These include type testing elements, base

elements, and parser elements.

There are currently three type testing elements: urltest, mimetest, mimetest.

The urltest element represents a type predicate that examines the URL of a given

document. Each urltest element has a pattern attribute that has a string as a value.

If the ending of the URL of the document matches pattern, then the document is

recognized as the urltest parent type.

<urltest pattern=ENDING/>

The mimetest element represents a type predicate that checks the MIME property

of a given document. Each mimetest element has a single attribute mime that has

a string as a value. If the MIME property of the document matches mime, then the

document is recognized as the mimetest parent type.

<mimetest mime=MIME/>

The stattest element represents a type predicate that checks the token frequency of

a specified token set on a given document against the provided mean and standard

38

deviation for the token frequency across an entire corpus. Each stattest element has

two attributes, mean and stddev, which both have string doubles as values. Each

stattest also has a child CDATA element containing the characteristic token set. If

a document or region is determined by these statistics to be the stattest parent type

with the highest probability, the region is marked as that language type.

<stattest mean="DOUBLE" stddev="DOUBLE">

<![CDATA[TOKENS]]>

</statte st>

The base element is a description of the language type as a base or container for

embedded structures. Each base element contains as children a regions element, a

view element, and an optional snippet element. The regions element is a description

of the marked or natural boundaries for embedded structures. Each regions element

contains a single attribute, TC, which has a TC description as a value. The view

element contains two attributes: a transformer attribute that references the name of

a view transformer in the rules file, and a input attribute which takes in either "raw"

or "cooked". The two string values indicate whether the view transformer should

operate at the source code ("raw") level, or at the rendered "cooked" level. The

snippet element indicates that there is a preferred type of embedded structure, and

the type attribute is the name string of that preferred type.

<base>

<regions TC="TC"/>

<view transformer=NAME input={"raw", "cooked"}/>

[<snippet type=TYPE/>]

</base>

The parser element references the parser responsible for parsing the given type.

Each parser element has a name attribute whose value is the name of the parser.

<parser name=NAME>

Here is an example of a rules file specifying the Java type:

39

<type name="java">

<uritest pattern="*. java"/>

<stattest mean="0.5086" stddev="0.1803">

<![CDATA[abstract boolean break . . .]>

</stattest>

<base>

<regions TC="Java.Comment just before Java.Method

or Java.Class"/>

<view transformer="javadocView" input="raw"/>

<snippet type="html"/>

</base>

<parser name="JavaParser"/>

</type>

Figure 4-1: Rules file specification of Java type

The transformer element represents the way a given view is to be transformed.

Each transformer element contains a single name attribute that has a string value.

Transformer elements contain rule elements which have a TC attribute and a replace-

ment attribute. The TC attribute is a TC description of the regions that are being

replaced and replacement is the string that replaces each of the regions.

<rule TC="TC" replacement=STRING>

Here is an example of a rules file specifying the Java Documentation view trans-

formation:

40

<transformer name=" j avadocView">

<rule TC="'/**' starting Java.Comment" replacement=" "/>

<rule TC="'*/' ending Java.Comment" replacement=""/>

<rule TC="'*' starting line in Java.Comment" replacement=" "/>

</transformer>

Figure 4-2: Rules file specification for Java Documentation view transformation

Figure 4-3: System Overview

41

Rules File

Embedding Rules

Type Parser
Recognizer Information

Transformation
Rules

Document type
information

View Selected P are
Transformer Parser Information

Transformed

Document View
with

Embedded
Structures

42

Chapter 5

Evaluation and Results

In order to evaluate the system, we must see how well the system did in parsing

embedded structures. The regions that the system output as embedded structures

would have to be compared against the actual embedded structures in the document.

In order to make such a comparison, we made manual selections of embedded struc-

tures and compared those regions to the ones produced by each parser. For each

comparison, we came up with a measure of the precision and recall of the parsing.

One of the goals of this system was to support the parsing of a variety of embedded

structures. In order to evaluate how well our system met this goal, we used documents

of different types and from a range of sources. Documents of four different types were

used: Java source files (HTML in Java), JavaServer Pages (Java in HTML), Java

tutorial webpages (Java in HTML), and HTML tutorial webpages (HTML in HTML).

Five corpora were selected for each corpus, but one Java tutorial corpus was excluded

later due to rendering problems in LAPIS unrelated to this thesis. Each corpus

is a collection of related documents of the same document type. The Java source

files were chosen from projects in SourceForge, an online repository for open-source

projects. The JavaServer pages were collected from versions of online instructional

textbooks that have source code available for download. Both sets of web tutorial

pages were collected from sites that ranked high on Google results for queries of "Java

tutorial" and "HTML tutorial", respectively. From each corpus, 10 documents were

randomly selected to compose a test bed for our system. For our purposes, a test

43

bed is a collection of documents with which we can evaluate the performance of our

system. Due to the random nature of document selection from each corpus to the test

bed, a number of the documents in this test bed did not actually contain embedded

structures.

Once a test bed has been constructed from randomly selected documents across a

range of document types and corpora sources, the embedded structures of each doc-

ument were manually selected and recorded. These manual selections were compared

against the selections that our system made when the documents were loaded. Upon

loading, our system automatically went through the process of type detection, view

transformation, and parser application. The region set returned by the appropriate

parser indicated where our system was able to parse the embedded structures.

Every region that was marked by the parser to be an embedded structure is

considered a positive decision and every region of the document that was not marked

by the parser is considered a negative decision. Precision is defined as the percentage

of positive decisions made that were correct. Recall is defined as the percentage of

correct regions that were decided positively. Both of these measures are important

in evaluating the correctness of the system. It is trivially easy to maximize precision

by ensuring that the system had zero output regions. Likewise, it is trivially easy to

maximize recall by ensuring that the system output every region in the document.

The ideal system will output all of the correct regions and only the correct regions,

maximizing both precision and recall. The F1 measure is an even combination of

precision and recall and is defined by the following formula:

Fl = 2 * precision * recall (5.1)
precision + recall

While precision, recall, and F1 measure are derived from a set of individual deci-

sions, the decisions we are examining are sets of regions. It is difficult to come up with

quantitative comparisons of entire region sets as opposed to individual data points,

so we take advantage of the region algebra that LAPIS provides to generate region

representations of positive and negative decisions. We can then use the size of the

region as data points with which to calculate the precision and recall of the system.

44

Corpus Label Name Location

Java tutorial A Java Sun tutorial http://java.sun.com

Java tutorial B Thinking in Java http://mindview.net

Java tutorial C Cafe au Lait Java http://www.ibiblio.org/javafaq

Java tutorial D Java for Students http://www.javaforstudents.co.uk

HTML tutorial A W3C tutorial http://www.w3.org/MarkUp

HTML tutorial B HTMLSource tutorial http://www.yourhtmlsource.com

HTML tutorial C Dave's HTML Code http://www.davesite.com

Guide

HTML tutorial D WEBalley tutorial http://www.weballey.net

HTML tutorial E PageResource tutorial http://www.pageresource.com

JSP A JSP Cookbook http://www.oreilly.com

JSP B PSK JSP files http://www.bolinfest.com

JSP C Web Development http://www.manning.com

with JavaServer Pages

JSP D Beginning JavaServer http://www.wrox.com

Pages

JSP E Head First Servlets http://www.oreilly.com

and JSP

Java source A Java 1.4.2 SDK http://java.sun.com

Java source B Azureus http://sourceforge.net

Java source C hipergate CRM http://sourceforge.net

Java source D File indexer http://sourceforge.net

Java source E HTML Unit http://sourceforge.net

Table 5.1: Corpora for evaluation test bed

45

Let X represent the region set generated by our system parsing the embedded

structures. Let Y represent the region set matching the actual embedded structures.

We can find the true positives by calculating the region set Z which is the set of all

intersections between all of the regions in X with all of the regions in Y. To do this,

we examine each of the regions in X to see if they intersect with any of the regions

in Y. If there is an intersection, that intersection is added to Z. The magnitude of a

region set R is defined to be the following:

|R| = (r.endr.start) (5.2)
r

By that definition, the formulas for precision and recall are as follows:

precision = (5.3)
1X|

recall =Z (5.4)
|Y|

The F1 score, is then, as follows:

Fl 2Z2

F1 2 (5.5)
ZY + Z X

In examining the results, we found that of the 190 documents, our system achieved

an F1 score of over 0.90 on only 95 of them. Of the 190 documents, 59 contained

no embedded structures and our system correctly did not label any structures for 46

of them. Of particular importance is the performance of our system on documents

that did contain embedded structures in them. Of the 131 documents that contained

embedded structures, our system achieved an F1 score of 0.9 for only 49 of them.

While there are many interpretations for this data, it is important to point out

some trends in the data. Of the 104 documents with embedded structures that rated

an F1 score of below 0.9, only 8 were JSP files. This reinforces the difficulty of

parsing documents with unmarked boundaries. Examining some of the charts of the

data, there appears to be a correlation between the performance of the system and

the corpus it is using as input. This is to be expected, as a corpora uses a similar

method to embed structures in its documents. One encouraging thing to note is that

46

the system did perform consistently well on at least 2 of the 5 corpora for each of the

document types.

Analysis of the types of errors encountered could shed some insight on how to

improve the effectiveness of the embedded structure parsing. By looking at errors

of our system on specific documents, several classes of errors can be distinguished

to offer possible explanations for detection and parsing failures. These error classes

include errors in MIME type labeling by LAPIS and false negative HTML embedded

structures.

For the D corpus in the Java tutorial test bed, it seemed that LAPIS misrecognized

the documents as a different MIME type it should have been. The document was a

web tutorial, so the MIME type should have been "text/html" to indicate that this

was contained HTML code, but LAPIS had labeled the document as "text/plain".

This caused problems with the view transformation phase of the document. The

view transformation was specified to operate at the rendered or cooked level, but

was unable to do so because a rendered view of the document was never created.

Excluding the results of the D corpus, the detection and parsing of embedded Java

structures (Java tutorial and JSP test beds) achieved an F1 score over 0.9 for 33 out

of the 45 documents containing embedded structures.

Most of the failures on documents with HTML embedded structures were failures

of the type detection phase. For all of corpora A and C of the HTML tutorial test

bed and half of corpora B and D in the Java source test bed, our system did not

recognize any HTML structures. This was in large part due the failure of the statis-

tical analysis type detection phase that to positively identify regions with embedded

HTML structures. The documents for which our system failed all had large natural

bounding regions containing a small number of HTML structures and a large number

of English structures. This can be a problem with HTML in general. HTML is in

itself an embedded language; there are typically English language structures embed-

ded within HTML tags. Because the amount of English language structures within

these HTML tags can be arbitrarily large, the effect of the simple statistical analysis

on tokens is diminished. More flexibility is needed in the statistical type detection

47

tests to ensure that potential embedded HTML structures are not discarded as plain

English structures.

System Evaluation on Java Web Tutorials
1.2

1

0.8

0

U0.6

U-

0.4

0.2

AO A1 A2 A.3 5 A9 B3 5 B7 B8 89 CO C1 C2 C3 C4 C7 C9 DO D1 02 D3 D4 07 D8 D9

Java Web Tutorials

Figure 5-1: Performance results for Java structures embedded in HTML (Java Tuto-

rial Pages)

48

System Evaluation on HTML Web Tutorials
1.2

1

0.8

0

S0.6

LA.

0.4

0.2

0

HTML Web Tutorials

Figure 5-2: Performance results for HTML structures embedded in HTML (HTML

Tutorial Pages)

49

System Evaluation on JavaServer Pages

1

'6

1 A2 A4 A 7 A9 BD B S 94 05 5 B? BI B9 Cl C2 C3 Cr C 1 Cl C 9 E3 E4 59
JavasflverPapes

Figure 5-3: Performance results for Java structures embedded in HTML (JavaServer

Pages)

50

System Evaluation on Java Source Fes

|~ ~ 4 I ,

A AI;A2A3 A A", AO A9- 49BL2 95 e1 8 B9 CO Ct CI C -S C9 D D2 D3 0 Di D EQ EI E2 E3 E4 E5 EA E EC, E9

Java Source Filet

Figure 5-4: Performance results for HTML structures embedded in Java (Java Source

Files)

51

52

Chapter 6

Applications

One of the applications for embedded structure detection and parsing outlined in

Chapter 1 is to enable advanced web navigation that makes use of syntax information

from parsed embedded structures. An end-user programming tool could utilize the

knowledge of embedded code in web pages to guide webpage modification. One such

end-user programming tool is Chickenfoot, a scripting environment built as a plug-in

extension of the Firefox web browser. Chickenfoot allows dynamic end-user webpage

modification, enabling advanced web navigation by injecting hyperlinks and scripting

capabilities into web pages at the rendered level.

Chickenfoot uses the TC pattern language from LAPIS to specify regions of the

documents loaded into Firefox. As our system populates LAPIS patterns with em-

bedded structure syntax, Chickenfoot inherits knowledge of embedded structures by

its use of LAPIS patterns. Chickenfoot can then detect and parse embedded struc-

tures in web pages loaded in Firefox. With the syntax information gained from this

detection and parsing, Chickenfoot can direct its webpage modification capabilities

to transforming these embedded structures. A concrete example of this would be the

use of Chickenfoot to detect Java types in a Java web tutorial and hyperlink them

to the appropriate documentation in the Java API. The following scenario illustrates

Chickenfoot implementing this advanced web navigation enabled by the embedded

structure syntax:

53

1. The user loads a Java web tutorial page into a Firefox web browser enabled

with Chickenfoot.

-11-4.0 SIw EItd Q Y em ee then this eaqp uses ssd beomas t h esre k that &e Lt "" 7 n" eely a nssfr in a
W lWeqe srd. It also pies sme usef inerman ebeme whee in the ipm shine the notch hs occurred The esea method
"re31± the tart indes d ie subseqeen captured by ie sire pep powdoing te prems emuc opeion, and enyeearms
the inde o the hut ccter machedLpis one.

Using the -tces and lc,*±inqAt Methods

The em-ie. and seekinAt metds both *teqt to notch nifrgn seqjesce iemeasa pitsm. The eence. hower,
is that e-eks eq eire the esice 4ned sespence to be marched wsile ssskisnAt tee; see. Beth seteheds shvys stt a
tee beaning ofte q stigr Hews te fA e& st :

pubi. final slass fltceasesiki5.(

Pri 15a 5 5inal SSeie ±3±3± - "fs'R

eeisstes.3is 1.1a 5±5ri3± .5±3317 - "5555 SesessssssCC"'

prIVAte istae. P.3 t- ra3P t' ;

priv-t .tatic Raer :stcbcr,

- is 3see7.sse±ie ±55±3533
1±3±337335ssi~ "5 kbasllspees

5s$ ss~ss5 flm.ct.psen "oca ski±3+sthe .lnkA O ;

53'. a. 33±±.;s± 1s3 es5.533553: "+m553353.5353Ch3)

issren 3EE s uC.:rr-n MNPUT i:fnoccccne

Using -PpI-eriv. (stsie g and rpI.e.AII tsttseq

Thesepli-ristAned epl.eeAnetesdseepheieetedomatch eagivpreiepr expressica As theirnses inicae,

±.psaeenrse±Ires tee&stm eosnee, ned replaoehll replk esceees Haoes tee
5

3ssgee 3* cede:

±3351i, 1i.3.- 51.5± ±epl.sThest 3

PXIV-*3 ±&±X 15±5INW7 "11±3d~ 55 1 e -i A5. 11 tee say3
*ss trsjssq 11raa -

Figure 6-1: Java web tutorial in Firefox with Chickenfoot sidebar

54

* 33'', 33'

33±3
Cs.

Figure 6-2: Close-up view of embedded Java structures in Java web tutorial

55

You can see that this example uses word boundaries to ensure that the letters d" "" -g" are n
grives some useful information about where in the input sting the match has occurred. The start a
subsequence captured by the given group during the preiious match operation, and end returns tin

Using the matobes and lookinsgAt Methods

The matches and lcckingAn methods both attempt to match an input sequence against a pattern
requires the entire input sequence to be matched, while lnklngt does not. Both methods alwa

Here's the full code. Matnhe, ectat

imporn :ava-til.regex.';

publIIc final class Manchesinoking

Pri'Vate static final Strcnq REGEX = "fca";

private static final String INPUT = "fccococcoccoccco";
private static Pattern pattern;
private static Matcher matcher;

public static void main(S ingu, argv)

/ Initialize
pattern = Pa-tern.compile(REGEX;
manscher - pattern.matcher(INFUT);

Systemn.out.printinf"Current REGEX is: "+REGEXi;

System.cnt.printin("Current INPUT is: "+INPUT);

System. cu.prinin i"lcckingAk}: "+matcher.1cckzngAtOP;
System.out.pritnt("matches() "+marcher.mathest));

2. The user loads a JavaScript script to replace Java types with hyperlinks to their

API

[~7j Go fc

Figure 6-3: Java web tutorial modified by Chickenfoot

56

SPaho :t LAI

L.-

kane word It also pgs some usdf idnfi abo t Whr %i tin dw t st" the matcbhhas ocurred The tart metod

retoms the stat mde. ofMShe subseqse captutedby The gim. gpt&.d.g the prwesmatch opnmc and end retums

the fde. fthe last chrncte matched. phs oe.

Using the atchsa. and iookingAt Methods

The =,chee and l-aiino~t methods bo tehpt match ant sequene agaiNt a pattem The dflrence, hexec.

is tdid a. eqires the enre t i eW eee to be.matched srie ieoerkir. does not Both methods ahvays tt at
the bgmtang ofthe inpt stg. Heres the fid code, ta

public ftral caaa t.at.hesLoitinq

Pri-at. 1-1.t ft.al 5-r.n REME - f-'"
ri-,te st c fitl U- " T ooocos.f. o.os..

P-iat m. taIC O rtt!aeOO

. t - Ftt esconeilet!RGEX);
satt co-evsesoero.Ih I h

~-osootseo.t±ossOcstU~

Using apia-ri.rtr(Str.Ui and repl eAlIt strisg)

The zape-nits and repoooi-An .oethdscepdte. test thS matches o sudae soo. As theitnames iicate
co stpA the 6Mst ocdce, and reIacem repaes ad ocrces Hoe's the L.a- e code:

f-r~t-o type- j

if .,Iaen en e

Qedarct SueV Edtor

Figure 6-4: Java types replaced with hyperlinks

57

You can see that this example uses word boundaies to ensure that the letters "s" -c" "g are n
longer word. It also gives some useful infornumation about where in the input string the match has oc,
returns the start index of the subsequence captured by the given group during the previous match c
the index of the last character matched, plus one-

Using the ,atces and lookingAt Methods

The atches and iscking;,t methods both attempt to match an input sequence against apatten
is that mat ches requires the entire input sequence to be matched, while lookigAt does not- Bt
the beginning of the input string. Here's the full code, Mat ce szOLk-T:

import java.,ttZ recex

public final cnass MarchesLocking

private static final String REGEX - "foo";

private static final String RTPUT = "fccccccccccc cc";
private static Fattern pattern;
pri-vate static Matcher matcher;

public static voi main (String !) argq)

n -ilze
pattern - Pattern.ccwile(REGEX);
matcher - pattern.matcher(INPUT);

System.out.printIn("Current PEGEX is: "+REGEXI;
Sytem.outin ("Currens tl UT is: "+tNPUT);

Svstem.out.princin("lookingAtt): "atsher.icskigAs());

System. cut. printin("ratches(): "+matcher.matches(o;

3. The user navigates to the Java API for one of the Java types with a single click.

5 ~ ~ ~ ~ o fewaca Pase MMt* UseJIe T_____-e c Oa 5ast Ic be @7es o; wc wm

Isse l jaeens *asase v

C qyspyjw P5c40 : Deprecated !ndex. Helpt
3 l ascafeta cp oj eces cass eacns a e e caacsSadaa~ ~

Class Pattern

All splaeslted laterfacs:
Salalce

A copiled represenation of a regular epeessc

AregulA expression, specified as a sting, sustirnsbe ccsspiledito an instance celthis class. The esutipares canth beesed ecesse.
c ac ebjece teaf canssa~b aires, ccaaacsee ' Sue saist Ace regsclae espess . Al elsae stae ieeled ispefcatig csaccls~

esades bnte sealc s anyatscsees enshre else sacs csttess.

A k pical imocation seq-ec is thus

Hatche. P_aaan
scleas acsseqseeaesthes

A exapthd ic delmt edscy this class a f as ia-sce iesa er espresasic ssd jsce Tisecee. casplee as

epessies aned scascles aniepeseqee asg csaist at i a satgeccevcan The ssasesseas

isqziaknt te thec stazeasefssbcce thousghs fre peatedrnatcbes at isess efficimsimc a do ccc alce lsecaseied peseto be

rensed.

: - aces his class are iutable adre safe fc use by uAiple concurrent threads Iastances of the ma .ae r class ar not safe cr such

Sssaray of reglar-expressiof Constructs

F Cracters

Figure 6-5: Java API page resulting from navigation from modified tutorial page

58

V-ese a 3a - 1.5 -

Suandand Ed 5.0

primitives = f'int' : 0,

' char' 0,

'boolean' 0,

'double' : 0,

'float' : 0,

'long' : 0,

'byte' : 0,

'short' 0,

'void' : 0,

for (type = find('Java.Type'); type.hasMatch; type = type.next) {

if (type in primitives) continue

var func = new Function("displayType \ " + type + F\VY9

replace(type, new Link(type.toStringo, func))

*1

* Opens a new tab to the Java 1.5 Javadoc for 'type'

* If no Javadoc exists for 'type', then

* the user is alerted that it could not be found.

displayType = function(type) {
if (type.substr(-2) - 'U') type = type.substr (0, type.length - 2)

goC'http://java. sun. com/j2se/1.5.O/docs/api/allclasses-fram.ehtml')

for (var i = 0; i < d cument.links.length; i++) {

if (document.links[i].text - type) {

document. location = document. links[i]tto:String()
return;

}

alert ("No Java type found for: " + type + ".\n" +

"Perhaps " + type + " is part of a nonstandard Java library.")

Figure 6-6: JavaScript code that modifies the web page using the embedded Java

type

59

60

Chapter 7

Conclusion

7.1 Contributions

In this thesis, we described a technique that automatically detects and parses embed-

ded language structures. We introduced the concepts of statistical token frequency

analysis for type detection, systematic rule-based view transformations, and modular

parser applications. This approach provides an extensible, lightweight approach to

the problem of parsing the documents with embedded structures.

We have demonstrated that our system can support a range of embedded struc-

ture documents, even though the embedded structures are not explicitly marked by

bounding markers. Advanced web navigation using Chickenfoot demonstrated our

technique in action. Finally, we identified various applications that use embedded

structure syntax for their framework.

7.2 Future Work

7.2.1 Type support

One limitation of the current system to parse embedded structures is that it was

developed using only the parsers already available in LAPIS. This limited the lan-

guage types that it could support, and thus limited the types of embedded language

61

documents that it could fully parse. Currently, the effective parsers in LAPIS are

for Java, HTML, and XML. One domain for future work would be to plug in more

language parsers into LAPIS that could then be used to parse embedded structures.

7.2.2 Rule generation

The knowledge of parsing embedded structures is encapsulated in the rules file, which

is specified by the user. The rules file dictates the type detection, view transformation,

and parser application for each class of embedded structure in the document. In order

to add support for parsing a new class for embedded structure, the user must modify

this rules file appropriately. Required knowledge of the rules schema accepted by the

system acts as an impetus for the user to add these new classes. It would be nice to

have a user interface in which the user could easily add new language types and rules

for embedding to the rules file.

Another concept that is tied to rule generation is the fact that currently the

notion of natural boundaries must be understood in order to create a new rule. In

order for the system to parse embedded structures in HTML, someone must write

in the rules file that the natural boundaries for embedded structures in HTML are

HTML elements. One possible avenue for future work to avoid this burden on the

user is to use programming by demonstration for rule generation. One can imagine

a user viewing a document with multiple embedded structures within it. In order to

generate a rule for parsing these structures, the user would merely have to select those

embedded structures and specify the language type of those embedded structures.

The system would use inference algorithms to detect the probable natural boundaries

for this document and associate them with the type of the given document. This

effectively takes out the requirement for knowledge of the rules schema, and simplifies

rule generation into programming by demonstration.

62

7.2.3 Error Tolerance in Parsers

One of the challenges of parsing embedded structures is resolving complications that

arise from the actual embedding of parsable code. In embedded language documents

such as web tutorials, where the syntax of the embedded structures is flexible to

errors, this challenge is further complicated by trying to parse embedded structures

of unparsable code. To concretize this point, take the example of a Java web tutorial

that replaces some of its code with an ellipsis. The ellipsis indicates to the viewer of

the web tutorial that it is simply serving as a replacement of Java code that is not

important to view. From the perspective of the web tutorials viewer, the embedded

structure with the ellipsis makes perfect sense as Java code. However, from the

perspective of the Java parser, the ellipsis is unrecognizable syntax and thus the

embedded structure is not marked as Java code.

One way to deal with permissible errors in embedded structures, such as ellipsis,

is to build in error tolerance in the parser. Building up error tolerance in parsers

must be done carefully so that it does not incorrectly parse nonsensical structures as

admissible syntax. A rudimentary form of error tolerance was implemented in the

Java parser to handle parsing failures on ellipsis tokens. This error tolerance could

be extended to support other types of errors such as misspellings, pseudocode, and

incomplete code.

63

64

Appendix A

Full Listing of Results

65

id url precision recall F1

A0 http://java.sun.com/docs/books/tutorial/getStarted/application/classdef.html 1 0.879 0.936

Al http://java.sun.com/docs/books/tutorial/essential/threads/clock.html 1 0.957 0.978

A2 http://java.sun.com/docs/books/tutorial/essential/system/iostreams.html 0.957 0.998 0.977

A3 http://java.sun.com/docs/books/tutorial/pos/converting/incompatibleChangesAWT.html 0.180 0.217 0.197

A4 http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html 1 1 1

A5 http://java.sui.com/docs/books/tutorial/jdbc/basics/retrieving.html 0.908 0.991 0.947

A6 http://java.sun.com/docs/books/tutorial/reflect/class/idex.htm 1 1 1

A7 http://java.sun.com/docs/books/tutorial/jar/sign/intro.htm 0 1 0

A8 http://java.sun.com/docs/books/tutorial/javabeans/properties/index.html 0 1 0

A9 http://java.sun.cori/docs/books/tutorial/getStarted/cupojava/mnac.html 0.639 0.877 0.739

BO file:///c:/JT2/TIJ3fc.htm 0 1 0

B1 file:///c:/JT2/TIJ322.htn 0 1 0

B2 file:///c:/JT2/TIJ321.htmn 0 1 0

B3 file:///c:/JT2/TIJ314.htm 0.935 0.86 0.898

B4 file:///c:/JT2/TIJ3.htn 0 1 0

B5 file:///c:/.JT2/TIJ303.htn 0.475 0.915 0.625

B6 file:///c:/JT2/TIJ3fc.htin 0 1 0

B7 file:///c:/JT2/TI.J319.htiii 0.934 0.932 0.933

B8 file:///c:/JT2/TIJ315.htin 0.935 0.890 0.912

B9 file:///c:/JT2/TIJ311.htn 0.960 0.93 0.944

CO http://www.ibiblio.org/javafaq/course/week6/17.htmI 1 0 0

C1 http://www.ibiblio.org/javafaq/course/week13/18.html 1 0 0

C2 http://www.ibiblio.org/javafaq/course/week10/29.html 1 0 0

C3 http://www.ibiblio.org/javafaq/course/week4/59.litimil 1 0 0

C4 http://www.ibiblio.org/javafaq/course/week3/16.htmI 1 0 0

C5 http://www.ibibIio.org/javafaq/course/week8/26.htmI 1 1 1

C6 http://www.ibiblio.org/javafaq/course/week9/11.htmI 1 1 1

C7 http://www.ibibIio.org/javafaq/course/week2/30.htmI 1 0 0

C8 http://www.ibibIio.org/javafaq/course/week13/42.html 1 1 1

C9 http://www.ibibIio.org/javafaq/course/week12/22.htmI 1 0 0

DO http://www.javaforstudents.co.uk/truefalse.htm 0.993 0.999 0.996

D1 http://www.javaforstudents.co.uk/loopy.html 0.988 0.999 0.993

D2 http://www.,javaforstudents.co.uk/methods.html 0.978 0.999 0.988

D3 http://www.javaforstudents.co.uk/methods.html 0.978 0.99 0.988

D4 http://www.javaforstudents.co.uk/coinpile.htnI 0.820 1 0.901

D5 lttp://www.javaforstudents.co.uk/start.html 1 1 1

D6 http://www.javaforstudents.co.uk/bitty.html 0 1 0

D7 http://www.javaforstudents.co.uk/variables.htm 0.986 0.997 0

D8 http://www.javaforstudents.co.uk/nuinbers.htm 0.623 0.997 0.767

D9 http://www.javaforstudents.co.uk/switch.htnl 0 1 0

Table A.1: Java tutorial evaluation results

66

id url precision recall F1

AO http://www.w3.org/TR/REC-html4O/struct/links.html 0.101 1 0.184

Al http://www.w3.org/TR/REC-htm40/interact/forms.html#h-1 1 0 0

A2 http://www.w3.org/TR/R.EC-html4O/about.html#h 1 1 1

A3 http://www.w3.org/TR/REC-html4O/types.html#h- 1 0 0

A4 http://www.w3.org/TR/R EC-html40/intro/intro.html#h 1 0 0

A5 http://www.w3.org/TR./REC-html40/appendix/notes.html#h- 1 0 0

A6 http://www.w3.org/TR/REC-html40/interact/forms.html#h-1 1 0 0

A7 http://www.w3.org/TR/REC-html40/appendix/notes.html#h 1 0 0

A8 http://www.w3.org/TR/REC-html40/appendix/notes.html#h 1 0 0

A9 http://www.w3.org/TR/REC-html40/interact/forms.html#h-1 1 0 0

BO http://www.yourhtmsource.com/accessibility/redesigning.html 0 1 0

B1 http://www.yourhtmlsource.coin/accessibility/ 1 1 1

B2 http://www.yourhtmlsource.com/forms/basicforms.html 0.393 0.992 0.563

B3 http://www.yourhtmlsource.coin/promotion/inkrequests.htm 0 1 0

B4 http://www.yourhtmsource.com/accessibiIity/10badthings.html 0 1 0

B5 http://www.yourhtmlsource.com/promotion/ 1 0 0

B6 http://www.yourhtmlsource.com/stylesheets/csslinks.html 1 0.214

B7 http://www.yourhtmlsource.com/javascript/scriptingframes.html 0.057 0.949 0.109

B8 http://www.yourhtmlsource.com/myfirstsite/basicwebdcsign.html 0 1 0

B9 http://www.yourhtmlsource.com/sitemanagenient/ssiecho.htm 0.017 0.044 0.025

CO http://www.davesite.com/webstatioi/htnl/chap07.shtml 1 0 0

C1 http://www.davesite.coin/webstation/html/chap17.shtn] 1 0 0

C2 http://www.davesite.coin/webstation/html/chapO3.shtml 1 0 0

C3 http://www.davesite.com/webstation/html/chapX.shtml 1 0 0

C4 http://www.davesite.com/webstation/htm/domain.shtml 1 1 1

C5 http://www.davesite.com/webstation/html/chap11.shtmI 1 0 0

C6 http://www.davesite.com/webstation/html/chapO4.shtml 1 0 0

C7 http://www.davesite.com/webstation/html/chap10.shtml 1 0 0

C8 http://www.davesite.com/webstation/htm/chap16.shtml 1 1 1

C9 http://www.davesite.com/webstation/html/chap14.3.shtml 1 0 0

DO http://www.weballey.net/tables/index.html 0.949 0.993 0.970

D1 http://www.weballey.net/tables/expanding.html 1 1 1

D2 http://www.weballey.net/tables/sizing.html 1 1 1

D3 http://www.weballey.net/tables/colors.html 0.994 1 0.997

D4 http://www.weballey.net/tables/borders.html 1 1 1

D5 http://www.weballey.net/tables/alignment.htmI 1 0.997 0.998

D6 http://www.weballey.net/tables/nesting.htm 0.173 1 0.295

D7 http://www.weballey.net/tables/navbar.html 0.794 0.984 0.879

D8 http://www.weballey.net/tables/quickrecap.html 1 1 1

D9 http://www.weballey.net/tables/tags.html 1 0 0

EO http://www.pageresource.com/html/metref.htm 1 0.996 0.998

El http://www.pageresource.com/dhtmI/csstut8.htm 0.687 0.905 0.781

E2 http://www.pageresource.com/dhtmi/csstut1.htm 1 1 1

E3 http://www.pageresource.com/html/embed.htm 0.657 0.453 0.537

E4 http://www.pageresource.com/html/formhelp.htm 0.956 0.829 0.888

E5 http://www.pageresource.com/html/Iinking.htm 1 1 1

E6 http://www.pageresource.com/putweb/ftptut2.htm 1 0 0

E7 http://www.pageresource.com/html/framel.htm 0.980 0.973 0.977

E8 http://www.pageresource.com/html/hr2.htm 0.873 0.947 0.909

E9 http://www.pageresource.com/htmI/bgcolor.htm 0.946 0.959 0.952

Table A.2: HTML tutorial evaluation results

67

id url precision recall F1

AO file:///c:/jsp/jspcookbook/chap23/cookieChap23.jsp 1 1 1

Al file:///c:/jsp/jspcookbook/chap1O/cookieSet.jsp 1 0.826 0.904

A2 file:///c:/jsp/jspcookbook/chap27/amazon.jsp 1 1 1

A3 file:///c:/jsp/jspcookbook/chap7/beanSet.jsp 1 1 1

A4 file:///c:/jsp/jspcookbook/chap27/google.jsp 1 1 1

A5 file:///c:/jsp/jspcookbook/chap6/header.jsp 1 0 0

A6 file:///c:/jsp/jspcookbook/chap17/qtmusic.jsp 1 1 1

A7 file:///c:/jsp/jspcookbook/chap22/logoTest.jsp 1 1 1

A8 file:///c:/jsp/jspcookbook/chap6/soutions.jsp 1 1 1

A9 file:///c:/jsp/jspcookbook/chap1/firstJsp.jsp 1 0.447 0.618

BO file:///c:/jsp/mbolin/psk/white-pages.jsp 1 0.946 0.972

B1 file:///c:/jsp/mbolin/rush/add-event.jsp 1 0. 0.984

B2 file:///c:/jsp/mbolin/toys/index.jsp 1 1 1

B3 file:///c:/jsp/mbolin/rush/rushing-team.jsp 0.95 0.588 0.726

B4 file:///c:/jsp/mbolin/default.jsp 1 0.822 0.902

B5 file:///c:/jsp/mbolin/crap-calendar.jsp 1 0. 0.984

B6 file:///c:/jsp/mbolin/rush/picturebook.jsp 1 0.942 0.970

B7 file:///c:/jsp/inbolin/laundry/index.jsp 0.987 0.754 0.855

B8 file:///c:/jsp/mbolin/admin/process-create.jsp 1 0.965 0.982

B9 file:///c:/jsp/mboli/rush/process-rushee-decision.jsp 1 0.992 0.996

CO file:///c:/jsp/ranning/wdsp/webdev/byexanple/viewhtinl.jsp 1 1 1

C1 file:///c:/jsp/manig/wdjsp/webev/commontasks/blue-cookie.jsp 1 0 0

C2 filc:///c:/jsp/nianning/wdjsp/webdev/coimmiontasks/uptime.jsp 1 1 1

C3 file:///c:/jsp/manning/wdjsp/webdev/advtags/forTag.jsp 1 1 1

C4 file:///c:/jsp/inaning/wdjsp/webdev/byexample/quote.jsp 1 1 1

C5 file:///c:/jsp/manning/wdjsp/webdev/byexample/whois.jsp 0.498 0.815 0.618

C6 file:///c:/jsp/manning/wdjsp/webdev/scripting/fact-comment.jsp 1 0 0

C7 file:///c:/jsp/manning/wdjsp/webdev/byexample/viewsource.jsp 1 0.997 0.998

C8 file:///c:/jsp/manning/wdjsp/webdev/commontasks/thanks.jsp 1 1 1

C9 file:///c:/jsp/nianning/wdjsp/webdev/databases/CachedResuts.jsp 1 0.824 0.903

DO file:///c:/jsp/wrox/ch18-spring-exercise/web/WEB-INF/jsp/form.jsp 1 1 1

D1 file:///c:/jsp/wrox/ch20-tiles-exercises/web/tiles/it/body.jsp 1 1 1

D2 file:///c:/jsp/wrox/chI8-spring-exercise/web/index.jsp 1 1 1

D3 file:///c:/jsp/wrox/web/roster.jsp 1 1 1

D4 file:///c:/jsp/wrox/web/input.jsp I I 1
D5 file:///c:/jsp/wrox/web/examplel/name-ist.jsp 1 1 1

D6 file:///c:/jsp/wrox/ch20-tiles-exercises/web/grandchild-index.jsp 1 1 1

D7 file:///c:/jsp/wrox/web/footy.jsp 1 1 1

D8 file:///c:/jsp/wrox/HelloJSF/greeting.jsp 1 1 1

D9 file:///c:/jsp/wrox/ch18-webwork/webwork-skeleton/template/vxmnl/fiIled-header.jsp 1 0 0

EO file:///c:/jsp/jsp3/ora/ch9/error6.jsp 1 1 1

El file:///c:/jsp/jsp3/ora/ch17/userinfovalid.jsp 1 1 I
E2 file:///c:/jsp/jsp3/ora/chl5/phone.jsp 1 1 1

E3 file:///c:/jsp/jsp3/ora/ch12/validate.jsp 1 1 1

E4 file:///c:/jsp/jsp3/ora/ch1O/product.jsp I 1 1

E5 file:///c:/jsp/jsp3/ora/ch17/page3.jsp 1 1 1

E6 file:///c:/jsp/jsp3/ora/chl1/evenand.odd3.jsp I 1 1

E7 file:///c:/jsp/jsp3/ora/chll/message.jsp 1 1 1

E8 file:///c:/jsp/jsp3/ora/ch2l/convert.jsp 1 1 1

E9 file:///c:/jsp/jsp3/ora/chI9/login.jsp 1 1 1

Table A.3: JSP evaluation results

68

id url precision recall F1

AO file:///c:/JD1/java/awt/event/ContainerAdapter.java 0.697 1 0.822

Al file:///c:/JD1/org/apache/xpath/axes/Childlterator.java 1 0 0

A2 file:///c:/JD1/java/util/prefs/WindowsPreferences.java 0.102 0.994 0.185

A3 file:///c:/JD1/java/security/interfaces/RSAMultiPrimePrivateCrtKey.java 0.216 0.992 0.356

A4 file:///c:/JD1/java/nio/DirectFoatBufferS.java 1 1 1

A5 file:///c:/JDI/org/omg/CosNaming/NamingContextExtHolder.java 0.346 0.994 0.514

A6 file:///c:/JD1/java/util/regex/Matcher.java 0.613 1 0.760

A7 file:///c:/JD1/java/nio/ByteBufferAsFoatBufferRL.java 1 1 1

A8 file:///c:/JD1/java/io/Reader.java 1 0 0

A9 fiI:///c:/JD1/java/security/interfaces/DSAParams.java 0.560 1 0.718

BO file:///c:/org/bouncycastle/crypto/generators/DHKeyPairGenerator.java 1 1 1

B1 file:///c:/org/gudy/azurcus2/pluginsimp/local/torrent/TorrentAttributeNetworksImpl.java 1 0 0

B2 file:///c:/com/aelitis/azureus/core/networkmanager/impl/RateHandler.java 1 0 0

B3 file:///c:/org/gudy/azureus2/ui/swt/update/UpdateWindow.java 1 0 0

B4 file:///c:/org/gudy/azureus2/ui/swt/views/tableitems/peers/ConnectedTiinelten.java 1 1 1

B5 file:///c:/org/pf/text/StrinigUtil.java 0.992 0.048 0.092

B6 filc:///c:/com/aelitis/azureus/core/diskanager/cache/CacheFile.java 1 1 1

B7 file:///c:/org/gudy/azureus2/ui/console/commands/Alias.java 0 0 NaN

B8 file:///c:/org/gudy/azureus2/pluginsimpl/local/messaging/MessageManagerlmpl.java 1 0 0

B9 file:///c:/org/bouncycastle/asn1/x59/V3TBSCertificateGCenerator.java 0.179 1 0.304

CO file:///c:/hipergate-build/java/org/htmlparser/AbstractNode.java 0 0.039 0.075

C1 file:///c:/hipergatc-build/java/org/w3c/tidy/EntityTable.java 0.076 0.997 0.141

C2 file:///c:/hipergate-build/java/coin/lowagie/text/html/HtmEncoder.java 0.998 0.932 0.964

C3 file:///c:/hipergate-build/java/com/lowagie/text/rtf/document/RtfCodcPage.java 1 1 1

C4 file:///c:/hipergate-build/java/com/knowgate/http/portlets/HipergatePortletContext.java 1 1 1

C5 file:///c:/hipergate-build/java/org/tmlparser/util/FeedbackManager.java 1 0 0

C6 file:///c:/hipergate-build/java/com/lowagie/text/rtf/style/RtfFontList.java 1 1 1

C7 file:///c:/hipergate-buid/java/com/knowgate/workareas/FileSystemWorkArea.java 0.379 0.986 0.548

C8 file:///c:/hipergate-build/java/com/lowagie/text/pdf/PdfWriter.java 0.942 0.562 0.704

C9 file:///c:/hipergate-build/java/com/lowagie/text/rtf/document/RtfPageSetting.java 0 0 NaN

DO file:///c:/filelndexer/src/con/warehouse/filelndexer/exclusion/Exclusion.java 0.944 0.898 0.921

Dl file:///c:/filelndexer/src/com/warehouse/filelndexer/datasource/KTDataSource.java 0.033 0.997 0.065

D2 file:///c:/fileIndexer/src/com/warehouse/fileIndexer/parser/Cleaner.java 0.881 0.854 0.86

D3 file:///c:/filclndexer/src/com/warehouse/fileIndexer/datasource/DataSourceException.java 0.550 0.401 0.464

D4 file:///c:/filelindexer/src/com/warehouse/fileIndexer/Filelndexer.java 1 1 1

D5 file:///c:/filelndexer/src/com/warehouse/filelndexer/datasource/DataSource.java 1 0 0

D6 file:///c:/fileIndexer/src/com/warehouse/filelndexer/parser/DefaultParser.java 1 0 0

D7 file:///c:/filelndexer/src/com/warehouse/fileIndexer/permission/PermissionManager.java 1 0 0

D8 file:///C:/fileIndexer/src/com/warehouse/filelndexer/exclusion/FileExclusion.java 1 0 0

D9 file:///c:/filelndexer/src/con/warehouse/fileIndexer/ParserTypes.java 1 1 1

EO file:///c:/src/java/com/gargoyleSW/htmlunit/htrnl/HtmlTableHeaderCell.java 1 0.050 0.095

El file:///c:/src/java/com/gargoyleSW/htmlunit/html/HtmParagraph.java 1 0.430 0.602

E2 file:///c:/src/test/java/com/gargoyleSW/htmlunit/javascript/host/NodempTest.java 0.963 0.970 0.967

E3 file:///c:/src/java/com/gargoyleSW/htmlunit/tm/HtmFrame.java 0.9 0.969 0.980

E4 file:///c:/src/test/java/con/gargoyleSW/htmlunit/htm/HtmAnchorTest.java 0.986 0.973 0.980

E5 file:///c:/src/test/java/com/gargoyleSW/htmlunit/WebTestCase.java 0.991 0.193 0.323

E6 file:///c:/src/test/ava/com/gargoyleSW/htmlunit/HTMLParserTest.java 0. 0.984 0.976

E7 file:///c:/src/java/com/gargoyleSW/htmlunit/htm/HtmListItem.java 1 0.277 0.434

E8 file:///c:/src/java/com/gargoyleSW/htmlunit/html/HtmTextArea.java 0.994 0.089 0.164

E9 file:///c:/src/test/java/com/gargoyleSW/htmlunit/ScriptFilterTest.java 1 1 1

Table A.4: Java source evaluation results

69

70

Bibliography

[1] De Lara, E., et al. A Characterization of Compound Documents on the Web. Rice

Computer Science technical report, TR99-351. Nov 29, 1999.

[2] Gray, D., et al. Modern Languages and Microsofts Component Object Model.

Communications of the ACM. May 1998 - Vol 41.

[3] Ragett, D. "Getting Started with HTML." http://www.w3.org/MarkUp/Guide/

Feb 13, 2002

M. "End-User Programming for the

http://groups.csail.mit.edu/uid/projects/chickenfoot/ May 2005.

[5] Graham, P. "A Plan for Spam." http://www.paulgraham.com/spam.html Aug

2002.

[6] Graham, P. "Better Bayesian Filtering." http://www.paulgraham.com/better.html

Jan 2003.

[7] Johnson, S. "Yacc: Yet Another Compiler-Compiler."

http://dinosaur.compilertools.net/yacc/index.html

[8] http://en.wikipedia.org/wiki/LR

[9] Donnelly, C. and Stallman, R. "Bison; The YACC-compatible Parser Generator."

http://dinosaur.compilertools.net/bison/index.html Nov 1995.

[10] http://sourceforge.net/projects/byacc/

71

[4] Bolin, Web."

[11] https://javacc.dev.java.net/

[12] Begel, A. and Graham, S. L. Language analysis and tools for input stream am-

biguities. Proceedings of the Fourth Workshop on Language Descriptions, Tools

and Applications (LDTA '04), Electronic Notes in Theoretical Computer Science,

Barcelona, Spain, Apr 2004.

[13] Bravenboer, M. and Visser E. Concrete Syntax for Objects. Proceedings of the

19th Annual ACM Conference on Object-Oriented Programmin, Systems, Lan-

guages, and Applications (OOPSLA '04), Vancouver, Canada, Oct 2004.

[14] Miller, R. Lightweight Structure in Text. PhD thesis. Computer Science Dept.,

School of Computer Science, Carnegie Mellon University, May 2002.

[15] http://www.google.com/

72

