Detecting and Parsing Embedded Lightweight
Structures
by
Philip Rha

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science

at the MASSACHUSETTS INSTITUTE]
OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUL 18 2005
June 2005
LIBRARIES

(© Philip Rha, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author ,
Department of Electrical Engineering’and Computer Science
Mayv 19. 2005

Certified by..................
KOD Miller

Accepted by

ATTAUr U. Dmith
Chairman, Department Committee on Graduate Students

BARKER

Detecting and Parsing Embedded Lightweight Structures
by
Philip Rha

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science

Abstract

Text documents, web pages, and source code are all documents that contain language
structures that can be parsed with corresponding parsers. Some documents, like JSP
pages, Java tutorial pages, and Java source code, often have language structures that
are nested within another language structure. Although parsers exist exclusively for
the outer and inner language structure, neither is suited for parsing the embedded
structures in the context of the document. This thesis presents a new technique for
selectively applying existing parsers on intelligently transformed document content.

The task of parsing these embedded structures can be broken up into two phases:
detection of embedded structures and parsing of those embedded structures. In order
to detect embedded structures, we take advantage of the fact that there are natural
boundaries in any given language in which these embedded structures can appear.
We use these natural boundaries to narrow our search space for embedded structures.
We further reduce the search space by using statistical analysis of token frequency
for different language types. By combining the use of natural boundaries and the
use of token frequency analysis, we can, for any given document, generate a set of
regions that have a high probability of being an embedded structure. To parse the
embedded structures, the text of the region must often be transformed into a form
that is readable by the intended parser. Our approach provides a systematic way to
transform the document content into a form that is appropriate for the embedded
structure parser using simple replacement rules.

Using our knowledge of natural boundaries and statistical analysis of token fre-
quency, we are able to locate regions of embedded structures. Combined with replace-
ment rules which transform document content into a parsable form, we are successfully
able to parse a range of documents with embedded structures using existing parsers.

Thesis Supervisor: Rob Miller
Title: Associate Professor

Acknowledgments

I would like to thank Professor Rob Miller, without whose invaluable advice and
guidance this thesis would never have been possible. Thanks also to the members of
the User Interface Design Group whose feedback and support were sources of constant

improvement.

Contents

1 Introduction 13
1.1 Embedded Structure Documents 14
1.2 Applications L 16

2 Related Work 19
2.1 Text Classification Lo oo o 19
22 LRoparsing. 20
23 GLRparsing. e 20

3 Design Goals 23

4 System Overview 27
4.1 LAPIS . . . e 27
4.2 Type Detection 28

4.2.1 URL Testing 29

4.2.2 MIME typetesting 29

423 Bytesampling oL L oo 30

4.2.4 Parser SUCCESSo 30

425 Tokenanalysis. Lo 30

4.3 View Transformation 34
4.4 Parsing Applicationo oo 37
45 RulesFile o 37

5 Evaluation and Results 43

Applications

7.1 Contributions
7.2 Future Work

Conclusion
7.2.1 Typesupport
7.2.2 Rule generation

7.2.3 Error Tolerance in Parsers

Full Listing of Results

53

61
61
61
61
62
63

65

List of Figures

1-1

1-2
1-3

4-1
4-2
4-3

5-1

5-3

5-4

6-1
6-2

Example Java documentation comment with embedded HTML struc-
tures [3]
Example web tutorial page with HI'ML embedded in HTML
Example Java Server page with Java embedded in HTML

Java web tutorial loaded into a web browser
User queries the system for Java expressions

Java expressions highlighted by the browser

Rules file specification of Java type
Rules file specification for Java Documentation view transformation .

System Overview

Performance results for Java structures embedded in HTML (Java Tu-
torial Pages)
Performance results for HTML structures embedded in HTML (HTML
Tutorial Pages)
Performance results for Java structures embedded in HTML (JavaServer
Pages)
Performance results for HTML structures embedded in Java (Java

Source Files)o

Java web tutorial in Firefox with Chickenfoot sidebar
Close-up view of embedded Java structures in Java web tutorial

Java web tutorial modified by Chickenfoot

9

14
15
16

24

26

40
41
41

48

49

50

51

54
55

6-4
6-5

Java types replaced with hyperlinks
Java API page resulting from navigation from modified tutorial page

JavaScript code that modifies the web page using the embedded Java

type . .

10

58

List of Tables

4.1 Example URL tests acrosstypes 29
4.2 Token sets for various language types 32
4.3 Token frequency statistics over a representative corpus 33
4.4 Marked boundaries for embedded structures 34
4.5 Natural boundaries for embedded structures 34
5.1 Corpora for evaluation test bedo 45
A.1 Java tutorial evaluation results 66
A.2 HTML tutorial evaluation results 67
A3 JSP evaluationresults Lo 68
A4 Java source evaluation resultso oL 69

11

12

Chapter 1

Introduction

Text documents, web pages, and source code are all documents that contain language
structures that can be parsed with corresponding parsers. Some documents, like JSP
pages, code tutorial webpages, and Java source code, often have language structures
that are nested within another language structure. [1] These embedded structure
documents pose an interesting parsing problem. Although parsers exist exclusively
for the outer and inner language structure, neither is suited for parsing the embedded
structures, or nested language structures, in the context of the document. Established
techniques of signaling the boundaries of embedded structures using explicit markers
[2] provide parsers with entry points for a second grammar, but there has been no
established technique to parse embedded structures whose boundaries have not been

explicitly marked.

This thesis presents a new technique for selectively applying existing parsers on
intelligently transformed document content with embedded structures. The general
goal of this body of work is to make syntactic information that is inherent to the em-
bedded structures available for other tools and applications. A lightweight approach
to this problem is used to parse embedded structures as they are detected without

constructing custom parsers.

13

1.1 Embedded Structure Documents

A key to detecting and parsing embedded structures lies in the nature of embedded
documents themselves. The embedded structure, or snippet, is nested within another
language type. This encompassing language is known as the containing structure.
There are many types of embedded language documents, and each type embeds its
structures in different ways.

Some examples of embedded structure documents include:

e Java Documentation. One feature of Java documentation is the ability of
the author to automatically generate web pages for API documentation. HTML
formatting tags may be included in these Java documentation comments in
order for the author to format the resulting web pages to his or her liking. As
a result, many Java files end up having HTML structures embedded within the

containing Java code.

’f*t
* Graphics is the abstract base class for all graphics contexts
* which allow an application tce draw onto components realized on
* yarious devices or onto off-screen images.
* A Graphics chiect encapsulates the state information needed
* for the various rendering operations that Java supports. This
* state information includes:
* Jul>
* <1i>The Component to draw on
* <1i»A translation corigin for rendering and clippirng coordinates
* <1i>The current clip
* <1i>The current cclor
* <1i>The current font
* «1i>The current logical pixel operation functicn (XOR oxr Paint)
* «<1i>The current XOR alternation color
* {see »setXORMode)
*
* RBauthor Sami Shaio
* Rauthor Arthur van Hoff
* @version 3I%, 5%
* @since 1.0
*/

puklic abstract class Graphics {

Figure 1-1: Example Java documentation comment with embedded HTML structures

3]

14

e Web Tutorials. The Web has become a great resource for code developers to
learn from others experience. A large part of this involves educating developers
by displaying sample code in web tutorials. This requires that it be embedded
within another language, namely HTML. HTML is an interesting language as
a container for embedded structures. This is because the primary purpose of
HTML is to provide structural information to web browsers for visual rendering
of web pages. The text of the HTML document source code can differ greatly
in appearance from the text of the rendered web page. This can be seen in the
following example, which is a web tutorial for writing HTML. Even though both
the containing code and the embedded code are HTML, it is possible to embed
HTML within HTML because the embedded structure exists at the rendered

level, not at the source code level.

Three kinds of lists

HTML supports three kinds of lists. The first kind is a bulletted list, ofte
and tags, for instance:

<li»the first list item</1li>

the second list item

the third list item

Note that you always need to end the list with the end tag, but th:
The second kind of list is a numbered list, often called an ordered list.

Figure 1-2: Example web tutorial page with HTML embedded in HTML

e Web server pages. Many server pages like Java Server Pages (JSP) or Active
Server Pages (ASP) embed other languages in HTML in order to enhance their
web pages with dynamic content created. This embedding is invisible to the

viewer of the served web page, but developers still must embed their code within

15

the HTML structures of the page in such a way that the server can find and

interpret it.

<TR>
<TD> </TD>
<TH valign="TOP">Mconth
{(1-12)</TH>
<TH valign="TOP">Day</TH>
TH valign="TOP">Year</TH>
<TH valign="TOP">Time {2400)</TH>
</TR>
<%
java.util.Calendar cal = new GregorianCalendar (}:
int year = cal.get(java.util.Calendar.YEAR);
>
<TR>
<TH>Start</TH>
<TL><INPUT name="startmonth"” size="2">J/TD>
<ID><INPUT name="startday" s1ze="2"></TD>
<TD><INPUT name="startyear” size="4" wvalue="<%= year %>"></TD>
<TD><INFUT name="starttime” size="4"></TD>
</TR>

Figure 1-3: Example Java Server page with Java embedded in HTML

1.2 Applications

One of the goals of this body of work was to outline a technique for parsing embedded
structure, serving as a framework for a variety of applications. Of particular interest
are applications that make use of syntax information of parsed embedded structures
with unmarked boundaries. Some applications for this work include syntax coloring,

indexing and information retrieval, and advanced web navigation.

e Syntax coloring. One simple application that uses the syntax information
gained from parsing embedded structures is syntax coloring. Syntax coloring
is a tool used to help developers write and understand source code. For those
developers writing source code with embedded structures, syntax coloring can

help preserve consistency of how text editors treat similar language structures.

16

¢ Indexing and information retrieval. By indexing documents by their em-
bedded structures, users can search specifically for content that is embedded in
another language. A scenario that demonstrates the usefulness of this indexing
is as follows: A developer wishes to develop a piece of code in Java using the
Swing toolkit. In order to maximize efficiency, developer would like to make
use of similar work has already be done and is documented on the web. The
developer searches for Java swing sample code which yields many discussions,
articles, and advertisements on the topic, but the developer must dig through
the search results in order to find actual sample code that will help him. With
embedded structure indexing, the developer could have searched the same topic
but with the stipulation that all the pages returned contain embedded struc-
tures of the desired Java type. Furthermore, the developer could make use of the
Java syntax and request pages with embedded structures that contain the Java
type JButton. Indexing parsed embedded structures enhances the experience

of developers searching for specific sample code.

¢ Advanced web navigation. Using web scripting tools, it is possible to make
use of syntax information from parsed embedded structures to enable advanced
web navigation. One example would be to automatically detect Java types in
sample Java code embedded within web tutorial pages. Using a tool that allows
dynamic end-user webpage modification [4], a user could script all web pages
with sample Java code in it to hyperlink the Java types it encounters to the
appropriate API documentation pages. A prototype of this feature has already

been implemented, and is outlined in Chapter 6.

The rest of this thesis explains the principles of this technique and how it was
applied. Chapter 2 describes similar work related to parsing embedded structures.
Chapter 3 talks about the design goals of this system. Chapter 4 discusses the actual
embedded structure parsing system, including the type detection, view transforma-
tion, and parser application phases. Evaluation of the embedded structure parsing

system is described in Chapter 5. A description of an implemented application of

17

embedded structure parsing is discussed in Chapter 6. Finally, Chapter 7 talks about

future work that can be done to improve the current system.

18

Chapter 2

Related Work

2.1 Text Classification

One area of research related to the detection of embedded structures is text clas-
sification. The problem of embedded structure detection can be reduced to a text
classification problem where the type classification of a region in the document must
be different from the classification of the rest of the document. A well-known subset
of text classification research is the development of effective spam filtering.[5] The
task that spam filters face is to determine whether a given email message is either a
legitimate message or a spam message. These two types of messages can be consid-
ered two language types. The current standard for spam filters is the Bayesian filter
algorithmn outlined by Paul Graham.[6] In this spam filter, the message is tokenized
and and a probability of the message being spam is calculated based on these proba-
bilities. Due to the unstructured and evolving nature of documents that spam filters
must examine, spam filters must use sophisticated techniques such as probabilities
for individual tokens, which is natural given the assumption that feature probabilities
are independent.

In embedded structure parsing, statistical classification methods are used to detect
where embedded structures are located. Our classification types are well-structured
languages with an established syntax, so we deemed the overhead of Bayesian filtering

as too computationally intense for a tool that must classify the large number of

19

possible regions in which embedded structures can occur.

2.2 LR parsing

YACC, also known as Yet Another Compiler-Compiler, is a parser generation tool
that imposes user-specified structure on an input stream. This structure is specified
by a collection of grammar rules, which pair input descriptions with code that is called
when input text structures that meet those descriptions are encountered. YACC con-
verts this input specification into an actual parser, which works in conjunction with
a lexical analyzer to check that the input stream matches the specification.[7] This
parser acts as a finite state machine that operates left to right on tokens that are
passed to it from the lexical analyzer. The nature of the parser operating incre-
mentally from left to right yields the term LR parsing.[8] YACC gencrates the code
for its parser in the C programming language. Many parser generation tools related
to YACC have since been developed, like GNU Bison[9], Berkeley YACC[10], and
JavaCC for Javal[ll].

2.3 GLR parsing

Generalized LR, or GLR, parsing algorithms have certain advantages over standard
LR parsers like YACC. Two key advantages of GLR parsing algorithms are the fact
that they allow unbounded look-ahead, and that they handle input ambiguities. GLR
handles parsing ambiguities by keeping multiple potential parses until the ambiguities
can be resolved. It is forking the parsers in order to keep track of each potential parse.

Blender[12], developed in the Harmonia project, is a combined lexer and parser
generator that is able to handle ambiguous boundaries for embedded languages and
parsing the corresponding structures according to the appropriate structural rules.
Blender uses GLR parsing to resolve ambiguities at the boundaries of embedded
structures. It does this by providing a framework to write modular, lexical descrip-

tions including rules for embedding structures. These lexical descriptions support

20

multiple grammars that are merged to create a single parser. This parser, provided
with the appropriate embedding rules in its lexical description, is now able to parse
documents with embedded structures by handling ambiguities between languages the
same way it handles other lexical ambiguities.

Similarly, MetaBorg[13], developed using a grammar called syntax definition for-
malism (SDF), is a method that to embed and assimilate languages to provide scan-
nerless parsing of documents with embedded structures. MetaBorg provides two
advantages over Blender: reduction in parse tree size, and a more concise parser
grammar in the form of SDF. By adopting a scannerless approach, MetaBorg can
use the context of lexical tokens to resolve ambiguities. This reduces the size of the
parse tree. Using SDF for a grammar formalism provides support for all context-free
grammars, including ambiguous grammars. One feature of SDF that is useful for
parsing embedded languages is that instead of forcing the syntax definition into a
non-ambiguous state, SDF creates filters to prioritize different parse interpretations.
This allows for more flexibility across different types of embedding.

One difference that the technique outlined in this paper has from Blender and
MetaBorg is the fact that it abstracts away the knowledge of how to write parser
specifications from the user. In Blender and MetaBorg, the user must construct a
custom parser by specifying possible embedded structures in the lexical definitions
for the grammars. This requires the construction of a new parser each time a new
type of embedding is added. This is because Blender and MetaBorg require that
its single parser has full knowledge over all the possible lexical structures across the
different languages in order to resolve ambiguities. In contrast, our approach keeps
the embedded structure rules separate from the parsers, and composes each parser

by transforming its input and mapping its results back to the original document.

21

22

Chapter 3

Design (Goals

As stated before, the main purpose of this thesis is to outline a new technique for
selectively applying existing parsers on intelligently transformed document content
with embedded structures. More simply, the system outlined in this paper should be
able to detect and parse syntax embedded within another syntax. The input to the
system is a document which contains text and certain document metadeta (filename or
URL, MIME type). The output of the system is a mapping between syntax concepts
and a set of regions in the document to which they correspond . In this thesis, a
region is a representation of a start offset and an end offset of a document. The text
in a region can easily be determined using the start and end offsets and the full text
of the document.

The following scenario sketches an example of the desired functionality of the

system:

1. The user loads an HTML document with embedded Java structures into the

system. See Figure 3-1.

2. The system creates a mapping between Java syntax concepts and regions in the

embedded structures.
3. The user queries the system about Java expressions. See Figure 3-2.

4. The system returns a set of regions in the document corresponding to Java

23

e e e

te into Code?

iy G e e e

Because the object that represents the spot on the screen is very simple, let's look at its code. The Spot class de
instance variables: size contains the spot's radius, x contains the spot's current horizontal location, and y conta:
spot's current vertical location. It also declares two methods and a constructor O a subroutine used to mitialze r
created from the class.

public class Spot {
//instance variables
public int x, ¥;
private int size;

//constructor

Figure 3-1: Java web tutorial loaded into a web browser

expressions. See Figure 3-3.

In addition to this functionality, there are a few key characteristics of our desired

system:

e Automatic detection of embedded structures. It is imperative that the
system automatically detect the embedded structures and parse them without
prompting from the user. This maintains a level of abstraction that removes
the notion of embedding and simply presents syntax of embedded structures at
the same level as syntax of containing structures. In other words, the imple-
mentation of how structures are parsed in the document should be invisible to
the user. From the users perspective, there should be no distinction between
parsing embedded structures and parsing non-embedded structures. If the user
needs to prompt the parsing of embedded structures by selecting them, the user
could very well copy and paste the embedded structure into a dedicated edi-
tor. Automatic detection offers the user the ability to view parse results in the

context of the document without having to do any work.

e Lightweight detection of embedded structures. The detection of embed-

ded structures should be lightweight. Instead of maintaining large, complicated,

24

Pattern: (_Go J(_ Clear [History

Java.Expression

[] Match Case [] Match Whole Wordi
0 regions selected

Figure 3-2: User queries the system for Java expressions

potential parse trees for ambiguities, the system should deterministically locate

the embedded structures and parse them as they are encountered.

Extensible support for other embedded language documents. Exten-
sibility is an important consideration for our system. New rules for embedding
structures should be easily added to the system. In contrast to Blender or
MetaBorg, the user should not have to know anything about writing grammars

to support embedded structure parsing.

Use of existing parsers. In order to parse embedded structures, this system
should use existing parsers in a modular way. In Blender and MetaBorg, the
grammar definitions for each parser was modular, but they were always used
to construct a single, custom parser that had to be reconstructed every time a

rule was added or changed.

25

LILLaQuoL WIL UUjLLE WAL LUPLLOLLLD WIL SPUL ULL WIL SLLLLIL 1D VL Y SLUIPIL, 1LL 2 1UUn b i) LUls

mstance variables: size contains the spot's radius, x contains the spot's current horizontal
spot's current vertical location. It also declares two methods and a constructor O a subrouti

created from the class.

public class Spot {
//instance variables
public int x, y;

private int size;

//constructor
public Spot() {
[] 7 7

I
|
T
-

//methods for access to the size instance variasble
public void setSize (int newSize} {
if (newSizg >=) {
Eiza = BewSiae;

Figure 3-3: Java expressions highlighted by the browser

26

Chapter 4

System Overview

In this chapter, the overall design and implementation of this embedded structure
parsing technique is discussed. LAPIS[14], the developing environment for this em-
bedded structure parsing technique is described. We then discuss the three conceptual
phases that make up the process of parsing embedded structures: type detection, view
transformation, and parser application. Type detection answers the question of what
kind of document the system is trying to parse. It further answers the question of
what kind of embedded structure the system is trying to parse, and where those em-
bedded structures might occur. View transformation is responsible for transforming
the content of the embedded structure for the appropriate parser. Parser applica-
tion is the application of existing parsers to this transformed input and mapping the
results back to the original context of the document. Finally, we discuss the embed-
ded structure rules file, which is a formal specification which embodies these three

concepts of type detection, view transformation, and parser application.

4.1 LAPIS

The main body of this system was developed within the framework of LAPIS, a
programmable web browser and text editor. LAPIS maintains a library of parsers
which it runs on every document that is loaded. One interesting and useful feature

of LAPIS is its use of text constraints, a pattern language that allows the user to

27

specify regions of the document with respect to structures detected by its library of
parsers. This pattern language provides the user with a level of abstraction from
actual regions of a specific document. As a result, text constraints, or TC, can be
used as a high-level pattern to describe a region of text in a document.

In LAPIS, patterns are abstractions for text structures in a document. These
abstractions can be populated by parsers, regular expressions, manual selections, and
TC patterns. The output of each of these patterns is a set of contiguous text regions
in the document, called region sets. The parsers that LAPIS keeps are thus run on
entire documents and return region sets for each pattern they are responsible for
populating.

In LAPIS, the notion of a view of a document is one in which different aspects of
the content of the document can be viewed. For example, an HT'ML document will
have a default view called the row view that is the plain HTML source code. But an
HTML document also has a cooked view, which presents the content that would be
visually shown in a browser, without all the tags and metadata. Views can present
different content from the default view, but each of these views must contains some
internal mapping that associates each region in the view with a region in the default
view. We will discuss later in this chapter how views are used to present only relevant

syntax to appropriate parsers in the context of parsing embedded structures.

4.2 Type Detection

Much of the process of how to detect and parse embedded structures is tied to the
type of the containing code. One of the goals of our system was to provide automatic
detection and parsing of embedded structures. This requires automatic type detection
of the document.

There are a number of tests that can be applied to a document to determine its
type. In this section, we will discuss a number of these tests and describe a framework
in which both whole documents and code fragments can be type tested. The ultimate

goal of this type detection is to determine the type of the document and the types of

28

Type File extension

Java * java

HTML * html, *.htm

Java Server Page | *.jsp

XML * xml

Table 4.1: Example URL tests across types

all its embedded structures.

4.2.1 URL Testing

One way to test the type of a document is to examine the Uniform Resource Locator,
or URL of the document. The URL is a unique identifier for the document, which tells
a lot about where the document is from as well as how the viewer of the document
should interpret it. The domain name of a web URL can often identify a certain corpus
of files. For example, I can expect that a majority Google[15] search results pages are
HTML documents with Javascript embedded within it. Upon the loading of a new
document, I can check to see if the URL prefix is "http: //www.google.com/search?” to
see if I can expect the document to be an HTML document with Javascript structures.
The file extension of the document is also helpful in determining the documents type.

URLs generally end with an extension indicating the type of the document.

4.2.2 MIME type testing

Another way to check the type of a document is to examine the MIME (Multipur-
pose Internet Mail Extension) property that is associated with the document. This
property gives the system a cue as to how to handle the binary data. In other words,

the MIME property can directly tell us the type of the document.

29

4.2.3 Byte sampling

Given a document of unknown MIME type and location, it is impossible to use URL
or MIME property testing to determine the type of the document. Instead, the actual
content of the document must be tested. One way of doing this is to take the first
100 bytes of the document and examine it for any telltale features. For example, if
the system encounters the tag (html) within the first 100 bytes of the document, it

can make the assumption that this is an HTML document.

4.2.4 Parser success

One way of typing a region of text is to run parsers over that region of text, to check
to see if the parser can find any structural information. For example, if the HTML
parser is run over a given section of text, one indication that the text is HITML is
to see if the HTML parser can detect any tag structures. Using parsers to test for
type, however, can be extremely costly in terms of performance time. To effectively
check the type of a given region using this testing method, the parser corresponding

for every possible embedded type must be run on the region.

4.2.5 Token analysis

Every language has a different syntax, yielding different keywords and punctuation in
some structured order. In turn, that set of keywords and punctuation, also known as
tokens, characterize that language type. By analyzing the frequency of these tokens,

we could attempt to differentiate between two language types.

Token Sets

For each language, we selected a set of tokens that characterized that language. To
characterize a language, tokens must occur in that language with high frequency and
in other languages with low frequency. This is so that the frequency of a given token
set can distinguish two languages. Tokens that would appear frequently across all

language types, such as spaces and carriage returns were excluded from all token sets.

30

Characteristic tokens for Java, HTML, and XML, and C were chosen by examining
the reserved keyword set as defined in the associated parser. The characteristic tokens
for English were chosen by examining the most frequent tokens used in the English
language based on the root of the word. The token sets that were used are shown in
Table 4.2.5.

Using these token sets, we can generate statistics of relative frequency for each
type of language over a corpus of representative files. The corpora chosen must be
large to account for any outliers of unusual token frequency. For our type detection
system, we chose corpora of at least 500 files, resulting in over 1 million tokens. Once
the corpora has been chosen, we can find the frequency of tokens in the characteristic
token set for each language. For example, we can find the average percentage of all
words and punctuation that are characteristic HTML tokens for each document in a
set of 1000 HTML documents. The mean along with the standard deviation of token
frequency can be used as a profile for HTML files. Assuming a normal distribution,
we can use this profile to calculate the probability that an unknown document is
HTML. Generalizing this approach across all types, we have an effective statistical

method for typing unmarked regions of text.

Detecting embedded structures

Parsing embedded language documents requires the system to have parsers that are
able to parse both the embedded structure and the containing structure. Furthermore,
the system must be able to recognize where the embedded structures occur in the

document, so that it is able to invoke the appropriate parser.

Embedded structure boundaries

Detecting the boundaries where embedded structures begin and end is a key to actu-
ally parsing them. Many embedded language documents make this task very simple
by using markers to explicitly define where the embedded structures are. For exam-
ple, in HTML files with Javascript, the HTML tag (script language=javascript) tag

is always used to mark where the embedded Javascript begins, and the corresponding

31

HTML

It a abbrev acronym applet area author b banner base basefont bgsound
big blink blockquote bq body br caption center cite code col del dir div
dl dt dd em embed fig fn font form frame frameset hl h2 h3 h4 h5 h6
head hr html i iframe img ins kbd lang lh li link map marquee menu
meta multicol nobr noframes note ol p param plaintext pre q range
samp script select small spacer strike strong sub sup tab table thody

td textarea textflow tfoot th thead title tr tt u ul var href src quot gt

O /=&

Java

abstract boolean break byte case catch char class const continue default
do double else extends false final finally float for goto if implements im-
port instanceof int interface long native new null package private pro-
tected public return short static super switch synchronized this throw

throws transient true try void volatile while) (. ; / =*{ }

English

the is was be are were been being am of and a an in inside to have has
had having he him his it its I me my they them their not no for you
your she her with on that this these those do did does done doing we
us our by at but from as which or will said say says saying would what
there if can all who whose so go went gone goes more other another one

n

see saw seen seeing know knew known knows knowing ', .

continue volatile register unsigned typedef default double sizeof switch
return extern struct static signed while break union const float short

else case long enum auto void char goto for int ifdo-) (. ;/=*[]&

XML

n

cdata nmtoken nmtokens id idref idrefs entity entities xml () / =

Table 4.2: Token sets for various language types

32

Type Mean | Standard deviation

Java 0.509 | 0.180
HTML | 0.639 | 0.222

English | 0.512 | 0.072
XML 0.548 | 0.187
C 0.639 | 0.161

Table 4.3: Token frequency statistics over a representative corpus

(/script) tag is always used to mark where the structure ends. This marker not only
indicates where the embedded structure occurs, but also indicates that the structure
is Javascript. A similar example is the (%= code) tag in Java Server Pages. The
tag not only marks where the Java code occurs, but also indicates that the embedded
structure is indeed Java, specifically, a Java expression.

While our system can use these explicitly marked boundaries to locate embedded
structures within documents that make use of them, there are still many documents
that do not use such markings. For example, many web tutorials do not use explicit
tags to demarcate where sample code will be displayed. For such documents, our
system must use other cues to detect where the embedded structures are.

One method of detection is to inspect the natural regions where embedded struc-
tures can occur. Virtually every language has a set of regions in which it is acceptable
to embed other language structures. This effectively reduces our search space from an
arbitrary number of start and end points to a fixed set of regions. Once we have the
set of regions to inspect, we must detect the type of each region in order to determine

whether or not it is an embedded structure.

Applying type detection to embedded structures

Type detection of embedded structures differs from type detection of documents
mainly in that the system can no longer take advantage of the information gleaned

from document properties. The associated URL and MIME property of a document

33

Type Natural Boundary

Java Comments, Strings

C Comments, Strings

HTML | Elements

English | Lines, Paragraphs

Table 4.4: Marked boundaries for embedded structures

Document | Outer Type | Inner Type | Boundary ({start, end})

Java Java HTML {/**, *}

JSP HTML Java {(%, %)} {{%=, %)}

HTML HTML Javascript | {(script language=javascript), (/script)}

Table 4.5: Natural boundaries for embedded structures

provide cues to type the containing code, rather than the embedded structures. Be-
cause parser success and analysis of token frequency depend only on the content of the

regions text, they are essential for determining the type of the embedded structure.

4.3 View Transformation

Once the embedded structures have been detected, the appropriate parser can be
invoked to parse its syntax. This is done by producing a new view of the document
which only presents the embedded structures. The system uses the results of the
embedded structure detection to transform the original view of the document to a
view containing only the structures that have the embedded syntax. This embedded
structure in the context of the view transformation phase is known as the extraction
region. This is due to the fact that the region must be extracted from the original
content.

Once we have created a new view with just the extraction region, we must still

apply transformations before passing it to the parser. The embedded structure, by

34

the very nature of having been embedded in another language, is often in a state
where it cannot be sent directly as input to a parser. One example is the leading *
that begins each line within a Java documentation comment. Although the embedded
structure detection algorithm can locate the Java comment in which this embedded
structure is located, it cannot remove the * characters that occur within this comment
structure. In order to parse the content within each comment as HTML or English,
these * characters must be removed. Our approach to this problem utilizes rule-based
view transformations, applying simple replacement rules to original view content to
produce a new view with parsable content.

One of the design goals of our system is to be easily extendible by the user. This
means that users should be able to easily add support for parsing other embedded
language documents. Each type of embedded language document may need to be
transformed in different ways. Because these transformations must be specified by
the user, we need a simple and rigorous way of describing these view transformations.

View transformations support three types of simple transformations: insertions,
deletions, and replacements. Insertions add regions to the new view that the old
view did not have. Deletions remove regions from the new view that that the old
view did have. Replacements replace regions from the old view with new regions in
the new view. We can map the set of possible insertions and deletions to the set of
possible replacements by thinking of insertions as the replacement of a zero-length
region with a nonzero-length region, and by thinking of deletions as the replacement
of a nonzero-length region with a zero-length region. By doing this, we can break
down each view transformation into a set of simple replacement rules.

Our system applies transformations by using fixed rules that substitute regions
of the document with replacement strings. For example, in the case of the Java
documentation comment the required transformation for parsing embedded structures

could be reduced to the following set of replacement rules:

1. /** symbol beginning a comment — empty string

2. */ symbol ending a comment — empty string

35

3. * symbol beginning a line in a comment — empty string

Although the regions are described informally in the above example, our system
requires a formal description for regions in the document. Fortunately, LAPIS pro-
vides just such a description with its text constraints pattern language. Using TC
patterns, the user can describe any set of regions in the document in a systematic
way. TC patterns have been shown to be easy to learn, and users of LAPIS, in which
this system was developed, should be comfortable using this pattern langnage. Using

TC patterns, we can rewrite our replacement rules as such:

1. /** starting Java.Comment — empty string
2. */ ending Java.Comment — empty string

3. * starting Line in Java.Comment — empty string

One large concern with applying multiple transformation rules to a single view is
how collisions are handled. In the Java comment example, the system must apply
three transformations to the original view. To illustrate the problem that collisions

pose, consider the following extraction region:

VAT
* This is a comment.

*/

The last * symbol in the extraction matches Rule 3, but it also matches the first
part of Rule 2. Depending on which of these rules are applied to the conflicting

symbol, the transformed view will either look like this:
This is a comment.
or this:

This is a comment.

/

36

One possible way of resolving this problem is to apply all of the rules sequen-
tially, requiring the user to specify the order in which they should be applied. This
unnecessarily burdens the user with additional constraints on the replacement rule
specification. Our approach eliminates the need for rule ordering by resolving con-
flicts using the basis of precedence and size. In general, if the region matching Rule
A begins before the region matching Rule B, then Rule A is applied. If the regions
matching Rules A and B both begin at the same point, the rule matching the larger
region is applied. This eliminates the need for rule ordering and the view transforma-
tion algorithm can incrementally scan the region for replacement matches and apply

rules as they are needed as opposed to applying individual rules sequentially.

4.4 Parsing Application

Ounce the embedded structures have been located in the type detection phase and
the appropriate view has been generated in the view transformation phase, those
embedded structures are ready to be parsed. In order to apply the parser to these
embedded structures, the system must first know which parser to invoke. This can
be determined in the type detection phase. Once the appropriate parser has been
selected, the parser can then parse the structure and return mappings between syntax
patterns and the regions of the view to which they match.

The regions that this parser returns are all defined in terms of offsets of the
content presented in the transformed view. For the system to have useful data it can
share with other applications, it must map these offsets to correspond to the original
document content. This is done by using the internal map stored in the constructed

view that relates offsets from one view to the other.

4.5 Rules File

In the actual implementation of this system, most of the knowledge for parsing em-

bedded structures is placed in a rules file. This is done primarily for the purpose of

37

extensibility and modularity. The user can extend the system to support new types
of embedded documents by adding a new rule set to the rules file. Also, this design
enabled modularity between rule generation and the actual embedded structure pars-
ing. The rules file can be explicitly written by the user, or it could be automatically
generated by some other program.

The rules file was written as an XML to reinforce the fact that it can be auto-
matically or manually generated. Rules files that followed the specified XML schema
could be read by the system to actually implement the embedded structure parsing.
The rules file encapsulated the following ideas: natural boundaries type tests, token
sets, type parsers, and view transformation replacement rules. These concepts make
up the two elements that can appear in the rules file: type clements and transformer
elements.

Each type element is a representation for a particular language type. The type
element contains a single attribute name which takes a string as a value. The type
element contains a number of children. These include type testing elements, base
elements, and parser elements.

There are currently three type testing elements: urltest, mimetest, mimetest.
The urltest element represents a type predicate that examines the URL of a given
document. Each urltest element has a pattern attribute that has a string as a value.
If the ending of the URL of the document matches pattern, then the document is

recognized as the urltest parent type.
<urltest pattern=ENDING/>

The mimetest element represents a type predicate that checks the MIME property
of a given document. Each mimetest element has a single attribute mime that has
a string as a value. If the MIME property of the document matches mime, then the

document is recognized as the mimetest parent type.
<mimetest mime=MIME/>

The stattest element represents a type predicate that checks the token frequency of

a specified token set on a given document against the provided mean and standard

38

deviation for the token frequency across an entire corpus. Each stattest element has
two attributes, mean and stddev, which both have string doubles as values. Each
stattest also has a child CDATA element containing the characteristic token set. If
a document or region is determined by these statistics to be the stattest parent type

with the highest probability, the region is marked as that language type.

<gtattest mean="DOUBLE" stddev="DOUBLE">
<! [CDATA[TOKENS] 1>

</stattest>

The base element is a description of the language type as a base or container for
embedded structures. Each base element contains as children a regions element, a
view element, and an optional snippet element. The regions element is a description
of the marked or natural boundaries for embedded structures. Each regions element
contains a single attribute, T'C, which has a TC description as a value. The view
element contains two attributes: a transformer attribute that references the name of
a view transformer in the rules file, and a input attribute which takes in either "raw”
or "cooked”. The two string values indicate whether the view transformer should
operate at the source code ("raw”) level, or at the rendered ”cooked” level. The
snippet element indicates that there is a preferred type of embedded structure, and

the type attribute is the name string of that preferred type.

<base>

<regions TC="TC"/>
<view transformer=NAME input={"raw", "cooked"}/>
[<snippet type=TYPE/>]

</base>

The parser element references the parser responsible for parsing the given type.

Each parser element has a name attribute whose value is the name of the parser.
<parser name=NAME>
Here is an example of a rules file specifying the Java type:

39

<type name="java'">
<urltest pattern="x.java"/>
<stattest mean="0.5086" stddev="0.1803">
<! [CDATA[abstract boolean break . . .]1]>
</stattest>
<base>
<regions TC="Java.Comment just before Java.Method
or Java.Class"/>
<view transformer="javadocView" input="raw"/>
<snippet type="html"/>
</base>
<parser name="JavaParser"/>

</type>

Figure 4-1: Rules file specification of Java type

The transformer element represents the way a given view is to be transformed.
BEach transformer element contains a single name attribute that has a string value.
Transformer elements contain rule elements which have a T'C attribute and a replace-
ment attribute. The TC attribute is a T'C description of the regions that are being

replaced and replacement is the string that replaces each of the regions.
<rule TC="TC" replacement=STRING>

Here is an example of a rules file specifying the Java Documentation view trans-

formation:

40

<transformer name="javadocView">
<rule TC="’/**’ starting Java.Comment" replacement=""/>
<rule TC="’%/’ ending Java.Comment" replacement=""/>

<rule TC="’#*’ starting line in Java.Comment" replacement=" "/>

</transformer>

Figure 4-2: Rules file specification for Java Documentation view transformation

Embedding Rules

- Type Parser
"] Recognizer Information
Transtormation
Rules
Document type
information
View _ Selected Parse
Transformer R m— Parser Information
Transformed
Document View
with
Embedded
Structures

Figure 4-3: System Overview

41

42

Chapter 5

Evaluation and Results

In order to evaluate the system, we must see how well the system did in parsing
embedded structures. The regions that the system output as embedded structures
would have to be compared against the actual embedded structures in the document.
In order to make such a comparison, we made manual selections of embedded struc-
tures and compared those regions to the ones produced by each parser. For each
comparison, we came up with a measure of the precision and recall of the parsing.
One of the goals of this system was to support the parsing of a variety of embedded
structures. In order to evaluate how well our system met this goal, we used documents
of different types and from a range of sources. Documents of four different types were
used: Java source files (HTML in Java), JavaServer Pages (Java in HTML), Java
tutorial webpages (Java in HTML), and HTML tutorial webpages (HTML in HTML).
Five corpora were selected for each corpus, but one Java tutorial corpus was excluded
later due to rendering problems in LAPIS unrelated to this thesis. Each corpus
is a collection of related documents of the same document type. The Java source
files were chosen from projects in SourceForge, an ounline repository for open-source
projects. The JavaServer pages were collected from versions of online instructional
textbooks that have source code available for download. Both sets of web tutorial
pages were collected from sites that ranked high on Google results for queries of 7 Java
tutorial” and "HTML tutorial”, respectively. From each corpus, 10 documents were

randomly selected to compose a test bed for our system. For our purposes, a test

43

bed is a collection of documents with which we can evaluate the performance of our
system. Due to the random nature of document selection from each corpus to the test
bed, a number of the documents in this test bed did not actually contain embedded
structures.

Once a test bed has been constructed from randomly selected documents across a
range of document types and corpora sources, the embedded structures of each doc-
ument were manually selected and recorded. These manual selections were compared
against the selections that our system made when the documents were loaded. Upon
loading, our system automatically went through the process of type detection, view
transformation, and parser application. The region set returned by the appropriate
parser indicated where our system was able to parse the embedded structures.

Every region that was marked by the parser to be an embedded structure is
considered a positive decision and every region of the document that was not marked
by the parser is considered a negative decision. Precision is defined as the percentage
of positive decisions made that were correct. Recall is defined as the percentage of
correct regions that were decided positively. Both of these measures are important
in evaluating the correctness of the system. It is trivially easy to maximize precision
by ensuring that the system had zero output regions. Likewise, it is trivially easy to
maximize recall by ensuring that the system output every region in the document.
The ideal system will output all of the correct regions and only the correct regions,
maximizing both precision and recall. The F'1 measure is an even combination of

precision and recall and is defined by the following formula:

Fl— 2 * precision x recall (5.1)

precision + recall

While precision, recall, and F'1 measure are derived from a set of individual deci-
sions, the decisions we are examining are sets of regions. It is difficult to come up with
quantitative comparisons of entire region sets as opposed to individual data points,
so we take advantage of the region algebra that LAPIS provides to generate region
representations of positive and negative decisions. We can then use the size of the

region as data points with which to calculate the precision and recall of the system.

44

Corpus Label

Name

Location

Java tutorial A

Java Sun tutorial

http://java.sun.com

Java tutorial B

Thinking in Java

http://mindview.net

Java tutorial C

Cafe au Lait Java

http://www.ibiblio.org/javafaq

Java tutorial D

Java for Students

http://www.javaforstudents.co.uk

HTML tutorial A

W3C tutorial

http://www.w3.org/MarkUp

HTML tutorial B

HTMLSource tutorial

http://www.yourhtmlsource.com

HTML tutorial C

Dave’s HTML Code
Guide

http://www.davesite.com

HTML tutorial D

WEBalley tutorial

http://www.weballey.net

HTML tutorial E

PageResource tutorial

http://www.pageresource.com

JSP A JSP Cookbook http://www.oreilly.com

JSP B PSK JSP files http://www.bolinfest.com

JSP C Web Development | http://www.manning.com
with JavaServer Pages

JSP D Beginning JavaServer | http://www.wrox.com
Pages

JSP E Head First Servlets | http://www.oreilly.com
and JSP

Java source A

Java 1.4.2 SDK

http://java.sun.com

Java source B

Azureus

http://sourceforge.net

Java source C

hipergate CRM

http://sourceforge.net

Java source D

File indexer

http://sourceforge.net

Java source E

HTML Unit

http://sourceforge.net

45

Table 5.1: Corpora for evaluation test bed

Let X represent the region set generated by our system parsing the embedded
structures. Let Y represent the region set matching the actual embedded structures.
We can find the true positives by calculating the region set Z which is the set of all
intersections between all of the regions in X with all of the regions in Y. To do this,
we examine each of the regions in X to see if they intersect with any of the regions
in Y. If there is an intersection, that intersection is added to Z. The magnitude of a

region set R is defined to be the following:

|R| = (r.endr.start) (5.2)

r

By that definition, the formulas for precision and recall are as follows:

precision = li—% (5.3)
Z
recall = :Y_ll (5.4)
The F'1 score, is then, as follows:
272
Fl=—r—r 5.5
ZY + ZX (5:5)

In examining the results, we found that of the 190 documents, our system achieved
an F1 score of over 0.90 on only 95 of them. Of the 190 documents, 59 contained
no embedded structures and our system correctly did not label any structures for 46
of them. Of particular importance is the performance of our system on documents
that did contain embedded structures in them. Of the 131 documents that contained
embedded structures, our system achieved an F'1 score of 0.9 for only 49 of them.

While there are many interpretations for this data, it is important to point out
some trends in the data. Of the 104 documents with embedded structures that rated
an F1 score of below 0.9, only 8 were JSP files. This reinforces the difficulty of
parsing documents with unmarked boundaries. Examining some of the charts of the
data, there appears to be a correlation between the performance of the system and
the corpus it is using as input. This is to be expected, as a corpora uses a similar

method to embed structures in its documents. One encouraging thing to note is that

46

the system did perform consistently well on at least 2 of the 5 corpora for each of the

document types.

Analysis of the types of errors encountered could shed some insight on how to
improve the effectiveness of the embedded structure parsing. By looking at errors
of our system on specific documents, several classes of errors can be distinguished
to offer possible explanations for detection and parsing failures. These error classes
include errors in MIME type labeling by LAPIS and false negative HTML embedded

structures.

For the D corpus in the Java tutorial test bed, it seemed that LAPIS misrecognized
the documents as a different MIME type it should have been. The document was a
web tutorial, so the MIME type should have been "text/html” to indicate that this
was contained HTML code, but LAPIS had labeled the document as "text/plain”.
This caused problems with the view transformation phase of the document. The
view transformation was specified to operate at the rendered or cooked level, but
was unable to do so because a rendered view of the document was never created.
Excluding the results of the D corpus, the detection and parsing of embedded Java
structures (Java tutorial and JSP test beds) achieved an F1 score over 0.9 for 33 out

of the 45 documents containing embedded structures.

Most of the failures on documents with HTML embedded structures were failures
of the type detection phase. For all of corpora A and C of the HTML tutorial test
bed and half of corpora B and D in the Java source test bed, our system did not
recognize any HTML structures. This was in large part due the failure of the statis-
tical analysis type detection phase that to positively identify regions with embedded
HTML structures. The documents for which our system failed all had large natural
bounding regions containing a small number of HTML structures and a large number
of English structures. This can be a problem with HTML in general. HTML is in
itself an embedded language; there are typically English language structures embed-
ded within HTML tags. Because the amount of English language structures within
these HTML tags can be arbitrarily large, the effect of the simple statistical analysis

on tokens is diminished. More flexibility is needed in the statistical type detection

47

tests to ensure that potential embedded HTML structures are not discarded as plain
English structures.

System Evaluation on Java Web Tutorials

0.8 4

F1 score
(=]
[e13
,

0.2 4

T T T T T T T

AD A1 A2 A3 A5 A0 B3 BS B7 BS B9 CO C1 €2 €3 C4 C7 €9 DO D1 D2 D3 D4 D7 D8 D9
Java Web Tutorials

Figure 5-1: Performance results for Java structures embedded in HTML (Java Tuto-

rial Pages)

48

System Evaluation on HTML Web Tutorials

12

08

0.6

F1 score

04

0.2

SRR PR N IR - N TR R - R R R 1
HTML Web Tutorials

Figure 5-2: Performance results for HTML structures embedded in HTML (HTML
Tutorial Pages)

49

F1 score

B6 BT BB B? C1 C2 C3 C5 C6 C7 C2 D9 E3 E4 EP

A1 42 At &5 AT AP B0 BY B3 B4 BB
JavaServer Pages

Figure 5-3: Performance results for Java structures embedded in HTML (JavaServer

Pages)

System Evaluation on Java Source Files

F1 score

ADATA2AS A AGABAIBIB2BIBBTBEBCOCIC2C5C7TCECIDODI D23 DS DA DT DB EVETE2 E3EAESEGETERE
Java Source Files

Figure 5-4: Performance results for HTML structures embedded in Java (Java Source

Files)

51

52

Chapter 6

Applications

One of the applications for embedded structure detection and parsing outlined in
Chapter 1 is to enable advanced web navigation that makes use of syntax information
from parsed embedded structures. An end-user programming tool could utilize the
knowledge of embedded code in web pages to guide webpage modification. One such
end-user programming tool is Chickenfoot, a scripting environment built as a plug-in
extension of the Firefox web browser. Chickenfoot allows dynamic end-user webpage
modification, enabling advanced web navigation by injecting hyperlinks and scripting

capabilities into web pages at the rendered level.

Chickenfoot uses the TC pattern language from LAPIS to specify regions of the
documents loaded into Firefox. As our system populates LAPIS patterns with em-
bedded structure syntax, Chickenfoot inherits knowledge of embedded structures by
its use of LAPIS patterns. Chickenfoot can then detect and parse embedded struc-
tures in web pages loaded in Firefox. With the syntax information gained from this
detection and parsing, Chickenfoot can direct its webpage modification capabilities
to transforming these embedded structures. A concrete example of this would be the
use of Chickenfoot to detect Java types in a Java web tutorial and hyperlink them
to the appropriate documentation in the Java APIL. The following scenario illustrates
Chickenfoot implementing this advanced web navigation enabled by the embedded

structure syntax:

53

1. The user loads a Java web tutorial page into a Firefox web browser enabled

with Chickenfoot.

@ it ot Pt CIAde- A
Do o Bew fo Wotwrs Tph W =
5 {3 @ it feva sun comdocs bocks Muterisl/ i i

5 e l[mw, yrm——
You can see that this example uses word boundaries to ensire that the letters g~ *c* *3* ae not merely a substring in a
Jonger word. It also gives some usefl informarion about where in the input string the match has occured. The szazt method
retumns the start index of the subsequence captured by the given group during the previous match operation, and wnd retums.
the index of the last character matched, phis one.

b

PU@ L~

primizier = |

Using the matches and lookingar Methods

The maz:
is that mar ohe s fequires the entire ioptt sequence
the begianing of the iapux sting. Here's the full code, e

e and 1cokingar méthods both aftempt to match an npat sequence against a pattern. The difference, however,
b head, whill 2oc does not. B thods ahways start at

Amport 3avE.usil.Tegen.t:
suElic final slasa Hatchesisciing ¢

© figal Strang REGEY = “fao":
< fizal S3zing INBUT = "fooococooosooecsss®;
e

patzace:
mavener:

Eyetem.
Syszem.cut.grincini™Curres

aeln|"lookas
tin(“matcoas():

Using replaceFirst (String) Al replaceAll (String)

The zeplazefize: and ceriacenil methods replace text that matclies a given regular expression. As their names indicate,
replaceTiras replaces the first occurence, and replacenll replaces all occurences. Here's the faplazeTeatd code:

c String REGEX = “dog*:r
zic Szzipg INPUT = “The
static Sczing REPLACE = "oac®;

" i v
' L I Issunasass)

Figure 6-1: Java web tutorial in Firefox with Chickenfoot sidebar

54

You can see that this example uses word boundaries to ensure that the letters »d» "2* »g" aren
gives some useful information about where in the mput string the match has occurred. The acazc o
subsequence captured by the given group during the previous match operation, and =nd returns the

Using the matches and lookingat Methods
The matches and Lookingais methods both attempt to match an mput sequence against a pattern

requires the entire input sequence to be matched, while 1ocxingac does not. Both methods alwa
Here's the full code, Mazonsaze

import java.util.zegex.<:

public firnal claas Maccheslocking {

private stacic final String REGEX = “foo"
1 String INPUT = "foo

private static Matcher mactcher;
public static void main(Scringl] argv)
/f Initialize
patterns = Pattern.ccmpile (REGEX):

matcher = pattern.matcher {INFUT);

REGEX is: "#REGEX):;
INPUT is: “+INPUI);

"leookingAtT () : "+matcher.locokingAt ()}
"matchas(): “+matcher.matches());

Figure 6-2: Close-up view of embedded Java structures in Java web tutorial

55

2. The user loads a JavaScript script to replace Java types with hyperlinks to their
API

thar hom
(R T T
' METSE RImCer ¥

szartiy: 8
wndii:

You can see that this exammple uses word boundasies to ensure that the letiers "4 "c® "3 are not merely a substring m 2
Touger word It alio gives some usefil information about where in the input string the match has occurred. The szazt method

retums the start mdes of the subsequence captured by the given group during the previous match operation, and o retums
the mdex of the last character matched, phrs one.

Using the matches and Lockingat Methods

The =azskes and 1cokinghs methods both attempl to match an mput sequence agamst a pattern The difference, however,
is that atcres requres the enfire mpat sequence 10 be matched, while 2z2xinghr does not Both methods ahvays start at
the begimng of the input siing. Here's the full code, Mazcreatockingd

e i

Fane piarTrpe impost jave.wtil.regex.®;
seplaceitype. nms Link {type tedtrisgis, fune)!

as3 Mazchesiicking

firal Sizing RESER = "foc™:
1 Strang INFUT = *fooasscscos

BEGEN 1s:
INBTT as:

2r.(=lockiaght
in(matanes i)

Canceion type
£ itipe.subens

foo
£2eo000a00cecosece

32 i7H: hava.aun. semiidee L
far fvar 1w G

Using replacerirst (String) and replaceall (String)

The zepiacerirst and replacesii methods replace text that matches o given regular expression. As their names indicate,
zeplacefirst replaces the first occurence, and reclacenll replaces all occrences. Here's the keplaceTescd code:

publiz

nal slass ReplaceTest {

privaze staric String REGEX = "dog”;

Figure 6-3: Java web tutorial modified by Chickenfoot

56

You can see that this sxample uses word boundaries to ensure that the letters g™ "c" "g" aren
longer word. [t also gives some useful information about where m the mput string the match has oo
returns the start index of the subsequence captured by the given group during the previous match ¢
the index of the last character matched, phis one

Using the matches and lookingat Methods

xirgat methods both attempt to match an input sequence against a pattern
is that mat cnes requires the entire input sequence to be matched, while 1002753z does not. Bot
the beginning of the input string. Here's the full code, Maz< :

A g

import iava.util.Tegex.”;

public final class MacchesLooking {

privacte static final String RESEX = "foo":
scatic fanal String INPUT = "focoocacooooaacaas™;

sctatic Fa
static Ha

n pattern;
ex matcher;

public scatic weid main(String{] argv) {

/7 Imicialize
pattern = Pattern.compile (REGEX):
matcher = pattern.matcher (INFUT):

n ("Cuzrent REGEX is: "+REGEX):
a(®Current INPUT is: "+INPUT);:

System.ocut.princtla("lockingAt(): "+maccher.lookingAz()):
System.out.pris :("matches () : "+matcher.mactchea(});

Figure 6-4: Java types replaced with hyperlinks

57

3. The user navigates to the Java API for one of the Java types with a single click.

Be foomats Tods teb
G- - B EY D T vwuioen s comase L i sk bege Pt e B B
Gpogeits £ gmwen | [Pecnguont | | M poke sty |

Chickenfoat Sow; Sdter

2 A @ B e

Overview Package Use Tree Deprecated index Help
ZREVCLARY MEXTCIANG FRAMES hO FRAMES AN Ciasser
TOARY NEFTED | SRLD | CONSTR | NESOOD TETAL ZHLL | CONSTR | f2lains

| innatlges
- Class Pattern

i zeve.lang.bject
java.atil.regex. Pattarn

. All Implemented Interfaces:
Seriaizable

i s=plemenzs
| A compled represeatation of a reqular expression

| A regular expression, speciSed as a ying, muisT irst be compiled into an instance of fis class, The resuting panem can then be wsed to create
. tiazcnes object that can match arbimary character sequences against the regular expression. All of the stage imvobved in performing @ miatch
| resides m the matcher, 3o many matehers con share the same pattern.

A vpical Hon sequence is tus

apilei™a<b®}s

"asaaaktic

i1 A zaccne s method is defined by this class as a convesience for when a regdar expression is wsed just once This method compdes an
i exprestion and matches an input sequence against it in a single imocatson. The statement

bocless b = Faitesn.masches("srE®, “assaat”l:

squivalent 1o the three statements above, though for repeated matches it is lass efficient since it does aor allow the compded pattem to be

class are not safe for such

Tnstances of this class are imoutable and are safe for use by multiple concusrent threads Instances of the xac

Figure 6-5: Java API page resulting from navigation from modified tutorial page

53

primitives = {’int’ : O,
‘char’ : 0,
‘boclean’ : O,

double’ : Q,

'float’ : O,
’lonmg’ : O,
‘byte’ : O,
*short’ : O,

Twsid? ; 0,

3

for (type = find(’Java.Type’); type.hasMatch; type = type.next) {
if (type in primitives) continue
var func = new Function("displayIype(\'" + type + "\’}")

replace(type, new Link(type.toString(), func))

£ W
» Upens a nevw tab to the Java 1.5 Javadoc for ‘type’
* If no Javadoc exists for ’type’, then
¥ the user is alerted that it could not be found.

*/

displayType = function(type) {
if (type.substr(-2) == *[]’) type = type.substr (J, type.length ~ 2)
go(’http://java. sun. com/j2s6/1.5.0/docs/api/allclasse s=frame html*)
for (var i = 0; i < document.links,length; i++} {
if (document.links[i].text == type) {
document.location = document,.links[i].toString(}

return;

¥
alert ("Ko Java type found for: " + type + ".\n" +

"Perhaps " + type + * is part of a nonstandard Java library.”)

Figure 6-6: JavaScript code that modifies the web page using the embedded Java
type

60

Chapter 7

Conclusion

7.1 Contributions

In this thesis, we described a technique that automatically detects and parses embed-
ded language structures. We introduced the concepts of statistical token frequency
analysis for type detection, systematic rule-based view transformations, and modular
parser applications. This approach provides an extensible, lightweight approach to
the problem of parsing the documents with embedded structures.

We have demonstrated that our system can support a range of embedded struc-
ture documents, even though the embedded structures are not explicitly marked by
bounding markers. Advanced web navigation using Chickenfoot demonstrated our
technique in action. Finally, we identified various applications that use embedded

structure syntax for their framework.

7.2 Future Work

7.2.1 Type support

One limitation of the current system to parse embedded structures is that it was
developed using only the parsers already available in LAPIS. This limited the lan-
guage types that it could support, and thus limited the types of embedded language

61

documents that it could fully parse. Currently, the effective parsers in LAPIS are
for Java, HTML, and XML. One domain for future work would be to plug in more

language parsers into LAPIS that could then be used to parse embedded structures.

7.2.2 Rule generation

The knowledge of parsing embedded structures is encapsulated in the rules file, which
is specified by the user. The rules file dictates the type detection, view transformation,
and parser application for each class of embedded structure in the document. In order
to add support for parsing a new class for embedded structure, the user must modify
this rules file appropriately. Required knowledge of the rules schema accepted by the
system acts as an impetus for the user to add these new classes. It would be nice to
have a user interface in which the user could easily add new language types and rules

for embedding to the rules file.

Another concept that is tied to rule generation is the fact that currently the
notion of natural boundaries must be understood in order to create a new rule. In
order for the system to parse embedded structures in HTML, someone must write
in the rules file that the natural boundaries for embedded structures in HTML are
HTML elements. One possible avenue for future work to avoid this burden on the
user is to use programming by demonstration for rule generation. One can imagine
a user viewing a document with multiple embedded structures within it. In order to
generate a rule for parsing these structures, the user would merely have to sclect those
embedded structures and specify the language type of those embedded structures.
The system would use inference algorithms to detect the probable natural boundaries
for this document and associate them with the type of the given document. This
effectively takes out the requirement for knowledge of the rules schema, and simplifies

rule generation into programming by demonstration.

62

7.2.3 Error Tolerance in Parsers

One of the challenges of parsing embedded structures is resolving complications that
arise from the actual embedding of parsable code. In embedded language documents
such as web tutorials, where the syntax of the embedded structures is flexible to
errors, this challenge is further complicated by trying to parse embedded structures
of unparsable code. To concretize this point, take the example of a Java web tutorial
that replaces some of its code with an ellipsis. The ellipsis indicates to the viewer of
the web tutorial that it is simply serving as a replacement of Java code that is not
important to view. From the perspective of the web tutorials viewer, the embedded
structure with the ellipsis makes perfect sense as Java code. However, from the
perspective of the Java parser, the ellipsis is unrecognizable syntax and thus the
embedded structure is not marked as Java code.

One way to deal with permissible errors in embedded structures, such as ellipsis,
is to build in error tolerance in the parser. Building up error tolerance in parsers
must be done carefully so that it does not incorrectly parse nonsensical structures as
admissible syntax. A rudimentary form of error tolerance was implemented in the
Java parser to handle parsing failures on ellipsis tokens. This error tolerance could
be extended to support other types of errors such as misspellings, pseudocode, and

incomplete code.

63

64

Appendix A

Full Listing of Results

65

id url precision recall F1
AQ http://java.sun.com/docs/books/tutorial/getStarted/application/classdef. html 1 0.879 0.936
Al http://java.sun.com/docs/books/tutorial/essential/threads/clock.html 1 0.957 0.978
A2 http://java.sun.com/docs/books/tutorial/essential /system/iostreams.html 0.957 0.998 0.977
A3 http://java.sun.com/docs/books/tutorial/pos/converting/incompatibleChanges AW'T .html 0.180 0.217 0.197
Ad http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html 1 1 1

A5 http://java.sun.com/docs/books/tutorial/jdbec/basics /retrieving.html 0.908 0.991 0.947
A6 http://java.sun.com/docs/books/tutorial/reflect/class/index. html 1 1 1

AT http://java.sun.com/docs/books/tutorial/jar/sign/intro.html 0 1 O

A8 | http://java.sun.com/docs/books/tutorial/javabeans/ properties/index.html 0 1 0

A9 http://java.sun.com/docs/books/tutorial/getStarted/cupojava/mac.html 0.630 0.877 0.739
BO file:///e:/JT2/T1I3fc.htm] 1 0

Bl file:///c:/JT2/T13322.btm 0 1 0

132 file:///e:/1T2/TLI321 bitm 0 1 0

B3 | file:///c:/IT2/TLI314.btm 0.935 0.86 0.898
B4 file:///c:/JT2/TII3.htm o} 1 0

BS | file:///c:/IT2/T1J303. htm 0.475 0.915 0.625
B6 | file:///c:/TT2/TLI3fc htin 0 1 0

B7 file:///e:/JT2/TL1J319. hti 0.934 0.932 0.933
B8 file:///c:/JT2/T1J315 htm 0.935 0.890 0.912
B9 file:///c:/JT2/T1J311 . htm 0.960 0.93 0.944
Cco http://www.ibiblio.org/javafaq/course/week6/17. html 1 0 0

C1 http://www.ibiblic.org/javafaq/course/week13/18 html 1 o 0

c2 http://www.ibiblio.org/javafaq/course/week10/29.html 1 o} 0

3 http://www.ibiblio.org/javafag/course/week4 /59 htmi 1 o] ¥

C4 http://www.ibiblio org/javafaq/course/week3/16 html 1 a 0

C5 http://www.ibiblio.org/javafaq/course/week8/26 html 1 1 1

C6 | hitp://www.ibiblio.org/javafaq/course/week9/11 html 1 1 1

Cc7 http://www.ibiblio.org/javafaq/course/week2/30.html 1 ¢ 0

C8 http://www.ibiblio org/javafaq/course/week13/42 . html 1 1 1

C9 http://www.ibiblic.org/javafaq/course/week12/22 htm! 1 o 0

Do http://www javaforstudents.co.uk/truefalse.htm) (.993 0.999 0.996
D1 | http://www javaforstudents.co.nk/loopy.html 0.988 0.999 0.993
D2 http://www javaforstudents.co.uk/metheds.html 0.978 0.999 0.988
D3 http://www javaforstudents.co.uk/methods.html 0.978 0.99 0.988
D4 http://www javaforstudents.co.uk/compile.html! 0.820 1 0.901
D5 http://www javaforstudents.co.uk/start html 1 1 1

Dé http://www javaforstudents.co,uk/bitty.html 0 1 0

b7 http://www javaforstudents.co.uk/variables. html 0.986 0.997 0

D8 http://www javaforstudents.co.uk/numbers.html 0.623 0.997 0.767
D9 bttp://www javaforstudents.co.uk/switch.html o 1 0

Table A.1: Java tutorial evaluation results

66

id url precision recall F1
A0 http://www.w3.org/TR/REC-html40/struct/links.htinl 0.101 1 0.184
Al http://www.w3.org/TR/REC-html40/interact /forms.html#h-1 1 0 o]

A2 http://www.w3.org/TR/REC-htmld0/about html#h 1 1 1

A3 http://www.w3.org/TR/REC-html40/types. html#h- 1 o} [}

A4 http://www.w3.org/TR/REC-html40/intro/intro.html#h 1 0 0

A5 http://www.w3.org/TR/REC-html40/appendix/notes.html#h- 1 0 0

A6 http://www.w3.org/TR/REC-html40/interact /forms. htmigh-1 1 0 [}

A7 http://www.w3.org/TR/REC-html40/appendix/notes.html#h 1 o} 0

A8 http://www.w3.0org/TR/REC-html40/appendix/notes.html#h 1 0 o}

A9 http://www.w3.org/TR/REC-html40/interact /forms.html#h-1 1 0 0

BO http://www.yourhtmlsource.com/accessibility /redesigning.html 4] 1 0

B1 http://www.yourhtmlsource.com/accessibility / 1 1 1

B2 http://www.yourhtmlsource.com/forms/basicforms.html 0.393 0.992 0.563
B3 http://www.yourhtmlsource.com/promotion/linkrequests.html 0 1 0

B4 http://www.yourhtmlsource.com/accessibility /10badthings html 0 1 0

BS5 http://www.yourhtmlsource.com/promotion/ 1 Q 0

Bs http://www.yourhtmlsource.com/stylesheets/csslinks.html 1 0.214
B7 http://www.yourhtmlsource.com/javascript/scriptingframes.html 0.057 0.949 0.109
B8 http://www.yourhtmisource.com/myfirstsite/basicwebdesign.htm] 0 1 0

B9 http://www.yourhtmlsource.com/sitemanagement/ssiecho.html 0.017 0.044 0.025
Co http://www.davesite.com/webstation/html/chap07.shtml 1 o} o}

1 http://www. davesite.com/webstation/html/chapl17.shtmi 1 [4]

2 http://www.davesite.com/webstation/html/chap03.shtml 1 [0

C3 http://www.davesite.com/webstation/html/chapX1.shtml 1 0 0

C4 http://www.davesite.com/webstation/html/domain.shtml 1 1 1

Cs http://www.davesite.com/webstation/html/chapll.shtml 1 0 0

8 http://www.davesite.com/webstation/html/chap04.shtml 1 0 0

cr http://www.davesite.com/webstation/html/chap10.shtml 1 0 0

C8 http://www.davesite.com/webstation/html/chapl8.shtml 1 1 1

Co http://www.davesite.com/webstation/html/chap14.3.shtml 1 0 0

DO | http://www.weballey.net/tables/index.btml 0.949 0.093 | 0970
D1 http://www. weballey.net/tables/expanding.html 1 1 1

D2 htip://www.weballey.net/tables/sizing. htmt 1 1 1

D3 http://www.weballey net/tables/colors.htm! 0.994 1 0.997
D4 http://www.weballey.net/tables/borders.html 1 1 1

Ds http://www.weballey.net/tables/alignment . html 1 3.997 0.998
D6 http://www.weballey.nct/tables/nesting. html 0.173 1 0.295
D7 http://www.weballey.net/tables/navbar. html 0.794 0.984 0.879
D8 http://www.weballey.net/tables/quickrecap.htinl 1 1 1

D9 http://www. weballey.net/tables/tags.html 1 0 0

EO http://www.pageresource.com/html/metref.htm 1 0.996 0.998
El http://www.pageresource.com/dhtml/csstut8.htm 0.687 0.905 0.781
E2 http://www.pageresource.com/dhtml/csstutl. htm 1 1 1

E3 http://www.pageresource.com/html/embed.htm 0.657 0.453 0.537
E4 http://www.pageresource.com/html/formhelp . htm 0.956 0.829 0.888
E5 http://www.pageresource.com/htmli/linking.htm 1 1 1

Eé6 http://www.pageresource.com/putweb/ftptut2.htm 1 0 0

E7 http://www.pageresource.com/html/framel . htm 0.980 0.973 0.977
E8 http://www.pageresource.com/html/hr2. htm 0.873 0.947 0.909
E9 http://www.pageresource.com/html/bgcolor. htm 0.946 0.959 0.952

Table A.2: HTML tutorial evaluation results

67

id url precision recall F1
A0 file:///c:/jsp/ijspecookbook/chap23/cookieChap23.jsp 1 1 1

Al file:///c:/jsp/ijspcookbook/chapl0/cookieSet jsp 1 0.826 0.904
A2 file:///c:/jsp/jspcookbook/chap27/amazon.jsp 1 1 1

A3 file:///c:/isp/jspcookbook/chap7/beanSet.jsp 1 1 1

Ad file:///c:/jsp/jspcookbook/chap27/google.jsp 1 1 1

A5 file:///c:/jsp/jspcookbook/chap6/header.jsp 1 o} 0

A6 file:///c:/isp/ispcackbook/chapl7/qtmusic.jsp 1 1 1

A7 file:///c:/isp/ispcookbook/chap22/logoTest jsp 1 1 1

A8 file:///c:/jsp/ispeookbook/chapt/solations.jsp 1 1 1

A9 file:///c:/jsp/ispcookbook/chapl /firstIsp.jsp 1 0.447 0.618
B0 file:///c:/isp/mbolin/psk/white_pages.jsp 1 0.948 0.972
B1 file:///c:/jsp/mbolin/rush/add_event.jsp 1 0. 0.984
B2 file:///¢:/jsp/mbolin/toys/index.jsp 1 1 1

B3 file:///c:/jsp/mbolin/rush/rushing-tcam.jsp 0.95 0.588 0.726
B4 file:///c:/jsp/mbolin/default.jsp 1 0.822 0.902
Bs file:///c:/jsp/mbolin/crap.calendar.jsp 1 0. 0.984
Bé file:///¢:/jsp/mbolin/rush/picturebook jsp 1 0.942 0.970
B7 file:///c:/jsp/mbolin/laundry/index.jsp 0.987 0.754 0.855
B8 file:///c:/}sp/mbolin/admin/process_create.jsp 1 0.965 0.982
B9 file:///c:/isp/mbolin/rush/process_rushec_decision.jsp 1 0.992 .996
co file:///c:/jsp/manning/wdjsp/webdev/byexamnple/viewhtml.jsp 1 1 1

C1 file:///c:/jsp/manning/wdjsp/webdev/commontasks/blue-cookie.jsp 1 o] [§]

c2 file:///c:/jsp/manning/wdjsp/webdev/commontasks/uptime.jsp 1 1 1

3 file:///<c:/jsp/manning/wdjsp/webdev/advtags/forTag.jsp 1 1 1

CcAa file:///e¢:/jsp/manning/wdjsp/webdev/byexample/quote.jsp 1 1 1

Cs file:///c:/jsp/manning/wdjsp/webdev/byexample/whois.jsp 0.498 0.815 0.6138
G6 file:///c:/jsp/manning/wdjsp/webdev/scripting/fact-comment.jsp 1 Q o}

Cc7 file:///<:/jsp/manning/wdjsp/webdev/byexample/vicwsource.jsp 1 0.997 0.998
CB file:///c:/isp/manning/wdjsp/webdev/commontasks/thanks.jsp 1 1 1

c9 file:///¢:/jsp/manning/wdjsp/webdev/databases/CachedResults.jsp 1 0.824 0.903
Do file:///c:/isp/wrox/ch18-spring-exercise/web/ WEB-INF/jsp /form.jsp 1 1 1

D1 file:///c:/jsp/wrox/ch20-tiles-cxercises/web/tiles/it/body.jsp 1 1

D2 file:///c:/jsp/wrox/ch18-spring-cxercise/web/index. jsp 1 1 1

D3 file:///c:/jsp/wrox/web/roster.jsp 1 1 1

D4 file:///c:/isp/wrox/web/input.jsp 1 1 3

D5 file:///¢c:/jsp/wrox/web/examplel /name-list.jsp 1 1 1

D6 file:///c:/jsp/wrox/ch20-tiles-exerciscs/web/grandchild-index.jsp 1 1 1

D7 file:// /c:/jsp/wrox/web/footy.jsp 1 1 1

D8 | file:///c:/jsp/wrox/HellolSF /greeting.jsp 1 1 1

D9 file:///c:/jsp/wrox/chl8-webwork/webwork-skeleton /template/vxml/filled-header.jsp 1 o 0

EO file:///c:/jsp/jsp3/ora/ch9/errors . jsp 1 1 1

E1 file:///c:/isp/isp3/ora/chl7 /userinfovalid.jsp 1 1 1

E2 file:///c:/isp/jsp3/ora/ch15/phone.jsp 1 1 1

E3 file:///c:/isp/isp3/ora/chl2/validate.jsp 1 1 1

¥4 file:///<c:/jsp/jsp3/ora/chl0/product.jsp 1 1 1

E5 | file:///c:/jsp/isp3/ora/chl7/page3.jsp 1 1 1

E6 file:///c:/jsp/jsp3/ora/chll /even.and_odd3.jsp 1 1 1

E7 file:///c:/jsp/jsp3/ora/chll/message.jsp 1 1 1

Es file:///c:/isp/isp3/ora/ch2l/convert. jsp 1 1 1

Eg file:///c:/isp/jsp3/ora/ch19/login jsp 1 1 1

Table A.3; JSP evaluation results

68

id url precision recall F1
A0 file:///c:/ID1/java/awt/event/ContainerAdapter.java 0.697 1 0.822
Al file:///c:/JD1/org/apache/xpath/axes/ChildIterator.java 1 0 o

A2 file:///c:/ID1/java/util/prefs/WindowsPreferences.java 0.102 0.994 0.185
A3 file:///c:/ID1/java/security/interfaces/RSAMultiPrimePrivateCrtKey.java 0.218 0.992 0.356
A4 file:///c:/ID1/java/nio/DirectFloatBufferS.java 1 1 1

A5 file:///c:/ID1/org/omg/CosNaming/NamingContextExtHolder.java 0.346 0.994 0.514
A8 file:///c:/ID1/java/util/regex/Matcher. java 0.613 1 0.760
A7 file:///c:/IJD1/java/nio/BytcBufferAsFloatBufferRL.java 1 1 1

A8 file:///c:/ID1/java/io/Reader.java 1 0 Q

A9 file:///c:/JD1/java/security /interfaces/DSAParams.java 0.560 1 0.718
Bo file:// /c:/org/bouncycastle/crypto/generators/DHKeyPairGenerator.java 1 1 1

B1 file:///c:/org/gudy fazureus2/pluginsimpl/local/torrent /Torrent AttributeNetworksImpl.java 1 0 0

B2 file:// /c:/com/aelitis/azureus/core/networkmanager/impl/RateHandler.java 1 0 o]

B3 file:///c:forg/gudy/azureus2/ui/swt/update/UpdateWindow java 1 0]

B4 file:///<:/org/gudy/azurcus2/ui/swt/views/tableiterns/peers/ConnectedTimeltem java 1 1 1

B5 file:// /c:/org/pf/text /StringUtil java 0.992 0.048 0.092
B6 fite:// fc:/com/aelitis/azureus/core/diskmanager/cache/CacheFile.java 1 1 1

B7 file:///c:/org/gudy /azureus2/ui/console/commands/Alias.java o} 0 NaN
B3 file:///c:/org/gudy/azureus2/pluginsimpl/local/messaging/MessageManagerImpl . java 1 0 4]

B9 file:///c:/org/bouncycastle/asnl/x509/V3TBSCertificateGenerator. java 0.179 1 0.304
Co file:// /c:/hipergate-build/java/org/htmlparser/AbstractNode.java 0 0.039 0.075
C1 file:///c:/hipergate-build/javajorg/w3c/tidy/EntityTablc.java 0.076 0.997 0.141
C2 file:///c:/hipergate-build/java/com/lowagie/text /html/HtmlEncoder.java 0.998 0.932 0.964
ca file:///c:/hipergate-build/java/com/lowagie/text /rtf/document/RtfCodePage.java 1 1 1

C4 file:///c:/hipergate-build/java/com/knowgate/http/portlets/HipergatePortlet Context java 1 1 1

G5 file:// /c:/hipergate-build/java/org/htmlparser /util/FeedbackManager.java 1 0 o}

[of] file:///c:/hipergate-build/java/com/lowagie/text /rtf/style/RtfFontList.java 1 1 1

c7 file:///c:/hipergate-build/java/com/knowgate/ workareas/FileSystemWorkArea.java 0.379 0.986 0.548
C8 file:///c:/hipergate-build/java/com/lowagie/text/pdf/PdfWriter.java 0.942 0.562 0.704
Cco file:///c:/hipergate-build/java/com/lowagic/text /rtf/document/RtiPageSetting.java 0] NaN
Do file:///c:/fileludexer /sro/com/warehouse/fileIndexer /exclusion/Exclusion.java 0.944 0.898 0.921
D1 file:// /c:/fileIndexer/src/com/warehouse/fileIndexer/datasource/KTDataSource.java 0.033 0.997 0.065
D2 file:///c:/fileIndexer /src/com/warehouse/fileIndexer/parser/Cleaner.java 0.881 0.854 0.86
n3 file:///c:/fileIndexer/src/com/warchouse/fileIndexer /datasource/DataSourceException.java 0.550 0.401 0.464
D4 file:///c:/filelndexer /sre/com/warehouse/fileIndexer /FileIndexer.java 1 1 1

D5 file:///c:/fileIndexer/src/com/warehouse/fileIndexer/datasource/DataSource.java 1 0 0

Dé file:///c:/fileIndexer/src/com/warchouse/fileIndexer/ parser/DefaultParser.java 1 o 0

D7 file:///c:/fileIndexer/src/com/warchousc/fileIndexer/permission/PermissionManager.java 1 o 0

D3 file:///C:/filelndexer/src/com/warehouse/fileIndexer /exclusion/FileExclusion.java 1 o 0

D9 file:// /c:/fileIndexer/src/com/warchouse/fileIndexer/ParserTypes.java 1 1 1

EG file:// /c:/src/java/com/gargoyleSW /htmlunit /html/HtmlTableHeaderCell java 1 0.050 0.095
E1 file:///c:/src/java/com/gargoyleSW /htmlunit/html/HtmlParagraph. java 1 0.430 0.602
E2 file:///c:/svc/test/java/com/gargoyleSW /htmlunit /javascript/host /NodelmplTest.java 0.963 0.970 0.967
E3 file:///c:/src/java/com/gargoyleSW /htmlunit /html/HtmiFrame.java 0.9 0.969 0.980
B4 file:///c:/src/test/java/com/gargoyleSW/htmlunit /html/HtmlAnchorTest java 0.986 0.973 0.980
ES file:///c:/src/test/java/com/gargoyleSW /htmlunit/ WebTestCase.java 0.991 0.193 0.323
Eé6 file:///c:/src/test/java/com/gargoyleSW /htmlunit/HTMLParserTest.java 0. 0.984 0.976
E7 file:///c:/src/java/com/gargoyleSW /htmlunit /html/HtmlListItem java 1 0.277 0.434
E8 file:///c:/src/java/com/gargoyleSW/bhtmlunit /html/HtmIText Area.java 0.994 0.089 0.164
E9 file:///c:/src/test/java/com/gargoyleSW /htmlunit/ScriptFitterTest.java 1 1 1

Table A.4: Java source evaluation results

69

70

Bibliography

[1] De Lara, E., et al. A Characterization of Compound Documents on the Web. Rice
Computer Science technical report, TR99-351. Nov 29, 1999.

[2] Gray, D., et al. Modern Languages and Microsofts Component Object Model.
Commaunications of the ACM. May 1998 - Vol 41.

[3] Ragett, D. ”Getting Started with HTML.” http://www.w3.org/MarkUp/Guide/
Feb 13, 2002

[4] Bolin, M. "End-User Programming for the Web.”
http://groups.csail.mit.edu/uid/projects/chickenfoot/ May 2005.

[5] Graham, P. "A Plan for Spam.” http://www.paulgraham.com/spam.htm! Aug
2002.

[6] Graham, P.”Better Bayesian Filtering.” http://www.paulgraham.com/better.html
Jan 2003.

[7] Johnson, S. ”Yacc: Yet Another Compiler-Compiler.”
http://dinosaur.compilertools.net/yacc/index.html

[8] http://en.wikipedia.org/wiki/LR

[9] Donnelly, C. and Stallman, R. ”Bison; The YACC-compatible Parser Generator.”
http://dinosaur.compilertools.net /bison/index.html Nov 1995.

[10] http://sourceforge.net/projects/byacc/

71

[11] https://javacc.dev.java.net/

[12] Begel, A. and Graham, S. L. Language analysis and tools for input stream am-
biguities. Proceedings of the Fourth Workshop on Language Descriptions, Tools
and Applications (LDTA °04), Electronic Notes in Theoretical Computer Science,

Barcelona, Spain, Apr 2004.

[13] Bravenboer, M. and Visser E. Concrete Syntax for Objects. Proceedings of the
19th Annual ACM Conference on Object-Oriented Programmin, Systems, Lan-
guages, and Applications (OOPSLA °04), Vancouver, Canada, Oct 2004.

[14] Miller, R. Lightweight Structure in Text. PhD thesis. Computer Science Dept.,

School of Computer Science, Carnegie Mellon University, May 2002.

[15] http://www.google.com/

72

