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Abstract
This thesis presents a lower ounds for embedding the Earth Mover Distance (EMID)
metric into norrned spaces. The EMID is a metric over two distributions where one
is a mass of earth spread out in space and the other is a collection of holes in that
same space. The EMD between these two distributions is defined as the least amount
of work needed to fill the holes with earth. The EMD metric is used in a number of
applications, for example in similarity searching and for image retrieval. We present
a simple construction of point sets in the ENID metric space over two dimensions that
cannot be embedded from the ED metric exactly into normed spaces, namely
11 and(i the square of 12. An enbedd(lig is a mapping f : X -- V with X a set
of points in a metric space andl ' Va set of points in some normed vector space.
When the Manhattan distance is used as the underlying metric for the EMD, it
can be shown that this example is isometric to K2,4 which has distortion equal to
1.25 when it is embedded into I and( 1.1180 when embedded into the square of 12.
Other constructions of points sts illn the EMID metric space over three and higher
dimensisions are also discussed.

Thesis Supervisor: Piotr Indvk
Title: Associate Professor
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Chapter 1

Introduction

The Earth Mover Distance (EMD) is a metric over two distributions where one is a

mass of earth spread out in space and the other is a collection of holes in that smle

space. The Earth Mover Distance between these two distributions is defined as the

least amoult of work needed to fill the holes with earth. The Earth Mover Distance of

two k-elernent sets A, B c d is the minimum weight of a perfect matching between

A and B; that is min7 :A-B acA D(a, 7r(a)). The Earth Mover Distance metric is of

considerable theoretical interest and it is also a natural metric to use for similarity

searching, image retrieval and vector feature comparison.

We present a simnple construction of point sets in the EMD metric space in two

dimensions and in three dimensions that cannot be embedded from the EID

metric exa,:tly into normed spaces, namely 11 and the square of 12. An embed(ding

is defined as a mapping f : X V with X a set of points in a metric space an(dl

V a set of l)oints in some noried vector space. Low-distortion embedclinggs are very

useful and llow us to reduce more "difficult" mietrics such as EMID into problemIs over

"simpler"' I[letrics such as 1I or 12. However, it is not always possible to have isoimetric'

embeddings, for all Imetric saces and we discuss examples involving the EMID met li(c

an(l tlie inoniiiedl Sl),cs andl the s(ltare of 12.

13



Our results are as follows:

1. If we use the NManhattan distance as the underlying metri( we cionstruct an

example in two dimnensions that is isometric to K 2,4 which has distortion equal

to 1.25 when it is embedded into 11 and equal to 1.1180 when embedded into

the square of 2.

2. Ve can also construct an example when the Euclidean distance is used as the

underlying metric. This example has distortion of 1.1667 when embedded into

1l and distortion of 1.0854 when embedded into the square of 12.

3. We can also construct other examples in three dimensions and in higher dimen-

sions that cannot be embedded exactly into 1 and the square of 12.

14



1.1 Definitions

I/ctoVr NVor1M A vector norm for column vectors x. = [t.j] with n, coordlilltes is a

geleralized llenoth"l and is denoted by I llx . It is defined by the four usual properties

of' the length of vectors in three-dimensional space.

1. I . :is ia nonnegative real number.

2. I.rI := () if and only if x = 0.

3. IIrII = Al x lixil for all k.

4. jx + yll < IIx: + IIYI - (Triangle inequality)

1l Norm: A vector norm defined for a vector x = . as IlxiI = >:1 iI' r {'

x71

Square of 1, norm.7 A vector norm for x =

'El

/2 asI IXlI - l'=, I IX,1l12xl £2 ~ ~ ~
as li \ ~ ' i ki

Dissimrnilarity ml(,surllrc.S. This is a, quantitative measure of the clifference between two

(listributiols. It cal also he used to approximate per(;e:)tulal dissimilarity. Choosing

the correct (lissimilaritv measure has significant impllicationis for iage retrieva l a)-

I)lica tionis. So(IIe ealljn)les o(f lissimlilarity Illelastlres [24] illnclllle lilk(Wski-fI

(listalt(ce. Jeffr(ev's (liver\'iIl( ( and the Earth love(r Distallice.

15



'et'ri, Space: A pair (X, D) where X is a set of points and D' X x X [0, oc] in

a distance function satisfying the following conditions for alll .r, ,> E X:

1. D(., y) = 0 if and only if x = y

2. D (., y) = D(y, z) - Symmetry relation

3. D(:x, y) + D(y, z) > D(x, z) - Triangle inequality

Embedding: An embedding is a mapping f X V., with X a set of points in a

metric space and V a set of points in some normred vector space [11] [18]. Embed-

dings with low-distortion are used in a variety of fields. One recent example is gel

electrophoresis images which is used for surveying the protein contents of cells and

it is used for DNA matchings and genetics. Embeddings are also used in biology to

compare structures like fingerprints, DNA, etc. They can be embedded into normed

vector spaces and then comparisons can become computationally feasible [10].

Distortion: A mapping f - X -- X', where (X, D) and (X', D') are metric spaces,

has distortion at most c, where c > 1, if there is an r E (, o) such that for all

X, y C X.

r.D(x, y) < D'(f(x), f(y)) < cr. D(.r, y)

I.somrretrlic Mapping: An isometric mapping is one fronr a. metric. space (X, D) to

a metric space (Y. p) which preserves distances, that is, p(p(.), .p(g)) = D(x, y) for

all , y E X. We note that isometries are often very restri(:te(l andl more flexibility

is usally galilled by allowing the emrlbe(lding have siie distortion > 1 with a corre-

sl)( liiilg loss of accitlrac('.
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Cut metric: A pseudo-letric D on a set X such that, for some partition X = AU B.

we have D'(xr y) = 0 if both x, , C B, and D(x, y) = 1 otherwise.

Embedding general metrics into Il i We can use Bourgain's theorem [3] which states

that every n-point metric space (X, D) can be embedded in an O(log n) dimensional

Euclidean space with a O(log 71) distortion and an algorithm suggested by Linial et

al [15] [13] to embed a general metric into 11. We can use cut metrics [5] to create a

linear program with variables for pairwise distances. If we assume that the triangle

inequality holds [16] [17] then we can then solve this linear program to determine the

embedding: into 11.

Km,n : This is the complete bipartite graph with parts of sizes m and n. By comput-

ing the shortest path distance matrix in this graph , we obtain a metric in which the

distances between any two points in the same set to be 2, and the distances between

one point from each set to be 1.

Lower Botunds for embedding K,,,-lmetric into 11 norm: The following theorems

were proved by Andoni, Indvk t al [1] . They show a lower bound for the embed-

ding of K2,,-metric into the 1 nornm. We can construct an example of points i two

dimensions under the EMID metric whichl is isometric to K2,4.

Theorem 1. For any > (). there c:rists 'l. su.lh that the distortion of any 1e(tding

of A2,, -rr.elric 'into I1 tnor. 71 i s (t l, feat :3/2 -- e.

Theorem 2. There i ' c (:li l (l ('rr(i(bcl.i/(l .f I ' ,-l, -7ir'i ic'nto 1 'with di.,st'tl o/ 3/2.

17



Lower Bounds for enmbeddiIg K 2,, -nmetric into the square of 12 norm: Andoni, Indyk

et al [1] also proved the following theorem. They showed a natural embedding of K 2,,

metric into the square of 12, with distortion 3/2.

Theorem 3. For any e > 0. there exists n, such that the distortion of any embedding

of K2 ,n-metric into the square of the 12 norm is at least 3/2 - e.

Positive Semi-definite Matrix: A positive semi-definite matrix is a self adjoint square

matrix and all its eigenvalues are non-negative. A self-adjoint matrix A = aj is

defined as one for which A = AH where AH denotes the conjugate transpose. This is

equivalent to the condition aij = aji.

Semi-definite Programming: The semi-definite programming problem (SDP) is essen-

tially an ordinary linear program (LP) where the nonnegativity constraint is replaced

by a semi-definite constraint on matrix variables. The standard form for the primal

problem is

min C·X

subject to

Ak X =bk(k= 1... m); X>0

where C, AA. and X are symmetric n x n matrices. bk is a scalar and X > 0 means that

X, the unkniown matrix, must lie in the closed, convex cone of positive semi-definite.

Also, * refers to the standard inner product on the space of symmetric lmatrices. We

canll se the Setuli-Definite Programming l)(ckage for MATLAB to solve this ssteIm

of e(lluat il()s.
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Ellipsold Ucthod . This is an algorithm use for nonlinear o()tilization [20]. We

look for eit her a feasible or an optimum solution of the linear progranm. First we start

with an ellipsoi(l which we know a priori to contain the solutions. for examprrllle a large

ball. At ech iteration k, we check if the center :Xk of the current ellil)soi( is a feasible

soliutiorn. ()therwise, we take a hyperplane containing X, such that all the solutions

lie on onle side of this hyperplane. Now we have a half-ellipsoid which contains all

solutions. We take the smallest ellipsoid completely containing this half-ellipsoid and

contiil eI.

Embedding general metrics X into the square of 12 norm. We can embed gen-

eral mnetrics into the square of 12 by creating a semi-definite program (SDP) from the

distance imatrix of the given metric [13] [16] [17]. We can then solve that SDP to

obtain the distortion of the embedding of the given metric into the square of 12.

We have X = xl X2, ...., ,.and f denotes the mapping from X to the square of 2. Let

f( :,) = ',i. We can then change the coordinates such that we have f(xc) = l O.

Let us now have a matrix A with Aij = 2(dl + d2 - d). We want Aij = (Vi j)

which is equivalent to determining whether A can be written as BTB for

Vl

This (lecor:l)osition will exist if' and only if A is a positive seinmi-(lefinite matrix and

tHlis (.ll 1'e calclllatedl ill l)(ll()lllial time using the Grotschlel. lI(),vasz imd Scllrijvcr

IIAt( 2l0)( 1. 2 Ve also iw.,'(tO Il( linimlize D, subject to tle (ilustraints that ll thl'

19



pairlwise distance are distorted by at most D. We can formulate it as an SDP by

changing D to a vector whose norm denotes the distortion. We then need to use a

semli-definite program package in to solve this system of equations and calculate the

required distortion.

min(D, D)

such that

dj < (vi, vi) + (vj,vj)- 2(vi,vj) < (D,D)dj Vij

d2i < (, vi) < (D,D)d'i Vi

CIE Lab color space: This is a model used to describe all the colors visible to the

humnan eye. The three parameters in the model represent the luminance of the color

(L, the smallest L yields black), its position between red and green (a, the smallest a

yields green) and its position between yellow and blue (b, the smallest b yields blue)

[7]. It is to be used a device-independent, absolute reference model.

Histograms: A histogram {hi} is a mapping from a set of d-dimensional integers i

to the set of nonnegative reals. These vectors usually represent bins or their centers

in a fixed partitioning of the relevant region of the underlying feature space, and

the associated reals are a measure of the mass of the distribution that falls into the

corresponding bin [22].

Bipartitite graph matching: We are a given a bipartite graph G (this is a set of graph

vertices decompoll)sed into two disjoint sets such that no two graph vertices within the

same set are adljacent) with the bipartition V(G) = A U B and we need to find the

ImaxsiuIll nlmatching in G.

20



Sulccfssive Shortest Path Algorith:rr i We are given a directed graph G. capacities

': E(G) -- R+, numbers b: '(G) W with t'c() b(v) = 0, and conservative

weights c: E(G) --- ! . We output the mininnli cost b-flow f. We use augmentatiols

to determine the output for the successive shortest path.

Vector fields: A vector field is a map f: r.' R" that assigns each x a vector

function f(x). Helmholtz's theorem states that a vector field is uniquely specified

by giving its divergence and curl within a region and its normal component over the

boundary.

21
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Chapter 2

Earth Mover Distance

2.1 Introduction

The Earth Mover Distance [23] provides a mechanism to compute the dissimilarity

between two probability distributions in some feature space. A predefined ground

distance measure is given between single features. Examples of this "ground distance"

include the Euclidean or Manhattan distance. The Earth Mover Distance then "'lifts"

this distance from these individual features to full distributions. This call also be

viewed in the following way. We have two distributions: one is a mass of the earth

spread out in space and the other is a collection of holes in that samie space. The

Earth IMover Distance measures the least amount of work needed to fill the holes

with earth. A nit of work is clefined as transporting a unit of earth by a unit of the

"groundl dlistance".

We caIl represent a distribution byv a set of clusters where each luster is represented

by its nIleali al byv the firactioll of the (listribution that belongs to that (llst, er. This

is called t, sigilatulre of the listrilutioln. A signature is a set o(f the nlllcaj(o clusters

(or llodel's ()l' tl'e (listributioln. tl llt is lreresentedl by a, single Ip)ilt ill te lll(lerl'1ing

sp>a((e. t,(-ll(lr ln ith the weighlt lilill rl)rsents the size of tlt (listei.

23



2.2 Transportation Problem

The computation of the Earth Mover Distance is based on the solution to the trans-

portation problem [8]. Suppose that several suppliers, each with a given amount of

goods, are required to supply several consumers each with a given limited capacity.

For each supplier-consumer pair, the cost of transporting a single unit of goods is

given. The transportation problem is then defined as finding the least expensive flow

of goods from the suppliers to the consumers that satisfies the consumer's demand.

The formulation of the transportation problem is assymetric.

The matching signature in a, transportation problem can be defined with one signature

being the supplier and the other one as the consumer. We can set the cost for the

supplier-consumer pair equal to the ground distance between an element in the first

signature and an element in the second. We can see that the solution is then the

minimum amount of "work" required to transform one signature into the other.

The transportation problem can be formalized as follows.

* Let P = (Pi, wp ) ... (pn, Wpm) be defined as the first signature with m clusters,

where pi is the cluster representative and wp, is the weight of the cluster.

* Let Q (q, w1q ), ., (q,, q,, ) is the second signature with n clusters.

* Let D = dij represent the ground distance matrix where dij is the ground

distance between clusters pi, and qj.

24



The ailn is to find a flow F = fij with fi.j representing the flow between pi and (qj

that miiiiiinizes the overall cost.

fj > 0 1 < i < ,.i1 _< j < -.

j=l

fij < Wq3j
i=l

1 i < r,

m n 7 1}

5 E fij = rnM(71 wp,, 5 WVqi )
i=1 j=1 i=l j=l

1. The iirst constraint allows moving "supplies" from P to Q but not vice versa.

2. The next constraint limits the amount of supplies in P to their weights.

3. The -third constraint ensures that the clusters in Q receive no more supplies

than their weights.

4. The final constraint forces the supplier to move the maximum amount of supplies

possible. This maximum amount is defined as the "total flow."

Once the transportation problem is solved and we have calculated the optimal flow

F, the earth mover's distance is defined as the work normalized by the total flow.

~,i'l I fij dijEAID(P Q) = -,,=1 
_i=l Ej=l fij

the norIl ahlzll aition factor is inclllded to vwoi(l fvoring smaller sigllltules in the case

of partilal imtchilg. However, xve ollx ((coisider enllb)e(lling the Earth 2Iover Distance

iletrie' illt() nl()red spaces, that is /I il( the square of 1 with (()llplllt(e rmatchings.



The Earth Mover Distance has the following advantages.

1. It naturally extends the notion of a distance between single elements to that of

a distance between sets, or distributions of elements.

2. It can be applied to the more general variable-size signatures, which subsume

histograms. Signatures are more compact and the cost of moving "earth" ade-

quately reflects the notion of the nearness property.

3. It is a true metric if the ground distance is metric and if the total weights

of the two signatures are equal. In our case, the ground distance was usually

the Manhattan distance or the Euclidean distance. The weights of the two

signatures were always equal.

4. It is bounded from below by the distances between the centers of mass of the

two signatures for metric ground distances. This lower bound helps to reduce

the number of EMD computations in retrieval systems.

5. It matches perceptual similarity better than other measures when the ground

distance is meaningful.



2.3 Minimum Weight Matching Problem

In our case for the Eart.h lover Distance. the total weight in the two distributions are

equal. The result is that the ESID solution has a one to one correspondence with the

problem of a bipartite graph matching [14]. We can therefore use a graph algorithm

to solve the miniurn weight ipaltite graph problem and hence obtain a solution to

the Earth Mover Distance pro)lem.

We have a metric space (X. D) and two n element sets A, B c X, the Earth Mover

Distance is equivalent to the minimum cost of the perfect matching between A and

B.

EAID(A, B) = nin(r : A B) D(a, r(a))
aEA

2.3.1 An O(n3) algorithm for solving the minimum weight

bipartite graph problem.

Let G be a bipartite gralph with bipartition V(G) = A U B. We assume that Al =

lB] = n. We add a vertex s and connect it to all the vertices of A, and add another

vertex t connected to all vertices of B. We then orient the edges for A to B and from

B to t. Let the capacities be their distance in the particular metric and let the new

edges have zero cost.

Then any integral s - t flow of value n corresponds to a perfect minimum weight

matching with the same cost. and vice-versa. Hence we have reduced the problem

to solving the Minimunr Cost Flow Problem [19]. We can solve that by applying the

Successive Shortest Path Algorithm [6]. This results in a running time of O(nm + ri3).

We can solve it slightly faster if we use Dijkstra.'s algorithm (which is a, subroutine of

the Successive Shortest Paith Algorithm) with Fiblonacci heaps, resulting in aI lrnllllling

time of O(1m1 + t;2 log I).

27



2.4 Uses of Earth Mover Distance

The Earth Mover Distance is used in a variety of applications, for example several

systems use it as the basis for their similarity measures [24]. The EIMD can he used for

region matching. In that case, its actual effectiveness is dependent on the underlying

distance function and the weight given to each region which may become problematic

to determine accurately for certain data sets. The EMID is also used in image retrieval

systems [4] and in computing differences between vector fields [2].

The EMD has been used successfully in a color-based image retrieval system with

color signatures. The EMD performed fairly well compared to other dissimilarity

measures such as Minkowski-form distance, Jeffrey divergence, X2 statistics and the

quadratic form distance. The implementors of the system used the Euclidean distance

between the individual colors. This was used primarily distance in the CIE-Lab color

space [7] as their underlying because it allows short Euclidean distances to correlate

closely with actual human color discrimination. The ground distance used in such a,

system is of critical importance in evaluating the precision of a query.

An improvement that can be made to a color based retrieval system is to take into

account the position of the colors in the image [25]. For example, if we have a blue

ball on a red chair in one picture and a red ball on a blue chair in the other picture and

we simply use color distributions with EMD, then the two pictures may be considered

very similar. However, if we add the actual position of the colors as an additional

parameter we will get a more accurate image retrieval system. Therefore, the ground

distance would be the Euclidean ldistance in the CIE-Lab color space plus the (? y)

position of each pixel. This modification resulted in more accurate results at the cost

of a slightly more complex ground distance function.

The ENID can also )e uIsed (l o textllure signatures [21]. Texture is a more global

propIerty of a given ilmage since singlle point has no textllle. Tihe texture content

28



of an entire image is represented by a distribution of texture features. Usually for

the distributionl would be simple for an image of one texture. for example an image

of clear blue sky. MNore complex images like the iage of the crowd at a sporting

event with consist of multiple textures. The texture signature is simplified by only

examining the dominant clusters. The ground distance is more comnplicated to define

in this cas(e and the designers developed a two-level EMID approach. They used the

11 distance between texture features as an approximation for the low level EMID and

then used this distance as the ground distance of the high level EMD. Though the

EMD cannot be exactly embedded into 11 for all data sets as we will show in the

following section, 1I distances still serves as a reasonable approximation for EMD.

The ENID can also be used to compute the differences between vector fields [2]. In that

case the feature distribution is defined as the characteristics of a vector field. Vector

fields themselves have numerous real-world applications which include gravitation

and electromagnetism, the velocity vectors of fluid motion, for example airflow over

an airplane and the pressure gradients on weather maps. They compute the EMD

between every pair of vector fields and position the vector fields on a map such that

the distances between the vector fields match their ENID values as accurately as

possible.
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2.5 Implementation

\Ve used mlodules from the code written by C. Tomasi [26] to calculate the distance

inatrix for any distribution of points using the Earth Mover Distance as the under-

lying metric. The code was implemented in C and was based on the solution to

the Transportation problem [9]. We compute the EMD between two distributions,

which are represented by signatures. The signatures are sets of weighted features

that, capture the distributions. The features can be of any type and in any number of

dimensions, and were defined as needed. We used primarily features of dimensionality

two, three and four in this project. In most cases, the "underlying ground distance"

between the points in each set was defined as the Manhattan distance lI norm. In

some cases, the Euclidean distance was used as the ground distance. These are some

of the more natural ground distances and since they are true metrics satisfying the

equality, symmetry and triangle equality properties it follows that the EMD with

these ground distances is also a true metric.

The number of points in each set was always equal and hence a complete matching

between sets was always calculated. The code was modified to compute the Earth

Mover Distance for all the pairs of the various sets which were then used to compute

the required distance matrix. Most data sets consisted of points in two dimensions,

three dimensions or four dimensions. The weights for each point in every set was

always set to one, and hence all sets had equal total weights. This ensured that we

did not have to normalize the EMD calculation for any pair of distributions in the

givell (lata set since we could determine a, perfect matching.

/Ve then computed and solved the linear equations representing the cut matrices of

this 1particllar distance matrix for the embedding into the nornied space 11 [1]. We

solve(l these linear systeim of equations by the MIATLAB's linear programming solver

(lill'plrg) to calculate the (listortioll. This procedure also gave us the values for each

of te (llt liatrices nee(le(l to ebe(l that particular data set into Il. \\e performelld

3()



1 similar procedure for embedding into the salre of 1,. In that case the output was

a semri-definite linear program and we used NIATLAB's semni-definite programming

(SDP) solver to calculate the distortioll.
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Chapter 3

Embedding of Earth Mover

Distance into Normed Spaces in

Two Dimensions

3.1 Upper Bounds for Embedding of EMD into 11

The EMD metric Dx,(P,Q) between two point sets is defined as the cost of the

minimum weight matching in the weighted matching between points in P and Q

where P and Q are two point sets of cardinality s, each in Rk and V = P U Q).

For any pair p P, q Q the weight of (p, q) is defined as the Manhattan distance

between p and q.

3.1.1 Description of the embedding of Indyk-Thaper [12]

Let us assume that the smallest inter-point distance is 1, and also let A be the

diameter of 1/. We canll thel embed thle EID illto 11 by the following constru(ction.

We first 1)ildl gri(ls o tlhe space R of sides .1. 2, 4 .... 2.... [12]. Let , )e the

grid of si(le 2'. Tlle giidl 7G, is a refinelent of grid Gj+. The gridl is tralsllte(l ) v a

vector chosen lIlf'Olllllv t an(l(n fromi [(). A] .
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For each grid Gi,, construct a. vector v(P) with one coordinate per cell, where each

coordinate counts the number of points in the corresponding cell. This results in

,7i(P) forming a histogram of P. We can define the mapping f by setting f(P) as the

vector

2 v,(P), 2v (P), 42 (P) ... , 2l (P),

We can see that /,(P) lives in an O(Ak) dimensional space, but that only O(log(A).lPl)

entries in this vector are non-zero since the vector v(P) is sparse.

Figure 3-1: Grid Construction with three i)Oitlts

34

.I



If we label each square as follows: top-left = (). bottom-left = 1, bottom-right=2.

top-right -:= 3, we then have the coordinates of each point in the above figure be as

follows:

· Point 1 = (0, 0, 0 ,0)

* Point 2 = (0, 0, 1, 2)

* Point 3 = (2, 1, 3, 2)

Therefore we have the following values for each grid squares can be calculated as

follows which form the vector v(P):

Go = 2, G1 = 0, G2 = 1,OG3 0

Goo = 2, Go1 = 0, G02 0= 0 G03 = 0

Glo 0, Gtl = 0, G12 = 0, G13 = 0

G20 = 0, G21 1, G2 2 0, G23 = 0

G3 0 = 0, G31 =0, G32 = 0, G33 = 0

For the remaining Gi, all of remainder are equal to 0 except

Gooo, Goo1 , G2 1 3, Goooo, Goo12, G2132 which are all equal to 1.

It can be seen from that example v(P) is indeed sparse and that most of the entries

in t,(P) are indeed 0.

This examrple can be exactly embedded into 11 and(l therefore the resulting distortion

is exactly 1.
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3.1.2 Distortion Bounds

Indyk and Thaper [12] proved the following theorems for an tipper bound for the

distortion induced by the embedding the EMD metric into 11.

Theorem 4. There is a constant C such that for any P, Q , we have DmI(P, Q) <

C. (P) - v(Q)I .

Theorem 5. There is a constant C such that, for a fixed pair P, Q, if we shift the

grids randomly, then the expected value of Iv(P)-v(Q) is at most C. DM(P, Q)logA.

They also noted that these theoretical bounds do not provide meaningful practical

guarantees and that in practice, the distortion induced by the embedding of the EMD

metric into 11 is much lower.
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3.2 Embedding of EMD into the square of 12

We use the following theorem proved b}y Linal et al [15] to show how to embed EIMD

into the square of 12.

Theorem 6. An n-point metric .space (X. d) may be embedded in a Euclidean space

with distortion < c if and only if or :o'ery matrix Q which is positive, semi-definite

and satisfies the Q. 1 = O

S qij d2j +(2 E qij'd2j <0
qi,j >0 qi t <0

Construction: We can construct the embedding of the EMD into the square of 12

with the following procedure:

* Let X = l, x2, .... , .

* Let f denote the mapping from X to the square of 12.

* Let f(xi) = vi. We can then change the coordinates such that we have f(xl) =

V1 = 0.

· Let us now have a matrix A with Aij = 4(di + d 12j - d).

We want A.ij = (i, vj) which is equivalent to determining whether A can be written

as BTB for

k t t this eiti ill ist if if . is )()iti se i lfiit

We knowv that this lecoipositioi nill exist if and olY ifA is positive semi-defint e

37



matrix and this can be calculated in polynomial time using the Grotschel, Lovasz and

Schrijver ellipsoid method [20].

A Semi-Definite Program (SDP) can be written to obtain the value of the best dis-

tortion. This SDP is written as a linear program where the "variables" are actually

the inner products of the vectors. The solution of the SDP gives us the distortion

value.

In our problem, we want to minimize D, subject to the constraints that all the pairwise

distance are distorted by at most D. We can formulate it as an SDP by changing D

to a vector whose norm denotes the distortion.

rnin(D, D)

such that

dj < (vi, vi) + (, Vj) - 2(vi, tv) < (D, D)dij Vi,j

d2i < (i, i) < (, D)dii Vi

We then used MATLAB's Semi-Definite Programming solver to calculate the distor-

tion.
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3.3 Example of embedding EMD into 11 or square

of 12 with the Manhattan Distance as the un-

derlying metric

MainY randonm distributions of sets of points on the I)lane are exactly emnbeddable

from EMID to 11 or the square of 12. Our goal was to dletermine a simple example

that resulted in distortion for the embedding from the EMID metric to both 11 and

the square of 12.

A D

C
B

Figure 3-2: Emleddling ENID usin' Nlailhattoln distanice - A 1Illil S(trc(' ABCI)D
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3.3.1 Properties of Example

* We have a unit square ABCD with

A at (1,0) B at (0,0); C at (0,1); D at (141).

* We represent each of the edges as different sets, therefore we have six sets (AC,

BD, AB, BC, CD, DA) with two items in ach set. The location of each point

in each set is simply at the ends of the edge.

* Partition the edges as follows:

- On the "left side" we have the two diagonals namely:

{ AC, BD }= A.

- On the "right side" we have the other four horizonal and vertical sides

namely:

{ AB, BC, CD, DA }= B.

3.3.2 Proof

We will show that EMD over A U B is isometric to K2, 4. That is we show that:

* all distances between A and B are 1.

* all distance within edges in set A and edges in set B are 2.

The proof is by enumeration of all cases namely:

1. The ENID between the two diagonals AC and BD is 2.

([AC-BD])

2. The EIMD between any of the horizontal or vertical sides and either one of the

diagollals is 1 since one pair of the niodes overlaps and the other pair is within

distanc(e . ([AB-AC; AB-BD; BC-AC: BC'-BD; CD-AC: CD-BD; DA-AC; DA-

BD )

3. Tl( (listalince between the parallel edlges is 2. ([AD-BC: AB-CD])
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4. The distances between consecutive edges on the sides hounding the square have

distance 2, since one point is shared but the other point is a distance 2 away.

([AB-BC; BC-CD; CD-DA: DA-AB])

The distance matrix is therefore

0 2 1 1 1 1
2 0 111 1
1 1 0222
1 1 2022
1 1 2202
11 2220 /

A AI2.4 graph can be constructed from this example.

Figure 3-3: Equlivalent .2 gra)h for vertices of tihe s(lllr,. (Strani h/ len.(s d(etote distatl.(''.s
I: )ottedl lines dtcet/. d(itstan7lces = I )
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3.3.3 Computational Results

* We obtain distortion of 1.25 for the embledding of a K 2,4 graph into 11 (see

Appendix B for equations)

* For the embedding into the square of 12, the distortion is equal to 1.1180

* This example can be further simplified and if we remove one of either the vertical

or horizontal lines from the square, the distortion for the embedding into 11

remains at 1.25, however distortion for the embedding into the square of 12

decreases to 1.0801.
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3.4 Example of embedding EMD into 11 or square

of 1 with the Euclidean Distance as underlying

metric

If the Euclidean distance is used as the underlying distance metric, then the con-

struction discussed in the previous section no longer provides the highest distortion.

However, we can modify the example as follows. This modified example is not equiv-

alent to ay 1K2 , , structure but still has distortion greater than 1.

E
D

A
F

C

B

Figure 3-4: Ellbedclding E\ID using Ecliden (list an(ce - A and BC 1 llunit
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3.4.1 Properties of Example

* The EMD between the two diagonals is 2.

* The EIMD between either of the two diagonals and either of the horizontal lines

is 1 since one of the points are shared by both lines.

* The EMD between the diagonals the middle line is also equal to 1 since both

points are apart from each other.

* The EN/ID between the horizontal lines is 2.

* The EMD between the horizontal lines and the middle line is equal to +

/12 12 = 1 ) - the golden ratio

The resulting distance matrix is as follows:

2 1

2

1

1

0 1

1 0

1 2

1

1

1 I

1

2 '(1 + )

0 .(1 + 5)

(I

V I /

3.4.2 Computational Results

· Using the method outlined for the embedding (of a metric into 11 we get a

distortion of 1.1708

· For the embedding into the square of 12, the (listortion is equal to 1.0854

· If the vertical lines were added to the square. te distortion for the embedding

into 1l remains at 1.1708, while the distorti()ii for tlhe elmbedding into the sq(uare

of 1 ilclreases to 1.1090.
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* If we lIsed the example when the underlying distance was the Mlanhattan dis-

tanc(: we obtain distortion of 1.1213 when embedcling it into /1 and distortion

of 1.1035 when embedding it into the square of 12.
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Chapter 4

Embedding of Earth Mover

Distance metric into normed

spaces in higher dimensions

4.1 Examples in Three Dimensions

We examine several constructions of points in three dimensions and compute their

distortion when embedding these points into the normed spaces of 11 and the square

of 12.

4.1.1 Eleven Edge Cube Example

We can reculrsively construc('t an examrple using the two dimensional example with the

points forming the vertices of a. cube. If we flatten out these points onil the cube unto

a two dlimensional I)lane, our construction will look as follows.
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E

D

A

C

EB

Figure 4-1: Eleven
or the square of 12.

Edge Example of points on a flattened cube for embedding ENID into 1,

The points in this example are:

* A- (o, 0, 0)

* B- ( 0, 1)

* C- (0. 1,1)

* D- (0, 1, 0)

* E- (1, 1, 0)

* F - (1. 1. 1)

Tli'ei(' r1(' 11 sets located on the 11 edges depicted ill the diagralt.

A[D. AC. AID. BC. BD. CD. CE, CF. DE, DF, EF.
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The distance matrix for this exarli)le

0 2 1 1 2 2 2 3 3 4 4

2 0 1 1 2 2 4 3 3 4 4

1 1 0 2 1 1 3 2 2 3 3

1 1 2 0 1 1 3 2 2 3 3

2 2 1 1 0 2 2 1 1 2 2

2 2 1 1 2 0 4 3 3 4 2

2 4 3 3 2 4 0 1 1 2 2

3 3 2 2 1 3 1 0 2 1 1

3 3 2 2 1 3 1 2 0 1 1

4 4 3 3 2 4 2 1 1 0 2

4 4 3 3 2 2 2 1 1 2 0

This distance matrix can be sub-divided into the following matrices.

. A K2, sub-graph which is formediidd byinto the edg matrices AB, AC, AD, BC, BD CD.

/ \
0 2 1 1 2 2'

2 ()0 1 1 2 2

1 1 0 2 1 1

1 1 2 ()0 1 1

2 2 1 1 0 2

2 2 I I ) 0

49



2. A K2. 3 llub-gratph which is formed by the edges CE, CF, DE, DF, EF.

/ \
U I I 7 Z

10211
1201 11
21102
9 1 1 9 2
v) 1 1 v) A 

3. The distnce trix etween the 2,4 and 

3. The distance matrix between the 1(2,4 and K2,3 partition.

Iz 3 3 4 4'

43344
32233
32233
2 1122

3 3 4 2j

4. The distance matrix between the K2,4 and K2,3 partition.

/
12 4 3 3 2 4'

3322 13
33 2213
443324

\4 4 3\ V . 3 2 2j/

Computational Results

* Tis st,'ruc('ture hal( a distortion of 1.2857 when embedded illto 11. Thougll

tll(''c is I(o irect isometlrv to 2r,. it has the exact (listortion of 1.2857
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after embedding into 1 as well.

* This structure lhas a (list-ortion of 1.1180 when embedded into the square

o f 12.
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4.1.2 Fifteen Edge Cube Example

In this example, we have the same points as the above example, except that now we

have the additional edges between AE, AF, BF, BE.

UI2A± B

Figure 4-2: Fiften Edgct Exaimplee of Ioillts on a flattened cube for embedding ENID illto i
ol tIll' Squaile of 1..
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The distance matrix is as follows

2 1 1 2 2 3 3

0 1 1 2 2 4 3 3

1 0 2 11 3 2 2

12 011 32 2
2 1 1 0 2 2 1 1

21 120 43 3
43 3 2 4 01 1
32 213 10 2
32 213 12 0
43 324 21 1
43 322 21 1
32 233 12 2
21 32 221 3
23 122 23 1
32 231 32 2

4 4 1 2 2 3'

4 4 3 2 2 3

3 3 2 1 3 2

3 3 2 3 1 2

2 2 3 2 2 3

4 2 3 2 2 1
2 2 1 2 2 3
1 1 2 1 3 2
1 1 2 3 1 2

0 2 3 2 2 3
2 0 3 2 2 1

3 3 0 1 1 2
2 2 1 0 2 1
2 2 1 2 0 1

31 2 1 1 C0

In this case the fifteen edges can be sub-divided into three categories.

* A K2,4 sub-graph which is formed by the edges AB, AC, AD, BC, BD, CD.

* A K2:3 sub-graph which is formed by the edges CE, CF, DE, DF, EF.

* A h 2.2 sub-graph which is formed by the edges AE. AF, BF, BE.

Computat;ional Results

We know that both the K.2,l and K2. 3 graphs cannot bte embedded exactly into II or

the square of 12. The K, sb-gral)h calln be enle((le(l without any distortion into

both 1 or the square of 12. In this exaImllple the iter'tions of the various subgraplhs

illncreases thl.e distortion into 1I t 1.3000 and( the (listo>rtion into the square (of 1/ is

nlow 1.1396.
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4.1.3 Twenty Edge Cube Example

In this example, we add the following two points G and H at (1, 0, 0) and (1, 1, 0)

respectively. We also have the following additional edges between EG, EH, FG, FH,

GH. The distance matrix now contains an additional K2,3 subgraph and the result-

ing interactions between the four sub-graphs. It was not computationally feasible to

embed this graph into 11 since this running time and required space increases expo-

nentially. However, the embedding into the square of 12 is polynomial and remains

computationally feasible for this 20 x 20 distance matrix. The distortion of the twenty

edge cube into the square of 2 was calculated to be 1.1644.

4.1.4 Twenty-Four Edge Cube Example

We have the same eight points A, B, C, D, E, F, G, H located at the eight vertices

of the cube. The new edges that we add formed another K 2,2 sub-graph. The new

edges that were added were AG, AH, BG, BH. The distortion of the twenty-four edge

cube when embedded into the square of 12 was calculated to be 1.1717.

4.1.5 Twenty-Eight Edge Cube Example

We add four more edges to the vertices of the cube which form another K2,2 sub-

graph. The new edges that were added were CG, CH, DG, DH. The distortion of the

twenty-eight edge cube after embedding into the square of 12 was 1.1792.



4.2 Analysis of Three Dimensional Example

The above examples show lhow the distortion for the embedding into the square

of 12 increases with each new sub-graph that is added to the construction. There

is no obvious translation of these constructions into a standard I,, graph, but

we know that every construction would have at least as high a distortion as the

previous example. It was not possible to calculate the distortion for the embedding

of these constructions into 11 since this embedding created an exponential number of

constraints which became computational infeasible when we had more than fifteen

edges.

The following table shows the distortion created when embedding various K,,, into

11 and the square of 12.

Distortion into
1.0000
1.2500
1.2500
1.2857
1.2857
1.3000
1.3000
1.3077
1.3077
1.3125
1.3125
1.3158

1.2500
1.3333
1.3750
1.4000
1.4167

11 Distortion into square of 12
1.0000
1.0801
1.1180
1.1402
1.1547
1.1649
1.1726
1.1785
1.1832
1.1871

1.1905
1.1929

1.1547
1.2247
1.2649
1.2910
1.3093

Table 4.1: Distortion of enil)erldillg (crlain K,,,,, graphs into /i and into the square of 12.

Graph
K 2, 2

K 2, 3

K2,4

K2,5

K 2,6

K 2, 7

K 2, 8

K2 , 9

K 2,10
K2,11

K2,12

K2,13

K 3,3

K4,4
K 5 ,5

K6.6

K7.7
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4.3 Conjecture of results in higher dimensions

We can recursively construct examples of points in higher dimensions using these

structures as sub-graphs. We analyzed various constructions on points on the tesser-

act (a four dimensional cube). All of the previous point constructions discussed earlier

can easily be constructed on part of the tesseract.

We can also combine these structures to achieve higher distortion. In the previous

section, we discussed the fifteen edge example where we had the following six points

on six corners of the cube:

(0, 0, 0); (0, 0, 1); (0, 1, 1); (0, 1, 0); (1, 1, 0); (1, 1, 1)

We had edges joining every pair of points and then calculated the EMD between each

of these edges. These EMD distances formed a 15 x 15 matrix. This distance matrix

had distortion of 1.3000 when embedded into 11 and the distortion into the square

of 12 was now 1.1396. We can modify this example for the four dimensional case.

We can do so by creating two copies of this structure and hence obtain the following

twelve points:

(0,0,0,0); (0, 0,0, 1); (0,0, 1, 1); (0,0, 1,0); (0, 1, 1,0); (0, 1, 1, 1);

(1, 0, 0, 0) ; (1, 0, 0, 1); (1, 0, 1, 1) ; (1, 0, 1, 0) ; (1 1, 1,0); (1, 1,1,1).

In this case, with edges joining every pair of points and then compute the EMD

between these edges, the result is a 66 x 66 distance matrix. This distance matrix

can then be theoretically embedded into 11 and the square of 12. However, it was not

computationally feasible to embed this matrix into 11 with our current embedding.

Embedding into the square of 12 resulted ill distortion of 1.2007.

This example could theoretically he simplified, however we were unable to determine 

method for determining which edclges and their resulting interactions contributed( most

to the (distortion. As a result,, we were una.l)le t (eterminie another exaIle ()11 tihe

56



tesseract with higher distortion. Another example that could have been analyzed was

using the twenty-eight edge example froni the earlier section on multiple vertices on

the tesserai.it. We conjecture that recursive constructions using some of the structures

described earlier will result in higher distortion in higlier dimensions. We were unable

to comell l): with a formal proof for this conjecture.
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Chapter 5

Conclusions and Open Problems

We discussed the construction of examples in two and three dimensions that show a

lower bound for embedding the Earth Mover Distance (ENID) metric into the nornmed

spaces of I] and the square of 12. The EMD is a very important metric that is used

in a number of applications ranging from similarity searching. image retrieval and

vector feature comparison. The EMD is defined as the least amount of work needed

to move a, mass of earth spread out in space into a, collection of holes in that same

space.

We showed an example in two dimensions with the Manhattan distance defined as

the underlying distance metric for the EMID that is isometric to K2,4. This example

of points then has a distortion of 1.25 when embedded into the normed space 11

and also a distortion of 1.1180 when embedded into the normed space of the square

of 12. We also constructed an example using the Eclidean distance is used as the

undlerlying metric for the EMD. In that example, there was a distortion of 1.1667

when embedded into the nornied space 11 and distortion of 1.0854 when embedded

into the nornied space the square of 12. We discusse(d other examples of constructions

of points in three diinenisions on the vertices of' a cube an(l in higher dimlensioIs for

exalI)le on the vertices of a tesseract that (a,(llllt )be e)e(l(led exactly ito I and

lie s(lquarc of 12.



Further research can be done in obtaining genelal lower bounds for higher dimensions.

Also we can try to determine lower bounds for EMD with other underlying metrics

in addition to the Manhattan distance and the Euclidean distance.
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Appendix A

Code

A.1 Earth Mover Distance Calculations

We used the exisiting code written by C. Tomasi [26] to calculate the Earth Mover

Distance for various data sets. We specified the feature data type in the header file

with structures. Therefore, for two dimensions we would have the following:

typedef struct {

int X,Y;}

featuret;

Similarly, for three dimensions we have

typedef struct {

int X,Y,Z;}

feature_t;

The signatlure data. tp)e signaturet is defined in the header file as follows:

typedef stract

int n;

feature_t *Features;

float *Weights;

/* Number of features in the distribution */

/* Pointer to the features vector */

/* Pointer to the weights of the features */

}

signature t;

61



We compute an EMD by calling the following:

float emd(signature_t *Signaturel, signaturet *Signature2,

float (*Dist)(feature_t *, featuret *),

flow_t *Flow, int *FlowSize)

where

1. Signature, Signature 2: Pointers to the two signatures which we want to com-

pute their distance for.

2. Dist: Pointer to the ground distance function. This is the function that com-

putes the distance between two features.

3. Flow: Pointer to a vector of flowt (which was defined in the header file) where

the resulting flow will be stored. Flow must have n.l + n2 - 1 elements, where

'rl and n2 are the sizes of the two signatures respectively. If NULL, the flow is

not returned.

4. FlowSize: In case Flow is not NULL, FlowSize points to a integer where the

number of flow elements which is always less or equal to nl + 1n2 -1 is written.

A.2 Embedding into 11 and square of 12

We used existing code written by A. Andoni [1] that computed the embedding of

a given metric into the normed space 11 and the norned space the square of 12.

The input file to this module was the Earth Mover Distance matrix computed from

the given data set. In the embedding into 11 the output was a linear program for

MATLAB. This was then solved using the linear programming solver linprog.

[x,values]=linprog(f,A,b,Aeq,beq,lb,ub)

The values for the cut metrics are constrained to be greater than or equal to zero in

u)1(ler to outlput a valid embedding. Since the embedding algorithim into /i using cut

imiltrices was exptonential. it was compiutationall feasille to ( c)ed t listance matrices
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of only up) to size 16x16. Therefore, it was not possible to determine the (listortion

for various constructions of points in three anid higer dimenllsio Is.

In the elmbedding into the square of 12, the output was a seili-definite program which

was then solved using MATLAB's Semi-Definite Program package.

[A,b,C,blk]=importSQLP('test. sqlp');

The embedding algorithm into the square of 12 using seni-d(leiIlite programming is

polynomial. and in that case it was computationally feasible to embed distance ma-

trices of up to size 50x50. This still limited our ability to dletermline the distortion

for constructions of points in four and higher dimensions.

A.3 Java Applet for Construction of Points

In order to provide intuition to help us determine what constructions of points cannot

be exactly embedded into 11 or the square of 12 a simple Java applet that allowed

for basic rlanipulation of the points on a grid for several distributions (colors) was

written. This applet allowed us to determine what structures needed to be present

in the examnple to ensure that we have distortion after the embedding.

* 0

9Bbek2 Be2 ed 2 Ge2 e i' Bw:2 :: or2

5F l24 2256. 1 :51 , 251 :6251:24.,5 {524. 25. 25 r:256, 56:

Figure A-i: Screenshot of Applet with cxalllplll
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Appendix B

Equations

For the example of embedding ENMID into 11 using the Manhattan Distance as the

underlying metric, we have the following distance matrix.

/ .... . \
K0 2 1 1 1 1

2 0 1 1 1 1

110222
1 1 2022
1 1 2202
1 1 9 9 9 n 

The resulting linear program for this matrix is as follows:

Minimize: ,

Subject To

X;1 + :`5 +- '(: + .1 3:l: '1 +* ± '21 + 7;25 + 29 + .'::33 + .I:: +- X41 + X45 + X4 9 + -r5 3 + 57i + '( I < 2

2xo+I xl+.+x3+ 1 +t. -.1q- '-72+ '25+L29-+ '4+-.I 3 7+-/ 1 4 5 +X49+X5 3+ -2'57) -+' > 2

· /1 + t.L + .l) + -.I .r + 1'7 + '119 +.2=5 +-.I27 + .1::33 + -1:35 +- 141 + 143 + 49 + 1: 51 + .157 + . 59 

l7( I1 +- 31' + .'!) + 1 1I + -' 17 + ,1 9 +.,:25 +-'27 + -'3: + - ': 1 + 43 + 749 I -+ 1 r + .'57 - + .1', > I 

:l + . 1 ' 7 . . .' .l' 7 ./'39 I + l +5 l .33 + 37 +-.39' + 1 151 +-53 t < +.

(5



-0+ 1 3+',5+ ;7+ -:17+ 19+ 7,21 + -23+--33+ X35+'X3 7+5 39+-1'49+-.l51 +--,353+1;,55 > 1

7l + :3+ 7+,5 + .7 +.y + -,;11 + '13 + :l5 + X33 + X:35 + 37 + X:39 + £-1 + 143 + l,45 + ,147 L 1

'CO+ 11+ '53 + 5+1 7 +t39+ r 11 + 13 + 15 + X33+ T3.5+ X37+ 2;39 +ll+ 1.13+ 4 15+ .17 1X:1 + -3'3 + .5 + :7 + .1'9 + 11 + 113 + 15 + X17 +- 19 + * 21 - + X23 + 125 + 7'27 + 129 + 7331< 1
+ 10X' 1 + 1+':3+.:151+ 7+ 9;C + 11 + 13 + 15 + X17 + X19 + X21 + 23 + 725+ 27+ '29 +:31 > 1

X3 + 15 + -lI + 71'13 + 19 + X21 + 727 + X29 + X35 + X37 + X43 + X45 + X51 + 53 + 159 + 61 < 1

Xo+3:. 3 +L5 + 11 1 3 +19 +1 21 + 27+ X29 + 35 + 37+ 43+ X145+ X51+ X5 3+ .59+ 761 > 1

X3 + X7 + '9 + -113 +-- 1'9 + X23 + X25 + X29 + X35 + X39 + X41 + X45 + X51 + £55 + £57 + X61 < 1

x + 3 + -7 + X 9 + 7 1: 3 + 1 19 +- 2 3 + 25 +X 29 + 35 + 3 9 + X41 +X 45 + x51 +3 :5 5+ .;57 + X61 > 1

X3 +- : 7 + 11 + 715 + X17 + X21 + 25 + X29 + X35+ X39 + X43 + X47 + X49 +- 53 + 57 + X61 < 1

X0+£X3+£X7+11 +X15+X17+X21 +X25 +X29+Z35 +X39+X43 +X47+X49+X5:3+X57+161 > 1

X3+X7 + 11 + 7 15 + :19 + 23 + 27+ 31 + X33 + X37+ X41 + X45 + 49 + X53 + 57 + 61 < 1

Xo+X3 +X7+X11 +X15+11X9+X23+X27+X31 +X33 +X37+41 +X45 +9+s53+ X57+61 > 1

X5 + X7 + 9 + 11 + X21 + 23+ 225 + X27 + X37 + X39 + X41 + X43 + X53 +X55 +X*57 + X59 < 2

2X 0 +X5+r 7 +X 9 +rl -+X21 +X23 +X25 +Z27+X37+X39+-X41 +X43 +X53 +X55+ X57-.1,59 > 2

£5 + X7 + 13 I5 + : 17 + 19 + X25 + X27 + X37 + 39 + X45 + X47 + X49 + X51 + 57 +- :59 < 2

2xo+X5+-7+ -13+.15+i17+X19+X25+X27+X37+X39+X45+X47+49+X5l +X57+ 59 > 2

X5 + X7 + X13+:l+-121 + 2:3+ 29 + X31 + X33 + X35 + X41 + X43 + X49 + Z51 + 57+ X59 • 2

2Xo0+X5+--7+ : 13+-15 + 21 +x23+1 29+ X31+ 33+X35+X41+X43+X49+ 51 +X57+X59 > 2

X9 + t + X1 3 + L-,'15 +'r17+ X19 + 21 + X2 3 + X4 1 + X4 3 + X45 + X4 7 + X4 9 + X51 + X5:3+ 155 < 2

2x0+19+,11 + ::13+t- 15+217+X19+X21 +X23+141 +143+X45+47+249+251+53+55 > 2

x9 + Xll + 1:3+1l'15+ 2.5+ 27 + X29 + T31 + X33+ X35 + X37+ X39 +-X49 + X51+ X53+l,'55 < 2

20o+x9+ll+ -.1:3+-15 +-:25+ -27+t29+-t31+133+X35+ 37+-:39+49+:51+153+1'55 > 2

X17+ X19+'21+ -- :2:+ +25+ '27+-E29+ X31+ X33+ X35+ X37+ 39+ X,11+ Xz3+ :45+. 147 < 2

2xo0+17+t:19+ t-'21 + 23+ t 25+ 27+ 29+ X31+ 33+ X35+37+ 39+. - 41 +-4:3+ 45+ :47 <

2

Bounds

0 < .

0 < .1:
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0 < x
()0 < X7

() < Ill
0 < t13

C) < 1 5

O < X1

0 < x19

o0 < 21

0 < 23

0 < X25

0 < X27

0 < X29

o < X31

0 < X33

0 < X35

0 < X37

0 < X39

0 < Xl1

0 < 143

o < X45

o < X47

0 < x49

O < X51

0 < X53

0 < ,xs

0 < X59

() < :61
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This linear equation was then solved with MATLAB's linprog function. The solution

for this linear program was calculated to be:

x = 0.2500

3 = 0.(000

r5 = 0.0000

1;7 = 0.0000

9X = 0.0000

I, = 0.0000

X1:3 = 0.0000

x15 = 0.2500

:17 = 0.0000

X19 = 0.0000

X21 = 0.0000

x23 = 0.2500

X25 = 0.0000

'27 = 0. 2 500

X29 = 0.0000

X31 = 0.0000

X33: = 0.2500

:r35 = 0.0000

:37 = ().0000

-:r3 = 0.2500
r41 = 0.)()0000

14:3 = 0.2500

·.r, = 0.(000

.r ; = ().000

.1 ! = (0.2500

l = 0.2500

'= ().()00
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-T.55 = 0.0000

X.5 7 = 0.25()0

X. -= 0.00()0

7G1 = 0.25()0

The final cdistortion was equal to 1.25.
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