
Optimizing Directory-Based Cache Coherence on

the RAW Architecture

by

Satish Ramaswamy

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005
r 2 3

O Massachusetts Institute of Technology 2005. All rights reserved.

Author..

De$[rtment of Electrif ngineering and C
DeI

Certified by......
Anant Agarwal

Professor
Thesis Supervisor

Accepted by..
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

MASSACHUSETS INSTTUTE
OF TECHNOLOGY

JUL 1 8 2005

.... ay 1BE
>mU11Uta oullunut:

May 18, 2005

I

2

&

Optimizing Directory-Based Cache Coherence on the RAW

Architecture

by

Satish Ramaswamy

Submitted to the Department of Electrical Engineering and Computer Science

on May 18, 2005, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Caches help reduce the effect of long-latency memory requests, by providing a high
speed data-path to local memory. However, in multi-processor systems utilizing

shared memory, cache coherence protocols are necessary to ensure sequential con-

sistency. Of the multiple coherence protocols developed, the scalability of directory-
based schemes makes them ideal for RAW's architecture [1]. Although one such

system has been demonstrated as a proof-of-concept, it lacks the ability to meet the

requirements of load-intensive, high performance applications. It further provides the

application developer with no programming constructs to easily leverage the system.

This thesis further develops shared memory support for RAW, by bringing greater

programmability and performance to shared memory applications. In doing so, it re-

veals that shared memory is a practical programming paradigm for developing parallel

applications on the RAW architecture.

Thesis Supervisor: Anant Agarwal

Title: Professor

3

4

Acknowledgments

I would like to begin by thanking Anant Agarwal, my supervisor, for introducing me
to the RAW group and providing me invaluable advice while taking on this ambitious
project.

James Psota, Michael Taylor, and Paul Johnson deserve a huge amount of recog-
nition. James served as a mentor throughout the duration of my research, and helped
focus my energy towards critical areas of the design. Michael was invaluable in answer-
ing questions pertaining to the RAW architecture, and providing crucial debugging
assistance when problems in BTL were uncovered. And Paul was solely responsible
for engineering the binary rewriter.

Then onto my friends, for showing me what life's really about. Timmie "40-hands"
Hong, for his inability to operate fire extinguishers. Justin, for his ill-timed, yet quite
sobering head-butts. Pedro, for his 80's bond-trader mentality. I'll see you on the
buy-side. Shiva, for his unbridled tamilian-bred temper. Ishan, Chris, and Ram, for
being stellar examples of studious grad students. New York City awaits us. Shyam,
for our continued vagrancies through fine establishments such as IQ and Burrito Max.
Neal and Adam, for aspiring to be the Hans and Frans of the Z-center. Then there's
the notorious HP crew... Chris, for acquainting me with Jack, Johnny, and Jose.
You're always a game of pool, and a brew away. Ben, for OBX. Gabe, for his tactical
training in bottle-rockets deployment. Arun, for quite possibly being the chillest bro
around. And who could forget my parents? For all the worrying and heartache I've
given them over the past 23 years, it looks like i might just turn out ok.

My research was partly supported by the MIT Department of Electrical Engineer-
ing & Computer Science.

5

I

Contents

1 Introduction 15

1.0.1 Contributions . 16

1.1 Shared Memory Systems . 17

1.1.1 Cache Coherence & Sequential Consistency 18

1.2 Directory-Based Cache Coherence . 19

1.3 RAW Architecture . 20

2 Original System 23

2.1 RAW Hardware Overview . 23

2.1.1 Dynamic Networks . 24

2.1.2 Raw Processor Functionality 24

2.2 Implementation of Directory-Based Cache Coherence 26

2.2.1 Memory Controller . 26

2.2.2 Interrupt Controller Functionality 28

2.2.3 MDN Interrupts: Directory-to-User Communication 29

2.2.4 Event Counter Interrupts: User-to-Directory Communication . 31

2.2.5 System Tile Implementation 31

2.2.6 Directory-State Transitions 33

3 Building a Working System 37

3.1 Static Network Buffering . 38

3.2 Exclusive Tile transitions to Reader 40

3.3 Deadlock Resolution: Purging the Pending Address Table 42

7

3.4 Deadlock Resolution: Event Counter Check 43

3.5 Event Counter & MDN Interrupt Handling Same Address 44

4 Performance Optimizations 47

4.1 Mapping of Shared Addresses to System Tiles 50

4.2 Optimized System Loop . 51

4.3 Exclusive Tile Voluntary Flush . 52

4.4 Cache-line Reconstruction in Read-Lock 53

4.5 Hot-Forwarding Directory Tile Requests 55

5 Higher-Level Shared Memory Support 59

5.1 Shared Memory Controller . 60

5.1.1 Controller-to-Tile GDN Communication 61

5.1.2 Tile-to-Controller Communication 63

5.2 Shared Memory Allocation . 64

5.3 Parallelizing Primitives . 66

5.3.1 Locks . 66

5.3.2 B arriers . 66

5.4 Low-level Issues . 67

5.4.1 Runtime Environment Modifications 67

5.4.2 Binary Rewriter & Programmer Restrictions 67

5.5 Designing Shared Memory Applications 69

5.5.1 General Programming Model 70

6 Applications & Performance Results 73

6.1 Application Profiling . 74

6.1.1 Jacobi Relaxation . 74

6.1.2 Barnes-Hut . 75

6.1.3 LU Factorization . 76

6.1.4 F F T . 77

6.1.5 O cean . 77

8

6.1.6 Radix . 78

6.1.7 Discussion of Results . 79

7 Conclusion 81

A System Code 83

A.1 Shared Memory Controller Code . 83

A.1.1 DShm Library . 85

A.1.2 DLock Library . 91

A.1.3 DBarrier Library . 93

A.2 RawUser Library . 94

A.3 User Libraries . 95

A.3.1 Lock Library . 95

A.3.2 Barrier Library . 97

A.3.3 Shared Memory Allocation Library 98

A.4 Raw Code . 100

A.4.1 Directory-Tile Code . 100

A.4.2 User-Tile Code . 153

9

10

List of Figures

1-1 Basic Transition Diagram for Cache Coherence 19

2-1 Layout of 4x4 RAW grid . 26

2-2 Memory Controller Functionality . 27

2-3 Decomposition of a Shared Address 27

2-4 Interrupt Controller State Machine for a Particular Tile 28

2-5 Directory to User Tile Communication 30

2-6 State Transition Diagram (Original) 33

3-1 Dependencies between Static Network and MDN Network 39

3-2 Exclusive Tile incorrectly Transitions to Reader 41

3-3 Arrival of Asynchronous Writes . 41

3-4 Improper Deadlock Resolution . 42

3-5 Improper Deadlock Resolution on SW Stall 43

3-6 Event Counter Interrupt & MDN Interrupt Race Condition 44

4-1 Optimized Cache-Coherence Scheme 48

4-2 Original Mapping of Addresses to System Tiles 50

4-3 Re-mapping of Addresses to System Tiles 51

4-4 Optimized system-loop . 52

4-5 New read-lock-bypass transition . 54

4-6 Original User-Directory Communication Sequence 56

4-7 User-Directory Communication Sequence (first-pass optimization) 57

4-8 User-Directory Communication Sequence utilizing Hot-Forwarding 58

11

4-9 Algorithm for Hot-Forwarding5

Shared Memory Controller on RAW fabric

M odified FPGA

User Tile & Shared Memory Controller Communication

Stalling GDN Reads: Deadlock with Shared Memory .

Memory Footprint of Allocated Chunk

Memory Footprint of Free Chunk

Memory Layout of an Individual Tile

Shared Memory Producer-Consumer Model

12

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

. 60

. 61

. 62

. 63

. 65

. 65

. 68

. 70

58

List of Tables

2.1 System Handlers . 31

2.2 GDN Messages Utilized in Coherence Protocol 32

2.3 State Transitions (Original) . 35

3.1 Types of System Problems . 38

3.2 Latencies of Static Network Buffer Operations 40

4.1 State Transitions (Optimized) . 49

4.2 State transitions from "exclusive" . 53

4.3 State transitions from "read-lock-bypass" 55

6.1 72x72 Jacobi Relaxation . 74

6.2 Barnes-Hut 256 particle simulation 75

6.3 128x128 LU Factorization . 77

6.4 1024-pt FFT Transformation . 77

13

14

Chapter 1

Introduction

Shared memory and message-passing are two popular models that have emerged in

distributed computing. The message-passing model relies on a direct communication

channel between processing nodes, while shared memory architectures rely on a global

memory store that can be read from and written to by all nodes. Historically, archi-

tectures with independent processing modules have implemented a subset of features

from both of these models. However, these features have been fixed at design time,

limiting the architecture's flexibility [5].

With the introduction of the RAW architecture, low-level interconnects have been

exposed to software, resulting in greater flexibility. Since the underlying network can

be reconfigured for various applications, various parallel processing models can be

implemented and reconfigured on the RAW fabric. A message-passing infrastructure

has already been developed [6], and a prototype shared memory system was recently

explored [5].

In a shared-memory multiprocessor, the purpose of the memory system is to pro-

vide access to the data to be processed. However, the uneven growth in processor and

memory technologies has led to a significant delta in their relative speeds. Since mem-

ory bandwidth has become a critical resource, local high-speed memories have been

provided on-chip, for the purpose of replicating frequently accessed data [2]. This

memory hierarchy relies on the spatial and temporal locality of memory accesses.

However, the presence of local caches in shared-memory multiprocessor systems

15

introduces the cache coherence problem. When a processor modifies data in its local

cache, its changes will not necessarily be reflected in (1) main memory and (2) remote

caches. Thus, different processing nodes will have different views of memory, leading

to incoherence. It is therefore necessary for shared-memory multiprocessors to have

a system that ensures coherence.

This thesis builds upon a prototype shared memory system previously developed

for the RAW architecture [5]. The low-level system was developed as a proof-of-

concept for implementing cache coherence on RAW, and was therefore designed with

disregard to programmability and performance. It was also plagued by numerous

problems that hindered the proper execution of shared memory applications. This

research serves as a second attempt to address the issue of cache coherence on RAW,

and fixes various problems along with incorporating several optimizations. In addi-

tion, higher-level shared memory support is provided through the introduction of new

shared memory primitives.

First, I describe the RAW architecture along with the design of this low-level

cache coherence system. In subsequent chapters, I detail the various problems in the

system, as well as the necessary measures taken to resolve them. I then go on to

describe the systematic implementation of various performance optimizations.

The final chapters outline the development of higher-level shared memory support,

via the introduction of new shared memory primitives along with a stand-alone shared

memory controller. I first describe the higher-level architecture, along with a proof

of its correctness. Next, I describe the development of a suite of shared memory

applications specifically designed for the system. After profiling the performance of

these applications, I conclude that shared memory is a now a practical programming

paradigm on RAW.

1.0.1 Contributions

Since this thesis is an extension of the existing low-level cache coherence architecture

developed in [5], it is prudent to outline the exact contributions made by this research:

16

i

1. Creating a fully functional low-level cache coherence system.

2. Developing performance enhancing optimizations.

3. Providing higher-level shared memory support, through the creation of a li-

brary of shared memory primitives, along with the introduction of a stand-alone

shared memory controller.

4. Developing a suite of shared memory applications specific to RAW, for the

purpose of profiling shared memory application performance.

1.1 Shared Memory Systems

Shared memory and message-passing are two common communication paradigms for

multiprocessor systems [5]. Applications on the latter architecture are often more

readily optimized, since the points of communication are explicitly declared. However,

the shared memory paradigm may often be more attractive, due to the model's ease

of programmability.

Shared memory systems utilize an interconnection network that provides process-

ing modules access to main memory. This memory may be a single homogenous

block, or it may be physically distributed as it is in the Alewife architecture [31. Sev-

eral commercially distributed architectures utilize bus-based memory systems. Buses

simplify the process of ensuring cache coherence, since all processers can observe on-

going memory transactions through snoopy mechanisms, and take the corresponding

actions to maintain coherence [1]. However, this architecture fails to scale well, since

it lacks the bandwidth to support an increasing number of processors. Thus, large

multi-processor systems utilize point-to-point connections between processors, so as

to provide a high-bandwidth, low-latency path to memory [2]. Since these systems

fail to have broadcast mechanisms, they are well suited for directory-based cache co-

herence mechanisms. The next section provides a formal description of the coherency

problem, before introducing directory-based coherence systems.

17

1.1.1 Cache Coherence & Sequential Consistency

The notion of a hierarchical memory system was first introduced by J.S. Liptay of

IBM in 1968. When this system was extended to shared-memory multiprocessor

systems, the problem of cache coherence arose, since each processor's view of memory

may vary. A memory is defined as coherent if:

1. A read to a location, following a write to the very same location by the same

processor, results in the newly written value being read (provided no other

processor writes to this location in between).

2. A read to a location, following a write to the very same location by a different

processor, results in the newly written value being read, provided the read and

write are sufficiently separated in time and no other writes occur in between.

3. Writes to the same location are serialized; two writes to the same location

by any two processors are seen in the same order from every other processors

perspective [4].

Shared memory systems further provide "sequential consistency". This is defined

as "the results of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual proces-

sor appear in this sequence in the order specified by its program [4]." That is, all

processors must observe the same sequence of reads and writes, and the individual

accesses of a particular processor must appear in the order dictated by its program

flow.

To demonstrate one such coherence issue, consider two processors P1 and P2 that

both access address A. Address A in main memory holds the data value X, so when

both processors read A, they locally cache this value. Now, suppose P1 writes the

value Y to address A. In a write-back cache, this modification only occurs locally,

and is not propagated to main memory. At this point, P1 views address A as having

the value Y, while P2 views address A as having the value X. Thus, the system is

18

NEW READER:
add re ade r to list

NEW WRITER:
1. issue invalidates to current readers in list
2. record writer in state

read exclusive

NEW READER/WRITER:
1. issue flush to current writer
2. send cache line to reader OR

patch line together

Figure 1-1: Basic Transition Diagram for Cache Coherence

incoherent, and some resolution must occur. The following section details one such

system that is particular prevalent on modern large-scale multiprocessors.

1.2 Directory-Based Cache Coherence

In a directory-based cache coherence system, a central or distributed directory struc-

ture stores the state associated with each cache line. The two basic states are "ex-

clusive" and "shared". The exclusive state is assigned to a cache-line that is owned

by a particular cache; this owner has the most up-to-date version of the line, and

the memory's version is in-fact stale. The shared state denotes that one or more

caches have a clean copy of the memory location. The responsibility of a directory

is to maintain cache coherence by issuing "writeback" and "invalidate" requests to

processors whenever necessary. It achieves this by intercepting read & write requests

to cache lines, issuing the appropriate requests, and updating the state. The following

list outlines the basic coherence protocol, which is depicted in Figure 1-1 as well.

1. If a line is shared, a new reader results in the processor being added to the

shared list.

19

2. If a line is shared, a new writer results in an invalidate request to the list of

readers, and the line being set to exclusive on the writer.

3. If a line is exclusive, a new reader results in a flush request being sent to the

writer, and the line being set to shared.

4. If a line is exclusive, a new writer results in a flush request being sent to the

writer, and the line being patched together in main memory 1[4].

Archibald and Bauer first proposed a directory-based architecture that was imple-

mented entirely in hardware. More recent architectures, such as MIT's ALEWIFE [3],

have attempted to ensure coherence through both hardware and dedicated system-

level software. In these architectures, the hardware handles coherence among a small

subset of caches, while the software extends the capability of the system by providing

support for extenuating cases. The directory-based prototype system developed for

RAW is unique, in that it attempts to ensure coherence strictly through system-level

software. The system is designed as a full-map directory based system, reminiscent

of the system articulated by Censier and Feautrier [2]. The next section provides a

brief overview of the RAW architecture.

1.3 RAW Architecture

The RAW microprocessor architecture was designed to efficiently expose the ever

expanding computational resources available on silicon. Rather than improving on the

concepts employed by modern super-scalar processors, the RAW architecture seeks

to expand the domain of applications relevant to microprocessors. Specifically, it was

designed to address data-intensive applications with fine grain parallelism (e.g. speech

and video processing). Thus, the architecture is uniquely characterized by the high

priority given to I/O processing, its aggressive scalability, and its parallel interface.

Further, the basic underlying architecture is completely exposed to software, for the

purpose of aggressively utilizing the hardware [8].

'Patching is necessary when distinct processors write to distinct words of the same cache line.
The line needs to be reconstructed from these individual modifications

20

RAW is implemented as a 2-dimensional 4x4 mesh of 32-bit MIPS processors

on a single die. Each edge of the die has 32 I/O pins, connected to a total of 6

Xilinx II FPGAs that interface with a variety of hardware devices including DRAM.

The processors themselves are interconnected through two static networks, and two

dynamic networks. The static network allows words to be routed between nearest

neighbors, and is run by an on-chip switch processor. The dynamic networks are

dimension ordered networks that require the use of headers to specify the length and

destination of the message to be routed. The General Dynamic Network (GDN) [8).

21

22

Chapter 2

Original System

The RAW hardware is ideal for implementing cache coherence, because the architec-

ture exposes low-level hardware mechanisms to software. By exploiting the precise

level of control governing the processor and interconnect networks, traditional func-

tionality previous implemented in hardware, can now be dictated by software. Thus,

directory-based cache coherence is an ideal system to be developed on the architec-

ture.

The RAW handheld board consists of a 16-tile RAW processor, surrounded by

customizable off-chip FPGA's. These FPGA's interface with a variety of hardware

devices including DRAM, and they require some modification when implementing the

directory-based system. This chapter first details the RAW handheld board, and then

goes on to describe the first-pass directory-based cache coherence system developed

in [51.

2.1 RAW Hardware Overview

The RAW processor consists of a 2-D mesh of identical tiles. These tiles are inter-

connected to their nearest neighbors via static and dynamic networks, and routing is

done via local static switches and dynamic routers. The tile processor uses a 32-bit

MIPS instruction set, and all words, along with the width of the networks, are 32-bits

as well.

23

2.1.1 Dynamic Networks

The dynamic networks on the RAW architecture are dimension-ordered packet routed

networks. They consist of the "General Dynamic Network" (GDN) and the "Memory

Dynamic Network" (MDN). The former is completely operated under the discretion

of the user, while the latter is utilized by the RAW hardware for the purpose of

interfacing with the memory controller.

Messages on these networks consist of a header, followed by any number of words.

The header specifies the length of the message, its destination, a final routing field,

and a 4-bit user field. The final routing field dictates the final direction the message

should be routed off-chip, when it arrives at the destination tile.

When a message is issued from a particular tile, the dynamic routers first route

it vertically, and then horizontally. After the message has arrived at its destination,

the dynamic router at the destination strips the header, and places the message on

an input buffer.

Access to the dynamic networks is provided through a register mapped interface.

When a user wishes to send a message via the GDN, they must first write the header

to register $cgno, followed by a write of the actual data words. The processor may

stall on this write, if the outgoing hardware buffers are infact full. Receiving messages

from the GDN requires a read from register $cgni; in this case, the processor will

stall until a message arrives. It is important to note that stalling reads and writes

prevent the tile from handling external interrupts.

The special-purpose registers GDNBUF and MDN-BUF allow the user to determine

the number of messages on the input buffer of the tile. In this manner, the user has

the ability to engineer non-blocking reads from the dynamic networks by continually

polling these registers.

2.1.2 Raw Processor Functionality

Each tile on the RAW chip resembles a MIPS R4000, and its specification is detailed

in [8]. This thesis only examines three aspects of the tile's functionality: (1) cache

24

misses (2) event counters and (3) interrupts.

Cache Misses

A cache miss can be generated by a load-word (LW) or store-word (SW) operation.

When a miss occurs, the hardware generates an MDN message that is routed to the

FPGA responsible for handling the specific bank of DRAM the address resides in.

The FPGA then forwards the 8-word cache line to the requesting tile via the MDN.

It is important to note that a tile cannot service any external interrupts while it is

stalling for a cache line.

Interrupts

The RAW hardware allows tiles to be interrupted via special MDN messages that

can either be generated off-chip or by another tile. To generate such a message, the

user-bits of the MDN header must be set to Ob1111; when the header arrives at its

destination, the tile will jump to the appropriate handler if the "External Interrupt"

bit is set in the EX-BITS special register. Only one outstanding interrupt per tile is

allowed.

Event Counters

Tiles have various event counters that decrement every time a particular event occurs.

When a particular counter transitions from 0 to -1, it asserts a "trigger" that holds its

value until the user writes a new value into the counter. The triggers for the various

event counters are OR'd together to form a single bit, which dictates when an event

counter (EC) interrupt should fire.

When a trigger is asserted, the PC of the instruction causing the event is latched

into bits [31:16] of the counter. It takes 6 cycles before an event counter interrupt

will actually fire, and in this window of time, subsequent events will still be captured

in the counter. This thesis is only concerned with the event counter that captures

clean-*dirty cache line transitions.

25

-- - - - -~

2.2 Implementation of Directory-Based Cache Co-

herence

The first-pass directory-based cache coherence system for the 4x4 RAW architecture

utilized the 4 rightmost tiles as system tiles. The purpose of each system-tile is

twofold; it serves both as a directory and as an interrupt controller. The directory is

responsible for managing a specific set of shared addresses by maintaining the state

of each address in a directory table, and issuing invalidate and writeback requests

whenever necessary. The purpose of interrupt controllers is to facilitate communi-

cation between user-tiles and directories; since tiles have no mechanism by which to

detect the source of interrupts, they contact a pre-determined interrupt controller as

part of the communication protocol [5].

SYSTE M
LTILE

FI§I7...... .__ .__
SYSTEM

rTILET

-4j
SYSTE7M

L TILE

SYSTEM
TILE

Figure 2-1: Layout of 4x4 RAW grid

2.2.1 Memory Controller

Along the east perimeter of the RAW chip, two FPGA's serve as an interface to

four banks of DRAM. Memory load-word (LW) and store-word (SW) requests are

issued from tiles in the form of MDN messages, and the two memory controllers are

26

source
<tti netwrkk private re quests,

-Jor requests from
directoryshared 1equests

from us&-tiles RAM

DRAM~
plieshandler

RAWI Memory Controller
[h]

Figure 2-2: Memory Controller Functionality

responsible for forwarding the requests along to DRAM. LW requests result in 8 words

of data being retrieved, as the cache block size is exactly this width [8].

For the purpose of implementing cache coherence, the two memory controllers

were modified to bounce shared memory requests to directory tiles, as depicted in

Figure 2-2. In this manner, directories are able to observe all ongoing shared memory

transactions. An address is declared shared if bits 25-26 are set; when this condition

is satisfied, the memory controller pushes the request onto the static network for the

appropriate directory-tile, determined by bits 31-30 of the address [5]. Figure 2-3

depicts how a shared address is decomposed into its constituent bits.

shared
directory memory

tile bits

0 11

3130292827262524 21 0

Figure 2-3: Decomposition of a Shared Address

27

2.2.2 Interrupt Controller Functionality

The interrupt controller is responsible for facilitating communication between user-

tiles and directories. Each of the four controllers manages the three user-tiles residing

on its physical row, and each tile is associated with a specific state-machine that

determines when it is probably safe to interrupt it. The state-machines consist of the

three states "not busy", "pinged", and "busy", as shown in figure 2.2.5. When a

directory wishes to interrupt a particular tile, it must issue the request to the tile's

corresponding interrupt controller.

not pinged
busy

Figure 2-4: Interrupt Controller State Machine for a Particular Tile

If the state is "not busy", then the user-tile can be safely interrupted. Thus,

when an interrupt is requested by a directory-tile, the controller issues the interrupt,

sets the tile-state to "pinged", and records an associated timestamp. When the user-

tile responds to the interrupt, the controller advances the state to "busy", and the

communication protocol depicted in Figure 2-5 ensues. At the end of this protocol,

the interrupted tile sends an acknowledgement to the interrupt controller, at which

point the state is reset to "not busy". If a directory-tile requests an interrupt when

the state is "pinged" or "busy", then the interrupt is delayed until the state resets to

"not-busy".

28

Deadlock Recovery Handler

The cache coherence system has been proved to deadlock when a circular dependency

exists between two or more tiles. These dependencies arise because MDN interrupts

cannot be serviced while a tile is stalling on a memory read. In the simplest case of

two tiles in deadlock, both tiles are stalling, waiting for cache lines that the other has

exclusive access to. An example scenario where deadlock may arise is given below:

1. Tile X is exclusive on Al

2. Tile Y is exclusive on A2

3. Tile X reads A2, Tile Y reads Al

4. MDN interrupt sent to X for a writeback on Al

5. MDN interrupt sent to Y for a writeback on A2

A system-tile declares deadlock when a user-tile has not responded to an MDN

interrupt after approximately 20,000 cycles. When this has occurred, a false cache-line

is sent to the tile, so that the circular dependency is broken 1. The following sequence

of events occurs in the MDN interrupt after the spoof data has been received:

1. The tile rewinds EXPC and searches for the offending load-word or store-word

instruction. It then extracts the address and invalidates it.

2. The pending requests (writeback, invalidate) are immediately serviced.

3. The tile jumps to the PC of the offending LW/SW instruction, and re-executes

it.

2.2.3 MDN Interrupts: Directory-to-User Communication

The following section details the communication protocol employed between direc-

tories and user tiles. For directory to user-tile communication, the GDN network is

'Recall that the pending MDN interrupt will fire after the line is received, since the tile is no
longer stalling

29

user tile interrupt directory
controller

send request to.
MON int 1,rr upt interrupt ctrl

respond To user-tile

deal with possible send ectry
spoof data if

| nn etsend list of
directoryreiss

execute request
& ack directory

set to correct
a ckinte rrp :i.11 set correct state

interrupt state 6 e
C

Figure 2-5: Directory to User Tile Communication

heavily utilized, and the entire protocol consists of a lengthy handshaking process as

depicted in Figure 2-5. It is initiated by a directory issuing a GDN message to the

appropriate interrupt controller of the tile to be interrupted.

After the user-tile has responded to its interrupt controller, the controller sends

some information pertaining to deadlock, as well as a list of directories that it needs

to contact. If necessary, the user-tile takes the appropriate measures to address any

deadlock situation before proceeding. The user-tile next contacts each directory-tile

sequentially, and receives a list of requests which it must address. A request consist

of a shared memory address, along with a "writeback" or "invalidate" opcode. Once

the tile has finished servicing a particular directory, it acknowledges the directory tile.

And once the tile has serviced all directories, it acknowledges the interrupt controller.

30

2.2.4 Event Counter Interrupts: User-to-Directory Commu-

nication

Communication initiated by the user-tile is relatively straightforward, and occurs

when a cache line is dirtied. To detect dirtied cache lines, user-tiles have an Event

Counter (EC) interrupt configured to fire on every clean-to-dirty transition. The EC

handler then extracts the address and data from the offending store-word instruction,

and sends it to the appropriate directory tile via the GDN. The handler subsequently

stalls until an acknowledgement is received from the directory, which can be one of the

following: "flush & invalidate", "invalidate", or "nothing". Once this acknowledge-

ment is received, the user-tile exits the handler and resumes execution of user-code.

For the purpose of improving performance, The EC handler explicitly enables inter-

rupts during the period of time in which it is waiting for a response from a directory.

Thus, an MDN interrupt can be handled while already inside the EC handler.

2.2.5 System Tile Implementation

A system-tile needs to emulate both directory and interrupt controller functionality.

In addition, it needs to ensure that asynchronous user requests are serviced in a

timely manner; the long-latency communication protocol needs to be divided into

smaller transactions, since multiple requests may arrive concurrently. To address the

above two issues, the system tile continually executes a round-robin loop that invokes

various handlers pertaining to directory and interrupt controller functionality. The

"context switches" present in Figure 2-5 depict when the next handler is invoked.

Table 4-4 lists the various handlers, along with their specific functionality.

System Handler Logical Function
Static Network Handler directory

GDN Handler directory, interrupt

Interrupt Handler interrupt

Deadlock Detector interrupt

Table 2.1: System Handlers

31

Types of GDN Messages

user-+interrupt reply
user-+interrupt "done"

user--+directory contact
user->directory "done"

directory-*interrupt request

Table 2.2: GDN Messages Utilized in Coherence Protocol

Static Network Handler

The static network handler is responsible for addressing load-word and store-word

messages that have been forwarded from the memory controller. A LW request signi-

fies that a new reader for a shared address has emerged. Based on the current state

associated with the address, the static network handler updates the state and takes

the appropriate action. A SW message contains the most up-to-date version of the

cache-line. If appropriate, the line is patched before writing it back to main memory,

and forwarding it along to any new readers.

GDN Handler

The GDN handler is used for both directory and interrupt controller functionality.

It is responsible for interpreting user-to-directory, user-to-interrupt, and directory-to-

interrupt GDN messages utilized in the shared memory protocol. These messages are

all present in Figure 2-5, and a listing of them is given in Table 2.2.

Interrupt Handler

Whenever a directory wishes to contact a user tile, it messages the tile's corresponding

interrupt controller. The controller notes the request in a bit-vector, and when the

interrupt handler is next invoked, it interrupts any user tiles that are in the "not

busy" state.

32

Deadlock Detector

The deadlock detector handler checks the amount of time that has elapsed since each

of the three user tiles has been pinged. If this time exceeds 20,000 cycles, then the

necessary deadlock resolution measures in Section are initiated.

2.2.6 Directory-State Transitions

In addition to the exclusive and read states in Figure 1-1, the directory main-

tains three more transient states: read-lock, read-lock-bypass, and exclusive-

pending. These states are necessary because the read-to-exclusive and exclusive-to-

read transitions are no longer atomic in our "multi-tasked" system tile. For example,

after a directory tile has issued invalidate requests to user tiles, it doesn't wait for

their responses; instead, it context switches to another handler.

read-lock

<ead-
read lock- exclusive

yas

xclusive

pending

Figure 2-6: State Transition Diagram (Original)

The read-lock state signifies that a tile has requested exclusive ownership of a

cache line, and that invalidate requests have been sent to all current readers. Thus,

when the last reader has acknowledged the invalidate request, the state transitions

from read-lock to exclusive, and the writing tile is notified that it may proceed.

33

The exclusive-pending state signifies that a write-back request has been sent to a

tile. This state is necessary, so as to prevent multiple write-back requests from being

issued. When the writeback arrives, the state will transition to read.

Figure 2-6 depicts a bypass path from read-lock to exclusive-pending. The read-

lock-bypass state is necessary because asynchronous read/write requests may arrive

when the state is in read-lock. Thus, the read-lock-bypass state notes that when the

last invalidate has been received, the state should transition to exclusive-pending and

a writeback request should be sent.

These state transitions are comprehensively detailed in Table 2.3.

Pending Address Table

Along with the intermediate states described in the previous section, some additional

data structures need to be maintained. The pending address table contains addresses

that: (1) are currently exclusive on a tile or (2) would like to be exclusive on a tile.

Along with each address are a list of pending readers and patches. When the line is

written back to main memory, the patches are applied and the readers are sent the

line.

34

State Stimulus Response Next State
read new reader add to list, send line read
read new writer send invalidates to readers read-lock
read-lock last inv. ack ack sent to writer exclusive
read-lock new reader note request in pending address read-lock-bypass

table
read-lock new writer note patch in table read-lock-bypass

send new writer invalidate
read-lock-bypass last inv. ack invalidate sent to writer exclusive-pending

send writer flush & inv. request
read-lock-bypass new reader note request in pending address read-lock-bypass

table
read-lock-bypass new writer note patch in pending address read-lock-bypass

table
exclusive new reader note request in pending address exclusive-pending

table, ask for writeback from
owner

exclusive new writer send invalidate, note patch, ask exclusive-pending
for write-back from owner

exclusive writeback spontaneous writeback - read
set read on writer

exclusive-pending new reader note request in pending address exclusive-pending
table

exclusive-pending new writer send invalidate, note patch exclusive-pending
exclusive-pending writeback patch line in RAM, send read

to readers

Table 2.3: State Transitions (Original)

35

36

Chapter 3

Building a Working System

The original cache coherence system was consistent with a directory based imple-

mentation, and was the first prototype shared memory system developed for a tiled

architecture. As is common with first-pass systems, there were many issues that im-

peded the successful execution of shared memory applications. These issues ranged

from trivial oversights to protocol problems. The problems were sequentially detected

and corrected as shared memory applications were developed and tested on the sys-

tem. As more issues were resolved, it became possible to develop more complicated

applications, and in turn more subtle errors surfaced. Table 3.1 classifies the different

types of problems encountered.

The trivial problems consisted of callee registers being overwritten by callers,

incorrect loop termination conditions, and overwritten return addresses. Most errors

of this type were resolved with one line of assembly code.

The next class of problems were system-specific, and were primarily concerned

with buffer overflows and deadlock conditions arising from the dynamic network. To

address these issues, the system was tailored to be more aware of the underlying

architecture. The limited hardware buffers were extended through software, and non-

blocking network reads were made in the appropriate circumstances.

Protocol problems in the system, although limited, required a generous amount of

time to address. One such problem dealt with an incorrect transition in the underlying

FSM, and another dealt with an incorrect deadlock resolution mechanism. The latter

37

Table 3.1: Types of System Problems

Type Number Examples
Trivial 7 caller registers overwritten

return address overwritten
incorrect loop termination
incorrect parsing of bit-vectors

System 2 static network buffering
non-blocking MDN reads

Protocol 2 exclusive tile incorrectly becomes reader
incorrect deadlock resolution

Race Conditions 2 deadlock while performing SW
EC & MDN interrupt handle same address

problem surfaced only when the interrupt controller assigned to the tile was physically

different from the directory controller responsible for the deadlocked address.

Finally, the most difficult to detect problems were race conditions that were only

uncovered after running large-scale applications for millions of cycles. Although they

were straightforward to address, the process of detecting and diagnosing these prob-

lems was extremely tedious. Whenever user or directory tile code was modified, these

errors would be displaced elsewhere within the program execution, complicating the

debugging process. One race condition occurred when a deadlock occurred on a SW

(as opposed to LW), and another surfaced when the event counter (EC) and MDN

interrupt handler were both operating on the same address.

3.1 Static Network Buffering

There are only 8 hardware buffers on the static network between the memory con-

troller and any given system tile (4 buffers on EAST port, and 4 buffers on processor).

Under heavy loads, any of these buffers may become full, and the memory controller

will subsequently stall when attempting to push another word onto the static net-

work. Only when the appropriate system-tile reads from the static network (and

clears the buffer overflow) will the memory controller be able to resume handling

38

directory X reading
from RAM

memory controller
not stallin

SN EAST port of
Directory X not full

directory X reading
from SN EAST port

Figure 3-1: Dependencies between Static Network and MDN Network

memory requests. Thus, if the system-tile with a static-network buffer-overflow is

currently reading from $cmni, deadlock will result. Figure 3-1 depicts the circular

dependency between the static and MDN networks.

To prevent this deadlock condition from arising, system tiles must ensure that all

reads from $cmni are non-blocking. Instead of executing a blocking LW instruction,

the system-tile should manually issue the appropriate MDN header for the address to

be retrieved, and it should then continually poll MDNBUF while waiting for a response.

While it is polling for a response, it should also check if the static network buffer's

EAST port is full. If this is indeed the case, an arbitrary number of words should be

read off the static network to prevent the memory controller from stalling. In this

manner, the cyclic dependency in Figure 3-1 is broken.

Now, to read from the static network, the circular buffer should first be checked

before executing a read from $csti. We will now prove that this mechanism is

sufficient to prevent deadlock:

1. A system-tile cannot deadlock with itself; e.g. it cannot perform a blocking

read from the MDN when its own static network buffer is full. This is a simple

consequence of the above function.

2. A system-tile cannot permanently stall on a read from the MDN when another

39

Write to Buffer 31 cycles

Read (non-empty buffer) 55 cycles
Read (empty buffer) 10 cycles

Table 3.2: Latencies of Static Network Buffer Operations

system-tile's static network buffer is full. Suppose that system-tile X is perform-

ing a read from the MDN, and system-tile Y has a full static network buffer.

Once every round-robin system loop, system-tile Y will check to see if its buffer

is full, and will subsequently clear it. Thus the memory controller will eventu-

ally stop stalling, and system-tile X will be able to complete is read/write on

the MDN.

Although these new reading & writing mechanisms bypass the aforementioned

deadlock condition, they introduce additional overhead that leads to performance

degradation. Table 3.2 shows the number of cycles spent reading from and writing

to the buffered static network:

3.2 Exclusive Tile transitions to Reader

In the original system, when a tile performs a flush either due to a flush request or

cache eviction, the directory tile automatically sets the tile as a reader. However, this

is the incorrect behavior, since the line may have been patched, in which case the

flushing tile no longer has a valid copy of the cache line (refer to Figure 3-2).

Therefore, a flush request should never be issued to an exclusive tile. This is

because a patch may occur after the request is sent out, and before the flushed data

is received at the system tile, as depicted in Figure 3-3. Since there is no way to

prevent this race condition, a flush & invalidate is the only correct request to an

exclusive tile.

40

1. Tile X exclusive on address A

2. i. Tile Y attempts to read A

ii. address A goes to exclusive-pending on X

iii. flush request sent to X

3. i. Tile Z writes to A

ii. Tile Z's modification to A noted in pending address table

iii. invalidate response sent to Z

4. i. Tile X flushes A

ii. cache line A reconstructed

iii. cache line A sent to Y

iv. Tile X set as reader on A (ERROR)

Figure 3-2: Exclusive Tile incorrectly Transitions to Reader

TIME

flush request
issued from
directory to user

user tile executes
flush re quest

0

asynchronous write
request arrives from
another tile

Figure 3-3: Arrival of Asynchronous Writes

41

flushed data
received at
directory

1. i. Tile X performing LW A, and exclusive on B

ii. Tile Y performing LW B, and exclusive on A

X is in the pending address table for addr A, and Y is in the pending
address table for addr B. DEADLOCK.

2. i. Tile X sent spoof data

ii. Tile X writes back B in MDN interrupt

iii. Tile X resets PC to LW A

3. i. B sent to Tile Y; Tile Y stops stalling

ii. Tile Y flushes A in MDN interrupt

4. A sent to Tile X (from pending addr table for addr A) (ERROR)

5. A sent to Tile X (from LW A)

Figure 3-4: Improper Deadlock Resolution

3.3 Deadlock Resolution: Purging the Pending Ad-

dress Table

In the current system, when a deadlock occurs, the appropriate interrupt controller

forwards a fake cache-line along to the stalling tile. After receiving the cache-line, the

tile invalidates the spoofed data, services any pending MDN interrupts, and resets its

program counter to the stalling instruction.

However, one must make the observation that if a tile is in deadlock, then it must

exist in some directory's pending address table '. Therefore, prior to sending the

spoofed cache-line, any directory containing a reference to this tile must erase it in

its pending address table. Otherwise, a second cache-line will unnecessarily be sent

after the tile re-executes the stalling memory instruction. Figure 3-4 depicts the

aforementioned error in deadlock resolution. Therefore, prior to sending any spoof

data for the purpose of deadlock resolution, the interrupt controller must clear any

reference to this tile in its own pending address table, as well as message the other

directory tiles to do the same. Furthermore, the spoof data will not be sent until:

'If this were not the case, then the tile would eventually receive the cache-line which it is re-
questing, and thus no deadlock would exist

42

(1) all directory tiles have acknowledged the request and (2) the tile was found in

atleast one pending address table. The former ensures that deadlock resolution will

not proceed until the tile is cleared from all tables, and the latter ensures that the

tile is infact still in deadlock.

3.4 Deadlock Resolution: Event Counter Check

When a tile deadlocks while performing a SW operation (as opposed to LW), the

current cache-coherence system fails to correctly handle proper deadlock resolution.

The error arises the moment the spoofed data is received by the user-tile - when

the SW operation completes, the event counter for the clean-*dirty transition is

decremented and the tile handles the ensuing MDN interrupt. After exiting the MDN

interrupt, it will immediately branch to the event-counter interrupt as a consequence

of its write to the spoofed data. Refer to Figure 3-5 for a depiction of the above

events.

SW(A) spoofed event counter MDN interrupt EC interrupt:

stalls data received _+decremented -handl ed: -+ exclusive
invalidates A request on A-

Figure 3-5: Improper Deadlock Resolution on SW Stall

Requesting an exclusive copy of the spoofed data not only degrades performance,

but it is also functionally incorrect. The spoofed data should be disregarded, and it

is actually invalidated in the MDN interrupt. There are many scenarios in which this

leads to either an incoherent state or deadlock.

To rectify this error, the event counter is automatically reset to 0 whenever a

user-tile has detected that it has received a false cache-line. In this manner, it will

not prematurely jump to the event counter handler after it has processed the MDN

interrupt.

43

event counter M.DN- 4andler event counter

TIMEer !Y211Mes addr A handler (cont)

event counter MDN EC response:
interrupt on addr A interrupt flush A

Figure 3-6: Event Counter Interrupt & MDN Interrupt Race Condition

3.5 Event Counter & MDN Interrupt Handling

Same Address

To reduce the latency of various transactions within the cache coherence protocol,

the event counter interrupt is able to take MDN interrupts. The motivation behind

this is that the EC interrupt will spend most of its time waiting for a response from a

directory tile, so this stall time can be overlapped with the service of MDN interrupts

2

However, a race condition exists when both the EC and MDN interrupts are

servicing the same address. For example, if a particular address is invalidated in the

MDN interrupt, then the EC interrupt becomes unable to fulfill a flush request for

the same address, as depicted in Figure 3-6. In terms of the protocol employed, this

is a logical error as well - a tile should only be in the event counter interrupt when it

has written to a line that is still resident in the cache.

The exact race condition occurs when a directory tile issues an MDN interrupt

to invalidate an address A on tile X, between the time that tile X enters the event

counter interrupt for address A and the time that the EC notification is received by

the directory tile. To resolve this race condition, two precautions are taken:

1. Interrupts in the EC handler are initially turned off until the EC notification is

sent to the tile.
2refer to Sections 2.2.3 and 2.2.4 for descriptions of MDN and EC interrupts

44

2. The address of the offending SW instruction is stored away. When an MDN

"invalidate" request occurs for the same address, it is simply ignored. However,

a (false) ack that the invalidate was completed is sent.

This solution ensures that the EC handler is able to fulfill a "flush" request.

However, we must prove that the behavior of the system is still correct. Suppose an

MDN request for an address A arrives moments after the event counter handler is

entered for the same address A. We can make the following statements regarding the

state of the system:

1. If the tile enters an event counter interrupt for address A, then it must currently

be a reader on A 3. Therefore any MDN request on this address A must be an

invalidate.

2. The current state is read-lock or read-lock-bypass, as these are the only states

where an invalidate request is issued from a directory (refer to Table 2.3).

3. The tile will send an EC notification to the directory BEFORE it jumps to the

MDN handler (since interrupts are initially disabled). Therefore the directory

will receive the EC notification BEFORE it receives the (false) MDN invalidate

ack from the tile.

These points imply that the state cannot transition out of read-lock or read-lock

bypass before the EC notification reaches the directory tile. When the EC notification

gets processed, the state transition will either be read-lock--+read-lock-bypass, or read-

lock-bypass--+read-lock-bypass, and the EC reply will be either be: (1) invalidate or

(2) flush & invalidate. Thus, at the very least, address A is invalidated by the EC

interrupt, and the false MDN "invalidate" ack is harmless.

3 for the cache line to have been dirtied in the first place, it must have been in the "read" state
for the tile

45

46

Chapter 4

Performance Optimizations

Five major performance optimizations were implemented over the base cache-coherence

system. The optimizations were incrementally designed according to the major bot-

tlenecks in the system. In sequential order, they include the mapping of shared

addresses to system-tiles, the optimized round-robin system-loop, hot-forwarding,

read-lock-bypass-+ read transitions, and support for voluntary flushing.

The most glaring performance bottleneck was the inefficient manner in which

shared addresses were mapped to directory-tiles. By utilizing the high-order bits of

the address to determine address ownership, the spatial locality of memory references

results in an individual directory tile servicing all requests. Thus, ownership was

reassigned based on the low-order bits, to achieve better load-balancing.

Next, the system-tile round-robin loop was restructured to invoke the various

system functions at empirically determined frequencies that resulted in optimum per-

formance. Certain types of messages were determined to arrive at system-tiles more

often than others, and therefore their corresponding handlers needed to be invoked

at a greater frequency to prevent back-log. For example, since GDN messages are

heavily utilized in the protocol, they arrive at system-tiles more often than static

network LW/SW requests. Thus, the GDN handler needs to be invoked at a greater

frequency than the static network handler.

The most extensive modification to the system was termed hot-forwarding, and

it involved a major rehaul of the communication protocol between system-tiles and

47

read-lock

read-
read lock- exclusive

yas

xclusive
pending

Figure 4-1: Optimized Cache-Coherence Scheme

user-tiles. Hot-forwarding effectively reduces the extent of handshaking in the cache

coherence protocol, resulting in reduced latency for various coherence transactions.

The premise behind this scheme is that directory requests for a particular user-tile

will be throttled, so that they may be directly forwarded to the user-tile rather than

batching them at the directory.

The new state transitions were superimposed on the existing FSM, and they served

to bypass unnecessary states. This resulted in reduced transaction latency, as well

as in the elimination of certain deadlock scenarios. Figure 4-1 depicts the new state

transitions diagram of the optimized system, and the exact transitions are compre-

hensively detailed in Table 4.1.

Finally, the motivation behind the last optimization stemmed from the high-level

design of shared memory applications. The general model for developing shared

memory applications relies on a single tile that initializes all global data structures.

To reduce the effect of cold-starts, the initializing tile can relinquish all ownership

of shared addresses via voluntary flushing, before tiles begin to manipulate shared

memory.

48

Table 4.1: State Transitions (Optimized)

49

State Stimulus Response Next State
read new reader add to list, send line read
read new writer send invalidates to readers read-lock
read-lock last inv. ack ack sent to writer exclusive
read-lock new reader note request in pending address read-lock-bypass

table
read-lock new writer note patch in table read-lock-bypass

send new writer invalidate
read-lock-bypass last inv. ack invalidate sent to writer read

patch-line in RAM, send to readers
read-lock-bypass new reader note request in pending address read-lock-bypass

table
read-lock-bypass new writer note patch in pending address read-lock-bypass

table
exclusive new reader note request in pending address exclusive-pending

table, ask for writeback from
owner

exclusive new writer send invalidate, note patch, ask exclusive-pending
for write-back from owner

exclusive writeback spontaneous writeback - read
clear state (no readers)

exclusive-pending new reader note request in pending address exclusive-pending
table

exclusive-pending new writer send invalidate, note patch exclusive-pending
exclusive-pending writeback patch line in RAM, send read

to readers

Shared Address Range System Tile
0x06000000 - OxO7FFFFFF SYSTEM-TILE 3

OxOEOOOOOO - OxOFFFFFFF SYSTEM-TILE 3
0x16000000 - 0x17FFFFFF SYSTEM-TILE 3

OxlE000000 - Ox1FFFFFFF SYSTEM-TILE 3
0x26000000 - Ox27FFFFFF SYSTEM-TILE 7

Ox2EOOOOOO - Ox2FFFFFFF SYSTEM-TILE 7
0x36000000 - Ox37FFFFFF SYSTEM-TILE 7

Ox3EOOOOOO - Ox3FFFFFFF SYSTEM-TILE 7

Ox7EOOOOOO - Ox7FFFFFFF SYSTEM-TILE 15

Figure 4-2: Original Mapping of Addresses to System Tiles

4.1 Mapping of Shared Addresses to System Tiles

Since there are four directory tiles in the current revision of the cache coherence

system, each tile has been assigned ownership of 1/4th of the shared memory address

space. In the previous system, ownership was assigned based on bits 30-29 of the

address, so each directory tile was responsible for approximately 4 chunks of 17MB

of contiguous memory, as depicted in Figure 4-2.

However, as various applications were profiled on the system, it became apparent

that a single system-tile was servicing all EC notifications and was solely responsible

for maintaining cache coherence. This bottleneck was a consequence of the manner

in which shared addresses were mapped to system-tiles. Since shared memory data

structures occupy contiguous regions of memory, all references to any part of the

structure will go through the same system tile. Thus, if a shared memory application

utilizes a global array that is manipulated by all tiles, a single system tile will be

responsible for maintaining coherence. One potential solution to this load imbalance

is to configure shared malloc so as to return successive addresses in different regions

of memory. However, this solution is ineffective when a single shared data structure

has heavy contention among different processors.

The best load-balancing solution was determined by observing the organization of

hardware caches. To reduce contention for cache-lines, caches are indexed by the low

bits of the address. A similar solution for the mapping of addresses to system-tiles

50

Shared Address System Tile
CACHE-LINE mod 4 = 0 SYSTEM-TILE 3
CACHE-LINE mod 4 = 1 SYSTEM-TILE 7
CACHE-LINE mod 4 = 2 SYSTEM-TILE 11
CACHE-LINE mod 4 = 3 SYSTEM-TILE 15
CACHE-LINE mod 4 = 0 SYSTEM-TILE 3

Figure 4-3: Re-mapping of Addresses to System Tiles

was implemented; bits 6-5 of the address were used to determine which system-tile

had ownership over the address '. To implement this optimization, modifications

were made to the event counter handler and the memory controller to use bits 6-5

rather than bits 30-29, as well as some minor modification to the directory tile code.

4.2 Optimized System Loop

System tiles in the previous cache-coherence system executed a round-robin loop that

invoked the necessary directory & interrupt controller routines. Table 4-4 lists each

routine, and which category it belongs to.

The gdn-handler routine is used for both directory and interrupt controller func-

tionality, and is responsible for correctly interpreting GDN messages from user-tiles.

Because of the dual role provided by this routine, it is logical to invoke it twice

during a single round-robin loop. The motivation for adding a third invocation of

gdnlhandler is clear when we examine the relative execution times of the various

routines; the static-networkihandler is almost an order of magnitude slower than the

gdn-handler. Furthermore, empirical evidence suggests that GDN messages arrive at

system-tiles at a faster rate than static-network LW and SW requests. It therefore

makes sense to invoke the gdnihandler more frequently, to prevent a large backlog

of GDN messages that eventually lead to long latency transactions. After testing

various applications, it was empirically determined that 3 invocations of the handler,

per round-robin loop, was optimum.

'bits 6-5 are the low-order bits of the cache line address

51

Original system-loop Optimized system-loop

while(1) { while(1) {
staticnetworkhandler staticnetworkhandler

gdn-handler-begin gdn-handler-begin
pending-irq-begin gdn-handler-begin
deadlockdetectorbegin gdn-handler-begin

} pending-irq-begin
deadlockdetectorbegin

}

Figure 4-4: Optimized system-loop

4.3 Exclusive Tile Voluntary Flush

In the original system, when a tile voluntarily flushes a line that it has exclusive access

to, the tile is set as a reader. A voluntary flush results from one of the following 3

actions:

1. an exclusive cache-line is evicted from the cache to make room for another
cache-line

2. the user-code explicitly performs a flush & invalidate

3. the user-code explicitly performs a flush

In scenarios 1 & 2, the address is invalidated as well, so marking the tile as a reader

unnecessarily introduces additional latency in the shared memory protocol (e.g. when

a new writer arises, an invalidate request is unnecessarily sent to this tile). Now, if

we prevent scenario 3 from occurring by introducing a restriction on the programmer,

then we can safely remove the flushing tile as a reader. The new transitions from

exclusive are present in Table 4.2.

The benefit of this optimization is more apparent when designing shared memory

applications. The model for designing shared memory applications usually employs

a single tile that initializes all data structures and shared memory primitives before

the parallel algorithm commences. However, after initialization, the tile has exclusive

52

Table 4.2: State transitions from "exclusive"

State Stimulus Response Next State
exclusive new reader send flush&inv to writer exclusive-pending

exclusive new writer send inv. to new writer exclusive-pending

send flush&inv to writer

exclusive writeback spontaneous writeback - read

clear state (no readers)

access to all addresses. When the algorithm begins running on other tiles, the system

will be bottle-necked as a flood of MDN flush requests are sent to the initializing tile.

To avoid this severe performance degradation, the programmer should take care

to flush & invalidate all global data structures after they have been initialized. In

this manner, when the algorithm commences, the directory table is completely empty

since no tiles are declared as readers or writers. If the above optimization were not in

place, then the initializing tile would be a registered reader of all addresses after the

flush, and a bottleneck would result when other tiles attempt to write to addresses

(although this bottleneck is far less harmful than the case where no flush is executed at

all). The slight performance degradation arises from the imbalance in initial address

ownership, and the bottleneck is prevented by clearing ownership of all addresses.

4.4 Cache-line Reconstruction in Read-Lock

The purpose of a flush & invalidate request is to make an exclusive cache-line globally

available to all user-tiles. Since the EC handler is triggered on clean-to-dirty transi-

tions, the handler is only invoked on the first write to an address, and is uninvoked

on subsequent writes (since the line is already dirty). Thus, although the EC handler

forwards along the newly written data to the appropriate directory tile, if the partic-

ular user-tile is given exclusive access, subsequent modifications to the cache-line will

go un-handled. Now, the motivation behind flushing the address should be clear; the

exclusive tile has a unique version of the address that needs to be distributed.

However, the current system dictates that the state transition out of read-lock-

53

read-lock

read-
read lock- exclusive

yass

xclusive
pending

Figure 4-5: New read-lock-bypass transition

bypass should be exclusive-pending. In other words, when the last reader has inval-

idated in the read-lock-bypass state, the system issues a flush & invalidate response

to the writing tile's EC handler. But given our above discussion regarding the mo-

tivation behind flushing, we observe that this flush is in-fact unnecessary. Since the

writing tile has only made one modification to the cache-line, and since this newly

written data has been forwarded to the directory tile as part of the EC notification,

the directory-tile has all the necessary data to reconstruct the cache-line.

This unnecessary flush request adds a significant amount of latency to the trans-

action, since the flushed data is pushed onto the static network by the memory con-

troller, and may now be queued behind other static network messages. Furthermore,

it introduces more traffic on the static-network, which may lead to more aggressive

buffering and therefore greater overhead when processing other transactions.

The optimized system reconstructs the cache-line in the read-lock-bypass state

when the last reader has invalidated. As in the original system, it still records any

writes made during read-lock-bypass, and appropriately patches the line. An invali-

date is sent to the writing tile, and the new state directly transitions to read. Figure

54

Table 4.3: State transitions from "read-lock-bypass"

State Stimulus Response Next State

read-lock-bypass last inv. ack invalidate sent to writer read
patch-line in RAM, send to readers

read-lock-bypass new reader note request in pending address read-lock-bypass
table

read-lock-bypass new writer send writer invalidate, note read-lock-bypass

I __ Ipatch in pending address table

4.3 depicts the new transition from read-lock-bypass.

4.5 Hot-Forwarding Directory Tile Requests

The original cache-coherence system relied on a system-tile having two distinct roles

as (1) an interrupt controller and (2) a directory. This dual role is necessary due to

the nature in which external MDN interrupts are issued on the RAW architecture;

an interrupted tile has no hardware mechanism through which to detect the source

of its interrupt (the motivation behind omitting this hardware feature stems from its

lack of scalability for larger fabrics of RAW tiles). To address this issue within the

cache-coherence system, an interrupted user-tile contacts a predetermined interrupt

controller to ascertain which directory has outstanding requests for it. Furthermore,

the interrupt controller is responsible for only issuing one interrupt at a time to a

particular tile, and it is also central in determining and resolving deadlock scenarios.

However, since the interrupt controller acts as an intermediary between directory

tiles and user-tiles, it adds another level of indirection in the cache-coherence commu-

nication protocol. When a directory tile wishes to flush and/or invalidate an address

on a specific tile, it must first send a message to the corresponding interrupt con-

troller. The interrupt controller then interrupts the user-tile (if it is not currently in

MDN interrupt), which subsequently acks the controller. Once this ack is received,

the interrupt controller sends the user-tile a list of directory tiles which it must con-

55

user tile interrupt directory
controller

send request t
MDN inte rruPt terrut ctrl

t espond To user-tile i a

deal with possible , d el directory
spoof data i f

on ler ansdd listf
requests

execute request
& ack directory

ack interrupt ctrr. slletanrtheeset te adeof

waiting fr a GDN ak, the inet conrole a edtels fdrector ie

interrupt
ae

Figure 4-6: Original User-Directory Communication Sequence

tact. The user-tile then contacts each directory tile individually, and waits for a list

of requests. When these requests are successfully received & executed, the user-tile

acks each directory tile, and once all directory tiles are serviced, it acks the interrupt

controller and exits the interrupt.

It is fairly clear that issuing a request to a particular user-tile is a process with

relatively high latency. This extensive hand-shaking protocol, as seen in Figure 4-

6, was deemed necessary so as to prevent deadlock on the GDN between system-

tiles [1]. However, one immediate optimization can be made by removing the initial

handshaking process between the interrupt controller and the user-tile. Instead of

waiting for a GDN ack, the interrupt controller can send the list of directory tiles

along with the actual MDN interrupt 2.

The resulting system depicted in Figure 4-7 still employs a relatively lengthy

process for issuing requests. The most straightforward approach to reducing the ex-

2This optirmization leads to a slight complication when handling deadlocks, but a relatively
straightforward fix is possible

56

user tile interrupt directory
controller

Mxe utntrr r send requ Iest to
reques ttinterrupt c te b trl

respond to user-tile, send

indiecton res nt n t e oigi al c m . to sinea detry t ema h ve n ar

deal with possible set correct
spoof data interru st t te

caniact siglohsttfe
ictrdirect requests

execute. reque i~
& ack directort cn

sst corrrect
aci inerrpt nr etrrt sa e

3n e

Figure 4-7: User-Directory Communication Sequence (first-pass optimization)

tent of the handshaking process would involve directory tiles directly forwarding cache

requests to interrupt controllers. The interrupt controller would then be responsible

for providing these requests to the user-tile, essentially removing another level of

indirection present in the original scheme. But since a directory tile may have an ar-

bitrarily large number of requests for a particular tile, two system-tiles may deadlock

as they send these GDN messages to each other. We arethtrifore presented with a

problem of performance vs. correctness. The high performance implementation tends

to fail in some remote circumstances, while the the correct system exhibits signifi-

cantly higher latency for all transactions. As is common in systems development, a

marriage of these two is highly sought after.

The resulting optimization is termed "hot-forwarding", as depicted in Figure 4-8,

since interrupt controllers have the ability to directly forward requests from directory

tiles to user-tiles in certain circumstances. More precisely, a directory-tile can hot-

forward exactly I request at a time for a particular tile, as depicted in the algorithm

in Figure 4-9. Otherwise, if there are outstanding requests in the local table, the

57

user tile interrupt directory
controller quest to

MDN interrupt interrupt ctrect

respond to user-tile & send along with 1
4o hot-fwd requsts hot-fwd rqest

deal with possible set correct
spoof data interrupt state

execute request

& ck nkdiectsettrect

se toor corec
stat

Figure 4-8: User-Directory Communication Sequence utilizing Hot-Forwarding

original system depicted in Figure 4-6 is invoked; the directory tile adds the request

to its outstanding request buffer, and a message is sent to the interrupt controller.

if(ocreq[tile] == 0 && hot-pending[tile] == 0) {
hotforward request to interrupt controller

add request to hot-pending-table

}
if(ocreq[tile] == 0 && hotpending[tile] != 0) {

notify interrupt controller of ocreq

} store ocreq in ocreq-table[tile]

Figure 4-9: Algorithm for Hot-Forwarding

The premise behind hot-forwarding is that directory-tiles will rarely aggressively

send requests to a particular tile. In most circumstances, the time elapsed between

consecutive requests for a particular tile will be greater than the time it takes for

the user-tile to acknowledge the completion of an individual request. When this is

the case, all requests will be sent via the hot-forwarding route. If, however, requests

occur at a faster rate, then they will get batched in the outstanding request table of

the directory tile, and will be sent via the protocol described by Figure 2-5.

58

Chapter 5

Higher-Level Shared Memory

Support

To facilitate the development of shared memory applications, a library of shared

memory and synchronization primitives has been developed. The existing architecture

implemented a directory based cache coherence scheme, through the use of dedicated

system tiles. In this scheme, addresses with bits 25 & 26 set were designated as

shared, and each system tile was responsible for managing a subset of these addresses.

To provide higher level support for application development in the C environment,

shared malloc routines were introduced to provide the proper memory abstraction.

Furthermore, to ease the programmability of distributed shared memory applications,

various parallel primitives such as locks and barriers were implemented.

The proposed architecture utilizes a separate RAW tile as a shared memory con-

troller, which is responsible for processing shared memory and synchronization re-

quests issued by user-tiles (refer to Figure 5-1). User-tiles initiate a request by

issuing a properly formatted GDN message, and possibly waiting for a subsequent

response from the controller. The manner in which the GDN is multiplexed between

user requests, and low-level system messages is a subject of [2].

59

SRE 6R SYTE

Figure 5-1: Shared Memory Controller on RAW fabric

5.1 Shared Memory Controller

The shared memory controller is a stand-alone tile that processes shared memory

& synchronization requests from user-tiles. On a 4x4 RAW fabric, where tiles 3, 7,

11, and 15 are system tiles, tile 14 has arbitrarily been designated as the controller.

Requests are sent to the controller via the GDN, and if necessary, replies are sent to

the tiles via the GDN as well (refer to Figure 5-3. However, since the low-level cache

coherence protocol relies on GDN messages sent from system to user-tiles, the GDN

network must be multiplexed between these two types of messages. For the remainder

of this discussion, we will designate GDN messages issued via system tiles as "system"

messages, and GDN messages issued from the controller as "user" messages.

As part of managing resource allocation, the controller writes 32-byte headers

to regions of shared memory. Furthermore, it zeros out newly allocated regions of

memory, and promptly flushes & invalidates that region. Since user-tiles are restricted

from reading/writing to these header regions, the set of shared addresses the controller

modifies is disjoint from the set manipulated by user-tiles. Thus, the controller is

declared as exempt from the cache-coherence protocol, and is unregistered with the

60

address/
source
chc private requests,

or requests from

shared requests directory OR shared

rnm user-tiles memouy controller

...... ... handler 48 8

RAW Memory Controller

Figure 5-2: Modified FPGA

system tiles. Figure 5-2 depicts the modified memory controller in context with the

shared memory controller.

5.1.1 Controller-to-Tile GDN Communication

Integrating the shared memory controller into the existing cache-coherence system

results in complications, since GDN contention arises between directory tiles issuing

low-level "system" messages, and the controller issuing "user "messages. User-tiles

that are waiting for "system" messages may instead receive "user" messages, resulting

in a misinterpretation of the incoming data. The reverse problem is not possible, since

"system" messages only arrive when the user-tile is already in the MDN handler. Note

that since the controller is exempt from the cache coherence protocol, it can receive

"7user"7 messages without complication.

One potential solution to the above issue is to simply prevent GDN contention,

by preventing the possibility of receiving a "user" message when in the MDN han-

dler. This could be done by disabling interrupts when expecting a "user" message.

Although straightforward, this potential solution harbors a deadlock condition; the

controller may not send a "user" message to this tile until the tile has serviced the

pending MDN interrupt.

61

3) cor troller sends
GDN ply

1) shmallocO results in
GDN request sent

FPGA

2) controller directly
manipulates shared
memory

Figure 5-3: User Tile & Shared Memory Controller Communication

Consider the following deadlock scenario involving barriers:

1. Tile 1 exclusive on A, and waiting at barrier 0 (interrupts disabled until "user"

message received to exit barrier)

2. Tile 2 stalls on LW A, prior to executing barrierO

3. MDN flush & invalidate sent to Tile 1

In this specific scenario, Tile 2 will not execute barrier () until Tile 1 does a flush

& invalidate. However, Tile 1 will not flush & invalidate until it receives a "user"

message and exits the barrier. Figure 5-4 clearly illustrates the cyclical dependency

that results in this deadlock.

Therefore, to prevent deadlock from occurring, it is necessary that user-tiles have

the ability to service MDN requests while waiting for a "user" message. The system

is now faced with the aforementioned problem that a "user" message may infact

arrive while servicing an MDN interrupt. It is therefore necessary for the GDN to be

multiplexed between "user" and "system" messages, and this is achieved by having

62

FPGA

MDN interrupt for GDN read (stalling) Controller issues

user X finishes for user X GDN message to X

directory granting lock releaseo or
access to addr. A SW(A) or LW(A) 4 barriero executed

for user Y Iopee -n by user Y

Figure 5-4: Stalling GDN Reads: Deadlock with Shared Memory

Controller

"user") messages begin with the word OxFOOO, which is distinct from the first word of

all "system" messages. In this manner, user-tiles can immediately distinguish the two

types of messages. If a "user" message does infact arrive during an MDN interrupt,

then a flag is set and the message is stored in a buffer. Now, the process of waiting

for a GDN "user" message involves continuously polling both GDNBUF and the

aforementioned flag.

while(1) {
interrupt s-off 0;
if (flag == 1)

interrupts_ on(;

return buffer;

if (GDNBUF has msg)

interrupts-on(;

return $cgni;

interruptson(;

}

Notice that interrupts are continuously turned on and off, and that GDNBUF

is polled in a non-blocking fashion. In this manner, the system is able to service

MDN interrupts while in the process of waiting for a "user" message, thus averting

the above deadlock condition.

5.1.2 Tile-to-Controller Communication

All messages sent from user-tiles to the controller are formatted as follows:

63

[OPCODE.TILENUM] [1st argument] ... [nth argument]

Since the first word is an opcode, the controller knows exactly how many argu-

ments to read off the GDN for the particular request. It is also unnecessary for this

message to be prefixed by the word OxFOOO since the controller isn't a registered tile

in the cache-coherence system, and will thus never receive any "system" messages.

5.2 Shared Memory Allocation

Uniprocessor systems have memory allocation routines that manage memory re-

sources on the heap. The most common implementation of malloc maintains a free-list

that tracks unallocated chunks of memory. When a new chunk of memory needs to

be allocated, the malloc routine traverses the free list and finds a chunk that is either

the best-fit or first-fit (the former of which has lesser memory fragmentation). In a

distributed system, besides this basic level of resource allocation, the ability to allo-

cate the same chunk of memory among distinct processors is required. To implement

such a system, each allocated chunk needs to be associated with a shared memory

identifier, so that subsequent malloc calls with the same identifier return the same

chunk.

void* shmalloc(int shmid, int size) If another process has not called this rou-

tine with the same shmid, then a newly zeroed out chunk of size size is allocated,

and its address is returned. Otherwise, the address of an already allocated chunk

associated with this shmid is returned. Note that if the size is not a multiple of 32,

it is rounded up to the next multiple so that the block is cache-aligned.

void* shumalloc (int size) a newly zeroed out chunk of size size is allocated,

and its address is returned.

void shf ree (void *addr) when this function is invoked by all owners of addr, the

chunk is returned to the free-list, so that subsequent calls to shmalloc may utilize this

newly freed memory.

64

OxO SIZE OF PREVIOUS CHUNK
0x4 SIZE
0x8 BIT-VECTOR OF OWNERS
OxC SHARED MEMORY IDENTIFIER

0x10 UNUSED

0x2 I DATA WORD

0x20 + [SIZE/32J*32

Figure 5-5: Memory Footprint of Allocated Chunk

OxO SIZE OF PREVIOUS CHUNK
0x4 SIZE
0x8 PTR TO NEXT FREE CHUNK
OxC PTR TO PREVIOUS FREE CHUNK

OxlO UNUSED

0x20 FREE DATA WORD

0x20 + LSIZE/32J*32 ...

Figure 5-6: Memory Footprint of Free Chunk

void shm-init 0 this function needs to be called once, prior to invoking any shared

memory functions. It is responsible for initializing the free-list.

To implement these various resource allocation routines, each chunk (both free

and allocated) has a header containing various metadata. The headers of both types

of chunks store the chunk size in bytes, as well as the size of the previous chunk. In

addition, a free chunk stores pointers to the next and previous free chunks, whereas

an allocated chunk stores the shmid and a bit vector of all owners of the shared chunk

1. It is important to note that these headers are 32 bytes, and thus occupy an entire

cache-line. In this manner, there is no cache contention between the header and the

actual data following it.

'larger RAW fabrics will require some minor modification: more storage will be necessary for
this bit-vector

65

5.3 Parallelizing Primitives

Distributed shared memory algorithms require basic synchronization primitives so

that multiple processes may access and modify shared memory in a sequential manner.

Furthermore, synchronization primitives allow programmers to place restrictions on

program flow. Support for these primitives has been provided in the form of locks

and barriers. The primitives lock-init and barrier are blocking, since a certain set

of conditions needs to be satisfied before the controller acknowledges the request.

5.3.1 Locks

Queueing locks were implemented by having a lock manager executing on the shared

memory controller. Each lock is designated by a 32-bit lockid. The controller main-

tains a hashtable whose keys are lockid's, and whose values are bitvectors correspond-

ing to user requests for the particular lock. When a user-tile attempts to acquire a

lock, its request is noted in the corresponding bitvector. Only when the bitvector is

empty, or when this particular bit has been chosen at random after another tile has

released the lock, will the controller message the tile signalling that the lock has been

acquired.

void lock-set (int lockid) this function blocks until the lock has been acquired

void lock-release(int lockid) the lock associated with lockid is released, so

that other processes that have requested this lock may acquire it.

int lock-test (nt lockid) this non-blocking function returns 1 if the lock is cur-

rently held by another process, and 0 otherwise.

5.3.2 Barriers

Barriers are important in maintaining the program flow of distributed shared memory

algorithms. It ensures that all processes have reached a certain point in the program

66

execution, before proceeding any further. A barrier manager running on the shared

memory controller records which user-tiles have hit the barrier, and once all registered

tiles have done so, sends an acknowledgement to each tile. Each tile in turn waits for

the ack from the controller, before exiting the barrier function.

barrier-init (nt barrierID) this function must be called once, prior to execut-

ing barrier () on any tile. BarrierID is a bit-vector specifying which tiles will be

participating in the barrier process.

barrier(void) this function blocks until all user-tiles specified by barrier-id have

executed barrier().

5.4 Low-level Issues

The following section examines the critical details pertaining to both the development

process and the underlying runtime environment.

5.4.1 Runtime Environment Modifications

Since an address is declared shared if bits 25-26 are high, the upper 25% of an indi-

vidual tile's address space is reserved for shared memory. Therefore, the C runtime

environment needs to be modified to reflect this new upper bound on a tile's address

space. In this manner, the stack pointer will be initialized to just below the shared

region (e.g. Tile 0 initializes its stack ptr to OxO5FFFFFF), and the local malloc

routine will be correctly bounded. Figure 5-7 shows the new memory footprint for

an individual tile.

5.4.2 Binary Rewriter & Programmer Restrictions

The shared memory system currently dictates certain programmer responsibilities

when designing applications. However, these responsibilities have been relaxed when

67

- I m.111..Im El EU

Shared memory
(32 MB)

STACK

Local memory
(96 MB)

HEAP

Figure 5-7: Memory Layout of an Individual Tile

developing in C, since a custom binary rewriter modifies the compiled object code to

ensure correctness.

LW hazards The two instructions following a LW must be repeatable. This re-

striction is necessary because of the manner in which deadlocks are handled; after a

tile has received spoofed data, the pending MDN interrupt only fires two cycles later.

Thus, when the PC is reset to the offending LW instruction, the two instructions

following it must be repeated. Furthermore, the address and data registers of the LW

instruction must be distinct, so that the interrupt handler may invalidate the spoof

data. The binary rewriter ensures this restriction by inserting 2 NOP's after every

LW instruction, and properly rearrange the code when it encounters load-words of

the form LW X, Y(x).

SW hazards When a cache line is dirtied after a SW instruction, the event counter

interrupt may take up to 6 cycles to fire. The event counter handler then examines the

offending SW instruction, extracting the address and data from the proper registers.

Thus, the following restrictions are required:

1. no branches may be taken in the 6 cycles following a SW

2. the SW address and data registers must not be modified in the 6 cycles following

68

the SW

The binary rewriter ensures these restrictions are met by inserting 6 NOP's after

every SW instruction.

5.5 Designing Shared Memory Applications

Distributed shared memory applications tend to follow a general design paradigm.

The global data structures at the core of all shared memory applications are usually

initialized by a single-tile, and tiles synchronize their manipulation of these data

structures through locks and barriers. Although there is a large degree of flexibility

in designing shared memory applications, the application designer must be sure to

adhere to certain program restrictions as well.

Programmer Restrictions It is important to note that shared memory applica-

tions that utilize the static or dynamic networks violate the shared memory design

paradigm, as they are bypassing their natural communication pathway. Not only is it

conceptually incorrect for user-tiles to initiate communication via the network, but it

is also forbidden in the current cache-coherence system. The low-level system requires

exclusive ownership over the MDN, GDN, and static networks; the simple introduc-

tion of the shared memory controller resulted in a plethora of complications related to

network multiplexing and deadlock scenarios. However, it is conceivable that future

support for GDN communication be made possible, with slight modification to the

gdn-user-receive and gdn-user-send functions.

A producer-consumer model can be used to simulate point-to-point messages be-

tween user-tiles, as detailed in Figure 5-8. In this model, a shared memory circular

buffer is read from and written to by different user-tiles. The producer is responsible

for writing into the buffer, and updating a tail pointer that points to the first unused

word. Similarly, the consumer reads from the same buffer, and increments the head

pointer which points to the first unread message. Since this mechanism allows tiles

to asynchronously send messages to one another, usage of the GDN network becomes

69

void send(char c) {
*tail = c;
tail = (tail + 1) % SIZE;

}

char receive() {
char c;
while(head == tail) { }
c = *head;
head = (head + 1) % SIZE;
return c;

}

Figure 5-8: Shared Memory Producer-Consumer Model

unnecessary.

5.5.1 General Programming Model

The general paradigm for designing shared memory systems employs a single-tile (e.g.

Tile 0) that initializes all global data structures used by the application. All tiles that

intend to manipulate these global data structures must make a shmalloc call with the

corresponding shared memory identifier. To synchronize which identifier is used for

what data structure, a local variable can keep track of the next unused identifier, and

should be incremented whenever a call is made to shmalloc. Care must be taken so

as to ensure that all tiles are passing the same SHMID for a particular data structure.

The following segment of code depicts the allocation of shared data structures.

int SHMID = 0;
struct global_1 *ptrl = shmalloc(SHMID++,sizeof(struct global_1));
struct global_2 *ptr2 = shmalloc(SHMID++,sizeof(struct global-2));
struct global_3 *ptr3 = shmalloc(SHMID++, sizeof(struct global_3));

After these data structures are allocated, Tile 0 is responsible for properly initial-

izing them while the other tiles stall at a barrier. If the member field of a particular

70

global structure is a primitive (e.g. int, f loat, char, double), then Tile 0 directly

writes to the field. If, however, the member field is a pointer to shared memory, then

Tile 0 invokes shumalloc. Recall that shumalloc does not require a shared memory

identifier as an argument, since it always returns a newly allocated location in global

memory. Furthermore, note that although this is a new global data structure being

allocated, the other tiles do not need to invoke shmalloc as well. This is because

a reference to this new location will be stored in the original global data structure,

which is accessible by all tiles. The following segment of code depicts the initialization

of data structures, as well as the invocation of shumalloc.

if(TILENUM == 0) {
global-struct->integerl = int_var;

global-struct->floatl = floatvar;

globalstruct->internal struct =
(struct internal*) shumalloc(sizeof(struct internalstruct));

}
barrier (;

Now, the motivation for shumalloc is more clear; shmalloc is invoked by ALL

TILES for top-level global data structures, while shumalloc is invoked by individual

tiles for nested structures.

The remaining tiles will only resume execution after Tile 0 has initialized all data

structures and subsequently hit its barrier.

Locks Locks are necessary when tiles need to perform atomic transactions. For

example, consider the case where 12 tiles attempt to obtain unique identification

numbers from 1-12; the most straightforward implementation is for each tile to read

a global integer, and subsequently increment it by 1. However, the read and write

should be atomic, so the address needs to be locked during the duration of the trans-

action. In this case, the lockid argument to the lock-set function can simply be the

address of the global variable itself. Infact, the lockid can almost always be the

shared memory pointer pertaining to the atomic transaction; unlike the shmalloc

71

function which requires the programmer to ensure all calls across tiles use the same

identifier, the lock-set and lock-release arguments can be determined at run-time.

int *num = shmalloc(SHMID, sizeof(int));
lock-set(num);

myNum = *num

*num = *num + 1;
lockrelease(num);

Barriers Barriers are necessary whenever the program flow is partitioned into sep-

arate phases. They ensure that a particular phase has been completed among all

tiles, before proceeding to the next. Barriers, in essence, are a specialized mechanism

to broadcast information to all tiles.

The Barnes-Hut particle simulation exemplifies the need for barriers in distributed

shared memory applications (see Section 6.1.2). The particle-simulation application

constantly proceeds in the following two phases:

1. insert all particles into a quad-tree based on their spatial positions.

2. calculate the new forces on each particle, and correspondingly recalculate their

positions.

Only after all particles have been inserted in the quad-tree, can the application

proceed to calculate the inter-particle forces. Thus, barriers are necessary to impose

this restriction among all tiles.

72

Chapter 6

Applications & Performance

Results

A suite of shared memory applications was developed for the purpose of obtaining a

quantitative evaluation of the cache-coherence system. The various shared memory

primitives developed greatly eased the programmability of these applications. One

application for the system was coded from scratch, and was relatively straightforward

to implement given the problem description. Five other applications were taken

from Stanford's Parallel Applications for SHared Memory (SPLASH-2) [9], and were

relatively effortless to port. The calls associated with locks and barriers had to be

ported to our libraries, and the initialization of global data structures had to be

explicitly executed on a single tile.

Shared memory applications that ranged from 2000-3000 lines of code only re-

quired 20-30 minutes to successfully port to the RAW architecture. The ease in

portability attests to the power of the shared memory primitives developed. These

primitives, along with the favorable system performance on a variety of applications,

reveal that shared memory has become a practical alternative to message-passing.

73

6.1 Application Profiling

The shared memory applications developed were run on a varying number of tiles, to

determine their scalability on the system. The cache size in the BTL simulator was

increased to 512 kilobytes, so that cache evictions did not contribute to performance

degradations. Furthermore, performance statistics were only collected after the first

couple of iterations within the application, so as to reduce the effect of cold-starts.

The uniprocessor statistics were collected by compiling the application with no shared

memory support - the binary rewriter was not run on the compiled object code, and

the original FPGA logic was used.

6.1.1 Jacobi Relaxation

Jacobi Relaxation is an iterative method that, given a set of boundary conditions,

finds solutions to differential equations of the form V 2 A + B = 0. The solution to

the equation is found by repeatedly applying the following iterative step:

To determine the next value of a particular element, the value of the four neighbor-

ing cells need to be retrieved. The solution is achieved when the algorithm converges

on a particular matrix.

Table 6.1: 72x72 Jacobi Relaxation

Tiles Cycles Speedup over Speedup over
1-Tile Uniprocessor

Uniprocessor 2760773
1 4132000 0.6681
4 1890000 2.1862 1.4607
8 1110635 3.7203 2.4857

Partitioning of Data

The N x N matrix is represented as a two-dimensional array in shared memory. Given

P processors, each processor works on an (N/P) x (N/P) block of the matrix. Implicit

74

communication between processors only occurs when computing the new value for a

cell along the edge of a block. Since the values of all neighboring cells need to be

retrieved, cells belonging to other processors must be accessed. Thus It should be

evident that this algorithm exhibits high locality, since given a BxB block size, an

individual processor can compute (B - 2) x (B - 2) entries from entirely local data.

Table 6.1 shows that the application indeed scales well on a 72x72 matrix.

6.1.2 Barnes-Hut

This application simulates the interaction of N bodies in a gravitational system. Every

body is modelled as a particle that exerts forces on all other bodies within the sys-

tem. An iterative method is used to compute the net force on each particle, and

to correspondingly update its position. If all forces are computed within the system,

then the problem has a time complexity of O(n 2). However, the barnes-hut algorithm

requires only O(n*log n) complexity, and thus makes the simulation of large systems

practical [7].

Table 6.2: Barnes-Hut 256 particle simulation

Tiles Cycles Speedup over Speedup over
1-Tile Uniprocessor

Uniprocessor 38061464

1 58064952 1 0.6554
2 33470724 1.7347 1.1371
4 19777125 2.9359 1.9245
6 16004382 3.6280 2.3781

The particular simulation developed operates in two dimensions, and uses a hier-

archical quad-tree representation of space. The root node represents the entire space,

and the tree is built by sub-dividing a cell into four children as soon as it contains

more than 1 particle. Thus, the leaves of the tree represent the actual particles, and

the tree is adaptive in that it extends deeper in regions that have higher particle

densities.

75

To compute the force of an individual particle, the tree is traversed starting at

the root node. The algorithm proceeds as follows: if the center of mass of the cell

is far enough from the particle, then the cell is approximated as a single particle;

otherwise, the individual subcells are examined. In this manner, it is unnecessary to

calculate all pair-wise interactions. Most of the program execution is spent in this

partial traversal of this tree.

Data Structures

Two arrays are maintained for the purpose of representing the underlying tree: one

array contains the actual leaves, while the other consists of the internal cells. Own-

ership of these particles is assigned to processors to ensure both load balancing and

data locality. The former is achieved by calculating an estimated work count for each

particle, and assigning an equal amount of total work to each processor. The latter

is achieved by exploiting the physical locality of particles; partitions are physically

contiguous.

Program Structure

The barnes-hut algorithm continually executes the following loop. The majority of

time is spent in step 4, where the forces are computed by partially traversing the tree.

1. Construct octree from particles

2. Find center of mass of cells

3. Partition particles among processors

4. Compute forces on particles

5. Advance particle positions and velocities

6.1.3 LU Factorization

The LU algorithm factors a dense N x N matrix into the product of upper and lower

triangular matrices. The N x N matrix is divided into (N/B) * (N/B) blocks, and

76

ownership is assigned to processors using a 2-D scatter decomposition [9].

Table 6.3: 128x128 LU Factorization

Tiles Cycles Speedup over Speedup over
1-Tile Uniprocessor

Uniprocessor 60889477.08 1
1 65472556 .93
2 39269280 1.6673 1.5506
4 22291044 2.9372 2.7312
8 14705762 4.4522 4.1405

6.1.4 FFT

The FFT algorithm is a complex 1-D version of the kernel presented in [9]. The n

complex data points to be transformed are stored in a fixv/iz matrix. Each processor

is assigned a contiguous submatrix of size n/p* n/p, and all-to-all communication

occurs in three matrix transpose systems [9].

Table 6.4: 1024-pt FFT Transformation

Tiles Cycles Speedup over Speedup over
1-Tile Uniprocessor

Uniprocessor 2190000
1 3296183 0.6644
2 2011505 1.6386 1.0887
4 1181020 2.7909 1.8543
8 865077 3.8102 2.5315

6.1.5 Ocean

The Ocean application simulates large-scale ocean movements based on eddy and

boundary currents. Wind provides the external force, and the frictional effects from

the ocean walls and floor are included. The simulation is run until the eddies and

mean ocean flow stabilize.

77

The ocean is simulated as a square grid of NxN points. During each timestep

of the simulation, a set of spatial partial differential equations are setup and solved.

The continuous functions are first transformed into finite difference equations, which

are then solved on two-dimensional grids representing horizontal slices of the ocean

basin.

The ocean basin is divided into physical subdomains that are assigned to each

processor. The algorithm exhibits high locality, in that each processor only accesses

grid points within its subdomain and those of its neighbors. Furthermore, the only

data shared lies along the boundaries of these subdomains. Thus, in a similar fash-

ion to Jacobi Relaxation, the communication-to-computation ratio can be arbitrarily

decreased by increasing the domain of the problem.

Future Work

Although the application has been successfully ported, the program does not fit within

the instruction cache provided in BTL. Software instruction caching was therefore

attempted, but compilation failed due to unknown reasons. Further work is necessary

to bring this application to working status.

6.1.6 Radix

The integer radix sort is based on an iterative method, and performs one iteration

for each radix r digit. Each processor examines its assigned keys and computes a

local histogram, which is subsequently accumulated into a global histogram. Next,

the global histogram is passed on to each processor, so that the local keys can be

permuted into a new array for the next iteration [9].

Future Work

The performance results for radix are unsatisfactory since the application fails to

scale with an increasing number of tiles. This may be a result of the initially high

communication-to-computation ratio required. Although larger data-sets may well

78

be the solution to observing better scaling, they would require an inordinate amount

of time to simulate on BTL. Thus, profiling this application on the hardware itself

may be the only practical alternative.

6.1.7 Discussion of Results

There is a noticeable performance degradation when running an application on a

single-tile with shared memory support, as opposed to a uniprocessor. This discrep-

ancy arises even after 1. the cache size has been increased to prevent cache evictions,

and 2. the effect of cold-start has been accounted for. The last two conditions imply

that the single tile will never interface with the system-tiles. Thus, the degradation

in performance arises as a sole result of the programmer restrictions imposed by the

binary rewriter. The current rewriter is primitive in that it inserts 6 NOP's after

every SW, resulting in a noticeable drop in processor utilization. A more sophisti-

cated rewriter would actually examine the instructions following a SW in the compiled

object code, and only insert NOP's if the restrictions in Section 5.4.2 are violated.

The speedups obtained for the various applications appear to initially linearly

scale with the number of tiles. However, as the number of tiles increases, the mar-

ginal improvement in performance slightly decreases - this is a result of the increased

communication-to-computation ratio. The data-sets used for the applications yielded

a shared memory overhead of approximately 60%; that is, N tiles approximately had

an N/2 speedup over a uniprocessor. If larger data-sets were used, the shared mem-

ory overhead could be reduced to an arbitrarily small amount, due to the decreased

communication-to-computation ratio. However, since these applications were simu-

lated on BTL, large data-sets would require an exorbitant amount of time to execute.

The performance results make it clear that shared memory implementations of

parallel applications are practical on the RAW architecture. And since shared mem-

ory applications tend to have greater programmability than their message-passing

counterparts, the motivation for using shared memory is even more pronounced.

79

80

Chapter 7

Conclusion

This research served to expand the capabilities of the low-level cache coherence system

previously provided in [5] along three dimensions: (1) correctness, (2) programma-

bility, and (3) performance. Although the system previously designed was noticeably

the first of its kind, it lacked the maturity to make shared memory a compelling de-

sign paradigm for application development on the RAW architecture. By addressing

the aforementioned issues, this thesis successfully demonstrates that shared memory

applications are practical on RAW.

The successful execution of various load-intensive applications suggests that many

issues relating to the correctness of the low-level coherence protocol have been ad-

dressed. The initial protocol was sound in its design, but the system had to be tailored

to be more aware of the underlying hardware, as well as accommodative to various

race conditions.

The higher-level of shared memory support, provided by the shared memory con-

troller and library of shared memory primitives, is evident in the ease by which

SPLASH applications [9] were ported to the system. Low-level coherence mecha-

nisms and programmer restrictions are now abstracted away, paving the way for

rapid application development.

The performance results suggest that the system scales very well with an increasing

number of tiles, and that shared memory applications provide an unmistakable benefit

over uniprocessor implementations. Furthermore, most of the applications profiled

81

will exhibit more optimal scaling when larger data sets are used.

This thesis has successfully shown that the increased programmability and perfor-

mance provided by shared memory makes it a compelling design paradigm on RAW.

The mature level of support has made shared memory ripe for comparison with other

systems on RAW, such as the software-based message passing system [6]. The suc-

cessful deployment of the system should highlight the power and flexibility of the

underlying RAW architecture.

82

Appendix A

System Code

All code pertaining to the shared memory controller, shared memory libraries, and

low-level cache coherence protocol are provided below.

A.1 Shared Memory Controller Code

The following code is loaded onto the shared memory controller. The controller con-

tinually polls the GDN to check for incoming requests, then performs the appropriate

action, and finally issues GDN responses if necessary. It invokes various functions

provided by the dshm, dlock, and dbarrier libraries.

#include "shmconstants.h"
#include "dshm.h"
#include "dlock.h"

#include "dbarrier.h"

#include "raw.h"

#include "rawuser.h"

void begin(void) {

int r, tile, lock, key, size, addr, header;

// initialise shared memory address space

shm_initO;

// initialise locks

83

lockinit(301);

while(1) {
// receive command in OPCODE I TILENUM format
r = gdnreceiveo;

// extract opcode and tile

tile = r & Ox7F;
header = constructdynhdr(O, 1, 0, 0, 0, (tile&0xC)>>2, tile&Ox3);

switch(r & 0xF00) {
case LOCK.RELEASEOP:

lock = gdn-receiveo;
lockrelease(tile, lock);

break;

case LOCK-SETOP:

lock = gdn-receiveo;

lockset(tile, lock);

break;

case LOCK-TESTOP:

lock = gdnrreceiveo;
lock-test(tile, lock);

break;

case MALLOCOP:

key = gdn-receiveo;

size = gdn-receiveo;

// add "1" to designate shared

addr = shmalloc(key, size, tile) + 1;
// send response with addr back

raw-test-pass-reg(addr);

gdn-usersend(tile, addr);

break;

case FREEOP:

addr = gdn-receiveo;
shfree(addr, tile);

break;

case BARRIEROP:

barrier(tile);
break;

case BARRIERINITOP:

key = gdn-receiveo;

barrierinit(key);

84

break;

default:
break;

}
}
return;

}

A.1.1 DShm Library

This code is utilized by the shared memory controller to initialize, allocate, and de-

allocate shared memory.

#include "dshm.h"
#include "raw.h"

struct mallocchunk {
int size-prev;
int size;
struct mallocchunk

struct mallocchunk

*fd_owners;
*bkshmid;

typedef struct mallocchunk malloccchunk;

#define PREVINUSE Ox1 #define HEAD 0x6000000 #define HDRSIZE 32

#define SIZESZ 4

#define mem2chunk(mem) ((mallocchunk*)((char*)(mem) - HDRSIZE))

#define chunk2mem(p) ((char*)(((char *)(p)) + HDRSIZE))

#define ishead(p) ((((int)p) & Ox6FFFFFF) == 0x6000000) #define

is.tail(p) ((((int) (((char *)p) + (p->size & PREVINUSE))) &

Ox7FFFFFF) == OxOOOOOOO)

#define nextchunk(p) ((mallocchunk*)(((char*) p) + (p->size &
~PREVINUSE) + is-tail(p)*0x6000000))

85

#define prev-chunk(p) \ ((malloc_chunk*)(((char*) p) -

(p->size-prev) - ishead(p)*0x6000000))

#define inuse(p)\ ((((mallocchunk*) (((char*) (p))+((p)->size &
~PREVINUSE) + is_tail(p)*0x6000000))->size) & PREVINUSE)

/* extract inuse bit of previous chunk */

#define prev.inuse(p) ((p)->size & PREVINUSE)

/* set/clear chunk as in use without otherwise disturbing */

#define set-inuse(p)\ ((malloc-chunk*)(((char*)(p)) + ((p)->size &
~PREVINUSE) + is_tail(p)*0x6000000))->size I= PREV_INUSE

#define clear-inuse(p)\ ((mallocchunk*)(((char*)(p)) + ((p)->size
& ~PREVINUSE) + is-tail(p)*0x6000000))->size &= ~(PREVINUSE)

/* check/set/clear inuse bits in known places */

#define inusebitatoffset(p, s)\ (((malloc-chunk*)(((char*)(p))
+ (s)))->size & PREVINUSE)

#define setinusebitatoffset(p, s)\

(((malloc-chunk*)(((char*)(p)) + (s)))->size J= PREVJINUSE)

#define clearinusebitatoffset(p, s)\

(((mallocchunk*)(((char*)(p)) + (s)))->size &= ~(PREV-INUSE))

#define chunksize(p) (p->size & ~PREVINUSE)

#define sethead(p, s) ((p)->size = s)

/* Set size at head, without disturbing its use bit */

#define setheadsize(p, s) ((p)->size = (((p)->size &
PREVINUSE) I (s)))

#define setfoot(p, s)\ (((malloc_chunk*)(((char*)(p)) + (s) +
istail(p)*0x6000000))->size-prev = (s))

86

#define chunkatoffset(p,s) ((mallocchunk *)(((char*)(p)) +
(s)))

#define unlink(p, bk, fd) \ {
bk = p->bk.shmid; \
fd = p->fd-owners; \
fd->bkshmid = bk; \
bk->fdowners = fd; \

} \

#define insert(p, bk, fd) \ {
bk->fdowners = p; \
p->bk-shmid = bk; \
fd->bk_shmid = p; \
p->fd-owners = fd; \

} \

mallocchunk *top;

void checkinusechunk(mallocchunk *p, int tile) {
int mask = (1<<tile);

//make sure it is a shared mem address

//assert(((((int)p)>>26) & 1) && ((((int)p)>>25) & 1));

//assert(inuse(p));

//assert(((int)p->fdowners) & mask);

}

void clearchunk(mallocchunk *p) {
int *i;

int *mem = (nt *) chunk2mem(p);
int *mem-end = (nt *)((int) mem + chunksize(p) - 32);

for(i = mem; i < memend; i++) {
*i = 0;

}
II now, flush & invalidate the data

II (to eliminate incoherence w/ this tile)
rawflushcacherange(mem, chunksize(p) - 32);

rawinvalidatecache-range(mem, chunksize(p) - 32);

}

// initialise free-list

void shminit() {

87

int i, addr;
mallocchunk *tmp, *p;

tmp = 0x6000000+15*0x8000000;
//create doubly-linked circular free-list
for(i=O; i<16; i++) {

addr = 0x6000000+i*0x8000000;
p = (malloc-chunk*)addr;

p->size = 0x2000000;
p->size-prev = 0x2000000;

//back link

p->bkshmid = tmp;
//forward link

p->bkshmid->fd_owners = p;

tmp = P;
}

top = (malloc-chunk*) (0x6000000+15*0x8000000);

top->fdowners = 0x6000000;
return;

}

void *shfree(const void *shmaddr, int tile) {
mallocchunk *p, *next, *prev, *bk, *fd;

int sizeprev, sz, mask;

if(shmaddr == 0)
return;

//MALLOCLOCK

p = mem2chunk(shmaddr);
checkinusechunk(p, tile);

sz = p->size & ~PREVINUSE;
next = nextchunk(p);

if(next == top && !istail(p)) {
//consolidate with top

sz += next->size & ~PREVINUSE;

if(!(p->size & PREVINUSE) && !ishead(p)) {

88

//first consolidate backwards

sizeprev = p->size-prev;
p = chunk-at-offset(p, -sizeprev);

unlink(p, bk, fd);

sz += sizeprev;

}

unlink(top, bk, fd);

insert(p, top->bkshmid, top->fdowners);

sethead-size(p, sz);

// can't call setfoot because "top" points to

// ending region of shared mem

top = p;

return;

} // if(next == top)

//clear inuse bit

clearinuse(p);

if(!(p->size & PREVINUSE) && !is-head(p)) {
// consolidate backwards

sizeprev = p->size-prev;
p = chunkatoffset(p, -sizeprev);
sz+= sizeprev;

unlink(p, bk, fd);

}

// must prematurely set-headsize so the following call

// to 'istail' executes correctly

sethead-size(p, sz);

if(!inuse(next) && !istail(p)) {
// consolidate forwards

sz+= next->size & ~PREVINUSE;

unlink(next, bk, fd);

}

sethead-size(p, sz);

set_foot(p, sz);
insert(p, top, top->fd-owners);

}

I/ returns the shmid of a newly allocated block

89

int shmalloc(int key, int size, int tile) {
mallocchunk *p, *q;

mallocchunk *fd;

mallocchunk *bk;

// add malloc overhead to obtain actual size, and align

// to cache boundary

if(size % 32 != 0)

size += 32 - size % 32;

size += HDRSIZE;

// add random spacer, for better load-balancing

size += (raw-get-statusCYCLELO() % 4) * 32;

p = (mallocchunk *) HEAD;

while(p!= top && (!inuse(p) 11 (inuse(p) && (p->bk_shmid ! key)))) {
p = nextchunk(p);

}

if(key != -1 && p != top && inuse(p) && p->bk-shmid == key) {
// this key has already been allocated, so add it to 'owners'

p->fdowners = ((int) p->fd-owners) I 1<<tile;
return chunk2mem(p);

}

else {
// actually allocate the memory by traversing the free-list.

// if chunksize(p) == size then we have an exact fit.

// otherwise, chunksize(p) must be greater than size+MINSIZE,

// because we must create a new free block of MINSIZE.

for(p = top->fdowners ; ; p = p->fd-owners) {
// exact fit
if((chunksize(p) == size) && p != top) {

unlink(p, bk, fd);

p->bkshmid = key;
p->fdowners = 1 << tile;

set-inuse(p);

clearchunk(p);
return chunk2mem(p);

I
// remainder present

90

else if((chunksize(p) > size)) {
q = chunkatoff set(p, size);

// if we are allocating in the top block, then top

// moves to the remainder of whats left.

if(p == top)

top =q;

sethead(q, chunksize(p) - size);

setfoot(q, chunksize(p) - size);

sethead-size(p, size);

set_foot(p, size);
clearinuse(q);

setinuse(p);

unlink(p, bk, fd);
insert(q, p->bkshmid, p->fd-owners);

p->bk-shmid = key;

p->fd-owners = 1 << tile;

clearchunk(p);

return chunk2mem(p);

}
if (p == top) break;

} // for

}
//malloc f ailed
while(1) { }
return 0;

}

A.1.2 DLock Library

This code is utilized by the shared memory controller to provide locking functionality

for user-tiles.

#include "dlock.h"

91

#include "raw.h"

#include "rawuser.h"

#include "hashtable.h"

#include "raw.h"

hashtable *lockTable;

void lockjinit(int numlocks) {
lockTable = hashtableconstruct(numlocks);

}

void lockrelease(int tile, int lock) {
int n, i, val;

// mask out the releasing user

val = hashtable-getkey(lockTable, lock);
val &= ~(1<<tile);

hashtablesetkey(lockTable, lock, val);

// randomly choose a pending request, by examining the

// number of requests, and comparing it to the cycle count

if(raw-popc(val) == 0) return;

// n is a random # between 1 and total-tiles

n = (raw-get-status CYCLELO() % raw-popc(val)) + 1;

1 = -1;

while(n>0) {
j++;

if(val & (1 << i))
n--;

}

// send positive acknowledgement of 1

gdn.user-send(i, 1);

return;

}

void lock.set(int tile, int lock) {
int header;

int val;

val = hashtable-getkey(lockTable, lock);

92

if(val == 0) {
gdn-user-send(tile, 1);

}
// OR request in

hashtablesetkey(lockTable, lock, val I 1 << tile);

}

void locktest(int tile, int lock) {
int header;

int val = hashtable-get-key(lockTable, lock);

gdnuser-send(tile, val == 1);

// OR request in

hashtablesetkey(lockTable, lock, val 1 1 << tile);

}

A.1.3 DBarrier Library

This code is utilized by the shared memory controller to provide barrier synchroniza-

tion for user-tiles.

#include "barrier.h"
#include "rawuser.h"

#include "raw.h"

int init = 0;

// bit vector of all tiles currently at barrier

int barrierhit = 0;

// bit vector of all tiles using barrier

int barriermask = 0x7777;

void barrierrelease() {
int i;

for(i=O; i<32; i++) {
if(barrierhit & (1 << i)) {
gdn.user send(i, 1);

93

}
}
barrierhit = 0;

}

// sets the pool of tiles in the barrier

void barrierinit(int bmask) {
barriermask = bmask;
init = 1;

if((barrier-hit & barriermask) == barriermask)
barrierrelease();

}

void barrier(int tile) {
barrier-hit J= 1<<tile;

if(((barrier hit & barriermask) == barriermask) && init)
barrierrelease 0;

}

A.2 RawUser Library

Because the GDN is now multiplexed between "user" and "system" messages, the

following functions are utilized by user-tiles whenever they need to read/write to the

GDN.

#include "rawuser.h"
#include "raw.h"

int gdn-user flag = 0; int gdn-user-msg;

int gdn-user-receive() {
int r, i;

while(1) {
rawinterrupts-off();

if(gdn-userflag) {
gdn-userflag = 0;
r = gdn-user-msg;
break;

94

}
r = raw-get-statusGDN_BUFo;

// check if GDN message in buffer, and if

// MDN-int not pending

if(((r>>5)&0x7) && !(raw-get.statusEXBITS() & Ox8)) {

// read initial opcode

gdn-receiveo;

// read actual data
r = gdn-receiveo;
break;

}
rawinterrupts-onO;

}
rawinterrupts-ono;

return r;

}

void gdn-user send(int tile, int data) {

int hdr = construct-dynhdr(O, 2, 0, 0, 0,

(tile&OxC)>>2, tile&Ox3);

gdn-send(hdr);

//opcode for GDN user message

//(all sys->user GDN messages have bits 12-15 cleared)

gdn-send(OxFOOO);

gdnsend(data);

}

A.3 User Libraries

The libraries provided below provided higher-level shared memory support, and should

be used by application developers.

A.3.1 Lock Library

The following are the lock routines called by user-tiles.

95

#include "lock.h"

#include "shmconstants.h"

#include "raw.h"

#include "rawuser.h"

static int tile = -1;

void lockset(int key) {
// send message to shmlockmanager

int r, cycle, header;

cycle = raw.get-statusCYCLELO();

header = construct-dyn-hdr(O, /*length*/ 2, 0, /*row*/ 0,

/*col*/0, CTRLROW, CTRLCOL);

if(tile == -1)

tile = raw-get-tile-numo;

rawinterrupts-off();

__asm__ volatile("nop
nop

nop");

gdn-send(header);

gdn-send(LOCKSETOP I tile);
gdn-send(key);

rawinterrupts-on(;

r = gdn-user receive(;

}

void lockrelease(int key) {
// send message to shmlockmanager

int header = construct-dyn-hdr(O, /*length*/ 2, 0, /*row*/ 0,
/*col*/0, CTRLROW, CTRLCOL);

if(tile == -1)

tile = raw-get-tile-num(;

rawinterruptsoff();

_asm__ volatile("nop

nop

nop");

gdn.send(header);

gdn-send(LOCKRELEASEOP I tile);
gdn-send(key);

rawinterrupts-on(;

96

}

int locktest(int key) {
int r;

// send message to shmlockmanager

int header = construct-dyn-hdr(O, /*length*/ 2, 0, /*row*/ 0,

/*col*/0, CTRLROW, CTRLCOL);

if(tile == -1)
tile = raw-get-tile-numO;

rawinterrupts-off();

__asm__ volatile("nop
nop");

gdn-send(header);

gdn-send(LOCKTESTOP I tile);
gdn-send(key);

rawinterrupts-on(;

r = gdn-user receive(;

return r;

}

A.3.2 Barrier Library

The following are the barrier routines invoked by user-tiles

#include "shmconstants.h"

#include "barrier.h"

#include "raw.h"

#include "rawuser.h"

static int tile = -1;

void barrier() {
int r, header;

header = construct-dynhdr(O, 1, 0, 0, 0, CTRLROW, CTRLCOL);

if(tile == -1)
tile = raw-get-tile numo;

97

rawinterruptsoff();

__asm__ volatile("nop
nop

nop");

gdn-send(header);

gdn-send(BARRIEROP I tile);
raw-interrupts-on(;

r = gdn.user-receive(;
}

void barrier-init(int bmask) {
int header = construct-dyn-hdr(O, 2, 0, 0, 0, CTRLROW, CTRLCOL);

if(tile == -1)

tile = raw-get-tile-numo;

rawinterrupts-off();

__asm__ volatile("nop
nop

nop");

gdnsend(header);

gdn-send(BARRIERINITOP I tile);
gdn-send(bmask);

raw-interrupts-on(;

}

A.3.3 Shared Memory Allocation Library

The following are the shared malloc routines invoked by user-tiles.

#include "shm.h"
#include "shmconstants.h"
#include "raw.h"

#include "rawuser.h"

static int tile = -1;

int shmalloc(int key, int size) {
// send message to shmlockmanager

int r, bit;

98

int header = construct-dyn-hdr(O, /*length*/ 3, 0, /*row*/ 0,
/*col*/0, CTRLROW, CTRLCOL);

if(tile == -1)
tile = raw-get-tilenumO;

rawinterrupts-off();

__asm__ volatile("nop
nop

nop");

gdn.send(header);

gdn-send(MALLOCOP I tile);
gdn-send(key);

gdnsend(size);

rawinterrupts-on(;

r = gdn-user receive(;
return r;

}

int shumalloc(int size) {
return shmalloc(-1, size);

}

int shfree(const void *shmaddr) {
int r;

int header = construct_dyn-hdr(O, 2, 0, 0, 0, CTRLROW, CTRLCOL);

if(tile == -1)
tile = raw-get-tilenumo;

// turn interrupts off

rawinterrupts-off();

_asm__ volatile("nop
nop

nop");

gdn-send(header);

gdn-send(FREEOP I tile);
gdn-send(shmaddr);

// turn interrupts on

rawinterrupts-on(;

return r;

}

99

A.4 Raw Code

This section contains the low-level assembly code involved in the directory-based cache

coherence protocol. Both the system-tile code, and the user-tile interrupt handlers

are provided.

A.4.1 Directory-Tile Code

The following code is loaded onto all system tiles, and contains the routines for

directory and interrupt controller functionality.

// directory tile. Part of a shared-memory implementation.
// Levente Jakab.
// 5/11/04 18.40

// Modified by Satish Ramaswamy

// 5/11/05

// number of cycles between an interrupt and a response at which point

// we declare deadlock. Times four, because the cycle counts are always

// stored starting at bit 2.

//#define DEADLOCKTRIGGERCYCLES 80000

#define DEADLOCKTRIGGERCYCLES 20000

#define DILISTOP 0x300

#define DIHOTOP 0x800

#define IDDEAD 0x500

#define DIDEAD 0x700

#define IUHOTOP Ox80

// differentiated from $16, since bit 7 is never on

#define STATICBUFFERSIZE 512

// states:
// 0 - read (readers in bits 8-31)

100

/ 2 - read lock (readers in 8-31, writer in 4-7)

/ 3 - read lock bypass (readers in 8-31, writer in 4-7)

/ 2 - exclusive (writer in 4-7)

/ 3 - exclusive pending (writer in 4-7)

/ read lock and exclusive are the same, except for the presence of

/ reading tiles needing to be negotiated

#include "moduletest.h"

.text

.align 2

.global begin

.ent begin

register convention (above and beyond hardware restrictions)

$2 is swap space... usually a tile number or an address

$3 is swap space... an address in state space

$4 is swap space

$5 is swap space... a test condition

$6 is swap space... an iterator

$7 is swap space... a tile number

$8 is swap space

$9 is swap space... a tile number iterator

$12 contains the constant OxFF

$13 is the static network stall condition

$14 is one-hot directory number

$15 contains the number "256"

$16 contains a U-D map. Which D-tile wants to speak to which U-tile.

$17 contains an interrupt header constant

$18 contains the offset of ocreqtable

$19 contains the STATIC BUFFER CONDITION

$20 contains the number "1"

$21 contains the number "-1"

$22 contains the BASEADDRESS

$23 contains the offset of pending-addresstable

**$28 contains the offset of pending.requesttable

$28 contains the U-I hot-map. Which user-tiles the I-tile wishes

to hot request.

syntax: xxxxxxxUUU

**$29 contains the number of pending addresses remaining

**$30 is a linkage pointer to one-away routines. It is also swap space.

Be careful!

101

//
//
//
//
//-
//-
//
//!
//

//
//-
//,
//
//
//
//-
//

//
//-
//-
//-
//
//-
//-
//-
//-
//-
//

// $31 is the link register. Must be careful with this one.

/ init routine. Called exactly once per execution, so we don't care
// what regs we use.

init-begin:

// SCAFFOLD this overjump is bad

// j resetstatedone

// set up some things in RAM. Address bit 31 is always zero.
// Address bits 30-27 identify the owner of the RAM. Bits
// 26 and 25 define it as shared or not.

// if bits 26 and 25 of an address are both 1, then the RAM is
// shared. Therefore, pages 6, 7, 14, 15.. 126, 127 (each page
// is 2^16 bytes here) are all filled with state space. We jump
// from big table to big table (6/7, 14/15, ... 126/127),
// clearing out all 2^17 bytes of data stored there.

li $2, Ox400000 // the big jump from pageset to
// pageset

li $3, BASEADDRESS // the beginning.

li $6, 16 // $6 is a counter

li $4, Ox3f00000 // $4 now has the address of the
addu $4, $3, $4 // final pageset 03f00000

resetstate-bigjloop:

addu $7, $4, $0 // $7 iterates over addresses
li $5, (1 << 15) // 2^19 addresses need to be

// cleared. scaffold 2^12
addu $5, $4, $5 // starting with the current big

.global reset_statesmall_loop // jump start
resetstatesmallloop:

sw $0, 0($7)

addiu $7, $7, 4 // add a word

// if we just cleared out what is in address $4 (the beginning
// of the current big table) then we must fetch a new big

102

// table.
bne $7, $5, resetstatesmallloop

subu $4, $4, $2 // subtract big jump

subu $6, $6, 1

// if this was the first pageset, we are done... else, we

// are not.

bne $6, $0, reset_state-bigjloop

// SCAFFOLD line label, remove

resetstatedone:

// SCAFFOLD priming stuff that needs to be removed as well

// load into local cache all the addresses we'll be dealing with

// la $2, SCAFFOLDADDR

// la $3, SCAFFOLDADDR+0x400000

.global resetscaffoldloop resetscaffold_loop:

//sw $0, 0($2)

//addiu $2, $2, 4 // step to next cache line

//bne $2, $3, reset-scaffoldloop

// END SCAFFOLD priming

// write into pending address table the first free entry

la $2, pending-addresstable

addiu $2, $2, 40

swsw $2, %lo(pending-address-table)($0)

// initialize staticinput-buffer

la $2, staticinput-buffer

addiu $3, $2, 8

swsw $3, 0($2)

swsw $3, 4($2)

or $19, $0, $0

// reset static network stall

or $13, $0, $0

103

// reset U-D map

li $16, Ox10000000

// load constants

li $12, OxFF

li $14, TILEONEHOT

li $15, 256

li $17, (0x00F00000 I (TILEROW << 3))
// constant meaning "interrupt"

// and the tile row, since each

// I-tile tracks only columns

li $20, 1

subu $21, $0, $20

or $28, $0, $0

// load addresses

la $18, ocreq.table

la $22, BASEADDRESS

la $23, pending-addresstable

// BUGFIX: no longer modifies $28

// la $28, pending-requesttable

// BUGFIX: no longer uses $29

li $2, 51

isw $2, %lo(pending-addresses remaining)($0)

//li $29, 51 // 64, off-by-one, minus

// number of user tiles is the

// max number of pending

// addresses we can handle

j initdone

// static network routine. Destroys every swap-space register.
staticnetworkbegin:

// if we do not have any outstanding OCREQ space, then we must
// not attempt a static-network read.

bne $13, $0, staticnetworkdone

// BUGFIX - process if buffer is non-empty

beq $19, $1, staticnetworkprocess

104

// check to see if there is anything on static network

mfsr $4, SWBUF1 // pending incoming data

// note that we do not knock off any stray bits on the static

// network since everything on the static network is coming in

// from the east, so we save an instruction here. Also, we may

// reduce latency by checking for an early message (one that

// just hit the switch), and by the time the BEQ is passed, it's

// viable. Nifty.

beq $4, $0, staticnetworkdone // no data? oh

.global staticnetwork-process staticnetworkprocess:

ori $7, $0, OxOA // static word -> $10

or $30, $0, $31

jal staticnetworkbufferread

or $31, $0, $30

well, goodbye

ori $7, $0, Ox2 // read in the address into $2
or $30, $0, $31
jal staticnetworkbufferread

or $31, $0, $30

srl $3, $2, 5

sll $2, $3, 5 // truncate low 5 bits to zero

srl $3, $3, 2 // for comparison purposes - $3

sll $3, $3, 2 // has the short version, also

// needed.

addu $3, $22, $3 // cache line metadata address

staticnetworkloadstatusjloop:

mfsr $11, SWBUF1

rrm $11, $11, 16, Ox1

beq $11, $0, static_network_loadstatus

// buffer the static messages on the east port

or $30, $0, $31 // store the old linkage pointer

jal staticnetworkbufferwrite

or $31, $0, $30 // and restore LP

j static-networkloadstatusloop

105

staticnetworkloadstatus:
lw $4, 0($3) // load the status of the line

// now, make the lw-sw distinction.

andi $6, $10, Ox8000

bne $0, $6, static_network_sw

// looks like this is a 1w, so go forth and continue the lw

andi $6, $4, 3 // load the state bits

beq $6, $0, staticnetworklw_read

// zero implies none or read, so therefore nonzero is one of the
// other states.

// we must be in some state that is not read. In this case, the
// protocol is to request a writeback, if we have not done so
// already. (This is signified by the low bit of the state.)

andi $6, $4, 1 // low bit is on?

bne $6, $0, staticnetworklw-writebackset

// we must request a writeback and also update the state as

// either going from read-lock to read-lock-bypass, or from

// exclusive to exclusive-pending. This is done by setting the

// low bit.

ori $4, $4, 1
sw $4, 0($3)

// set that bit

// and store back.

// if we are in the read-lock state, then the writeback will
// occur later, and we do not need to force it.

srl $6, $4, 8 // any readers implies read-lock

bne $6, $0, staticnetworklw_writeback_set

// Set up a writeback request. $2 contains the address. $9

// must contain the tile number, which (given that we are not
// in "read") is in bits 4-7 of the state vector.

rrm $9, $4, 4, OxF

li $11, 1

or $30, $0, $31

// tile number

// request number 1 - coughup

// store the old linkage pointer

106

jal ocreq-begin // make function call

or $31, $0, $30 // and restore LP

staticnetworklw_writebackset:

// now, deal with the requestor. Convert his number into some

// civilised form.

rrm $8, $10, 3, OxC // $8 has yyOO of requestor

rrmi $8, $10, 0, Ox3 // $8 has yyxx (tile number)

or $6, $23, $0 // load the beginning of

// the pending-address table

// at this point

// $2 has the address in question

// $3 is its address in state space

// $4 is its state

// $6 has the beginning of the pending address table

// $8 has the requesting tile's number

// $5, $6, $7, $10, $11 are swap space

// here, what we do is check all the addresses in the pending

// address table. If we have a match, then we go to that one.

// Otherwise, we dribble off the bottom and go to the next one.

swlw $9, 0($6) // this is the address of the

// first free entry in the table.

static-networklw_addressloop:

addiu $6, $6, 40 // add 40 to this entry

swlw $7, 4($6) // load the address there

//BUGFIX: previous impl. failed when $7=$2 and $6=$9

// new entry needs to be allocated

beq $6, $9, staticnetworklw_addressnew

// exact match, bail out

beq $7, $2, static_networklw_address_exact

j staticnetworklw-addressloop

static-networklw address new:

// must be a new entry. Where we are now, plus 40, is the next

// free entry.

107

addiu $7, $6, 40

swsw $7, 0($23) // store this new past-end

// pointer

swsw $2, 4($6) // and our current block must

// have the new address

swsw $0, 0($6) // clear out any possible
// detritus control bits.

staticnetworklw_addressexact:

// at this point, $6 must contain a correct slot.

sllv $7, $15, $8 // requestor bit mask
swlw $5, 0($6)

or $7, $7, $5 // note new requestor

swsw $7, 0($6) // header spot = 1<<(requestor+8)

j staticnetworkdone

.global static_networklw_read static_networklw_read:

// we are in the "read" state, and someone attempted an "lw", so
// all we really do is add him to the list of readers and give
// him the cache line. $2 contains the address, $10 the header
// with the U-tile number. $3 contains the cache-line metadata
// corresponding to this address, and $4 the data at $3.

// first, forge an MDN header so that we get the data from RAM.
// send to ourselves, but route funny to the east

li $11, CONSTRUCTDYNAMICHEADER(4, 1, 0, (TILEROW >> 2), 3, 0, 3)
rrmi $11, $2, 24, Ox60 // insert correct tile row
or $cmno, $11, $0

or $cmno, $2, $0 // send the address

// and now, the MDN will send the line. We must then forward
// it along. First, prepare an MDN header.

staticnetworklw_readsnwait:

mfsr $11, SWBUF1

rrm $11, $11, 16, Oxi

108

beq $11, $0, static_network_lw_readmdnwait

// buffer the static messages on the east port

or $30, $0, $31 // store the old linkage pointer

jal staticnetworkbufferwrite

or $31, $0, $30 // and restore LP

//BUGFIX: (actually, bug was introduced by shmcontroller on tile14)

.global static_networklw_readmdnwait

staticnetworklw_readmdnwait:

mfsr $5, MDNBUF

rrm $5, $5, 5, Ox7

beq $5, $0, staticnetworklw_readsnwait

or $cmno, $10, $0

// and now read in the data words, and pass them back out

// if static buffer to the EAST is full, the memory controller

// may be stalled. Therefore, buffer the incoming messages.

ori $6, $0, 8
.global static_network_lw_read_buffer

staticnetworklw_readbuffer:

mfsr $11, SWBUF1

rrm $11, $11, 16, Oxi

beq $11, $0, staticnetworklw_readcmni

// buffer the static messages on the east port

or $30, $0, $31 // store the old linkage pointer

jal staticnetworkbufferwrite
or $31, $0, $30 // and restore LP

j staticnetworklw_readbuffer

.global static_network_lw_read_cmni static_network_lw_read_cmni:
or $cmno, $cmni, $0
addiu $6, $6, -1
bne $6, $0, staticnetworklw_readbuffer

// END SCAFFOLD

// we have now sent the data to the new reader. We have to

// add it to the list of readers.

rrm $8, $10, 3, OxC // $8 has yyOO of requestor

109

// $8 has yyxx (tile number)

slly $8, $15, $8 // shift "256" over by tile

// number

or $4, $4, $8 // set the bit

sw $4, 0($3) // and write it back

// and goodbye

j staticnetworkdone

.global staticnetwork_sw staticnetworksw:

// this is what happens when we've gotten a store-word. This

// could be in response to a coughup, or not. In all possible

// cases, the data being stored is the freshest line around, so
// we should send it to any tiles stalling out waiting for the
// read. Also, we should write it back to main RAM.

andi $8, $4, 1 // grab the low bit of the state

// to differentiate between

// pending and regular

// if not pending, then that means there was no possibility of
// extra writers, and no need to worry about patching. Also,
// there are no outstanding readers, so no need to worry about
// that either.

beq $8, $0, staticnetworksw-nopatch-noreq

// we must have either readers or patches.

or $6, $23, $0 // load the beginning of

// the pending-address table

// $2 contains the current transaction address

// $3 the address of that cache lines state

// $4 contains the entire state line

// $6 has the beginning of the pending address table

// $10 contains a MDN header corresponding to the writing tile
// $5, $6, $7, $8, $9, $11 are swap space

// We must find the entry in the pending address table

// corresponding to our address.

110

rrmi $8, $10, 0, Ox3

swlw $9, 0($6) // this is the address of the

// first free entry in the table.

staticnetwork_swaddressloop:

addiu $6, $6, 40 // add 40 to this entry

swlw $7, 4($6) // load the address there

beq $6, $9, static_network_error

// exact match, bail out
bne $7, $2, staticnetworksw_addressloop

// note that the loop does not bail out unless it finds an

// exact match, because the match must be in the table, given

// the state.

// at this point, $6 must contain a correct slot.

swlw $4, 0($6)

andi $5, $4, 255

addiu $9, $6, 8

addiu $6, $6, 40

// address match, load header

// load patch condition

// beginning of patch data
// point past end of patch data

// at this point, we have found the patch and reader data in

// the pending address table.

// $2 contains the address of all this trouble.

// $3 contains the cache line metadata's address

// $4 contains the patch/reader bits

// $5 contains only the patch bits

// $6 contains the end of the section in the patch table

// $9 contains the first patch line

// $10 contains a MDN header corresponding to the writing tile

// $7, $8, $11 swap space

staticnetwork_swpatchloop:

ori $7, $0, Ox7 // loa

or $30, $0, $31

jal staticnetworkbufferread

or $31, $0, $30

andi $8, $5, 1 // che

srl $5, $5, 1 // and

i the current data word into $7

ck current patch bit

shift down

bne $8, $0, staticnetwork-sw.patchloop-patched

111

// this word is not patched, so the latest version is coming

// off the static network. Store it to memory.

swsw $7, 0($9)

staticnetworksw-patchlooppatched:

addiu $9, $9, 4 // next patch point

bne $6, $9, staticnetworkswpatchloop

addiu $6, $6, -40 // $6 has a little before the

// first point in cache line.

// at this point, the correct cache line is stored in the

// directory. We must write it to its correct location in

// RAM.

// The actual address is in $2.

andi $5, $4, 255 // load patch condition

// we only monitor addresses that are patched, because there

// is a finite number of readers, so if this line was free of

// patches it was not accounted for, and thus does not need to

// be freed explicitly.

beq $5, $0, staticnetworkswnotpatched

// But if it was, free it.

//BUGFIX: previously (addiu $29, $29, 1)

ilw $5, %lo(pendingaddresses-remaining)($0)
addiu $5, $5, 1

isw $5, %lo(pending-addresses-remaining)($0)

//addiu $29, $29, 1 // one more free address

.global static_network_swnotpatched static_networksw_notpatched:

// send an MDN message to the FPGA with the new cache line.

// we must be careful to drain the static network to prevent

// deadlock!

// send to ourselves, but route funny to the east

li $11, CONSTRUCTDYNAMICHEADER(4, 9, 4, (TILEROW >> 2), 3, 0, 3)

rrmi $11, $2, 24, Ox60

or $cmno, $11, $0

112

or $cmno, $2, $0 // send the address

// end loop at $6 + 28
addiu $7, $6, 32

static-network_swnotpatched-sendloop:

mfsr $11, SWBUF1

rrm $11, $11, 16, Ox1

beq $11, $0, staticnetwork_swnotpatchedsend

// buffer the static messages on the east port

or $30, $0, $31 // store the old linkage pointer

jal staticnetworkbufferwrite

or $31, $0, $30 // and restore LP

j staticnetworkswnotpatched-send-loop

staticnetworkswnotpatchedsend:

swlw $cmno, 8($6) // amd write the data

addiu $6, $6, 4

bne $6, $7, staticnetworkswnotpatched sendloop

// reset $6 (designates beginning ptr)

addiu $6, $6, -32

// here, we have taken care of sending the patched data back

// to main RAM. Now, we must send it to any possible

// recipients.

// $2 contains the address of all this trouble

// $3 contains the cache line metadata's address

// $4 contains the patch/reader bits

// $6 contains the beginning of the section in the address table

// $10 contains a MDN header corresponding to the writing tile

// $5, $7, $8, $9, $11 swap space

srl $5, $4, 8 // waiting tiles

// if no tiles, then exit

beq $5, $0, staticnetworkswsenddone

sl $9, $20, 27 // size = 8

addiu $7, $0, -29 // current tile. -29 because
// we will add 1, and then 28

113

// more as the first part of
// the iterator.

staticnetworkswsendloop:

addiu $7, $7, 1

andi $11, $7, 3

// increment tile number

// tile multiple of 4?

bne $11, $0, staticnetworkswnoadjust

addiu $7, $7, 28 // 0, 1, 2, 3, 32, 33, 34, ...

staticnetwork-sw-noadjust:

andi $8, $5, 1 // is this tile waiting?

srl $5, $5, 1

beq $8, $0, staticnetworkswsendloop

// looks like this tile is waiting on data...
// the header is the current tile number plus

addu $cmno, $7, $9

swlw

swlw
swlw
swlw
swlw
swlw
swlw
swlw

$cmno,
$cmno,
$cmno,
$cmno,
$cmno,
$cmno,
$cmno,
$cmno,

8($6)
12($6)
16($6)
20($6)
24($6)
28($6)
32($6)
36($6)

send it along.

"size 8".

// and write the data

// more tiles requesting?

bne $5, $0, static_network_swsendloop

staticnetwork_sw_senddone:

// here, we are done with this address. So what we must do
// is clear it. If it is the last address, then we simply
// let it fall off the bottom. If not, we take the last entry,
// and move it into the entry being cleared. In all cases,
// we decrement the next-empty-spot pointer.

swlw $8, 0($23) // find the last address
addiu $8, $8, -40 // subtract 40 because there

// is one fewer address.

114

// store it back

beq $8, $6, staticnetwork_sw_last

// must not have been the last entry. So therefore, take what

// is the last entry (*$8) and move it to here (*$6). Now

// the last entry is truly blank and the pointer $8 is correct.

// yes, this code is a brute, but I invite you to come up with

// a better memcpy call!

swlw $5,
swsw $5,
swlw $5,
swsw $5,

swlw $5,
swsw $5,
swlw $5,
swsw $5,
swlw $5,
swsw $5,

swlw $5,
swsw $5,
swlw $5,
swsw $5,

swlw $5,
swsw $5,
swlw $5,
swsw $5,
swlw $5,
swsw $5,

0($8)
0($6)
4($8)
4($6)
8($8)
8($6)
12($8)
12($6)
16($8)
16($6)
20($8)
20($6)
24($8)
24($6)
28($8)
28($6)
32($8)
32($6)
36($8)
36($6)

staticnetworkswlast:

rrm $8, $10, 3, OxC

rrmi $8, $10, 0, Ox3

// $8 has yyOO of writer

// $8 has yyxx (tile number)

// now, write the new state, which is "read" on all the tiles

// we just sent data to (list is in $4), and also the writing

// tile.

// BUGFIX: THE WRITING TILE MAY NOT HAVE FRESH DATA, SINCE THE

// LINE COULD HAVE BEEN PATCHED.

//sllv $6, $15, $8 // 1 << (writingtile + 8)

115

swsw $8, 0($23)

//FIX:
or $6, $0, $0

andi $5, $4, 255 // patch bits

subu $4, $4, $5 // all but patch bits

or $6, $4, $6 // new state

sw $6, 0($3) // store new state in state space

j staticnetworkdone

.global staticnetwork_sw_nopatch-noreq

staticnetwork_swnopatch-noreq:

// this is a bypass in which we simply write the line back

// to main RAM, and set the reader as the old writer, and
// go to the read state.

// $2 contains the address of all this trouble.

// $3 contains the cache line metadata's address

// $4, $5, $6, $7, $8, $9, $10, $11 swap space

// send to ourselves, but route funny to the east

li $11, CONSTRUCTDYNAMICHEADER(4, 9, 4, (TILEROW >> 2), 3, 0, 3)
rrmi $11, $2, 24, Ox60

or $cmno, $11, $0

or $cmno, $2, $0 // send the address

// must drain the static network to prevent deadlock!

li $6, 8

staticnetworkswnopatch-noreqjloop:

mfsr $11, SWBUF1

rrm $11, $11, 16, Oxi

beq $11, $0, staticnetworkswnopatch-noreqsend

// buffer the static messages on the east port

or $30, $0, $31 // store the old linkage pointer

jal staticnetworkbufferwrite

or $31, $0, $30 // and restore LP

j staticnetwork-sw-nopatch-noreq-loop

116

staticnetwork_swnopatch-noreqsend:

ori $7, $0, Ox1B // foward 8 data words (reg27 = cmno)
or $30, $0, $31

jal staticnetworkbufferread

or $31, $0, $30

addiu $6, $6, -1

bne $6, $0, static_network_sw-nopatch-noreqjloop

sw $0, 0($3)

// now, store the new state

//rrm $8, $10, 3, OxC

//rrmi $8, $10, 0, Ox3

//slly $4, $15, $8
//sw $4, 0($3)

//
//

//
read on

only.

(read on this tile)

// $8 has yyOO of writer

// $8 has yyxx (tile number)

256 << this number
store this state, which is

this one tile

staticnetworkdone:

jr $31

staticnetworkerror:

j -

// $10, $4, $3 must be preserved

// $5, $8, $9 are modified

.global static_network_buffer_write static_network_bufferwrite:

// set the STATIC BUFFER CONDITION

or $19, $20, $0

staticnetworkbufferwritejloop:

// read data off static network

or $5, $csti, $0

la $9, staticinput-buffer

swlw $8, 4($9) //
swsw $5, 0($8) /

first free address in buffer

store input in first free location

// calculate new end-of-buffer ptr (must bounds check)

addiu $8, $8, 4

addiu $5, $8, -4*STATICBUFFERSIZE

// the end-of-buffer wraps around to static-inputbuffer+8

117

bne $5, $9, staticnetwork_bufferwrite.update

addiu $8, $9, 8

staticnetwork-buffer-write.update:

swlw $5, 0($9)

beq $8, $5, staticnetworkbufferwriteoverflow

// otherwise, end-of-buffer = old-end + 4
swsw $8, 4($9)

// clear rest of the words on EAST port

mfsr $8, SWBUF1

rrm $8, $8, 14, Ox1

bne $8, $0, staticnetworkbufferwritejloop

jr $31

static-network-buffer write overflow:

j .

// $7 contains register to read into

// $7, $8, $11 are destroyed

// result is returned in register defined in $7

.global staticnetworkbufferread staticnetworkbufferread:

sll $7, $7, 3 // multiply reg# by 8, to index into switch

la $11, staticnetworkbufferread_table

addu $11, $7, $11 // $11 now contains index into table

// if buffer is empty, then read directly off static network.
// otherwise, read from the buffer.

beq $19, $0, staticnetworkbufferread-bypass

.global static_network_buffer_read_real

staticnetworkbufferreadreal:

// load the beginning-ptr from memory into $8
la $7, static-input-buffer
swlw $8, 0($7)

// load the word at the beginning of the buffer

swlw $8, 0($8)

// move the word into the proper register

118

jr $11

staticnetworkbufferreadbypass:

or $8, $csti, $0 // read from static network into $8

jr $11 // move word into proper register

static-network buffer-readinc:

// must store these scratch registers, because they may contain

// the return value initially defined in $7

isw $7, Xlo(reg_1)($0)

isw $8, X1o(reg_2)($0)

isw $11, Xlo(reg_3)($0)

// if this was a read off the static network, then we are done

beq $19, $0, staticnetworkbufferreaddone

// reload initial $7 value

la $7, static_inputbuffer

// reload the beginning ptr

swlw $8, 0($7)

// increment beginning ptr, and bounds-check

addiu $8, $8, 4

addiu $11, $8, -4*STATICBUFFERSIZE

bne $11, $7, staticnetworkbufferreadupdateptr

addiu $8, $7, 8

static-networkbufferreadupdateptr:

// store new beginning ptr

swsw $8, 0($7)

// load end-of-buffer ptr

swlw $7, 4($7)

// if begin-ptr == end-ptr, then reset STATIC BUFFER CONDITION

bne $7, $8, staticnetworkbufferreaddone

or $19, $0, $0

staticnetworkbufferreaddone:
// reload scratch registers

119

ilw $7, %1o(reg_1)($0)

ilw $8, %lo(reg_2)($0)

ilw $11, %lo(reg_3)($0)

jr $31

static-network-buffer-read-table:

or $0, $0, $8

j staticnetworkbufferreadinc
.set noat

or $1, $0, $8

.set at

j staticnetworkbufferreadinc
or $2, $0, $8

j staticnetworkbufferreadinc
or $3, $0, $8

j staticnetworkbufferreadinc
or $4, $0, $8

j staticnetworkbufferreadinc
or $5, $0, $8

j staticnetworkbufferreadinc
or $6, $0, $8

j staticnetworkbufferreadinc
or $7, $0, $8

j staticnetworkbufferreadinc
or $8, $0, $8

j staticnetworkbufferreadinc
or $9, $0, $8

j staticnetworkbufferreadinc
or $10, $0, $8

j staticnetwork-bufferreadinc
or $11, $0, $8

j staticnetworkbufferreadinc
or $12, $0, $8

j staticnetworkbufferread-inc

or $13, $0, $8

j staticnetworkbufferreadinc
or $14, $0, $8

j staticnetworkbufferreadinc
or $15, $0, $8

j staticnetworkbufferreadinc
or $16, $0, $8

j staticnetworkbufferreadinc
or $17, $0, $8

120

j staticnetworkbufferreadinc
or $18, $0, $8

j staticnetworkbufferreadinc
or $19, $0, $8

j static-networkbufferreadinc
or $20, $0, $8

j static.networkbufferreadinc
or $21, $0, $8

j staticnetworkbufferreadinc
or $22, $0, $8

j static.networkbufferreadinc
or $23, $0, $8

j staticnetworkbufferreadinc
or $24, $0, $8

j staticnetworkbufferreadinc
or $25, $0, $8

j static-networkbufferreadinc
or $26, $0, $8

j staticnetworkbufferreadinc
or $27, $0, $8

j staticnetworkbufferreadinc
or $28, $0, $8

j staticnetworkbufferreadinc
or $29, $0, $8

j staticnetworkbufferreadinc
or $30, $0, $8

j staticnetworkbufferreadinc
or $31, $0, $8

j staticnetworkbufferreadinc

// pending IRQ handler. Destroys all swap space.

.global pending-irq-begin pending-irq-begin:

sll $3, $16, 8 // clear upper 8-bits of UD map

srl $3, $3, 8

or $7, $28, $0 // load hot-map

or $8, $0, $0 // current U-tile number (times

// four)

pending-irq-u-loop:

andi $5, $7, Ox1 // current hot U-tile request

andi $4, $3, OxFF // current U-tile requests

or $4, $4, $5

121

// if there is nothing for this U-tile, then skip attempting to
// process it, and just go to the next one.

beq $4, $0, pending-irq-nextu

ilw $6, %lo(intstatus_0)($8) // load the tile state from
// instruction memory.

andi $6, $6, 3 // get only the state bits

bne $6, $0, pendingirqnext-u // tile busy. Go away. Either

// we just interrupted it, or we

// are communicating with it via

// MDN, so things are happening.

.global pending-irq_do_interrupt pendingirq_do_interrupt:

// tile may be interrupted, so lets interrupt it.

mfsr $6, CYCLELO // grab cycle count

sl $6, $6, 2 // shift over

addiu $6, $6, 2 // and add state bits (state=2 is

// "interrupt pending")

isw $6, Xlo(intstatus_0)($8) // store new state

srl $4, $8, 2 // shift tile-number into place

// $17 is a pre-made interrupt header, waiting for a tile number.

or $cmno, $17, $4 // instant interrupt, booya

beq $5, $0, pending-irq-standardint // if not hot-request, must
// be normal request

// THIS U-TILE HAS SOME PENDING HOT-REQUESTS

.global pending-irqdohot pendingirqdo_hot:

// clear entry in hot-map

srl $6, $8, 2 // tilenumber x 1
sllv $6, $20, $6 /1 << tilenumber
xor $6, $6, $21 // everything except this

and $28, $6, $28 // clear bit in hot-map

// load hot requests

la $5, hotrequest-table

122

sl $6, $8, 2
addu $5, $6, $5

addiu $9, $5, Ox10

li $4, ((4 << 24) +
srl $6, $8, 2

or $cgno, $4, $6

pending.irq-hotjloop:

addiu $9, $9, -4

swlw $6, 0($9)

or $cgno, $6, $0

swsw $0, 0($9)

// current U-tile number x 16

// entry in hotrequesttable

// $9 iterator over hot-requests

TILEROW << 3)
// U-tile number

// send GDN header

// load request from particular dir-tile

// send actual request
// clear request from table

pending-irq-hotloop-end:

bne $9, $5, pending-irq-hotloop

j pendingjirq-next_u

.global pending-irq-standard-int pending_irq-standard_int:

// now send list of requests

sll $5, $20, 24 // $5 = 1 << 24
ori $5, $5, (TILEROW << 3)
addu $cgno, $5, $4

or $cgno, $16, $0

//-
//-
//-
//

sll $4, $8, 1

sllv $5, $12, $4

xor $2, $5, $21

and $16, $2, $16

// header... message is of

length 2

// send along the big list of

requests (let user process

it!)

this includes the possible
"you've been spoofed!" bit.

// tile number times 8 (needed

// later).

. // shift over constant OxFF

// ($12) appropriately

// generate mask

// ($21 = OxFFFFFFFF save 2
// instrs)

// and zero out just-sent

123

// requests

pending-irq-nextu:

addiu $8, $8, 4

srl $3, $3, 8
srl $7, $7, 1
or $4, $3, $7

// increment tile number being

// handled

// next U-tile is pending

// next hot U-tile pending

bne $4, $0, pending-irq-u-loop // loop if there are more
// requests

pendingjirq-done:

jr $31

// gdn message handler. This takes requests from user tiles to either
// D-tile or I-tile functionality of the directory tile.
// Destroys all swap space
gdnhandler-begin:

// check to see if there is anything on the GDN
mfsr $4, GDN_BUF // pending incoming data

rrm $4, $4, 5, Ox7 // knock off "out" and other crap

beq $4, $0, gdnhandlerdone

or $4, $cgni, $0

andi $6, $4, OxF

andi $7, $4, Ox7

// no data? oh well, goodbye

// read in a memory word

00 // get the request type
F // get the tile number (in

// somewhat wrong GDN form)

// into $7 (this is kept a while)

// $$$ make request number equal jump length and do a jr.

// request types are:

// Ox000 - "okay, done" from U-tile to I-tile
// Ox100 - "yes?" from U-tile to I-tile
// 0x200 - "yes?" from U-tile to D-tile ("hello")
// 0x300 - list from D-tile to I-tile ("call this tile")
// 0x400 - user to directory acknowledgement
// 0x500 - I-tile to D-tile deadlock invalidate
// 0x700 - D-tile to I-tile deadlock invalidate done

124

// LOCK requests

// 0x900 - test lock

// OxAQO - set lock

// OxB00 - release lock

// SHM requests

// OxCQO - malloc

// OxD00 - free

beq $6, $0, gdnhandleruidone

addiu $6, $6, -0x100 // 0x100 equals zero now

beq $6, $0, gdn_handleruicall

addiu $6, $6, -0x100 // 0x200 equals zero now

beq $6, $0, gdnhandlerudcall

addiu $6, $6, -0x100 // 0x300 equals zero now

beq $6, $0, gdn-handler_dilist

addiu $6, $6, -Ox200 // 0x500 equals zero now

beq $6, $0, gdnhandleriddead

// SCAFFOLD branch to "MDN" land

addiu $6, $6, -0x100 // 0x600 equals zero now

beq $6, $0, mdn-gdn-bypass

addiu $6, $6, -Ox100 // 0x700 equals zero now

beq $6, $0, gdnhandlerdideadreply

addiu $6, $6, -0x100 // 0x800 equals zero now

beq $6, $0, gdnhandler_dihot

addiu $6, $6, -Ox600 // OxEOO equals zero now

beq $6, $0, gdn_handler_id_hotdone

// default, must be a user-to-directory acknowledgement. In

// this case, all of the addresses that needed to be invalidated

// were invalidated, and we can clear some bits from their

// state.

// from the tile number in YYOOOXX form, get a pending request

// begin address, which is YYXXOOOOOOO.

rlm $6, $7, 4, Ox600 // YYOOOOOOOOO

125

rlmi $6, $7, 7, Ox1FF // YYXXOOOOOOO

// generate a mask that has all bits set, except the bit
// corresponding to our tile number, so that we can OR it with
// a state and mask out acked readers.

srl $7, $6, 7 // this is the requesting

// tile number

sllv $2, $15, $7 // $2 = 1 << (this number + 8)
xor $7, $21, $2 // $7 = all bits but this one

// BUGFIX: previously addu $5, $6, $28 (no longer uses $28)
la $5, pending-request-table

addu $5, $6, $5 // load beginning of pending
// requests

gdn handlerudnextaddress:

swlw $3, 0($5) // load address
addiu $5, $5, 4 // and increment pointer

// if this is the null-terminator then we have no more actual
// addresses.

beq $3, $0, gdn-handleruddone

// otherwise, $3 contains an address.

srl $3, $3, 7

sll $3, $3, 2 // address shifted right
addu $3, $22, $3 // cache line metadata address

lw $4, 0($3) // load the status of the line
// PERF-FIX(1): if this bit is already zero, goto next address.
// We do not want to ack the writing twile more than once.

and $8, $4, $2

beq $8, $0, gdn-handlerudnextaddress

and $4, $4, $7 // mask out the acknowledging
// tile

sw $4, 0($3) // store it back

// PERF-FIX(1): if we are in READ state, then dont act upon this
andi $8, $4, 3

beq $8, $0, gdn-handler_ud-nextaddress

126

srl $8, $4, 8 // get only a list of readers

bne $8, $0, gdn-handlerudnextaddress

// looks like that was the last reader, and we are NOT read.

// Meaning, we are in a new state (exclusive or excl-pending)

// and thus must send an ack to the writing tile via the GDN.

// First, generate an MDN header to send back to the writing

// tile. Its address is in the form YYXXOOOO in the state

// and we must convert it to OYYOOOXX.

rrm $9, $4, 1, Ox60 // OYYOOOOO

rrmi $9, $4, 4, Ox3 // OYYOOOXX

sll $11, $20, 24 // $11 = 1 << 24
addu $cmno, $11, $9 // header... message is of

// length 1

// now, send the ack - which is either a plain ack (0) or an

// ack-and-flush (1). This corresponds precisely (I am so

// clever) with the low bit of the state.

andi $cmno, $4, 1

j gdn-handler-udnextaddress

gdn-handleruddone:

// now that the U-tile has ack'd the directory, we clear its

// pending requests.

la $5, pending-request.table

addu $5, $6, $5

swsw $0, 0($5)

j gdn-handlerdone

.global gdn-handler_id_hot_done gdnhandlerid_hot_done:
// get hot.pending.request address by converting to YYXXOO
rrm $6, $7, 1, Ox30

rlmi $6, $7, 2, OxC

// generate a mask that has all bits set, except the bit

// corresponding to our tile number, so that we can OR it with

// a state and mask out acked readers.

srl $7, $6, 2 // this is the requesting

// tile number

127

slly $2, $15, $7

xor $7, $21, $2

// 1 << (this number + 8)
// all bits but this one

la $5, hotpending-requesttable

addu $5, $6, $5

swlw $3, 0($5)

swsw $0, 0($5)

// load entry
// clear entry in table

// if entry == Ox1QOOOQO, then request was a flush, and we don't
// need to clear any bits in the state.

li $6, Ox1OQOQOQO

and $6, $3, $6

bne $6, $0, gdn-handlerdone

srl $3, $3, 7

sll $3, $3, 2
addu $3, $22, $3

// address shifted right
// cache line metadata address

lw $4, 0($3) // load the status of the line

// PERF-FIX(1): if this bit is already zero, goto next address.
// We do not want to ack the writing tile more than once.

and $8, $4, $2

beq $8, $0, gdn-handlerdone

and $4, $4, $7

sw $4, 0($3)

// tile
// mask out the acknowledging

// store it back

// PERF-FIX(1): if we are in READ state, then dont act upon this
andi $8, $4, 3

beq $8, $0, gdnhandler-udnextaddress

srl $8, $4, 8 // get only a list of readers
bne $8, $0, gdn-handlerdone

// looks like that was the last reader. Meaning, we are in
// a new state (exclusive or excl-pending) and thus must
// send an ack to the writing tile via the GDN. First, generate
// an MDN header to send back to the writing tile. Its address

// is in the form YYXXOOOO in the state and we must convert it

// to OYYOOOXX.

128

rrm $9, $4, 1, Ox60 // OYYOOOOO

rrmi $9, $4, 4, Ox3 // OYYOOOXX

sl $11, $20, 24 // $11 = 1 << 24
addu $cmno, $11, $9 // header... message is of

// length 1

// now, send the ack - which is either a plain ack (0) or an

// ack-and-flush (1). This corresponds precisely (I am so

// clever) with the low bit of the state.

andi $cmno, $4, 1

j gdn-handlerdone

.global gdn-handleruidone gdn-handler_ui_done:

rlm $4, $7, 2, OxC // tile number's horizontal
// offset, times four

// this is the correct offset in the interrupt status table.

isw $0, Xlo(intstatus_0)($4) // store a zero, state of "not
// in interrupt" because it just
// finished talking.

j gdn-handlerdone

gdnhandleruicall:

// U-I communication ("who was that???")

rlm $4, $7, 2, OxC // find tile numbers horiz offset
// times four. We now have the

// correct address in interrupt

// status table land.

isw $20, hlo(int_status_0)($4) // store a "1" to the location,
// meaning that a phone-call was
// successful so the tile is now

// in interrupt.

sll $4, $4, 1 // tile number horiz offset x 8

li $5, Ox10 // $5 corresponds to forcer bit

sllv $5, $5, $4 // forcer bit shifted over

129

xor $5, $5, $21
and $16, $5, $16

// everything but this forcer bit

j gdn-handlerdone

.global gdnhandler_ud_call gdnhandler_ud_call:

// U just pinged D (the important phone call), so send along a
// list of requests. For each of these requests, if it is an
// invalidate, write it to the pending (already sent) request
// table.

// from the tile number in YYOOOXX form, get an OCREQ begin
// address, which is YYXXOOOOOOO.
rlm $6, $7, 4, Ox600 // YYOOOOOOOOO
rlmi $6, $7, 7, Ox1FF // YYXXOOOOOOO

srl $2, $6, 7 // tile number we are dealing
// with (needed later)

addu $4, $6, $18 // load beginning of OCREQs for
// this particular tile

/ BUGFIX: previously addu $5, $6, $28 (no longer uses $28)
la $5, pending-request.table

addu $5, $5, $6

//-
//

// and list of pending requests
which we will be storing
into.

swlw $3, 0($4) // number of requests for
// this tile.

srl $3, $3, 2 // shift right to get rid of
// off-by-four

swsw $0, 0($4) // and reset that counter

addiu $9, $3, 1 // message length is the number
// of requests plus one, so

// shift that
sll $9, $9, 24 // over 24 slots so it is in the

// right place in the header.

or $cgno, $9, $7 // add tile number to message

// length, voila header

130

// send along number of requests

// coming

gdn handler-ud-loop:

addiu $4, $4, 4

addiu $3, $3, -1

swlw $9, 0($4)

or $cgno, $9, $C

// next slot

// decrement number of requests

// remaining
// load the actual request

// and send it along

// here, check to see if the request is an invalidate or a

// flush. If it's an invalidate (ends in 2, as opposed to

// then we must store it in the outstanding buffer space.

andi $10, $9, 1 // low bit

bne $10, $0, gdn-handlerudflush

// must be an invalidate

swsw $9, 0($5)

addiu $5, $5, 4

// store the address

// next slot in pending

// request table

gdnhandlerudflush:

bne $3, $0, gdnhandler-udjloop // more UD OCREQs to deal with?

// null-terminate the list of pending addresses. Since 0 is

// not a possible shared address, it will never exist

// legitimately in this table, and thus works as a terminator.

swsw $0, 0($5)

// is there a static-network stall due to OCREQ backlog? Well,
// we just sent some OCREQs so maybe we can clear it.

beq $13, $0, gdnhandlerdone

// $2 is the tile we just processed

// $9 is a blank slot

sllv $9, $20, $2 // 1 << tile number
xor $9, $21, $9 // invert (all "1"s except bit

// at tile# is a zero)

131

in 1)

or $cgno, $3, 0

// knock off a bit

j gdnhandlerdone

.global gdn-handlerdilist gdn-handler_di_list:

// a list from a D-tile to an I-tile that the D-tile expects can

// help it. The message contains the D-tile's one-hot index and

// the U-tile it wishes to communicate with.

or $4, $cgni, $0

rrm $2, $4, 1, 0

andi $3, $4, OxF

slly $2, $3, $2

or $16, $2, $16

// read in a GDN word (UUDDDD)

x18 // shift by 1 (UUDDD) and get the

// column (UU000).

// get request numbers of dirtile

// (00DDDD)

// shift dirtile and header

// correctly.

// (00DDDD << UU000)
// mask in the new request

j gdnhandlerdone

// pending-hot:

0x000: # of requests
0x004: UserO request

OxOO8: UserO request

OxOOc: UserO request

OxO10: UserO request

0x020: # of requests
0x024: Useri request
etc.

for UserO

from dirO

from dirt

from dir2

from dir3

for Useri

from dirO

.global gdn-handler_di_hot gdnhandler_di_hot:

or $2, $cgni, $0 // $2 = uCOL.uCOL.dROW.dROW
or $4, $cgni, $0 // $4 = dir-tile request
sll $8, $2, 2 // shift left 2, to index into hottable

la $3, hot-request-table

addu $3, $3, $8

swsw $4, 0($3)

// store request in hottable

132

//1
//
//
//
//1

//-
//-
//

and $13, $13, $9

srl $8, $2, 2 // $8 = uCOL.uCOL
sli $8, $20, $8 // $8 = 1 << uCOL.uCOL

or $28, $28, $8 // update hot-map

j gdn-handlerdone

.global gdnhandler_id_dead gdnhandler_id_dead:

or $2, $cgni, $0 // read in user-tile in YYOO0XX format

or $8, $cgni, $0 // read in requesting I-tile YYOOOXX

or $30, $0, $31

jal deadlockbypass

or $31, $0, $30

beq $3, $0, gdn_handlerdone

// Address found in local dir-tile. In this case, we must

// send back an acknowledgement, along with the tile number

// we just addressed.

sll $11, $20, 25 // message length 2

or $cgno, $11, $8 // send header

addiu $cgno, $0, DIDEAD // send ack opcode

addu $cgno, $2, $0 // send user-tile

j gdn-handlerdone

.global gdn-handlerdidead-reply gdn-handlerdidead-reply:
// read in tile (YYOOOXX)

or $4, $cgni, $0

sl1 $10, $20, 24

//wait for GDN output to be cleared, before sending spoof

gdn-handlerdidead-replyjloop:

mfsr $3, GDN_BUF

andi $3, $3, Ox1F

bne $3, $0, gdn-handlerdideadreplyiloop

// send spoof message

or $cgno, $4, $10

or $cgno, $0, $0

133

// message length of 8

sl $10, $20, 27

or $cmno, $4, $10

.rept 8

ori $cmno, $0, 666 // and 8 bogus words

.endr

j gdn-handlerdone

gdn-handlerdone:

jr $31

// mdn message handler. This takes unexpected event counter events from
// U-tile to D-tile.

// Destroys all swap space

mdnhandler-begin:

// if we do not have any outstanding OCREQ space, then we must

// not attempt an MDN read

bne $13, $0, mdn-handlerdone

//BUGFIX: previously was (bne $29, $0, mdn.handlerdone)

ilw $2, Xlo(pending-addresses remaining)($0)

// same thing with no outstanding address space

bne $2, $0, mdn-handlerdone

// check to see if there is anything on the MDN

mfsr $4, MDNBUF // pending incoming data

rrm $4, $4, 5, Ox7 // knock off "out" and other crap

beq $4, $0, mdnhandlerdone // no data? oh well, goodbye

// SCAFFOLD mdn-gdn bypass...

.global mdn_gdn-bypass mdn-gdn-bypass:

// SCAFFOLD should be cmni

or $7, $cgni, $0 // read in a memory word

// this is the tile number in

// YYOOOXX form (and it also

134

// has a MDN return handler -
// self addressed stamped

// envelope!)

// an event counter event. This implies that

// exclusive.

// SCAFFOLD mdn

or $2, $cgni, $0 // read in the addres

// SCAFFOLD mdn

or $10, $cgni, $0 // and the data

rrm $8, $7, 3, OxC // $8 has yyOO of wri

rrmi $8, $7, 0, Ox3 // $8 has yyxx (tile

// $2 is an address.

// $7 has an MDN header

// $8 is an offending tile (YYXX)

// $10 is a data word

// $3, $4, $5, $6, $9, $11 free

srl $3, $2, 7

sll $3, $3, 2 // address shifted ri

addu $3, $22, $3 // cache line metadat

andi $5, $2, Ox1C // low bits of addres

//-
//

part of

getting

a cache line went

s

ter

number)

ght
a address

s (which

the cache line is

modified)

srl $4, $2, 5 // address, high bits only

sll $2, $4, 5

lw $4, 0($3) // load the status of the line

andi $11, $4, 7 // grab state number

// here, if the state is "read" then we do one thing, and if

// it isn't, another.

beq $11, $0, mdn_handlerread

// must not be read. Check to see if the writer is the owner.

rrm $11, $4, 4, OxF // tile number only (YYXX)

135

// if the writer is the owner, then we cannot sen4 d it an
// invalidate because then it would lose precious data!
bne $11, $8, mdnhandlernoclash

or $cmno, $0, $7

or $cmno, $0, $0
// send the ack.

j mdn-handlerdone

mdnhandlernoclash:

// In this case, the state is not read, and the writer is not
// the owner, so we must record its data in the patch table,
// and send it an invalidate request.

or $cmno, $0, $7

ori $cmno, $0, 2

//
//
//
//-
//
//
//
//
//

// send the ack.

// message is "invalidate"

$2 contains the address
$3 contains its state address

$4 the actual state
$5 the word of the cache line

$10 is a data word

$6, $7, $9, $11 free

PERF-FIX: the writing tile must be cleared as a reader, so as to
prevent deadlocking with itself (we already send an invalidate,
so we dont need to wait for the tile to ACK an MDN invalidate)

//sllv $6, $15, $8 / $6 = (1 << tilenumber + 8)
//xor $7, $21, $6 // $7 = everything but this bit
//and $9, $6, $4

//beq $9, $0, mdnhandlernoclash-skip

// we are in RL or RLB, and writing tile
//and $4, $7, $4 // clear the
//sw $4, 0($3)

//srl $9, $4, 8

//bne $9, $0, mdnhandlernoclashskip

//.global mdn_hit

//mdnhit:

1/ in this case, we have just moved from
// from RLB -> EXP so send an ack to the

is a current reader

writer as a reader

RL -> EXP or

writing tile.

136

//ori $4, $4, 1

//sw $4, 0($3)

//rrm $9, $4, 1, Ox60

//rrmi $9, $4, 4, Ox3

//sll $11, $20, 24

//addu $cmno, $11, $9

// lengt

// now, send the ack-and

//ori $cmno, $0, 1

//j mdnhandlerwritebac

//mdnhandlernoclash-skip:

// First, update the ste

// set state to EXP

// 0YY00000

// OYY000XX

// $11 = 1 << 24
// header... message is of

;h 1
[-flush

:k_set

Lte and get a writeback if needed.

andi $6, $4, 1 // low bit is on?

bne $6, $0, mdnhandlerwritebackset

// we must request a writeback and also update the state as

// either going from read-lock to read-lock-bypass, or from

// exclusive to exclusive-pending. This is done by setting the

// low bit.

ori $4, $4, 1
sw $4, 0($3)

// set that bit

// and store back.

// if we are in the read-lock state, then the writeback will

// occur later, and we do not need to force it.

// BUGFIX (should be SRL)

srl $6, $4, 8 // any readers implies read-lock

bne $6, $0, mdnhandlerwritebackset

// Set up a writeback request. $2 contains the address. $9

// must contain the tile number, which (given that we are not

// in "read") is in bits 4-7 of the state vector.

rrm $9, $4, 4, OxF

li $11, 1

or $30, $0, $31

jal ocreq-begin

or $31, $0, $30

// tile number

// request number 1 - coughup

// store the old linkage pointer

// make function call

// and restore LP

137

mdnhandlerwritebackset:

// Now that that is out of the way, we record the patch.
// $2 and $5 have the full address, $10 the data.

or $6, $23, $0 // load the beginning of

// the pending-address table

// here, what we do is check all the addresses in the pending
// address table. If we have a match, then we go to that one.
// Otherwise, we dribble off the bottom and go to the next one.

swlw $9, 0($6) // this is the address of the

// first free entry in the table.

mdnhandler-addressloop:

addiu $6, $6, 40 // add 40 to this entry
swlw $7, 4($6) // load the address there

//BUGFIX: previous impl. failed when $7=$2 and $6=$9

// new entry needs to be allocated

beq $6, $9, mdn-handleraddressnew

// exact match, bail out

beq $7, $2, mdn-handleraddressexact

j mdn-handleraddressjloop

mdnhandleraddressnew:

// must be a new entry. Where we are now, plus 40, is the next
// free entry.

addiu $7, $6, 40

swsw $7, 0($23) // store this new past-end

// pointer

swsw $2, 4($6) // and our current block must

// have the new address

swsw $0, 0($6) // clear out any possible

// detritus control bits.

BUGFIX:

ilw $3, %lo(pending-addressesremaining)($0)

addiu $3, $3, -1

isw $3, lo(pending-addressesremaining)($0)

138

// one more patch slot used

mdnhandleraddressexact:

// at this point...

// $2 contains the transactions address

// $6 an offset in the pending address table

// $5 an offset to a word in the cache line

// $10 the data word

// $3, $4, $7, $8, $9 free

addu $9, $6, $5

swsw $10, 8($9)

// add the cache subpart to

// get the correct offset

//
//I
//
//

// and store the data word
so kindly provided by the

writing tile. "8" is because

the first two words in the

block are header.

BUGFIX - subpart one hot-encoding must use the offset into the
cacheline (previously used $8, the tile number)

srl $5, $5, 2
sllv $5, $20, $5

swlw $9, 0($6)

or $9, $5, $9

swsw $9, 0($6)

// number of subpart

// one-hot encoding

// grab header

// mask in bit

// and store new header

j mdn-handlerdone

mdnhandlerread:

//
//
//-
//

//-
//-
//

$4 contains the state. In order to check for extra readers

(defined as those that are not requesting exclusive access),

the state word is manipulated to pull out the requesting
tile, and this word is compared to zero.

If there are no other readers, then our life is simple, and

we set the tile to be exclusive ($9 has a tile number) and

send the ack. Otherwise, we go into read lock.

139

//-
//

//addiu $29, $29, -1

// $3 has the address of the state

// $4 has the state

// $7 has a return envelope

// $8 has the offending tile

slly $6, $15, $8 // 1 << offender
xor $6, $21, $6 // zero in that position, ones

// everywhere else

and $4, $4, $6 // modified state line

bne $4, $0, mdnhandlerreadlock

// looks like the requestor was the only reader.

// set state to exclusive.
sl $9, $8, 4 //
ori $6, $9, 2 //

move to proper position

state is exclusive on the tile

sw $6, 0($3)

// $7 has the first word sent by the tile to the directory, and

// it is a return-addressed MDN header with its number as the

// recipient, and the length 1.

or $cmno, $7, $0

or $cmno, $0, $0
// send back the ack

// which is zero for "okay"

// that's all, folks.

j mdnhandlerdone

mdnhandlerreadlock:

// this is the more complicated case. We have readers.
// Therefore, we have to set the state to read lock, on the
// extant readers. We do not set it on the new writer, because
// we cannot send the new writer an invalidate (it's got the
// fresh data!).

sll $9, $8, 4
ori $9, $9, 2

or $4, $9, $4

// put in the correct position

// set the read-lock state
// bit.

// and OR in the writer and

// lock bit

140

// store new state

// We must send a bunch of tiles an invalidate message, as a

// newer version of the cache line was just found.

srl $3, $4, 8

or $9, $0, $0

li $11, 2

// list of readers

// current potential tile number

// (start at zero)

// request 2 - invalidate

// BUGFIX ($8 modified by ocreq)

or $5, $8, $0

mdnhandlerreadloop:

// this is the writing tile. It has the latest version of

// the cache line. Can't send it an invalidate or we lose

// data!

beq $9, $5, mdnhandlerreaddone

andi $6, $3, 1 // low-bit mask

// this tile is not on the list... bypass the call

beq $6, $0, mdnhandlerreaddone

// make up an invalidate request for this tile, since it

// the list. $2 contains the address to be invalidated,

// constant "2" because we are asking for an invalidate,

// is the tile number. (three params to OCREQ call)

or $30, $0, $31

jal ocreq-begin

or $31, $0, $30

mdnhandlerreaddone:

srl $3, $3, 1

addiu $9, $9, 1

// store the old linkage pointer

// make function call

// and restore LP

// knock off a tile

// keep two counters synced

// once the list is empty, it will be all zeroes so we must

// continue if $3 is not zero, meaning more tiles need an

// invalidate

bne $3, $0, mdn_handlerreadloop

mdnhandlerdone:

141

is on
$11 has
and $9

sw $4, 0 ($3)

jr $31

// deadlock detector routine

.global deadlockdetectorbegin deadlock_detector-begin:

// here, we detect possible deadlock by seeing if a tile that

// got pinged N cycles ago still has not responded. If this is
// the case, we set up a special force condition, and also send
// along a fake cache line.

li $8, 8 // load this constant;

// the tile number we are

// servicing (times four).

// iterator.

it is

An

deadlockdetectorjloop:

ilw $6, %lo(int_status_0)($8)

andi $4, $6, 2

// load the tile state

// get only the high state bit,
// which is set only when state

// is 2 (there is no state 3)

// if not in state 2 (pinged but no response yet), we are not

// interested.

beq $4, $0, deadlockdetector_next_u

// check to make sure we haven't already sent the forcer, as
// we want to do this precisely once!

sll $4, $8, 1

li $2, Ox1O

// BUGFIX: previ

sllv $2, $2, $4

and $11, $2, $16

//

// tile number (times 8)

// bit 4

ously was sllv $2, $4, $2

// shift over by 8 times the

// tile number - this is a

// forcer bit.

// check this forcer bit. If

$5 is one, then we've already

sent a forcer.

142

bne $11, $0, deadlockdetectornext_u

// check to see how long ago we've pinged. This is in $6 (with a

// footer of "10" but oh well)

mfsr $7, CYCLEL

sll $7, $7, 2

subu $7, $6

0 // grab cycle count

// shift over

// subtract new time minus old

// time, giving the number of

// elapsed cycles since the last

// ping

// subtract off the threshold
li $11, DEADLOCKTRIGGERCYCLES

subu $7, $7, $11

// if this number is less than zero, then we have not exceeded

// the number of cycles and all is well.

bltz $7, deadlockdetectornext_u

.global deadlock_detectorforce deadlockdetector_force:

// oops, looks like we've exceeded our timing.

sll $4, $8, 1 // tile number (times 8)

li $2, Ox10 // bit 4

// BUGFIX: previously was sllv $2, $4, $2

sllv $2, $2, $4 // shift over by 8 times the

// tile number - this is a

// forcer bit.

or $16, $2, $16 // set this bit. The interrupt

// forcer is set. This bit will

// be received by the tile and

// it knows to deal with the

// force.

srl $11, $8, 2 // number of tile (times 1)

ori $2, $11, (TILEROW<<3) // correct tile in YYOOOXX

// BUGFIX: MUST ERASE THIS TILE'S PENDING REQUEST IN THE APPROPRIATE

// DIRECTORY TILE.

or $30, $0, $31

143

jal deadlock-bypass // check local directory first
or $31, $0, $30

bne $3, $0, deadlockdetectorforcefound

// the local directory does not have a pending address.

// therefore, we must message the other directory tiles.

// Only after we receive a successful ack, can we proceed

// to send the fake cache-line.

li $11, 3 // length of message for MDN hdr.

sll $11, $11, 24

ori $10, $0, 3 // tile number of this tile
ori $10, $10, (TILEROW<<3)

ori $4, $0, 3 // $4 = row of current dir-tile
deadlockdetector-forcesendloop:

sll $9, $4, 5

ori $9, $9, 3 // tile in $9 = YY00011 format
// don't send to ourselves!

beq $9, $10, deadlockdetectorforcesendloopnext

or $cgno, $9, $11 // send header to dir tile
ori $cgno, $0, IDDEAD // send IDDEAD opcode

or $cgno, $2, $0 // send tile number in YYOOOXX

or $cgno, $10, $0 // send self-addressed envelope
deadlockdetectorforcesendloopnext:

addiu $4, $4, -1

bgez $4, deadlockdetector forcesendloop

j deadlockdetectornext_u

deadlockdetectorforcefound:

sll $10, $20, 24

deadlockdetectorforce-found-loop:

mfsr $3, GDN_BUF

andi $3, $3, Ox1F

bne $3, $0, deadlockdetectorforcefoundloop

or $cgno, $2, $10

or $cgno, $0, $0

144

sl $10, $20, 27

or $cmno, $2, $10

.rept 8

ori $cmno, $0, 666
.endr

deadlockdetectornextu:

addiu $8, $8, -4

// send header

// and 8 bogus words

// iterate

// BUGFIX: used to be bne $8, $0, deadlockdetectorjloop

bgez $8, deadlockdetectorjloop

deadlockdetectordone:

jr $31

// DEADLOCK bypass subroutine

// one arg is passed in

// $2 has the tile we are requesting for (YYXX)
// $3, $4, $5, $6, $7, $9 are destroyed

// return value in $3 (1 found, 0 not found)

.global deadlock_bypass deadlock-bypass:
// convert YYOOOXX to YYXX format

rrm $4, $2, 3, OxC

rrmi $4, $2, 0, Ox3

// convert to one-hot tile number

sllv $4, $20, $4

sll $4, $4, 8
xor $3, $4, $21

or $6, $23, $0

swlw $9, 0($6)

addiu $6, $6, 40

// shift left 8 to match reader-bits

// everything but this bit

// end ptr

deadlockbypassjloop:

beq $6, $9, deadlock-bypass-notfound

swlw $7, 0($6)

145

// check if current entry matches

bne $5, $0, deadlock-bypassfound

addiu $6, $6, 40

j deadlockbypassjloop

deadlock-bypassfound:

and $7, $7, $3 // apply mask

swsw $7, 0($6)

li $3, 1

jr $31

deadlock-bypass-notfound:

li $3, 0
jr $31

// OCREQ handler subroutine.

// three args are passed in

// $2 has the address we are requesting

// $9 has the owner tile that we are doing the requesting for
// $11 has the request number (1 for cough-up, 0 for invalidate)

// $13 is the OCREQ overflow vector (global variable)

// $14 is the d-tile one-hot number (global constant)

// $18 is the OCREQ table begin address (global constant)
// $20 is "1" (global constant)

// $3, $5, $9 and $10 must not be written, as a caller needs those.
// $30 is a linkage pointer one stack-frame away, so must not be killed

// $4, $6, $7, $8 are destroyed

ocreq-begin:

// the OCREQ consists of a message to an I-tile, asking the
// I-tile to interrupt a U-tile. Locally, we store what we want
// to tell the owner when the owner calls back. The OCREQ table
// is first collated by tile #, and each tile gets 2^7
// consecutive bytes (32 words). Each of these words is a

// particular OCREQ.

// since tiles 3, 7, 11, 15 are actually D-tiles, the OCREQ tile
// space corresponding to them does not contain actual OCREQs.

146

and $5, $7, $4

// instead, they contain the number of outstanding requests

// contained in the table for the preceding 3 tiles. Thus, the

// table is set up like so:

// OxOQO [OCREQs to tile 0] - 32 words

// 0x080 [OCREQs to tile 1] - 32 words

// Ox1OO [0CREQs to tile 2] - 32 words

// 0x180 - number of requests to tile 0

// 0x184 - number of requests to tile 1

// 0x188 - number of requests to tile 2

// Ox18C - 18C through 1FC are blank (29 words)

// 0x200.... tile 4, 5, 6... etc

sll $6, $9, 7 // shift target tile# left by 7

// to get an OCREQ begin address

addu $4, $6, $18 // add the master OCREQ offset to
// get the beginning of OCREQs

// for this particular tile

swlw $8, 0($4) // number of requests is the

// first word in the list.

bne $8, $0, ocreq-notlst

sll $6, $9, 2 // $6 = tile # times 2
la $7, hot.pending.requesttable

addu $6, $7, $6 // $6 = address in hottable
swlw $7, 0($6)

bne $7, $0, ocreq_1st

.global ocreq-hot-begin ocreqhotbegin:
// add to hot-pending-request, and send hot msg to interrupt ctrl
// if request is an invalidate, add it to the hot-pending-requesttable.
// otherwise, store Ox1OQOQOQO to the location.

addu $7, $2, $11 // $7 = address and request
li $4, Ox10000000

swsw $4, 0($6)

andi $4, $7, 1

bne $4, $0, ocreq.hotbeginjflush

swsw $7, 0($6) // store request

ocreq-hot-begin-flush:

147

rlm $8, $9, 3, Ox60

ori $8, $8, 3 // $8 = I-tile handling this U-tile (same

// row, col = 3)

li $6, TILENUM

bne $6, $8, ocreq-send_hot

// add to hot-map

andi $6, $9, Ox3

sll $6, $20, $6

or $28, $6, $28

// add to hottable

rlm $6, $9, 4, Ox30 // strip column of user-tile

ori $6, $6, TILE_ROW // $9 = uCOL.uCOL.dROW.dROW.0.0

la $8, hotrequest-table // store request in hottable

addu $8, $8, $6

swsw $7, 0($8)

j ocreq-done

.global ocreq-sendhot ocreq.sendhot:

li $6, (3 << 24)
or $cgno, $8, $6 // dynamic message to I-tile,
addiu $cgno, $0, DIHOTOP // send hot-request to I-tile

rlm $6, $9, 2, OxOC // strip column of user-tile

ori $6, $6, (TILEROW >> 2) // $9 = uCOL.uCOL.dROW.dROW
addu $cgno, $6, $0 // send U-tile col & D-tile row

addu $cgno, $7, $0 // send actual request

j ocreqdone

ocreq_1st:

// number of requests increases from zero to 1. We must contact

// the interrupt tile when this happens. If the # of requests

// increases, say, 11 to 12, then what that means is that the

// phone-call has been made, and we do not need to make another,

// its just that multiple requests will be told to the U-tile

// when the U-tile calls back.

rlm $7, $9, 3, Ox60 // shift column over by 3 to get

// it into proper coord form

148

ori $7, $7, 3 // this is the I-tile handling

// this particular U-tile (same

// row, col=3)

// if the I-tile is the same, physically, as the D-tile, then do
// not send a message. This is to avoid a deadlock in the GDN

// caused by $cgno being dependent on $cgni!

li $6, TILENUM

bne $7, $6, ocreq-sendrequest

rlm $7, $9, 3, Ox18 // shift up the U-tile number
// and mask only the column,
// times eight

sllv $7, $14, $7 // shift dirtile's number by

// this amount

or $16, $7, $16 // and mask in the new request

j ocreq-notlst

ocreq-send-request:

// the request to the I-tile is two words; one a GDN header, and

// a data word. The GDN header says "1 byte long, sending to the

// I-tile". The data word is the current D-tile. What the GDN

// message says is "D wishes to speak to U." The message will
// be of the form UUDDDD, where UU is a two-bit indicator of the
// U-tiles column, and DDDD is the one-hot address of the

// current D-tile this code is running on.

sll $6, $20, 25

or $cgno, $7, $6
// $6 = 2 << 24
// dynamic message to I-tile,

// size 2

addiu $cgno, $0, DILISTOP // 0x300 is the opcode

sll $7, $9, 4 // shift up the U-tile number

or $cgno, $14, $7 // and swap in the dirtiles

// number, which is stored in

// $14... request sent

ocreq-notlst:

// at this point, $4 still contains the beginning offset of the

149

// U-tiles 0CREQ. We must add to that the correct number of
// words so that we end up at the first blank spot. The number
// of requests (times four) is stored in $8.

addiu $8, $8, 4

swsw $8, 0($4)

addu $4, $4, $8

addu $7, $2, $11

swsw $7, 0($4)

// increase number-of-reqs by
// four to save some instrs in
// word addressing land.

// and write this number back to
// main RAM.

// first open OCREQ slot

// address and request - note
that since the address ends

in 1, the request is now 3
for an invalidate and 2 for
a flush

// store request.

// here, we do bounds checking.
li $6, 120 // max number of requests, times

// four.

bne+ $8, $6, ocreqdone // this branch is almost

// taken, even if the compiler

// doesn't think so

always

we just wrote in the last request into the table. Oh dear.
Set the stall condition. If any OCREQ set (for any one tile)
is filled, then we no longer take OCREQs for ANY tile. This
is a bit overcautious, but given that OCREQs are ideally
passed off kinda quickly, this should be reasonable ($$$ test
this performance)

$13 contains one bit for each tile that has its OCREQ table
full. This one-hot address scheme is used because some
OCREQs communications (not this one, but say an invalidate
flurry!) could possibly set a lot of tiles to go from 30->31.

sllv $8, $20, $9

or $13, $8, $13

// 1 << stalling tile number
// set that bit

ocreq.done:

jr $31

// Main routine begins here.

150

//-
//I
//-
//
//-
//-

//-
//-
//-
//

begin:

mtsri SWFREEZE, 1

la $4, swcode

mtsr SWPC, $4

mtsri SWFREEZE, 0

j init-begin
initdone:

PASS(56)

.global mainloop mainloop:

jal staticnetwork-begin

jal gdn-handler-begin

jal gdn-handler-begin

jal gdn-handler-begin

sll $2, $16, 1

or $2, $2, $28

// ignore bit3l of UD-map

mfsr $3, MDNBUF

andi $3, $3, 1

// skip IRQ handling if msg is on MDN output. otherwise,
// our MDN interrupt may not be immediately sent to the

// tile, and the tile may prematurely receive
// GDN system messages.

bne $3, $0, skip-irq

// if there are pending IRQs, handle them

mfsr $3, GDNBUF

andi $3, $3, Ox1F

addiu $3, $3, -10

bgez $3, skip-irq

jnel $2, $0, pending-irqbegin

skip-irq:

// SCAFFOLD testing

.set noat
mfsr $1, CYCLE_LO // grab cycle count

// PASSREG($1)

151

// .set at
// end SCAFFOLD

// SCAFFOLD deadlock detector avoided because it does an lwo
//j mainloop

// end SCAFFOLD

jal deadlockdetector-begin

j mainloop

DONE(1)

.end begin

reg_1: .word 0

reg_2: .word 0

reg_3: .word 0

reg_4: .word 0

reg_5: .word 0

reg_6: .word 0

reg_7: .word 0

reg_8: .word 0

reg_9: .word 0

reg_10: .word 0

reg_11: .word 0

reg_12: .word 0

reg_13: .word 0

reg_14: .word 0

reg_15: .word 0

152

pending-addresses remaining: .word 0

int_status_0: .word 0

intstatus_1: .word 0

int status_2: .word 0

.swtext

.align 3

swcode:

nop route $cEi->$csti

nop route $cEi->$csti

nop route $cEi->$csti

j swcode route $cEi->$csti

ocreq-table: .rept 512 .word 0 .endr

hot-pending-requesttable: .rept 64 .word 0 .endr

hot-requesttable: .rept 48 .word 0 .endr

pending-requesttable: .rept 512 .word 0 .endr

pending-addresstable: .rept 1024 .word 0 .endr

static-inputbuffer: .rept STATICBUFFERSIZE .word 0 .endr

A.4.2 User-Tile Code

The following code is loaded onto user-tiles, and contains the handlers for MDN and

Event Counter interrupts. After the necessary initialization has been performed, the

code jumps to the actual application via the "jal program-begin" instruction at the

end of the "begin" routine.

// user tile. Part of a shared-memory implementation.
// Levente Jakab
// 5/11/04 18.51

153

// Modified by Satish Ramaswamy

// 5/11/05

#define DEADLOCKTRIGGERCYCLES 19000

#define OPUIDONE OxOOO #define OPUICALL Ox100 #define
OPUDCALL 0x200 #define OPUDDONE 0x400 #define OPEC

0x600 #define OPIU_HOT 0x080 #define OPUDHOTDONE OxEQO

//#include "libints.h"

#include "moduletest.h"

.text

.align 2

.global begin

.ent begin

.extern gdnuser-flag .extern gdn-usermsg

///// PERFORMANCE DATA ////
.extern mdn-cycles .extern eccycles .extern _profile-state

// interrupt 3 handler

.global mdninterrupt mdninterrupt: j mdncode .global mdncode
mdncode:

// an external interrupt signals a long chain of transactions,
// initiated by a directory tile. First, a D-tile sends the
// U-tile an interrupt, and the U-tile ends up here. It needs
// to figure out just who did that, so it sends an MDN message
// to the I-tile in charge. The I-tile sends back a list of

// dirtiles that wish to talk to it, and also a possible spoof

// flag, meaning that a data word just sent to the tile was
// false, and further action must be taken.

// At this point, the U-tile talks to each of the D-tiles via

// the MDN, getting a list of addresses that must either be
// flushed or invalidated. It does so.

// Finally, the U-tile sends to the I-tile a message saying that

// its task is complete. The I-tile now knows it is free to

// interrupt the U-tile again.

154

// store some regs. DO NOT CHANGE $9.

isw $2, Xlo(reg3_2)($0)

isw $3, %lo(reg3_3)($0)

isw $4, %lo(reg3_4)($0)

isw $5, %lo(reg3_5)($0)

isw $6, Xlo(reg3_6)($0)

isw $7, %lo(reg3_7)($0)

isw $8, %lo(reg3_8)($0)

isw $9, lo(reg3_9)($0)

isw $10,Xlo(reg3_10)($0)

isw $11,%lo(reg3_11)($0)

isw $31, Xlo(reg3_31)($0)

/////////// PERFORMANCE DATA ///////////////
mfsr $2, CYCLELO

isw $2, Xlo(mdn-cycle-tmp) ($0)

or $10, $0, $0

// temporarily remember last interrupt in $9

// DO NOT CHANGE $9 AFTER THIS LINE
ilw $9, lo(int-state)($0)

// store the new interrupt state
isw $0, Xlo(int-state)($0)

// first, send a message to the interrupt controller. The
// message will be of length 1.

li $cgno, ((1 << 24) 1 INTNUM)

// send along the tile's number and an opcode

li $cgno, (OPUICALL I TILENUM)

// now, wait for the I-tile to send back the list of

// requests. When it arrives, grab the requests relevant only

// to this tile, by rotating and masking appropriately.

// initially word stored in $7 by gdn-sysreceive
jal gdnrsys-receive

// DO NOT MODIFY $2!

155

rrm $2, $7, TILEROTATE, 0xFF

// read OP, and check if HOT request

li $8, Ox10000000
and $8, $8, $7 // $8 = 1 if normal interrupt

// $8 = 0 if hot interrupt
// DO NOT MODIFY $8!

bne $8, $0, mdnspoofcheck

// must be a hot-request, so store all the requests in 'hotrequest-table'

isw $7, Xlo(hotrequesttable_4)($0)

or $4, $cgni, $0

isw $4, Xlo(hotrequest-table_3)($0)

or $4, $cgni, $0

isw $4, %lo(hot_request-table_2)($0)

or $4, $cgni, $0

isw $4, %lo(hot-request-table_1)($0)

.global mdnspoof_check mdn-spoof_check:

mfsr $4, GDNBUF

rrm $4, $4, 5, Ox1 // check 1st

beq $4, $0, mdncheck.memop

// there is still a word on the GDN.

// vs. user msg

or $3, $cgni, $0

srl $4, $3, 12

subu $4, $4, OxF

bnez $4, mdn-spoof-checkvalid

// this is a user msg

or $4, $cgni, $0

sw $4, gdn-user-msg($0)
li $4, 1

sw $4, gdn-user-flag($0)

j mdn-spoof-check

// initial word already read into $7

el in GDN_BUF

Check if it is spoof msg,

.global mdn.spoof-checkvalid mdn-spooftcheckvalid:

li $10, 1 // signal that spoof occurred

mdncheck-memop:

// also check if EC interrupt is pending, so that we may

// extract its address and take care not to invalidate it
mfsr $7, EXBITS

andi $7, $7, Ox40

156

or $3, $10, $7

beq $3, $0, mdn-no-spoof

// a spoof has occurred. The last lw instruction was patently

// false. Therefore, invalidate the cache line in question

// and back up the program counter to the lw. We may use any

// register except $2 and $8.

// First, we must grab the program counter at which the interrupt

// occurred.

mfsr $3, EXPC

// now, we know that the interrupt occurred precisely 2 cycles

// after the offending instruction. So back up the program

// counter by one. We'll back it up another in a sec.

// BUGFIX interrupts occurs 3 cycles later!

//addiu $3, $3, -8

.global mdnnotmemop mdn.not-memop:

// back up one instruction. BUGFIX: (backup 2 instructions)
addiu $3, $3, -4

ilw $4, 0($3) // load the instruction there

// now, we must make sure that the instruction is either a lw or
// a sw.

// bits 31-29 are either 010 or 001. Thus, on 1xx, 000, or 011,

// forget about it.

rrm $5, $4, 31, Ox1 // grab the high bit

bne $5, $0, mdnnotmemop // exit on 1xx

// high bit must be a zero.

rrm $5, $4, 29, Ox3 // grab bits 30-29

beq $5, $0, mdnnotmemop // exit on 000

xori $5, $5, Ox3 // flip low bits

beq $5, $0, mdnnotmemop // exit on 011

// high bits must be either 010 or 001. Next bits must be either

// 000, 010, or 100. Not 110, and certainly not xxi.

rrm $5, $4, 26, Ox1 // check for xxi

bne $5, $0, mdnnotmemop // exit on xxi

157

// must be xx0

rrm $5, $4, 27, Ox3

xori $5, $5, Ox3 // check for 110

beq $5, $0, mdn_notmemop // exit on 110

// so what we really have here is an honest to goodness memory op

// in $4. Extract the address, thrashing regs $5, $6,and $7.

// (and $31)

jal grabaddress-anddata
mfsr $7, EXBITS

andi $7, $7, Ox40

beq $7, $0, mdn_notmemopjinv

.global mdn_not_memopshaddr mdnnotmemopshaddr:

// if eventcounter interrupt is pending after this MDN int,
// we must write the address to "sharedaddress" so as not to
// prematurely invalidate.

srl $7, $6, 5

sll $7, $7, 3

isw $7, Xlo(sharedaddress)($0)

beq $10, $0, mdnno_spoof

mdnnotmemopjinv:

// we have the address, so invalidate the cache line.

ainy $6, 0

// and set the program counter back to the offending lw/sw,

// where the cache will miss and the tile will go back to being

// in stall, once we return from handling the interrupt.

mtsr EXPC, $3

//BUGFIX: incorrectly subtracted 10 decimal

andi $2, $2, OxEF // knock off the bit-4 mask.

//BUGFIX: check if eventcounter interrupt is pending on a write
// to the spoofed data. If pending, reset the event counter,

so that a false exclusive request doesn't occur.

mfec $4, ECWRITEOVER_READ

srl $4, $4, 16

sll $4, $4, 2

bne $3, $4, mdnno_spoof

mtec ECWRITEOVERREAD, $0

158

mdnno-spoof:

beq $8, $0, mdnhotrequest

li $3, ((1 << 24) 1 3) // load the current dirtile

// to deal with. Start at tile

// 3. Add on a header meaning

// an MDN message of length 1.

mdnudouter-loop:

// see if we actually need to talk to this dirtile by masking

// in the lowest bit. If not, then bypass.

andi $4, $2, 1

beq $4, $0, mdnudocreq-noneed

or $cgno, $3, $0 // send the header

// and send the data word

li $cgno, (OPUDCALL I TILENUM)

// now wait for the dirtile's response.

jal gdnsys-receive

or $4, $7, $0 // $4 now contains the number

// of requests we are expecting.

// This is our main iterator.

.global mdn_ud_ocreqloop mdn_ud_ocreqloop:

or $5, $cgni, $0 // load an OCREQ. This contains

// in bits 0 an opcode, and in

// bits 31-2 an address.

andi $6, $5, Ox1 // grab the opcode. The opcode

// is 10 for invalidate and 01

// for flush.

srl $8, $5, 5 // clear lower 2 bits

sil $8, $8, 3

// $2 has the list of dirtiles we need to talk to

// $3 has the current dirtile we are talking to

// $4 has the number of the request for the current dirtile

// $5 has the address

// $6 has the requests's opcode

// if the opcode is 10, we want an invalidate, and if it is

159

// 01 we want a flush.

ilw $7, Xlo(sharedaddress)($0)

beq $6, $0, mdnudocreq-invalidate

// must be a flush. We can flush with extra address low-bits
// as the cache does not care. This op coughs up the line and
// writes it to main RAM. It also invalidates it because

// sometimes the line must be patched up.

.global mdnudflush mdn_ud_flush:

//beq $7, $8, mdnudflushconflict

aflinv $5, 0

//mdn-udflushconflict:

//afl $5, 0

// we have handled the flush.

j mdnudocreq-handled

mdnudocreqjinvalidate:

// must be an invalidate. Therefore, we invalidate the cache
// line pointed to.

beq $7, $8, mdnudocreq.invalidateconflict

ainy $5, 0

mdnudocreq-invalidateconflict:

mdnudocreq-handled:

// we've taken care of the current OCREQ, whether it be
// invalidate or flush.

addiu $4, $4, -1 // subtract one more request

// and loop if there are more
// coming.

bne $4, $0, mdnudocreqloop

mdnudocreqack:

// acknowledge, to the dir tile, what we have just accomplished
or $cgno, $3, $0 // send the header

li $cgno, (OP_UD_DONE I TILENUM)

160

.global mdn_ud_ocreqnoneed mdn_ud_ocreq-noneed:
srl $2, $2, 1 // shift right the list of

// dirtiles needing to talk.

addiu $3, $3, 32 // and increment the current

// dirtile number.

// if there are more dirtiles wanting to talk, then loop
bne $2, $0, mdnudouter-loop

j mdn-uidone

.global mdnhotrequest mdn.hot_request:

ori $11, $0, 12

li $3, ((1 << 24) 1 Ox83) // load the current dirtile

// to deal with. Start at tile

// 15. Add on a header meaning

// an MDN message of length 1.

.global mdn_hot_ocreq-loop mdnhotocreq-loop:

addiu $3, $3, -32 // decrement dir-tile

ilw $5, Xlo(hot-request-table_1)($11) // copy first message to $5,

mdnhotocreqjloopl:

beq $5, $0, mdnhotudocreqnoneed

andi $6, $5, Ox1 // grab the opcode. The opcode

// is 10 for invalidate and 01

// for flush.

srl $8, $5, 5 // clear lower 2 bits

sll $8, $8, 3

// $3 has the current dirtile we are talking to

// $5 has the address

// $6 has the requests's opcode

// if the opcode is 10, we want an invalidate, and if it is

// 01 we want a flush.

ilw $7, Xlo(sharedaddress)($0)

161

beq $6, $0, mdnhotudocreqinvalidate

// must be a flush. We can flush with extra address low-bits

// as the cache does not care. This op coughs up the line and

// writes it to main RAM. It also invalidates it because

// sometimes the line must be patched up.

mdnhotudflush:

//beq $7, $8, mdnhotudflushconflict

aflinv $5, 0

//mdnhotudflushconflict:

//afl $5, 0

// we have handled the flush.

j mdnhotud-ocreq-ack

mdnhotud-ocreqinvalidate:

// must be an invalidate. Therefore, we invalidate the cache
// line pointed to.
beq $7, $8, mdnhotud-ocreq-invalidateconflict

ainy $5, 0
j mdnhotud-ocreq-ack

mdnhotud-ocreq-invalidateconflict:

mdnhotudocreqack:

// acknowledge, to the dir tile, what we have just accomplished
or $cgno, $3, $0 // send the header

li $cgno, (OPUDHOTDONE I TILENUM)

mdnhotudocreqnoneed:

addiu $11, $11, -4

andi $2, $3, Ox60

bne $2, $0, mdnhotocreqjloop

.global mdnuidone mdn_ui_done:

// we are done, so send along a final ack to the I-tile handling

// us, letting it know that we are about to exit interrupt mode.

// The message will be of length 1.

li $cgno, ((1 << 24) 1 INTNUM)

162

// send along the tile's number and an opcode

li $cgno, (OPUIDONE I TILE_NUM)

isw $9, Xlo(int.state) ($0)

///////// PERFORMANCE DATA ////
ilw $2, %lo(mdncycle-tmp)($0)

mfsr $3, CYCLELO

subu $3, $3, $2 // $3 = # cycles spent in this int.
lw $2, mdncycles($0)

addu $2, $2, $3

lw $4, _profilestate($O)

beqz $4, mdn-restoreregs

sw $2, mdn-cycles($0)

blez $9, mdn-restoreregs

// we were in EC interrupt beforehand, so adjust the ecstall-cycles

// so that we don't doublecount. $3 = mdn cycles on this interrupt.

ilw $2, Xlo(ec-cycle-tmp)($0)

addu $2, $2, $3

isw $2, %lo(ec-cycle-tmp)($0)

mdnrestore-regs:

// restore regs

ilw $2, Xlo(reg3_2)($0)

ilw $3, %lo(reg3_3)($0)

ilw $4, Xlo(reg3_4)($O)

ilw $5, Xlo(reg3-5)($0)

ilw $6, Xlo(reg3_6)($0)

ilw $7, %lo(reg3_7)($0)

ilw $8, %lo(reg3_8)($O)

ilw $9, Xlo(reg3_9)($0)

ilw $10, %lo(reg3_10)($O)
ilw $11, %lo(reg3_11)($0)

ilw $31, Xlo(reg3_31)($0)

eret

//$7 returns system GDN message

.global gdnsys-receive gdn-sys-receive:

or $7, $cgni, $0

srl $8, $7, 12

163

addiu $8, $8, -0xF

bnez $8, gdn-sys-receiveend

// must be user message. therefore, read in next word and store.

or $7, $cgni, $0

sw $7, gdnruser.msg($0)

li $7, 1

sw $7,gdn-user-flag($0)

j gdn-sysreceive
gdn-sys-receiveend:

jr $31

// interrupt 6 handler

.global sw_eventcounter_interrupt sw-eventcounterinterrupt: j
eventcountercode eventcounter-code: .global hi hi:

// an event-counter event records the cache line going from
// 'clean' to 'dirty', meaning that an sw has caused main memory
// to go out of date. Since the event counter takes 6 cycles to

// interrupt, and there are no consecutive sw calls, we must

// check for a total of three sw ops in the instructions

// following the one that trapped.

// squirrel away registers $2-6, 31 as we will be destroying

// them.

// SCAFFOLD these two stored previously under abnormal

// circumstances.

intoff

nop

nop

nop

isw $2, %lo(reg6_2)($0)

isw $3, %lo(reg6_3)($0)

isw $4, %lo(reg6_4)($0)

isw $5, Xlo(reg6_5)($O)

isw $6, Xlo(reg6_6)($0)

isw $7, Xlo(reg6_7)($0)

isw $8, Xlo(reg6_8)($0)

isw $9, %lo(reg6_9)($0)

isw $31, Xlo(reg6_31)($0)

164

mfsr $2, EX_PC

isw $2, %lo(reg6_eret)($0)

///////// PERFORMANCE DATA ///////////////
mfsr $2, CYCLELO

isw $2, %lo(ec-cycle-tmp)($0)

li $2, 1

isw $2, lo(int.state) ($0)

// grab the event counter

// SCAFFOLD - uncomment. User has responsibility of writing

// OxFFFF into $3, and address of triggering instruction into
// $2. WE DO IT ANYWAYS.

//li $3, OxFFFF

//addiu $2, $31, -OxC

mfec $3, ECWRITE_OVER_READ

// SCAFFOLD - uncomment

srl $2, $3, 16 // program counter of triggering

// instruction. Two bits are an

// off-by-word-versus-byte.

sll $2, $2, 2

mtec ECWRITEOVERREAD, $0 // reset event counter

addiu $3, $3, 1 // add one to number of events

// to get number of extra sw's

andi $3, $3, OxFFFF // we look for...

// 0, -1 or -2 (negative

// because event counter counts

// backwards)

// the event that triggered (PC=$4) must be an sw, by definition

// grab the instruction from imem - $3 contains the number of

// sw's detected, $2 the address of the triggering pc, $4 is the

// instruction found there. We're really trying to' minimise
// register use because we are in interrupt, so we have to store

// and restore them, which is overhead.

ilw $4, 0($2)

165

// now, $4 has the instruction. This subroutine will return in
// $6 the address and in $5 the data. $4 and $7 are destroyed,

// as is $31.

jal grabaddress anddata

// store shared address

srl $7, $6, 5

sl $7, $7, 3

isw $7, Xlo(sharedaddress)($0)

// now we have the address in $6 and the data in $5. check to
// see if the address corresponds to shared memory. if not, we
// can safely exit.

li $7, Ox6000000

and $4, $6, $7

bne $4, $7, eventcounterdone

// let's make an MDN header to the appropriate directory. Bits
// 6-5 of the address are the row of the correct dirtile, and
// the column is "11". The bits are put into slots 6-5.
andi $4, $6, Ox60 // bits correspond to slots - no shifting!
ori $4, $4, Ox3 // and mask in

// SCAFFOLD length should be 3

li $7, (4 << 24) // message length is 3.

// SCAFFOLD should be $cmno

or $cgno, $7, $4 // header length and target,
// sent!

// SCAFFOLD this is not needed

ori $cgno, $0, Ox600

// send the tile number (self addressed stamped envelope, an
// MDN header for a return of length 1)

// SCAFFOLD MDN

li $7, (1 << 24)

ori $cgno, $7, TILENUM

// and now send the address and data

166

// SCAFFOLD MDN

or $cgno, $6, $0

// SCAFFOLD MDN

or $cgno, $5, $0

// send has finished, so turn interrupts on

inton

.global eventcounter_wait_first event_counter_wait_first:

// check to see if there is anything on the MDN. This is a

// non-blocking wait that allows interrupts to fire.

mfsr $4, MDN_BUF // pending incoming data

rrm $4, $4, 5, Ox7 // knock off "out" and other crap

beq $4, $0, eventcounterwaitfirst

.global eventcounter_wait-first_done

eventcounterwaitfirstdone:

or $4, $cmni, $0

// wait for an acknowledgement, and possibly invalidate or

// flush. Message 0 is none, 1 is flush, 2 is invalidate.

beq $4, $0, eventcounternonefirst

andi $4, $4, 1 // grab low bit

beq $4, $0, event_counterinv_first

//BUGFIX - NEEDS TO INVALIDATED

.global event_counterflush event_counter_flush:

aflinv $6, 0

j eventcounternonefirst

eventcounter_inv_first:

ainv $6, 0

event-counternonefirst:

// hey, that might have been it.

beq $3, $0, eventcounterdone

167

.global eventcounter_extra eventcounter_extra:

// there must have been multiple stores... start rooting around
// the instructions immediately following the program counter.

// First, grab the LAST possible instruction (the one that was
// interrupted) - we need to check only what come before it.

ilw $3, lo(reg6_eret)

// immediately following THIS store, cannot be another store, so

// discount that instruction and move on.

//addiu $2, $2, 4

eventcountermoreaddresses:

addiu $2, $2, 4 // next instruction

ilw $4, 0($2) // grab it.

// an SW looks like the following. In bits 31-29 are 001. In
// bits 28-26 are 000, 010, or 100. But not 110. Do a set of
// tests.

rrm $5, $4, 29, Ox7 // grab high 3 bits.
xori $5, $5, Ox1 / compare with "001"

bne $5, $0, eventcountermoreaddresses

// looks like the top 3 bits are "001". Now,
rrm $5, $4, 26, Ox1 // 1 or 0

bne $5, $0, eventcountermoreaddresses

// okay, 26 is a zero. Good. Now are 28 and

// that is bad.

rrm $5, $4, 27, Ox3 // bits 27 and 26
xori $5, $5, Ox3 // compare with "11"

beq $5, $0, event_countermoreaddresses

// $4 is now known to be a store. Do exactly

// first word.

jal grab-address anddata

is bit 26 a zero?

27 both 1, because

as with the

// now we have the address in $6 and the data in $5.

// let's make an MDN header to the appropriate directory. Bits

// 6-5 of the address are the row of the correct dirtile, and

// the column is "11". The bits are put into slots 6-5.

andi $4, $6, Ox60 // bits correspond to slots - no shifting!
ori $4, $4, Ox3

168

// message length is 3.

intoff
nop

nop

nop

// SCAFFOLD should be $cmno

or $cgno, $7, $4 // header length and target,

// sent!

// SCAFFOLD this is not needed

ori $cgno, $0, Ox600

// send the tile number (self addressed stamped envelope, an

// MDN header for a return of length 1)

// SCAFFOLD MDN

li $7, (1 << 24)

ori $cgno, $7, TILENUM

// and now send the address and data

// SCAFFOLD MDN

or $cgno, $6, $0

// SCAFFOLD MDN

or $cgno, $5, $0

inton

eventcounterwaitnext:

// check to see if there is anything on the MDN. This is a

// non-blocking wait that allows interrupts to fire.

mfsr $4, MDNBUF // pending incoming data

rrm $4, $4, 5, Ox7 // knock off "out" and other crap

beq $4, $0, event_counter_wait_next

or $4, $cmni, $0

// wait for an acknowledgement, and possibly invalidate or

// flush. Message 0 is none, 1 is flush, 2 is invalidate.

beq $4, $0, eventcounternonenext

169

li $7, (4 << 24)

// grab low bit

beq $4, $0, eventcounterinv_next

// BUGFIX - NEEDS TO BE INVALIDATED

.global eventcounter_wait_nextflush

eventcounterwaitnextflush:

aflinv $6, 0

j eventcounternonenext

eventcounterinv_next:

ainv $6, 0

eventcounternonenext:

// and since we just found an SW, the next one cannot be one...
// we want to skip that exhaustive test (8 instructions,

// including some nasty branches!) as much as possible.

//addiu $2, $2, 4

// see if we're done yet (if we have hit the instruction that

// got interrupted, we must be done)

bne $2, $3, eventcountermoreaddresses

event-counter done:

intoff // turn interrupts off to avoid race conditions

// with MDN disrupting performance data.
nop

nop

nop

li $2, -1

isw $2, %lo(intstate)($0)

//////// PERFORMANCE DATA ////
ilw $2, %lo(ec-cycle-tmp)($0)

mfsr $3, CYCLE_LO

subu $3, $3, $2

lw $2, ec-cycles($0)

addu $2, $2, $3

lw $3, _profile state($0)

beqz $3, eventcounter_done_restore_regs

sw $2, ec-cycles($0)

170

andi $4, $4, 1

eventcounterdonerestoreregs:

// clear shared address

isw $0, %lo(sharedaddress)($0)

// Restore the regs we so conscienciously put away.

ilw $2, %lo(reg6_2)($0)

ilw $3, 7lo(reg6_3)($0)

ilw $4, %lo(reg6_4)($0)

ilw $5, 1lo(reg6_5)($0)

ilw $6, %lo(reg6_6)($0)

ilw $7, Xlo(reg6_7)($0)

ilw $8, Xlo(reg6_8)($0)

ilw $9, 0lo(reg6_9)($0)

// ------- > WE NEED AN INTOFF HERE <-------

ilw $31, %lo(reg6_eret)($0)
mtsr EXPC, $31

ilw $31, Xlo(reg6_31)($0)

// and we're done.

eret

// this routine takes an instruction that is an sw and extracts an
// address from it. The instruction is in register $4. Registers $5

// $6, $7 are used as temporaries. $4 is destroyed as well.

grab-addressanddata:

// First, extract the register number from $4. The instruction

// bits are as follows: OOOOOOAAAAADDDDDXXXXXXXXXXXXXXXX

// 0 = opcode. Bits 31-26. Already verified as store.

// A = address. Bits 25-21. This is the reg number we seek.

// D = data. Bits 20-16. What is written. Data reg.

// X = offset. Bits 15-0. Dealt with later.

// rotate right by 18 bits and mask by Ob11111000, leaving the

// reg number multiplied by 8. rrm is hella nifty.

rrm $5, $4, 18, OxF8

// what we do here is grab the address of this big table. We

171

// add to that eight times the register number in the

// instruction. We jump to that address! (Eight because each
// part of the switch is two instructions, thus 8 bytes.) This

// gets the value stored in the register... either it is still

// stored in the reg, or it is fetched from instruction memory.

// Very fast.

// The result goes into $5. Note that the four ports ($24-27)
// are blanked out - this is because attempting to re-read a

// port would be disastrous at best. Thus, things break but at

// least don't hang. Note to user: don't sw directly off a

// network. Also, $1 is reserved for assembler, so that also
// may break, though it is supported, as at best it returns

// trash.

// BUGFIX: must differentiate interrupt 3 & 6 registers

la $7, grab-address-regtable_3 // address.

ilw $6, Xlo(intstate)($0)

beq $6, $0, grab-address anddataskip

la $7, grab-address-regtable_6

grab-address anddataskip:

addu $7, $5, $7 // add in the reg's offset.

jr $7

grab-addressregtable_3:

or $5, $0, $0
j grab-addressregdone

.set noat

or $5, $0, $1

.set at

j grab-address-regdone
ilw $5, 1lo(reg3_2)($0)

j grab-address-regdone
ilw $5, Xlo(reg3_3)($0)

j grab-address.regdone
ilw $5, 1lo(reg3_4)($0)

j grab-addressregdone
ilw $5, Xlo(reg3_5)($0)

j grab-address-regdone
ilw $5, %lo(reg3_6)($0)

j grab-address-regdone

// $0

// $1 - reserved

// $2 - stored

// $3 - stored

// $4 - stored

// $5 - stored

// $6 - stored

172

ilw $5, %1o(reg3_7)($O)

j grab-address-regdone
ilw $5, 1lo(reg3_8)($0)

j grab-address-regdone
ilw $5, %lo(reg3_9)($0)
j grab-address-regdone
or $5, $0, $10

j grab-address-regdone
or $5, $0, $11

j grab-addressregdone
or $5, $0, $12

j grab-addressregdone
or $5, $0, $13

j grabaddressregdone
or $5, $0, $14

j grab.addressregdone
or $5, $0, $15

j grab-addressregdone
or $5, $0, $16

j grab-addressregdone
or $5, $0, $17

j grab-addressregdone
or $5, $0, $18

j grab.addressregdone
or $5, $0, $19

j grab-addressregdone
or $5, $0, $20

j grab-addressregdone
or $5, $0, $21

j grab-address-regdone
or $5, $0, $22

j grab-addressregdone
or $5, $0, $23

j grab-addressregdone
or $5, $0, $0

j grab-addressregdone
or $5, $0, $0

j grabaddressregdone
or $5, $0, $0

j grab-addressregdone
or $5, $0, $0

j grab-address-regdone
or $5, $0, $28

j grab-addressregdone
or $5, $0, $29

// $7

// $8

// $9

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$20

$21

$22

$23

$24 -

$25 -

$26 -

$27 -

$28

$29

173

- stored

- stored

- stored

csti

cgni

csti2

cmni

j grab-address-regdone
or $5, $0, $30 // $30

j grab-address-regdone
ilw $5, %lo(reg3_31)($0) // $31 - stored

j grab-address.regdone

grab-address.regtable_6:

or $5, $0, $0 // $0
j grab-address-regdone

.set noat

or $5, $0, $1 // $1 - reserved

.set at

j grab-address-regdone
ilw $5, %lo(reg6_2)($0) // $2 - stored

j grab-address-regdone
ilw $5, %lo(reg6_3)($0) // $3 - stored

j grab-address-regdone
ilw $5, Xlo(reg6_4)($0) // $4 - stored

j grab-addressregdone
ilw $5, Xlo(reg6_5)($0) // $5 - stored

j grab-address-regdone
ilw $5, Xlo(reg6_6)($0) // $6 - stored

j grab-address-regdone
ilw $5, %lo(reg6j7)($0) // $7 - stored

j grab-address-regdone
ilw $5, Xlo(reg6_8)($0) // $8 - stored

j grab-address-regdone
ilw $5, %lo(reg6_9)($0) // $9 - stored

j grab-address-regdone
or $5, $0, $10 // $10
j grab-address-regdone
or $5, $0, $11 // $11
j grab-address-regdone
or $5, $0, $12 // $12
j grab-address-regdone
or $5, $0, $13 // $13
j grab-address-regdone
or $5, $0, $14 // $14
j grab-address-regdone
or $5, $0, $15 // $15
j grab-address-regdone
or $5, $0, $16 // $16
j grab-addressregdone
or $5, $0, $17 // $17
j grab-addressregdone

174

or $5, $0, $18 // $18

j grabaddress-regdone
or $5, $0, $19 // $19

j grabaddress-regdone
or $5, $0, $20 // $20

j grab-address-regdone
or $5, $0, $21 // $21

j grab-address-regdone
or $5, $0, $22 // $22

j grab-address-regdone
or $5, $0, $23 // $23

j grabaddress-regdone
or $5, $0, $0 // $24 - csti

j grabaddress-regdone
or $5, $0, $0 // $25 - cgni

j grab-address-regdone
or $5, $0, $0 // $26 - csti2

j grab-address-regdone
or $5, $0, $0 // $27 - cmni

j grab.address-regdone
or $5, $0, $28 // $28

j grabaddress-regdone
or $5, $0, $29 // $29

j grabaddress-regdone

or $5, $0, $30 // $30

j grabaddress-regdone
ilw $5, %lo(reg6_31)($0) // $31 - stored

j grab.address-regdone

grab address-regdone:

// add offset, which sits in $4 and needs to be sign extended.

// $$$
// is there a more efficient way of doing this?

sll $6, $4, 16

sra $6, $6, 16 // sign extended

addu $6, $5, $6 // now $6 has the full address.

// same thing, except grab the data now. Rotate by 13, and

// data ends up in $5

rrm $5, $4, 13, OxF8

// what we do here is grab the address of this big table. We

// add to that eight times the register number in the

175

// instruction. We jump to that address! (Eight because each
// part of the switch is two instructions, thus 8 bytes.) This
// gets the value stored in the register... either it is still

// stored in the reg, or it is fetched from instruction memory.

// Very fast.

// The result goes into $5. Note that the four ports ($24-27)
// are blanked out - this is because attempting to re-read a
// port would be disastrous at best. Thus, things break but at
// least don't hang. Note to user: don't sw directly off a
// network. Also, $1 is reserved for assembler, so that also
// may break, though it is supported, as at best it returns

// trash.

// BUGFIX: must differentiate interrupt 3 & 6 registers

la $7, grabdataregtable_3 // address.

ilw $4, Xlo(intstate) ($0)
beq $4, $0, grab-address-regdoneskip

la $7, grab-data-regtable_6

grab.address.regdone-skip:

addu $7, $5, $7

jr $7

grab-data-regtable_3:
or $5, $0, $0

j grab-dataregdone
.set noat

or $5, $0, $1

.set at

j grab-dataregdone
ilw $5, Xlo(reg3_2)($0)

j grab-dataregdone
ilw $5, %lo(reg3_3)($0)

j grab-dataregdone
ilw $5, %lo(reg3_4)($0)

j grab-dataregdone
ilw $5, Xlo(reg3_5)($0)

j grab-dataregdone
ilw $5, %lo(reg3_6)($0)

j grab-dataregdone
ilw $5, %lo(reg3_7)($0)

// add in the reg's offset.

// $0

// $1 - reserved

// $2 - stored

// $3 - stored

// $4 - stored

// $5 - stored

// $6 - stored

// $7 - stored

176

j grab-dataregdone
ilw $5, 1lo(reg3_8)($0)

j grab-dataregdone
ilw $5, %lo(reg3_9)($0)

j grab dataregdone
or $5, $0, $10

j grab-dataregdone
or $5, $0, $11

j grab dataregdone
or $5, $0, $12

j grab dataregdone
or $5, $0, $13

j grab-dataregdone
or $5, $0, $14

j grab-dataregdone
or $5, $0, $15

j grab data_regdone
or $5, $0, $16

j grab dataregdone
or $5, $0, $17

j grab dataregdone
or $5, $0, $18

j grab-dataregdone
or $5, $0, $19

j grab dataregdone
or $5, $0, $20

j grab-dataregdone
or $5, $0, $21

j grab-dataregdone
or $5, $0, $22

j grab dataregdone
or $5, $0, $23

j grab-dataregdone
or $5, $0, $0

j grab-dataregdone
or $5, $0, $0

j grab-dataregdone
or $5, $0, $0

j grab-dataregdone
or $5, $0, $0

j grab-dataregdone
or $5, $0, $28

j grab-dataregdone
or $5, $0, $29

j grab-dataregdone

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$8 - stored

$9 - stored

- csti

- cgni

- csti2

- cmni

177

or $5, $0, $30

j grab-dataregdone
ilw $5, 1lo(reg3_31)($0)

j grab-dataregdone

grab-data-regtable_6:
or $5, $0, $0

j grab-dataregdone
.set noat

or $5, $0, $1

.set at

j grab-dataregdone
ilw $5, Xlo(reg6_2)($0)

j grab-dataregdone
ilw $5, %lo(reg6_3)($0)

j grab dataregdone
ilw $5, 1lo(reg6_4)($0)

j grab data_regdone
ilw $5, 1lo(reg6_5)($0)

j grab dataregdone
ilw $5, Xlo(reg6_6)($0)

j grab dataregdone
ilw $5, %lo(reg6_7)($0)

j grab dataregdone
ilw $5, %lo(reg6_8)($0)

j grab dataregdone
ilw $5, %lo(reg6_9)($0)

j grab dataregdone
or $5, $0, $10

j grab dataregdone
or $5, $0, $11

j grab-dataregdone
or $5, $0, $12

j grab-dataregdone
or $5, $0, $13

j grab-dataregdone
or $5, $0, $14

j grab-dataregdone
or $5, $0, $15

j grab-dataregdone
or $5, $0, $16

j grab-dataregdone
or $5, $0, $17

j grab-dataregdone

// $30

// $31 - stored

// $0

// $1 - reserved

// $2 - stored

// $3 - stored

// $4 - stored

// $5 - stored

// $6 - stored

// $7 - stored

// $8 - stored

// $9 - stored

// $10

// $11

// $12

// $13

// $14

// $15

// $16

// $17

178

or $5, $0, $18 // $18

j grab-data-regdone
or $5, $0, $19 // $19
j grabdata-regdone
or $5, $0, $20 // $20

j grab-dataregdone
or $5, $0, $21 // $21

j grab-data-regdone
or $5, $0, $22 // $22
j grab.data-regdone
or $5, $0, $23 // $23

j grab-data-regdone
or $5, $0, $0 // $24 - csti

j grab-data-regdone
or $5, $0, $0 // $25 - cgni

j grab-data-regdone
or $5, $0, $0 // $26 - csti2

j grab-data-regdone
or $5, $0, $0 // $27 - cmni

j grab-data-regdone
or $5, $0, $28 // $28

j grab-data-regdone
or $5, $0, $29 // $29

j grab-data-regdone
or $5, $0, $30 // $30

j grab-data-regdone
ilw $5, Xlo(reg6_31)($0) // $31 - stored

j grab-data-regdone

grab-dataregdone:

jr $31

// main routine.

.global begin begin:

// set up the event counter event to trigger interrupt 6

aui $6, $0, Ox409

// seed the lfsr
li $3, OxF

mtec ECLFSR, $3

mtsr EVENT_CFG, $6

179

li $6, kEVENTCFG2_WRITEOVERREADMASK

mtsr EVENTCFG2, $6

mtec ECWRITEOVERREAD, $0

// load the CACHESTALL counter

li $6, Oxffffffff

mtec ECCACHESTALLS, $6

// load vector of interrupt 3 handler and store it

// in instruction memory.

ilw $3, Xlo(mdninterrupt)($0)

isw $3, (3 << 4)($0)

// and the interrupt 6 handler...

ilw $3, Xlo(sw-event_counterinterrupt)($0)

isw $3, (6 << 4)($0)

// enable int 3 (MDN) and int 6 (event counter)
mtsri EXMASK, ((1 << 3) + (1 << 6))

// initial interrupt state is -1

li $3, -1

isw $3, %lo(intstate)($0)

isw $0, Xlo(d-flush)($0)

isw $0, %lo(d-inv)($0)

// interrupts on

inton

// setup deadlock handler

//li $4, 100000

//li $5, 0

//j setup-deadlockhandler

// wait for directory tile & ctrl tile to start up

li $2, 160000

waitfor-sys:

addiu $2, $2, -1

bne $2, $0, waitforsys

jal program-begin

180

Bibliography

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An evalu-

ation of directory schemes for cache coherence. In Proceedings of the 1988 Inter-

national Symposium on Computer Architecture, 1988.

[2] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-

based cache coherence on large-scale multiprocessors. IEEE Computer, 1990.

[3] David Chaiken, John Kubiatowicz, and Anant Agarwal. Limitless directories:

a scalable cache coherence scheme. In International Symposium on Computer

Architecture, April 1994.

[4] John Hennessy and David Patterson. Computer Architecture: A Quantitative

Approach, chapter 1.2. Morgan Kaufmann Publishers, 2003.

[5] Levente Jakab. A shared memory system using the raw processor architecture.

Master's thesis, M.I.T., 2004.

[6] James Psota. rmpi: a message passing library for raw. May 2004.

[7] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. Splash: Stanford

parallel applications for shared memory. Technical report, Stanford University.

[8] Michael Bedford Taylor. Comprehensive specification of the raw processor. Tech-

nical report, M.I.T., 2003.

[9] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The splash-2 programs: Characterization and methodological con-

181

siderations. In Proceedings of the 22nd Annual International Symposium on Com-

puter Architecture, 1995.

182

G_, k .,,1.fc

