
Online Polymer Crystallization Experiment

by

Derik A. Pridmore

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

MASSACHUSETTS INS EOF TECHNOLOGY
January 28, 2005)

© Derik A. Pridmore, 2005. All rights reserved. LB 8AR0ES
LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

January 28, 2005

Certified by_

Accepted by_

(9 Gre2orv C. Rutledge
neering
jervisor

tnuuiui C. Smith
Chairman, Department Committee on Graduate Theses

BARKER

Online Polymer Crystallization Experiment

by

Derik A. Pridmore

Submitted to the Department of Electrical Engineering and Computer Science

January 28, 2005

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

An architecture for online remote operation of a polymer crystallization experiment was

refined, beta tested in actual use conditions, and extended based on feedback from those

tests. In addition, an application for graphically simulating macroscopic crystal spherulite

growth was developed for use as an educational tool. Finally, the experiment was used in

the design process for modifying the generic iLab framework to incorporate interactive

functionality. Specifically, a reservation model and design changes to the experiment

storage and service broker were proposed based on the Polymerlab, and the experiment

was used as a testbed for initial implementation of some of the proposed systems.

Thesis Supervisor: Gregory C. Rutledge

Title: Professor of Chemical Engineering

2

Acknowledgments

I would like to thank Prof. Greg Rutledge, Enid Choi, Daniel Talavera, Jon Salz, Sid

Henderson, and Dan Lovell for their help and support.

3

Table of Contents

CH APTER 1 .. 11

INTRODUCTION ... 11

1. 1 OBJECTIVE ... 11

1.2 PURPOSE AND M OTIVATION .. 12

1.3 BACKGRGUND ... 13

1.3.1 Polym er Crystallization Experim ent ... 13

1.3.2 Related W ork ... 14

1.3.3 iLab Project ... 15

1.4 DEVELOPMENT .. 16

1.4.1 Java .. 16

1.4.2 Python .. 17

1.4.3 C# .. 18

CH APTER 2 .. 19

SYSTEM OVERVIEW ... 19

2.1 SYSTEM ARCHITECTURE .. 19

2.2 FRAM EWORK SERVER .. 20

2.3 M ICROSCOPE CLIENT OVERVIEW .. 23

2.4 M ICROSCOPE SERVER OVERVIEW .. 25

2.4.1 Axioplan2 Controller ... 27

2.4.2 A xiocam Controller ... 27

2.4.3 NO S600 Controller ... 27

CH A PTER 3 .. 29

BETA TESTING AND DEPLOYMENT OF POLYMERLAB .. 29

3.1 O VERVIEW OF EXPERRVIENT ... 29

3.2 RESULTS OF U SE .. 30

CH APTER 4 .. 33

M U LTIC A STIN G ... 33

4.1 M OTIVATION ... 33

4.2 D ESIGN A DDITIONS/ CHANGES .. 34

4.2.1 Client Changes .. 35

4.2.2 M icroscope Server additions ... 37

4.2.3 Fram ew ork server additions .. 38

4.3 PERFORM ANCE ISSUES ... 39

CH A PTER 5 .. 41

GRAPHICAL SIMULATION APPLICATION ... 41

5.1 CRYSTAL GROW TH M ODEL ... 41

1.2 V ORONOI D IAGRAM S ... 46

1.3 H ETEROGENEOUS NUCLEATION APPLET ... 47

1.4 A DDITIVELY W EIGHTED V oRoNoi D IAGRAM S .. 49

1.5 H OM OGENEOUS NUCLEATION APPLET .. 50

1.6 RESULTS .. 52

1.7 CONCLUSION ... 54

CH A PTER 6 .. 56

INCORPORATION OF GENERIC ILAB ARCHITECTURE .. 56

6.1 "BATCH" ILAB A RCHITECTURE ... 57

6.2 SERVICE BROKER D ESIGN CHANGES ... 60

6.2.1 Experim ent Storage Service .. 61

6.2.2 Scheduling Server .. 61

6.3 FUTURE W ORK .. 63

CHAPTER 7---..........---------------------.............................. 64

CONCLUDING REMARKS AND FUTURE WORK...64

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

SQL DATABASE SCRIPT .. 66

HETEROGENEOUS SIMULATION APPLET .. 79

HOMOGENEOUS SIMULATION APPLET .. 90

USER SURVEY RESULTS...102

REINSTALLATION PROCEDURES..108

STUDENT USER MANUAL...113

POLYMER SAMPLE PREPARATION..117

R EFER EN CES... 119

6

List of Figures

Figure 1: PEO crystal imaged using Polymerlab... 13

Figure 2: Growth of spherulites during crystallization. The image on left shows initial

crystallization; the image on the right shows the same sample at a later time. 14

Figure 3: General architecture overview.. 20

Figure 4: Typical student user interface... 22

Figure 5: Database schematic representation... 23

Figure 6: Remote Microscope Client GUI.. 25

Figure 7: The Rem ote M icroscope .. 26

Figure 8: Module Dependency Diagram of Hardware Controllers 28

Figure 9: Modified Microscope Client applet... 36

Figure 10: Framework Server Multicast Group management page............................... 39

Figure 11: Adding User to a Multicast Group. .. 39

Figure 12: Microscope Server image output times versus number of clients................ 40

Figure 13: Microscope Server image acquisition times versus number of clients. 40

Figure 14: Example showing winding of strands at the crystal surface. 43

Figure 15: Voronoi diagram and the dual Delaunay triangulation 47

Figure 16: Heterogeneous simulation applet showing crystal growth.......................... 48

Figure 17: Graphical simulation using Additively weighted Voronoi diagram. 51

Figure 18: Crystal growth versus time for animations at selected temperatures.......... 53

Figure 19: Determination of Kg from animation data.. 53

Figure 20: Determination of Avrami exponent from graphical animation data. 54

Figure 21: Communication between components of general iLab architecture. 58

Figure 22: Screenshot from test implementation of Reservation System using Polymerlab

... 6 3

7

8

List of Tables

Table 1: Commands from the Server to the Client... 37
Table 2: Commands from Client to Server... 38
Table 3: Parameters from applet test run ... 52

9

CHAPTER 1

Introduction

1.1 Objective

This paper focuses on the development and deployment of the polymer crystallization

iLab, a remote Internet laboratory for conducting polymer crystallization experiments

using optical microscopy. Using the polymer crystallization iLab, students learn about

the fundamentals of polymer physics while remotely conducting this experiment and

recording data in the form of digital images from an optical microscope. Through the use

of digital image analysis, students analyze the data obtained to derive the crystallization

properties of a specific polymer and characterize the crystallization kinetics.

This project had several objectives. The first was to evaluate the security,

functionality, and utility of the polymer crystallization iLab, or Polymerlab, system by

deploying it in beta testing for the first time with student users in an actual test, and then

to respond to design shortcomings identified through user feedback. An additional

goal was to modify the existing Polymerlab framework to enable multiple users

to view and control the experiment at once, to further the goal of real-time

remote collaboration between users. Another goal was the development of a graphical

crystal simulation tool that would allow students users to compare

their experiments to theoretical predictions in an intuitive way. Finally,

initial steps in the integration of the Polymerlab experiment, the only

11

iLab experiment to use real-time user control in its experiments, with the

generic iLab framework were taken.

1.2 Purpose and Motivation

There are several motivating factors behind the development of the Polymerlab and iLabs

in general. One of the most important is to enable scarce and expensive equipment to be

used by students who might not otherwise be able to. In the case of the Polymerlab, the

optical microscope, associated controllers, and sample stage necessary to carry out the

experiment are quite costly. Since only one set of equipment is available, and it is

delicate, using the lab in a typical classroom setting would require both extreme care and

tight scheduling. In addition, lab personnel are required to supervise whenever students

might make use of the experiment. Thus, while making experimentation an integral part

of a student's curriculum enhances the educational experience, there are cost barriers to

doing so. Developing a web mediated interface for the experiment allows for more

efficient sharing of resources in order to overcome cost barriers, while also enabling built

in hardware protection to reduce the need for supervision. These cost savings might be

distributed over a group of universities not bound geographically in order to expand the

experimental apparatus available to their respective students. Furthermore, the ability to

access the experiment via the web allows for innovations in the classroom, by allowing

instructors to illustrate their lectures with live demonstrations of experiments. Internet

laboratories can also be used 24/7, not just during scheduled lab hours. This gives

students more flexibility and allows more efficient use of time.

Another motivation for developing the Polymer crystallization iLab is to facilitate group

learning. An important trend in education has been the integration of both

experimentation and collaboration in degree programs, especially in the areas of science

and engineering. Once a system is developed to allow single users to share a resource

such as the Polymerlab equipment remotely via the internet, allowing remote

collaboration between multiple users is only a matter of extending the software design.

In contrast, the physical apparatus of the experiment might not be amenable to such

group collaboration due to, for example, laboratory space constraints or equipment

design.

12

1.3 Background

1.3.1 Polymer Crystallization Experiment

The polymer crystallization experiment is used as part of an undergraduate course in the

Chemical Engineering Department called 10.467, Polymer Science Laboratory. The

experiment, a standard example used in teaching polymer physics, involves heating a

polymer sample (in this case PEO, or polyethylene oxide) above its melting point and

subsequently cooling it to various controlled temperatures in order to observe the

characteristics of crystal formation under isothermal conditions. Crystals are imaged

using a polarized light microscope, which can be difficult to obtain.

Figure 1: PEO crystal imaged using Polymerlab

When imaging crystallization, spherulites are observed. Spherulites are crystal particles

which grow radially and exhibit spherical symmetry. By observing the rate of formation

of crystal spherulites and the rate of growth of those spherulites as a function of

temperature, students can determine certain fundamental physical properties of the

sample. By comparing the functional form of the dependencies of transformed volume or

crystal growth rate on temperature to those predicted by theory students may obtain

physical characteristics such as activation energy, average surface energy, and Avrami

exponent of the thin film crystallization [1]. The exact manner of determining these

values will be discussed later in Chapter 5.

13

Figure 2: Growth of spherulites during crystallization. The image on left shows initial crystallization;
the image on the right shows the same sample at a later time.

Unlike some experiments, the polymer crystallization experiment may be cycled

repeatedly with no user intervention to change or renew the polymer sample. In theory,

once the experiment has been set up, it is self-contained and may be used continuously.

In addition, with proper sample preparation, the experiment should be memoryless:

previous crystallization results should not affect subsequent runs. Therefore, the polymer

crystallization experiment is especially suited to the goals of an online laboratory. In

particular, the experiment can be run at any time convenient for the student without

instructor oversight, preparation, or intervention.

1.3.2 Related Work

The work contained in this thesis has been a direct continuation of work performed by

Paola Nasser and Daniel Talavera in connection with their Masters of Engineering theses.

In her thesis, Paola Nasser developed a Remote Microscope consisting of a light

microscope and a digital camera controlled via communication between a Java Applet on

a user's local machine and a microscope server [2]. The client had capabilities to display

images captured by the digital camera and to view video at a rate of one frame every six

seconds. Additionally, the client could adjust the light, objective, and polarizer settings

of the microscope. Daniel Talavera's thesis expanded both the microscope client and

server to enable additional functionality, including the capability to control a heating

stage, the XY position of the sample in the microscope, and the focus of the polymer

14

sample, and to save experimental runs on the server. Additionally, the video streaming

rate of the system was improved and an on-line environment was created to enable users

to store and analyze data, as well as manage laboratory reservations [3].

Much of the development done in connection with the Polymerlab experiment has been

directly influenced by previous projects related to remote control of microscopy systems.

Among these are James Kao [4] and Somsak Kittipiyakul's [5] Internet Remote

Microscope, a remote automated microscope developed by a MEMS research group at

MIT [6], as well as a DARPA sponsored open-source project [7]. Each of these systems

impacted the design of the Polymerlab in multiple ways. The most important of these, the

MEMS project, was developed by A. M. Kuchling and uses a simple asynchronous

message passing protocol ((the Microscope Networking Protocol Specification) between

the microscope and user (server and client) to set microscope parameters and request

images. This protocol formed the basis for Paola Nasser's Remote Microscope design.

1.3.3 iLab Project

The iLab project began in June of 2000 as part of the iCampus initiative, a 5 year, $25

million research alliance between MIT and Microsoft to enhance university education

through information technology [9]. The goal of the iLab project was to create internet

accessible laboratories. Among these laboratories were the polymer crystallization

experiment, a heat exchange experiment, and a microelectronics lab.' Additional

experiments were added as the project grew. Each of these experiments represents a

distinct set of requirements for an online experiment. As discussed above, the Polymer

Crystallization iLab serves as a prototype of an interactive experiment. In contrast, the

Microelectronics WebLab represents a "stateless" experiment [8]. Because of the

relatively small time scale in electronic measurements, there is no user interaction during

a stateless experiment. The user's job is to set up the experiment and let the experiment

run without any additional interaction.

1 The Heat Exchange experiment may be found at http://heatex.mit.edu. and the Microelectronics WebLab

may be found at http://ilabserv.mit.edu.

15

After these labs met their initial goals, work shifted to designing a common support

infrastructure that would allow the more general aspects of online laboratories to be

maintained as part of a common system, to reduce redundancy and make code

maintenance easier. This system would separate the administrative components which

would be common to all online laboratories, such as user authentication and result

storage, from experiment specific components. While part of the work detailed in this

thesis was being carried out, the first laboratory supported by this general iLab

framework debuted in January of 2004. This framework, however, included only support

for a general type of experiments known as "batched" experiments. These experiments do

not require user interaction. After this initial implementation, work was begun on

modifying the batched experiment architecture to support user-interactive experiments.

Experiment interfaces and communication protocols would need to be changed to address

the problems inherent to real-time control of experiments by users. Indeed, the very

concept of a reservation system would need to be introduced, as the previous "batched"

experiments could be scheduled automatically by a server. The details of many of these

modifications will be discussed later in this thesis. The current Polymerlab serves as a

testbed for software design to support interactive experiments.

1.4 Development

This section provides a description of the various programming languages and

programming environments used in creating components of this lab. This description is

necessary not only to detail the earliest design choices made in implementing components

but also for future maintenance.

1.4.1 Java

Both the Microscope Client and the Simulation module are implemented in Java. Java

was originally chosen by Paola Nasser to implement the earliest version of the

Microscope client, because of its simple native support for messaging over sockets, its

16

easy use of pre-packaged GUI (Graphical User Interface) components, its object oriented

structure, and the relative pervasiveness of the Java within most browser applications.

Because the system uses full duplex communication between the client and server, the

client must be able to decipher messages sent over sockets. The use of Java allows for a

thinner client to be downloaded by users by relying on built-in Java classes and

functionality, which saves bandwidth and time, as well as ensures compatibility with

most if not all computing environments. The Java Virtual Machine (JVM) required by the

Polymer Crystallization iLab is Java 1.4. Since many web-browsers do not come with

Java 1.4, users will have to download the Java Plug-in supplied by Sun Microsystems.

(In Appendix D, the User Survey Responses, a number of browsers which have been used

with the experiment are listed.)

The Microscope Client was developed using the Sun Open Net Environment (Sun ONE).

This integrated development environment contains a number of coding, compiling, and

debugging tools as well as a graphical Form Editor, which allows the developer to easily

manipulate and preview visual Java components. The Simulation module was developed

using a simple Emacs editing environment, but both the Microscope client and simulation

module can easily be opened and edited in any of a number of standard Java editing

environments and IDEs (Integrated Development Environment).

1.4.2 Python

The Microscope Server and all associated hardware controllers are implemented in

Python. Python is an object-oriented language that has a number of freely available

modules to control everything from serial ports to image manipulation. Python was

chosen due to its efficient string manipulation and dictionary management. The hardware

modules implemented in Python communicate with the various hardware devices using

serial ports and Microsoft's Component Object Model (COM), through simple yet

efficient modules available in the Win32 package. Another freely available library, the

Python Imaging Library (PIL), allows images to be manipulated and converted to

different formats.

Editing and debugging of the Python code was done using an IDE called PythonWin.

17

PythonWin allows single line commands to be sent to the Python interpreter for easy
testing of software components. It also contains tools for managing, compiling, and
debugging code.

1.4.3 C#

The Framework Server, used for post-experimental data analysis and user management,
is implemented using C# and Microsoft's .NET framework. C# was chosen as the
development language for this component because of its seamless integration into
ASP.NET web pages and its simple database access mechanism. Both properties of the
language greatly simplify the task of adding web services such as user verification and
management. In addition, .NET applications are easily hosted using Microsoft's IIS web
server. VisualStudio.NET was used as the IDE for developing, debugging, and extending
the Framework server.

18

CHAPTER 2

System Overview

The polymer crystallization iLab is made up of several independent yet interconnected

software and hardware systems. The system was implemented in order to best reflect the

use and structure of the polymer crystallization experiment itself, and to achieve

maximum design flexibility. On the software side, for example, the system provides a

level of abstraction between client and the microscope servers which in some respects

mimics the actual physical use of such an experiment, yet still maintains design flexibility

to allow for changes of the type discussed later in this thesis. Additionally, the separation

of these components allows for development in a respective language that offers the most

powerful benefits, as has been discussed previously. On the hardware side, the layout and

interoperability of components was, of course, influenced greatly by the commercial

availability and compatibility of the individual components, but has still been optimized

to suit the desired functionality of the system. The following chapter provides a detail

overview of these system components and their operation.

2.1 System Architecture
The general architecture of the Polymerlab system includes three separate components:

the Microscope Client, the Microscope Server, and the Framework Server. Figure 3

provides a simple graphical representation of these three components and the flow of

communication between them. In keeping with the original description of the system, the

Microscope client and Microscope server, shown grouped together at the bottom of the

figure, are known collectively as the Remote Microscope. While the Framework server

handles the administrative tasks of user authentication, account management, reservation

19

scheduling, group management, and data storage and retrieval, the Remote Microscope

provides the instrument functionality of the various microscope and sample manipulation

hardware that one would typically associate with such a laboratory experiment.

Communication occurs between each of the three primary software elements of the

Polymerlab system. While the details of each leg of this communication is discussed

below, it is important to note that this three-way communication is currently unique to the

Polymer crystallization iLab, and is crucial for the user interaction and image streaming

needed for such an experiment. This detail will be discussed later in Chapter 9 in relation

to the current state of the generic iLab architecture.

REMOTE MICROSCOPE

Figure 3: General architecture overview

2.2 Framework Server

As discussed above, the Framework server handles the administrative aspects of

managing the Polymer Crystallization iLab. It is a three-tier system consisting of a series

of dynamically generated web forms and services backed by database transactions which

are served through any standard web browser. The Framework server uses Microsoft's

.NET platform to generate these services. This platform has many characteristics that

make it an ideal choice. The C# programming language used in developing .NET

applications is an object oriented language, allowing for a very intuitive internal

20

representation of procedures and components. The development environment also

enables complex functions to be compiled and run locally, rather than transmitted to the

user to be run, which saves time for users. It also has built-in APIs for database

transactions. Easy compatibility with Microsoft's IIS web server makes hosting .NET

web services relatively simple, which is a consideration in the long term maintenance of

the Polymer Crystallization iLab.

Within the Framework server, the individual components are closely related but can be

loosely described as a three-tier system. The first tier is actually the client browser.

Because of the ubiquitous availability of numerous web browsers and because .NET

applications are compile and run on the host server, this first tier is remarkably thin and

fast, requiring no lengthy download or installation and using very little bandwidth

resources. Figure 4 shows the typical page served to a student user. The details of the

layout and control flow of the interface provided to students and administrators are

omitted here, and readers are referred to Daniel Talavera's thesis.

The middle tier of the Framework server consists of a series of web services implemented

in ASP.NET which provide the actual mechanisms for user authentication, account

management, and data retrieval. Most of these services make integral use of a system of

object oriented classes implemented in C# which provide wrappers for use by the web

services in accessing and modifying information stored in the systems database.

Examples include User objects, Role objects which are assigned to users and help define

their system privileges, and Experiment Run objects which correspond to individual

experiment runs. These classes will be discussed later when describing additions made to

allow Multicasting. Figure 4 shows an example of a web interface dynamically generated

by the Framework Server showing a user's experiments.

21

Figure 4: Typical student user interface

The final tier of the Framework server is the underlying database. Implemented using

Microsoft SQL, the database allows for the storing of user account information,

reservation details, experiment run information, etc, and allows that information to persist

between user sessions and throughout the lifetime of the polymer crystallization

experiment. It also serves as a medium through which the Framework server

communicates with the Microscope server. The Microscope server has the ability to

verify with the Framework server information passed to it by the Microscope client, and

likewise to communicate to the Framework server the location of data stored during an

experiment run by performing database queries. Appendix A contains the scripting file

needed to generate the latest version of the database, and has proven useful in the process

of restoring the system after reinstallation. This script contains various structures and

stored procedures which are essential for operation of the latest version of the polymer

crystallization iLab, and should supersede the script contained in Talavera's original

thesis.

The diagram in Figure 5 below outlines the structures and dependencies of the database

as it is currently implemented, including changes made to allow Multicasting which will

be discussed later.

22

49--. #Ir sw m - 4iwm -awd moo f

SPolymer Crystallization iLab
Welom, Da-rle Tdavera

Y"ti Labsi Expenments
ePO*pwL AMe

Acky*lstrat~ve Lk*s samrpe puEV mt Crystal 4/24t=0 9:41:5 PM Ol:*n Delete

Sampb~ Expermewe met 4/24rACD g:41:59 PM Opn Delete
P- Usrs
r Roles smrpim EtBiWW t nalki 4/14f2W 9:41:5B PM Open Delete
P Open Polymer Lab

PPrevew Vrvaw e Mtysls Sarqft Exerrhr Lab Dorm 4/24/2W 9.41:59 PM open Delete
P Reservation System

Student Lk&s

r Edt PRofl
r View Experiets
POpen Polymer Lab
PReserve Lab

PK UserlD

FirstName
LastName
email
SchoollD
ConfirmationCode
RegistrationDate
RegistrationStatus

Experimen Runs

PK RuniD

FK1 ExperimentD
FK2 UserlD

RunName
RunDescription
OutputXml
DateAdded
DateExpires

User-toRoleMap Roles

PK RoKlD

FK1 UserlD RoleName
FK2 RolelD RoleDescription

DateAdded A

Reservations

PIK ReservationlD.
Rolo. to,_ ole_Map

FK1 UserlD
Priority
StartTime
EndTime RolelD

FK1 RolelD
DateAdded

MutiastGroup

PK OwnerlD

FK1 UserlD

LJ

Experiments

PK ExperlmentD

ExperimentName
ExperimentDescription

FK2 CreatoriD
DateRegistered

Figure 5: Database schematic representation

2.3 Microscope Client Overview

The Microscope Client is the interface through which students interact with the

experiment. It is designed to allow students to quickly and easily manipulate the

hardware while still restricting inputs to commands that are valid, so as not to damage

any of the hardware. As previously discussed, the Microscope Client is implemented as

an applet to allow for maximum compatibility with user operating systems. The applet is

handed off to users after authentication by the Framework Server. As shown in Figure 3,

unidirectional communication exists between the Framework Server and the Microscope

client. This communication occurs in the form of applet tag parameters which are

generated dynamically by the Framework Server. (This information is drawn from a

corresponding User object which is saved in the Framework Server's session context

23

when a user first logs in.) These tags include information regarding a user's identity and

reservation. The reservation information is used to prevent users from occupying the lab

indefinitely by giving the applet an HTML redirect to logout after the specified amount of

time. Additionally, this information is used in subsequent communication between the

Microscope Client and Microscope Server to determine who is using the Microscope

Server and, as will be seen later, whether that user is the "primary" user.

Communication between the Microscope Server and Client occurs via TCP/IP sockets.

The system uses a simple, human-readable ASCII message passing protocol based on

work done by A.M. Kuchling, as previously mentioned. This system offers the benefit

that it is easily extensible, as long as both the client and server recognize the messages

being passed. In actuality, there are two socket connections between the Microscope

Client and Server. One is uni-directional, and is dedicated to transmitting streamed

images from the Server to the Client. The other is an actual duplexed connection for

passing messages between the entities. It is important to note that messages are passed

both ways, and that the communication protocol is asynchronous: neither side waits for a

response from a command. For instance, a communication error which causes a

command to the server to grab an image to be dropped does not cause the client to wait

forever; instead, it simply displays a new image whenever it receives on. Each message

may also include any number of parameters for use by the receiver. For full discussion of

the details of the messaging syntax, readers are referred to Daniel Talavera's thesis.

Users cause the Microscope Client to communicate with the Microscope Server by

manipulating the client GUI. As discussed in Talavera's thesis, the ScopeFormApplet

class which implements the GUI associates messaging events with each of the Java

Swing controls which are able to be manipulated by the User. The Microscope Client

includes several panels which separate out the functionality of the experiment: a

temperature panel, which is used to control the temperature of a sample by submission of

an "experiment"; an image panel, which allows users to toggle between single image

capture mode and streaming video mode, translate the sample stage in the "xy" plane, and

focus the image; a microscope control panel which allows users to control various

settings such as magnification, aperture, field stop, exposure time, and autofocus, in an

24

attempt to obtain the best image possible; and finally, a message area, where status and

error messages regarding the state of the experiment are displayed. The implementation

of the ScopeFormApplet allows for ease of editing and extending the functionality of the

GUI, which will be discussed later with respect to additions to it. Figure 6 shows a screen

capture of the Microscope Client before the modifications implemented in this thesis.

Figure 6: Remote Microscope Client GUI

2.4 Microscope Server Overview

The final component of the Polymerlab architecture is the Microscope Server. The

Microscope Server must not only communicate with both the Framework Server and

Microscope Client, but must also marshall the commands sent to it and dispatch them to

control the actual hardware implementing the experiment. The Microscope Server is a

Python object responsible for establishing and maintaining the socket connections to

clients. It contains listener and writer threads which continuously interpret and relay

commands between lower level hardware controllers and the Microscope Client. In

addition, the Microscope Server is responsible for communicating with the Framework

Server's database to identify a user's data directory and storing data from experiments

there.

25

The Microscope Server functions mainly by interpreting commands from the Microscope

Client and then delegating them to an internal object known as the Device Manager.

Briefly, the Device Manager takes commands and determines to which of the available

hardware controllers to relay a command. The design of the Device Manager makes the

addition of new hardware components as easy as following a template for constructing it

hardware controller. Figure 7 depicts graphically the communication between the

Microscope Server, the Microscope Client, and the hardware components of the lab. For

a more detailed description of the Device Manager, please see Paula Nasser's thesis.

Microscope Client

TCP/IP Internet

Microscope Server

Axioplan AxioCam MDS600
Controller Controller Controller

Figure 7: The Remote Microscope

The Polymerlab system currently uses three such hardware controllers mentioned above.

They are the Axiocam class, the Axioplan2 class, and the MDS600 class. The controllers

each correspond to one of the hardware systems used: the Axiocam controller class

controls the Zeiss Axiocam digital camera, the Axioplan2 controller class controls the

Zeiss Axioplan2 microscope, and the MDS600 controller class sends commands to the

Linkam TMS94 temperature programmer and the Linkam MDS600 motorized heating

stage. Each of these devices is pictured in Figure 7. In addition, they are briefly described

below. Figure 8 shows a more detailed object dependency between the controllers and

hardware.

26

2.4.1 Axioplan2 Controller

The Axioplan2 Microscope is a Zeiss device. It has multiple light sources and

magnification settings, as well as the ability to insert various lenses. It is controlled

directly by Zeiss KS300 software. This software may be controlled by hand, but in the

case of the Polymerlab system commands are relayed to the KS300 software through

Microsoft's COM interface (via a standard Python32 COM module) from the Axioplan2

controller. (This can be seen in Figure 8.) In this manner, the Axioplan2 controller is

able to control the microscope's settings after having interpreted them through the

Configuration subclass. The structure of the Controller class is discussed in detail in

Paola Nasser's thesis.

2.4.2 Axiocam Controller

Like the Axioplan2 controller, the Axiocam controller relays commands through a COM

interface to the KS300 software. Unlike the Axioplan2 controller, it makes use of saved

configuration scripts which may be opened though the KS300 software by using the

tvload function. This allows for the specification of image quality, size, and other related

properties.

2.4.3 MDS600 Controller

The MDS600 controller controls the TMS94 Temperature Programmer and MDS600

Heating Stage. Therefore, both temperature and XY movement are controlled via the

MDS600 controller. Unlike the previous two controllers, the MDS600 controller

communicates to the TMS94 through low level serial port commands. These commands

are simple text commands and are listed in the Linkam programming guide, "Serial

Communication Manual for the T92, T93, and T94 Series Programmers."

27

Device Manager

Controller

Axioplan2 Axiocam MDS600
Controller Controller Controller

COM Serial Port

KS.300
Softwre

Figure 8: Module Dependency Diagram of Hardware Controllers

28

CHAPTER 3

Beta Testing and Deployment of Polymerlab

The ultimate goal for the polymer crystallization iLab is to be integrated in a sustainable

manner into a course on polymer science, to be used as an aid to teach polymer science.

During the Fall Term of 2003, the polymer crystallization experiment was beta tested in

such a setting. MIT students taking the course 10.467, Polymer Science Laboratory, used

the experiment for the first time in a laboratory setting with a typical user load. The

following section describes the details and results of that testing.

3.1 Overview of Experiment

The polymer crystallization experiment represented one of several labs which were

performed by students in 10.467, and was the only remotely operated, internet accessible

lab in the course. The class consisted of twelve students who worked in groups of 2 or 3.

These students were assisted by two lab teaching assistant, as well as one computer

assistant who monitored the experiment and responded to bugs/errors and other student

questions. Curricular materials describing the experiment setup and procedure, including

experiment user manuals, were drafted and distributed to the class. A one hour lecture

was given which provided adequate background with the physical principles underlying

the experiment. In addition, a one hour demonstration was given to explain all the

necessary features required to perform the online experiment.

29

Each student group performed several runs through the experiment over the course of two

weeks. Groups were free to determine how to allot the work among themselves. Each run

consisted of making a reservation for the experiment, performing the experiment by

controlling the hardware remotely, taking data by recording streamed images, and

subsequently analyzing those images. Each experiment run involved heating a

Polyethylene oxide, or PEO, sample above the melting temperature of the polymer, and

then holding the temperature there for a period of time long enough to thoroughly melt

the crystalline sample and erase any memory effects. The students then cooled the

samples using ambient air at a controlled rate to one of several predetermined

temperatures, several degrees below the crystallization temperature of the polymer. With

a polarizing filter in place, the students then maintained this temperature while observing

the polymer sample using streamed images. Once the students observed the appearance

and growth of birefringent crystallites, they recorded and saved images for as long as

they deemed necessary. The students then re-heated the sample and noted that

temperature at which this new isothermally crystallized polymer re-melted. They

repeated this procedure for each of the several given crystallization temperatures. The

students then analyzed the recorded images from each of their temperature runs to

determine the nucleation density and crystal growth rates. By analyzing the temperature

dependence of the melt transition temperatures and growth rates, the students extracted

information about the thermodynamic equilibrium transition temperature, the

dimensionality of the crystals, and the activation energy for crystal growth are

determined. Each group was required to submit a report detailing the results of their

experiments and analysis, which included a determination of the equilibrium melting

temperature, the mean surface energy of the crystal lamella, and the Avrami exponent.

3.2 Results of Use

As a tool to evaluate the usefulness of the polymer crystallization iLab, each student was

asked to complete written questionnaires asking them to assess various aspects of the lab.

A copy of this questionnaire, including a summary of all student responses, is given in

Appendix D. In the questionnaire, students gave feedback about issues such as

experimental availability, ease of use, adequacy of parameters such as frame rate, and

overall instructional merit of the lab. Their feedback was largely positive, and was

invaluable in determining which portions of the lab required modification. For instance,

students found the initial registration process to be straightforward. They generally found

30

the introductory demonstration of the experiment useful. However, when asked about

reserving and using the experiment, many of them requested longer reservation slots in

order to more effectively complete the experiments. This feedback is useful for lab

administrators when striking a balance between length of reservations for a single student

and overall lab availability. The students were satisfied with the availability of time slots,

suggesting that the experiment could support larger class sizes.

The time of day in which students used the experiment varied widely, and they

overwhelmingly found the 24 hour availability of the experiment useful. This in itself is a

strong validation of one of the underlying assumptions which led to the development of

internet laboratories. When asked if they would have preferred increased instructor

interaction, students were neutral except in cases where computer problems associated

with beta version of the system necessitated additional help. With subsequent, more

stable versions of the experiment, it is likely that students will require less interaction.

With respect to the interface of the experiment, students found the microscope controls

easy to understand and use, and agreed that the frame rate of the streamed microscope

images was adequate. (To increase the frame rate, image sizes were previously decreased

by Daniel Talavera from 1300x1030 pixels to 260x206 pixels, and image encoding was

changed to decrease post-capture processing time. This allows for a frame rate of two

images per second.) The students reported that the procedure used to analyze their data

was clear, though some found the image analysis tool which was provided too

complicated. (This tool, Jlmage, is a free, Java-based image analysis tool released by the

NIH.) Finally, the students overwhelmingly reported that the experiment increased their

knowledge of polymers and polymer crystallization. Only one student slightly disagreed

with the statement "I enjoyed using this experiment," and the majority strongly agreed

with it.

The initial beta testing of the Polymerlab system was not without problems, however.

Most important of these was a hardware problem in the computer hosting the Framework

and Microscope Servers. Faulty RAM in this computer caused numerous computer

crashes and required frequent rebooting of the host machine. Students found this

frustrating. In addition, the KS300 software used to control the Axioplan2 microscope

was not intended for operation on a Windows XP platform, causing additional occasional

problems during startup. Eventually the faulty RAM was identified and removed, an

updated version of the KS300 software was installed, and the rest of the system was as

well during the end of the fall 2004 term. This included upgrading the operating system

31

to Windows XP from Windows NT. (The updated KS300 software was meant for a

Windows XP system, as opposed to the earlier software, which was not meant for a

Windows NT platform.)

As with any newly developed system, numerous bugs were also discovered. The most

important of these was an error in the way that XY movement commands sent from the

Microscope Client were validated and ensured to be within the MDS600 stage's safe

operating range. The error resulted in damaged hardware which caused movement in one

direction to be disabled for the remainder of the test. The equipment was later sent for

repairs. An additional bug involved naming conventions for saved experiments. Users

frequently used unexpected characters which caused the Microscope Server to enter an

error state, resulting in crashes. Additionally, while the experiment is theoretically able to

be cycled with no real interaction on the part of administrators, it was found that sample

quality and preparation were critical in obtaining meaningful results. For example, a

sample which is contaminated with dust and debris has far too many nucleation events to

be useful. An additional pathological mode of crystallization which was observed

involved the formation of crystals only at the edge of a sample. Because such samples

make it impossible for the experiment to be performed properly, it is critical to prepare a

proper sample. Appendix F outlines the procedure for preparing a proper sample.

One of the major results of the student feedback was the need for a real-time

collaboration utility. Limiting visibility of the scope to a single, registered use at any one

time is necessary to avoid hardware control conflicts, but is not well-suited to the

potential for learning and collaboration among students at different locations, or even

computer terminals. During the beta testing period, it was often the case that groups were

forced to come to a central computer lab and huddle around a single computer in order to

work together. This obviously contradicts one of the main purposes of developing

internet laboratories, especially when group use is foreseen as a primary mode of

teaching. This result verified the necessity of one of the initial goals of this thesis, and

development efforts were devoted to permitting multiple users to join a "group", wherein

all members of which can view the experiment simultaneously, and who can take and

cede control of the experiment in real time.

32

CHAPTER 4

Multicasting

This chapter discusses the addition of the Multicast feature to the Polymerlab system.

Multicasting allows users to form groups and simultaneously view and use the polymer

crystallization experiment in order to further the goal of user collaboration and allow for

remote oversight. Changes were made to each of the components of the Polymerlab

system: the Framework server, the Microscope Client, and the Microscope server.

4.1 Motivation

Although the addition of multicasting was already a goal at the outset of this project, the

results of the beta testing and user survey were useful verifications of the design goal.

The project had already identified that by allowing users to collaborate, the Polymerlab

experiment would encourage students to learn from one another. Having observed

students working in groups to use the original experiment, it was apparent that

collaboration was essential if students were to be able to take full advantage of the remote

nature of the lab. This makes intuitive sense, because collaboration is a natural part of a

conventional lab setting; preserving this aspect in the virtual lab is important.

Collaboration would also allow instructors to assist students remotely and guide them

through the experiment. In short, enabling multicasting would make Polymerlab an

experiment that could be completely operated remotely, from start to finish, in a typical

use scenario.

33

4.2 Design Additions/ changes

Enabling Multicasting required changes to each of the three major components of the

Polymerlab architecture: the Framework Server, the Microscope Client, and the

Microscope Server. While these modifications were sufficient enough that the Multicast

versions of each of the components would be inoperable in use with the older design, it is

important to note that the basic architecture of the system remained unchanged.

Furthermore, many of the advantages previously discussed with respect to the design of

each component came into play during modifications. As a testament to the thought put

into the original design, modification of the components was relatively straightforward.

In general, the goal was to introduce the desired capability with a minimum of redesign.

One important feature that needed to be maintained included asynchronous

communication between clients and the Microscope Server. Additionally, it was decided

that communication should occur only between the server and clients, and not between

clients. The Microscope Server would mediate all communication between clients.

Furthermore, the maintenance of the video streaming frame rate was of prime concern.

Students had found the rate adequate, and introducing more clients could potentially slow

the distribution of the streamed images.

In addition to the maintenance of some features of the original design, choices about the

operational details of Multicasting had to be made. First, it was important that Users have

the ability to define their own groups. When interacting with the experiment, it was clear

that there would need to be two types of users: a controlling user, and observing users.

This is critical not only to prevent race conditions in situations that could potentially

damage hardware, but also to manage the complexity of having many users participate in

an interactive experiment. The data from an experiment would be stored within the

account of the user controlling the experiment. As a consequence, in order to prevent

ambiguity over data storage, it should not be possible to pass control of the system while

an actual experiment (in the sense of temperature controlling) is in progress. In order to

reduce the number of interactions between the three components of the system during

initialization of the client applet and communications with the Microscope Server, first

control of the experiment would be assigned to the first user to open the applet. While

others in a user's Multicast group may open and view the experiment and its status, only

34

the first user to arrive is first given control. This prevents wasted reservation sessions. In

addition, no "daisy-chaining" should be allowed: only direct members of a user's

Multicast group may access their experiment. Members of members may not.

Considerations such as these influenced how the Multicast feature was implemented.

4.2.1 Client Changes

The most visible changes to the system took place in the Microscope Client. Users would

need a mechanism to give and take control of the experiment, as well as identify times

when control was available, etc. The ScopeFormApplet class underlying the client applet

was modified to introduce a new button panel alongside the message pane. It includes

two buttons: one to cede control of the experiment and the other to take it. While the

Microscope Server itself tracks which user has control of the experiment, as will be

discussed later, the applet also includes a layer of protection against users who do not

have control manipulating the experiment. All of the input mechanisms in the applet were

modified to be active contingently based on a number of Boolean fields: the haveControl

field indicates whether a client currently has the ability to send commands, while the

controlAvailable and experimentRunning fields determine at any time whether a user

may take control. These fields are initially set by the Framework Server when the applet

is handed off to a user, and update immediately through communication with the

Microscope Server. The Microscope Server immediately communicates the state of

control. When the haveControl field is set to false, a user may see the experiment

controls and any images streamed or captured by the controlling user, but may not

manipulate the controls. The controls at such a time appear grayed out and are

inaccessible. Figure 9 shows the modified Microscope Client applet.

While the observing user cannot modify the controls, the controls still reflect any

manipulations performed by the controlling user. Whenever an action is performed, an

updating message with all the necessary information is sent to each of the clients. This is

important if users are to stay oriented during the course of the experiment. For example,

if users saw the quality of images begin to deteriorate during an experiment run they

might not know whether the sample was simply melting or whether the controlling user

had modified the settings, such as exposure time. Due to the asynchronous nature of

communications between the Microscope Server and Client, there already existed an

35

Figure 9: Modified Microscope Client applet.

infrastructure for distributing information to client about the state of the experiment. This

occurs through the cmd-scopeO function of the IScopeProtocol interface which is

implemented by the ScopeFormApplet. (The IScopeProtocol interface is simply a list of

commands which the client must be able to recognize from the server.) Now, after every

command, the Microscope Server then simply sends this command to every client

connected to it, regardless of control status. Of course, the IScopeProtocol interface did

have to be extended to enable the ceding and taking of control by users. The handling of

two methods, the cmd occupiedO and cmdavailableO methods, were rewritten to

configure the applet based on availability. Three other methods were added. A listing of

these commands is shown in Table 1. Readers are referred to Table 2 of Daniel

Talavera's thesis for a full listing of the commands.

COMMAND EXPLANATION
TAKESUCCESSFUL Informs a client that control of the experiment has successfully

been taken. All other clients receive the TAKEN command.
TAKEN UserID

Informs client that another user, identified by the
accompanying string, has taken control of the experiment.

36

CEDE Informs client that control of the experiment has been given up,
and is now available to be taken.

Table 1: Commands from the Server to the Client.

4.2.2 Microscope Server additions

Previously, the Microscope server only kept track of a single user. The server trusted

connections from any applet, since the verification of users was left to the Framework

server. If an additional user tried to make a connection to the server, it was sent an

"occupied" message automatically. The concept of serving a group of users, rather than

just one, with one user having "control" had to be introduced. Since additional users

could be expected now, this behavior was changed to include an access of the Framework

Server's database to determine whether the user had a reservation or is a member of the

proper Multicast group. This provides an additional layer of protection against

unauthorized users accessing the lab, rather than relying on the assumption that any

applet contacting the Microscope server was properly authenticated by the Framework

Server. A user queue was implemented, in which every current user resides. The

AsynchronousServer class of the Python was actually given three such lists of socket

connections: clients, unauthclients, and imagesocketclients. Now images being

streamed are sent to every client socket connection in the imagesocketclients list.

Likewise, commands for recognizing new users or removing current users involve adding

or removing their socket connections from the lists. An additional user field, currentUser,

was introduced to track the user who currently has control of the experiment. In order to

execute any command, a user must be the currentUser. The only exception to this occurs

when the currentUser gives up control of the experiment. At that time, the take command

is recognized by the first client to respond. Commands issued by the currentUser are

executed and updating messages are sent to all authenticated clients. The take and cede

functions were two new commands which were introduced to the Microscope Server

which it had to be able to understand from the clients. These functions are described

below in Table 2.

COMMAND PARAMETERS AND EXPLANATION
TAKE userlD=value

Request to take control of the experiment. If control is available,
causes a user to be set to currentUser.

CEDE If a user is the currentUser, gives up control of the experiment and

37

notifies all other clients of the availability of control.

Table 2: Commands from Client to Server.

4.2.3 Framework server additions

In order for the authentication process to acknowledge Multicast groups, and in order for

them to be managed dynamically by users, the Framework Server had to be modified.

These modifications occurred in three main areas: the creation of new object classes

which would correspond to this new structure and would allow the code backing the aspx

pages to store relevant information in a user's session context; the creation of new aspx

pages for group management; and the modification of the database to introduce new data

structures and stored procedures.

The new C# object class MulticastGroup was modeled after the User class. In the interest

of maintaining a compact structure, however, it has no dependencies on the User class.

Instead, it tracks its members via one GUID corresponding to the groups owner, and a

separate list of GUIDs corresponding to the group's members. (A GUID, or global

unique identifier, is a number which, within a system, is guaranteed to be unique. This

allows it to be used as an efficient representation of an object.) Like the User class, it

contains a variety of helper methods which connect to newly written stored procedures in

order to produce MulticastGroup objects from data in the Framework Server database.

These methods are also used to identify members and are used in the authentication

process. The new MulticastGroups database table merely identifies owner/member GUID

pairs, which are used to construct MulticastGroup objects when the proper helper

methods are called. The newest database generation script can be found in Appendix A.

In order for users to manage their own groups, new .aspx pages were created. For

instance, Figure 10 below shows the group management page, where users may be

deleted. By simply following a link to the page shown in Figure 11, the user can add any

other valid user. Finally, Reservation authentication was changed in

38

Pie sa F rverUe Thou HUp

Welon Dert PJidm or

you &Multicast r oup

B1x O Remme

-- -- T-T-et Rem-- e
F USPI

RDWeI Tal era Rernofe
Ru AMMit on Mac

Qegory RutAdgs Remffe

StudentAM Um to *t t o

SEdt Probt
o View ofments
SOWm t &
e ReserwL ~a

e ~iatGrauv

Figure 10: Framework Server Multicast Group management page

the Framework Server to allow the handoff of applet and applet parameters to members

of a Reservation owner's group. This involved modifying the code behind the applet

access page to use certain MulticastGroup object helper functions.

FIk Edt View Fayorfes Th* M'

Guck - 0 LAA smch ivoorm te&-a 4e &
Addrcss h :/ y rtb e oymra/draapxctd a .. Go unks"

WWO*M, Duk PWmoM

aAs dd User to Multicast Group

AdntstratdveLk*s Add dS ii
F RdinS
r Run Apet on Mac

Figure 11: Adding User to a Multicast Group.

4.3 Performance issues

Given that much work had previously been done on the Polymerlab system to ensure that

39

frame rates would be adequate for students, it was important to verify that the
introduction of potentially many clients using the system at once would not cause the rate

at which images were streamed to suffer greatly. Figures 12 and 13 below illustrate that

this is not the case. Figure 12 shows the time taken to output images (averaged over

approximately 5 images) to all clients for a varying number of such clients. The data

Figure 12: Microscope Server image output times versus number of clients.

indicate that, for reasonable numbers of clients, factors other than the actual time required

to send output images to all of the image sockets of clients dominates. In addition, it is

clear from Figure 13 that the time required to actually grab an image from the Axiocam

camera and perform any processing necessary absolutely dominates the approximately 6
frames/second streaming rate. Thus, the addition of multiple clients accessing the
microscope and receiving images at once is of no great concern in terms of frame rates.

Image Grab Times

0.1600
0.1400
0.1200
0.1000
0.0800

.5 0.0600
I-

0.0400
0.0200
0.0000

0 2 4 6 8 10 12 14 16

Number of Clients

Figure 13: Microscope Server image acquisition times versus number of clients.

40

Image Output Times

0.035
0.030
0.025

a 0.020
0.015

F0.010

0.005 77

0.000
0 2 4 6 8 10 12 14 16

Number of Clients

CHAPTER 5

Graphical Simulation Application

This chapter outlines the elements and algorithms behind the crystal simulation tool. The

motivation behind the application is simple: to provide an easy-to-use tool which students

can use to compare theoretical crystallizations with actual results from the online

microscopy experiment. For instance, variances in sample quality and/or preparation can

cause memory effects that in turn cause nucleation events to occur non-randomly.

Similarly, temperature gradients may cause variations in crystallization rate or melting

temperature. In addition, some of the assumptions used in the crystallization model may

be oversimplifications, which could cause predictions to be slightly different from

observed phenomena. A tool that would allow students to quickly and easily explore the

similarities and differences between observation and prediction would make a valuable

contribution to their understanding. More simply, such a tool could be used as a sanity

check: students could "rerun" the experiment virtually using the same values as the

original experiment and determine whether visually whether it generates similar results.

5.1 Crystal Growth Model

The primary goal of the polymer crystallization experiment is to use a model of the

temperature dependence of the rate of nucleation and rate of growth of crystal spherulites

to identify physical properties of the PEO sample and compare these to known values.

This is a test of both the experimental technique of the students and the validity of the

model used to understand the crystal growth.

41

The standard goals of crystallization models are to explain the observed morphological

features and their kinetic features and, in a related manner, provide analytical methods by

which measured properties can be reliably predicted. Typical models take into account

variables such as temperature, stress, strain, and composition, but in the present polymer

crystallization experiment students are only concerned with temperature dependence. The

two main features which the polymer crystallization experiment investigates are primary

and secondary nucleation rates and their dependence on temperature. (Secondary

nucleation refers to nucleation of a new layer of crystalline material on an existing

crystallite.) A model of crystallization kinetics should try to explain or at least be

consistent with several features of crystal growth: the morphology of polymer crystals

(lamellar crystal growth, the magnitude of lamellar thickness, and the fact that at crystals

formed at intermediate temperatures have straight facets whereas those formed at lower

temperatures have curved facets), the temperature dependence of the growth velocity, and

the effect of molecular weight on growth kinetics. (Molecular weight effects are not

addressed in this experiment.) The model which is discussed below is a summary of an

excellent and clear discussion found in Schultz of the most basic models explaining

crystallization [1].

In general, there is consensus regarding the modeling of the primary nucleation of

crystallites. Primary nucleation theory derives from classical nucleation theory used to

describe the formation of water droplets. Generally, that theory considers water

molecules in vapor form in a temperature and pressure below the boiling point of water.

Thus, it is thermodynamically favorable for the water to exist in liquid form. However, a

small droplet has a high surface area to volume ratio because of its size, and may actually

be energetically unfavorable. By comparing the surface energy associated with a droplet

of size r and the corresponding energy difference between that drop in liquid and vapor

form, a critical drop size r* can be determined. Any drop formed at this size will continue

to grow. Thus, r* defines a critical nucleus. By determining the distribution of embryonic

nuclei in a sample (which is a Boltzman distribution) and the rate at which sub-critical

droplets are accumulated the primary rate of crystallization can be determined.

Analogously, primary nucleation theory of polymer crystals considers an embryonic

crystal consisting of strands of polymer molecules stretched out and aligned side by side.

For such an embryo having v polymer strands of length 1 and cross-section a, the total

free energy difference between the embryonic crystalline state and the liquid melt state

42

can be written as:

AG(v, 1) = lavAG, + 2avoe + Cl ava,
where Gv is the difference in free energy per unit volume between the crystallized and
melt states, C is a constant relating to the cross-section shape of the strands, and ae and
as are the end and side surface energies respectively. By differentiating with respect to
the number of strands v and the length 1, one can obtain the critical values for the length 1
and number of strands v and eliminate them from the equation. Using for AGv the
formula (which is valid for undercooling)

T -T
AG =-Ah7 "

where Tx is the crystallization temperature, yields a critical value for the energy barrier of

AG* = 2C 2 .2O o(T,,,)2

AhTT)

By using arguments about the energy differential involved in adding one strand to a
critical embryo or subtracting a strand to reduce a v+l embryo to a critical embryo based
on the free energy difference formula given above, a net growth rate of embryos can be
determined. (Demonstration of this calculation requires a substantial number of
approximations and is avoided here.)

The most commonly used model to explain secondary nucleation was proposed by
Lauritzen and Hoffman. It basically rests on the idea of a molecularly flat growth
interface on which a new crystal layer must nucleate and grow. In the model, growth
occurs as adjacent sequential strands are deposited in an entire layer, one layer after
another. The first strand bonds to the original layer, and then subsequent strands, which
are part of the chain containing the first strand, bond to both the original layer and also
the previous adjacent strands. The chain winds along the surface in the manner shown
below in Figure 14.

Figure 14: Example showing winding of strands at the crystal surface.

(The challenges to this idea have to do with the molecular surface being rough, with the

43

nature of the nucleus that starts the new layer and with whether the barrier to nucleation

is predominantly enthalpic or entropic in origin. Hoffman has also proposed a "Regime"

model that accounts for roughness of the growth surface as a consequence of competing

rates of nucleation for a new layer and lateral growth to complete an existing layer. This

is different from roughness of the fold surface, which requires entropic arguments.)

Starting in a manner very similar to the primary nucleation analysis, the secondary

nucleation analysis begins with an expression for the free energy change caused by the

addition of the first strand. By subsequently using this expression determining the net rate

of deposition of first strands on potential sites, a functional form for the growth rate is

obtained [1]. A typical model of the growth velocity of crystal lamella obtains the

formula
U -Kg

v(l',T))=G~eR(T-T) TAT

Go is a constant that contains some temperature dependence itself and also wraps up the

dependence on strand length, etc. The growth constant Kg is given by
4bOaGT

K =
kAhf

It should be noted that the leading constant in the formula depends on the assumptions

made about the exact manner of formation of new monolayers on the crystal surface. The

value of 4 above corresponds to the case in which one monolayer completes before

another begins. Furthermore, the scaling of the temperature in one exponential of the

growth velocity formula from an absolute level to one dependent on a value T. reflects

the fact that strand mobility ceases not at absolute zero but around the glass transition

temperature Tg.

T. is identified empirically to be around Tg + 30'K. In the polymer crystallization

experiment this corresponds to a value of 176 K. U* has a value of 29.3 kJ/mole. Ahf,

the heat of fusion of PEO, has a value of 2.43x1OA9 ergs/cm3. The parameter b is the

diameter of the polymer molecule, which for PEO is approximately 0.5-1.0 nm.

A good model of crystallization must simultaneously take into account both the primary

and secondary nucleation processes discussed above, since even while one crystal has

already formed and may be quite large another primary nucleation event may just be

occurring. Such a "continuous nucleation" (nucleation at a constant nonzero rate)

44

contrasts with "instantaneous nucleation," in which all nucleation takes place at t=O, and

the subsequent nucleation rate is zero.) The first is appropriate for homogeneous

nucleation, while the second describes heterogeneous nucleation. An analysis that

incorporates both primary and secondary nucleation leads to a prediction of total

transformed crystalline fraction of a sample as a function of model parameters such as

temperature. The Avrami equation yields just such a relationship.

The Avrami analysis begins by observing that for a polymer sample in which spherulites

nucleate randomly at a constant rate of n per second, and grow at a steady velocity v, a

spherulite that begins at time z will have a volume

47 (v(t -)) .
3

Note that this assumes the crystal grows as a sphere, but this does not affect the overall

analysis; the generalized result is given below. If one did not have to worry about crystals

overlapping, the volume transformed in a small period of time dt would be
,47c

dQ'(t)= n(vt)3 dt
3

The difficulty arises in determining the total volume C transformed, since once crystal

cannot nucleate and begin to grow within an area already occupied by another. Denoting

the fraction of the sample which has been transformed as 0(t), the amount of sample

which is transformed at any time t is simply the amount that would have been

transformed with overlap possible scaled by the fraction of the sample which remains to

be transformed, given by the equation

dQ(t) = [1- (D(t)]dQ'(t).

Dividing through by the total volume of the sample and integrating, an expression for

'D(t) is obtained which describes the total fractional transformation. In the general case of

this dependency is known as the Avrami equation and is given by:

(D(t) =1- e-k M .

The constant m represents the Avrami exponent. The Avrami exponent is equal to the

growth dimensionality plus one. (The factor k also depends on the growth dimensionality

and is a function of the growth rate v raised to a power that goes as the dimensionality.)

The equation given above also depends on the time distribution of nucleation events. In

particular, it assumes homogeneous nucleation, meaning that nucleation events occur at a

constant rate throughout time. The opposite of homogenous nucleation is known as

45

heterogeneous nucleation, and describes the situation in which all of the nuclei appear

and begin growing at one moment and only that moment. The dependence of facet or

edge shape mentioned earlier depends crucially on the distribution of nucleation events

and was a key consideration in the simulation applet which will be discussed below.

Knowing the functional form of the volume transformation and temperature dependence

of the rate of crystal growth, students using the Polymerlab are equipped to compare the

results of their experiments to those predicted by their model of crystallization kinetics.

The goal in implementing the graphical simulation applet was to adequately represent the

predicted behaviors.

5.2 Voronoi Diagrams

Given the positions and growth rate of spherulites formed at a uniform temperature in a

sample, graphical simulation of the growth of these crystals becomes essentially the

problem of calculating boundaries between growing spherulites. This problem, especially

in the simplified case of heterogeneous nucleation, may be addressed through the use of

Voronoi diagrams.

Given a set of points in a two dimensional grid, the set of all points closer to a given point

than to any other point in the set forms a structure known as the Voronoi polygon for the

point. The union of the all the Voronoi polygons for a point set is known as the Voronoi

diagram for that set [10]. Examples of uses for Voronoi diagrams include route planning

algorithms for robots, operational logistics for supplying to a specified set of locations,

astronomy, etc. Figure 15 shows a set of points along with the associated Voronoi

diagram (dark) and the Delaunay triangulation (light).

46

Figure 15: Voronoi diagram and the dual Delaunay triangulation

The dual of the Voronoi diagram problem is the problem of calculating the Delaunay

triangulation of a set of points. The Delaunay triangulation is given by the set of lines

drawn between each point and the set of points "closest to" it. The problems are dual in

that any algorithm or computation which calculates one problem may also be trivially

converted to calculate the other. Points in the XY plane are connected by a line in the

Delaunay triangulation if their Voronoi polygons share a common edge in the Voronoi

diagram. As can be seen in Figure 15, the edges of the Voronoi diagram form

perpendicular bisectors of the lines in the Delaunay triangulation.

The Voronoi diagram of a set of points has several properties that lend themselves to the

construction of efficient algorithms. The most important of these properties is that the

number of lines in both the diagram and its dual is linear in the number of points N, and

this linearity is typically of order a small constant times N. Algorithms exist based on the

convex hull problem which can solve the Voronoi triangulation problem in O(NlogN)

time and O(N) space. This algorithmic efficiency can be shown to be optimal [10].

5.3 Heterogeneous nucleation applet

In order to first approach the most tractable problem, the design of the simulation applet

began by addressing the problem of heterogeneous nucleation. Heterogeneous nucleation

was chosen because, independent of crystal growth rate, the boundaries between crystals

47

formed during heterogeneous nucleation always form straight lines. In contrast,
homogeneous nucleation in general causes the boundaries to form hyperbolas, although

this is not always apparent at low crystal growth rates. The assumption of heterogeneous

nucleation simplified the problem of graphical implementation in Java and in terms of the

pre-computation of boundaries.

Given the definition of the Voronoi diagram problem, the parallels between the problem

of calculating boundaries for crystals formed during heterogeneous nucleation

crystallization are obvious. Since each crystal starts growing at the same time and at the

same rate, the boundaries between crystal centers will be formed along perpendicular

bisectors. In addition, the assumption of a uniform growth rate allows the problem of

graphical rendering to be broken into two simple steps. The first is painting the area filled

by at least one crystal. By painting all crystals in a similar monochrome manner, it does

not matter which crystal is painted first or whether crystals overlap. (Note that this is not

true if crystals grow at different rates.) This saves the work of having to calculate the

exact time and point of every contact between crystals and modifying their boundaries to

be some arbitrary shape. The second step, then, involves painting the pre-calculated

boundaries. By painting these boundaries the same color as the background, it is only

apparent at an impinging location between two or more crystals. This method yields a

convincing appearance of crystal growth and impingement to the eye as long as the

boundaries are properly calculated. Appendix B contains the Java code for the initial

design of the simulation applet implementing this strategy for heterogeneous nucleation.

Figure 16: Heterogeneous simulation applet showing crystal growth.

48

Figure 16 demonstrates the previously discussed approach. In general, the logical flow of

the simulation is as follows. Random nucleation sites are calculated based on an input

(which was initially simply of number of crystals.) For each site, a crystal with zero

radius and a center located at the nucleation site is created. The boundaries between the

crystals are calculated using Voronoi diagram algorithms discussed below. The animation

is then started, with time iterating in intervals of 20 milliseconds. (Future version may

base this rate on growth rate of crystals to ensure they are smoothly rendered.) At every

times step, each crystal object is given a message to "grow," which alters its radius field.

Each crystal in the window is then asked to paint itself. Finally, the boundaries of the

crystals are painted over the crystals and time is iterated. In Figure 16, the boundaries are

painted a shade obviously different from the background in order to demonstrate that

these pre-existing boundaries are in fact correct.

While the heterogeneous animation applet accomplished the goals set out for it, it still has

limited usefulness since the actual crystallization process observed in the polymer

crystallization experiment involves homogeneous nucleation. For this reason, more

realistic methods of calculating and rendering crystal boundaries were investigated.

5.4 Additively Weighted Voronoi Diagrams

There exist extensions of the Voronoi diagram to problems more general than simple

heterogeneous, uniform growth rate crystallization. In the most common statement of the

problem, discussed in the previous section, the function used to determine whether a

particular location in the XY plane is closer to one point than another is simple Euclidean

distance. However, the Voronoi diagram problem can handle more general functions.

One such extension of the standard Voronoi diagram is known as the additively weighted

Voronoi diagram. Additively weighted Voronoi diagrams are defined in the same way as

the Voronoi diagrams previously described, except that the Euclidean distance used to

determine the location of boundaries is modified for each point by a "weighting." For

instance, in the case of calculating the boundary between crystals, each crystal may be

given a weighting equal to the time for which the crystal has been in existence. Crystals

which formed early might have a large weighting, while relatively recent crystals might

have a small weighting. This weighting is used to modify the Euclidean distance to any

point. Thus crystals started earlier are considered to be "closer" to any location than later

49

crystals. It should be noted that there exist still other forms of the Voronoi diagram which

correspond to crystals whose individual growth rates are different in addition to different

start times. The solutions for such problems involve complex spirals. [11]

Like the simplest Voronoi diagram problem, optimal algorithms exist for additively

weighted diagrams. These diagrams are also of order O(NlogN). However, not only are

these algorithms difficult to implement, their implementation using the Java APIs chosen

for this project would require writing complex representations of curved lines. Since an
initial implementation would have involved numerical approximations, using existing

graphics functions, of the hyperbolic lines needed, it was decided first to attempt an

outright numerical calculation of the crystal boundaries. Because the boundary

calculation would still be done as a pre-computation, optimization of the algorithm would

not be critical.

5.5 Homogeneous nucleation applet

In the heterogeneous applet, the algorithm for calculating the boundaries is a brute force,

O(N 3) iteration. The basic idea is to iterate over every crystal combination, calculating

the hyperbolic curve that would form the boundary between those two crystals if no other

existed. This curved boundary is then graphically approximated by short, straight line

segments which are added to a set of boundary lines, contingent on the fact that no other

crystal is closer to that location in the sense of the additively weighted distance function.
This function is calculated using Euclidean distance minus the difference between

product of the start time and growth rate of the subject point and any other point. This in
effect handicaps younger crystals by subtracting from their present radius the radius of
the older crystal. Figure 17 shows two screenshots of the heterogeneous applet. Crystals

forming at different times can be seen to grow and impinge on one another.

50

Figure 17: Graphical simulation using Additively weighted Voronoi diagram.

The heterogeneous applet must, of course, also provide a method for adding crystals

throughout time. At present, crystals are simply added at a constant, preset rate. After

inputting a number of crystals, the algorithm calculates a random location for the first

crystal. Given the next crystal "nucleation" time, the algorithm then calculates a new

random point. If this point lies inside the previous crystals, it is discarded and another is

chosen. If it does not, a crystal with that location and start time is added to a Vector

holding all the crystals. This continues until the desired number of crystals is achieved.

While this method provides an excellent first pass and yields good results, as will be seen

later, there are several problems that may potentially be improved upon. The first is that

as a large number of crystals are added, the probability of finding an available site to

place an additional crystal becomes extremely small. Because the algorithm described

above would simply loop until one is found, a hard coded upper limit was used to prevent

such a scenario. The second manner in which this technique could cause a problem is in

the analysis of the Avrami exponent, since the analysis given before assumed a constant

rate of nucleation. A third area of possible improvement is that the nucleation rate is

simply programmed in and is constant. A more realistic approach might take into account

the temperature at which the crystals are formed.

51

5.6 Results

Given the model discussed in section 5.1 and the numerical values of constants for PEO,

it should be straightforward to generate realistic results for the crystal animation.

However, as discussed before, certain assumptions and simplifications were made during

the development of the graphical animation applet. Therefore, as a test the applet was

used to measure crystal growth rates at 4 randomly chosen temperatures. (Appendix F,

the Student User Manual, contains details on how to run the applet.)

Parameter Value
(00e)1/2 3.35E-6 J/cm2

b I nm
Tm 70.3 C
Too -97.15 C
U* 29.3 kJ/mole
Ahf 2.43x10^9 ergs/cm 3

R 8.3144 J/mol*K

Table 3: Parameters from applet test run.

Table 3 shows the values used in the simulation applet to calculate growth rates. The

sizes of crystals were recorded at various times while the graphical simulation ran for

each temperature. Each crystal was measured at least three times and the results of those

measurements were averaged and plotted against time for each temperature. This analysis

follows the same steps as those taken by the MIT students using the Polymerlab. The

analysis allows one to obtain a value of the growth constant, Kg. Using that constant and

the previously defined relationship, the value of the mean surface energy, (Qsae) , was

calculated. The results yielded a value for (aae) 2 of 3.32E-6 J/cm 2, which is in good

agreement with the accepted value of 3.35E-6 J/cm 2. Because, in the simulation, the

actual number driving the evolution of the crystals is the correct one, this level of

accuracy reflects a typical measurement inaccuracy that can be expected by normal users.

The intermediate results are shown in Figure 18 and Figure 19.

52

Crystal Radius vs Time

0.06

0.05

-~ 0.04E
E
a 0.03

e 0.02

0.01 .

0
0 10 20 30 40 50

time (sec)

T=50 C * T=52.5 C T=55 C x T=57 C

Figure 18: Crystal growth versus time for animations at selected temperatures.

Figure 19: Determination of Kg from animation data.

While measurements were being made, the total volume of crystal transformed was also

being recorded in order to complete the Avrami analysis. Figure 20 shows the results of

that analysis. In particular, one would expect that, with the two dimensional disks used to

depict crystal growth, the Avrami analysis would yield a value of three for the Avrami

exponent. Figure 20 demonstrates that this was very nearly the case. The most important

53

Determination of Kg

25

T 20

15

10

-5

0
0 0.00005 0.0001 0.00015 0.0002 0.00025

1/Tc(Tm-T)

Determination of Avrami Exponent

Figure 20: Determination of Avrami exponent from graphical animation data.

thing to realize here is that even with the simplified manner of adding the crystals, the

heterogeneous nucleation analysis still holds quite well. It should be noted that the total

time required to complete the experiment using the animated applet was on the order of

forty-five minutes. This time includes running the simulation, making measurements, and

performing analysis. This is a drastic reduction over the amount of time required to

complete the actual experiment.

5.7 Conclusion

To summarize, an applet enabling fairly realistic graphical simulation of crystal growth

was developed using a Voronoi diagram representation and a numerical calculation for

the boundaries. The applet enables a quick yet accurate completion of the same analysis

required for the actual Polymerlab experiment. Using this applet, student will be able to

quickly test their results or learn through trial and error the correct analysis, while being

confident that their measured results are correct. Areas of possible improvement in terms

of the model used include better process for inserting nuclei and a temperature dependent

nucleation rate. Graphically, a better paint implementation for the Crystal class which

took into account boundary collisions and modified the internal boundary representation

accordingly would allow for crystals to paint the Maltese cross patterns shown in the first

chapter. However, this would be difficult as it might require a more analytical

computation of the boundaries of each crystal.

54

0

-2
+T=50 C
-T=52.5 C

-4
T=55 C

-5

-7
0 0.5 1 1.5 2 2.5

In(t)

55

CHAPTER 6

Incorporation of Generic iLab Architecture

The final goal of this project was to facilitate the development of a generic iLab

architecture able to handle user interactive experiments like the polymer crystallization

experiment, and to incorporate these architectural enhancements into the Polymerlab

system where appropriate. Limited progress was made in incorporating the latest design

changes into deployed Polymerlab components due to the lack of a completed API

suitable for interactive experiments. However, the Polymerlab system was used as a

model to direct changes in the communication architecture of the generic iLab

framework. Furthermore, the Polymerlab system was used as a model and stub testbed

for development and testing of the reservation system needed to facilitate user interactive

experiments, including design suggestions that are not currently possible in the

Polymerlab setup.

During the development of the first generic iLab APIs and system architecture, the MIT

Microelectronics laboratory served as a model system that allowed the designers of the

architecture to identify abstract issues that would face internet laboratories [12]. At the

same time, it enabled them to stay focused on a concise design, by virtue of constraining

them to implement the architecture for that actual system. This initial iteration worked

closely with the Microelectronics Weblab team and prioritized their requirements to

establish some functionality to the API's core methods. While this system served its

purpose well in that the designers were able to implement their APIs to yield a fully

functional and robust platform, it also served to limit their design scope to laboratories

which use a "batch" architecture. Batch laboratories do not require user input during the

actual execution of an experiment. (Other examples of experiment types are interactive

56

experiments and sensor experiments, such as the MIT flagpole project, in which raw

sensor data from a flagpole is streamed to a user.) Batched experiments are the simplest,

where a specification is made and submitted, and experiments run without user

interaction; they are not subject to many of the demands that a real-time, user interactive

experiment must meet. As a result, the iLab architecture also lacked the capability to

meet these demands.

6.1 "Batch" iLab Architecture

The following section discusses the iLab architecture as it was developed at the outset of

this thesis. Specifically, it describes the implementation which paralleled the

Microelectronics Weblab [13]. In general, most remotely run experiments operate in a

similar manner: users are identified/ authenticated, they submit input parameters which

characterize an experiment to be run, the inputs are validated, the experiment

specification is submitted, the experiment is run, and the results are retrieved. By design,

the components of the generic iLab architecture correspond to the most general aspects of

any internet laboratory, and their functionality and domains strongly embody this

concept.

The generic iLab architecture can be broken down into three main components. The first

and central of these components is the Service Broker. The Service Broker is an attempt

to abstract out the most general and common administrative features of internet

laboratories. The guiding force in the design of the Service Broker was the desire to

separate out domain-independent functions. Domain-independent functions are those that

are common yet not exclusively associated with any particular type of lab. The iLab

development team roughly identified five such necessary functions: an experiment

storage mechanism for experiment parameters and results, a user authentication/ security

mechanism, an authorization mechanism to specify user privileges, a reservation

mechanism, and an administrative mechanism to manage user accounts. The Service

Broker APIs specifically attempt not to incorporate hardware or vendor specific details.

The need is for a component that can facilitate all these common functions and

communicate with lab components. The functions provided are not exposed to the lab

equipment; instead, only what is necessary for communicating with lab hardware is

exposed. The Service Broker is designed to be platform independent and interoperable. In

view of this, the Service Broker is implemented as a group of web services, in no small

57

part due to the presence of accepted and open web standards. In general, the Service
Broker is designed to be customizable as far as administrative policies are concerned.

The next main component of the iLab architecture is the Lab Client. The Lab Client is the
interface through which users (students) interact. It accepts inputs to be transmitted to lab
hardware, and displays experiment results when received. The Lab Client, however, is
not able to directly communicate with lab hardware in the original iLab design. In order
to enforce an abstraction barrier that would, among other things, allow independent
developers to create their own clients to suit their specific needs, all communication with
the actual lab hardware is passed as messages through the Service Broker. The Service
Broker acts as a middle man, exposing a standard interface to the Lab Client. On the
other side of the Service Broker lies the Lab Server. The Lab Server is responsible for
converting the input messages specifying experiment conditions and for controlling lab
hardware. Like the Lab Client, the Lab Server can only communicate with the Service
Broker through a series of standard web services. Figure 21 shows the flow of
communication between the three main components in the original iLab architecture. It is
useful to contrast this figure with Figure 3 from Chapter 2 (a similar graphic
representation of the Polymerlab system.)

Lab cieft"

Figure 21: Communication between components of general iLab architecture.

The structure of the original iLab architecture posed several formidable challenges for
anyone wishing to implement an interactive experiment using the APIs. Most of these

58

challenges relate to latency/ performance issues, which are critical in real-time user

controlled experiments. The first big performance hit comes about because the initial

external architecture, which must be implemented by the Internet-accessible labs in order

to communicate with the Service Broker, was designed so that the Service Broker takes

in all message exchanges centrally before passing them on, as can be easily seen in

Figure 9. Two APIs, the client-to-Service-Broker API and the Service Broker-to-lab API

establish this centralized communication. The prototype allows messages to be

exchanged only between the Lab Client and the Service Broker, or the Lab Server and the

Service Broker. No direct communication between server and client is possible. This is a

key difference between the Polymerlab system and the iLab general architecture. It

allows a third party developer to construct a client to their satisfaction, rather than have

one customized client provided by the original developer, as is the case in the Polymer

crystallization iLab; however, it also introduces unacceptable latency for several reasons.

The SOAP-based web service methods which the APIs facing both the Lab Server and

Lab Client are formed around require interpretation using the Web Services Description

Language (WSDL). Subsequently, the data must be packaged into XML SOAP request

and response messages that are transmitted using HTTP. The parsing, validation, and

transmission times introduce large amounts of latency. Furthermore, all transmissions to

and from the Service Broker are encrypted, adding yet another layer of latency. In a

similar manner, the communication design of the initial architecture dictates that

experiment results be written to a database in the Service Broker before being passed

back to the client. In a system where experiment results might comprise digital images

requiring high bandwidth, the database calls needed to access the records might be overly

time intensive.

Not all of the issues preventing interactive experiments are performance related,

however. Because the model experiment was a batched experiment which relied on a

simple FIFO queue to determine the order to execute experiments, a reservation system

was the only area of the above identified domain-independent services which was not

implemented in the internal APIs of the Service Broker. While it may seem that this is

merely a trivial matter of implementation, the interactions between users on the client

end, administrators who set reservation policies, and the need to make connections

contingent upon time-based reservation makes such a system difficult in the context of

the initial architecture.

In light of all of these concerns, work was begun to identify weaknesses relating to the

59

implementation of a user interactive experiment and to modify the existing architecture

accordingly. In the course of this thesis, work was done with two other Masters students

to use the Polymerlab to identify design needs and problem areas, to serve as a model

experiment in much the same way as the Microelectronics WebLab did for the initial

architecture. Karim Yehiya worked to propose architectural changes to the Service

Broker which would address some of the concerns above, while Jedidiah Northridge

specifically addressed the development of a Scheduling Service.

6.2 Service Broker Design Changes

As discussed above, the centralized message passing architecture underlying the original

Service Broker design introduces inherent problems for interactive experiments. In the

Spring term of 2004, Karim Yehia worked with the administrator of the Polymerlab

system to identify critical areas of the generic iLab architecture which needed redesign in

order to accommodate similar experiments. As a result, three major areas were identified.

As part of his thesis, Karim and the iLab development team proposed architecture

changes and new APIs to support changes in these areas. These changes primarily

focused on the Service Broker [14].

The first and most important design change required by the Service Broker was the

ability to allow Lab Clients and Lab Servers to communicate directly with one another

via an internal domain-specific protocol. To meet this need the iLab development team

introduced the idea of General Ticketing. The primary idea behind General Ticketing is

that many of the services previously hosted by the Service Broker should be broken out

as stand-alone entities. These stand-alone entities, known as process agents, may run on

different systems than the Service Broker. The process agents allow users to bypass the

Service Broker for certain method calls, given that they have a valid ticket issued by the

Service Broker. This ticketing mechanism closely resembles the token passing from the

Framework Server to the Microscope Client in the polymer crystallization iLab. In the

new system, the Service Broker has the authority to write tickets and dispense them to

clients. Rather than being specific to one particular Lab Server, the general ticketing

mechanism offers access to one of any number of resources (process agents) which are

known to and advertised by the Service Broker. These resources may include many

individual Lab Servers, in keeping with the Service Broker's more general architecture,

which allows one Service Broker to provide domain independent services for multiple lab

60

servers. More importantly, these resources may include services that were formerly fully

integrated into the Service Broker, such as an Experiment Storage Service, or a

Reservation Service. It is precisely these services which were the next necessary

modifications.

6.2.1 Experiment Storage Service

In the first iteration of the iLab architecture, experiment results were communicated

directly from the Lab Server to the Service Broker, where they were stored and later

retrieved by the Lab Client. For the aforementioned reasons, this system prohibits

interactive streaming of results. The ESS changes the treatment of experiment objects and

the method they are retrieved. The original API treated experiments as individual units,

which doesn't suit the idea of a client making multiple experiment runs (in our case

temperature runs) by a client during a single reservation session. The ESS defines

experiment objects as sequences of experiment records, each holding some type of

payload representing data, error messages, etc. Records are added to the experiment as

long as the single session persists. The ESS provides a mechanism for storing large

binary results such as images. Instead of transferring the results as an attachment in a web

service call, the data is streamed. In the Polymerlab, it happens that the "ESS" which the

Microscope Server writes to is the same system which hosts the Framework Server.

However, the generic architecture of the iLab ESS allows for this functionality to be

separated out, making it more flexible.

6.2.2 Scheduling Server

General ticketing eliminates the static communication pathway between Service Broker

and Lab server by allowing web services to be invoked by anyone possessing the proper

credentials, in the form of a ticket. This has broader implications for the types of

communications possible, as discussed previously, but in the context of scheduling it

allows for a reservation system to piggyback on top of the built in time-dependent

features of the ticket system.

The development of a reservation system was begun in tandem by Jedidiah Northridge, a

Masters student at MIT [15]. Like Yehia, Northridge also made use of the Polymerlab as

61

a case study to illustrate design needs. Furthermore, modified components of the

Polymerlab system were made available to him to use as a stub testbed for the test

implementation of the system he designed. Unlike the current implementation of the

Polymerlab system, the general iLab architecture wanted to enable a general concept of

scheduling which might include factors other than first come first serve. Lab

administrators might want to enable auctioning of time slots, for example. In addition,

administrators need the flexibility to implement generic rules for describing and

restricting reservations, if the system is to be applicable for many types of experiments.

The Scheduling Server is designed to be an optional component that handles the details of

creating tickets according to some desired scheduling system. It is designed to operate as

both a web service and a web application. The application will allow users to enter

interact with the Server to shape the scheduling. Administrators would interact with it in

order to lay out reservation policies, while students would use the application to choose

reservation times that best fit their schedule. This system is, of course, quite similar to the

current Polymerlab system, except that administrative policies regarding scheduling are

separated by an abstraction barrier from the details of implementation. Rather than

editing code to ensure maximum reservation times, for example, the administrator is able

to implement the rules generally through a web interface. The figure below depicts a beta

test of Northridge's reservation system which used a modified version of the Microscope

Client and Server (bypassing the Framework Server.) In addition to setting up a

Scheduling Server, which he developed, and a Service Broker to fill the role occupied by

the Framework Server, Northridge modified two components of the Polymerlab system in

several ways. The Microscope Server was modified to support the new Service Provider

API, as well as process Lab Server tickets received from clients in order to grant access

to the server. The Microscope Client was also modified to recognize and use tickets, as

well as interface with the Service Brokers web services. These modifications were

successful, and Northridge was able to create a reservation system, be passed the applet

from the Service Broker, and access the Microscope Server using tickets.

62

Vew ThMe Dbu*"L..

Figure 22: Screenshot from test implementation of Reservation System using Polymerlab

6.3 Future Work

The changes to the Service Broker outlined above and the development of a Scheduling

Service position the generic iLab architecture for implementation of a full interactive

experiment soon. In order for this system to support the Polymerlab system, several

issues must be addressed. One of the most important will be the development of a method

for introducing modular internal domain-independent functions that can be customized

for a particular lab. This would allow for components such as the ESS to be tweaked for

optimal use with the Polymerlab system. For instance, the design outlined by Yehiya for

the ESS does not allow individual temperature runs completed during the same user

session to be stored or deleted separate from each other. In addition, the Microscope

Server and its components would need to be modified to connect to the ESS in the

manner desired. While Northridge's test implementation verified the ability to modify the

Microscope Client and Server to consume tickets, it did not address the ESS at all. With

respect to Multicasting, in general, the General Ticketing mechanism introduced by

Yehiya et al. seems general enough to take on this functionality in the same way the

Scheduling Server implementation was able to piggy back on top of that system.

63

I

CHAPTER 7

Concluding Remarks and Future Work

The Polymerlab system is now able to allow multiple users to collaborate and control the

experiment at the same time. Initial testing has supported the idea that such an

experiment will better engage students and serve as a useful teaching device. Future steps

will include rolling out the simulation applet for use with students to determine its

usefulness to them.

While the Polymerlab now has the functionality initially envisioned for it, issues of

support become a concern. Although the lab equipment and sample itself are actually

stable for extremely long periods of time without user interaction (to change light bulbs,

or polymer samples, for example), it is ironic that the component of the system that

shows its age most quickly is the software. Without periodic updates to the operating

system and network software, the host system may become vulnerable to attacks from

outside intruders. This aspect of online laboratories will exist for as long as network

security remains a problem. Another aspect of security and support involves the upkeep

of the code implementing the Framework Server, Microscope Client, and Microscope

Server. To this end, the generic iLab architecture previously discusses has now begun to

address the needs of an interactive experiment such as Polymerlab, and indeed is in the

process of rolling out the first complete APIs and specifications. Once this is completed,

it will be possible to implement the pre-multicasting version of Polymerlab using that

architecture. While this will represent a step backward in terms of functionality (because

of the lost of multicasting), it will represent a step forward in ensuring that the lab is

supported over its lifetime, because the general architecture will have the combined

support of every laboratory implementing it.

There are also several areas in which the graphical simulation applet could be improved.

One potential improvement includes making the frame rate dependent on growth rate.

Additionally, the algorithm used for inserting crystals is quite naYve and should be

improved. At the same time the assumption of a pre-set nucleation rate could be modified

64

to include temperature dependence. The most important area in which the applet could be

modified is in the internal representation of the Crystal object. Currently these objects are

represented as simple circles that grow and overlap. A more sophisticated internal

representation of its boundaries, and importantly is paint method, would allow for a very

realistic rendering including the characteristic Maltese cross pattern. Once this is

achieved, the applet could very well stand in completely for the actual physical

experiment.

65

Appendix A: SQL Database Script

The following script initializes all the necessary tables and stored procedures, including

modifications from previous versions of the polymer crystallization iLab. It should be

imported in the standard way through the Enterprise Manager of MS SQL.

if exists (select * from dbo.sysobjects where id =
object id(N'[dbo].[ExperimentRunAdd]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunAdd]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ExperimentRunDelete]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunDelete]

GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ExperimentRunGetRunFromExpID]') and

OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[ExperimentRunGetRunFromExpID]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ExperimentRunGetRunFromID]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunGetRunFromID]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ExperimentRunGetRunFromName]') and

OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunGetRunFromName]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ExperimentRunGetRunFromUserID]') and

OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunGetRunFromUserID]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ExperimentRunGetRunFromUserIDAndExpID]') and

OBJECTPROPERTY(id, N'IsProcedure') = 1)

drop procedure [dbo].[ExperimentRunGetRunFromUserIDAndExpID]
GO

66

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRunIsRun]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunIsRun]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ExperimentRunUpdate]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRunUpdate]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ExperimentCreateNew]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentCreateNew]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ExperimentGetAllExp]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentGetAllExp]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ExperimentGetExpFromID]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentGetExpFromID]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ExperimentGetExpFromName]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentGetExpFromName]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ExperimentIsExperiment]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentIsExperiment]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[Experiment_Update]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentUpdate]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ReservationCheckConflict]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ReservationCheckConflict]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ReservationCreateNew]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)

67

drop procedure [dbo].[ReservationCreateNew]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ReservationGetResFromDay]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ReservationGetResFromDay]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[ReservationGetResFromID]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)
drop procedure [dbo].[ReservationGetResFromID]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ReservationGetResFromUserID]') and

OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ReservationGetResFromUserID]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ReservationIsReservation]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)
drop procedure [dbo].[ReservationIsReservation]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ReservationRedeem]') and OBJECTPROPERTY(id,

N'IsProcedure') = 1)
drop procedure [dbo].[ReservationRedeem]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[ExperimentRuns]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)
drop table [dbo].[ExperimentRuns]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[Experiments]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)
drop table [dbo].[Experiments]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[MulticastGroups]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)
drop table [dbo].[MulticastGroups]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[Reservations]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)
drop table [dbo].[Reservations]
GO

68

if exists (select * from dbo.sysobjects where id =
objectid(N'[dbo].[RoleToRoleMap]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)

drop table [dbo].[RoleToRoleMap]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[Roles]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo]. [Roles]
GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[UserToRoleMap]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)

drop table [dbo].[UserToRoleMap]
GO

if exists (select * from dbo.sysobjects where id =

objectid(N'[dbo].[Users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[Users]
GO

CREATE TABLE [dbo].[Experiment Runs]
[RunID] [uniqueidentifier] NOT NULL

[ExperimentID] [uniqueidentifier] NOT NULL

[RunName] [varchar] (50) COLLATE SQLLatinlGeneralCP1_CIAS NOT

NULL ,
[Description] [varchar] (500) COLLATE

SQLLatinlGeneralCP1_CIAS NULL ,
[UserID] [uniqueidentifier] NOT NULL

[AddDate] [datetime] NOT NULL ,
[OutputXml] [ntext] COLLATE SQLLatinlGeneralCPl_CIAS NULL

ON [PRIMARY] TEXTIMAGEON [PRIMARY]

GO

CREATE TABLE [dbo].[Experiments]
[ExperimentID] [uniqueidentifier] NOT NULL

[ExperimentName] [varchar] (50) COLLATE
SQLLatinlGeneralCP1_CIAS NOT NULL ,

[Description] [varchar] (500) COLLATE
SQLLatinl GeneralCPl_CIAS NULL ,

[RegistrationDate] [datetime] NOT NULL
[CreatorID] [uniqueidentifier] NULL

ON [PRIMARY]
GO

CREATE TABLE [dbo].[MulticastGroups]
[ownerID] [uniqueidentifier] NOT NULL
[memberID] [uniqueidentifier] NOT NULL

ON [PRIMARY]
GO

CREATE TABLE [dbo].[Reservations]
[UserID] [uniqueidentifier] NOT NULL

[ReservationID] [uniqueidentifier] NOT NULL
[StartTime] [datetime] NOT NULL
[EndTime] [datetime] NOT NULL

69

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[RoleToRoleMap]
[RoleIDA] [uniqueidentifier] NOT NULL ,
[RoleIDB] [uniqueidentifier] NOT NULL ,
[DateSubmitted] [datetime] NOT NULL

ON [PRIMARY]
GO

CREATE TABLE [dbo].[Roles]
[RoleID] [uniqueidentifier] NOT NULL
[RoleName] [varchar] (50) COLLATE SQLLatiniGeneralCP1 CIAS

NOT NULL ,
[RoleDescription] [varchar] (7000) COLLATE

SQL Latin _GeneralCP1_CIAS NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[UserToRoleMap]
[UserID] [uniqueidentifier] NOT NULL ,
[RoleID] [uniqueidentifier] NOT NULL ,
[DateSubmitted] [datetime] NOT NULL

ON [PRIMARY]
GO

CREATE TABLE [dbo].[Users]
[UserID] [uniqueidentifier] NOT NULL
[FirstName] [varchar] (50) COLLATE SQLLatinlGeneralCPlCIAS

NOT NULL ,
[LastName] [varchar] (50) COLLATE SQLLatiniGeneralCP1_CIAS

NOT NULL ,
[Email] [varchar] (50) COLLATE SQLLatinlGeneralCP1_CIAS NOT

NULL ,
[Password] [varchar] (500) COLLATE SQLLatinlGeneralCPlCIAS

NOT NULL ,
[SchoolID] [int] NULL
[RegistrationDate] [datetime] NOT NULL
[ConfirmationDate] [datetime] NULL ,
[ConfirmationCode] [uniqueidentifier] NULL

ON [PRIMARY]
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ExperimentRunAdd
@RunID uniqueidentifier,
@ExpID uniqueidentifier,
@RunName varchar(50),
@Desc varchar(500)=NULL,
@UserID uniqueidentifier,
@AddDate datetime,

70

@OutputXml ntext =NULL
AS

insert into ExperimentRuns
(RunID, ExperimentID, RunName, Description, UserID, AddDate,

OutputXml)
values

(@RunID, @ExpID, @RunName, @Desc, @UserID, @AddDate, @OutputXML)
GO
SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ExperimentRunDelete
@RunID uniqueidentifier

AS

delete from ExperimentRuns where RunID = @RunID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRunGetRunFromExpID
@ExpID uniqueidentifier

AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,

OutputXml
from ExperimentRuns where ExperimentID=@ExpID order by AddDate desc

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSI-NULLS OFF
GO

71

CREATE PROCEDURE dbo.ExperimentRunGetRunFromID

@RunID uniqueidentifier
AS

select RunID, ExperimentID, UserID, RunName, Description,
AddDate, OutputXml

from ExperimentRuns
where RunID = @RunID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS OFF
GO

/****** Object: Stored Procedure dbo.FW ExperimentRunGetRunFromName
Script Date: 9/26/2002 1:22:07 PM ******/
CREATE PROCEDURE dbo.ExperimentRunGetRunFromName

@RunName varchar(50)
AS

select RunID, ExperimentID, UserID, RunName, Description,
AddDate, OutputXml

from ExperimentRuns
where RunName = @RunName

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRunGetRunFromUserID
@UserID uniqueidentifier

AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,
OutputXml
from ExperimentRuns where UserID=@UserID order by AddDate desc

72

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRunGetRunFromUserIDAndExpID
@UserID uniqueidentifier,
@ExpID uniqueidentifier

AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,

OutputXml
from ExperimentRuns where ExperimentID=@ExpID and UserID=@UserID
order by AddDate desc

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS OFF
GO

/****** Object: Stored Procedure dbo.FWExperimentRunIsRun Script
Date: 9/26/2002 1:22:07 PM ******/
CREATE PROCEDURE dbo.ExperimentRunIsRun

@RunID uniqueidentifier
AS

select count(l) from ExperimentRuns where RunID=@RunID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS OFF
GO

73

CREATE PROCEDURE dbo.ExperimentRunUpdate
@ExpID uniqueidentifier,
@Name varchar(50),
@Desc varchar(500),
@RunStatus varchar(50),
@UserID uniqueidentifier,
@AddDate datetime,
@RunID uniqueidentifier,
@OutputXml ntext

AS
update ExperimentRuns
set ExperimentID=@ExpID, RunName=@Name, Description=@Desc,

@UserID=UserID, AddDate=@AddDate, OutputXml=@OutputXml
where RunID = @RunID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentCreateNew
@ExpID uniqueidentifier,
@ExperimentName varchar(50),
@Desc varchar(500),
@RegDate datetime,
@CreatorID uniqueidentifier

AS

insert into Experiments
(ExperimentID, ExperimentName, Description, RegistrationDate,

CreatorID)
values (@ExpID, @ExperimentName, @Desc, @RegDate, @CreatorID)

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentGetAllExp
AS

select ExperimentID, ExperimentName, Description,
RegistrationDate, CreatorID

74

from Experiments order by ExperimentName

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.Experiment GetExpFromID

@ExpID uniqueidentifier
AS

select ExperimentID, ExperimentName, Description,
RegistrationDate, CreatorID

from Experiments where ExperimentID=@ExpID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentGetExpFromName
@ExpName uniqueidentifier

AS
select ExperimentID, ExperimentName, Description,

RegistrationDate, CreatorID
from Experiments where ExperimentName=@ExpName

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

75

CREATE PROCEDURE dbo.ExperimentIsExperiment
@ExpID uniqueidentifier

AS
select count(1) from Experiments where ExperimentID=@ExpID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS ON
GO

CREATE PROCEDURE dbo.ExperimentUpdate
@ExpID uniqueidentifier,
@ExperimentName varchar(50),
@Desc varchar(500),
@RegDate datetime,
@CreatorID uniqueidentifier

AS
update Experiments set ExperimentName=@ExperimentName,
Description=@Desc, CreatorID=@CreatorID, RegistrationDate=@RegDate
where ExperimentID=@ExpID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationCheckConflict
@Start datetime,

@End datetime
AS

select COUNT(*)
from Reservations where ((StartTime >= @Start) and (StartTime <=

@End)) or ((EndTime >= @Start) and (EndTime <= @End)) or ((StartTime <=
@Start) and (EndTime >= @End)) or ((StartTime>= @Start) and (EndTime<=
@End))
GO
SET QUOTEDIDENTIFIER OFF
GO

76

SET ANSINULLS ON

GO

SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationCreateNew

@ResID uniqueidentifier,
@UserID uniqueidentifier,
@StartTime datetime,
@EndTime datetime

AS

insert into Reservations
(ReservationID, UserID, StartTime, EndTime)

values (@ResID, @UserID, @StartTime, @EndTime)

GO
SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationGetResFromDay

@Day datetime
AS

select ReservationID, UserID, StartTime, EndTime

from Reservations where (DAY(StartTime) = DAY(@DAY)) and

(MONTH(StartTime)=MONTH(@DAY)) and (YEAR(StartTime)=YEAR(@DAY))

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON
GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationGetResFromID
@ResID uniqueidentifier

AS
select ReservationID, UserID, StartTime, EndTime

from Reservations where ReservationID=@ResID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER ON

77

GO
SET ANSINULLS OFF

GO

CREATE PROCEDURE dbo.ReservationGetResFromUserID
@UserID uniqueidentifier

AS
select ReservationID, UserID, StartTime, EndTime

from Reservations where UserID=@UserID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTED-IDENTIFIER OFF
GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationIsReservation
@ResID uniqueidentifier

AS
select COUNT(*)
from Reservations where ReservationID=@ResID

GO
SET QUOTEDIDENTIFIER OFF
GO
SET ANSINULLS ON
GO

SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS OFF
GO

CREATE PROCEDURE dbo.ReservationRedeem

@UserID uniqueidentifier,
@Now datetime

AS
select ReservationID, UserID, StartTime, EndTime

from Reservations where UserID=@UserID and (DAY(StartTime) =

DAY(@NOW)) and (MONTH(StartTime)=MONTH(@NOW)) and

(YEAR(StartTime)=YEAR(@NOW)) order by StartTime

GO
SET QUOTEDIDENTIFIER OFF

GO
SET ANSINULLS ON
GO

78

Appendix B: Heterogeneous Simulation Applet

This appendix provides all Java code necessary to compile and run the heterogeneous t0

nucleation graphical simulation applet. This applet was an alpha version which calculated

boundaries analytically using simple Euclidean distance weighted Voronoi diagram.

B.1 SimTwo.java
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;
import javax.swing.Timer;

// Note the very indirect way control flow works during an animation:

//
// (1) We set up an eventListener with a reference to the animationWindow.
// (2) We set up a timer with a reference to the eventListener.
// (3) We call timer.start().
// (4) Every 20 milliseconds the timer calls eventListener.actionPerformed()
// (5) eventListener.actionPerformed() modifies the logical
// datastructure (e.g. changes the coordinates of the ball).
// (6) eventListener.actionPerformed() calls myWindow.repaint.
// (7) Swing schedules, at some point in the future, a call to
// myWindow.paint()
// (8) myWindow.paint() tells various objects to paint
// themselves on the provided Graphics context.
//
// This may seem very complicated, but it makes the coordination of
// all the various different kinds of user input much easier. For
// example here is how control flow works when the user presses the
// mouse button:
//
// (1) We set up an eventListener (actually we just use the same
// eventListener that is being used by the timer.)
// (2) We register the eventListener with the window using the
// addMouseListener() method.
// (3) Every time the mouse button is pressed inside the window the
// window calls eventListener.mouseClicked().
// (4) eventListener.mouseClicked() modifies the logical
// datastructures. (In this example it calls ball.randomBump(, but
// in other programs it might do something else, including request a
// repaint operation).
//

class AnimationWindow extends JPanel
// overview: an AnimationWindow is an area on the screen in which a
// crystal animation occurs. AnimationWindows have two modes:
// on and off. During the on mode the crystal grows, during the off

// mode the crystal doesn't grow.

private AnimationEventListener eventListener;
private Vector crystals;
private AddWeightVoro awvoro;

79

private String message;
private double displaytime;
private double pixpermm;
int xl,yl,x2,y2;
boolean mouseclick;

private Timer timer;
private boolean mode;

public AnimationWindow()

// effects: initializes this to be in the off mode.

super(); // do the standard JPanel setup stuff
pixpermm = 100/0.5;
mouseclick=false;
// this only initializes the timer, we actually start and stop the
// timer in the setModeo) method
eventListener = new AnimationEventListener();
// The first parameter is how often (in milliseconds) the timer
// should call us back. 50 milliseconds = 20 frames/second
timer = new Timer(50, eventListener);

mode = false;

public void initializeCrystals(int n, double r)
// this method will eventually take in the number of crystals and the rate
// and insert the crystals.

// may be able to use getSize like methods (see Main.java line 153) when
// creating crystals so that they always get created in the right area
// no matter if the window has been resized.

// FOR NOW we assume that crystals are added every 10 time clicks.
x1 =0;
x2=0;
yl=0;
y2=0;
mouseclick=false;
int timeinc = 10;
int time = 0;
displaytime=0.0;
crystals = new Vector(;
Crystal c;
//double w = (double) super.getSizeo.width;
//double h = (double) super.getSize().height;
double w = 510.0;
double h = 530.0;

while (crystals.size() != n)
c = new Crystal((int) (w*Math.random()), (int) (h*Math.randomo));
c.setRate(r);
c.setStartTime(time);
boolean ok = true;
for (int i = 0; i < crystals.sizeo; i++) {

if (((Crystal) crystals.get(i)).inside(c)) {
ok = false;

if (ok)
crystals.addElement(c);
time += timeinc;

/*

80

c = new Crystal(100,100);
c.setRate(r);
c.setStartTime(30);
crystals.addElement(c);
c = new Crystal(300,300);
c.setRate(r);
crystals.addElement(c);
c = new Crystal(400,100);
c.setStartTime(50);
c.setRate(r);
crystals.addElement(c);
c = new Crystal(450,150);
c.setRate(r);
crystals.addElement(c);
*/
awvoro = new AddWeightVoro(crystals,r);

public void resetAnimationWindow(double n, double r) {

//Resets the animation window to start over
mouseclick=false;
initializeCrystals(((int) n),r);

repaint();
// remember to add code to clear any imput window. that'll have to happen
// higher up.
// this only initializes the timer, we actually start and stop the
// timer in the setModeo) method
eventListener = new AnimationEventListener();
// The first parameter is how often (in milliseconds) the timer
// should call us back. 50 milliseconds = 20 frames/second
timer = new Timer(50, eventListener);

mode = false;

// This is just here so that we can accept the keyboard focus
public boolean isFocusTraversable() { return true;

public void paint(Graphics g) {
// modifies: <g>
// effects: Repaints the Graphics area <g>. Swing will then send the
// newly painted g to the screen.

// first repaint the proper background color (controlled by
// the windowing system)
Color b = Color.black;
super.paint(g);

Color c = new Color(0,0,255);
paintCrystals(g);
g.setColor(c);
awvoro.paint(g);
g.setColor(b);
g.drawString("T = "+Math.round(displaytime*1000)+' ms",25,13);
if ((! mode) && mouseclick)

g.drawLine(xl,yl,x2,y2);
double length = Math.pow((double) ((x1-x2)*(xl-x2)+(yl-y2)*(yl-y2)),0.5);

length = length/pixpermm;
g.drawString(Math.round(length*1000) +" nm",x2+10,y2+10);
xl=0;
yl=0;
x2=0;
y2=0;
mouseclick=false;

public void paintCrystals(Graphics g) {

81

// modifies: <g>
// effects: Repaints the Graphics area <g>. Swing will then send the
// newly painted g to the screen.

// calls the paint method of each crystal in the crystals vector.
//
for (int i = 0; i < crystals.size(); i++) I

((Crystal) crystals.get(i)).paint(g);
}
for (int i = 0; i < crystals.size(; i++) {

((Crystal) crystals.get(i)) .paintCenter(g);

public void setMode(boolean m)
// modifies: this
// effects: changes the mode to <m>.

if (mode == true) {
// we're about to change mode: turn off all the old listeners
addMouseListener(eventListener);
addMouseMotionListener(eventListener);
removeKeyListener(eventListener);

} else {
removeMouseListener(eventListener);
removeMouseMotionListener(eventListener);

mode = m;

if (mode == true)
// the mode is true: turn on the listeners
removeMouseListener(eventListener);
removeMouseMotionListener(eventListener);
addKeyListener(eventListener);
requestFocus(); // make sure keyboard is directed to us
timer.start();

}
else {

timer.stop();

class AnimationEventListener extends MouseAdapter
implements MouseMotionListener, KeyListener, ActionListener

// overview: AnimationEventListener is an inner class that
// responds to all sorts of external events, and provides the
// required semantic operations for our particular program. It
// owns, and sends semantic actions to the crystal and window of the
// outer class

// MouseAdapter gives us empty methods for the MouseListener
// interface: mouseClicked, mouseEntered, mouseExited, mousePressed,
// and mouseReleased.

// for this example we only need to override mouseClicked
public void mouseClicked(MouseEvent e) {

public void mousePressed(MouseEvent e) {
//System.out.println("mousePressed "+e.getX()+","+e.getY());
xl=e.getX();
yl=e.getY();

public void mouseReleased(MouseEvent e) {

82

//System.out.println("mouseReleased "+e.getX(+","+e.getY));
x2=e.getX(;
y2=e.getY();
mouseclick=true;
repaint(0,0,510,530);

// Here's the MouseMotionListener interface
public void mouseDragged(MouseEvent e)
public void mouseMoved(MouseEvent e)

// Here's the KeyListener interface
public void keyPressed(KeyEvent e) {

// modifes: the ball that this listener owns
// effects: causes the crystal to stop growing but
// only if one of the keys A-J is pressed.

// Come back and rewrite this? Is this the desired functionality?
// Better to have it call the stop button function. As currently
// written it permanently stops growth.

int keynum = e.getKeyCode(;

if ((keynum >= 65) && (keynum <= 74)) {
System.out.println("keypress " + e.getKeyCode());
//for (int i = 0; i < crystals.sizeo); i++) {

// ((Crystal) crystals.get(i)).stopGrowth();

public void keyReleased(KeyEvent e) { }
public void keyTyped(KeyEvent e) {

// this is the callback for the timer
public void actionPerformed(ActionEvent e)

// modifes: both the crystal and the window that this listener owns
// effects: causes the crystal to grow and the window to be updated
// to show the new position of the ball.

// MAY BE ROOM TO IMPROVE PERFORMANCE BELOW. MAYBE NOT THOUGH.
Rectangle rec;
Rectangle repaintArea;
Crystal c;
for (int i = 0; i < crystals.size(; i++) {

c = ((Crystal) crystals.get(i));
rec = c.boundingBoxo);
c.growCrystal();
repaintArea = rec.union(c.boundingBox());
//repaint(repaintArea.x,
//repaintArea.y,
//repaintArea.width,
//repaintArea.height);
repaint(0,0,510,530);

// NOTE THAT THE TIME INCREMENT DEPENDS ON THE FRAME RATE
// We assume below that the frame rate is 20 frames/sec.
displaytime += 0.05;

//repaint();

// Have Swing tell the AnimationWindow to run its paint()
// method. One could also call repaint(), but this would
// repaint the entire window as opposed to only the portion that
// has changed.

83

public class Simulator extends javax.swing.JApplet I
// overview: An ApplicationWindow is a top level program window that
// contains a toolbar and an animation window.

protected AnimationWindow animationWindow;
JTextField numfield;
JTextField ratefield;
public double pixpermm = 100/0.5;
public double num = 10.0;
public double rate = 1.0;

public void init()
// effects: Initializes the application window so that it contains
// a toolbar and an animation window.

// Title bar
//super("Crystal Demonstration Program");

//Create the toolbar.
JToolBar toolBar = new JToolBar(;
addButtons(toolBar);

//Create the animation area used for output.
animationWindow = new AnimationWindowC);
// Put it in a scrollPane, (this makes a border)
JScrollPane scrollPane = new JScrollPane(animationWindow);

//Lay out the content pane.
JPanel contentPane = new JPanel();
contentPane.setLayout(new BorderLayout());
contentPane.setPreferredSize(new Dimension(510, 550));
contentPane.add(toolBar, BorderLayout.NORTH);
contentPane.add(scrollPane, BorderLayout.CENTER);
setContentPane(contentPane);
//Initialize the crystals.

animationWindow.initializeCrystals(10,1.0);

protected void addButtons(JToolBar toolBar) {
// modifies: toolBar
// effects: adds Run, Stop, Reset, and Quit buttons to toolBar

JButton button = null;
numfield = null;
ratefield = null;
JLabel label = null;

button = new JButton("Run");
button.setToolTipText("Start the animation");
// when this button is pushed it calls animationWindow.setMode(true)
button.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent e)
animationWindow.setMode(true);

});
toolBar.add(button);

button = new JButton("Stop");
button.setToolTipText("Stop the animation");
// when this button is pushed it calls animationWindow.setMode(false)
button.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent e) {
animationWindow.setMode(false);

});
toolBar. add (button);

84

button = new JButton("Reset");
button. setToolTipText ("Reset the animation");
// when this button is pushed it calls animationWindow.setMode(false)
// and animationWindow.resetAnimationWindow()
button.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)
animationWindow.setMode(false);
animationWindow.resetAnimationWindow(num,rate);

toolBar.add(button);

button = new JButton("Quit");
button.setToolTipText("Quit the program");
button. addActionListener (new ActionListener()
public void actionPerformed(ActionEvent e) {

System.exit(O);

toolBar.add(button);

label = new JLabel("Crystals:");
label.setToolTipText("Number of crystals to appear");
toolBar.add(label);

numfield = new JTextField("10");
numfield.addFocusListener(new java.awt.event.FocusAdapter()

public void focusLost(java.awt.event.FocusEvent evt)
numfieldFocusLost(evt);

}});
toolBar.add(numfield);

label = new JLabel("Temp (C):");

label.setToolTipText("Temperature of the sample");
toolBar.add(label);

ratefield = new JTextField("1.0");
ratefield.addFocusListener(new java.awt.event.FocusAdapter()

public void focusLost(java.awt.event.FocusEvent evt)
ratefieldFocusLost(evt);

}});
toolBar.add(ratefield);

button = new JButton("Set");
button.setToolTipText("Set the crystal values");

button.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent e)

setButtonPressed();

toolBar.add(button);

}

private void setButtonPressed()
animationWindow.setMode(false);
num = Double.parseDouble(numfield.getText().trim());
if (num < 0 11 num > 20) {
num = 10.0;

rate = Double.parseDouble(ratefield.getText().trim());
if (rate < 0 11 rate > 10) {

rate = 1.0;

animationWindow.resetAnimationWindow(num,rate);

private void numfieldFocusLost(java.awt.event.FocusEvent evt)

try {
//num = Double.parseDouble(numfield.getText().trim());
//if (num < 0 11 num > 1000) {

//do something about popping up an error box.

85

// }
} catch (NumberFormatException e) {

//

private void ratefieldFocusLost(java.awt.event.FocusEvent evt)
try {

//rate = Double.parseDouble(ratefield.getText().trim());
//if (rate < 0 11 rate > 1000) {

//do something about popping up an error box.

catch (NumberFormatException e) I
//

B.2 Crystal.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;

public class Crystal {
// Overview: A Crystal is a mutable data type. It simulates a
// crystal growing inside a two dimensional box. It also
// provides methods that are useful for creating animations of the
// crystal as it grows

// Note that may want to change the dimensions of the box.

private int x = (int) ((Math.random() * 600.0) - 0.0);
private int y = (int) ((Math.random() * 600.0) - 0.0);

private double rate = 1.0;
private double radius = 0.0;
private Color color = new Color(255, 0, 0);
private Color color2 = new Color(0,255,0);
private int start = 0;
private Point center = new Point(x, y);

public Crystal(int a, int b) {
center = new Point(a, b);
this.x = a;
this.y = b;

public Crystal()

public boolean inside(Crystal c)
Point p = c.getCenter(;
int d = center.distanceToPoint(p);
int diff = c.getStartTime()-start;
if (d<=diff*rate)

return true;
else

return false;

public void setStartTime(int i)
start = i;

86

public int getStartTime()
return start;

public void changeColor()
color = new Color(0,255,0);

}

public Point getCenter()
return center;

public double getRadius()
return radius;

public void setRadius(double rnew) {
this.radius = rnew;

public void setRate(double i) {
rate =

public void growCrystal() {
if (start == 0) {

radius += rate;

public void stopGrowth()
rate = 0.0;

}

public void paint(Graphics g)
// modifies: the Graphics object <g>.
// effects: paints a circle on <g> reflecting the current position
// of the ball.

// the "clip rectangle" is the area of the screen that needs to be
// modified
if (start == 0)

Rectangle clipRect = g.getClipBounds(;
int rad = (int) radius;
// For this tiny program, testing whether we need to redraw is
// kind of silly. But when there are lots of objects all over the
// screen this is a very important performance optimization
if (clipRect.intersects(this.boundingBox()) {

g.setColor(color);
g.fillOval(x-rad, y-rad, rad+rad, rad+rad);

else
start = start - 1;

public void paintCenter(Graphics g) {
if (start == 0) f

Rectangle clipRect = g.getClipBounds(;

// For this tiny program, testing whether we need to redraw is
// kind of silly. But when there are lots of objects all over the
// screen this is a very important performance optimization
if (clipRect.intersects(this.boundingBox()) {

g.setColor(color2);
g.fillOval(x-1, y-1, 1, 1);

}}

87

}

public Rectangle boundingBox() {
// effect: Returns the smallest rectangle that completely covers the
// current position of the crystal.

// a Rectangle is the x,y for the upper left corner and then the
// width and height
int rad = (int) radius;
return new Rectangle(x-rad, y-rad, rad+rad+l, rad+rad+l);

B.3 Point.java and Line.java
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

public class Point {
// Overview: A Point is just what it seems. It has an x and a y value,
// and a few methods for determining distances to other points.
private int x;
private int y;

// Constructor
public Point(int x, int y)

// Creates a new point
this.x = x;
this.y = y;

public int xval()
return x;

public int yval()
return y;

public void setX(int xval)
this.x = xval;

public void setY(int yval)
this.y = yval;

}

public int distanceToPoint(Point p)
// modifies:
// effects:
// returns: distance to Point p
double px = (double) p.xval();
double py = (double) p.yval();
double dx = (double) x;
double dy = (double) y;
int d = (int) Math.sqrt(Math.pow((px-dx),2.0) + Math.pow((py-dy),2.0));
return d;

public class Line
// Overview: A Line is just what it seems. It has two endpoints which each
// have an x and a y value.

public int xl;
public int yl;
public int x2;
public int y2;

88

// Constructor
public Line (int xl, int yl, int x2, int y2)

// Creates a new point
this.x1 = xl;

this.yl = yl;
this.x2 = x2;

this.y2 = y2;

public int xlval()
return xl;

public int ylval()
return yl;

}

public void setXl(int xval) {
this.xl = xval;

public void setYl(int yval) {
this.yl = yval;

public int x2val()
return x2;

}

public int y2val()
return y2;

public void setx2(int
this.x2 = xval;

public void
this.y2 =

setY2(int
yval;

xval)

yval)

89

{

{

}

Appendix C: Homogeneous Simulation Applet

This appendix provides the Java code necessary to compile and run the homogeneous

nucleation graphical simulation applet. This applet calculates boundaries numerically

using simple additively weighted Euclidean distance. (The code for the new numerical

AddWeightVoro class is also included.) This applet takes in a temperature and yields a

correct crystal growth rate for that temperature. It also includes a built-in crystal

measuring ability to simplify analysis of the animation results.

C.1 Simulator2.java
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;
import javax.swing.Timer;

// Note the very indirect way control flow works during an animation:
//
// (1) We set up an eventListener with a reference to the animationWindow.
// (2) We set up a timer with a reference to the eventListener.
// (3) We call timer.start().
// (4) Every 20 milliseconds the timer calls eventListener.actionPerformed()
// (5) eventListener.actionPerformed() modifies the logical
// datastructure (e.g. changes the coordinates of the ball).
// (6) eventListener.actionPerformed() calls myWindow.repaint.
// (7) Swing schedules, at some point in the future, a call to
// myWindow.paint()
// (8) myWindow.paint() tells various objects to paint
// themselves on the provided Graphics context.
//

// This may seem very complicated, but it makes the coordination of
// all the various different kinds of user input much easier. For
// example here is how control flow works when the user presses the
// mouse button:
//
// (1) We set up an eventListener (actually we just use the same
// eventListener that is being used by the timer.)
// (2) We register the eventListener with the window using the
// addMouseListener() method.
// (3) Every time the mouse button is pressed inside the window the
// window calls eventListener.mouseClicked().
// (4) eventListener.mouseClicked() modifies the logical
// datastructures. (In this example it calls ball.randomBump(), but
// in other programs it might do something else, including request a
// repaint operation).
//

class AnimationWindow extends JPanel
// overview: an AnimationWindow is an area on the screen in which a
// crystal animation occurs. AnimationWindows have two modes:
// on and off. During the on mode the crystal grows, during the off
// mode the crystal doesn't grow.

90

private AnimationEventListener eventListener;
private Vector crystals;
private AddWeightVoro awvoro;
private String message;
private double displaytime;
private double pixpermm;
int xl,yl,x2,y2;
boolean mouseclick;

private Timer timer;
private boolean mode;

public AnimationWindow()

// effects: initializes this to be in the off mode.

super(); // do the standard JPanel setup stuff
pixpermm = 100/0.05;
mouseclick=false;
// this only initializes the timer, we actually start and stop the
// timer in the setMode() method
eventListener = new AnimationEventListener();
// The first parameter is how often (in milliseconds) the timer
// should call us back. 50 milliseconds = 20 frames/second
timer = new Timer(50, eventListener);

mode = false;

public void initializeCrystals(int n, double r) {
// this method will eventually take in the number of crystals and the rate
// and insert the crystals.

// may be able to use getSize like methods (see Main.java line 153) when
// creating crystals so that they always get created in the right area
// no matter if the window has been resized.

// FOR NOW we assume that crystals are added every 10 time clicks.
x1 =0;
x2=0;
yl=0;
y2=0;
mouseclick=false;
int timeinc = 10;
int time = 0;
displaytime=0.0;
crystals = new Vector();
Crystal c;
//double w = (double) super.getSize().width;
//double h = (double) super.getSize().height;
double w = 510.0;

double h = 530.0;

while (crystals.size() != n) {
c = new Crystal((int) (w*Math.random()), (int) (h*Math.randomo));
c.setRate (r);
c.setStartTime(time);
boolean ok = true;
for (int i = 0; i < crystals.size(; i++) {
if (((Crystal) crystals.get(i)).inside(c)) {

ok = false;

if (ok)
crystals.addElement(c);
time += timeinc;

91

/*
c = new Crystal(100,100);
c.setRate(r);
c.setStartTime(30);
crystals.addElement(c);
c = new Crystal(300,300);
c.setRate(r);
crystals.addElement(c);
c = new Crystal(400,100);
c.setStartTime(50);
c.setRate(r);
crystals.addElement(c);
c = new Crystal(450,150);
c.setRate(r);
crystals.addElement(c);
*/
awvoro = new AddWeightVoro(crystals,r);

}

public void resetAnimationWindow(double n, double r) {

//Resets the animation window to start over
mouseclick=false;
initializeCrystals(((int) n),r);

repaint();
// remember to add code to clear any imput window. that'll have to happen
// higher up.
// this only initializes the timer, we actually start and stop the
// timer in the setMode() method
eventListener = new AnimationEventListener(;
// The first parameter is how often (in milliseconds) the timer
// should call us back. 50 milliseconds = 20 frames/second
timer = new Timer(50, eventListener);

mode = false;

// This is just here so that we can accept the keyboard focus
public boolean isFocusTraversable() { return true;

public void paint(Graphics g)
// modifies: <g>
// effects: Repaints the Graphics area <g>. Swing will then send the
// newly painted g to the screen.

// first repaint the proper background color (controlled by
// the windowing system)
Color b = Color.black;
super.paint(g);

Color c = new Color(0,0,255);
paintCrystals(g);
g.setColor(c);
awvoro.paint(g);
g.setColor(b);
g.drawString("T = "+Math.round(displaytime*1000)+" ms",25,13);
if ((! mode) && mouseclick) {

g.drawLine(xl,yl,x2,y2);
double length = Math.pow((double) ((x1-x2)*(x1-x2)+(yl-y2)*(yl-y2)),0.5);

length = length/pixpermm;
g.drawString(Math.round(length*10000) +"E-4 mm",x2+10,y2+10);
xl=0;
yl=0;
x2=0;
y2=0;
mouseclick=false;

92

I

public void paintCrystals(Graphics g) {
// modifies: <g>
// effects: Repaints the Graphics area <g>. Swing will then send the
// newly painted g to the screen.

// calls the paint method of each crystal in the crystals vector.

//
for (int i = 0; i < crystals.size(); i++) {

((Crystal) crystals.get(i)).paint(g);

for (int i = 0; i < crystals.size(); i++) {
((Crystal) crystals.get(i)).paintCenter(g);

public void setMode(boolean m)
// modifies: this
// effects: changes the mode to <m>.

if (mode == true) {
// we're about to change mode: turn off all the old listeners
addMouseListener(eventListener);
addMouseMotionListener(eventListener);
removeKeyListener(eventListener);
else {
removeMouseListener(eventListener);
removeMouseMotionListener(eventListener);

mode = m;

if (mode == true)

// the mode is true: turn on the listeners
removeMouseListener(eventListener);
removeMouseMotionListener(eventListener);
addKeyListener(eventListener);
requestFocus(; // make sure keyboard is directed to us
timer.start();

}
else {
timer.stop();

}

class AnimationEventListener extends MouseAdapter
implements MouseMotionListener, KeyListener, ActionListener

// overview: AnimationEventListener is an inner class that
// responds to all sorts of external events, and provides the
// required semantic operations for our particular program. It
// owns, and sends semantic actions to the crystal and window of the
// outer class

// MouseAdapter gives us empty methods for the MouseListener
// interface: mouseClicked, mouseEntered, mouseExited, mousePressed,
// and mouseReleased.

// for this example we only need to override mouseClicked
public void mouseClicked(MouseEvent e) {
}

public void mousePressed(MouseEvent e) {
//System.out.println("mousePressed "+e.getXO+","+e.getY());
xl=e.getX();

93

}

yl=e.getY();

public void mouseReleased(MouseEvent e) {
//System.out.println("mouseReleased "+e.getX(+","+e.getY());

x2=e.getX(;
y2=e.getY();
mouseclick=true;
repaint(0,0,510,530);

// Here's the MouseMotionListener interface
public void mouseDragged(MouseEvent e) }
public void mouseMoved(MouseEvent e) { }

// Here's the KeyListener interface
public void keyPressed(KeyEvent e)

// modifes: the ball that this listener owns
// effects: causes the crystal to stop growing but
// only if one of the keys A-J is pressed.

// Come back and rewrite this? Is this the desired functionality?
// Better to have it call the stop button function. As currently
// written it permanently stops growth.

int keynum = e.getKeyCodeo;

if ((keynum >= 65) && (keynum <= 74)) {
System.out.println("keypress " + e.getKeyCode());
//for (int i = 0; i < crystals.size(; i++) {

// ((Crystal) crystals.get(i)).stopGrowth(;
//}

public void keyReleased(KeyEvent e) {
public void keyTyped(KeyEvent e) { }

// this is the callback for the timer
public void actionPerformed(ActionEvent e) {

// modifes: both the crystal and the window that this listener owns
// effects: causes the crystal to grow and the window to be updated
// to show the new position of the ball.

// MAY BE ROOM TO IMPROVE PERFORMANCE BELOW. MAYBE NOT THOUGH.
Rectangle rec;
Rectangle repaintArea;
Crystal c;
for (int i = 0; i < crystals.size(; i++) f

c = ((Crystal) crystals.get(i));
rec = c.boundingBox(;
c.growCrystal();
repaintArea = rec.union(c.boundingBox));
//repaint(repaintArea.x,
//repaintArea.y,
//repaintArea.width,
//repaintArea.height);
repaint(0,0,510,530);

// NOTE THAT THE TIME INCREMENT DEPENDS ON THE FRAME RATE
// We assume below that the frame rate is 20 frames/sec.
displaytime += 0.05;

//repaint();

// Have Swing tell the AnimationWindow to run its paint()
// method. One could also call repainto, but this would
// repaint the entire window as opposed to only the portion that
// has changed.

94

}

public class Simulator2 extends javax.swing.JApplet
// overview: An ApplicationWindow is a top level program window that
// contains a toolbar and an animation window.

protected AnimationWindow animationWindow;
JTextField numfield;
JTextField ratefield;
public double pixpermm = 100/0.05;
public double framespersec = 20.0;
public double num = 10.0;
public double rate = 0.21553;
public double temp = 55.0;

public void init()
// effects: Initializes the application window so that it contains
// a toolbar and an animation window.

// Title bar
//super("Crystal Demonstration Program");

//Create the toolbar.
JToolBar toolBar = new JToolBar(;
addButtons(toolBar);

//Create the animation area used for output.
animationWindow = new AnimationWindow(;
// Put it in a scrollPane, (this makes a border)
JScrollPane scrollPane = new JScrollPane(animationWindow);

//Lay out the content pane.
JPanel contentPane = new JPanel();
contentPane.setLayout(new BorderLayouto();
contentPane.setPreferredSize(new Dimension(510, 550));
contentPane.add(toolBar, BorderLayout.NORTH);
contentPane.add(scrollPane, BorderLayout.CENTER);
setContentPane(contentPane);
//Initialize the crystals.

animationWindow.initializeCrystals(10,0.21553);

protected void addButtons(JToolBar toolBar) {
// modifies: toolBar
// effects: adds Run, Stop, Reset, and Quit buttons to toolBar

JButton button = null;
numfield = null;

ratefield = null;
JLabel label = null;

button = new JButton("Run");
button.setToolTipText ("Start the animation");
// when this button is pushed it calls animationWindow.setMode(true)
button.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent e) {
animationWindow.setMode(true);

});
toolBar.add(button);

button = new JButton("Stop");
button.setToolTipText("Stop the animation");
// when this button is pushed it calls animationWindow.setMode(false)
button.addActionListener(new ActionListener() {

95

public void actionPerformed(ActionEvent e) {
animationWindow.setMode(false);

toolBar.add(button);

button = new JButton("Reset");
button.setToolTipText("Reset the animation");
// when this button is pushed it calls animationWindow.setMode(false)
// and animationWindow.resetAnimationWindow()
button. addActionListener (new ActionListener()

public void actionPerformed(ActionEvent e) {
animationWindow.setMode(false);
animationWindow.resetAnimationWindow(num,rate);

toolBar.add(button);

button = new JButton("Quit");
button.setToolTipText("Quit the program");
button. addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e)
System.exit(0);

toolBar.add(button);

label = new JLabel("Crystals:");
label.setToolTipText("Number of crystals to appear");
toolBar.add(label);

numfield = new JTextField("10");
numfield.addFocusListener(new java.awt.event.FocusAdapter()

public void focusLost(java.awt.event.FocusEvent evt)
numfieldFocusLost(evt);

}});
toolBar.add(numfield);

label = new JLabel("Temp (C):");
label.setToolTipText("Temperature of the sample");
toolBar.add(label);

ratefield = new JTextField("55.0");
ratefield.addFocusListener(new java.awt.event.FocusAdapter()

public void focusLost(java.awt.event.FocusEvent evt)
ratefieldFocusLost(evt);

}});
toolBar.add(ratefield);

button = new JButton("Set");
button.setToolTipText("Set the crystal values");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
setButtonPressed();

toolBar.add(button);

private void setButtonPressed()
animationWindow.setMode(false);
num = Double.parseDouble(numfield.getText().trim());
if (num < 0 11 num > 15)

num = 10.0;

temp = Double.parseDouble(ratefield.getText() .trim());
if (temp < 48 11 rate > 62)

rate = 0.21553;
temp = 55.0;
else {

96

rate = Math.exp(26.147-(29300.0/(8.3144*(temp+97.15)))-
45816.0/((temp+273.15)*(70.3-temp)))*pixpermm/framespersec;

I
animationWindow.resetAnimationWindow(num,rate);

}

private void numfieldFocusLost(java.awt.event.FocusEvent evt)
try {

//num = Double.parseDouble(numfield.getText().trim());
//if (num < 0 11 num > 1000) {

//do something about popping up an error box.
//}
catch (NumberFormatException e)
//

private void ratefieldFocusLost(java.awt.event.FocusEvent evt)
try {

//rate = Double.parseDouble(ratefield.getText().trim());
//if (rate < 0 11 rate > 1000) {

//do something about popping up an error box.
//}

} catch (NumberFormatException e) {
//

C.2 AddWeightVoro.java

import java.awt.Graphics;
import java.applet.Applet;
import java.awt.Color;
import java.util.*;
public class AddWeightVoro {

Color coll,col2,col3;
double pi=3.14159265358979;
int num;
int winHeight,winWidth;
int i,j, k, m;
double dist,be,dist2,xc,yc,yy,slope,th,miny,maxy;
int rr,xj;
double alr,a2r,yr;
double ymr,x2r,y2r,d3,d4;
int x2rI,y2rI,rwe;
int yjI,minyI,maxyI,xlOI,ylOI;
double bly,b2y,b3y,b4y,x0,x10,ylO,d5,d6;
int br2,br3;
double rate;
double(] xl;
double[] yl;
double[] wl;
int[] x;
int[] y;
int(] w;
double[] s;
String[] sss;
Vector crystals;
boolean drawn;
Vector lines;
Line 1;

public double dou(String doublestring){
double d;
d = (Double.valueOf (doublestring)) .doubleValue();

97

return d;

public AddWeightVoro(Vector cs, double r){
//Takes in a Vector of Crystals.
this.crystals = cs;
rate = r;
int n = cs.sizeo;
coll=new Color(204,204,204);
col2=Color.yellow;
col3=Color.blue;
drawn = false;
lines = new Vectoro);

winWidth=510;
winHeight=530;
num=n;
xl=new double[n];
yl=new double[n];
wl=new double[n];
x=new int[n];
y=new int[n];
w=new int[n];
s=new double[n);
sss=new String[n];
for(k=0;k<num;k++){
xl[k]=((Point) ((Crystal) crystals.get(k)).getCenterC)).xval();
ylk]=((Point) ((Crystal) crystals.get(k)).getCenter()).yval();
wl[k]=((Crystal) crystals.get(k)).getStartTime(;
x[k]=(int) (xl[k]+0.5);
y[k]=(int)(yl[k]+0.5);
w[k]=(int) (wl[k]+0.5);
sss[k]=""+w[k];

public double pow(double a,double b){
double ans;
ans=Math.pow(a,b);
return ans;

public double atan(double a){
double ans;
ans=Math.atan(a);
return ans;

public double sin(double a){
double ans;
ans=Math.sin(a);
return ans;

I
public double cos(double a){

double ans;
ans=Math.cos(a);
return ans;

I

void heap(double weight[],double xval[],double yval[],int n){
int k,half,i,j,m;
double bl,b2,b3,cl,c2,c3;
half=(int) (n/2);
for(k=half;k>=l;k--){
i=k;
bl=weight[i-i];
b2=xval[i-1];
b3=yval [i-1];
while(2*i<=n){

j=2*i;
if(j+l<=n){

98

if(weight[j-l]<weight[j]){
j++;

if(weight[j-l]<=bl){
break;

weight[i-l)=weight[j-1];
xval[i-l)=xval[j-1);
yval[i-1]=yval[j-1];

i=j;
}//wend
weight[i-i]=bl;
xval[i-1)=b2;
yval[i-1)=b3;

}//next k
for(m=n-l;m>=l;m--){

cl=weight[m];
c2=xval[m];
c3=yval[m];
weight[m]=weight[0];
xval[m)=xval[0];
yval[m)=yval[0];
i=l;
while(2*i<=m){

k=2*i;
if(k+l<=m){

if(weight[k-l1<=weight[k]){
k++;

if(weight[k-1]<=cl)
break;

weight[i-l]=weight[k-1];
xval[i-i]=xval[k-1];
yval[i-l]=yval[k-1];

i=k;
}//wend
weight[i-i]=cl;
xval[i-i]=c2;
yval [i-1] =c3;

}//next m

public void paint(java.awt.Graphics g){
//g.setColor(col3);
//g.drawLine(winWidth-150,10,winWidth-50,10);
//g.drawLine(winWidth-150,5,winWidth-150,15);
//g.drawLine(winWidth-100,5,winWidth-100,10);
//g.drawLine(winWidth-50,5,winWidth-50,15);
//g.drawString("O",winWidth-158,13);
//g.drawString("100",winWidth-48,13);
g.setColor(coll);
if (! drawn) {

heap(wl,xl,yl,num);
//g.setColor(col3);
for(i=i;i<=num-l;i++){

for(j=i+l;j<=num;j++){
dist=pow(pow(xl[i-l-xl[j-1),2)+pow(yl[i-1]-yl[j-1],2),0.5);
be=wl[j-1]-wl[i-1;
be = (int) (be*rate);
// The following if-statement checks to make sure the crystal can
// event occur, though this should already be insured. If
// it can't, nothing happens.
if(dist>be){

dist2=dist/2;
xc=(xl[i-l]+x1[j-l])/2; // find the mid x dist between the points
yc=(yl[i-l]+yl[j-1))/2; // find the mid y dist between the points
yy=yc-yl[i-1); // find the deltay from point 1 to mid
slope=yy/dist2; // slope is a misnomer

99

th=atan(slope/pow(1-slope*slope,0.5)); // calculate the angle the line makes

to x axis
if(xl[i-l]<xl[j-1]){

th=pi-atan(slope/pow(l-slope*slope,0.5));
}
miny=0;
maxy=0;
rr=0;
xj=0;
a2r=0.5/be;
/*
while(rr==0){ / do this while inside the bounds of the viewing window or

xj<100
alr=16*dist2*dist2*xj*xj-4*be*be*xj*xj-4*dist2*dist2*be*be+pow(be,4);
if(alr>=0){

yr=a2r*pow(alr,0.5);
// sometimes change sign below to see effect
ymr=yr;
x2r=xc-cos(-th)*xj-sin(-th)*ymr;
y2r=yc-sin(-th)*xj+cos(-th)*ymr;
if(x2r>0 && x2r<winWidth && y2r>0 && y2r<winHeight){
d3=pow(pow(x2r-xl[i-1],2)+pow(y2r-yl[i-1],2),0.5)+((int)wl[i-

1]*rate);
br2=0;
for(k=l;k<=num;k++){

if(k!=i && k!=j){
d4=pow(pow(x2r-xl[k-1],2)+pow(y2r-yl[k-1],2),0.5)+((int)wl[k-

1)*rate);
if(d3>d4){

br2=1;
break;

}//if d3>d4
}//if k!=i...

}//next k
if(br2==0){

x2rI=(int) (x2r+0.5);
y2rI=(int) (y2r+0.5);
g.drawLine(x2rI,y2rI,x2rI,y2rI);
1 = new Line(x2rI,y2rI,x2rI,y2rI);
lines.addElement(l);

}//if br2==0
if(ymr<miny)
miny=ymr;

if(ymr>maxy){
maxy=ymr;

}
}//if x2r>0 && 1950

1//if alr>=0 1950
xj++;
rwe=0;
if(x2r<0 11 x2r>winWidth 1| y2r<0 || y2r>winHeight){

rwe++;

if(rwe==l){
rr=l;

if(xj<100){
rr=0;

}//while rr==0

minyI=-winHeight;//(int) (miny+0.5);
maxyI=winHeight;//(int) (maxy+0.5);
for(yjI=minyI;yjI<=maxyI;yjI++){

// old line was: bly=4*pow(dist2*be,2)+4*pow(be*yjI,2)-pow(be,4);
b2y=l/(4*dist2*dist2-be*be);
bly=pow(dist2*be,2)+pow(be*yjI,2)-pow(be,4)/4;
b3y=bly*b2y;
if(b3y>=0){

// added the be/4 term below.

100

xO=-(pow(b3y,0.5));
// Note that I flipped the signs on the xO and yjI terms.
xlO=xc+cos(-th)*xO+sin(-th)*(yjI); // ok,
ylO=yc+sin(-th)*xO-cos(-th)*(yjI); // these coord transforms check out
if(xlO>O && xlO<winWidth && ylO>O && ylO<winHeight){

d5=pow(pow(xlO-xl[i-1],2)+pow(ylO-yl[i-1),2),0.5)+((int)wl[i-
11*rate);

br3=0;
for(k=l;k<=num;k++){
if(k!=i && k!=j){

d6=pow(pow(xlO-xl[k-1] ,2)+pow(ylO-yl[k-l1,2) ,0.5)+ (int)wl[k-
1]*rate);

if(d5>d6){
br3=1;
break;

}//if d5>d6
}//if k!=i

}//next k
if(br3==O)

xlOI=(int) (xlO+0.5);
ylOI=(int) (ylO+0.5);
g.drawLine(xlOI,ylOI,xlOI,ylOI);
1 = new Line(xlOI,ylOI,xlOI,ylOI);
lines.addElement(l);

}//if br3==O
}//if x10>0...

}//if b3y>=O
}//next yjI

}//if dist>be
}//next jmw

}//next imw
drawn = true;
else
// paint all the lines in lines.
for (int i = 0; i < lines.size(; i++) {

1 = (Line) lines.get(i);
g.drawLine(l.xl,l.yl,l.x2,l.y2);

g.setColor(Color.black);
g.drawLine(winWidth-200,10,winWidth-100,10);
g.drawLine(winWidth-200,5,winWidth-200,15);
g.drawLine(winWidth-150,5,winWidth-150,10);
g.drawLine(winWidth-100,5,winWidth-100,15);
g.drawString("O",winWidth-208,13);
g.drawString("0.5 mrm",winWidth-98,13);

101

Appendix D: User Survey Results

Repeated below is a survey given to each of 10.467 students involved in the Beta testing

of the Polymerlab system. Included are summaries of their responses along with charts

showing the distribution of answers for questions that required quantitative answers.

Polymerlab Survey

Please answer the following questions. This survey is intended to help us evaluate and improve

the iLab experience. Your answers will remain anonymous.

When applicable, please circle a number from 1 to 7 to indicate whether you agree

with the statement. (1 = Strongly Disagree, 2 = Disagree, 3 = Mildly Disagree, 4 =

Neutral, 5 = Mildly Agree, 6 = Agree, 7 = Strongly Agree).

Registration

1) The registration process was straightforward and easy to use. 1 2 3 4 5 6 7

[2, 3, 5, 6, 7, 7, 7]

2) Please describe any problems you encountered while registering to use the site.

One student encountered errors stating they had already registered. Another

stated the process was difficult to understand.

3) Please list any other comments you have on the registration process.

One student asked for earlier registration availability. Another asked for a

shorter time required to be verified in the system.

Reservations

4) The reservation process was straightforward and easy to use. 1 2 3 4 5 6 7

102

[3, 5, 6, 6, 7, 7, 7]

5) The maximum reservation time is adequate. 1 2 3 4 5 6 7

[1, 4, 2, 6, 3, 2, 3,1]

6) I was able to make scheduled reservations for the times I needed. 1 2 3 4 5 6 7

[7, 5, 6, 5, 7, 5, 7, 5]

7) I used all of my reserved time slots. 1 2 3 4 5 6 7

[7, 6, 6, 5, 7, 4, 7, 7]

8) The 24/7 availability of the experiment was useful to me. 1 2 3 4 5 6 7

[7, 7, 7, 6, 7, 6, 7, 6]

9) For what length of time did you typically use the experiment in a single session?

All said 90 min.

10) Did you typically use all of a scheduled reservation? yes / no

Answers were overwhelmingly yes.

11) What time of day did you typically log into the experiment?

(morning / afternoon / evening / night)

Students were fairly evenly distributed over the time slots, though a surprising number

also signed up for times which were their normal lab time.

12) Currently, the maximum reservation time is 90 minutes. Do you think it should

be longer or shorter? If so, how long/ short?

All students asked for more time. Most suggest 2 hours or more.

13) How much time was needed to complete the entire experiment? (If your group

divided the experiment, please give the estimated total time. Do not include server

down time.)

[5, 6, 6,10, 2, 6, 3-4, 5 hours]

Running the Experiment

14) I found the instructions for the lab clear and easy to use. 1 2 3 4 5 6 7

[7, 4, 6, 7, 5, 4, 7, 6]

15) I would like to have had the lab instructions available online as part of the iLab

experiment. 1 2 3 4 5 6 7

103

[1, 5, 4, 6, 7, 4, 5, 3]

16) The demo performed by Prof. Rutledge in the Chem. Eng. PC cluster was helpful to my

understanding of how to run the experiment. 1 2 3 4 5 6 7

[7, 6, 7, 4, 7, 6, 7, 5]

17) I would have found the capability to have another teammate or TA view the experiment

remotely as I ran it useful. 1 2 3 4 5 6 7

[4, 5, 6, 5, 3, 7, 7, 7]]

18) How many times did the iLab server "freeze" while you were trying to use it?

[1, 1, 0, 5, 6, 6, 6, 4]

19) From where did you successfully log onto the experiment (Athena cluster,

RESNET, off-campus housing, Chem. E. PC cluster, etc.)? (List all that apply.)

Chem. E. PC cluster, Athena. Students repeated these answers.

20) Was there any place where you were unsuccessful in logging onto the

experiment? If yes, please describe.

Off campus housing, personal computer. Students repeated these answers.

21) What operating system(s) did you successfully log onto the experiment

(Windows NT/2000/XP, Redhat Linux, Sun Unix, etc.)? (List all that apply.)

Sun UNIX, Windows XP. Windows XP. Students repeated these messages.

22) Were there any operating systems on which you tried unsuccessfully to run this

experiment? If so, please list them.

Windows 2000. N/A.

23) What browser(s) did you use (Internet Explorer, Mozilla, etc.)? (List all that

apply.)

Internet Explorer, Mozilla, Netscape. Students repeated these answers.

24) Were there any browsers on which you tried unsuccessfully to run this

104

experiment? If so, please list them.

Netscape, Internet Explorer, N/A. Students repeated these answers.

25) How much of the experiment were you able to complete (i.e. how many

isothermal crystallizations)?

2 crystallizations. All. All. All. All. All. All.

26) If you experienced any problems or difficulties with the lab instructions or

explanations, please describe them.

<blank>. N/A. <blank>. <blank>. None. None. Procedure #8 was briefly unclear for

one student.

TA Interaction

27) I would have found it helpful to interact more with the lab TA's to understand and run the

experiment. 1 2 3 4 5 6 7

[4, 4, 3, 4, 4, 4, 5, 3]

28) I would have found it helpful to interact more with the computer TA (Derik) to understand and

run the experiment. 1 2 3 4 5 6 7

[6, 5, 3, 5, 7, 5, 7, 7]

29) The lab TA's response time to questions/ issues was adequate. 1 2 3 4 5 6 7

[7, 4, 5, 4, 5, 4, 5, 3]

30) The computer TA's response time to questions/ issues was adequate. 1 2 3 4 5 6 7

[4, 5, 5, 7, 7, 5, 7]

31) How many times was it necessary for you the contact the lab TA's with

questions about the lab procedure?

2-3 times. None. 1 time. None. None. None. 1 time.

32) How many times was it necessary for you the contact the computer TA with

questions about the lab server?

10+ times. 4-5 times. 3-4 times. 4 times. 3 times. 1 time. 1 time.

105

33) Please describe any problems/ issues you had.

Microscope server freezing, unable to login. <blank>. <blank>. <blank>. Microscope

freezing. Server down. Server crashed during movement of stage. Time warnings

were wrong.

Experiment Interface

34) The user interface for the microscope was easy to use. 1 2 3 4 5 6 7
[7, 5, 5, 5, 6, 5, 7, 6]

35) The feedback panel was useful. 1 2 3 4 5 6 7

[7, 5, 6, 6, 4, 4, 5, 6]

36) The heat controls/ experiment run controls were easy to use. 1 2 3 4 5 6 7

[7, 5, 6, 6, 6, 3, 5, 6]

37) When streaming images, the image refresh rate was adequate. 1 2 3 4 5 6 7
[7, 6, 6, 7, 7, 5, 6, 6]

38) The procedure for recording a temperature run was easy to use. 1 2 3 4 5 6 7
[7, 5, 3, 7, 4, 2, 6, 6]

39) I would liked to have had a real image of the equipment (microscope, hotstage) to refer to.

1 2 3 4 5 6 7

[4, 5, 3, 5, 7, 3, 4, 7]

40) Were there any aspects of the experiment controls that were confusing?

Video recording vs. video stream. No. Student thought should be able to hold a

temperature indefinitely. No. No. No.

41) What changes if any would you make to the experiment controls/ user interface?

<blank>. N/A. More colorful. <blank>. None. None. Ability to resize applet.

Data Analysis

42) The procedure for analyzing the data was clear. 1 2 3 4 5 6 7
[7, 6, 6, 6, 4, 6, 5, 6]

43) I found the Jimage tool useful. 1 2 3 4 5 6 7
[7, 7, 6, 1, 6, 1]

106

44) 1 found the JImage tool easy to use. 1 2 3 4 5 6 7

[7, 6, 6, 1, 6,1]

45) Did you have any problems retrieving saved experiments? If so, please

describe.

Student described the process as "tedious and said that he ended up converting the

files to bitmap. No. No. No. No. No, but student though procedure led to hurriedly

naming files.

46) Did you use the Jimage applet to analyze your data? If so, did you experience

any problems using the applet?

No. Student tried to use it but crashed. Yes. Yes. No. Yes. Yes.

47) If you did not use the JImage applet, what technique did you use to analyze your

data?

Bitmap. Windows Paint. Students repeated these answers.

Science Objectives and Overall Experience

48) The lab has increased my understanding of the properties of polymers and polymer

crystallization. 1 2 3 4 5 6 7

[7, 5, 6, 6, 7, 6, 6, 6]

49) I enjoyed using this experiment. 1 2 3 4 5 6 7

[4, 5, 6, 5, 6, 4, 5, 3]

50) I learned as much using this experiment as I would have using a hands-on lab in building 31-

068. 1 2 3 4 5 6 7

[7, 4, 7, 4, 7, 3, 3, 5]

52) Please describe any other changes or additions you would make to the lab, and

give any other comments you have.

One student stated technical problems and having to share the lab made the lab too

time consuming. Another student asked for a live picture of the equipment. One

student asked for access to data taken by other members of her group.

Confirmation box for deleting data runs.

107

Appendix E: Reinstallation procedures

E.1 Backing up System

Before any attempt to reinstall components of the Polymerlab system, an important first

step should include backing up the current Polymerlab system. There are three main areas

that must be backed up. The first two include the Microscope server code and the

Framework and Microscope Client code. The Microscope Server code, including all

Python code and Perl scripts for launching the server, may be found in the C:\iLab

directory. The Microscope Client Java code, as well as the Framework .NET project code

and user recorded data, may be found in the C:\Inetpub directory. Both of these

directories should be backed up in their entirety.

The third area which must be backed up is the SQL database. While it is theoretically

possible to try to recreate the database from a simple copy of the files in various

directories, this is not straightforward. It is especially difficult if the reason for the backup

is an upgrade to a newer version of the database software. Therefore, there are two steps

to backing up the database. The first is to generate a database script that can be used to

recreate the format of the database. An example of this script is given in Appendix A.

The procedure for generating this script is falirly simple: in Enterprise Manager, right

click on the Polymerlab database, and select the option to generate script. Within the

option box that appears, select the option to script all objects, including stored

procedures, and give the file a name. This file can later be imported to generate the

structure of the database. However, when generated this way the database will not be

populated with data. To backup the database with all data intact, right click on the

Polymerlab database within Enterprise Manager and select backup database. This will

generate a file containing both the structure and data from the database. Reinstating the

database is as simple then as importing the backup file from within Enterprise Manager.

108

It is important to note that these two methods are redundant: the full database backup is

much more complete than the script generation. However, because the script is stored as a

text file it is more easily duplicated, for instance in this thesis.

E.2 Program Requirements

After refomatting, obtaining a new computer, or an unexpected system crash, the next

step in reinstalling the Polymerlab system is to reinstall the operating system and off-the-

shelf software components. The newest versions of the KS software require Windows XP

as the operating system. (Before installing however, the latest versions of each of the

components below should be researched and their requirements determined.) In order to

provide services over the web, the machine will need IIS and .NET software installed.

" Python 2.2.2 : http://www.python.org/

" The Python Imaging Library 1.1.4 (Windows version):

http://www.pythonware.com/products/pil/

* Python Win32 Extension Package for Python 2.2, Win32all version 152:

http://starship.python.net/crew/mhammond/win32/Downloads.html

* Serial Communication Extension Package, SioModule22:

http://starship.python.net/crew/roger/

To edit and compile the Microscope Client applet you will need the following installed:

" Java 2 SDK version 1.4.1_02:

http:/java.sun.com/

" Any standard Java IDE, though even a simple text editor may be used.

To run the Microscope Client applet, users will need the following installed:

* Java Plug-in 1.4.0 or higher:

http://java.sun.com/

109

" Quick Time Plug-in with SMIL interpreter (optional for viewing slide show)

http://quicktime.apple.com

" Real Player (optional for viewing slide show)

http://www.real.com/

To run and compile the Framework Server, the following software must be installed:

* .NET Framework Version 1.1 or later.

http://www.microsoft.com/net/

* VisualStudio.NET

From VisualStuido.NET CDs

* Internet Information Services

Included in Windows XP CD

* SQL Server 2000 with Service Pack 3

http://www.microsoft.com/sql/downloads/default.asp and SQL CD

E.3 Compiling Instructions

For the Microscope Server no compilation is necessary because the Python language is an

interpreted language that does not require compiling. Although Python files can be

compiled into .pyc or .pyo files, there currently is no benefit to doing so. Therefore, the

Microscope Server is currently used as a scripted application. Modifications need only

be made and saved to the corresponding .py to alter the behavior of the Microscope

Server.

To compile the client application using the command line:

* Go to the appropriate directory:

cd C:\ILab\RemoteMicroscope

110

" To compile the code:

javac -classpath C:\ILab\RemoteMicroscope client\ScopeFormApplet.java

" To deploy a release version of the code you need to create ajar file and move it to

the C:\inetpub\wwwroot\PolymerLab directory, which is the directory where the

Framework Server resides. To do this go to C:\ILab\RemoteMicroscope and do:

jar -cvf client\data\PCiLab.jar client/*.class client/images/* com/*
move client\data\PCiLab.jar C:\inetpub\wwwroot\ TODO

To compile the Framework Server, it is suggested that VisualStudio.NET be used.

Although it is possible to compile the program outside of VisualStudio, this is not

recommended because of the complexity of the project. The Framework Server is stored

under the VisualStudio project called PolymerLab.

E.4 Running Instructions

To run the Microscope Server, first make sure that the sample is centered in the MDS600

heating stage. Since the MDS600 is not equipped with a reference motor, the initial

starting position will be used as a reference position for the center of the polymer sample:

" Go to the appropriate directory:

cd C:\ILab\RemoteMicroscope

" Run the starting script:

startServer.py [options]

" The available options for the script are the following:

-d, --debug Display debugging trace messages
-f, --cfg <file> Use specified configuration file
-h, --help Display this help message
-t, --timing Display timing trace messages
-v, --verbose Display verbose activity messages

111

To run the client applet, log on to the Framework Server and follow the links to reserve

and open the polymer lab.

E.5 How to add more files to the HTTP server

The HTTP server can read files that are located in the following directory:

C:\inetpub\wwwroot

The HTTP server is a development version of Microsoft's IIS web server. On Windows

XP Professional, there are a maximum of 10 simultaneous sessions supported. In order to

allow more simultaneous connections, the operating system will have to be upgraded wo

Windows XP Server or downgraded to Windows 2000 Server.

Virtual Directories can be added to expose any directories on the file system to the Web

Server. Currently, there is a virtual directory called iLab, accessible through

http://polymerlab.mit.edu/iLab. This virtual directory points to the local directory

C:\inetpub\wwwilab\. Under this virtual directory, the users directory is where all

experiment run images and SMIL output files are saved to the file system.

More web applications can be added to the web server by adding new web applications in

VisualStudio.NET. This IDE automatically makes the necessary changes to the file

system to allow the web application to be run remotely.

112

Appendix F: Student User Manual

This user manual is intended to explain how to use the student client interface for the

Microscope Client and the Framework Server. It explains what each graphical

component does, and how it should be used. We start with the Microscope Client.

Microscope Client

Capturing Images
To capture microscope images, first the user has to make sure the "Capture Single
Snapshots" is selected on the Video/Capture control. Then every time the CAPTURE
button is pressed an image is captured and it displayed on the screen.

Video Streaming
To start video streaming select the "Video Stream" selection on the Video/Capture

113

control. The capture button is disabled, and a sequence of images is captured and

displayed on the screen.

Moving the Image

To move the image around use the arrow buttons located to the side and bottom of the

image display panel. Whenever any of these arrow buttons are pressed the XY stage

moves, and if "Capture Single Snapshots" is selected a new image is captured and

displayed on the screen immediately after the stage finishes moving.

Perform Autofocus

The Perform Autofocus button calls the one-time autofocus function, and returns a new

focused image that is displayed on the image panel. The autofocus main purpose is to

search for the right z stage position for adequate focusing.

Magnification

The Magification control changes the objective lens being used. The possible

magnifications are: 2.5X, 5X, 1OX, 20X, and 50X.

Aperture

The Aperture control changes the condenser aperture setting. A condenser has the role of

collecting, controlling and concentrating the light from the lamp onto the specimen. The

aperture of the condenser serves to control the angle of the cone of light emerging from

the top of the condenser. When the aperture is set to the maximum (0.95) the objective

provides maximum resolution, but some glare may be present, which reduces image

contrast. If the aperture is adjusted to about 0.70 the glare is reduced and contrast is

improved, without significant lose of image detail. Lowering the aperture increases

contrast but image detail will be lost.

The aperture setting should only be lowered for magnifications greater than loX,
because in lower magnifications the field of vision is greatly reduced when lowering the

aperture. Therefore, for optimal performance maintain the aperture above 0.70 when

114

using 2.5X and 5X objectives.

Field Stop

The field stop allows you to control the amount of light entering the system as well as the

field of view. The field stop is basically a plate with a hole on it placed on the optical

axis. This control is useful mainly to control the light illumination for the lower

magnifications such as 2.5X, and 5X. For higher magnifications the field stop should be

set to the highest value, and only use the Aperture control to adjust brightness and

contrast.

Reflectors

With the reflector control you are able to select between an analyzer, a DICRED

reflector, and no reflector at all. A much higher exposure time is always needed when

using the DICRED reflector or the analyzer, than when not using a reflector at all.

Exposure Time

The exposure time controls the shutter speed of the camera. The normal setting for the

exposure time is 1 ms. If the user is using the analyzer or the DICRED reflector then to

get a clear image the exposure time has to be increased to around 20 ms.

Running Experiments

Experiments can be run by inputting the desired target temperature, ramp rate, and hold

time into the Temperature Panel at the bottom of the Microscope Client. Only valid

parameters will be accepted; a popup dialog window will flag invalid parameters. After

the desired parameters have been entered, press the SUBMIT or RUN button at the

bottom of the Microscope Client. The analyzer should be in place to view the polymer

melting event. In addition, the Video Stream button should be selected to view images at

the fastest possible rate. Once the polymer has melted, the appropriate cooling rate, target

isothermal crystallization temperature, and hold time should be entered into the

115

Temperature Panel and the SUBMIT button should be pressed to regain temperature

control conditions.

Recording Experiments

The Recorder menu allows a user to specify when experiments are recorded and images

are saved to the server. NOTE: The video streaming button must be pressed to save

images, as the images are currently saved in the Video Stream. When sufficient images

have been recorded (the number should not exceed 150), the recorder can be stopped, and

the experiment can be accessed through the Framework Server.

Ceding Control

When a user has control and is not running an experiment, the CEDE button in the upper

right hand corner of the applet will be enabled. By pressing this button, other users who

are also viewing the experiment will be given the chance to take control. Control is taken

on a first come, first serve basis. All users will see a message informing them that control

is available, and once another user has taken control another message will be sent to all

clients informing them of that fact.

Taking Control

When control of the Microscope becomes available, a message will be displayed in the

text area, and the TAKE button will be enabled. The first user to press TAKE gains

control of the experiment. When control has been taken, a message will be sent to all

clients and displayed in the text message area. The TAKE button, and other control

buttons, will become enabled if a user has control of the experiment.

116

Appendix G: Polymer Sample Preparation

Because air pockets, dirt, and detritus can contaminate the crystal sample, causing
crystallization to occur non-randomly, it is important to prepare the sample with extreme

care. The first step should include cleaning the round quartz slide using Kimwipes with

water and then alcohol. After cleaning and drying the slide so that no residual polymer or

debris remains, place it back inside the circular holder in the MDS600 hot stage. (Note

that the slide has a preferential orientation in the holder- this can be seen by carefully

examining the edge of the slide. It should be returned in the proper orientation, and the

sample, of course, should be placed on top.)

The PEO sample should be prepared as a solution, using Polyethylene oxide, molecular

weight 100,000. Using a 20 mL scintillation vial, add approximately 1.5 g of PEO.

Slowly stir in about 15mL of purified water. Use a stirrer at a medium setting until the

PEO is well dissolved. (Previous samples were stirred for approximately 24 hours.)

Draw approximately 2 mL of the solution into a syringe. Add an Acrodysc syringe filter

to the tip of the syringe. With the magnification pieces moved to the open slot, to allow

access to the quartz slide, reach in and place several large drops on the sample holder. (It
will be difficult to force the drops out.) The liquid should cover the entire circular slide.

When observing directly though the eyepiece on the Axioplan2, the sample should appear

clean.

Using the Polymerlab, make a reservation and open the experiment. (Do not replace the

cover to the hot stage yet.) Set the temperature controller to a rate of 30 deg/min, the hold

temperature to 100 degrees, and the hold time to 300 seconds. Submit the experiment.

Once the temperature begins to reach 100 degrees the water from the solution will begin

to evaporate. When drying the sample, do not completely seal the MDS600, as water

vapor will condense inside. Simply set the cover atop the instrument to keep dust from

settling on the sample. Leave enough room to observe the sample drying.

Continue submitting the experiment until the sample is dry. When it is, slowly lower the
temperature to around 52 degrees, and observe the crystals formed. They should appear

117

and grow relatively quickly at that temperature. They should also appear distinct and

sparse enough to allow student to successfully track the growth of several crystals for an

extended period of time. They should also appear across the entire sample, not just near

the edges, etc.

118

References

[1] Schultz, J.M. Polymer Crystallization, 129-147. Oxford University Press, 2001.

[2] P. Nasser. "Remote Microscope For Polymer Crystallization WebLab", M.Eng.

Thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, September 2002.

[3] D. Talavera. "On-Line Laboratory for Remote Polymer Crystalliation

Experiments Using Optical Microscopy", M.Eng. Thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, June 2003

[4] J. Kao. "Remote Microscope for Inspection of Integrated Circuits," S.M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, September 1995.

[5] S. Kittipiyakul. "Automated Remote Microscope for Inspection of Integrated

Circuits," S.M. Thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, September 1996.

[6] D. Seth. "A Remotely Automated Microscope for Characterizing Micro

Electromechanical Systems (MEMS)", S.M. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, June

2001.

[7] A. Kuchling. "Internet Access to an Optical Microscope," http://www.mems-

exchange. org/software/microscope/publications/ipc 7-abstract. html, March 2002.

[8] Microelectronics WebLab at MIT. http://weblab.mit.edu

[9] L. Hui. "I-Lab Webpage," http://i-lab.mit.edu. January 2001.

119

[10] Sedgewick, Robert. Algorithms in C++, 407-411. Addison-Wellesley Co., 1992.

[11] De Berg, Mark et al. Computational Geometry: Algorithms and Applications. 2 "d

ed. Springer-Verlag, 2000.

[12] iCampus Project Webpage. http://campus.mit.edu, 2004.

[13] iLab Service Broker Webpage. http://ilab.mit.edu, 2004.

[14] K. Yehia. "The iLab Service Broker: a Software Infrastructure Providing

Common Service in Suppose of Internet Accessible Laboratories", M.Eng.

Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 2004.

[15] J. Northridge. "A Federated Time Distribution System for Online Laboratories",
M.Eng. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 2004.

120

