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Abstract

This thesis presents a new architectural abstraction for developing dynamic and adap-
tive software. Separating application logic from implementation mechanism provides
developers with a simple API for constructing new application functionality by con-
necting together a set of generic, distributed software modules. Developers codify
adaptive application structure and logic in a simple, synchronous environment, and
use the API to control and monitor the resulting implementation of highly parallel
and asynchronous module networks. The design and implementation for this architec-
tural abstraction is embodied in the Resources framework, a language- and platform
independent software component platform geared for pervasive computing application
development.
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Chapter 1

Motivation

While it is now universally acknowledged that computers enhance our lives in immea-

surable ways, it is also universally lamented that these computers also add consider-

able complexity to our already complicated lives.

Present-day user interfaces are often unwieldy and require significant user training;

personal data is scattered across multiple devices and disparate systems, yielding little

control to the user; and worst yet, computer failures often disrupt and frustrate users,

providing little by way of recovery. Due to the ineptness of computers to function

fluidly in the user's world, users often must compensate by learning to operate in

the computer's world [1]: for instance, by today's standards, a student's education

is grossly lacking without some basic literacy in these computer interfaces [2]. In a

sense, today's students must now gain proficiency in managing the complexity that

computers have already injected into their lives.

1.1 The Wonders of Pervasive Computing

Weiser writes [3] that "the most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are indistinguishable from

it." Weiser's insight suggests that a new rising trend in personal computing, pervasive

computing, promises to undo the burdens that the information age has brought upon

us.
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Pervasive computing attempts to reverse the roles between humans and comput-

ers, which have traditionally forced users to work in the computer's world. In the

near-future, computation will be ubiquitous, human-centered, freely available, and

completely interoperable, helping users achieve more by allowing them to worry less

[4]. In other words, the promise of pervasive computing suggests that because com-

puters will be both everywhere and human-centric, users will hopefully notice them

less - along with the usual complexities that plague users today. But if comput-

ers are going to be everywhere, they had better also learn to "stay out of the way"

[5]. Weisner suggests that in order for pervasive computing to succeed, the tech-

nology must ultimately instill a sense of human calmness and user control within

computation-dense environments - such that to the user, computation demands less

attention, disappearing altogether into the fabric of everyday life.

1.2 The Challenges of Pervasive Computing

If pervasive computing is to be successful at hiding the complexities of computer

inter-operability from the users, where exactly is pervasive computing to hide it?

The art of developing applications for user-centric, pervasive computing platforms

is itself a complex endeavor. Since pervasive computing itself spans across many

fields in computer science, software developers may soon find developing pervasive

application with traditional tools to be a daunting task: making life easier for the

user might mean making life much harder for application developers.

Even while traditional software tools for developing standard distributed applica-

tions are highly evolved, and various hardware component technologies (e.g., laptops,

hand-helds, wireless communication, mobile phones) exist today, developing pervasive

computing applications is still incredibly complex. The problem lies in the fact that

the whole is much greater than the sum of its parts [6]: the difficult challenge here is

achieving seamless software and hardware component integration into a meaningful,

coherent system.
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1.3 Pervasive Computing Requirements

MIT's Project Oxygen [4] and similar projects envision a day when users will no longer

need to carry their own devices with them; instead, generic devices will be both

embedded in the environment and dynamically configurable to bring computation

to the user, whenever and where ever she may need it. This vision suggests that

pervasive systems must be both adaptive and goal-oriented.

Adaptive

Pervasive computing systems, like that of Project Oxygen, immerse their users in a

triad of sensors, invisible servers, and mobile devices that work together to satisfy user

requirements: users describe their intent to the computer, and leave it to the system

to carry out their will by exploiting the facilities available. One characteristic of such

goal-oriented systems is that they must be both adaptive and self-managing: they

must be able to continuously monitor changes in user locations and needs, respond

both to component failures and newly available devices, and maintain continuity of

service as the set of available resources change.

Goal-Oriented

However, conventional techniques for constructing distributed applications, in which

a top-level function is decomposed into statically-partitioned sub-functions, each af-

fixed to a particular API, makes such adaptation exceedingly difficult to program.

Adaptation in a pervasive computing environment requires planning at a macro-level,

possibly involving a wholesale re-structuring of the application. If there is a change

in available resources or user priorities, it is often insufficient simply to reconsider

how to implement the function specified in each API: it is necessary to reconsider the

reason that API was selected, and whether an alternative function and API has now

become more appropriate.

A more promising approach to achieve adaptiveness is to have the user express

their requirements as an abstract high-level goal, and then let the system automat-
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ically satisfy this goal by assembling an implementation that utilizes the resources

currently available to the user. The high degree of dynamism in the environment

requires that the resolution of a goal not be a static one time process.

1.4 The 0 2S Approach

The 0 2S System [7] is an environment framework that subscribes to the goal-oriented

approach. The 0 2S paradigm involves separating the policy (the goal) from the

mechanism (how these goals are satisfied); this approach is better suited for sustain-

ing users' intent within the highly dynamic nature of pervasive systems. Because

the policy is responsible for maintaining user intent, the policy benefits in being

divorced from the implementation mechanism, which may often change to suit the

environment. Hence, to maintain user intent, the policy must continuously monitor

the environment and respond opportunistically to changes in connectivity and device

availability. Separating policy and mechanism enables the policy to restructure the

implementation, sustaining the high-level goal in response to changing conditions.

Through the separation of policy and mechanism, the 02S system is roughly

divided into two sections: the goal-planning engine and the component system that

implements these goals.

1.4.1 0 2S Planning Engine

The 02S Planning Engine [8] takes an under-specified goal, or intent, and attempts to

automatically generate the best strategy to satisfy that goal, given available resources

and policies. Once the 0 2 S component system constructs the implementation from the

Planner's strategy, the Planner monitors the state of the pervasive environment. If the

set of available resources changes, the 0 2S Planner re-evaluates the implementation

strategy and revises it as necessary to maintain or upgrade the satisfaction for the

original goal.

18



1.4.2 0 2 S Component System

The component system is responsible for constructing the implementation from the

Planner's generated strategy, thereby representing the "mechanism" half of the 0 2S

system. The component system is unique in that it provides the Planner with a novel

abstraction, one which also promotes the separation of policy and mechanism.

1.4.3 Thesis Scope

This thesis is focused primarily on exploring the characteristics and benefits of a

component system abstraction that separates mechanism and policy.

1.5 Component Architecture Requirements

This section outlines several architectural requirements for an adaptive component

architecture and discusses why achieving adaptiveness with traditional distributed

network object platforms is a difficult problem.

1.5.1 Simplified Development

Traditional, asynchronous distributed systems are generally too complex and require

the developer to be deeply aware of the intricacies for the underlying system and plat-

form. Furthermore, the debugging process for these traditional systems is frustrating

at best.

Building adaptive systems with these traditional systems is also difficult because

these systems tend to impose a static API between distributed components. The

interface is determined at compile-time and provides no mechanism for changing the

relationships between these components during runtime to adapt to hardware upgrade

or failure.

By separating policy from mechanism, one architectural requirement arises: a

separation between the programming interface and the implementation technology.

The component interface must be clean and simple, so that the application logic may

19



modify or construct new implementations when adapting to changing environmen-

tal requirements. While the component implementation may be highly parallel and

asynchronous, a simple interface enables developers to construct, monitor, and debug

these implementations.

1.5.2 Platform Independence and Portability

Many traditional architectural systems are designed only for one language or plat-

form, thereby effectively restricting the set of implementation technologies that can

facilitate adaption.

In practice, the implementation technologies employed in a pervasive environment

span many different platforms and languages. Since the interface presented to the

application logic is abstracted from the underlying implementation, the interface must

be completely platform and language independent in order to fully capitalize on the

wide variety of implementations available.

A platform-agnostic framework further simplifies the development environment for

two reasons. First, a platform independent interface eliminates the need for developers

to be aware of platform or language intricacies pertaining to the implementation.

Also, the application logic that makes use of this programming interface becomes

highly portable.

1.5.3 Efficiency

Both the interface and the implementation must be efficient. The interface should

promote efficiency through code reuse, enabling applications to adapt by re-configure

the overall implementation using basic, reusable implementation modules. Once

the application constructs the implementation, the implementation must be efficient

performance-wise to process high-bandwidth data streams.
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1.6 Architecture: The Component Abstraction

The thesis explored in this work is that there exists an abstraction that simplifies

the process of developing adaptive, distributed systems. While there are a multi-

tude of ways to use existing distributed object packages to fulfill the architectural

requirements (see Section 5.1), this thesis explores one abstraction that promotes a

separation between policy and mechanism and presents an fitting implementation.

We believe that an abstraction focused on this separation effectively simplifies the

process of developing adaptive, distributed systems.

Three important features characterize the abstraction. First, the abstraction

presents the developer with a simple API and environment, thereby simplifying the

process of codifying the policy and application-specific logic. Second, developers use

the simple interface to construct the desired implementation by connecting together

a set of distributed software modules from a universe of generic components. Finally,

while separating mechanism from policy may sacrifice performance for flexibility, the

performance cost does not debilitate the component layer implementation. Figure 1-1

illustrates the 0 2 S component abstraction.

Goals

Component Policy

Abstraction Mec M

Hardware

Figure 1-1: The 0 2 S component abstraction.
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1.6.1 Clean Interface

The basic interface provides a mechanism for instantiating a collection of components

on various hosts and interconnecting them into a network. The result implements a

specific application or functionality; this mechanism promotes a circuit-diagram ap-

proach to application construction. Application logic also monitors the operation of

the resulting circuit via a stream of high-level messages generated by the components.

These message streams, or events, are used to report component failures, user inputs,

or various resource-specific notifications. The health of devices hosting these compo-

nents (and the communication paths between them) is also transparently monitored;

component state updates and debugging output are collected, filtered, and serialized

for presentation to the application logic.

A clean abstraction simplifies the design, programming, and maintenance of dis-

tributed and adaptive applications. The interface encourages developers to focus

on the simple, sequential model for high-level application logic, while the compute-

intensive reflexive implementation is managed largely automatically. It becomes very

natural to express the necessary logic behind adaptive applications, as the interface

frees the developer from the implementation details that often complicate the model.

Circuit-Diagram Model

Figure 1-2 is an example of an application that brings a voice recognition service to

a user's hand-held, using the abstraction's programming interface. The application

first obtains a handle to the voice recognition service and configures the service to

send all recognition messages back to the application's message handler. The ap-

plication proceeds to obtain handles to the voice recognizer's audio input and the

hand-held's microphone (audio source); finally, the application simply connects these

two audio streams together. Figure 1-3 illustrates the resulting implementation com-

posite, which runs autonomously and sends high level events (e.g., recognized tokens)

back to the application logic for processing.

Using this interface, generating new implementations resembles wiring together

22



circuit elements. This example illustrates how the overall function and intent of ap-

plication logic becomes transparent when implemented using the abstraction's simple

interface.

def setup-voice-rec():

# ask the system to find a voice recognizer service
voicerec = system.lookup("Voice Recognizer",

grammar = "voiceshell")

# ask the system for an event queue and specify a
# method to handle incoming messages
event-queue = system.get-eventqueue(handler = handleevent)

# instruct the voice recognizer to send recognized tokens
# back to our event queue
voicerec.set-recognition-target(event-queue)

# ask the voice recognizer for an input connector to where
# audio waveforms will be streamed for recognition
voicerecjinput = voice-rec.get-audiosink()

# get the audio source from the hand held device
mic = handhelddevice.getmic()

# connect the mic to the voice recognizer
system.connect(voice-rec-input, mic)

def handleevent(newevent):

# handle incoming events
if new-event.recognizedtoken == "Hello":

Figure 1-2: An example distributed application using a clean abstracted interface.
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Appiication Red..... 
LogicSpeech TokensLogic

Application Interface
Implementation

Microphone

had Input

Data
Stream

Figure 1-3: The circuit-diagram model for the distributed application.

1.6.2 Reusable, Distributed Modules

Goal-oriented programming in a pervasive computing environment involves dynamic

assembly, and subsequent re-restructuring, of available distributed components. There-

fore, this abstraction dictates that individual components must be reusable and versa-

tile, suitable for implementing a variety of functionality. The objective is to provide a

mechanism that allows a set of components to be selected from a repertoire, including

both physical and virtualized components, and interconnected together to implement

some application-level service. Furthermore, this abstraction promotes hot swapping

of components to upgrade service, as well as controlled but independent evolution of

individual code modules.

These code modules run on any platform and are written in any language suit-

able for the implementation environment; developers manipulate these components

through the simple, platform- and language-independent API without concern to the

implementation details.

1.6.3 Efficiency - Where It Matters

The simple API gives rise both to rapid application development as well as perfor-

mance efficiency. First, the universe of generic, distributed code modules promotes

code reuse for constructing or adapting implementations, thereby accelerating the

development process.
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By separating the implementation from the programming interface, this abstrac-

tion achieves an advantageous efficiency balance. In providing a clean, synchronous

interface for constructing application implementations, the abstraction does sacrifice

efficiency for flexibility. However, in the spirit of Amdahl's Law [9], the greatest

speedup is achieved by optimizing efficiency over computation that contributes to

most of the overall task. The flexibility attained in a simple interface is worth the

cost of inefficiency, since this interface is only used to construct and monitor compo-

nent networks. In turn, it is the components and their connections that constitute

most to the overall computation; by separating the application logic from the un-

derlying implementation, these connections are as fast as the underlying operating

system socket implementation.
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Chapter 2

System Architecture and

Design

This chapter first describes the system architectural design of 0 2 S and discusses how

the design addresses the component abstractions presented in the previous chapter.

The chapter then details the key design abstraction in this project, Resources.

The Resources abstraction is used to design and implement several system-level com-

ponents that compose the 0 2 S component platform.

2.1 System Architecture

To realize a system that embodies the traits of the abstraction discussed in the previ-

ous chapter, the following architecture consists of a layering of interoperable software

constructs, depicted in Figure 2-1.

Synchronous Control A standard network object model (e.g., Remote Procedure

Call) provides a synchronous control layer, which forms the basis of the sim-

ple API and environment for instantiating and connecting distributed modules.

Furthermore, the network object model provides the veneer of a simple, se-

quential, and localized interface for controlling and monitoring the parallel,

distributed component networks.
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Data Streaming The data streaming mechanism connects components together

into a highly parallel, distributed system of interconnected components. These

stream connections bypass the Remote Procedure Call (RPC) system and hence

do not incur the overhead in the standard, synchronous RPC mechanism. Stream

connections are designed for applications that depend on routing real-time or

rich media data between distributed modules for processing. These stream

connections also encourage component re-use by providing the mechanism for

connecting together generic components in ways that form new applications.

Serial Event Stream To monitor errors or other events generated by either the

stream connections or the network objects, an event notification system provides

a mechanism for sending serial messages to any network object's event queue.

Resource Discovery & Health Monitoring Servers hosting network objects can

often fail from network, power or hardware failure. For pervasive environments,

it is important that the system detects such failures and inform the appropriate

dependencies of the failed network object. In addition to failure detection, the

architecture also provides resource discovery, enabling applications to poten-

tially recover from failures by discovering and substituting the failed object for

Serial Event
tEvent Event Stream

RPC Control Synchronous
SControl

Srarf 6 Stream Datam n C...Streaming

I HealthMonitoring
and Discovery

Figure 2-1: The layering of software constructs that meet the system architectural
requirements.
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an alternative resource during run-time.

2.2 The Resources Abstraction

The Resources abstraction is a versatile Remote Procedure Call [10] (RPC) frame-

work that greatly facilitates the system design. This section describes the Resources

framework and serves as a preface to the System Design and Model (Section 2.3).

2.2.1 Background: The Standard RPC Model

Traditional RPC is based on a client/server model. Hosts designated as "servers"

provide computational services to "client" hosts (see Figure 2-2).

Typically, developers using RPC define the interface for their services and then

generate server and client stubs. Calls made to remote services are redirected to

these stubs, which provide the machinery for the network communications and data

marshalling (Figure 2-3).

2.2.2 The Resources Model

RPC is an appropriate paradigm for developing pervasive computing applications,

which may span across many distributed devices, and Resources provide an additional

abstraction layer for developing and using RPC objects.

A Resource is an abstract object, with methods and state. Specifically, Resources

are network objects, in that they can be passed between hosts and processes, and

(remote) hosts can invoke synchronous method calls on these Resources. Resources

Client Server
"OK"

Host 1 Host 2

Figure 2-2: The typical RPC Promise.
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Client Server

server.turnOnLights() .serverObj turnOnLights()

Network Communication ~ Su
Client Stub (Encod e -*.. A0+ Server Stub

Host 1 Host 2

Figure 2-3: The typical RPC Reality. The server's return value traverses the reverse
path outlined by the arrows.

are abstract in the sense that they hide the specifics of the underlying RPC imple-

mentation, while presenting a simplified and universal semantic for method calls on

all objects. One objective of Resources is to alleviate the distributed application

developer from the burden of varying interfaces and semantics between remote and

local objects.

The Resource idiom is similar to that of object oriented programming; Resources

provide a framework for bundling a set of coherent services or computational resources

into a modular, network object.

2.2.3 Dynamic Stub Generation

Most RPC implementations involve generating "stub" code for client and server ob-

jects. These stubs serve to interface the developer's remote procedure calls to the

underlying mechanism that implements the remote procedure call.

For instance, clients that invoke a remote procedure call actually invoke a local call

on the client stub. This client stub typically then marshals the arguments and invokes

the necessary networking to communicate with the appropriate server. The client stub

communicates with the server stub, the latter of which unmarshals the arguments and

invokes the requested method on the server. The server stub ultimately marshals the

return value and sends the result to the client stub. (Figure 2-3).

Unfortunately, such traditional RPC schemes (detailed in Section 5.1) place un-

necessary and burdensome tasks on the developer. Not only must developers generate
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client and server stubs for each code module, but even before that, the developer must

also be cognizant of where (which physical hosts) the code modules will execute, as

well as plan a priori how their code modules should best span different hosts. The

amount of manual effort and planning often renders traditional RPC systems unwieldy

for implementing dynamic, pervasive computing environments.

Resources address the problem of stub generation by automatically generating the

necessary stubs at runtime. Developers simply subclass a base-class provided by the

framework and develop their server objects without any special consideration to stub

generation. During execution, if a Resource instance is passed to remote objects,

a client stub for that Resource instance is dynamically generated and marshalled

across the network to the remote object. The client stub, which on the remote server

represents the original server Resource instance, intercepts the designated methods on

behalf of the server Resource instance and provides similar functionality as a standard

client stub discussed above.

On the other hand, if the Resource instance is passed to a local object (i.e.,

an object instance running in the same address space), no client stub is generated;

instead, a standard reference to the Resource object is passed. All calls on the

Resource object reference are hence local calls and do not incur the overhead of

marshalling and network latency.

Finally, if Resource stubs are eventually passed back to the host with the running

Resource instance, the stub is converted back into a local reference to the Resource

instance. This "interning" effectively enforces the invariant that stubs are only gener-

ated and used as handles to Resources which are remote (with respect to the handle);

otherwise, if the Resource image is running in the local process, all handles to that

Resource are local memory references, thereby requiring no network communication.

This scheme relieves the developer from generating stubs for her code. Further-

more, the scheme unhinges the need to know a priori the execution location for code

modules, since pervasive environments often determine such parameters dynamically

during runtime. The great advantage is that the developer need not be aware of

whether procedures are implemented locally or remotely: the invocation API is stan-
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dardized, and the optimal invocation mechanism is always automatically executed for

all objects, local or remote.

2.2.4 Naming

As developers create Resource code modules, they will need some mechanism for

naming these Resources to promote code reuse among developers, as well as laying

the foundation for a (dynamic) lookup service for code modules.

To standardize and formally capture the characteristics of a Resource class, each

Resource class is associated with a document containing an immutable description

of that Resource. The URI location of this document serves as the Resource class's

unique type, which effectively identifies and names the Resource formally.

In general, this description will contain a mix of formal interface specifications

(method signatures, etc.), informal descriptions (of the sort found in man pages), and

other potentially useful information including code for test cases and demonstrations.

This target description, encoded in XML, will serve a role analogous to that of WSDL

descriptions for web services and may use similar mechanism.

2.2.5 Typing: RType

There are a number of supported data types that may be passed as parameters be-

tween Resources instances on different hosts. These supported data types are known

as RTypes; the RType interface standardizes the serialization of marshallable data

parameters. By default, RTypes include basic types such as integers, floats, strings,

lists, booleans, key/value maps, as well as Resource objects. For Resource types,

stubs for the Resource are automatically generated and serialized.

Furthermore, RTypes are extensible: the developer may also extend RTypes to

include arbitrary objects, by supplying the necessary serialization procedures for her

custom objects.
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Serialization

All RType object instances are passed by copy, except for Resource objects. Re-

sources are essentially passed by reference via automatic stub generation. These

client stubs (handles) store a link to the running image of the (server) Resource; the

client stub intercepts method calls to Resource and fields these calls to the server for

execution.

In other words, if non-Resource RTypes are passed as parameters or return values

for a remote call, the values of these variables are copied across address spaces. For

Resources, on the other hand, only one instance of state for that Resource exists,

regardless of how many Resource handles exist on remote servers. The state on the

server can potentially be modified by a remote procedure call from any of the handles.

Wire Encoding Format

RTypes serve as a data typing abstraction layer above the underlying RPC imple-

mentation. Developers treat Resources as first class data types, and pass references

to these objects to remote hosts without concern to the specifics of any chosen RPC

implementation. In a sense, RTypes encodes a rich and extensible selection of data

types (most notably Resources) into the underlying RPC implementation du jour.

After serialization, RTypes are ultimately encoded into a language- and platform-

neutral wire format. This encoding format consists primarily of basic types generally

supported by virtually all standard RPC implementations. The RType's agnostic

property forms the foundation for the underlying implementation of language- and

platform-independent Resources.

2.3 System Design and Model

The Resources abstraction described above facilitates the design of a component sys-

tem that fulfills the architectural design outlined in Section 2.1. This section describes

the specific 0 2S component system design, which addresses each architectural layer

depicted in Figure 2-1.
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2.3.1 Overall Picture

Figure 2-4 illustrates the relationships between the system components described

below.

Keep Alive Lo andKeepAliv Notfiction Services

Entities

Figure 2-4: The system components that fulfill the system design requirements.

2.3.2 RService Network Objects

The RService represents the network object implementation, using the Resources

architecture. The RService fulfills the network object requirement of the architecture.

To develop RPC server objects, developers simply subclass the RService object class

and add instance methods. In addition to implementing these instance methods,

developers must also specify which methods may be accessed remotely: these are the

network exportable methods of the object, and the collection of these methods form

the public API for the object.

Since the RService base class is built upon the Resource architecture, developers

enjoy automatic data marshalling of RTypes, automatic stub generation, and so forth.
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The RService is designed to help developers construct a single, coherent network-

exportable object that implements a computation service on the serving host.

2.3.3 Stream Connections

A stream connection supports uni-directional data flow and consists of two connected

Stream Connectors. The connectors themselves are designated as either input or

output, and a stream connection connects two appropriately gendered connectors.

These connectors are used to connect together different modules (e.g., RServices)

and fulfill the data streaming architectural requirement.

A raw byte data stream that enters an input connector is simply sent across the

connection to the output connector. Furthermore, Stream Connectors also support

out-of-band data. The connectors are extensible in that developers can subclass the

standard stream connector class to format and interpret an out-of-band data stream,

which is often useful for meta-data tagging.

Connectors can be "wired" directly to take input or send output data to hardware

devices (e.g., a microphone or speaker, respectively), but often, data received from a

connector is further processed before becoming input to a different connector. These

stream connections form the backbone of a highly parallel and distributed network of

component modules. The operation of connectors are somewhat autonomous, in the

sense that once the network is established, data simply flows between modules.

To initially set up and control the network flow, the Stream Connectors rely on

the Resource architecture. Stream Connectors themselves are built upon Resources,

and therefore references to these connectors can be passed to remote hosts. These

references are designed to be passed to hosts running the application logic, which

connects the appropriate connectors together to form the desired component network.

2.3.4 0 2S Events

The Event System provides a general and light-weight mechanism for sending asyn-

chronous notifications between Resources. The system includes a data structure,
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namely an Event, which contains several fixed data fields. These data fields can store

any RType value; while there are suggested semantics for these fields, they can be

used (or ignored) for any application specific purpose. Events are often used to report

errors back to application-level logic.

Events are designed to be easily constructed and may be sent (thrown) to any

Event Listener on a different host. Event Listeners receive all Events thrown to

that Event Listener and either queue the received events or pass them directly to a

callback for processing. Event Listeners are services that can be easily instantiated

for RServices and in a sense provide the RService with a message loop for processing

events from external, remote sources.

It should be noted that Event Listeners are themselves Resources, so these

listener objects can be passed to remote hosts. Once any host possesses a handle

to an Event Listener instance, that host may throw Event structures to the event

listener by invoking a method on the Event Listener with the Event structure as a

method parameter. In this way, the Event System is simply a construct implemented

using the Resources framework.

2.3.5 The Entity

Entitys represent the logical host and acts as a container for RServices. Each Enti-

ty runs in a separate process and provides an environment for executing and serving

multiple RServices on the host. In addition to managing a collection of RServices,

Entitys also provide these RServices with an interface to both the system-level

constructs described above as well as the outside world - analogous to an operating

system which provides (for applications) both an execution environment, as well as

an interface to system-level calls and devices.

In developing an application specific RService network object, the developer may

need several Stream Connectors, Event Listeners or may need to look up and re-

trieve a handle to external Resources. The Entity that hosts this RService is de-

signed to manage and provide these services by instantiating on-demand new Event

Listeners or Stream Connectors for requesting RServices. The Entity also garbage
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collects these constructs when they are no longer used.

Additionally, the Entity provides its hosted RServices with an interface to the

rest of the 0 2S system at large. This allows RService to access an appropriate

look-up service for locating other Resources (see Section 2.3.6). Also, as a host for

RServices, Entitys often serve as the gateway between the 0 2S system and the

hosted RServices. Because Entitys are themselves implemented as a special RSer-

vice (and therefore a Resource), a handle to an Entity can be passed to remote

hosts. This provides remote hosts with a mechanism to access handles for RServices

via the hosting Entity.

When the developer instantiates an Entity, she names the Entity (with a string)

and sets a variety of application-specific meta-parameters that further identify the

Entity instance. Finally, since the Entity serves as an interface between the RSer-

vice objects and the outside world, rather than monitor liveness for each RService

network object (incurring great overhead), the system is designed to monitor liveness

just for the Entity process itself. If the Entity process terminates - or the host

suffers from network failure - then the system can infer that all RServices running

on that Entity become unavailable.

2.3.6 0 2S Registry

The Registry provides liveness (or health) monitoring, a notification subscription

service, and a Resource lookup service. Entitys discover their local Registry and

proceed to register their name and meta-parameters (upon start-up) with the Reg-

istry; in turn, the Registry maintains a database of registered Entitys running in

the system and monitors their liveness. However, the Registry does not participate

nor serve as an intermediary in communication among registered Entitys (or their

RServices).

The Registry monitors the health of Entitys via periodic "keep-alive" UDP

tokens. Once an Entity is registered with the Registry, the Entity must send an

identifying UDP token to the Registry at fixed intervals.1 If the UDP token fails to

'The Entity sends UDP tokens to the Registry, rather than vice versa, to account for potential
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reach the Registry (due to network or Entity host failure) after a few intervals, then

the Registry marks the Entity as dead and removes the Entity from the database

of live Entitys.

The Registry also provides a notification service based on subscription. Enti-

tys can subscribe with the Registry to be notified whenever a different ("target")

Entity begins registration or is marked as dead. Entitys can place a subscription

with the Registry by specifying either the name and/or a subset of meta-parameters

for the target Entity, along with whether notifications should be sent on the target

Entity's registration, outage, or both. The Registry sends notifications using the

Event system described in Section 2.3.4.

Finally, the Registry provides a simple directory lookup mechanism so that Ent-

itys can find each other. As with most constructs in the 0 2S system, Entitys are

also Resourcess; when Entitys register with the Registry, the Registry also stores

a reference to the registering Entity. Other Entitys may then query the Registry

for handles to all registered Entitys in 02S system.

2.4 Reference Tracking & Garbage Collection

For tracking RService handles across hosts, RServices come in two flavors: untracked

and tracked.

2.4.1 Untracked RServices

By default, RServices are untracked: when references to untracked RServices are

passed to "client" Entitys, no bookkeeping is performed to keep track of which Ent-

itys possess these references. While for most applications there is little need to

track the list of Entitys that possess an RService's handle, some applications can

be simplified with the availability of RService handle tracking information.

firewall issues.
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2.4.2 Tracked RServices

One such benefit to tracking handles is that RServices can easily determine when

to allocate and deallocate system state and resources (e.g., GUI resources), which

may be a function of the number and location of the handles to the RService in

circulation.

For tracked RServices, an RService can ask its hosting Entity for a list of

"client" Entitys, that is, Entitys that possess a remote handle to the RService.

Additionally, tracked RServices can also request its hosting Entity for a notification

whenever the list of remote client Entitys changes.

When client Entitys (or any RService on client Entitys) determine that they no

longer need a certain tracked RService, they can either destroy the tracked RSer-

vice handle, wait for the tracked RService handle to be garbage collected by the

interpreter or operating system, or they may actively call the close o method on

the tracked RService handle. In all cases, the system will notify the hosting Entity,

which may in turn notify the appropriate RService.
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Chapter 3

Implementation

This chapter first describes the underlying implementation techniques for the architec-

ture and system design, followed by a discussion of the implementation technologies

used.

The 02S component system is composed of several implementation layers that im-

plement the system design discussed in Section 2.3. The following sections describe

the implementation layers, depicted in Figure 3-1, and discusses how the implemen-

tation fulfills the architectural design requirements.

Resource
Abstraction

Layer

Data
Transport

Layers

{
{

RService

Entity
(Listener)

RMarshaller

XMLRPC

Figure 3-1: The Layers of the 02S Resources system.
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3.1 Data Transport

The 0 2 S component implementation relies on the data transport layer for data mar-

shalling and network communication for remote procedure calls, as shown in Fig-

ure 3-2. The RMarshaller converts RType data types into a language- and platform-

independent intermediary representation. This representation is then passed to the

RPC Transport layer, which handles the actual RPC communication.

RServlce

A
E RTypes RTypes

d ta T l r marshaller R1arshaller

rwire larwire
Format Format

XMLRPC PC--.Tr- ansport

Host 1 Host 2

Figure 3-2: The Data Transport Layers of the 02S Resources system.

The data transport layer resembles the OSI model [11]: as data traverses down

each layer on one host, the data is further encoded or transformed to adhere to the

subsequent layer's abstraction rules. Ultimately the data is sent across the network

to the destination host, where the inverse-transformation occurs as the data traverses

the layers upwards.

3.1.1 RPC Transport

The lowest layer is the RPC Transport. This layer is implemented with a standard

XML-RPC [12] library. XML-RPC is a remote procedure call specification that de-

scribes an XML representation for encoding serialized data. XML-RPC uses HTTP

as the transport and is designed to be simple and fast; many implementations exist

for a variety of languages and platforms.
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While the 0 2S component implementation requires an RPC implementation, it

does not depend on that implementation being XML-RPC. One could easily swap

out the XML-RPC implementation for a different RPC; however, XML-RPC is an

ideal choice today given its simplicity and transparent, standardized encoding.

3.1.2 Typing and Data Marshalling

The RMarshaller (layer) handles data marshalling. This layer accepts RTypes and

transforms them into a language- and platform-independent intermediary represen-

tation.

The RMarshaller is necessary in conjunction with the RPC marshaller because

the RMarshaller must implement the RTypes typing abstraction. The data types

supported by RTypes are generally a superset of the data types supported by most

RPC packages: while both RTypes and standard RPC marshallers support the fun-

damental data types, RTypes are extensible by design to include custom, developer-

designed objects, as well as RService objects. In a sense, RTypes provide a simple

framework and abstraction for developers to define and treat high level objects as

first class objects. The RMarshaller transforms all RType data types to a platform

agnostic encoding for the RPC marshaller.

Supported Types and Language Mapping

The RMarshaller supports the following default RTypes:

" integers: four-byte signed integers

" double: double-precision, signed, floating point

" boolean: True or False

" string: ASCII formatted string of characters

" list: finite sequence of RTypes

" dictionary: finite mapping of RTypes
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* None: a null type

" RStruct a dictionary with pre-defined keys

" Resource an RService network object

Since RTypes serve as an abstraction layer for the marshallable data types, there

must also be a binding between the data types of the programming language and

RTypes. Given that the 0 2S component system is designed to be language indepen-

dent, and the supported types of RTypes are restrictive and standard, implementing

bindings for any language is generally trivial. Table 3.1 illustrates example bindings

between two languages and RType data types.

Table 3.1: Python and Java language bindings for RTypes.
RType Python Java a
String str java.lang.String
Integer int java.lang.Integer
Boolean bool java.lang.Boolean
Double float java.lang.Doubleb
Dictionary dict java.util .Hashtablec
List tuple java.util.Vector
Resource system.RService edu.mit. csail.o2s.system.RService
None None edu.mit.csail.o2s.system.utilities.Nulld

aCompatible with Java 1.4 onward; Java 1.5 supports auto-boxing of data types, but the current
implementation does not rely on this feature. The system will marshal primitive data types and
convert them to the the object equivalent.

bjava.lang. Float is also supported.
cFuture implementations will support any object implementing the java. util . Map interface.
dnull is also acceptable.

Serializing Objects

The RMarshaller simply defines an interface for marshalling RTypes described above.

The following discussion describes a specific RMarshaller implementation that op-

timizes for a transport layer that employs XML-RPC. If XML-RPC is swapped

out for a different RPC technology, the system developer simply re-implements the

RMarshaller to serialize the RTypes with a suitable encoding for that RPC package.
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The term "RMarshaller" from here onwards refers to the specific XML-RPC

implementation of the RMarshaller interface.

Scalars and Lists Serializing scalar RTypes (integers, strings, floating point, bool-

ean, and null types) is considerably simple since these data types are also supported

by XML-RPC. Hence, if the RMarshaller is asked to marshal these data types, it

simply passes them directly to the XML-RPC library for wire marshalling.

Since XML-RPC also supports lists, serializing RType lists simply entails serial-

izing each element, and placing the serialized representation in an XML-RPC list.

Dictionaries, Resources, and None Types XML-RPC has no built-in support

for Resources, so the RMarshaller encodes several RTypes using a XML-RPC dic-

tionary, thereby "multiplexing" RTypes into a flexible, supported XML-RPC type.

Because RType dictionaries, Resources, and None types are all encoded with an

XML-RPC dictionary, it is necessary that the XML-RPC dictionary encoding adheres

to a special format with predefined keys. The fields to these keys store the meta-data

that characterizes the RType for future unmarshalling (the meta-type fields), as well

as the serialized encoding of the RType (the data-encoding field). The discussion that

follows details how different RTypes are encoded for storage in the data-encoding field

of the XML-RPC dictionary; see below for a discussion on the XML-RPC dictionary

format and the meta-data fields for these special RTypes.

To serialize a RType dictionary, the keys and values for each key/value pair is

serialized by the RMarshaller. The resulting serialized pairs are then aggregated into

an XML-RPC list, which then serves as the serialized encoding for the dataeencoding

field.

RServices objects are serialized by storing enough information to construct a

client-stub to the RService object. The RMarshaller achieves this by first storing

this information in an RType dictionary; the serialized encoding of this dictionary

then serves as the encoding for the RService. Among the necessary information

stored for stub construction includes: the address and port of the XML-RPC server,
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the names and signatures of exported RPC methods, as well as various routing meta-

data. See Section 3.2.1 for an in-depth discussion.

To serialize None types, the data-encoding field is simply the empty string.

Custom RTypes Since RTypes are extensible by the developer, the RMarshaller

also must support custom, developer-defined RTypes. The serialization of custom

RTypes is also multiplexed into the XML-RPC dictionary encoding.

When the developer implements the custom RType, the developer must adhere

to the RType interface by supplying the necessary marshalling (and unmarshalling)

procedures to serialize state for the custom RType object. The RMarshaller simply

calls the custom RType's marshal() method to obtain the (intermediate) serialized

state; the RMarshaller then serializes this intermediate encoding into the appropriate

XML-RPC form and stores the result into the data-encoding field of the final XML-

RPC dictionary encoding.

(Remote) Exceptions The developer may often need to throw exceptions in the

RService, so these special error objects must be passed back to the (remote) caller.

The 0 2S system defines and implements several different exception classes for use

with Resources. In the current implementation, if an exception occurs, the exception

is encoded using the standard XML-RPC Fault (exception) objects (with a string and

traceback to denote the exception cause). These Fault objects are automatically con-

verted into the implementation language's default exception type when unmarshalled.

This scheme alleviates the need to introduce yet another RType for exceptions, but

the introduction may become necessary in the future if developers need to classify

remote exception objects.

rWire Format

As mentioned above, the wire format for standard RType scalars and lists have direct

analogues in XML-RPC. However, for RType dictionaries, RServices, None types,

and custom RTypes, the RMarshaller multiplexes the XML-RPC dictionary to en-
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code these advanced types. The encoding standard for this XML-RPC dictionary

requires the keys listed in Table 3.2.

Table 3.2: XML-RPC dictionary encoding format for advanced RTypes.

_ Key (Field) Value
meta-type type Describes the RType

spec XML specification for the RType
reconstruction.parameters Reconstruction data for custom

RTypes

data-encoding value Serialized encoding of the RType

The type key specifies the RType data type serialized. It can take on the field

values: Dictionary, to specify that the serialized RType is a dictionary; Resource, to

specify a serialized RService; NoneType for None types; and Arbitrary for custom

RTypes. These field values enable the RMarshaller to determine the data type

encoded in the value field, essential for the unmarshalling process.

The spec key specifies a URI pointer to an XML document that describes the

type.1

For custom RTypes, the reconstruction-parameters provide pointers to the lo-

cation and class names for the developer-defined custom RType code implementation.

Currently, the implementation assumes that the developer deploys the implementa-

tion for her custom RTypes on all hosts that can potentially accept and unmarshal

instances of the custom RType. Future versions may use the reconstruct ion-para-

meters field to specify a URI pointer to signed code implementations for the custom

RType.

Finally, the value field holds the serialized encoding of the data type as discussed

above.

'The spec key is designed to ultimately fulfill the role of the type key discussed above; as of
writing, the specification locations were not ready, so the type key provided a temporary implemen-
tation.
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3.2 Resource Abstraction Layer: The Entity

The Resource network objects, or RServices, provide another level of abstraction

above the network data typing and transport layers. The developer usually interacts

with the 0 2S component framework at the Resource abstraction layer, through the

process of writing RService network objects and installing them within Entitys.

3.2.1 Resource Network Objects

As discussed in Section 2.3.5, the Entity represents a logical host machine and pro-

vides an environment for running RServices. Figure 3-3 illustrates the Resource

abstraction layers, which spans the internal architecture of Entitys.

RSevc Entity Constructs Dev(Moper s Network Objects +

eStream R Service 2
Connections

02S Event RService n
Listeners

Entity

Figure 3-3: The Resource Layers of the 0 2S Resources system.

RPC Multiplexing: Listener

At the heart of every Entity is one Listener. The Listener's role is to serve as a

"switchboard," intercepting all incoming RPC requests and fielding these requests to

the appropriate RService for handling.

The advantage of this architecture is that the system avoids the large networking

overhead of running an independent XML-RPC server for each RService that is

instantiated on the Entity. By multiplexing a single XML-RPC server (managed by
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the Listener), the overhead incurred by adding additional RServices to the Entity

is constant.

Nonce

The Listener runs one XML-RPC server and performs the necessary bookkeeping

to properly field incoming requests to the correct RService. To do so, RServices

are all assigned a nonce2 that is specific and unique to each RService. The nonce

take on a specific format that guarantees its uniqueness among all RServices in the

0 2S system, thereby identifying a specific RService instance. Figure 3-4 illustrates

an example of an RService nonce.

ThisRsv:elsie-esse.csail.mit.edu:10235:22

ThisRsiI: elsie-esse.csail.mit.edu:10235 :

Given name Listener host and port RService No.

Figure 3-4: An example of an RService nonce.

The fields of the nonce include:

Given Name The given name is the name given to this class of RServices by the

developer. The name distinguishes the class of the running RService instance.

Listener Host and Port This element specifies the location (hostname and port) of

the XML-RPC server, managed by the Listener. These parameters distinguish

the physical location of the running RService image.

RService Number The Listener assigns an RService Number to each RService

hosted by the Entity. The RService Number is unique to each RService in-

stance on the Entity, thereby distinguishing RService instances on any given

Listener.
2The term "nonce" here takes on a less specific meaning as that which is defined in RFC2002

[13]. "Nonce" here simply refers to a one-time-use unique string token.
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The nonce construction uniquely identifies each RService instance running in

the 0 2S system. The nonce is constructed and assigned to a RService when the

RService is instantiated; during the RService's initialization process, the RService

must "register" themselves with the Listener. The Listener assigns a nonce to the

RService instance, maintaining a table between nonces and RService instances.

Client Stubs

When a handle to a RService instance is passed to a remote object (often as a

parameter or a return value), the RMarshaller constructs a serialized encoding of the

RService that contains sufficient information to generate a client stub (as discussed

earlier in Section 3.1.2).

This encoding essentially contains the RService nonce. The client stub that is

eventually generated on the remote (client) host simply serves as a proxy to the

(serving) RService, intercepting all method calls to the RService from the client

host. When the client calls a method on the client stub, the stub forwards the

call (along with the marshalled parameters) across the network to the XML-RPC

Listener on the server (the address of which is encoded in the RService nonce).

Furthermore, the nonce is always encoded in all remote calls, enabling the Listener

to ultimately forward the request to the appropriate RService. Figure 3-5 illustrates

this process.

Object Interning

When RService instances register with the Listener, the instance is also "interned"

to ensure that only one copy of that specific instance exists on the Entity. This

prevents the scenario where a client stub for some RService is passed back to the Ent-

ity hosting the RService. Without interning, both the RService and its client stub

are instantiated, when in fact they refer to the same semantic object. Furthermore,

if method calls are made on the client stub, this would entail the gratuitous overhead

of network communication to the same process.

Object interning promotes the convenient abstraction Resources provide in a dis-
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Host B Host A

Figure 3-5: The Client Stub in action. The RService's nonce is encoded in the request
(Step 2); the Listener of Host A forwards the request to the correct RService (Step
3), based on that encoded nonce.

tributed environment: applications do not need to know whether the services these

Resources provide are implemented locally or remotely, with respect to the application

host and process. Because Resources themselves can be passed around as first-class

network object parameters, Resources that implement local requests are transparently

converted to handles (proxies, or stubs) for remote objects, when appropriate.

To intern an object, the Listener compares the nonce of all incoming client stubs

(after the RMarshaller unmarshals the object encoding). If the incoming nonce

matches any of the nonces for installed RServices on the Entity, the Listener

simply passes on a handle to the RService instance, discarding the client stub.

The interning mechanism ensures that if Resources are passed back to their origi-

nally hosts, the real RService instance (rather than stubs) is properly passed onward.

3.2.2 Events

As mentioned in Sections 2.3.4 and 2.3.5, the 0 2 S Event framework enables RSer-

vices to send and receive asynchronous messages.

Events are simple RType structures similar to dictionaries that contain a variety

of generic fields available for application-specific semantics. While these fields can

contain any RType, the usage idiom is to strive for a lightweight Event payload.

Table 3.3 lists these fields, along with suggested semantics.
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Table 3.3: Event fields and their suggested semantics.
Field Suggested Semantics
message-type general event type
thrower Resource which throws the event
recipient event routing
message-string human readable message
data machine readable message
parameters additional parameters

To send and receive Events, RServices rely on the Event Listener. As men-

tioned, the hosting Entity is designed to provide RServices with event services, so to

obtain an Event Listener, the RService simply requests one from the hosting Enti-

ty. RService can request as many Event Listeners as necessary for the application

with no additional overhead; as such, some applications may benefit in designating

different Event Listeners for receiving different types of Events (or Events from

different sources).

When RService request an Event Listener from the Entity, the RService also

registers a callback method. When the Event Listener receives an incoming Event,

the Event Listener calls the callback method (with the received Event as a param-

eter). The callback method is usually a method on the RService designated with the

necessary logic to act upon incoming events.

The desired effect is that each Event Listener is "wired" with a target "address"

(or callback), capable and designed to handle those Events. As such, handles to these

Event Listener can then be passed to any remote host, thereby allowing multiple

hosts to send Events to an RService.

To achieve this effect, Event Listeners are implemented as a special RService,

with a special method named throw-event 0. Event Listeners are then passed

to remote hosts (where they become client stubs); when remote hosts wish to send

Events, they call the throw-event () method, with the Event message as an argu-

ment. The Event Listener on the serving host receives the Event via the RService

infrastructure and forwards the Event to the proper callback. Figure 3-6 illustrates

this process.
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Figure 3-6: The Event Listener. Events from Host B are forwarded via the Event
Listener stub to Host A, where the Event is passed to the RService's callback.

3.2.3 Stream Connectors

Stream Connectors (SConnectors) are similar to Events in implementation design.

The SConnector is a special RService with methods designed to open and control

TCP/IP data streams. Similar to Event Listeners, RServices can obtain as many

SConnectors as necessary via request to the Connector Manager in the Entity.

SConnectors are unidirectional; when requesting a SConnector, the RService

must specify whether an input or output SConnector is desired. If the RService

specifies an input SConnector, the RService also specifies a callback method, which

is called every time the SConnector receives new incoming data. Conversely, the

RService pushes data through an output SConnector by passing the data as an

argument to the SConnector's sendo method.

When two appropriately gendered SConnectors are connected, they serve as a

byte stream from the input SConnector to the output SConnector. The SConnect-

or infrastructure also supports a sideband data stream encoded alongside the byte

stream.

The external network API for controlling SConnectors is fairly limited: it allows

remote hosts (with handles to these SConnectors) to simply connect SConnectors

together, probe their state, and cut their connections. In the usage idiom for SCon-
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nectors, the RService either provides the data source for output SConnectors -

or processes the incoming data from input SConnectors. In a sense, the input or

output of SConnectors are wired directly to the RService; however, the power of this

architecture is that the SConnectors themselves can be wired together dynamically

during runtime to connect different RServices together as necessary. Figure 3-7

illustrates the relationship between SConnectors and RServices.

Mervic -- It a sput .. RService RPC

Output Stream Input Stream Stream
Connection Byte Stream Connection Data

Host B HostA

Figure 3-7: Unidirectional SConnectors are requested by RServices, which provide
the data source for output SConnectors or data processing for input SConnectors.
This also illustrates the system component layering described in Section 2.1: the RPC
layer is used to control the faster, asynchronous byte stream layer.

As such, SConnector instances are usually requested from RServices by some

application logic (often running on yet a different host). The application logic is gen-

erally cognizant of the functions provided by developer's RServices, so it is appro-

priate that the application logic selects the SConnectors from the desired RServices

and connects them together to compose dynamic applications.

3.2.4 The Entity

The Entity is implemented as yet another special RService. The Entity instantiates

one Listener (and then registers itself with its Listener) and provides well-defined

methods for hosted RServices to access Event Listeners and Stream Connectors.

Since the Entity represents a logical host machine, the Entity is characterized

by a variety of parameters that specify the name, location, and function. These
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parameters can be set by the developer through environment variables or subclassing

the generic Entity class.

In hosting and managing a collection of RServices, the Entity represents these

RServices to the 0 2S world at large. To publicize the Entity's existence, it registers

with the Registry upon instantiation.

3.3 The 0 2 S Registry

The Registry provides a look-up service for finding other Entitys in the system; a

keep-alive service, to monitor the liveliness of registered Entitys; and, a subscription-

based notification service to alert interested parties when a certain Entity disconnects

or registers. Registrys in principle broadcast the their host address on the local

subnet, thereby enabling Entitys to discover the local Registry.3

3.3.1 Lookup Service

Entitys generally register with the Registry when they instantiate. The registration

process entails registering the Entity's parameters with the Registry, as well as

passing a handle of the registering Entity to the Registry. In doing so, others

can search for registered Entitys, as well as obtain handles to them. The Regis-

try enables Entitys to query and obtain handles to other registered Entitys, thus

facilitating the bootstrapping process of obtaining the first remote Entity.

To search for Entitys, a typical query to the Registry usually specifies the desired

values to the keywords that correspond to the identifying parameters of Entitys. A

query can specify as few or as many keyword/value masks; the Registry returns a

list of all Entitys (and their Resource handles) that match.

To support this search capability, the Registry implements a small internal

database composed of several hash tables, keyed on the different parameters val-

ues, thereby ensuring a constant 0(1) lookup time (with respect to the number of

registered Entitys at a given time) for each query. This implementation is highly

3In the current implementation, all Entitys are "wired" to use a common Registry.
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advantageous, since the search and key/value matching functionality is used quite

often for subscription notifications.

3.3.2 Subscriptions & Notifications

Often a RService will rely on the existence and liveliness of another RService on

a different Entity; however, if the latter Entity is disconnected or fails, the former

RService (or some other application logic) should expect an outage notification.

Since the Registry provides liveness monitoring, the Registry can also notify

interested parties whenever any given Entity is disconnected. These notifications are

implemented with 02S Events, and interested parties must subscribe an "interest"

with the Registry to receive liveness notifications for specified Entitys.

A party subscribes by first providing the Registry an Event Listener to receive

notification. Additionally, the party must also specify which Entitys should trigger

a notification to be sent; the party does this by providing a keyword/value mask of

Entity parameters. The party also specifies whether a notification should be sent

when the interested Entity registers, disconnects (fails), or both.

Whenever a new Entity registers or a registered Entity fails, the Registry com-

pares this Entity against the list of subscriptions. Notification Events are sent to

subscribers whose mask matches the new or failing Entity's parameters.

3.3.3 Keep Alive

The Registry monitors Entity liveness with periodic UDP "pings". UDP is ideal for

keep-alive monitoring, since UDP is considerably lightweight and avoids the overhead

of using persistent TCP connections for the same purpose. The Entity is expected

to send a UDP packet to the Registry periodically; in principle, the Registry deter-

mines the frequency that Entitys must send these UDP packets.4 During registration,

the Registry specifies to the Entity the frequency in which to send UDP packets.

4In the current implementation, this frequency is currently hard-coded at 2 seconds. The archi-
tecture, however, allows for future Registry versions to pick an appropriate frequency based on the
Entity's measured network latency.
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The UDP packets nominally contain the Entity's nonce, 5 as well as a time-stamp.

The encoded nonce enables the Registry to determine the Entity source of the UDP

packets for the necessary bookkeeping.

If an Entity's keep-alive UDP packet fails to reach the Registry within the

allotted interval window, the Registry first marks the Entity as a "Zombie" to

indicate that the Entity's liveness state is currently in flux. The Registry waits

several intervals to account for network latency, but after a configurable number of

intervals, the Registry marks Entity "Dead," removes the Entity from the live

database, and sends the appropriate notifications to other Entitys.

3.4 Garbage Collection

In terms of reference tracking, RServices are by default untracked: remote references

to these RServices (client stubs) are not tracked by the system. While this is sufficient

for most applications, sometimes applications may benefit from having access to the

list of "client" Entitys (an Entity different from the tracked RService's hosting

Entity) that possess handles to an RService.

If RServices need access to their client Entitys, these RServices must specify

(during instantiation) that they should be tracked. Whenever a handle for a tracked

RService is passed to a client Entity, the system automatically notifies the hosting

Entity (of the tracked RService) with the identity of the client Entity. To achieve

this, the encoding for tracked RServices also includes the nonce of the hosting Ent-

ity; hence, whenever tracked RServices are passed to another client Entity and

unmarshalled, the system sends an Event to the hosting Entity encoded in the

nonce.

The hosting Entity performs the necessary bookkeeping to map the each hosted

tracked RService to client Entitys which possess handles on the tracked RService.

It should be noted that the hosting Entity is always notified whenever any Entity

in possession of a handle to the tracked RService passes the handle to some other

'Recall that Entitys are special RServices, and therefore the Entity itself has a nonce.
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Entity.

Additionally, when tracked RService remote handles are garbage collected (by

the language or interpreter) or explicitly terminated by the client Entity, the system

also notifies the hosting Entity.

In turn, Entitys provide tracked RServices with an interface to obtain their

tracking record. While tracked RServices can poll the Entity for a listing of client

Entitys that possess a handle, the Entity also provides a callback feature: tracked

RServices can register a callback method that the Entity calls whenever the location

for any of the tracked RService's handles change.

3.5 Implementation Technology

As mentioned, the 0 2 S architecture is language- and platform-independent to support

a heterogeneous set of implementation technologies and devices typical of pervasive

computing environments.

3.5.1 Language Independence

0 2 S is currently implemented in both Python 2.3 and Java 1.4, as well as a prototype

implementation in ANSI C. Developers can create and run RServices in either Python

or Java; handles to RServices implemented in Java (as with all RTypes) can be passed

to Python environments and vice versa.

3.5.2 Platform Independence

In principle, the 0 2 S architecture has no operating system specific dependencies.

The system runs on nearly all major operating systems, since Python and Java are

widely implemented; it has been tested on Linux 2.4, Windows, Mac OS X, as well

as Familiar Linux [14] for iPAQ hand-held computers.

Additionally, there is a partial Java J2ME [15] implementation for the Nokia

Series 60 mobile phone. Since the phone has limited network connectivity support,
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this 0 2S implementation is adapted to use Bluetooth for networking to a nearby

0 2S-Bluetooth "proxy". The proxy both represents the mobile phone to the 0 2S

environment and communicates relevant messages back from the 0 2S world to the

phone.
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Chapter 4

Evaluation and Applications

This chapter presents performance benchmarks for the Resources implementation de-

scribed in Chapter 3, followed by descriptions of various application implementations

that benefit by utilizing the Resources framework.

4.1 Benchmarks

These benchmarks measure both RPC and stream connector performance. For the

RPC benchmarks, the first test measures the round-trip time for a null method call

between two hosts; this benchmark attempts to measure the overhead of the system.

The second benchmark measures the round-trip time for a collection of various RTypes

that travel to one host and back (an "echo" request); this benchmark aims to measure

the marshalling overhead. Finally, streaming data performance measures the overhead

in transferring byte streams. Table 4.1 tabulates the results of RPC benchmarks;

Table 4.2 presents the streaming data benchmarks.

In all tests, the designated "client host" is a Pentium 4/2.66GHz with 256MB

RAM running Linux 2.4.27; the "server host" (running the RService) is a Pentium

3/1.13GHz with 512MB RAM running Linux 2.4.21. These machines both reside on

the same lOOMBit subnet and run Python 2.4 and Java 1.4.2.

61



Table 4.1: Benchmarks. Times are in milliseconds.
Server null-method data-echo

Client 0 2S Python 02S Java 0 2S Python 0 2 S Java

0 2 S Python 8.18 5.77 87.43 43.28
02S Java 5.89 4.15 52.45 21.62

Sun Java RMI 0.97 10.52

4.1.1 Null Method Resource Round-Trip Time

Table 4.1 shows the round-trip time for an empty-method call between a client and the

RService server. The Python and Java implementations are procedurally identical.

These time values are the result of executing the empty-method call 100 times and

averaging the result. For Java implementations, the Just-In-Time compiler begins to

optimize performance after several iterations; hence, before the results are recorded,

several burn-in iterations (10) are run and discarded for all benchmarks.

4.1.2 Resource Data-Marshalling Performance

In the data-marshalling test, the client constructs a dictionary containing a large

variety of RTypes and passes this dictionary as an argument to a procedure on the

RService server object. The RService object simply returns ("echos") the argument

back to the client. This test involves the process of marshalling and unmarshalling a

multitude of RTypes on both the RService and the client. The dictionary includes:

a string, an integer, a double, a boolean, a list containing the above types, and a

Resource handle to the server RService.

As with the empty method benchmark, the time values in Table 4.1 present the

average of 100 runs, after 10 initial burn-in runs are discarded.

Table 4.2: Streaming Data Benchmarks.

C TCP/IP Sockets 02S Stream Connectors (Python) Java RMI
Time (ms) 96.100 179.38 854.80
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4.1.3 Java RMI

For comparison, Table 4.1 also presents the performance of Java RMI [16] for both

benchmarks under the same hardware platform and configuration. For the dictionary

structure used in the data-marshalling benchmark, the RMI server stub is used in

lieu of the RService handle. As with the tests above, the table values represent the

average of 100 runs.

4.1.4 Streaming Data

These benchmarks suggest a five-fold performance cost for the RService (RPC-based)

implementation when compared to native Sun Java RMI; this cost may be an artifact

of the RService implementation still being in its early stages.

RPC, however, composes only part of the 0 2 S components architecture described

in Section 2.1. While RPC is responsible for constructing, connecting, and controlling

distributed modules, the majority of computation and data flow make use of stream

based SConnectors, which introduce small overhead to the underlying operating sys-

tem's TCP/IP implementation.

Table 4.2 shows the result of sending a 1MB file (filled with random bytes) in

1KB increments between two hosts (the same client and server machines used in the

above tests). The 1MB file is sent in 1KB increments to simulate the "stream"-like

process by which these modules would continually receive, process, and forward data

to other modules. This benchmark compares the performance between standard C

TCP/IP sockets, 0 2S Stream Connectors, and Sun Java RMI. Java RMI performance

is measured by invoking a remote method call to the server for each 1KB data segment.

Table 4.2 reports the average of 10 runs for each platform. The 0 2S implementation

introduces some Python overhead compared to standard C sockets but still yields a

5-fold performance increase over Java RMI. Future 0 2S implementations may benefit

by implementing the streaming connector-level infrastructure in C to remove the

Python overhead.
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4.2 Applications

Another dimension for evaluation involves examining the ease of developing real-

world, pervasive applications using the Resources framework. This section describes

a few applications deployed in the 02S system.

4.2.1 User Devices and Environment

The Resources framework facilitates building higher level constructs for managing

users and devices. The 0 2S system as a whole employs a variety of "proxies," im-

plemented as RServices, to represent and interface the 0 2S system with both user

preferences and their devices. These proxies are generally layered hierarchically, as

depicted in Figure 4-1 and further described below.

Host Proxies

Host Proxies represent computation resources or devices (e.g., hand-held computers,

mobile phones, projectors, A/V systems, printers, and so forth). In general, Host

Proxies are RServices that provide the interface between a physical device and the

02S world, thereby representing these devices in the pervasive environment. Because

Host Proxies implement the RService interface, they effectively present a coherent

abstraction for developers to access and control a multitude of disparate devices,

eliminating the need to address a myriad of APIs in the application logic.

User Proxies

Since pervasive environments aim to provide a human-centric computing experience, it

seems natural to include proxies that represent users and their preferences. Currently,

the 0 2S User Proxy simply manages the user's collection of devices (d la Host Proxies)

as depicted in Figure 4-1.

Just as Host Proxies provide an interface between the Resources abstraction and

the physical device, User Proxies provide the next abstraction level. Since User

Proxies (in principle) track user state and store user preferences, the User Proxy
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serves as an interface between the 0 2S world and the user's (Host Proxy) devices. By

querying User Proxies, applications in the 0 2S system can request access to a user's

device; in return, the User Proxy can select the best device based on the user's state

and preferences.

Room Proxies

Room Proxies are similar to User Proxies; instead of managing devices for people,

Room Proxies manage devices attached to a particular room (e.g., displays, projec-

tors, printers, and A/V systems). The Room Proxies provide an API for the 0 2S

system to query and access Host Proxies of room devices.

A

Figure 4-1: Proxy Hierarchy.
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Organizational Proxies

While yet unimplemented, Organizational Proxies in principle manage a variety of

Room Proxies, User Proxies, and especially other Organizational Proxies (in a hi-

erarchal manner). For instance, an Organizational Proxy can take the form of a

Laboratory Proxy, representing User Proxies for lab members and Room Proxies for

lab seminar rooms. There may also be multiple Laboratory and Departmental Prox-

ies under a University Proxy, and so forth. In principle, this hierarchal structure of

proxies lends itself well for looking up any Resource in the system, in a similar fashion

to DNS [17].

4.2.2 Heavyweight Computation For Lightweight Computers

Another class of applications that benefit from the Resources framework involve off-

loading computationally-intensive processing to dedicated servers. These servers can

then provide their services to lightweight or thin clients, especially when it would be

infeasible to run these services locally on the clients themselves.

Voice Recognition

One such application is voice recognition. A Voice Recognition server bundles a

standard voice recognition package into a RService, which returns recognized tokens

from utterances sent from remote, thin clients.

The Galaxy system [18] is an ideal recognition package for the 0 2 S Voice Recog-

nition server implementation. Galaxy is suitable because the recognition engine

supports multiple, concurrent recognition grammars and requires no voice training.

Clients interact with the Voice Recognition server by first submitting a grammar to

the server. The server initializes a Galaxy recognition instance with the specified

grammar and returns a handle to the requested recognizer. The client then sends ut-

terances via SConnectors to the recognizer; in turn, the recognizer returns recognized

tokens back to the client via Events.
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4.2.3 Distributed Applications

The notion of off-loading computationally-intensive processes to servers suggests that

doing the same for application logic may also simplify distributed applications across

multiple devices.

Data Hubs

0 2 S Hubs provide the utility function of connecting multiple SConnectors together.

Hubs provide an unlimited number of input and output SConnectors; data flowing

through any of the input SConnectors is automatically forwarded to all output SCon-

nectors. Applications generally utilize the Hub server to effortlessly connect multiple

arbitrary components together, with the property that all components can broadcast

data to each other.

The Hub resource illustrates the power of SConnectors in dynamic, pervasive

environments. The Hub is a generic Resource that an application can employ to

connect and disconnect arbitrary components during runtime. This feature enables

applications to dynamically select optimal components and connect them in ways

unanticipated by the developer.

Dynamic, Adaptive Chat

One such example application that makes use of the Hub server is the 02S Adap-

tive Chat application, designed to facilitate a multi-user chat conference. The novel

aspect of the chat application is that the application automatically finds the best de-

vice available for each chat participant (during runtime) and connects these devices

together for a multi-modal conference.

The Chat application logic resides in the 0 2S Planner (refer to Section 1.4.1).

After the Planner performs the necessary planning, it makes use of the 02S Resources

framework to obtain handles to various resources, most notably users' devices and the

Hub resource, and connects them together with SConnectors. The planning for this

application generally involves contacting the User Proxies of all chat participants to
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request access to the most feature rich, chat-appropriate devices (Host Proxies) owned

by the user. Based on the user's detected location and set preferences, each User

Proxy will return the most relevant devices to the application logic. The application

then installs GUI resources (see below) on these devices and appropriately wires their

respective input and output SConnectors to the Hub server.

The dynamic-nature of the Hub server provides the foundation for the adap-

tiveness of the Chat application. These chat instances are adaptive in that if any

participant gains access to better devices (or their current devices fail) during the

chat, the application logic automatically switches the user's device (by reconnecting

SConnectors to the Hub) to gracefully upgrade or degrade the chat experience, all

while maintaining the conversation.

Combined with the Voice Recognition server, the Chat Application enables users

to dictate commands directly to the application logic. The application logic achieves

this by requesting a Voice Recognition Resource and connecting it to an appropriate

audio source on the user's device. Recognized tokens are sent (via Events) to the

application for processing.

Graphical User Interfaces

Executing application logic on centralized servers instead of clients lends itself natu-

rally to off-loading the logic for controlling graphical user interfaces (GUIs) as well.

The Simple Unified GUI Resource (SUGR) is an interface that enables applications

to separate the GUI presentation from the GUI logic. When the application logic

resides on the server, the application is typically simplified by keeping the necessary

GUI logic on the server as well, while disembodying the GUI presentation to the

user's device.

At the heart of SUGR interface is the SUGR GUI-specification. The specification

allows applications to specify both placement and the callback events for a variety of

generic widgets. To present a GUI to on user's device, applications typically send a

SUGR GUI-specification to the user's SUGR-enabled client. The SUGR-client then

renders (using any GUI package) the GUI on the client device as specified in the
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specification.

The SUGR interface also allows for applications to obtain Resource handles to

the widgets for updating content during execution. The client receives all GUI events

from the user and forwards them back to the application for processing.

The SUGR architecture is highly advantageous for developers, as it supports the

natural tendency to keep application logic and GUI logic together.

4.2.4 Visualization

To facilitate debugging of distributed RServices and SConnectors, the Resource

Visualizer (RViz) presents a real-time rendering of the Resource network graph, as

shown in Figure 4-21.

Figure 4-2: A typical RViz screen shot.

Nodes and edges represent Entitys (hosts) and the SConnectors between them,

respectively. The RViz system is composed of an RViz server and RViz clients. The

'While there are several standard command-line and GUI-based implementations for diagnosing
and inspecting Resources, RViz also presents SConnectors connections between the hosts.
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RViz server, which communicates with the Registry to determine the state of the

0 2 S system, sends state updates to all RViz clients. The RViz clients render the

state information, using Dot [19] for graph layout and OpenGL [20] for rendering.

By employing the client/server model here, multiple RViz clients can render a view

of the system concurrently.

4.2.5 Temptris

No software architecture is complete without a game. Temptris is a multi-player, dis-

tributed version of the popular falling-blocks game. In contrast to the Adaptive Chat

application described above in Section 4.2.3, a considerable amount of the physics

and animation logic for Temptris resides on the client side, as the user experience for

action games is usually very dependent on high frame-rates and timely response to

user input. As such, Temptris can run as a stand-alone single-player application (as

most games do) but includes the capability to communicate with other players for a

multi-player experience. Figure 4-3 is a screen shot of game play in Temptris.

Multiplayer Temptris relies on the Temptris Server (a RService), which runs on a

dedicated server, to manage game instances between different players. The Temptris

Server runs the multiplayer game logic, keeping track of the players, the current field

height for each of the players, and establishes the order for the falling bricks. The

latter feature ensures that all players receive the same blocks and in the same order.

Furthermore, the server receives most state change events from game clients and can

instruct clients to penalize players by adding additional lines to the board.

The achieved effect is that when any player clears n lines from their field, all

other players (opponents) are penalized with n - 1 additional lines2 , which is added

to each opponent's board to hasten her demise. This encourages players to play more

aggressively, for the last player standing is the winner.

2When a player clears four lines at once (n = 4, e.g., a "Tetris"), all other players receive 4 lines.
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Figure 4-3: Temptris in action.
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Chapter 5

Conclusion

This chapter discusses related work, future directions for the 02S Resources frame-

work, followed by concluding thoughts.

5.1 Related Work

Here are a few related RPC and component systems:

5.1.1 CORBA

The Common Object Request Broker Architecture (CORBA) [21] is a rich framework

for developing distributed applications spanning different languages. At the heart of

the CORBA framework is the Object Request Broker (ORB) Core, which handles

all the necessary communication and data marshalling. In general, developers must

specify the interfaces between the client and server at compile time using CORBA's

Interface Definition Language (IDL); the interface is subsequently statically linked

into the client and server applications.

5.1.2 Sun Java RMI and Jini

Sun's Remote Method Invocation (RMI) [16] augments the Java environment by

providing a tightly integrated remote procedure call package. Java RMI's strengths
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include an RPC semantic consistent with the Java programming idiom, a built-in

security framework, a flexible object serialization framework, and optimized perfor-

mance that capitalizes on JIT compilation.

However, RMI requires a fair amount of development effort. After developers de-

fine their remote object interfaces, they must also distribute copies of these interface

class (bytecode) files to each client host requiring access to the remote object. De-

velopers must also generate stubs and distribute them to all involved client hosts as

well;1 unfortunately, this mechanism forces developers to know a priori where (which

hosts) services will run. Finally, developers who use RMI are limited to developing

their network objects only in Java.

Jini

The Sun Jini Architecture [22] is service-oriented architecture designed for dynamic

discovery and incorporation of network services. Jini is based upon RMI (and there-

fore requires Java) and enables devices to discover services on the local network via a

Lookup service. Devices access services via RMI, but in the Jini framework, devices

automatically download the necessary stub ("proxy") to these services. Jini relaxes

some of RMI's requirements, namely those requiring the developer to know before-

hand the location of remote services. Jini also features a leasing mechanism, where

by clients and services negotiate resource allocation.

5.1.3 Metaglue

The Metaglue System [23] is a platform for developing distributed agents geared

towards intelligent environments. The system extends the Java language, providing

new constructs to program software agents. In the Metaglue system, distributed

agents (or modules) can lookup and gain access to other agents and services. Agents

specify their own environmental requirements for execution (such as dependencies on

'Recent versions of Java allow developers to place remote object stubs in a network-accessible
location, such as a web-server, for clients to download on-the-fly. Unfortunately, this mechanism
requires that users run a web-server, and in practice, Java's security framework makes for a very
involved setup process.
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other agents), and Metaglue attempts to accommodate these requirements either by

instantiating the necessary dependency agents or by migrating agents appropriately.

5.1.4 Summary

Many of these systems subscribe to the conventional distributed application model,

where applications are composed of statically-partitioned client-server modules which

communicate using fixed, pre-defined APIs. In all of these systems, there is no dis-

tinction between mechanism and policy: the function implemented by a module and

the policy specifying the role of the module in the overall logic of the application

are inextricably intertwined in the code. With these traditional network object plat-

forms, it is often difficult to adapt such distributed applications by replacing their

constituent components, or to even reuse components for satisfying a different goal.

5.2 Future Work

While the current 0 2S Resources implementation described in this work realizes many

of the original ideals of the project, the following sections outlines several additional

research directions to explore.

5.2.1 Composites & Hot-swapping

Composites are special Resources, which encapsulate one or more Composites (or

Resources) and their interconnections. Composites serve as a convenient "black-

box" container for a group of connected, constituent Resources, which collectively

implement higher-level functionality.

Composites would facilitate the 0 2S Planning Engine, which generally "wires"

Resources together to implement a high level application. Composites then serve as

another convenient abstraction layer (and handle) to a bundle of connected Resources

that serve some coherent function. Figure 5-1 illustrates an example.

These Composites would feature a standardized API for constructing new Com-
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Language Translator Composite

French French Speech

TextTo Speech
EnglishSpech English

Speech To Text

English to
French (Text)

Enlglish Text Tr1anslation

RService

Figure 5-1: A Language Translation Composite, composed of multiple, connected
RServices bundled together.

posites from existing Composites, by connecting the inputs and/or outputs of existing

Composites to other Composites or Resources. In this way, developers can have han-

dles to abstract each level of implementation.

The Composites abstraction lends itself nicely to "hot-swapping" features, in

which the system can replace an entire Composite (or black-box functionality) with

another congruent Composite instance - during runtime. Hot-swapping provides a

natural abstraction for developing dynamic applications that adapt gracefully to user

environments.

5.2.2 Remote Instantiation

With the 0 2S Resources framework described, all real execution code resides on the

server in the RService object instance and must be instantiated during system startup

(or instantiated at a later time by a specialized Entity). However, the developer

often cannot anticipate all the possible RServices that users may eventually require.

Remote instantiation of RServices may solve this need by downloading and executing

code modules during runtime. The (source or byte) code for these special RServices,

or Pebbles, would be stored in a network-accessible repository and migrate during

runtime to Entitys for execution upon request.
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5.2.3 Security & Authentication

The current implementation of the 0 2S Resources framework lacks any security, au-

thentication, or access control mechanism. These are obviously important issues to

address before the framework can be deployed outside the laboratory environment.

However, given the flexible design of the 0 2S Resources platform, augmenting the sys-

tem with an authentication and security layer fits naturally within the architectural

constructs. Future architects could implement these layers with additional servers or

proxies, which might use off-the-shelf solutions, such as Kerberos [24], for authentica-

tion and key management. Incorporating signed and verifiable code-bases would also

benefit the safety of Pebbles system for applications requiring remote invocation.

5.3 Conclusion

The 0 2S system is a goal-oriented approach to satisfy user intent within pervasive

computing environments. The system accomplishes this by promoting a strong sep-

aration between mechanism and policy. Maintaining this separation is difficult with

traditional distributed applications; hence, a new programming abstraction is needed.

This thesis explores a programming abstraction and proposes an architecture char-

acterized by a simple, synchronous environment for programming dynamic and adap-

tive applications. Developers easily construct new application functionality by con-

necting together a set of distributed, generic, and re-useable code-modules, much like

wiring together a circuit of components. Once the application circuit implementation

is constructed, the circuit runs autonomously, sending a serialized stream of events to

the application logic for handling. Developing adaptive applications, which involves

simple restructuring of generic code modules, becomes a more natural process.

The work finds that the abstraction does indeed facilitate building adaptive ap-

plications. With a simple, synchronous environment for connecting together com-

ponents, distributed applications are easier to construct and debug; furthermore,

incorporating run-time adaptiveness is simple and natural with this abstraction.

Providing clean abstractions for constructing adaptive applications entails a per-
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formance cost: each RPC method call in the 0 2S environment incurs a five-fold cost

over Sun's Java RMI. However, by separating mechanism from policy, the perfor-

mance cost only applies in the process of constructing the application circuit with

modules. Once the implementation is constructed, what matters is the implementa-

tion's execution speed, which is based on the performance of the modules and their

data stream connections. The benchmarks reveal that the implementation is indeed

fast, as the module connections are comparable to raw network sockets. As a result,

an abstraction that separates mechanism from policy provides a goal-oriented sys-

tem with a simple environment to construct new application functionality from fast,

highly parallel networks of interconnected modules.

78



Bibliography

[1] R. A. Brooks. The intelligent room project. In CT '97: Proceedings of the 2nd

International Conference on Cognitive Technology (CT '97), page 271, Washing-

ton, DC, USA, 1997. IEEE Computer Society.

[2] Andrew J. Wayne, Andrew A. Zucker, and Tracey Powell. So what about the

"digital divide" in K-12 schools? In The 30th Research Conference on Informa-

tion, Communications, and Internet Policy, 2002.

[3] Mark Weiser. The computer for the 21st century. Scientific American, 1991.

[4] MIT Computer Science and Artificial Intelligence Laboratory. Project Oxygen:

Pervasive Human-Centered Computing. http: //oxygen. csail. mit. edu/.

[5] Mark Weiser. The coming age of calm technology. Technical report, Xerox

PARC, 1996.

[6] M. Satyanarayanan. Pervasive computing: Vision and challenges. In IEEE Per-

sonal Communications, Washington, DC, USA, 2001. IEEE Computer Society.

[7] Umar Saif, Hubert Pham, Justin Mazzola Paluska, Jason Waterman, Chris Ter-

man, and Steve Ward. A case for goal-oriented programming semantics. In

System Support for Ubiquitous Computing Workshop at the Fifth Annual Con-

ference on Ubiquitous Computing (Ubicomp '03), 2003.

[8] Justin Mazzola Paluska. Automatic implementation generation for pervasive

applications. Master's thesis, Massachusetts Institute of Technology, 2004.

79



[9] Gene Amdahl. Validity of the single processor approach to achieving large-scale

computing capabilities. In AFIPS Conference Proceedings, 1967.

[10] Bruce Jay Nelson. Remote procedure call. Technical report, Xerox PARC, 1981.

[11] International Organization for Standardization. Open systems interconnection -

basic reference model: The basic model. ISO/IEC 7498-1:1994.

[12] XML-RPC Specification. http://www.xmirpc. com/spec.

[13] C. Perkins. IP Mobility Support. RFC 2002 (Proposed Standard), October 1996.

Obsoleted by RFC 3220, updated by RFC 2290.

[14] The Familiar Project. http: //f amiliar. handhelds. org/.

[15] Java 2 Micro Edition. http: //j ava. sun. com/j2me/.

[16] Sun Microsystems. Java Remote Method Invocation. http: //j ava. sun. com/

rmi/.

[17] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035

(Standard), November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982,

1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034,

4035.

[18] S Seneff, E Hurley, R Lau, C Pao, P Schmid, and V Zue. Galaxy-II: A reference

architecture for conversational system development. In ICSLP, 1998.

[19] S.C. North and E. Koutsofios. Applications of graph visualization. In Proceedings

of Graphics Interface, 1994.

[20] OpenGL Architecture Review Board, J. Neider, T. Davis, and M. Woo. OpenGL

Programming Guide. Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1993.

[21] Object Management Group. The Common Object Request Broker: Architecture

and Specification. Object Management Group, 2.5 edition, September 2001.

80



[22] J Waldo. The Jini architecture for network-centric computing. In Communica-

tions of the ACM, 1999.

[23] M Coen, B Phillips, N Warshawsky, L Weisman, S Peters, and P Finin. Meeting

the computational needs of intelligent environments: The metaglue system. In

Proceedings of MANSE, 1999.

[24] Jennifer G. Steiner, Clifford Neuman, and Jeffery Schiller. Kerberos: An au-

thentication service for open network systems. In Proceedings of the Winter

1988 USENIX Technical Conference, 1988.

81


