
Scalable
Spatially Aware Media Sharing Display System

By
Patrick Menard

Bachelor of Science, Computer Science and Engineering

Submitted to the
Department of Electrical Engineering and Computer Science

August 16, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

© 2004 M.I.T.. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
cal Engineering and

MASSACHUSETTS INSTflMJTE
OF TECHNOLOGY

JUL 18 2005

LIBRARIES

Computer Science
August, 13, 2004

Certified b,
John Maeda

4edia Laboratory
'hesis Supervisor

Arthur C. Smith
%nairman, Department Committee on Graduate Theses

Accepted by

BARKER

1

% a 6 c 2,o4

*41

Scalable
Spatially Aware Media Sharing Display System

By
Patrick Menard

Bachelor of Science, Computer Science and Engineering

Submitted to the
Department of Electrical Engineering and Computer Science

August 16, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science.

© 2004 M.I.T. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

And to grant others the right to do so.

Abstract:

The scalable spatially aware media sharing display system provides an efficient and
convenient means of harnessing media messaging in global communications. A three-
tiered system of input, control, and output creates a medium for communication and data
sharing via varied media types for relevant and enhanced contextual experiences. It is
built as a platform independent infrastructure for sharing and/or displaying various media
types onto a grid of, or singularly placed, target display nodes while accommodating
dynamic growth in its support of on-the-fly display node assimilation. The system
promotes interfacing flexibility thus allowing multiple devices, extant or yet to be, to
connect and fully exploit its capabilities. In addition, the system supports an architecture
that can accommodate loosely coupled parallel tasks thus exhibiting the qualities of a
dynamic parallel cluster.

4

Acknowledgements

I would like to thank God for all that He is and for all that he has done. Without Him, I
would not have come this far. I would like to thank my family for all of the support they
have given me throughout the years and for being family in the true sense of the word. I
would like to thank Carlos Rocha, Marc Schwartz, Noah Fields, James Seo, Hilary Karls,
Mimi Liu, and Allen Rabinovich for all of their help throughout the research period and
during the last push. You all are the best. I would like to thank Heather Pierce for her
awesome efforts and support to the group and Fred Lee for taking a last minute read.
Finally, I would like to thank John Maeda, an advisor whom words cannot describe.

5

0

Table of Contents

1 Introduction 9

2 Background 15

3 Early Experiments 31

4 System Definitions 37

5 Design 43

6 Implementation 51

7 Usage 69

8 Evaluation 79

9 Summary 89

References 91

Appendix A 95

Appendix B 124

Appendix C 127

Appendix D 128

7

6

1 Introduction

The need to effectively communicate ranks high among the list of factors a sustainable

society requires to function and survive. Communication in the form of media has been

found to perform this task with great clarity and depth of context. As a result, the

population's hunger for accessing, displaying and sharing media with family, colleagues,

businesses and co-workers pushes networking, graphics processing, and computer

technology to become faster and more reliable. In an effort to satisfy the need of media

communication, mechanisms that perform this specific task now permeate our every day

lives as evidenced by the extensive variety of and growing market for next generation,

media-rich handhelds, cellular devices, and subscription services.

The advent of such pervasive digital content creators, such as digital cameras and smart

phones, has also spawned a new problem of information overload. Their great abundance

has allowed the casual user to amass large and unwieldy libraries of digital content. In

another scope, companies that create digital content as a means for existence face this

problem in greater orders of magnitude.

Moreover, advanced or creative individuals or organizations may endeavor to produce

custom forms of media as a means of digital expression, information processing, or

communication. Such custom media may require notions of state and the ability to

execute, like a program. This kind of media also opens the door for mechanisms that can

perform a measure of parallel computation on real data sets or the ability to concurrently

perform multimedia tasks and computationally intensive jobs.

In addition, communication measures require simplicity of use and configuration in order

to be effective. A phone simply works. A television, by the press of a single button,

simply works. These are the technologies that add a level of richness to communities

without burdening them with added complexity.

V

Finally, the urgency of being connected and up to the minute motivates the need to

improve this form of communication to the point of effectively zeroing the distance

between disparate groups.

Therefore it is critical, especially in urgent situations, that mechanisms of media

communication instantaneously connect specific groups with minimal effort and boast an

efficient means of gathering, processing, and centrally storing input from multiple

sources.

Furthermore, a solution would ideally be platform independent, scalable, spatially aware,

media independent to the extent possible, and reasonably fast. In addition, this form of

communication must be able to coordinate with the various input devices that are

currently readily available and be flexible enough to accommodate and interface with

those devices yet to be developed. Finally, the interfacing and configuration of such a

mechanism must be simple and nearly effortless.

For these reasons, I have a developed a system and an architecture that can operate on

diverse media with the goals of simple interfacing and making information readily

available, easily comprehensible, and realistically portable. More importantly, it

endeavors to save time while performing such tasks. Such a system will ignite a spark

that will begin to revolutionize the way people, agencies, and businesses communicate.

Furthermore, this application doubles as a reason to attempt building a platform

independent architecture for media communication and/or parallel computation

accessible by dedicated or general communities in an effort to zero the communication

distance gap and create opportunities for use of otherwise inaccessible technologies.

1.1 Methodology Overview

My approach is to build a scalable spatially aware media sharing display system that

seeks to close the distance gap, and to provide people a means to communicate via media

effortlessly and efficiently. This endeavor involves interleaving current technologies

with new technology. Solutions for platform independence and media independence

10

have partially already been developed through technologies like Java and QuickTime.

Furthermore, the solution for closing the distance gap has been realized in the form of the

World Wide Web. Thus by combining all three technologies the system already begins

to accomplish, in theory, some of its goals.

My solution involves creating a client/server architecture that handles input requests from

various sources, processes them, and dispatches them to appropriate destinations. The

destinations are the displays that will depict the media received. These displays process

received requests and perform only those calculations pertinent to its location. Since

displays can compute, a conduit for parallel processing among display nodes for efficient

means of data manipulation is realizable thus allowing the system to take full advantage

of the displays. By dividing the task of content operation among multiple displays,

speedup in processing time can be achieved while approaching or achieving the goals

previously stated. These specifications motivate some form of configuration requirement

for displays connected to the system including and an ability for the system to realize

their existence on its network. In order to maintain the goal of simplicity and near

effortless user interfacing, the configuration is as minimal as possible leaving the bulk of

discovery automatic. Stressing the ability to accommodate multiple clients on multiple

platforms also requires a mechanism for assimilating many potential displays as nodes

and making the system scalable.

In addition, handling requests from multiple input sources necessitates a protocol of

communication between the system and these sources that adheres to platform

independence and tolerance of deviations. In other words, the system should allow users

to submit various media of differing complexity and area using a systematic foundation

that can support such interaction. This implies a structure of communication similar to

that of the Internet yet not as rigorous. In essence, data sent and received need to be sent

in packets of bytes enclosed in a header and footer. The central core of the system would

then need to read the header and decipher the data in accordance to the header's content.

Finally the core would assemble another communication data slice with header, data, and

footer pertinent to the destination stations to which they belong. Since the system is in

11

Java, Java-enabled devices can easily plug in by relying on existing Java mechanisms on

top of TCP/IP and need not utilize the low level super controlled protocols.

Another important aspect of the system is stability and reliability. By using a

client/server model in my approach, the system can and must handle multiple requests

cleanly and properly. It must do so in a manner that isolates multiple requests to promote

fault-tolerant behavior. Furthermore, the system must be able to heal itself if any of its

components do go down. This healing must occur mainly on two fronts: the core and the

destination nodes. These two aspects of the system have the potential to be running non-

stop for days. Thus resource allocation must be correctly handled as well as cleanup to

ensure smooth operation. Also, the core must be able to detect any disconnections from

both input devices and destination nodes and update its state respectively. Destination

nodes themselves must be able to detect if the core goes down and cleanly disengage to

protect against leaks and allow for reconnection.

1.2 Thesis Structure

The rest of this thesis will contain more in-depth discussion on precedents, the system

itself, design and implementation, evaluation, and other particulars of the system. Some

of the concepts that will be discussed in or arise from this thesis are Shared Display

Spaces, Media Clustering and Messaging, Ubiquitous Multi-interface Access and

Control, Auto Discovery and Zero Configuration (Rendezvous), Node Assimilation,

Distributed Computation, Sensor Networks, and Remote Administrator Control. The

following chapter breakdown will expound on the stated goals of the research:

Background discusses past and recent technologies and precedents related to the

endeavor of communication via media and its efficiency and impact both on

society and the contents of its discourse as well as shared vehicles of expression.

Early Experiments will discuss previous systems I have developed that in whole

or in part deal with sharing a space for expression among multiple users, a

i2

mechanism by which to do so, and an interface that encourages simplicity and

ease of use.

System Components presents a discussion on the various components of the

system providing definitions as a foundation for discourse on the further

particulars of the system design and implementation.

Design will present a high level description of the map of the architecture

detailing the major tiers and communication protocols as well as mentioning

specific data structures used in the design endeavor.

Implementation discusses in depth the specific components and framework of the

system, including data structures and algorithms.

Usage will provide a framework for areas where the system has or can be used as

well as extensions to the system or parts of the system to accomplish other

creative or necessary tasks.

Evaluation provides comparisons to other systems, specific achievements of this

system as well as its shortcomings, and a discussion of suggestions and future

work to improve the system.

i 3-

14

2 Background

This chapter is broken into two sections: Precedents and Related Work. In the first

section I will present technologies that have reshaped communication, user interaction,

and community interaction and act as precedents for the further enhancement of media as

a form of efficient communication. The second section will discuss specific related work

that either motivated my own work or seeks similar goals either in whole or in part.

2.1 Precedents

Many precedents exist revolving around media as a means of communication to bring

communities together for aesthetic, informational, recreational, or educational needs.

The three I will present include television, interactive entertainment, and the World Wide

Web. All three have revolutionized the way people in all walks of life, even nations,

communicate, interact, and learn.

2.1.1 Television

Today we have, in a sense, the transmission of sight for the first
time in the world's history. Human genius has now destroyed the
impediment of distance in a new respect, and in a manner hitherto
unknown. - Herbert Hoover [39]

Herbert Hoover, then Secretary of Commerce, spoke these words on April 7, 1927 during

the first ever demonstration of electromechanical television broadcast in the United

States, second to an earlier demonstration by Scotland's John Logie Baird on January 26,

1926 [39,40]. Witnesses of this feat had an idea of how important this achievement in

technology was and would become, but there is no way they could have guessed just how

immense and pervasive such an achievement truly became. The invention of the

television sparked a new era in communication that would forever change how people

interact and acquire information, much like the telephone invented four years prior had

15

done. In fact, the first transmission used teleph one lines as its conduit, followed by radio

transmission of the broadcast shortly after.

Figure 2.1: Herbert Hoover Figure 2.2: AT&T's Walter
giving the address [39]. Gifford observing Hoover via

television [39].

Hoover, as well as the scientists and reporters, understood that the distance gap between

two communicating parties via visual means had then, at that instant, been virtually

eliminated. An article in the New York Times covering the event commented that "time

as well as space was eliminated" while expressing how taken by the spectacle witnesses

must have been in not only hearing the words forthcoming, but seeing the changes in

Hoover's facial expressions -- at virtually the same instant the very person next to Hoover

heard and saw his words and expressions [15]. The mere ability of sight added valuable

context to the speech being delivered thereby conveying significantly more information

than hearing alone could have done.

Shortly after the first transmission, Philo Taylor Farnsworth developed fully electronic

television eliminating the need for mechanical intervention [38]. This great feat was

followed by color television, among other things, and the first transcontinental broadcast

on September 4, 1951 of President Harry Truman's address to the United Nations [39].

Witnesses and viewers as far as England could tune into the broadcast being sent from

San Francisco. As time passed, the technology only became better, more accessible, and

exceedingly adept at depicting visual information in greater degrees of definition and also

leaping over the problem of distance for world communication. Specifically, the advent

of satellite television broadcast allowed audiences in England and France to see a press

conference conducted by President Kennedy and those in the States to witness "French

16

singer Yves Montand and the changing of the guard at England's Buckingham Palace"

live [39].

In other words, communication via media had become essential to the task of affording

people instant access to important events occurring in the now as well as allowing the

sharing of cultural talent and/or way of life, live and in living color. Such a scope

enhances the experience and information gathering many fold. One would be hard

pressed in this day an age to find a home without some form of television present. The

medium brings families together for various activities such as major sports coverage,

world premieres, home movies, and learning (from sources like the Learning and

Discovery channels). Media is so designed as to make even the dullest subject

interesting.

Television has also allowed people, at least here in America, the ability to experience in

some form events they would not otherwise have seen or experienced. Televised war

emerged with the Gulf War in 1991. With Operation Iraqi Freedom in 2003, the advent

of 24-hour war coverage entered our society. People at home could now follow the war

as it unfolded, literally at the instant events occurred out on the field - something never

possible before [26]. This resulted in people being more knowledgeable about current

events and the impact actions in government, various agencies, and people were having

on the world. In addition, it afforded more people access to such information and the

reality of war staring them right in the face as best the News stations could possibly

deliver.

Since the advent of this medium of media communication, efforts to amplify that form of

communication immediately became necessary. Aiding in the current success of this

platform is the fact that, plainly, television works. One need only turn it on, blowing the

floodgates open and allowing a rush of communication and information to pour through.

Simplicity.

17

2.1.2 Interactive Entertainment

Interactive entertainment indirectly began in 1952 when A.S. Douglas, as a mechanism to

demonstrate his thesis on Human Computer Interaction, constructed a graphical version

of Tic-Tac-Toe. At MIT, Steve Russell and a group of students further pushed the idea of

video games in 1961 by developing Spacewar, a game that set two players against each

other [23]. It was with Spacewar that this new medium of interaction began to be

noticed. Much later, arcades were being developed and placed in numerous locations

including bars, restaurants, and of course arcades. As further advances in technology

emerged, consoles that attached to the television and used it for gaming began to surface.

The industry really took flight when Nintendo and Shigeru Miyamoto emerged on the

scene [23]. When the Nintendo Entertainment System (Famicom in Japan) was released

in 1985 for US markets, a gaming culture movement began to sweep the nation and many

other areas of the world.

(a) (b) (c)

Figure 2.3: (a) Nintendo's Super Mario Brothers [42]. (b) John Carmack's DOOM [27] (c) John
Carmack's DOOM 3 and his new technology pushing lighting effects multiplying in game realism [7].

Since interactive entertainment began to emerge as a hotbed, its consumers demanded

and expected enhanced control, enhanced graphics, enhanced physics, and enhanced Al

with every new game released. Such a market, in addition to pushing advances in

technology, continually pushes advances in graphics and the display of such media

beyond any apparent limits. Consumers wanted more realism both in interaction and

experience. This is evidenced in the past by John Carmack's DOOM and in recent

history by Rare's Donkey Kong Country and John Carmack's DOOM 3 [23,28]. DOOM

18

revolutionized gaming by introducing 3-Dimensional environments in first person style

on machines barely capable of such processing. The significance of this feat expresses

itself by immersing the user in more realistic environments so much that turning a corner

could cause a person to jump out of his or her seat in fear - for a second.

Soon other industries, even the government, took notice of the potential of the medium as

a training mechanism or its technology as a means for immersive exploration. The US

government commissioned Ed Rottberg, creator of Battlezone, to develop an enhanced

version of the game for the purposes of military training. The military also used John

Carmack's multiplayer DOOM [29,28]. The graphical engines of such games became so

advanced that architects began using them to explore designs before embarking on their

actual physical creation [28].

Besides use as military training, interactive entertainment is also used in some forms of

education as well as professional training:

We see games as enhancing the capabilities of gifted teachers, not
displacing them with impersonal machines. Yet, games do offer
teachers enormous resources they can use to make their subject
matter come alive for their students, motivating learning, offering
rich and compelling problems, modeling the scientific process and
the engineering context and enabling more sophisticated assessment
mechanisms.

- MIT Professor Henry Jenkins et al [16]

The capability of interactive entertainment to turn dull content into exciting experiences

or merely enhancing an instructor's ability to convey information resides in its ability to

immerse a user within the game world captivated by the visuals, the gameplay, the fun

factor, and its competitiveness. Companies such as Walmart have commissioned

developers to create specific interactive games to teach management how to run a center.

Such games are targeted at older audiences in an effort to convey concepts and skills of

management, public policy, and health [9,11].

In addition to emerging as an excellent medium for conveying information, the very

worlds exist as places for shared interaction. Massively Multiplayer Online games

leverage the connectivity of the network to bring together people from all over the world

into one massive shared realm. In this world, game state is persistent and thus

approaches the reality of scarce resources in the real world. People engaging in these

types of games create vast new societies, orders, and laws of existence. Such shared

spaces have the power to bring people together in constructive ways enhancing their

quality of life and network of friends. Other games, such as Dance Dance Revolution

bring on masses of people together in the real world to try their hand at outperforming

any dancer who dares step up to the plate or to simply view the spectacle of competition,

much like a battle does in the break dancing arena.

For this medium to succeed beyond visuals and the ability to immerse users, the method

of control had to be such that anyone can partake in the experience. Like the Television,

creators of this medium designed controllers with the minimum amount of buttons

necessary that still allowed immense and yet to be imagined control within a gaming

environment. The user interface had to be simple if the medium hoped to reach the

masses.

2.1.3 World Wide Web

The World Wide Web, an invention developed to enhance the capabilities of the Internet,

spawned a vehicle of communication changing all facets of society. The Internet itself

was born out of the military's need for and necessity to share information and new

technologies readily, easily, and securely to many users at once and quickly [3]. The

Advanced Research Projects Agency Network (ARPANET), as it was called went online

in 1969. It was based on a packet switching network that allowed a system to conduct

communication with more than one machine [3]. Without getting into the specifics of the

protocol, a designer, Paul Baran, submitted several proposals fleshing out the system and

its behavior, specifically the use of a decentralized network that allowed for multiple

paths between machines or contact points and dissecting of network messages into

20

packets (which he called message blocks) [3,34]. Such a system would eliminate single

points of failure and allow the network to possibly heal itself or protect itself from heavy

attack. Since messages were broken into packets, it would be possible to reconstruct the

messages since entire messages would not be lost in the event of dropped packets.

Redundancy was a key aspect of this design for reliability and sustainability [32].

Robert E. Khan, commissioned with the task of somehow connecting the various

protocols that emerged from ARPANET within ARPANET, later redesigned the network

moving the responsibility of reliability from the network itself to the hosts. Khan and

Vint Cerf were able to strip the network down to a bare minimum thus allowing

connections between any two networks without requiring knowledge of their sub-

networks [22]. This allowed for greater breadth in information sharing.

Since the early internet was a government funded project, its use was restricted for purely

non-commercial purposes, i.e. sharing of research between various universities, agencies

and companies aiding in the further development of the net or otherwise important

technologies. Thus the focus of the Internet remained as a mechanism of communication

for the sharing of vital information and the increase in knowledge of all included parties.

The other goal of the system at this point and previously mentioned was reliable

communication and information sharing to multiple parties at once, quickly and

efficiently.

The World Wide Web emerged in 1989 as Tim Berners-Lee envisioned a scheme that

would make document location and viewing easier. This vision, again, grew out of a

necessity for him and fellow physicists to share relevant information about their

respective research endeavors. His project caused the development of the uniform

resource locator, the hypertext markup language, and the hypertext transport protocol

(URL, HTML, and HTTP respectively). The genius of this invention lay in its simplicity

of use. A document anywhere on the web could be located with one line of text.

Furthermore, it was backwards compatible with its protocol predecessors. HTML itself

2i

allowed documents to link to yet other documents quickly multiplying the usefulness of

the web as a communication mechanism [22].

Despite these feats, the World Wide Web was still lacking, as all information was purely

textual. Eventually people figured out that HTML could also be used to embed media

such as graphics. From that point on, both the simplicity of its design and focus as an

information-deploying medium coupled with ease of document creation and linking

caused the web to grow exponentially.

Two recent important instances tested the web's stability as well as its viability as a

communications platform. The first was the dot-com bust of 2002 that caused may

independent service providers and telecommunications carriers to bottom out. Despite

the losses of these carriers, the Internet itself remained intact successfully demonstrating

its level of fault tolerance and redundancy [25]. The second incident involved that fateful

day, the events of 9-11. On that day, many people frantically turned on televisions and

radios. Many others flocked to the web in order to find more information on the state of

affairs, some with even more urgency than others. Search engines, traffic directors if you

will, were used then to point people to the most up to date information. After all, these

mechanisms "know" more of the web than can any single person. A staggering 6000

users per minute anxiously pegged Google's search engine just to find CNN. How many

more per minute sought other queries? This sudden need for information proved the

medium a necessary mechanism in the eyes of the people for information (as well as

Google being viewed as a trusted source to return the most relevant links possible). The

event actually triggered a change in Google's strategy of being search king in ways that

would further facilitate the discovery of relevant sites and information regarding breaking

news. This incident also tested the ability of the Internet to re-route data amidst broken

or downed links due to network overload [35].

22

Figure 2.4: Wikipedia screencap

Today, many technologies (such as Flash, Shockwave, Streaming Media, and Java Script)

have been created in order to enhance multimedia expression via the web. Not only has it

grown as an important medium to research topics of interest and a source for news, it is

also used for many as a source for connecting to peers, friends, family, and the world as

well as a place to conduct business. The emergence of numerous weblogs and wikis

attest to the inherent desire of people to collaborate on shared spaces and provide graphic

media to tell a story or convey the context of an experience. Weblogs are a form of

online journal that can be personal or collaborative, even topical, and allow users to post

content in an effort to communicate and keep people informed and up to date. Wikis are

similar to blogs in regards to collaboration, however they endeavor to provide specific

"peer reviewed" content. Wikipedia, a free online encyclopedia, is a prime example

where people the world over can add relevant content to grow the encyclopedia while

others check the validity of the content in effect creating an ultimate form of shared

information with contributors from all walks of life, positions, authority, and renown.

Every piece of technology discussed above with regard to this medium, even the medium

itself, grew out of a need to easily share information with many people, quickly and

efficiently, and with guarantees of stability, robustness, and sustainability. At the same

time, it was pushed to new heights with the need to use media as an effective vehicle of

expression.

23

2.2 Related Work

In recent development, many projects either from industry or academia that revolve

around media messaging, shared displays, and both local or distributed information

processing and sharing have surfaced. The following projects or products provide a basis

and motivation for my work. Each touches on an aspect of my system and seeks to

accomplish the specific goal of simplifying or pushing media communication.

2.2.1 Macromedia

Macromedia developed Macromedia Flash Communication Server MX as a tool for

enhanced communication between two sources. This solution allows for the use of text,

graphics, audio, and video during communication. Furthermore, the solution uses current

technology (such as the web) as a point from which to build their technology. The

solution involves web interfaces for the parties communicating using Macromedia Flash,

the Communication Server to handle the processing of text, graphics, video, and audio,

and a database for storing data to allow sharing and a distributed structure. For

networking, Macromedia decided on using Real-Time Messaging Protocol (RTMP)

whose purpose is efficient message passing and synchronous feeds among multiple

clients. In order to form a sense of media independency, Macromedia used a video codec

developed by Sorenson Media and an advanced audio codec. It appears Macromedia also

aimed to make integration easy with other technologies making the technology more

powerful as a tool capable of being used anywhere. Macromedia's packaged solution

concentrates more on the ability to send live video synchronously to one or multiple

recipients to aid in communication between the parties performing a task and zeroing the

distance gap. By building upon their existing Macromedia technology, the system has

the added benefit of ease of implementation. People already know how to use

Macromedia. Now they can use it as a basis for communication in conducting business

and sharing data [17].

24

2.2.2 UCP Morgen

UCP Morgen has developed a media messaging solution for mobile phone devices that

allows messaging with photo, audio, and multimedia. Users can compose messages that

incorporate all three into a single message and send it to intended targets. The solution

also allows users to compose these messages on a website and send them to mobile units

via the website. UCP Morgen's technology is a feature rich solution allowing users to

perform other tasks such as sound composing. The solution also involves storage of

media messages to some central location accessible by the web and attempts to interface

with existing technologies in order to expand its potential capabilities [4]. The system,

however, appears to be E-mail taken to the next level. It functions as a method of

communication whose primary target is mobile-to-mobile communication. Like E-mail,

this is a personalized system.

2.2.3 InFocus LiteShow

InFocus LiteShow is a new system enabling digital projectors to be accessed via wireless

protocol (IEEE 802.1 lb or Wi-Fi). The system allows present connectable devices

running the LiteShow mechanism to automatically discover InFocus projectors. Such a

system can speed up and change the concept of presentations especially concerning

conferences and institutions of learning. Laptops have essentially become mobile devices

especially in the communities previously mentioned. When these people are gathered

together, the LiteShow technology can help these groups avoid the bottleneck of

physically hooking up devices to a projector for the purpose of presenting projects,

design concepts, and proposals. The solution also employs a notion of users and

authentication giving projectors access control limitations [8]. In a nutshell, this

technology creates an environment for communication among multiple users located in a

central location using a shared display device.

U

2.2.4 Stanford Graphics Lab's Multi-Graphics

Stanford Graphics Lab's Multi-graphics project seeks to create a scalable graphics system

for clusters. It sought to use parallel computing to speed up graphics rendering for tiled

displays and/or interactive murals. In order to perform the task of separating computation

at a low level, this solution is closely linked to hardware. By harnessing the graphics

card, the process of rendering and computation can be sped up by assigning specific

graphics cards tasks related to the display device to which it is attached. In addition, the

system aims to accept input from multiple applications issuing graphics streams. In order

to handle such communication, the system requires that each stream insert

synchronization commands (since each stream uses a different graphics context). The

system then receives these streams, reorders them, processes them, and produces the

desired output [21]. WireGL, an extension to this project, seeks to ensure shared

usability of scalable displays by unmodified existing applications. Doing so opens the

door for simple interfacing by many potential user groups. WireGL accomplishes this by

standing in for a system's OpenGL driver. Thus, the function of translating graphics to a

scalable display is transparent to an application [24].

2.2.5 POOCH

Dauger Research, Inc.'s Parallel OperatiOn and Control Heuristic application (POOCH)

is a system that networks Macintosh computers together to unlock the power of parallel

computing resulting in high performance processing. Its primary goal is to simplify the

task of initiating a parallel computing context and facilitating its construction using one,

two, or multiple nodes. Part of the implementation uses Rendezvous networking, a

technology allowing auto discovery of nodes connected to a local network. Jobs are

distributed across nodes as they hop onto the network reducing the time required to

perform the total computation for a given problem. NASA and other organizations and

institutions of research are currently using POOCH's abilities for its simplicity and

usability. POOCH also utilizes the Message Passing Interface (MPI) [12].

2.2.6 Xgrid

A very recent development from Apple and first announced on January 7, 2004 with

preliminary documentation on March 17, 2004, Xgrid endeavors to provide a simple

mechanism to harness the power of parallel computation among Macs on a network [44].

In that respect it is similar to POOCH. Utilizing Apple's zero configuration scheme,

Rendezvous, Xgrid is able to create spontaneous clusters to perform arbitrary

computations [10]. It is composed of three parts: a client, a controller, and an agent. The

client functions as the request mechanism, the controller as the dispatcher, and the agent

as the computation node. Xgrid is designed for batch or workload processing [45]. In

other words, the more embarrassingly parallel the problem, the better. Since it is not

dedicated to specific tasks, it in theory can support any kind of embarrassingly parallel

type of computation [10]. It is also not limited to locally networked computers (which

harnesses the power of Rendezvous and zero configuration) but can accept IP specific

destinations to access machines in the wider web [45]. This technology is still under

development and is currently more suited to scientists and researchers performing

computation on large datasets.

2.2.7 Extreme Thumbnail Generator

This program gives a user the ability to create thumbnails of digital libraries residing

locally on user machines. It also allows users to create potentially stunning online

thumbnail galleries. This glorified GUI supplies the casual user with engaging and

visually appealing customizable templates. The interface focuses on simplicity to

eliminate any need for programming knowledge. It supports the common image formats

(jpg, gif, bmp, tiff, etc.) and also provides some image editing.

The application boasts numerous possible functions aimed specifically at information

portability. It can be used for a variety of applications like online catalogs, goods and

services presentations, picture galleries, family and wedding albums and even marketing

materials. This application costs $34.95 and can be used as trialware for 20 days. For

27

handling jobs locally and abstracting away complexity for users wishing to create web

pages and a variety of other utilities, this application performs the task. Unfortunately it

is not free and only operates on the Windows platform. It is also not designed, so it

seems, as a tool for simply churning out thumbnails as a unique goal. As a result, for

exceptionally large tasks, this generator may not be optimal.

2.2.8 Thumbnail Generator

Developed as a script that uses the Image::Magick module, the Perl version of a product

with this name allows a user to create thumbnails of local images with specified

conditions such as aspect ratio, custom sizing, filename augmentation, and local storage.

This application's aim is to churn out thumbnails at the behest of a user. Since it is in

Perl, it functions as a command line interface and likely fancies programmer type

individuals. However, being command line operated, the application achieves extreme

simplicity and extensibility for scripting applications. By lacking aesthetic quality, the

thumbnail generator is very small with regard to file size. However, it does require users

to have the optional Perl package Image::Magick. This software is free and runs on

Linux like platforms. As a Perl script, the program lends itself more to churning out

thumbnails in large quantities. Multiple files can be processed in one call by using the

Linux wildcard operator ("*") however it is not clear whether or not the program can

operate recursively on directories. Again, this program operates serially on a given input.

Similar to the Perl thumbnail generator, the C# application has the ability to generate

thumbnails from a large input of various images. In addition, this application can convert

a large body of images from one file format to another and support multiple languages.

The application boasts a very simple GUI interface again attempting at abstracting away

complexity. It is unclear whether or not this program can select directories or

recursively generate thumbnails among directories. This software is freely available as

well as its source. Unfortunately, the generator also only operates on the Windows

platform. The design seems to be focused a little more on interaction than pure

compression (though much less than the Extreme Thumbnail Generator). The

46

performance on massive digital libraries, as a result, may not be as optimal. This

software does not support any remote uploading or downloading.

2.2.9 Ximage Thumbnail Generator

This is an ASP.NET script that takes as input a URL, along with desired width and height

dimensions, and outputs a thumbnail. The form of output is uncertain since the

developer's site seems inaccessible. For this reason, it is also unclear about the

processing ability of this software. Since it takes a single URL, it is likely to perform

tasks one image at a time. On the other hand, if it employs crawling, it may be able to

take in a large input. The free software operates on both Windows and Unix platforms.

Unfortunately, it seems to be non-existent.

2.2.10 IrFanView

IrfanView is a fast, small, and compact graphic viewer for Windows

9x/ME/NT/2000/XP. It supports a thumbnail/preview option and batch image

conversion. It is not clear whether the thumbnail/preview option is thumbnail

"generation" or merely a thumbnail "preview". If generation, it is not clear in what

quantities or what scale. The killer aspect of this application is its vast support for

multiple image, audio, and video formats. The closest to an all in one application, this

software exhibits media independence and freedom of creativity. For designers, this is a

great tool requiring hands-on interaction. For massive jobs, this software will not be

ideal. It is free for non-commercial use and runs only on the Windows platform.

29

30

3 Early Experiments

In this chapter I will present earlier experiments that shared, to some degree, the goals or

components of the current system. The Textscape was a project aimed for deployment on

the web as a multi-user shared space for story telling, world constructing, and community

building. The Media Sharing project was a precursor to the developments of this thesis

testing the viability of a Media Sharing framework in a local area context. OpenGL

Sharing is an extension to the Media Sharing framework aimed at giving a user precise

control over interactive elements across multiple computers.

3.1 The Textscape

The Textscape was initially conceived as an interactive outlet for creative textual

expression in the emerging OpenAtelier Global Studio birthed within the Aesthetics +

Computation Group and continuing in the now renamed Physical Language Workshop.

It sought to connect people from all over the world in a way that sparked imaginative

thought while maintaining simplicity. Modeled after Multi-user Dungeons (MUDs), The

Textscape would run on the web itself via python and cgi technologies and providing the

illusion of state. The game world, as well as user state, would reside on the server. The

two main reasons for keeping everything on the server were first to force development to

be as lightweight as possible stripping away any unnecessary code, and second so that the

system simply worked - like television. No further installation or instructions would be

required other than to point ones browser at the site, and type a natural language

command into the user input field.

31

Figure 3.1: Screen grabs of The Textscape including registration, login, in game, and welcome
screens (clockwise starting from upper left).

The difference between this system and the already established MUD was its focus on

world creation by the community itself. Not entirely game and not entirely chat, this

hybrid sought to merge the two in the hopes of creating a community sustaining and

persistent realm. Users were given the ability to create items loosely described as objects

and rooms. With enough creativity, a user would be able to create any kind of object.

Rooms themselves could be s rooms in the natural sense of the word, hallways, or vast

open spaces. Furthermore, any user could interact with these objects and locations, create

rules for interaction, and develop story lines for interactive use by yet other users.

Since the system mechanism allowed for collaboration, there was a vision that constantly

growing and intertwining game environments would ensue. In addition, other users could

edit created objects and rooms once the primary creator let the object loose in the world.

Designed for simplicity, navigating the world took the form of a single input text field

and submit button. A pseudo-natural language engine was written for the system to

facilitate transparent user interfacing.

This system provided insight into using the web as a medium for shared activity and

ways of providing such functionality to many concurrent users.

3.2 Media Sharing Version 1

32

The first incarnation of the Media Sharing System acted as a mechanism for local area

systems to share images and video quickly and easily. It is based on the Rendezvous

technology for automatic discovery of potential client machines. Rendezvous is a

protocol designed by Apple that allows computers on the same local network to discover

services being published by other computers transparently to a user. By doing so, no in-

depth knowledge of networking is required on the part of the user running an application

utilizing Rendezvous. Instead, the application simply works as if by magic.

Because of Rendezvous, this system was limited to sharing media with computers locally

present on the network. However, simplicity of utilization was supreme. Users could

drag and drop images on their local machines into a sharing window. If the user wished

to share the media with people on the network, he or she would then click a button that

would initialize that process. Computers on the network would resolve this service and

immediately load the image automatically.

Once this form of sharing was established, the system was augmented to allow the

sharing of movies in addition to images while using the same display mechanism for

both. In order for this to happen, the display end of the system was augmented to use

QuickTime in the view window due to its support for multiple media formats.

The next step in the development called for scaling the shared media across computers

structured as a grid. This endeavor would bring about the notion of a shared display

space. The goal was to take an image and, by scaling across multiple screens, elicit a

new kind of user experience from the reality of the image's immensity.

33

Media Sharin

Feiurye 3.2(Th iInrl~ne' late Fur 3.:Gre hto afl cenot

Select Fl

Target iNode

NOWE

tnicr An Noce i1)

Add Node Delete Niode

Figure 3.2: The iControlCenter's controller Figure 3.3: Screen shot of a full screen output
interface for the iNode array. client display of an iNode station.

To accomplish this feat, the two parts of the system became a control center and an iNode

display client. The Rendezvous scheme itself was mutated in a way to change the model

from the control center publishing as a sharing service to the nodes themselves publishing

as display services. In this way, the control center converted to a pointing device rather

than a pointed to device. Zero configuration still surrounded the system, but by allowing

the nodes themselves to publish under different names depending on the context, the

control center gained a measure of targeting control over which nodes received media,

counter to the free for all architecture of the previous incarnation.

In addition, the design endeavored to remove the need for the control center to know the

exact configuration of the grid. All it would need is the knowledge that the computer

existed on the network. The nodes themselves kept track of their position in the grid thus

exhibiting spatial awareness. When a user at the control center end decided to share

media across all of the nodes, the nodes themselves would interpret how to go about

breaking up the media. A user could easily scale media across the whole array, or send it

to be individually displayed. The ability to scale a movie across the screen had not been

implemented.

The problem with completely isolating the control center from spatial knowledge

surfaced when the idea of sharing the media to different configurations within the same

grid emerged. Since the control center had no knowledge, it could not give some form of

34

direction or hint to the nodes themselves. This would then require the nodes themselves

to adopt a more complicated scheme of spatial awareness. Other problems with the

system were limitations on number of times media could be shared. The underlying

scheme of publishing, discovery, and resolving mandated by Rendezvous apparently had

limits on the number of times a resolve could occur. Once that threshold was reached, no

more media could be shared until the control center itself was restarted. The application

was also limited in its scope. Since it was being developed as a scheme for sharing media

locally, this was not much of a problem only a result of a design decision.

This system succeeded, however, in hiding the complexity inherent in the networking

beneath the hood from the user. Instead, a user could concentrate on how exactly to

make best use of the new visual display medium rather than figure out how it works. One

could, among other things, create some intense pattern of sound, imagery, and video to

overload the senses of an audience thus creating a masterpiece.

3.3 OpenGL Sharing

The OpenGL Sharing system utilized Media Sharing technology to demonstrate the

possibility of explicit user control over more dynamic data in a local area context across

multiple client machines. The development of this system also motivated the design of

an improved grid structure software representation for the spatially aware context.

Figure 3.4: To the left is the physical array simulator.
To the right is the OpenGL sharing controller.

35

Before embarking on building the system using real nodes, a simulator was used to

improve preliminary designs and algorithmic implementation. This simulator provided

16 "screens" that represented the physical array present in the lab running in full screen

mode. A simple triangle was used as the graphics object for proof of concept. Its

variable parameters included the triangle's three vertices and its degree of color fade.

The control center kept track of user mouse input and interaction and sent the coordinates

and state over to available clients. These clients then used the data to emulate the user's

desired movement on to the scaled version.

This interaction gave new life to the array. It seemed to breathe rhythmically due to the

fading animation of the triangle and respond clearly to user input. It also gave the user a

sense of power over something quite large and in full view of any onlookers.

Furthermore, it simply worked. The only actions required by the user were pointing,

clicking, and dragging.

Later, this system was augmented to handle slightly more complex shapes and parameters

in order to test the mechanism of scaling. A problem barely noticeable in the simple

triangle version emerged clearly. The problem involved the viewing angle on a scaled

and translated graphics object. As the new complex object rotated on an axis, pieces of

the object would appear on screens when they should not. Furthermore, the interface

between nodes left a non-continuous gap that, when viewed up close, resulted in a non-

uniform onscreen object.

The other introduced complexity was the coordinate system. As it stood, each client

required a configuration file giving it offset information in order to describe its location.

If the configuration grid were to change, so would these offset parameters and by hand.

Thus updating the system would prove more difficult than necessary as opposed to how

simple a user could control the system once configuration was complete. Although

scaling was plausible within a specific grid structure, the system itself would not be able

to scale as easily.

36

4 System Definitions

The system is described as a scalable spatially aware media sharing display system. This

chapter will explain exactly what that means and present various components of the

system in an effort to define terms that will be used in the rest of the document. In short,

scalable increases the scope of the system, spatially aware increases the complexity of

implementation, and media sharing defines the content of communication. Additionally,

the system is comprised mainly of three parts: the input client, the output client, and the

control center server. These three provide a basis for the whole framework of media

based communication independent of platform and user location.

4.1 Scalable

Scalable is defined as the ability of the system to expand by incorporating more nodes

into its network of control. In essence, these added nodes become acting agents

dedicated to the system. Thus, potential output clients (see Section 4.6) that register with

the control center server (see Section 4.7) become assimilated into the system as a form

of output device for the control center server (see Figure 4.1). Depending on locality

setup and purpose of use, the entity wishing to install the system can potentially control

as many output nodes as he or she sees fit. He or she can decide to add more nodes to the

network or remove them from the network. As a result, the system must be able to detect

such changes and reconfigure itself without the need for administrator intervention.

New York Tokyo Madrid Figure 4.1: Output clients
2 F2 min three locations connect

Output Client Li] I L I L [A to the Control Center
S mmServer with the assigned

- Eljj~jJ [Ej E 1-3 1 Fidentification numbers for
relative spatial awareness.

Network

tLZControl
Center
Server

37

4.2 Spatially Aware

Spatially aware, in this system, is defined as the ability for output clients (see Section 4.6)

to know, in some sense, where they are located in relation to the other nodes on the same

network. This points at an ability to cluster output nodes according to a user's input

request. Thus, location specific messaging is a feature supported by the system.

Location is relative compared to the other nodes (see Figure 4.1). A user setting up the

system would be required to setup display nodes with a name and identification number.

If the desired setup is, for instance, a 4x4 grid, each output client should be given an

identification number from 1-16 left to right starting in the upper left corner. In this way,

the control center server can have some sense of where output nodes are in relation to

other nodes. Combined with the term scalable, the union suggests an ability to spread

computation across various selected nodes and the ability to display information that is

pertinent to each node. In other words, each node can potentially be accessed exclusively

as single entities, single entities in a cluster, or combined to form one "single" node in a

cluster.

4.3 Media Sharing

Media sharing is defined as the act of allowing multiple users access to one's media or

the act of sending one's media to another. The content and methodology of

communication is then scoped by this term. The system allows for communication of

media types that include text, images, and video. Sharing implies the ability of users to

broadcast their own media to the network and determine whether or not they would like

to grant others access readily. This in turn suggests a mechanism for storage of media

traversing the system. It does not, however, suggest a requirement of logging into the

system as specific users. It instead suggests that any user (in this case input client) can

send a request to the control center server thereby allowing ease of connection and

sharing of data.

38

The ability to store data by media sharing involves the control center server maintaining

some sort of database of transactions crossing the system and a naming scheme to protect

against collisions. Furthermore, this storage mechanism should be able to handle

updates. The file lookup must then be somewhat sophisticated. In order for saving and

lookup to operate correctly, feedback should be sent to the user making the request. For

instance, if the naming mechanism changes the name of a file sent to the system to be

stored, the user must be notified so that a future access to that file will result in the

correct lookup on the user's part. A possible extension to the storage mechanism is to

allow for deletions as command from user space (this would require a notion of unique

users, permissions, and more complex security).

4.4 Display System

First and foremost, this system is a display mechanism. The generic term of display

defines a context of media independence. In other words it points to the capability of the

system to display various media types ranging from plain text to custom programmable

media.

4.5 Input Client

Input clients are defined as those devices making requests to the control center server

touched on in Section 4.7. Input clients are also required to have a method of network

communication. Although TCP/IP is the foundation, the means of connection to the

control center server is device independent. Input clients can be any network accessible

devices ranging from desktops to portable computing machines, even cellular phones.

An interface for control, on the other hand, can be device dependent as long as it adheres

to the communication protocol of the control center server (see Chapters 5 and 6). As a

consequence, this allows users to implement their own control center server

communication protocol compliant control interfaces. In addition, current technology in

the form of E-mail can be used as a middleman between input client and control center

server. Since E-mail is already heavily used in society, interfaces for E-mail are tried and

39

tested hence reliable. E-mail's very nature is network communication. As a result, it is

an exceptional interfacing tool to the control center server and obeys a well-defined

protocol that can be exploited by the control center server. It follows then that any E-

mail compliant device is control center server compliant. Finally, although the system is

Java-based, input clients need not run Java if adhering to the protocol. However, being

cross platform, Java allows a notion of platform independence.

Figure 4.2: Possible input client devices

4.6 Output Client

Output clients are those devices that can be used to display various media while

preserving their status as an output client. It is important to mark a distinction between

output clients and output devices. Output clients have a CPU, some kind of operating

system, and an ability to execute Java and QuickTime and handle network connections.

Output devices can use or be used by output clients (i.e. a projector can be hooked up to a

output client in order to enlarge its view).

Having the potential to run continuously for days requires a level of resource

management to maintain high performance and correct output. As a result output clients

must be able to reclaim resources to maintain maximum execution efficiency. This must

be done as transparently as possible. In other words, a user viewing the output client

should not notice a self-preserving maintenance operation executing. One approach is to

have output clients shutdown and restart while masking the shutdown from an observer.

Furthermore, in the event of a crash, they should be able to come back alive and regain

some notion of state, continuing as if nothing had occurred. It might be helpful to think

of an operating system that handles switching from process to process and masks this

implementation from the running processes. Performing this task requires a sense of state

40

to be kept by each display client and a mechanism for restoring that state in the event of a

crash or maintenance reboot.

Output clients must have some measure of configuration: at least a name and a control

center with which to connect. Optional configuration mechanisms will be discussed in

Chapter 5.

The sole function of the output client is to obtain commands from the control center

server, parse them, execute them, and stay alive as an entity on the network (see Figure

4.1). This execution affects what the output client displays. Depending on various

parameters received in the command by the control center server, an output client will

know if it is to function as a single entity or part of a cluster. As a single entity, any

media passed to the output client is displayed in whole on that client. As a cluster entity,

only the portion that fits into its window is displayed. When viewed as a cluster entity, it

is easier to visualize output clients as pixels in one display. Thus, output clients retrieve

orientation information and size from the control center, performs the necessary

calculations, and outputs the result as it would pertain to a pixel in the desired array

space.

Output clients must also be able to handle a variety of media within the three major

groups: text, images, and video. QuickTime is a partial solution to this problem as it

handles many media formats.

4.7 Control Center Server

The control center server (from here on referred to as CCS) is the middleman relay

station and interpreter between the two types of clients. It is the centralized source to

which requests are received and parsed and from which commands are dispatched. It

functions as a front end to the output clients and the message receiver for input clients.

The CCS maintains some notions of state from the two clients pertinent to functionality

(connection, spatial location, and identification). In order to be effective, the CCS must

41

run efficiently and, because of its function, handle multiple requests at a time. For

efficiency, using threads to represent all connected clients and to handle the actual

communication between CCS and client frees the main core of the CCS to perform more

important calculation specific tasks. Without a CCS, initial communications cannot

occur. The CCS must be online and must also coordinate connections as it sees fit.

Furthermore, the CCS must perform various arithmetic operations and, if necessary,

balance load among nodes. Finally, the CCS has the ability to store information and

media into a centralized location for the purpose of sharing data as the name of the

system suggests.

Server Database

Figure 4.3: Server communicating with
database to store media in centralized location.

Other responsibilities of the CCS include functioning as an operating system where it can

track its state. This means it must maintain itself (just like input clients must maintain

themselves). It must be able to recover from some invalid state and continue operation as

good as new. One approach is to detect when the system is idle and during that time

perform maintenance operations to keep the control center running smoothly and

efficiently. The CCS must also cleanly close connections to clients who disconnect or

crash in order to free resources and maintain efficiency.

The CCS must be able to interface with new input devices that may be developed after its

creation. Thus the protocol of communication must be general enough yet specific

enough to handle forward compatibility and sophisticated requests.

42

5 Design

This chapter will present an overview of the design of the system from a high level

perspective. It will begin with a description of the iMac Array hardware and network

configurations followed by a more in depth discussion on architecture. Finally, it will

give a high level view of a process sent through the system.

5.1 iMac Array

The iMac array is housed in the Physical Language Workshop and consists of fourteen

iMacs running Mac OS X. Each iMac in the array that runs the output client software is

defined as an iNode. These iNodes are placed on two racks and are split into Sections S1

and S2 due to the physical limitations of the hardware configuration. The iNodes

themselves are wired together via Ethernet cables and switches. Switch 1 connects all of

side S1 and Switch 2 connects all of side S2. One iNode from side S1 is attached to

Switch 2 due to port limitations on the switches. Both switches are linked to the World

Wide Web and the local area network thus creating the networking context. Two

switchers are used to independently connect sides S1 and S2 with appropriate 1/0

devices. Finally, a wireless mouse and keyboard exists for each side and is synchronized

with the switchers.

Side 1 (SI) Side 2 (S2)

iNode NOE 6 7f 8±

0 0

Wireless Mouse and
Keyboard

Network Lines
, (Ethernet)

(Sl) / Switch 1

7
(2) Switch21

Local / World
Network

O

Figure 5.1: The
physical setup of the
system. The array to
the far left is
composed of the iMacs
turned iNodes. All of
the iNodes connect to
Switches 1 and 2.
These switches in turn
connect to the network
allowing for
communication with
the iControlCenter.

iControlCenter

43

5.2 Software Architecture

The system is designed as a 3-tiered client/sever model separating application users from

output nodes. Figure 5.2 depicts these tiers and their connections without the smaller

details. The nature of the system points to this model as an obvious choice and includes

remote multimedia processing and computation. The input clients and output clients

communicate to the CCS via TCP/IP and socket connections. On a LAN, this

communication occurs with increased speed (depending on the LAN Ethernet

connection).

The means of connection for both input clients and output clients, as previously stated, is

device independent. However, for input clients, the interface of control can vary. Since a

common communication protocol has been defined, any input client that adheres to the

protocol can utilize control interface implementations spanning many designs. Within

this architecture three input clients have been defined: the web client, the CCS Control

Client, and the parallel client. The CCS Control Client is a special purpose client

allowing GUI access to specific CCS operations. By fitting cleanly into the

communications protocol, E-mail, another clear interfacing tool, functions as yet a fourth

input client. Since it does not directly connect to the system, E-mail, like the CCS

Control Client, is a special purpose input client. The system instead connects to E-mail

repositories.

0 D 4*00. Figure 5.2: A high level
view of the 3-tier model. It

Input Clients consists of both input

0 . 4- CCS 4 clients and output clients

0 communicating with the

Q0 Output Clients control center server.

LAN or WWW

The output clients, although adhering to a similar protocol, exercise less freedom of

expression. Since these clients receive instructions from the CCS, they must be similar to

a degree. This design decision sacrifices varied compute client interfaces for ease of

communication and instruction execution. However, if new types of output clients are

44

envisioned, they can be added to the system as long as they obey the foundational

interface of an output client. Thus, extensibility is possible. In this architecture, the

output client is the iNode client and primarily serves the function of display.

The CCS is a multi-threaded server that handles both types of client. The CCS must be

efficient only in order to be effective in handling multiple requests at any given time.

Thus using threads allows computationally intensive tasks to be pulled away from the

core functionality of the CCS. Figure 5.3 depicts these threads as they pertain to the

connections (yet more threads exist and will be discussed in Section 5.3). Input client

threads and output client threads handle the actual communication between the core

control center server and the respective client types (although all clients initially connect

to the core CCS, they are subsequently redirected). Furthermore, there exists a "store"

which is used to save media data. The client threads handle maintaining certain state. In

addition, some have persistent connections while others have transient connections. On

specific occasions, these threads themselves can connect to each other in order to

communicate to actual clients outside of the control center server black box.

Control Center Server

Input Client
T hreads QOutput Client

4 * Threads
Core * -* *

SCCS r

store

LAN or WWW

Figure 5.3: This is a detailed view of the control center server. Notice that the
CCS is actually composed of distinct parts. The input client threads handle
some front-end communication to actual input clients while the output client
threads do the same to the actual output clients. The core CCS communicates
with these threads once they have validated incoming data and uses the
information to perform a task. The media data store communicates with the
main core.

The client threads will receive the data from a communication pipe and perform

validation. If the data is valid, these clients can add the command to a queue where the

main core of the CCS can retrieve and process them. This way, tasks can be handled in

parallel and relieving other parts of the CCS. A form of fault isolation is achieved by this

mechanism reducing the chances for single points of failure. In addition to relieving

load, separating the CCS into these parts allows for a form of fault isolation to surface

reducing chances for single points of failure. If an input client goes down or its

respective thread bottoms out, it will simply cease to exist as far as the core CCS is

concerned. The same is true for the output client threads.

Furthermore, this design allows the infrastructure to grow in output power via the

addition of potential output clients. Where parallel computation is concerned, although

the overhead of communication and output client data managing increases, the speedup

possible given the extra processors should mask such drawbacks. Two special purpose

threads that handle the CCS Control Client and the Mail Client respectively accompany

the two distinct client threads pictured in Figure 5.3. The CCS returns messages to all

input clients and special input clients via thread equivalents. Input clients can optionally

choose to receive them. The output client threads are used to dispatch parsed requests

turned command to the actual output clients.

In supporting many output client connections, the CCS utilizes a data structure that can

differentiate between specific clusters and random nodes. Because of this, output clients

must register with the system in order to function as output clients. Specifically they

need at least a name as identification. Those with only a name will be committed to the

general store of available output clients with automatically generated identification

numbers. Those specifying a group name will be identified as such and the ability to

scale media across multiple screens of that group is granted. In addition, these grouped

output clients need to be assigned rank by a user. The CCS will use this rank information

to infer spatial structure. A final configuration requirement is the grid structure. Out of

all the nodes in the group, at least one must have a short description of the grid structure

of the group (i.e. 4x4).

46

Since the CCS also handles storage of media, issues involved in this procedure deal with

name collision and file lookup. Name collision will occur when input clients request

some media to be stored whose name already exists in the shared store. As a result, the

system must decide whether a file new altogether or is to be overwritten or updated. If

the file is misconstrued as something it is not, a request for the file to be displayed later

could result in the wrong lookup. In this design, the CCS never overwrites a file but

appends a number to the name, saves it, and sends this new file name back to the

requester. This way the requester knows how the file was saved and can thus request the

correct file to be displayed at a later time with the correct name.

Two communication protocols descend from a common protocol while a third currently

does not. The types of existing protocols are the special client protocol, the web client

protocol, and the parallel client protocol. The web client protocol is more aptly described

as the "regular" client protocol. Regular clients are those input clients having java

capabilities while special clients are those that do not. Special clients include

microcomputers, microcontrollers, and other low level electronic devices that may desire

to communicate with the framework and/or control the system. Once received, this

command is parsed and wrapped into the form of the web client protocol. Both the web

client protocol and the special client protocol share common attributes.

The web client protocol and parallel client protocol define two new sets. The web client

protocol defines all clients using the system for display of media. The parallel client

protocol defines all clients attempting to use the system for parallel computation. These

two protocols differentiate via a type field. The parallel client protocol, in its current

implementation, is specific to a certain type of application (as well as the other parallel

aspects of the system), though it can be generalized for more tasks (discussed in Chapters

7 and 8). The details of these protocols will be discussed in Chapter 6.

Designing the aforementioned protocols in this way allows for multiple device types to

connect to the system and use its resources for gain. Furthermore, the web client protocol

allows for complete objects to be passed between input client and CCS, and CCS and

47

output client. This is deliberate in an effort to allow custom media types as well as

general parallel applications to be distributed via input client to the CCS and finally to

targeted output clients. This concept will be further discussed in chapters 7 and 8.

The appendices contain detailed diagrams of the software architecture including

connections, packages, and various subsystems in relation to the entire structure of the

system.

5.3 High Level Description

In typical fashion, a user of the system would start up a client application and submit a

request. Supposing the device were a smart phone contacting the system via E-mail

along with an image attachment, the system would respond by first opening the E-mail

and re-representing its contents as a Mail Message (see Chapter 6). Once all pertinent E-

mails are similarly dissected, the mail client thread will proceed to parse the body of the

message and save any valid attachments to a store. Valid attachments are those that are

QuickTime compliant.

The body of the E-mail contains the instructions that will direct the CCS. This command

must comply with a request protocol. The request protocol is lenient and supports many

options. Supposing this request is simply to save the attachment into the store and post

the media across a full grid, the command would contain, at minimum, a group name and

the word "all".

Once the command is successfully parsed and validated, it is submitted to the web client

protocol generated along with an internally re-generated URL to the desired media and, if

applicable, a username. The output is then added to the CCS command queue and

notified for processing by the main core.

48

iNode Clients

Amrpoitory EZEZIF]

CCS 4
mail --i2uL1ut
client thread dient thread

store

Figure 5.4: Visualization of the system at work from a request via email.

The CCS, utilizing a notify-wait mechanism, is either processing current commands or is

awakened by the admittance of a new command. The CCS begins to pick apart the

request while setting up various flags in preparation for display by the targeted nodes.

First the CCS determines whether or not the command is a simple load request to save the

contents of the media at the specified URL to the store, or a display request. Once

established, the CCS then ascertains whether or not the request is targeted towards a

specific iNode Cluster group connected to the array or to a general output client.

Discovering that the request is targeted for a specific group, the CCS checks its iNode

Cluster Map table for the desired group. The nodes of this group are represented as a red

black tree. Since the command issued targeted all nodes, the CCS employs the

CCSProtocol for inferring the structure of the cluster along with the relative scaling and

offsets required to fit the display specification of the command. The CCSProtocol

packages this information and returns the completed minimal calculations to the CCS.

Since the CCS recognizes the command as targeting the entire cluster, it initiates an

optimized routine for dispatching the node specific instructions to the target cluster.

After dispatching the instructions, the CCS will continue parsing the queue if more

instructions exist. Otherwise the CCS will wait patiently for a new command. If the idle

state is reached, the CCS will initiate the history process that executes ordered previous

display commands.

49

Upon data retrieval the output client, also utilizing the notify-wait scheme, will determine

whether the incoming instruction is for display or for parallel computation. Attributing

the command to display, the client will extract the minimal position instructions (an

integer offset and a integer scale) as well as the data URL. This information is then

submitted to the parent GUI for processing.

When the parent GUI acquires this data, it utilizes the procedures of its internal view

object to retrieve the media, properly scale and translate it to the specification, and update

the view on the actual display.

S

6 Implementation

This chapter will discuss the major components of the system in more detail. Without

these components, the tasks and goals of the system could not be met. Included in this

discussion are the communications framework, control, message handling, and pertinent

data structures and algorithms. Some parts of the parallel extension to the system are

discussed as well.

6.1 Communications Framework

The communications framework is based on a class called GeneralComm. The necessity

of GeneralComm came out of a vision to send custom packaged media, such as Java

objects, through the pipeline and the emergence of the parallel image compressor

extension. As not to limit the ability of devices to connect to and control the system, the

previous pipeline involved byte streams. This original pipeline still exists in the form of

PatlnputStream and is authenticated by the system using the special client protocol. The

pipeline exists for multi-device compliance and for converting commands into byte

format to save on disk as history.

The GeneralComm itself is implemented as an Object Input and Output Stream designed

to partially abstract away the problem of writing and reading between connected

components. By relying on predefined Java components, its chance of failure is minimal.

To further abstract away the problem of making connections, maintaining those

connections, and automatically retrieving information from these connections,

BGListener and BGDownloader were developed. Both utilize the GeneralComm

communications channel as a foundation. BGListener takes as input a hostname and a

port. Optionally, it can take a buffer in which to place received data in first come first

served order. This class can be set to connect and re-connect indefinitely or a specific

number of times. With the creation of this class, the problem of communication between

51

clients and CCS is dramatically reduced. Appendix A details these framework

connections.

Protocol Parameters

Parameter Value

group any string

load true/false*

cluster true/false**

names target names

ids target ranks

data text or URL***

user a username

Table 6.1: This table lists
the possible parameters and
values that can be used in
commands to the system as
well as input parameters to
the protocols. In addition,
values can be omitted for
default behavior.

* for email: load/display
** for email: cluster/single
*** or objects

The rest of the framework revolves around the protocols developed for communication.

For the display system, a user has the options of loading or displaying, scaling, selecting

multiple targets, and selecting a group (see Table 6.1). All requests must, however,

contain data that could be defined as a URL to specific media on the web, the name of a

file already in the systems local or remote store, or some text for display. With this in

mind, the protocols were designed to handle all possible valid permutations of this type

of request. Thus web client protocol and special client protocol are similar in this

respect, along with the imposed limitations I have put on the system as far as node count

possible per group is concerned. Web client protocol is more flexible in transmission

than special client protocol since it utilizes abstracting java elements. The special client

protocol, on the other hand, had to be designed as a header and footer type packet with

data located in the center (see Section 6.4.4)

The CCSProtocol was developed as the solution to supporting, in theory, infinite iNode

connections to the system for scalability. The hard coded knowledge of the grid housed

in the Physical Language Workshop was stripped from both the input clients and the web

and special client protocols in favor of a redesign that would dynamically infer the grid

structure of connected iNode clusters. This design also moves the burden of scale and

position calculation from the clients back to the server.

52

The parallel client protocol is currently specific in nature and serves as minimum

validation for data packages (see Section 6.4.8) that are sent through the system.

6.2 Control

There are two layers of control associated with the system. The first is user related while

the second is administrator related. A third possible layer of control is associated with

iNode Cluster management.

User related control involves users attempting to control the system via input clients. The

only measure of control afforded is the ability to make output requests that the CCS will

validate, augment, and dispatch. There exist seven control fields that users can

manipulate in order to create a desired outcome (see Table 6.1). Furthermore, users have

the freedom of utilizing any media type supported by QuickTime.

Administrator related control focuses on minimal maintenance of the Control Center

Server itself. It can be controlled via command line scripting or a GUI tool. Control is

limited to starting up the server, shutting it down, setting debug modes, and setting idle

time and history dispatch execution periods. The GUI and the command line tool allow

remote access to the Server, however, initial launching of the server must occur locally

on the machine the CCS is installed (or via remote login).

CCS Hnst 1b dly..dim. edu C Part [777B

LOG

T intialize the system. one most log into the hosting machine directly or remotely and
initiate the Control Center Server directly. You may utilize the Pert program that comes
with that package to perform the task.
USAGE:

M Ewoermo.'"wo login to host machine remotely or directly
initiate the sereer in one of two ways:

Within the launch directory

Figure 6.1: A simple input client control interface and
the Control Center Server remote access control interface

53

Base versions of these control interfaces allow for motivated individuals to create more

advanced control mechanisms for functionality not implemented.

With regard to iNode Cluster management, this user need only install the software and

ensure the correct minimum configuration for the desired type of cluster (see Chapter 5

Section 2) as well as recovering any nodes that have failed beyond its self-preserving

measures. Configuration takes the form of a text file with one line of parameters

separated by the colon character. A sample configuration follows.

SOMEHOST.MIT.EDU:PLWGRP:PREDATOR:1

The above configuration would tell the output client software to connect to the host

SOMEHOST.MIT.EDU and register this node with the group PLWGRP, the node name

PREDATOR, and the node rank of 1.

6.3 Message Handling

All components of the system that receive information have some form of listening

mechanism accepting packages. Most of the major components utilize the BGListener to

encapsulate this operation. As packages are downloaded, they are added to the end of a

message buffer. This buffer has an observer checking to see whether data is present.

When this buffer is notified of new data, the observer wakes up and, if data is present, the

observer calls its parent component's parseData method (or its equivalent).

To input clients, the client thread sends messages to reset the timeout counter on the

connection as requests come from the input client. This allows the system to maintain a

semblance of a persistent connection during transactions. These messages are caught by

a listener and handed off to correct procedures.

To output clients, the client thread sends ping messages to test its alive status. Since

output clients are persistently connected, the CCS needs to assure the integrity of that

5)4

connection. Conversely, output clients need to ensure the integrity of the CCS though in

less periodic intervals by attempting to send alive messages. If these fail, the output

client closes its connections and attempts to reconnect at given time intervals. Messages

sent to the output client are caught and handed off to a primary stage handler that

identifies the type of message for further processing by appropriate operators.

In the CCS, there are two levels of handlers. Still, respective client threads first receive

all messages. The threads use the correct protocol rules to perform a minimum data

validation operation on the message. Once cleared, a new message is created with

augmented information and added onto the command queue of the CCS. The second

level involves the CCS core operating on the new command. A simple buffer observer

handles this dispatch calling upon CCS methods that identify command type and enact

proper measures (see Appendix A).

The parallel extension to the system provides dedicated handling to its clients. In the

input clients, the message parser extracts information from packages according to a phase

number. Specific phase numbers flag different tasks. For the most part, the tasks involve

sending regular files, and receiving compressed files. Other tasks involve maintaining

client connections and status of the current job (see Section 6.4.8).

In the parallel extension to output clients, a two-stage message handler is required. The

primary stage involves identifying the type of package received. If the package is a

parallel task, the second stage message handler is created. This second stage handler is

required since output clients, upon receipt of a valid package, make a direct connection to

the input client for file transmission. Parallel data handlers receive their first package

from its CCS output client thread counterpart. The package contains the client's

allocated part of the load to compute, the host name and port with which to connect, and

load assignment (see Section 6.4.6 and 6.4.9). The handler then makes the connections to

the input client host. Most of the subsequent packages received will be from the input

client. The only case where a package will not be from the input client is if the input

client submits an exceptionally large job to the CCS or if many input clients are making

55

requests thus flooding the system. In these cases, the CCS must peter out the load as

output nodes become available.

The parallel extension to the CCS adds a more complicated measure of message handling

to parallel tasks. Once the second level message handling mechanism (discussed earlier)

identifies the command type as parallel, the task is added to the new job thread queue that

observes its own state. This new job thread queue parses the data and retrieves the

compressed load tree. This tree contains size information and identification numbers to

denote directory structure (see Section 6.4.6). The size information is used to calculate

an overall equalized load on the output clients. If a job is too large or the nodes are

overloaded, this job will have to wait and its contents petered out as nodes become

available. The packages are actually handed off to the output client threads that will

handle further communication with the output clients (including status updates)

6.4 Data Structures and Algorithms

While developing the system, various special purpose data structures were created in

order to represent data and/or facilitate efficient procedures later on. These structures

include the Media View and Media Presenter, Red Black Node, iNode Cluster, the Red

Black Load Tree, Load Tree and its subsets, the parallel data packages, various lookup

tables, and length encoding among other things.

6.4.1 Media View and Media Presenter

The Media View and Media Presenter classes are used as the display engine for the

output client display. The media presenter handles most, if not all, of the QuickTime

communications. It is specifically made to render text onto a graphics context. Currently

it supports regular text, the newline character, and smart sizing. Smart sizing is the

ability of the media presenter to center and approximately size the text to engulf as much

of the display space as possible. The media presenter in theory handles all media types

supported by QuickTime. Using QuickTime as the backend render engine is deliberate as

it provides a semblance of media independence.

56

The media view uses the media presenter as its graphics context for presenting various

media types. Once the graphics context is created, the media view performs the task of

scaling and translating the data according to the current screen size and the issued display

size. The screen size is representative of the current window size of the application. The

display size is actually a multiple of the screen size in both the x and y directions

representing the desired full display size of this view. The media view maintains the

aspect ratio of the media and scales it to the maximum size that allows all sides of the

media to fit into the display space. Clipping is handled by the QuickTime engine and

occurs only when the desired display size is greater than the screen size. Any part of the

image outside of the screen window is clipped.

6.4.2 Red Black Node

The red black node is the component that makes up the red black tree data structure. The

red black tree implementation used in the control center server is derived from Cormen,

Rivest, Leiserson, and Stein's Introduction to Algorithms design [37]. The algorithm

ensures a balanced binary tree structure amidst addition or subtraction of nodes. This

also ensures that queries into the tree will take time in O(log N) where N is the size of the

tree. The red black node in this system has been augmented to store as many elements as

it so desires. A mechanism for copying its contents to another node was also inserted

into the red black node implementation.

6.4.3 iNode Cluster

The iNode Cluster is an abstraction used to facilitate organization of iNodes into groups

as well as speed up access to these iNodes. The iNode Cluster is an extension of the red

black tree implementation. It is identified by both a name and an identification number.

The name refers to the user assigned group identification of a physical iNode cluster

onsite. The identification number is a unique identifier assigned by the control center

server. The grid structure of this cluster is also stored within the data structure.

57

The iNode Cluster houses all connected iNodes connected. An iNode map is used to map

an iNode's name to its rank. The rank itself is used to create a new node in the tree

structure. Ideally, a red black node in the tree would be an iNode itself, however the red

black tree implementation makes this possibility difficult. One of the methods for

removing a node in the red black tree algorithm by Cormen et al involves copying the

state of a node that will assume the empty position to be into the node that is to be

deleted. In this way, removing the node from tree becomes more efficient. Since iNodes

have complex state, the copying of that state proves difficult. As a result, the red black

nodes in the iNode Cluster implementation are those described in Section 6.4.2. An

iNode identifies the red black node with its rank and becomes an element of the red black

node (see Figure 6.2).

iNode Cluster Map iNode Cluster Figure 6.2:

PLW CCS iNode
- PLW organizational

GEN 1 root structure.
node The cluster

TIC I map points to
IN Tactual clusters
EN TAC 2 (D that in turn

TOE 3 reference
Cache reference iNode iNodes in a

iNode Map TIC Output balanced tree
MRU IC Client structure.

The iNode Cluster provides methods for manipulating the tree itself. It supports

additions and subtractions of iNodes as well as searching. Status methods are available

as well including the ability to close all iNode connections. When adding an iNode to the

cluster, the data structure cleaves grid information from the iNode if present. The iNode

Cluster then maps the iNode name to the iNodes rank for later lookup and inserts a new

red black node with the iNode as its element into the tree using the iNode rank as the key.

If, for some reason, the iNode already exists in the tree, a name collision is issued and the

current iNode is removed and the new iNode inserted. An iNode can be removed either

by using its name or its rank. If a name is used, the rank is determined using the iNode

map. Once rank is determined, the data structure searches for the node in O(log N) time,

closes any open connections to remote iNode clients, and removes the node from itself.

The iNode Cluster itself is referenced by an iNode Cluster map within the CCS. All

groups connected to the system are stored within this map using the group names as a key

to the iNode Cluster data structure (see Figure 6.2). Since multiple requests can be made

on a group in succession, a cache mechanism is in place keeping track of the most

recently used iNode Cluster group. If the group referenced by an incoming command

matches the group name of the most recently used cluster group, no cluster group look up

is required eliminating the unnecessary overhead of retrieving name to cluster mappings

for every incoming command.

Finally, any incoming iNode connection that has no group is assigned to the general

group cluster located inside of the CCS. For purposes described in Chapter 7, the

identification numbers assigned to these iNodes by the CCS begin after the group rank

limit of defined group nodes. A background process that removes all inactive nodes from

all iNode Cluster groups checks the status of all iNodes periodically.

6.4.4 Protocols and Grid Translation

The design of the protocols circle around the valid inputs into the system touched on in

Section 6.1. Table 6.1 details these valid inputs. The particulars of the extended

protocols' designs are described below beginning with the special client protocol.

The special client protocol is structured such that all pertinent data is enclosed between

the fixed length start and end codes. This way the start and end of a packet can be

determined while reading a socket. The length measurement signals the PatInputStream

with the number of bytes after the start code to expect including the end code. This

speeds up the process of retrieving the data from the network. The length is measured

with three bytes. The second byte in the length measurement is fixed at OxFF. The first

byte is a counter indicating how many multiples of OxFF exist in the size of this packet.

D9

Finally, the third byte acts as the fine grain size measurement for preciseness (see Figure

6.3). The rest of the protocol includes various counters and length measurements

regarding other data stored within so that the special client protocol can correctly extract

the required information from the packet.

dl d2 d3
The length measurement (number

? IOxFF ? of bytes from load through the end
4 4 of the packet) is determined by: I user I user length I endCode

length = d*d2 + d3 t t

6 3 1 1 1 1 ? ? I ? 1 7

I startCode I length I load I # iNodes I clusterType I iNodelDs I dataType I data I group I group length I

Figure 6.3: The specific protocol associated with the special client protocol

The web client protocol is a much simpler protocol that uses a map to coordinate data

with specific keys and the GeneralComm communication channel to handle "packets".

The web client protocol has a key for iNode names. This is in reference to those iNodes

that do not belong to a user defined iNode group. As a result, these nodes do not have

user-defined ranks and can only be targeted using their names from the user's

perspective. The web client protocol can also be used to convert data to or from the

special client protocol.

The CCSProtocol is a special purpose protocol used by the core of the CCS to infer grid

structure and relative scale and offsets for media data. The scale is more accurately

described as span measure that is a function of grid blocks. All iNodes in a cluster are

viewed as grid blocks. When a request is sent to scale media across x number of iNodes,

this number is broken down into units of grid blocks down and across. The CCSProtocol

harbors two specific data structures for translating a scale request to span coordinates and

specific iNode grid offset coordinates: the iNodeCoordConversion and the iNodeMatrix.

The iNodeCoordConversion is lookup array that uses an iNodes rank to determine its

location in grid coordinates. Its size is equal to the total number of iNodes in a grid

multiplied by two (since each node maps to two coordinate numbers). The array is

structured so that the row and column coordinates are indexed by the rank number and

the rank number offset by the total number of iNodes in a grid respectively. Since rank

number begins at one and grows positively, the index measure must be decremented by

one to point to the correct spot in the array (see Figure 6.4).

The iNodeMatrix is a three dimensional array used to model a group's grid structure.

Three elements exist at indices (row,column). These are the x and y relative offsets and

target flag. If an iNode at index (row,column) is selected, its flag will be raised and

relative offsets computed. All offsets are relative to the most minimum target iNode

selected. For instance, if iNode 6 in a 4x4 grid were the most minimum selected, its

offset would be (0,0) while all others would be relative to iNode 6 at (0,0).

A command issued to iNodeMatrix
scale an image across iNode Cluster 0 1 2 3
an entire 2x2 grid 0 1 2 3
cluster will set i 1 0 [1][][] [1][0][1] [0][?][?] [][?][?]
iNodeMatrix and
iNodeCoordConversion [7 F7 1 [l][1][0] [1][1][1] [0][?][?] [0][?I?]
arrays as depicted.
Question marks denote 2 [0][?][?] [0][?][?] [0][?][?] [0][?][?]
irrelevant values.

iNodeCoordConversion 3 1[0][?][?] [0][?][?] [0][?][?] [0][?][?

0 1 2 3 0 1 23

[0][0][1]l[1][0]1][10][1][?][?][?1[?][?][?][?][?] [?][?][?][?][?][?][?][?][?][?][?][?][?1[?][?][?]

Figure 6.4: Example settings of the iNodeMatrix and iNodeCoordConversion lookup arrays

Both the iNodeCoordConversion and iNodeMatrix lookup arrays are initialized to a size

4x4 grid. This way both arrays can be reused for multiple cluster groups without having

to be reallocated. The iNodeCoordConversion has an extra requirement that if the actual

row and column configuration of an incoming cluster group differs from the most

recently used grid structure the actual values for each index of the area must be re-

calculated. Even if the size is the same, these values must be recalculated since the

coordinate conversion of a specific iNode will be different for two differing

configurations. Now if the overall size of a grid cluster is greater than that already

6i

located, both lookup arrays must be reallocated to support the new greater size. This

design benefits by reducing the need for recalculation making reallocation a rare event.

The parallel client protocol is present mainly to require a phase number, a load tree, a

host ID, and a port. The protocol is also present to validate packages being sent across

the communications framework. Section 6.4.8 covers these elements in more detail.

6.4.5 Mail Message

The Mail Message is a data structure used in the Mail class I created for logging into an

E-mail store and extracting data from E-mails fitting a certain search criteria. The Mail

Message itself houses the extracted data and wraps the information. Figure 6.5 depicts

the structure of a Mail Message. The main contents of a Mail Message include the

message ID, the E-mail address of the sender, the personal name associated with that

address, any attachments associated with the E-mail, and the body of the E-mail. A Mail

Message can accommodate more attributes if necessary. By constructing these Mail

Messages, all pertinent and valid info can be put into one buffer where each element

represents a new set of user commands. The buffer can then be batch processed.

MID message ID number

ADDRESS address

NAME personal name

ATTACHMENT attachments buffer

BODY body

Figure 6.5:
Mail Message
object and its
relation of
parameters to
content. It
also supports
user defined
attributes.

The Load Tree data structure is used to encapsulate directory structure and file

information on the input client machine. Two of these have been developed: a Directory

Load Tree and a Compressed Load Tree. The super class of these two (the Load Tree)

provides functionality common to both encapsulating data structures. The difference

between the two is the form the data takes within each tree.

Mail
Message

6.4.6 Load Tree

The Directory Load Tree is defined as a tree whose nodes represent child directories and

are identified both by an ID number and a directory name (including its path). Files are

encapsulated as a string concatenated together with their specific file size. Other

information in each node include the number of files within that directory, the total size

of these files, the number of immediate child directories in this directory, the total size of

the files in these directories, the total number of subdirectories below this tree (how many

directories recursively living within this directory), and the total size of all subdirectories

including the total file size of the top level directory. Since these sizes can be

exceptionally large, the base 2 logarithms of the sizes are encoded instead. Furthermore,

a quick lookup table is compiled that uses the ID numbers of the directories as keys and

the paths of the directories as values. None of the nodes in this tree contain this lookup

table. It is only dynamically generated with the tree and handed off to the caller. This

lookup table is later used when requests from the compute client begin to arrive. These

requests only use integers to identify directory and file structure. Finally, a depth integer

is used to control how deep into a directory structure this tree should replicate.

1

Figure 6.6:
Structure of a
directory load tree.
This one has a depth
of 3. All directory
nodes point to a files
data structure
(although only one is
pictured). The bottom
level is not expanded
(depth 3 limit).
Conceptually, a
compressed load tree
is similar only with
the integers as shown.

A

2 7 Directory Load Tree

files A/B A/C

3 4 8 9

A/B/D A/B/E A/C/H A/C/I

1 5 6

1A/B/E/F A/B/E/G

The Compressed Load Tree is defined similarly to the Directory Load Tree. However,

instead of containing any string information, all data are encapsulated in integers. All

nodes have the same ID numbers as the Directory Load Tree. Files are encapsulated into

a simple integer array whose indexes represent the size of specific files and value denotes

the number of files of this size present (effectively encoding information in smaller

o3

space). Also, this method of compression allows for fast lookup. Finally, a lookup table

is created using the directory IDs as keys and the encoded file arrays as values. There

also exists a special NODES key whose value determines the number of directories

present (see Figure 6.6). The table itself can actually replace the compressed load tree

and sufficiently encapsulate required data. Figure 6.7 is similar in representation to this

table.

Both of these trees are sorted according to size order from smallest to largest and left to

right (although directory structure is maintained). This is important for faster processing

of data on the CCS side and creating convenient invariants. For instance, an output client

can quickly calculate various size information by looking at the file array, accumulating

the count of files whose sizes equal some threshold, and then requesting files "i" through

"j" from the input client. Since everything is in sorted order, the input client can simply

use its own array and collect the files "i" through "j" into a package and send them. The

directory path lookup table's function now becomes apparent. When an output client

sends a request, it sends directory IDs and corresponding integer file ranges. The input

client then uses this ID number to quickly select the directory where the files are stored

and package them up.

6.4.7 Red Black Load Tree

The Red Black Load Tree is a data structure used in the parallel extension of the CCS to

keep track of current load on available output clients. This structure provides methods

for balancing the load across all output clients and assigning specific load and tasks to

specific output clients. The red black load tree utilizes the Cormen et al red black tree

implementation. The keys of the tree nodes refer to a load threshold while the values

represent all output clients currently at a certain load threshold. Instead of holding the

actual output clients, these values are the unique IDs of the output clients. The method of

load balancing and concepts of load threshold are further discussed in Section 6.4.9.

64

6.4.8 Data Packages

Data packages encapsulate various identification information and instructions to be

carried out. They also contain various messages important only to the receiving

component. For the parallel context, these packages differentiate according to phase.

There are seven phases (seven, being the number of completion, denotes the completion

of a full job request). Each data package contains a TYPE and PHASE field for

identification purposes.

Phase I packages are sent from the input client to the CCS and identify it as a parallel

client requesting a job. It contains the compressed load tree, its host ID, connection port

for receiving of thumbnails, and the save location.

Phase II packages are in two parts. One is from the input client thread to the output client

thread via the core CCS message handling mechanism, and the other is from the output

client thread to the actual output client. Phase II A contains, in addition to the original

Phase I package, the actual input client for later communications from the CCS. Once

the new job queue thread handles the message, the package no longer contains the

reference to the input client thread, but does contain the load information for specific

clients including coupled data structures containing both an array of directory IDs and

file number and size integer arrays related to allocated tasks (see Figure 6.7).

Directory/File
Assignment

Figure 6.7: This data structure
encapsulates assigned directories and
assigned files. The numbers above
[x] is the index of that value and
represents a threshold value. The
value "x" itself represents the number
of files at that threshold.

Phase III packages are sent from the output clients directly to the input client after

making a connection request. This package contains, besides the default information, the

directory IDs and file integer arrays the output client wishes to first download and

0-)

dir [2][5]

10 11 12 13 16 17
2 ... [5][6][2][1].. .[2][1]

8 91011
5 ... [18][8][2][5]

compress. The output client sends this information along to the input client who

responds in kind.

Phase IV packages are sent from the input client to the output client and contains Host

ID, port, and file paths and names along with their corresponding images. These data

should match that requested by the output client.

Phase V packages are sent from the output client to the input client and contains the

compressed image files with the same file path and names used as keys. The input client

then saves these files to an earlier user specified save directory.

Phase VI is an output client status update that is sent to its output client thread

representation on the CCS. Phase VII, as mentioned above, signals job completion.

It is important to state that most (if not all) of the data package message passing occurs in

the background. Thus, all of the initial packages appear to have top priority since no

other computationally intensive tasks are being undertaken. However, once actual image

information is sent, computationally intensive tasks emerge and the processor on each

machine must be shared with sending and computing. Thus, by sending them in the

background, the computationally intensive tasks can run "seamlessly".

6.4.9 Load Balancing and Length Encoding

Load balancing occurs on the CCS by through the red black load tree referred to by the

new job queue handler. The balancer uses the following simplified equation to balance

the load among output clients:

X1 + X2 + X3 ... + Xn = T

In this equation, T denotes the total load and includes the sum of the current load over all

output clients and the new load about to be introduced. The subscripting n terms denote

the threshold level where n is the exponent of a base 2 number (i.e. 2 "n). The Xi terms

denote the number of nodes at threshold "i".

When the base 2 logs of the original number are expanded the equation works by

summing all load together into a new total load using the thresholds as the factor in

deciding the current output client loads. Next, we divide this new load by the total

number of available output clients. This new number is the load that each client should

now possess (including their current loads). So, for each node, we subtract the threshold

they are currently categorized in from the new load, then allow the red-black load tree to

reassign the output client to a new threshold node. The red black load tree uses the

expanded sizes to compute these load sizes in order to precisely keep track of how much

load is leftover after assigning as much load as possible. To get the maximum amount of

load assigned on the first try, the algorithm begins by first assigning the largest file

possible to the most loaded node possible. This results in maximizing the most loaded

node, then the next most loaded node, and so on and so forth until most, if not all, of the

job is assigned. By assigning load in this manner, all of the biggest files are sure to be

assigned immediately using the smaller files as filler on a per node basis (like putting the

biggest rocks into a bottle first and then filling all the cavities with sand).

It is important to note that by encoding size information using logarithms, actual size is

approximated as a maximum bound. Since these are multiples of 2, the approximation

can become exceptionally large as file sizes grow in size. For instance, a file of size 12

and a file of size 31 must be given a total size of 32 -- significantly larger than the actual

size. In practice rarely do image files reach greater than 200 megabytes in size for

conventional use.

6.4.10 Thumbnail Generation

The actual process of generating thumbnails turns out to be the simplest part. First, it is

embarrassingly parallel. Since this is the case, potentially any fast thumbnail generator

could be used and simply called by the Java program on the data. I first used JAI (Java

Advanced Imaging) that utilizes native code for faster image processing; however this

package will not run on the iMac computers until an update to Jaguar is made. However,

the ImagelO library of the Java 1.4 distribution can also perform image processing, albeit

slower. The chosen method of generating thumbnails is irrelevant since the actual task of

thumbnail generation functions solely as proof of concept.

7 Usage

During the development of this system, various usage scenarios were envisioned and

some embarked upon. Furthermore, there exist current extensions to the system (in part

or in whole) that have been used for some of these scenarios or otherwise. This chapter

will present these findings.

7.1 Scenarios

In this section I will discuss various usage scenarios for this system as it pertains to

business, recreation, education, and as an art medium. It is important to note that output

clients, along with the possibility of being simple desktop computers, can be laptops and

tablet PCs. Any device that can run Java can potentially be an output client. It is

possible, then, to attach any display enhancing device (such as a projector) to output

clients that support such connections. For example, a small tablet PC can be used as a

dedicated output whose visual area is enhanced by a projector. The scenarios discussed

below are a small subset of many possibilities and areas of society the system can be

used.

Figure 7.1: Mobile tablet PC hookup as output
client device.

7.1.1 Business

A key aspect of business is fast, efficient, reliable, and informative communication. In a

business, communication takes place in various forms such as meetings, conferences,

design reviews, and memos. From experience, it is observed that many companies use E-

mail as the messaging tool of choice. It is quick, effortless, and fast. E-mail has the

added benefit of having text and attachments in one bundle and giving the recipient the

option of immediate or delayed viewing.

The Media Sharing system does not seek to eliminate E-mail as the messaging tool of

choice. Instead, it seeks to compliment it as a messaging tool for urgent and immediate

information. It has the added benefit of displaying any media such as design drawings or

concept drawings that might need immediate viewing. Furthermore, if text messages

must be sent and seen the very moment they are issued, this system displays them

immediately. By smart sizing these messages, short ones will appear large and long ones

small.

Besides serving immediate messaging tasks, the system functions well as a tool for

presentation amidst design reviews and conferences. The ability for the system to

support many users without need for setup or configuration is desirable when time is a

commodity that cannot be wasted. Design reviews and meetings go long enough and

trimming down the time required in these meetings is a cherished idea. Electronic

presentations involving images and video can be queued up with ease and presenter

switching time reduced. As a result, more time will be spent delivering technical

information rather than setting up.

Companies that own many subsidiaries or development sites have a need to be informed

of the status of various distributed projects. If an array of displays were strategically

located within a compound, each screen could represent one or more of the subsidiaries

or distributed development centers. Each of these sites could have control over a screen

and send status updates in the form of images and/or movies. As time progresses, a

gradual history of the development process would unfold on each screen since a history

of commands would be saved. Furthermore, each shot would contain compelling and

relevant information. In addition, each site could potentially house an array. In this case,

each site can communicate with every other site with the press of a single button and at

virtually the same instant. All sites would be up to date. Alternatively, sites that need

only update specific other sites can do so by selecting its target screen representative at a

remote site.

VU

With regards to company propaganda, the system can be used to constantly cycle through

a sequence of text, images, and video that convey information about a company, about its

products, and about its superiority to competitors. One could envision displays set up in

strategic locations within a company where visitors could be tastefully assaulted by the

company's image. The power behind using this system is that this sequence of

propaganda can be augmented simply through a user request via an input client to add

more cycles or change the cycle entirely. This is achieved through an idle system history

displaying mechanism.

Studio/Subsidiary
Sites

Figure 7.2: Visualization of a development site's
status update media sharing wall.

In addition to in-house company propaganda, these systems could be used for visual

advertisement on street corners, buildings, blimps that fly over professional and

collegiate football stadiums, Times Square, Tokyo, and elsewhere. These areas,

especially the latter, are possible locations where masses of people travel every day. A

company having the ability to post its propaganda at these junctures bodes well for

company visibility and easy marketing. Furthermore, advertisement companies could

simply purchase a network of displays situated in various locations, install the system,

and offer their services to companies for a fee. In this way, the advertisement company

has power over which companies have access to the entire system or specific system

nodes located in strategic locations.

7 i

Many of these examples can be used in other arenas such as military or intelligence

reconnaissance. For the latter, one could envision agents dispatched to various locations

and equipped with media recording devices among other things. Each agent can

continuously send information back to a home base in real time for immediate data

storage and or display.

7.1.2 Recreation

If the general population uses the system, the idea of media messaging becomes a

recreational type activity much like AOL Instant Messenger and others have made

interactive text messaging recreational. The difference is this system does not

discriminate among media types used to message. However unlike these messengers, this

system is a more dedicated affair thus sacrificing the aforementioned technologies'

simplicity for this technology's media independency.

One could envision a dedicated display intended to receive instructions from the CCS. It

is possible that both the CCS and the display client run on the same machine. In this

scenario, the display could be used as a centerpiece in a home to receive media messages

from family or friends of that household. For instance, a son may have had the

opportunity to backpack across Europe. Armed with a digital camera, laptop, or a simple

smart phone, this individual could send images or video of his adventures back home.

The family could vicariously experience the same trip. Since the display is a dedicated

centerpiece, it functions as a constantly changing painting that uses a high-resolution

display to depict digital content. The distance gap is essentially zeroed and experiences

can be shared from a person to family and friends.

It is also possible to envision games being developed that can exploit the multi-display

aspect of the system. Laser tag is fairly popular and arcades tend to have a dedicated area

for this type of game. A slightly augmented version of this game could require players to

navigate the course as a lone warrior. Display clients can be distributed throughout the

72

course that provide information on location specific missions and controlled either by

automation or a manual worker at the arcade.

7.1.3 Education

In the academic realm, learning by visual stimulation is increasingly being used as the

technologies for effectively utilizing such media have improved. Much like the usage

described in the business section, systems in this realm can be used in lectures by

teachers and professors to display short digital clips that pertain to the topic at hand.

Furthermore, students can use the system when presenting a project or an assignment to

the class. The system could also be used as a means to teach networking since the system

can be broken into explicit parts and tinkered with in real time. It would be a very hands-

on approach where the result can be seen almost instantly by students trying to grasp the

concept. Furthermore, it can be used to teach new words to young children if used as a

giant flash card. A teacher can queue up a lesson plan for the day, connect a dedicated

display client to a projector, and project the words of the day onto a screen or wall. As

the history mechanism kicks in, a flash card like interface will be observed. Individuals

studying on their own could setup a similar environment in their rooms (minus the

projector) and cycle through key terms and concepts interspersed with images and video

for class specific material.

7.1.4 Art Medium

Using the system as a means of artistic expression is intuitively obvious as a possible

function. A museum, school, or artistic symposium can setup a dedicated grid of displays

to be used as a digital canvas on which users can paint their creations. A museum could

conceivably hold a competition for most creative use of a 4x4 digital canvas for artistic

expression and then use the winning entry as an exhibit. A school could purchase a

sizeable digital canvas and place it in a location that receives a lot of traffic. Students

could then use the canvas for displaying their very own digital creations or sequence

masterpieces. Alternatively, the school could start a program that receives digital canvas

j73

submissions and display them according to their own choosing. Professional artists could

get together and create some artistic conference or symposium where this system could

be used as a decorative piece welcoming participants and adding to the environment. It

could also stand as an interactive piece for participants in the event. The most promising

use I believe is as a dedicated evolving painting. Professional digital artists could create

stunning work. A dedicated centerpiece for display of collected work in one's home also

serves as a great aesthetic improvement within a household.

7.2 Extensions

This section will present extensions to the system that have been developed in full or in

part. Some of these fulfill usage scenarios described in the previous section.

7.2.1 Architecture for Platform Independent Parallel Computation

This extension has been concurrently in development with the scalable spatially aware

media sharing display system. Many of its components have been discussed in the body

of this thesis already since these components have significant contributions to the

extensibility of the system. The complete system itself remains under construction. In its

current state, it functions as a proof of concept for the specific application of thumbnail

generation. Although many of the mechanisms are in place, the final piece of that

realization is yet to be completed. The mechanisms, such as the Red Black Load Tree

and the Parallel Client distinction, provide great springboards for generalization to

arbitrary parallel tasks. In addition, the deliberate design of the GeneralComm to pass

objects lends more to the possibility of that effort. More on the realization of this

functionality is described in Chapter 8. See Appendix A for current progress on this

system. The current implementation, including yet to be completed final components,

operates as follows:

74

Figure 7.3: Early Parallel Client Application
Interface

In order to submit the job to the system, a user loads up the input client program. The

user selects a directory containing images needing thumbnails to be generated. Next, the

user selects a directory where the thumbnails will be saved. Finally, the user selects

execute and may go about his business elsewhere.

From here, the input client program encapsulates all directory information with a set

recursion depth (easily adjustable) including directory names, filenames, sizes, and

document count. Furthermore identification numbers are assigned to each directory and

form nodes on a tree. Next, a compressed version of this tree is built encapsulating all of

this data with simple integers and various length encoding schemes.

Once these structures are created, the input client makes a connection request to the CCS.

The CCS accepts this request and hands off the communication link to an appropriate

client thread. The input client wraps the compressed directory information along with

other instructions into a package and sends it off to the CCS. The client thread handling

the input client validates this package, and adds the instructions to the CCS command

queue.

Once the CCS retrieves the command entry from the queue, it is recognized as a parallel

job task and is added to the parallel job queue. Another thread that checks this queue

receives the data and extracts the compressed load information including the requesting

client's host name. This thread then uses the size information in the tree to adequately

balance the load among the available output nodes abstractly represented by the output

client threads.

75

Once the load balancing completes, the commands are sent to each output client thread

that handle communications with specific output clients. Again, identifying these

packages as parallel job tasks, the output client thread augments the package with some

status information and sends the package to the actual output client.

An output client receives the message, identifies it as a parallel job, and initiates a new

parallel job handler thread. This thread loads its assigned task and requests a direct

connection to the input client identified by the received host name. The input client

accepts this connection and receives its first file request information from the output

client. Using the compressed structure, the output client knows exactly which files to

request and the input client knows exactly how to trivially decode this request. The files

are then sent to connected output clients that immediately begin generating thumbnails.

As time passes by, output clients offer up status information to the output threads located

on the CCS. They in turn update the output client load status. Output clients send the

thumbnails back to the input client in packages as they see fit. Once the job completes,

the connections are severed and the user can then and only then submit another job

(unless he or she aborted the current job).

7.2.2 Treehouse Studio

Treehouse Studio, a project underway in the Physical Language Workshop within the

MIT Media Laboratory, is an open source initiative to bring diversity in creative

expression to broad audiences and to facilitate a creative digital economy. The project

involves full web deployment, platform independence, and collaborative data sharing. It

is being created as a singular infrastructure for gathering, manipulating, and exporting

data to and from various sources in a manner exploiting static and mobile connectivity.

Within this framework, the media sharing system became a significant component.

Since Treehouse Studio is specifically designed as a collaborative community oriented

space for digital content creation, the need to display such content is prevalent. Though

content exists on the web and is accessible anywhere, development has been concurrently

underway to allow physical realm outlets for the data. The media sharing display

mechanism functions as a great tool to display user work in that realm and was a first

proof of concept that such possibilities existed. The user interface in Treehouse Studio

for posting content to the area is extremely simple and utilizes JSP technology in the

background to handle connections. This user interface is, in essence, an input client to

the system (see Figure 7.4).

Figure 7.4: Treehouse Studio input client control
interface used to post media to the iNode array.

The ability of the system to accept content via email and store them to a repository also

became crucial to the Treehouse Studio as a conduit for inserting data into the system

outside of the actual website. This ability essentially gave Treehouse Studio a device

independent interface for inserting data into the architecture. The media sharing system

was augmented to be able to use a simple protocol for contacting the Treehouse Studio

database and inserting content for specific users of the system identified by their E-mail

addresses.

7.2.3 Biometrics Mail Trickle

The biometrics mail trickle project was an attempt at gathering data from the physical

world collected by a sensor and inserting it into the Treehouse Studio (see Section 7.2.2)

architecture where other onsite applications can be used to operate on the data. By

77

__ _-___ ___--.___ - - __ , _-=- -gallp- - _'*

utilizing the E-mail conduit already established by the media sharing system, this type of

functionality was realizable. A mechanism for creating images from random data was

created as well.

This project opens the door for arbitrary forms of sensor networks to be used for

gathering data and channeling it through the media sharing system. A variety of input

clients can be created as long as the protocol is obeyed. In the same vein, a variety of

output clients with alternate types of functionality can be developed that can operate on

the data gathered by sensor networks.

Figure 7.5: These are images of the biometrics system interfacing with
Treehouse Studio and the Media Sharing system. (a) A close-up of the
biometrics reader. It consists of an optical heart rate sensor, a gain
circuit, and a rabbit microcontroller. (b) Initiating the biometrics data
collection sequence. (c) Using Treehouse Studio to load and edit the
data into a visual presentation. (d,e) Posting the data to the iMac array.

(a)

(b) (c) (d) (e)

78

8 Evaluation

In this chapter, I will provide an evaluation of the system with regards to contribution,

viability, shortcomings and suggestions on improvements. These will be discussed in the

sections on comparisons, analysis, and future work.

8.1 Comparisons

Chapter 2 touched on precedents and related work to give a context for my system. In

many ways my system is similar in goal and usage to those aforementioned precedents

and related mechanisms. The system is similar in its function as a medium for

communication and data sharing via varied media types for relevant and enhanced

contextual experiences. It contributes and deviates from them in the following ways.

In regards to the precedents, my system exists as a compliment or potential extension of

functionality. As discussed, television is used for many purposes including news and

recreation. In much the same way, my system can perform these tasks without the need

of a camera crew or producer. Operating via the Internet, not only does it act as an

extension to the use of the World Wide Web, but it also provides an easy way for

different parties to keep each other up to date on important communications (see Chapter

7). Furthermore, it acts as a medium to bring friends and families together even if they

are in disparate locations of the world quickly and efficiently (see Chapter 7). Third, my

system can function as a tool for purely aesthetic appreciation as a constantly changing

painting or digital picture centerpiece (see Chapter 7). The system also acts as an

extension to the interactive entertainment realm in principle (the system by definition is

interactive). In addition, it is possible to conceive of input clients to the system created

specifically with gaming in mind.

In regards to the related work, my system shares many aspects of their design and

functionality and also harbors unique contributions. In some form or in no form, much of

the related work excluding the thumbnail generators aim to simplify communication

75)

among various components and make life easier for the user by making some context of

media or device independence. In these aims, my system is no different. The

contributions my system makes are in other forms. My system, in design, seeks to

achieve multi-interface control. In other words, it seeks not to limit the number and kinds

of devices that can control the mechanism or use the infrastructure. In this endeavor,

potentially any network accessible device can operate the architecture. My system also

provides the opportunity for remotely sharable display spaces outside of a local area

context. Chapter 7 presents many scenarios where such ability is desired and effective.

Furthermore, this system supports on the fly output client assimilation. Potentially many

output clients can connect to the system thereby increasing its functionally with minimal

effort. In addition, users can design varied function output clients to suit their own needs.

And finally, my system supports user configurable and scalable display types. A user, by

simple use of an input client controller, can decide what kind of scaling or configuration

he or she sees fit to harness. He or she can also configure a display array to any two-

dimensional sized grid conceivable. In other words, a user of my system has the freedom

of flexibility at his or her fingertips.

Apple's Xgrid system and my system have been concurrently in development and came

as a shock when they announced such a system. The Xgrid's structure is eerily similar to

my own. In addition, both seek to accommodate loosely coupled parallel tasks and

automatic node assimilation to boost the computing power of a dynamic parallel cluster.

Furthermore, both systems are using commodity components to accomplish this feat.

Where the two deviate is primary intent. The Xgrid is primarily a dynamically created

grid-computing infrastructure for arbitrary parallel tasks that are loosely coupled. My

system is primarily a platform and device independent infrastructure for sharing and/or

displaying various media types onto a grid of or singularly placed target display nodes

while accommodating dynamic growth.

Work on the parallel extension of the system incorporates more contributions and

deviations. The system deviates from the slew of thumbnail generators presented in

Chapter 2 in its intent for both single and multi-user access and thumbnail generation.

60

Single users can use it to submit exceptionally large jobs to a parallel processing center

for speedup; however the power comes when there exists a body of individuals working

toward a unified end, such as a publishing company, a magazine company, or a news

company. For these companies, a large body of images is captured daily and so require

applications having the batch processing power of the Perl thumbnail generator and the

time saving efficiency of parallel operation. My system will allow such companies (and

other interested users) to create an in-house "super-computer" infrastructure out of

commodity components for bulk image processing (compression in this case).

Furthermore, my system's potential computing power increases with the ability to be

viral, i.e. turning available computers into potential output clients.

8.2 Analysis

In order to be viable, the system needs to be simple, efficient, sustainable and extensible.

All of these requirements have been achieved. The communications framework is fast

enough to human perception and use. There are no perceivable delays for conventional

use of the system. Conventional use is defined as using an ordinary input client

application (such as the Treehouse Studio interface) and displaying simple media such as

text and images. Once users begin to send large images, download delays begin to

impact the system as far as display is concerned. The QuickTime engine on the display

clients take a URL as input and attempts to locate the media on the network. As a result,

large media will require time to download. This download time is dependent on network

traffic locally as well as to the specific media. In addition this download time becomes

dependent on the actual physical output client machine. Movies take time to load since

QuickTime must load several internal mechanisms to launch a movie. In addition, the

current implementation of the system retrieves the movie and saves it locally before

submitting it to the QuickTime rendering engine. The QuickTime mechanisms for

downloading a movie from the Internet and loading it in one call are, in high likelihood,

more efficient than doing so myself. However a problem with a QuickTime movie player

displaying in a java frame and refreshing its display necessitated the workaround.

6i

In a prior version of the system, a busy-wait model was used in the communication

framework for retrieving data and adding validated commands to the message queues. A

busy-wait was also being used for the observers. This resulted in wasted computation

cycles as well as bottlenecks in those areas of the system. In comparison to the notify-

wait model, the hit to performance was enormous. After changing to the notify-wait

model, the message handling mechanism no longer bogged down the system and escaped

bottleneck status.

In order for the control center server to be self-maintaining, deliberate measures of

resource allocation and memory management were enacted. During idle periods,

resource allocation mechanisms are initiated including garbage collection. To ensure

minimal memory waste, careful de-referencing of variables occurs especially within the

special purpose data structures discussed in Chapter 6. The server also maintains log

files detailing specific operations of the system. In case of major error, the events leading

up to a serious crash will have been logged and administrators can uncover the source of

the problem. Unfortunately, a mechanism for automatic internal restart has yet to be

incorporated within the control center server. Such a mechanism would perform a restart

once a day signaling total resource reclamation to the java garbage collector.

Output clients also maintain a system of resource management similar to that of the

control center server. Observable evidence of its effectiveness include output clients that

can run for a couple days without incident or observable decrease in display time or

functionality. However, on occasion the QuickTime engine produces an error that is

unrecoverable and causes the Java Virtual Machine to exit. This phenomenon is

unacceptable for the requirement of output client life preservation. The reason for this

phenomenon is yet to be discovered. However, a Perl script has been created to mask this

effect. A minimal program, the script can run for days without incident. It observes the

process ids of the output client and the output client background. If this process id

vanishes, the script issues a restart of the program. The output client background (a

separate Java program) effectively masks the crash by creating the illusion that the media

S2

on screen is about to change. The Perl script does not cause excessive load on the

machine hence not affecting performance but improving it.

The system was also put to user testing in a real scenario at the week long Summer

Design Institute held in New York from July 12, 2004 till July 16, 2004. The system was

used during the exhibition part of our workshop in combination with Treehouse Studio.

Presented to educators and designers, Treehouse Studio was used as a vehicle for digital

content creation in a collaborative onsite setting. This tested the ability of Treehouse

Studio and Media Sharing to be transportable and deployable.

Figure 8.1: Images from SDI event. From left to right: interactive instruction, display, critique, and
wrap up.

The entire package itself was termed Treehouse Shuttle. All facets of Treehouse Studio

from tools to collaboration and communication via the system were heavily tested by

exercises we had developed. During exhibition of work, a single Tablet PC, attached to a

mobile digital projector, was used as the output client. Participants were then instructed

to send work to the display and present their idea to the group. Without the simplicity of

the display mechanism afforded by my system, this exhibition process would have been

more involved with regards to setting up and getting work to display on a projector.

Instead, the system afforded a more streamlined approach that proved worthwhile,

effective, and efficient. The ability for the participant to present their work and the rest

of the group to critique was magnified. Furthermore, the workshop conductor's job was

greatly simplified. The only suggestion given by the group with regards to the system

was an ability to post multiple images to a single output client and be displayed as a

collage of some sort. In this way, work can be critiqued in comparison to other work.

83

8.3 Future Work

There are many areas that can be improved, fine tuned, and extended in the system.

There are also numerous scenarios where this system can be utilized. Testing the system

in as many of these scenarios as possible will prove favorable to augmenting the design

and establishing the system as a practical mechanism. To do so would involve securing

user groups in these areas and providing them with the software, support, and means of

extensively user testing the system in order to collect more data points.

Moving the system to a more dynamic framework as far as configuration and discovery

are concerned is a worthwhile endeavor. Currently the system uses specific ports as

listening sockets for communication to input clients, output clients, special clients, and

the dedicated special purpose CCS control client. If other programs are using these ports,

the CCS itself will abort operation and quit. The clients themselves will attempt to

communicate to the CCS via their respective ports but will fail. If the system CCS

undertakes a mechanism that can dynamically discover open ports to use for

communication, the system will become more robust. A problem with using dynamically

allocated ports is in notifying client programs of the port number. Alternatively, the

system protocols can be changed to all run on port 8080 initially and be redirected, as

they are now, to the dynamically allocated sockets.

The system object models can be improved. Currently there are some components that

share similar structure and similar inner classes. These inner classes can be extracted and

the other classes can be made to subclass a new class holding common functionality.

Furthermore, interfaces can be designed to force certain foundational classes to

implement specific methods. By doing so, the system can be made more general and

modular by having all core components operate on the interfaces eliminating the need to

know what kind of specific object is being operated on. The Content Creator class,

currently not being used by the system, is a move in that direction. In addition, each tier

of the system can, in theory, function as a control center server leading to more

sophisticated and intelligent networks within this framework. Algorithmic enhancements

64

can also be made throughout the code to further increase execution speed. Some of these

include iterative tree generation algorithms, further and better message handler and

communication framework abstractions, and a more defined architecture including API

and interfacing mechanisms to name a few.

In addition to improvements in system object models, the current mechanisms for

parallelism must be generalized to operate on arbitrary jobs. Instead of being specific to

files, the load trees can be augmented to simply represent numbered tasks and their sizes.

In this way, the load balancing routines can be a more powerful tool. Furthermore, a

mechanism for identifying custom media being passed within the framework must be

implemented. This involves being able to unwrap and run packaged classes. This type of

media could easily be masked as a parallel task since that framework must also support

embarrassingly parallel jobs. Furthermore, the specific task of thumbnail generation can

be extracted out and designed by extending required parts of a base media sharing system

to accommodate that parallel task. Finally, augmenting the infrastructure to allow non-

Java enabled devices to capitalize on a parallel framework would increase the device and

platform independent goal of the system.

While architecting the communication framework, I intended to use GZIP Output and

Input Streams encapsulated within the GeneralComm framework to allay the load on

network communications. However, the code exhibited extremely odd behavior, simply

blocking for an extended time on the input stream end. By all indicators, this event

should not have occurred (especially after researching its use among other applications

including syntax and structure). However the problem persisted. On the one hand, the

actual gzipping process employed by the stream may not be worth the time if simply

passing the data as is through the network occurs much faster and for most commands

and loads.

Using another method of determining location can further extend the idea of spatially

aware output clients. For instance, bluetooth location sensing or GPS can be harnessed.

Doing so would introduce real location instead of relative location.

Under the current implementation, a vague sense of user is present in the system. As a

result, any person can send requests to the system. For security, a more defined sense of

user can be developed allowing administrators to create some form of access control to

the system. In addition to this notion of user, a further extension involves allowing

deletions from the storage mechanism. If a notion of user exists, such a mechanism will

not be as dangerous as it could otherwise.

Video in and of itself introduces another complexity to the system - synchronous feeds.

When the display type is selected as a cluster entity using video content, output client

displays must be able to coordinate the display such that the video plays synchronously

across the desired user array space. An alternative to handling coordination is to receive

video from the CCS at multi-cast addresses and play the bytes received as a live feed.

This opens the door for more sophisticated control from input clients. Supporting truly

streaming data in general functions as a necessary extension in putting the output clients

to pertinent use. Streaming data will allow for more creative user applications to emerge

taking advantage of the system.

The history mechanism in the system can be augmented to support direct control from the

user or the administrator. If explicit or undesired material creeps into the command

history, administrators should be able to remove such content, especially if the display is

being used in a public area. Users, on the other hand, may request the evolution of a

specific piece over time. Since the system supports renaming new files in case of name

collision, it could be that the files form an evolution of an idea. This evolution can be

sent via email to a user or displayed on the array.

Regarding the issue of custom input clients and sensor networks, one can envision a piece

of low level hardware designed to periodically post data to the system, or store some

collected data in the system storage repository.

o0

There are yet many other features and enhancements that can amend this system. Adding

the ability of output client nodes to communicate with each other in order to share data

could enhance parallel tasks or open the door for more interesting display mechanics and

control by a user. As far as client programs are concerned, converting to the Java Web

Start framework will enhance its portability and platform independent design. Being able

target specific output clients for parallel applications has benefits as well. Clustering

output client nodes for parallel tasks translates into making location dependent nodes

aware to users in a meaningful and streamlined way.

In all of these things, simplicity on the side of the user must be maintained including an

infrastructure that supports mobile connectivity.

66

9 Summary

I have presented an infrastructure of a scalable spatially aware media sharing display

system. The system itself is primarily designed to enhance communication among many

facets of society. The fact that the main part of the system is centrally located, can be

controlled by a myriad of devices, and can integrate output client nodes distributed over

large distances provides great opportunities for new and sophisticated applications. The

potential effects of controlling these displays could have great repercussions in the

various areas of society including business, marketing, research conferences, multimedia

events, family and friend interactions, and travel. More importantly, the infrastructure's

flexibility and support for mobile connectivity allows any user anywhere to be able to use

this system. This means that people who have limited access to useful technologies can

have at their fingertips a simple messaging system to connect with people the world over

or a limited super computer that uses commodity components. This system promotes the

creation of platform and device independent technologies that can unite the many

technologies already extant and enhance communication in significant ways.

Furthermore, it promotes designing interfaces that can be forwards and backwards

compatible and flexible enough to allow motivated users to build more sophisticated

control and applications of the system.

6)

90

References

[1] Apple computer, Inc. "Programming Topic: Rendezvous Network Services,"
2003, [Online] Available; http://developer.apple.com/techpubs/macosx/
Cocoa/TasksAndConcepts/ProgrammingTopics/NetServices/
index.html#//appleref/doc/uid/10000119i.

[2] Apple computer, Inc. "Rendezvous Network Services Architecture," 2003,
[Online] Available; http://developer.apple.com/techpubs/macosx/Cocoa/
TasksAndConcepts/ProgrammingTopics/NetServices/Concepts/
NetServicesArchitecutre.html.

[3] "ARPANET," 2004, [Online] Available; http://en.wikipedia.org/wiki/ARPANET.

[4] Ballerstaller, Christian. "The Code Project - Thumbnail Generator," 2003,
[Online] Available; http://www.codeproject.com/csharp/
thumbgenerator.asp.

[5] Beam, Michael. "Networking in Cocoa," Mac Devcenter,2003, [Online]
Available; http://www.macdevcenter.com/pub/a/mac/2003/05/13/
cocoa.html.

[6] "Blogs," 2004, [Online] Available; http://en.wikipedia.org/wiki/Blogs.

[7] Cappy, "DOOM3 versus Half-Life 2 - HW tema," 2003 (in Czech), [Online]
Available; http://games.tiscali.cz/hardware/tema/doom3vshalflife2/.

[8] Cohen, Peter. "InFocus LiteShow brings Wi-Fi to projectors," 2003, [Online]
Available; http://maccentral.macworld.com/news/2003/05/22/liteshow/.

[9] "Computer and Video Game Genres," 2004, [Online] Available;
http://en.wikipedia.org/wiki/
Computer andvideo-gamegenres#Educational.

[10] D. McCormack, "Integrating Xgrid into Cocoa Applications, Part 1," Mac
Devcenter, 11 May 2004, [Online] Available; http://www.macdevcenter.
com/pub/a/mac/2004/05/1 /xgrid-ptl.html.

[11] D. Rejeski and Ben Sawyer, "Serious Games Initiative," [Online] Available;
http://www.seriousgames.org/about.html.

[12] Dauger, Dean E. "Parallel OperatiOn and Control Heuristic Application,"
June 20, 2003, [Online] Available; http://www.daugerresearch.com/pooch/
PoochManual.pdf, http://www.daugerresearch.com/pooch/manual/.

91

[13] "Extreme Internet Software: digital imaging software for web," 2001-2004,
[Online] Available; http://www.exisoftware.com/thumbnail-generator/
index.html.

[14] "Extreme Thumbnail Generator Review at Free Downloads Center," 2001-2002,
[Online] Available; http://www.freedownloadscenter.com/Reviews/
r1080.html.

[15] "Far-Off Speakers Seen as Well as Heard Here in a Test of Television," New York
Times, 8 Apr. 1927, [Online] Available; http://www.att.com/history/
television/nytimesarticle.html.

[16] "Games to Teach," 2003, [Online] Available; http://icampus.mit.edu/projects/
GamesToTeach.shtml.

[17] Gay, Jonathan and Sarah Allen. "Macromedia Flash Communication Server MX:
Use Cases and Feature Overview for Rich Media, Messaging, and
Collaboration," July 2002, pp. 1-7, [Online] Available;
http://www.macromedia.com/devnet/mx/flashcom/articles/comserver.pdf.

[18] Gluck, Ortwin. "Thumbnail Generator," 2003, [Online] Available;
http://www.odi.ch/prog/thumbnail.php.

[19] H. Jenkins, "Game Theory: Digital Renaissance," Technology Review, MIT,
29 March, 2002.

[20] H. Jenkins et al, "Games-to-Teach Vision," 2000, [Online] Available;
http://www.educationarcade.org/gtt/research.html.

[21] Hanrahan, Pat. "Scalable Graphics using Commodity Graphics Systems," May
2000, [Online] Available; http://graphics.stanford.edu/projects/
multigraphics/talks/viewspi.may00/viewspi.may00.pdf.

[22] "History of the Internet," 2004, [Online] Available; http://en.wikipedia.org/wiki/
History-ofjtheInternet.

[23] "History of Video Game Consoles," 2004, [Online] Available;
http://en.wikipedia.org/wiki/History-of video-gamesconsoles.

[24] Humphreys, Greg and et al. "Distributed Rendering for Scalable Displays," 2000,
[Online] Available; http://graphics.stanford.edu/papers/clustrender/
clustjrender.pdf.

[25] "Internet Backbone," 2004, [Online] Available; http://en.wikipedia.org/wiki/
Internet backbone.

[26] J. Larson, "What is the Deal with Televised War Coverage?," American Daily

News & Commentaray, 23 March 2003, [Online] Available;

http://www.americandailycom/article/3706.

[27] J. Yu, "The Online Guide to Controversial Video Games," 2002, [Online]

Available; http://www.boilingpoint.com/~jasonyu/cs240/.

[28] L. Grossman, "The Age of Doom," Time Magazine, 9 Aug. 2004, [Online]

Available; http://www.time.com/time/magazine/article/
0,9171,1101040809-674778,00.html, http://www.time.com/time/archive/
preview/0, 10987,1101040809-674778,00.html.

[29] L. Herman et al, "The ultimate History of Video Games,"
http://www.gamespot.com/gamespot/features/video/hov/p4_02.html.

[30] "Massively Multiplayer Online Game," 2004, [Online] Available;
http://en.wikipedia.org/wiki/MMOG.

[31] P. Baran, "I. Introduction to Distributed Communications Network," On

Distrubuted Communications, tech. memo, RM-3420-PR, Rand

Corporation, Santa Monica, 1964, [Online] Available;
http://www.rand.org/publications/RM/RM3420/.

[32] P. Baran, "XI. Summary Overview," On Distrubuted Communications, tech.

memo, RM-3420-PR, Rand Corporation, Santa Monica, 1964, [Online]

Available; http://www.rand.org/publications/RM/RM3767.summary.html/.

[33] "Publications in the 'On Distributed Communications' Series," 1994-2004,

[Online] Available; http://www.rand.org/publications/RM/baran.list.html.

[34] P. Baran, "I. Introduction to Distributed Communications Network," On

Distrubuted Communications, tech. memo, RM-3420-PR, Rand
Corporation, Santa Monica, 1964, chapter 4, [Online] Available;

http://www.rand.org/publications/RM/RM3420/RM3420.chapter4.html.

[35] R. W. Wiggins, "The Effects of September 11 on the Leading Search Engine,"

First Monday Peer-Reviewed Journal on the Internet, vol.7 number 10,
3 October 2001, [Online] Available; http://www.firstmonday.dk/issues/
issue6_10/wiggins/.

[36] Skiljan, Irfan. "What is IrfanView?" 2004, [Online]; http://www.irfanview.com.

[37] T. H. Cormen et al, Introduction to Algorithms, MIT Press, 2001, pp. 273-293.

[38] "Television," 2004, [Online] Available; http://en.wikipedia.org/wiki/Television.

[39] "Television History of AT&T and Television," 2004, [Online] Available;
http://www.att.com/history/television/.

[40] "Television History - The First 75 Years," 2001-2004; http://www.tvhistory.tv/
pre-1935.htm.

[41] UCP Morgen. "Media Messaging Solutions," pp. 1-2, [Online] Available;
http://www.ucpmorgen.com/downloads/
ucpmorgen-media-messaging-solutions-en.pdf.

[42] "Video Game," 2004, [Online] Available; http://en.wikipedia.org/wiki/
Video-games.

[43] "Wiki," 2004, [Online] Available; http://en.wikipedia.org/wiki/Wiki.

[44] "Xgrid," Advanced Computation Group, 2004, [Online] Available;
http://www.apple.com/acg/xgrid/.

[45] Xgrid Guide, Preliminary, Apple Computer, Inc., Cupertino, CA, 2004.

[46] "Ximage Thumbnail Generator," 2004, [Online] Available;
http://www.hotscripts.com/Detailed/31815.html.

94

Protocols Package

CCS Protocol

Special Client
Protocol

Remote Post

Pat Input Stream

General Comm

java.net java.io java.util

mediashare.
utils

Time Out Checker

- - - - - - - - - - - - -

KEY:

Main Package to Support
Packages Relation
Inner Classes Relation

Parallel Implementation
Components

Protocol

Web Client
Protocol

Parallel Client
Protocol

I'

Protocols Package KEY:
Super / Subclass Relation

Uses Relation

CCS Protocol Timer Weakly Uses Relation

Parallel Implementation
Components

Protocol Timer Task

Time Out Checker

Special Client Web Client
Protocol Protocol Remote Post Socket

MsUtils Vector

General Comm BGListener

Parallel Client Hashtable
Protocol

Buffered Input Input Stream Output Stream

Stream

Pat Input Stream Byte Array Object Input Object Output
Output Stream Stream Stream

r ------------ i

Data Stack Parser

Send Data
Thread

MSUtils

Content Creator

BGListener

Load Tree

RBTreeVisual

Red Black Load
jTree

Directory Load
Tree

Red Black Tree

Red Black Node

BGDownloader

Compressed Load
j Tree

Utils Package KEY:

Main Package to Support
Packages Relation

Inner Classes Relation

Parallel Implementation
Components

java.net java.io java.util

java.awt java.awt.event javax.swing

mediashare.
protocols

-4

Utils Package

JFrame

RBTreeVisual
JLabel JButton

JTextField JPanel

Red Black Tree

.-- - - - - - - -

Red Black Node ' Red Black Load -
Tree -
. _ -- l

Load Tree

Clompressed Load Directory Load
Hashtable Tree - Tree

4 - ------

Socket
Thread File

Content Creator

BGListener BGDownloader
Vector

URL Msutils General Comm

KEY:

Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Parallel Implementation
Components

Utils Package

Thread

Data Stack Parser Send Data
Thread

SContent Creator

Vector General Comm

Socket BGListener

KEY:

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

r -- - - - - - - -i

Status Task

Data Stack Parser

I I-- - - - - -

INode Client

Parallel Job
Handler

- - - -. - - I--

Thumbnailer !

- - - - - - - -
. .I

INode Client
BGGUI

INode Client GUI ..

java.awt javax.swing java.io java.util

java.awt.event javax.imageio java.net mediashare. utils

. java-. .awt._mage...m.

java.awt.image .IJimi

r----------------

)Config Window

QTJava

mediashare.
protocols

mediashare.
view

KEY:

Main Package to Support
Packages Relation

Inner Classes Relation

Parallel Implementation
Components

Client Packaie

Client Package

Thread

Frame

INode Client INode Client GUI INode Client
BGGUI

Full Screen Full Screen Window

JFrame

QTDrawable QTCanvas Media View Config Window utton

TextField Label Panel

KEY:

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

Client Package KEY: Super / Subclass Relation

Uses Relation

Weakly Uses Relation
Thread

Parallel Implementation
Components

Socket Data Stack Parser

PrintWriter Vector
INode Client

General Comm Parallel Job
Handler

Parallel Client Web Client Protocol BGListener Hashtable
Protocol

Timer TimerTask

SStatus Task o

Client Package KEY:
Super / Subclass Relation

Parallel Only Uses Relation

Weakly Uses Relation

Vector Thread

Parallel Client Parallel Job Thumbnailer ImageIcon
Protocol Handler

BGListener General Comm Hashtable Byte Array Image
Output Stream

Compressed Load Jimi
Tree (or ImageIO)

WebClient Package

Listening Thread

Send Data
Thread

Time Out Checker

.....-- - -- -- -- -- -- -

Status Checker

MyFileFilter

java.awt

java.awt.event

Web Client App

CCSControlPanel

J Parallel Client
GUI

java.awt.image

........-... A

javax.swing

Web Client GUI

CCSControlApp

Parallel Client
j App

INode Button

CCScmdLine

Compute Node
Client

KEY:

Main Package to Support
Packages Relation
Inner Classes Relation

Parallel Implementation
Components

Thumbnailer

Execute Thread Compute Node Time Out Checker
Listener

Send Data Listening Thread PFileFilter
Thread

java.io java.ut i mediashare.
protocols

java.net Jimi mediashare.
utils

. . -.-. J._._._._._._._._-A

0

L-. j LI

W ebClient Package KE Super/ Subclass Relation

Uses Relation

JApplet Weakly Uses Relation

Web Client GUI

INode Button ScrollPane TextArea JLabel JTextField JPanel

Web Client APP

Timer Socket PrintStream BufferedReader

TimerTask Thread

Time Out Checker
Listening Thread Send Data

WebClient Package KEY:

JFrame

I CCSControlPanel CCScmdLine

Textfield

JButton

TextArea CCSControlApp

Print Writer Buffered Reader Socket MSUtils

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

WebClient Packacie
Parallel Only Uses Relation

Weakly Uses Relation

FileFilter JFileChooser JApplet Timer TimerTask

MyFileFilter /_Status Checker

Parallel Client
GUI

] Button

Vector File TextArea JLabel JTextField JPanel

Parallel Client
APP

KEY:

0 Super / Subclass Relation

WebClient Package KEY:
Super/ Subclass Relation

Parallel Only Uses Relation

Weakly Uses Relation

Thread

TimerTask Listening Thread Compute Node VectorListener

+ General CommII

Send Data Execute Thread Hashtable

Parallel Client Parallel Client
Timer APP Protocol

FileFilter

Socket ServerSocket TextArea MSUtils PFileFilter Directory Load

I Tree

WebClient Packaqe KEY:
Super / Subclass Relation

Parallel Only Uses Relation

Weakly Uses Relation

Thread

Vector Parallel Client Compute Node Thumbnailer
App Listener

General Comm Compute Node (ahale File Output Stream File
Client

BGDownloader ImageIcon Image Parallel Client Directory Load MSUtils
Protocol Tree

Socket

..--............ .

Multi Purpose
Client Thread

Multi Purpose
Checker

Data Stack
Thread

New Job Stack

Control Center INode Cluster INode
Server

Web Client Parallel Client -General Client Special Client

Pinger

Client Listener

Send Data
Thread

javax.swing java.net java.io java.util

javax.media.jai java.awt mediashare, mediashare.
utils mail

plw.opat. mediashare.
threehouse protocols

Q

Server Package KEY:

Main Package to Support
Packages Relation
Inner Classes Relation

Parallel Implementation
Components

Server Package

Red Black Tree

INode Cluster

Integer Red Black Node Hashtable

KEY:

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

V)

Server Packace

Thread

General Client (..

IN

Web Client Socket Parallel Client

IS

... - ~ / -Paralle
Protoc

MSUtils Hashtable m y Client General Comm Vector

KEY:

Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Parallel Implementation
Components

Web Client
Protocol

I Client-
ol

Server Packae KEY:
Super / Subclass Relation

Uses Relation

Weakly Uses Relation

Thread

Special Client

Special Client Socket Pat Input Stream Web Client
Protocol Protocol

\/

MSUtils Hashtable Streamy Client General Comm Vector

Server Packae KEY:

Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Thread

Send Data INode Client Listener
Thread

Hashtabne General Comm

Timer Task

MSUtils Socket Integer Vector Timer Pinger

Server Packace

Control Center >
Server

Timer Task Thread

\Multi Purpose Data Stack Vector Multi Purpose
Checker Thread Client Thread

Hashtable

Media Mail Client INode Cluster rerver Socket Special Client INode

\/

General Client

KEY:

S

U

uper / Subclass Relation

ses Relation

Weakly Uses Relation

KEY:
Server PackaKEY Se ve Super/ Subclass Relation

Parallel Only
- Uses Relation

Weakly Uses Relation

Control Center
Server

Thread

Vector

Compressed Load New Job Stack Red Black Load
Tree Tree

Parallel Client Parallel Client INode Cluster Hashtable
Protocol

INode

Server Package

Control Center
Server

Multi Purpose
Client Thread

Timer

Data Stack
Thread

Multi Purpose -
Checker New Job Stack

\/

JAI File

Server Socket Hashtable

Protocol Web Client
Protocol

Media Mail Client INode Cluster

Buffered Input Print Stream Streamy Client
Stream

Vector Thread Image

CCSProtocol Msutils Image Icon

Red Black Load Red Black Node INode
Tree

KEY:

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

Parallel Implementation
Components

c/c

View Package KEY:

Main Package to Support
Packages Relation
Inner Classes Relation

Media View IMacView

Media Presenter

IMac Refresh

MyCanvas

java.awt

java.applet

QTJava

mediashare.
utils

java.io java.util

java.net

KEY:View Package
Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Applet

Timer Task IMacView Canvas MSUtils Media View DirectGroup

IMac Refresh Timer MyCanvas Dimension QDRect

Graphics Media Presenter Movie Presenter
Image Importer Drawer

QTDrawable Image Presenter

QDGraphics QDDrawer

QTPlayer

Mail Package KEY:

Main Package to Support
Packages Relation
Inner Classes Relation

Media Mail Client Mail

Biometrics Mail
Trickle

r ----------------

Mail Message

javax.mail javax.mail. javax.mail.
search internet

javax.media~jai java.io java.util

javax.swing java.awt mediashare.
protocols

ON

javax. activation

plw.opat.
treehouse

mediashare.
utils

KEY:Mail Package
Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Mail

Search Term File

Folder MimeBodyPart

Flags.Flag Multipart

Session InputStream

\/

URLName Mail Message

Vector Hashtable Part

Mail Package KE

Mail

Media Mail Client

File JAI

Image ImageIcon

MSUtils Vector Hashtable Part

Y:

Super / Subclass Relation

Uses Relation

Weakly Uses Relation

M i KEY:

Super/ Subclass Relation

Uses Relation

Weakly Uses Relation

Mail

Biometrics Mail
Trickle

JAI Streamy Client Hashtable Vector

1)

Server Packaqe

Control Center
Server (CCS)

media Data Stack [Node Group Map cmd Line Thread cmd History ccsp
Writer (CCSProtocol)

rblt (Red Black mru INode Group command Line cmd History hwcp (Web Client
Load Tree) [(iNode Cluster) Server Socket Reader Protocol)

L. - ..

KEY:

Uses Relation

Weakly Uses Relation

Parallel Implementation
Components

Uses Relation
Control Center
Server (CCS) - Weakly Uses Relation

Media Mail Client Data Stack
Thread

Multi Purpose mmc data Stack Multi Purpose
Checker Thread Client Thread NOTE:

Classes INode, Special
..--------- Client, and General Client

all use the Control Center
Server's media Data

media Mail Check CCS.media Data Stack by reference.
StackII

iNode Client special Client
client Connection CCS.iNode Group Thread Thread
Check Map

web Client
Thread

INode Cluster CCS.iNode Serv r INode Special Client CCS.special Client
Socket Server Socket

General Client CCS.web Client
Server Socket

Server Package KEY:

Is-a Relation

idle Check

I

Server Package KEY: -0'Is-a Relation

Parallel Only Uses Relation

Control Center Weakly Uses Relation
Server

Thread

njt

Compressed Load New Job Stack Red Black Load
Tree JTree

Parallel Client itnew Job Stack CCS.rblt

ProtocolE

pc - pClient INodle Cluster - job

Parallel Client INode iNode INodle Cluster

Structure
Input Client App

10

DataStackTh

Persistent Connection
------ Transient Connection

Parallel Extension

Output Client Apps

iNode

---- -- Input Client Thread
A

read

Core Control In Parallel
Center Server Extension

iNode

0
tjo

NewJobThread

Control Center Server-1

1
L~J

~IIII1

I

Display Shots

128

AppendixD1

129

