
Extensible Neural Network Software:

in Gene Expression Analysis

by

Jonathan Lee Jackson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

© Massachusetts Institute of Technology 2004. All rights reserved.

A uthor

Department of Electrical Enneering a d Computer Science
September 17, 2004

C ertified by ..
Lucila Ohno-Machado

HST Associate Professor
Thesis Supervisor

A ccep ted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

BARKER
JUL 18 2005

LIBRARIES

Applications

2

Extensible Neural Network Software: Applications in Gene

Expression Analysis

by

Jonathan Lee Jackson

Submitted to the Department of Electrical Engineering and Computer Science
on September 17, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Artificial Neural Networks have been increasingly utilized in the life sciences for anal-
ysis of large data sets. High-throughput technologies, such as gene expression mi-
croarrays, have challenged traditional statistical learning algorithms given their high
dimensionality. This thesis describes GAINN, a neural network software package I
created. GAINN was designed to be an extensible tool for both researches and stu-
dents to use in neural network explorations. Several algorithms and features were
implemented and tested on classification of various gene expression array data sets.
The code design and user interface were implemented in such a manner that new
algorithms and features would be trivial to incorporate into GAINN.

Thesis Supervisor: Lucila Ohno-Machado
Title: HST Associate Professor

3

4

Acknowledgments

I would like to thank my advisor, Dr. Lucila Ohno-Machado for her help and guidance

throughout the entire process of completing this work. I would also like to thank

Aaron Fernandes, for editing my writing which can barely be described as part of the

English language at times. In addition, I would like to thank Nathan Vantzelfde for

his help on user-testing and design ideas.

I would also like to thank the Department of Homeland Security Office of Science

and Technology for their funding of my fellowship during the time that I completed

this work.

5

6

Contents

1 Introduction

1.1 Outline.

2 Gene Expression Microarray Data

3 Background

3.1 Biology of Neural Networks

3.2 History of Artificial Neural Networks

3.3 Single-Layer Perceptrons

3.4 Multilayer Perceptron

3.5 Back-Propagation Training Algorithm

3.5.1 Momentum

3.5.2 Batch versus Online training .

3.5.3 Stopping

3.6 Regularization

3.7 Alternative Cost Functions

3.8 Validation and Ensemble Averaging .

3.8.1 Optimal Voting Weight . . .

4 GAINN Software Overview

4.1 GAINN Software Features .

4.1.1 Dynamic GUI Model .

4.2 D ata Loading .

7

13

14

17

19

. 19

. 21

. 23

. 26

. 29

. 32

. 33

. 33

. 34

. 35

. 36

. 39

41

41

41

43

4.2.1 Data splitting

4.3 Network Structure . 46

4.3.1 Hidden Neurons . 46

4.3.2 Activation Functions . 47

4.3.3 Feature Selection . 48

4.4 Training Parameters . 49

4.4.1 Update Technique . 49

4.4.2 M omentum and Learning Rate 51

4.4.3 Error M easure . 52

4.4.4 Regularization. 52

4.5 Training Endpoint . 53

4.5.1 Stopping Criterion . 53

4.5.2 Ensembles . 54

4.6 Neural Network Performance . 54

4.7 Multiple Training Networks . 56

5 Results 59

5.1 Learning Algorithm . 60

5.2 Error Functions . 62

5.3 Training Speed . 64

5.4 Regularization . 66

5.5 Stopping Criterion . 67

5.6 Network Structure . 68

5.7 Multiple Class Separation . 69

5.8 Feature Selection . 70

6 Contributions and Future Work 73

8

45

List of Figures

3-1 The early attempt at a perceptron. 24

3-2 A single layer perceptron with one output. 25

3-3 A basic feed forward network with hidden neurons. 27

4-1 Classes that implement the NamedObject. 43

4-2 Loading a dataset. 44

4-3 Choosing the network structure. 46

4-4 Choosing the network structure. 50

4-5 Ensembles and stopping criterion . 53

4-6 Creating multiple networks. Any parameter may be selected and nu-

merous networks trained for that parameter. 57

4-7 Viewing the results from multiple networks. 58

5-1 The sigmoid function. 63

5-2 RMS error vs. training epoch iteration for different learning rates. 65

5-3 RMS error vs. training epoch iteration for a single training progression 66

5-4 Surface plots of the c-index against the number of hidden neurons in

each of two layers . The x-axis and y-axis range from 0 to 40. 69

9

10

List of Tables

5.1 ROC area for various network learning algorithms on the test set. . 60

5.2 Comparison of c-index for batch vs. online training in a 10 input neural

netw ork. 61

5.3 ROC area for various error functions. 62

5.4 Comparison of c-index for online training using regularization. 67

5.5 Comparison of c-index for different stopping criteria. 67

5.6 C-index values for multi class separation. 69

5.7 ROC area for various numbers of features 71

11

12

Chapter 1

Introduction

With the explosion of technology in the 20th century, the artificial intelligence com-

munity has seen many ideas arise with high expectations only to leave us with disap-

pointment. Artificial neural networksi appeared as if they might follow this pattern

in the late 1980s, when little practical application of neural network research was re-

alized after an initial surge of enthusiasm. After a tumultuous start, neural networks

have proven to be extremely useful tools for classification. From speech recognition,

to character recognition, to missile defense systems, neural networks are well suited

for a variety of classification tasks.

Here, I focus on their use for classifying gene expression microarray data sets.

Gene expression microarrays using cDNA have only recently become available and

allow us to measure thousands of gene expression levels with one sample [8]. This

wealth of new data has drawn attention and study in classification of various diseases

and conditions. As the data sets start to include a larger number of cases, microarray

data become better suited for classification tasks. A few reports describe the potential

of gene expression levels measured by microarrays in diagnostic and prognostic tasks

[3, 11]. With microarray data, there exists a problem of determining which features

are relevant to the classification task at hand. Due to the high dimensionality and

relatively small number of data points, we must be careful to not over-fit the dataset

'Henceforth referred to as neural networks, with the exception of the section on the biological
background of neural networks.

13

during training. For example, a leukemia dataset collected by Todd Golub, has

72 samples and 7129 features [9]2. Neural networks with feature selection are well

suited to take this vast number features and prune them down to a small subset.

Many researchers have had excellent success using neural network for microarray

classification [16, 24, 10]

As stated, the number of features provided with microarrays is extremely large, in

the high thousands or more, and the number of training items is often less than 100. A

majority of these genes are thought to be irrelevant for any one particular disease, and

the number of features relative to the size of the dataset could create massive over-

fitting. This creates two problems: how to best train the network given the structure

and how to best choose that structure. My neural network package, GAINN', was

created to address both of these problems. I explore training algorithms including

back-propagation and its parameters: momentum, early stopping, and regularization.

GAINN also uses a variety of cost functions to allow for different types of errors to

be minimized.

1.1 Outline

The following chapter provides a brief introduction to gene expression data and why

they are useful. Chapter 3 provides an exploration into the background of neural

networks as well as the different components of neural networks that I included in

GAINN. This includes a basic description of feed forward neural networks in general,

and various descriptions of formulas that are used in GAINN. Chapter 4 discusses

the GAINN software itself: how it was designed and how it is used. This chapter will

explain my motivations for architecting the software in the way that I did. Chapter

5 examines GAINN's performance on gene expression array datasets. I evaluate the

performance of GAINN against a small number of datasets provided in the public

domain and discuss the results. Chapter 6 discusses the overall contributions of

2 The original publishing states that there are 6781 genes measure. The dataset I used, obtained
at, http://134.174.53.82/microarray, contains 7129.

3 General Algorithms in Neural Networks.

14

GAINN and suggests future functionality.

15

16

Chapter 2

Gene Expression Microarray Data

The ability to obtain gene expression levels for a large number of genes only became

available relatively recently. Experiments were performed at Stanford in 1995 on a

small number of genes, and the first database of gene expression data was available

in 19971. Since then, gene expression datasets have become readily available and the

target of a great deal of research, and there are now over many publicly available

repositories of gene expression datasets.

The technique of using cDNA was developed by Schena in 1995 [32]. Microarraying

is useful for studying the expression patterns of large numbers of genes. In this

technique, single stranded pieces of known cDNA probes are attached to a glass

slide or silicon chip. Purified mRNA from the sample is then run over this chip and

expression levels may be determined by examining how much mRNA hybridized to

the probes on the chip. Using this technique, several thousand genes may be measured

at one time. The only requirement for a gene to be measured is that its signature is

known before the experiment.

Gene expression levels can be used for a variety of purposes. One of the commer-

cial uses with the highest potential today is in drug discovery. The under or over

expression of a gene can be highly correlated with a disease. We expect that in some

of these cases, the relationship is causal, and suppressing the over expression my help

'Henceforth, it is assumed that the term "microarray data" is referring to data obtained by gene
expression analysis.

17

prevent or treat the disease. Such a gene would be a prime target for a drug therapy.

Without further physiological properties, however, we would be unable to determine

whether the over or under expression was the cause or result of a particular disease.

Thus, gene expression data would need to be coupled with further tests in order to

determine a causal relationship between the gene expression level and a particular

ailment.

There are cases in which we are not concerned with whether the gene expression

level is the cause or effect of a disease. In the case of the AML/ALL dataset by Golub

[9], the data were collected to determine whether there were potential subclasses of

known types of leukemia that were associated with different prognoses. Since the

leukemias were labeled into the well known categories of acute myelocitic and acute

lymphocitic leukemias, the data set has been used also to demonstrate the use of

classification algorithms in this type of data.

We hope that eventually we may be able to use machine learning techniques-

neural networks in particular-to diagnosis and treat patients based on their gene

expression data. As mentioned, we face the difficulty of not yet having an abundance

of data, though the available corpus is growing rapidly. One of the reasons for this

is the difficulty of setting up an experiment. It is not a simple a matter of getting

a blood samples from a particular patient. The level of gene expression varies from

tissue to tissue and location inside a single person. Thus, we may need a sample from

a specific organ, area, or tumor. However, in the gene expression datasets that we do

have, excellent classification has been reported for some diseases [9] [34].

The purpose of GAINN was to create a comprehensive neural network tool for use

in classifying datasets such as gene expression data. Using GAINN, I will attempt

to accurately predict the class (disease) of patients based on gene expression data.

Although I test GAINN using gene expression datasets, it is in no way limited to use

on only this type of data. Virtually any type of dataset can be learned and predicted

using GAINN2 .

2 Obviously, GAINN's performance will depend on the nature of the dataset.

18

Chapter 3

Background

In this chapter, I will briefly discuss the development and history artificial neural

networks. In addition, I will as describe the features of neural networks that are

included in GAINN. Several derivations draw heavily upon the work of both Bishop

[1] and Ripley [28].

3.1 Biology of Neural Networks

Much of the design of artificial neural networks stems from the awe inspiring process-

ing power of the human brain. Due to its parallel processing abilities, the brain is able

to perform some tasks much faster and better than even modern super-computers.

The roots of artificial neural networks are based on their biological counterpart, the

neural networks of living organisms.

The basic component of a neural network-both biological and artificial-is the

neuron. The relevant components of a neuron cell are the dendrites, a soma (or body)

and an axon. The synapse, or connection, between two neurons is composed of the

axon of one cell and the dendrite of another. Information is transferred between cells

via neurotransmitters moving through the extracellular fluid separating the axon and

dendrites. When the electrochemical input of the dendrites reaches a high enough

level, an action potential, or electrical signal, travels from the soma down the axon.

When the end of the axon is reached, neurotransmitters are released through the

19

cell membrane and emitted across the synapse, where they are received by the con-

nected dendrites of other neurons. There are approximately 30 neurotransmitters

currently known, some of which are inhibitory but most of which are excitatory. The

chemical process of the action potential causes the firing time of a neuron to be a few

milliseconds, which is many orders of magnitude slower than today's supercomputers.

Each neuron has between 1,000 and 10,000 synapses, and the brain is estimated

to contain around 100 billion neurons [17]. Although the firing time of a neuron

compared to a modern day processor is about seven orders of magnitude slower, the

brain has three orders of magnitude more connections-connections in a computer

being the wires between transistors that make up the circuits. Modern computers

operate mostly in series. In contrast, the brain is believed to operate heavily in

parallel. As evidence, consider face recognition: a human can recognize a face in less

than 100 milliseconds. Therefore, if neurons only operated in series, only 100 neurons

would be used to recognize a face. It is believed that the slow rate of computation is

overcome by massive parallelism, as this task could not be performed with only 100

neurons (this example is known as the one hundred step program) [13]. Modern day

nuclear imaging also shows brain activity occurring in parallel in response to a single

input change.

The artificial neurons used here mirror their biological counterparts in many ways,

but there are some differences. The artificial neurons in GAINN have single valued

outputs. Biological neurons transmit via pulses of neurotransmitters, allowing for two

more degrees of freedom during a firing: the phase of emissions and the frequency

of emission pulses [19]. It is quite plausible, however, that these extra degrees of

freedom do not represent any real information and are random variations based on

the extracellular conditions. Therefore, treating the output as a single valued output

is at least appropriate and may be equivalent to its biological counterpart. These

variations, random or not, cause the output of a neuron given the same input may

have a possibly different effect on the neighboring neurons. In GAINN, the same

inputs to an artificial neuron will always produce the same output.

20

3.2 History of Artificial Neural Networks

The earliest artificial neuron design was published by Pitts and McCulloch in 1943

[20]. In their research, they discussed the idea of "threshold logic." The basic design

of their artificial neuron, or perceptron, takes in a set of binary valued inputs and

pulses an output if this sum is greater than a certain threshold. In a perceptron where

there are two inputs and the threshold is 1, this would correlate to an OR logic gate

in Boolean logic. The inputs may also have certain weights associated with them,

thereby allowing certain inputs to weigh in more or less on the total summation.

In 1949, Hebb published a paper suggesting that if two neuron cells, A and B,

regularly fire together, then some change will occur in the brain's chemistry that will

facilitate the firing of A when B is also firing [12]. That is, they will now be more

likely to fire together again; it was thought that this could be how the biological brain

"learns." This idea was put to use in 1954, when Farely and Clark created artificial

neural networks based on Hebb's idea [6]. This network required a large number of

artificial neurons and its structure was predetermined. This early design was able to

discriminate between two different patterns if they were dissimilar enough and fed in

the correct order.

In 1958, Rosenblatt published work on a new perceptron in the his appropriately

named book, Perceptron [29]. His perceptron had three layered parts: sensory, as-

sociation, and response. This model continued to shift the focus from a randomly

connected neural structure to a predefined structure. The difficulty then moved from

determining the network structure, to determining what the weights of the predefined

structure should be. In 1962, he published a learning algorithm demonstrating that

his model was able to categorize linearly separable patterns into two different groups

[30]. However, in some cases, it would only perform correct classification if the pat-

terns were presented in the correct order. His work, unlike others at the time, did

not focus on the structural connectivity of the neural network.

The first commercial success of neural networks was enjoyed by Widrow and Hoff

of Stanford. They created ADALINE and MADALINE which were named for their

21

use of ADAptive LINear Elements; MADALINE was simply multiple ADALINEs.

This model used a linear activation, rather than the threshold activation used in

previous models, which more closely mirrors its biological counterparts. In 1962,

Widrow published a rule for use in training based on Least Mean Square (LMS) error

minimization [36] 1. Rosenblatt then merged this work with that of ADALINE to

give rise to a new perceptron, which is the forefather of those used today. Before

ADALINE was created, the input lines were only multiplied by weights after the

summation unit. ADALINE move the weights before the summation unit so that

each individual input line could be weighted. MADALINE was used commercially to

minimize echoes on phone lines and is still in use today.

The success of MADALINE and the work of Rosenblatt generated a great deal

of interest and expectation for the neural network field that was beyond reach of

their performance at the time. In 1967, Minsky published a paper stating that neural

networks were capable of universal computation and analyzed them as finite state

machines. However, just two years later, Minsky and Papport published a book

discussing the shortcomings of the current perceptron model [21]. In particular, a

single perceptron was incapable of separating nonlinear datasets-its failure on an

XOR dataset being one of the classic illustrations 2. This influence, along with failed

expectations, greatly reduced research in the area for the next decade.

In 1982, research interest was renewed as John Hopfield of Caltech introduced

Hopfield Nets, which contained a novel way to connect various perceptrons using

bidirectional lines. The new use of bidirectional lines would eventually lead to the

development of multilayered perceptron models, where the output of a summation

node is the input to another summation node. The multilayered perceptron would

become the basic structure of feed-forward artificial neural networks that is used

today [14].

It was still unclear, however, how to train these multi-layered perceptron mod-

'Error functions will be discussed in detail in section 3.9.
2 The XOR dataset is the smallest nonlinearly separable data set and consists of one class con-

taining (1,0) and (0,1), and another class containing (1,1) and (0,0). There is no straight line that
can be drawn on an XY plane that completely separates these classes.

22

els and some concern arose as to whether a training algorithm was even possible.

Fourtunately, these concerns were put to rest in 1986 when Rumelhart, Hinton, and

Williams published a paper detailing an algorithm based on the delta rule that could

be used to train MLPs with hidden layers [31]. The algorithm, dubbed "Back Prop",

involves propagating the output error backwards through all of the connections and

is discussed in section 3.5. This algorithm was widely successful and coupled with the

explosion in computing power helped to launch the extensive use of neural networks.

Today, many successful companies employ neural networks in some capacity as pre-

dictive tools. A majority of neural network research is still based off of this simple

algorithm and its variations.

3.3 Single-Layer Perceptrons

Single-layer perceptrons from the 1960s gave rise to the networks used in GAINN: feed

forward multilayer perceptrons. These earlier single-layer perceptrons were created

by Frank Rosenblatt based on research from McCulloch and Pitts, Hebb, and many

other before him, including neurologists [20, 12].

The basic building blocks (artificial neurons) of these earlier networks differ from

what most researches use today. Modern neurons have inputs connected directly

to weights before reaching the threshold activator units-the equivalent of activator

build up in a biological neuron. The 1960s single-layer perceptron, however, had

the inputs connected to randomly assigned -1 or +1 coefficients and then fed into a

threshold activation unit. The outputs of these threshold activation units were then

connected to weights and fed into a summation unit as depicted in figure 3-1.

The input lines, or wires, are multiplied by +1 or -13. The first layer of threshold

units simply sums the value of these input lines. Then, a 1 is output if the sum is

above a certain threshold and zero is output otherwise. The training-or learning-

of the perceptron is performed by adjusting the weights (the round squares in figure

3-1). Based on these weight values, it was hoped that it would be possible to classify

3+1 and -1 coeffecients were used to produce different inputs into each threshold unit.

23

Inputs, all lines
have either +1 or
-1 coefficients

Threshold Units Weights Summation Unit

Figure 3-1: The early attempt at a perceptron.

different sets of inputs.

Rosenblatt proposed the following algorithm for training this perceptron [30]:

1. Send a training item through the network and examine the input.

2. If the output is correct, continue

3. Else, adjust the weights according to ak(n + 1) = ak(n) + yk(n) * V(n). Where

r(n) is equal to 1 if the training item is in set 1, and -1 if the training item is

in set 2, Yk(n) is the output for the nth item of the kth unit, and ak(n) is the

weight for the kth unit.

Rosenblatt proved that if the training data was linearly separable, the perceptron's

weights would converge in such a matter that the training data could be classified

without error.

Minksy and Papert modified the perceptron to remove the initial +1/-i fixed

weights and the initial threshold nodes. Thus, the input lines were connected directly

to the adjustable weights which then fed into the summation unit. This model is

24

Output

............. ..

I Output I Y

w3
Wi w2

Inputs

x1 X2

Figure 3-2: A single layer perceptron with one output.

known today as the single layer perceptron, and can classify any linearly separable

dataset, figure 3-2.

The output of this perceptron can be expressed cleanly as:

(3.1)y =Z (wi x xi) + bias
i=1

The bias term is not shown in figure 3-2. However, we can eliminate the separate

bias term if we add another input node xO that is always equal to one. Then the

weight of this connection wo becomes equivalent to the bias. More generally, we can

consider a single layer perceptron a linear discriminate function

y(x) =g(wTx + wo) (3.2)

where w is a vector of weights and g(-) is any function. If there were no bias term xo

in the neural network, then the separating hyperplane would be forced to go through

the origin in n-space. We would then no longer have the ability to separate any

linearly separable dataset in a single layer perceptron.

25

x3

There can also be multiple output units, each with its own set of weights, for

use in categorization of multiple classes. Furthermore, the activation function of the

output neuron need not be linear (a simple summation), it can also be logistic or

other non-linear functions. These activations functions will be discussed further in

section 3.5. Ultimately, however, regardless of the activation function, the single layer

perceptron is only capable of separating linearly separable sets. Minksy and Papert

prove this limitation as discussed in section 3.2. This severely diminished interest in

the perceptron model until it was upgraded to the multilayer perceptron [21].

3.4 Multilayer Perceptron

The networks that will be used here are feed forward networks or multilayer percep-

trons. These are comprised of neurons organized into layers such that all outputs of

one layer can be computed and then fed into the next layer as depicted in figure 3-3.

According to Ripley, a feed forward network is

A network in which vertices can be numbered so that all connections go

from a vertex to one with a higher number. In practice the vertices are

arranged in layers, with connections only to higher layers [28, p. 349].

Because of this property, an explicit function can be written to express the outputs in

terms of the inputs. And this function, depending on the activation function of the

neurons, can be differentiable. Other types of networks do exist, such as recurrent

networks. Since these networks can have connections that form loops, it is not possible

to express the outputs of these networks as explicit functions of the inputs. In some

cases, these networks even contain bidirectional connections between nodes [33].

Figure 3-3 depicts a basic feed forward network with one hidden layer. A hidden

layer in an multi-layer perceptron (MLP) is a layer that is not an output layer or

and input layer. The input to each unit's activation function is ak:

n

ak - > (wjk X inputj) + biask (3.3)
j=1

26

input values

inputi

Wjk

ak

input layer

weight matrix 1

hidden layer

weight matrix 2

output layer

output values

Figure 3-3: A basic feed forward network with hidden neurons.

Here, ak is the input to the kth neuron, Wjk is the weight from the jth neuron to kth

neuron, ak is the value input to the activation function of the kth unit, and biask is

the bias of the kth unit. The output of the kth unit is then given as

Zk = g(ak) (3.4)

where g(.) is known as the activation function. There are multiple types of func-

tions one could choose to use here:

g(a) :=
1

0

g(a) =

when

when

a > 0

a < 0.

1

(3.5)

(3.6)
1 + e-a

27

g (a) = ga + ea (3.7)
Ca + -a

In order, these are known as threshold, logistic, and hyperbolic tangent functions.

While these three formulas look very different, a choice between them does not inher-

ently limit the abilities of a neural network. The threshold activation certainly seems

to be more limiting that the other two types of activation functions, and yet, a neural

network with only 2 hidden layers using only threshold functions can approximate

any function arbitrarily close [1, p. 124]. Furthermore the logistic function differs

from the hyperbolic tangent function only by a linear transformation. Thus, a net-

work trained using (3.6) could be turned into a network using (3.7) by transforming

the weights and biases [1, p. 127].

This is not to say that different activations functions do not have their advantages.

Threshold activations as compared to sigmoidal activations usually require more com-

plicated networks with a great number of hidden units and layers to approximate the

same function. And empirically, the hyperbolic tangent function has been shown to

produce faster convergence than the logistic function[28].

Using any of the above activation functions, it is possible to calculate the output

unit's value in closed form. For the network pictured in figure 3-3 with three inputs

and two hidden neurons, the value of each output unit k can be calculated as follows:

2 3

ak g(E wik x g ((E (wij x input)) + biasi) + biask) (3.8)
i=1 j=1

The output of this MLP can be written in closed form. In recurrent networks, it is not

possible to simply differentiate the output with respect to the inputs, since feedback

loops may make this impossible. However, if g(.) is differentiable, then (3.8) will also

be differentiable with respect to the weights and inputs. The fact that the partial

derivates can be calculated explicitly is the key to the back-propogation algorithm

that will be discussed in section 3.5.

4When using threshold activations functions, however, the number of hidden neurons usually
necessary to approximate a function is much larger than the number that is necessary using sigmoid
activation function.[1]

28

The ability of the MLP to classify non-linearly separable datasets g(.) comes from

the nonlinear activation function of the neurons. If g(-) were linear, we could remove

any hidden units because a network with the inputs connected directly to the outputs

would be equivalent, such as in a single layer perceptron [22].

There can be more than one hidden layer in the feed forward network. However,

a network with enough hidden units in just one layer would be able to approximate

any function as Radford Neal-an expert in the field of neural networks-writes [22]:

Several people [5, 7, 15]have shown that a multilayer perceptron with one

hidden layer can approximate any function defined on a compact domain

arbitrarily closely, if sufficient numbers of hidden units are used. Never-

theless, more elaborate network architectures may have advantages, and

are commonly used. Possibilities include using more layers of hidden units,

providing direct connections from inputs to outputs, and using different

activations functions. However, in "feedforward" networks such as I con-

sider here, the connections never form cycles, in order that the values of

the outputs can be computer in a single forward pass, in time proportional

to the number of network parameters.

As mentioned above, however, when using threshold activation units, it is necessary

to have two hidden layers to approximate any function. It has just been shown that

neural networks should be able to classify many datasets. The question is, then, how

we train the weights in the neural networks to separate these classes.

3.5 Back-Propagation Training Algorithm

The basic algorithm that is used in GAINN is known as error back-propagation. This

algorithm was published by multiple authors at various times. The algorithm can be

found published first in 1969 by Bryson and Ho and then again in 1974 by Werbos

[2, 35]; however, both of these publishings went largely unnoticed. The algorithm

became widely known in 1986 when three researches each published independently

around the same time Rumelhart, Parker, and LeCun [31] [25] [18].

29

The basis of the algorithm is a gradient descent to modify the weight settings to

minimize an error function. Error functions are not unique to neural networks and

are used in almost all machine learning techniques. One of the most common error

functions is sum-of-squares error,

Error =)2 (yk - tk) (3.9)
k=1

where n is the number of training item, Yk is the output for a training item, and

tk is the desired output. We seek to minimize this error by adjusting the weights

of each connection in the network. We can easily determine the error of an output

neuron based on what its desired value was. From this, we can find the derivative of

the error with respect to the inputs to an output unit. In the case of a single layer

perceptron (no hidden units) minimizing the error function becomes a simple problem

of optimizing the weight parameters of one layer and can be solved explicitly [1, p.

92].

However, in the case of multiple layers, we cannot explicitly determine which

weights we should adjust in order to minimize this error. We do not have an equiv-

alent desired output vector tk for hidden neurons and thus cannot easily find the

derivative of the error. Fortunately, we can "propagate" the error backward in order

to determine the partial derivate of any weight with respect to the error.

For some arbitrary weight wji going from unit j to unit i, we can express the

partial derivate using the chain rule as

&E' &E 0%aj (3.10)
awli aal awji

where E" is the error on the nth training data item; remember from (3.3) that aj

is the input into the activation function after the summation of all of its inputs and

bias. Since we are simply summing the weights times the inputs to find aj,

0% = zi (3.11)
awji

where zi is the output of unit i that has a connection to unit j. Threfore, (3.10)

30

becomes

OE" OE"
= zO (3.12)

OWji Oac

We are now left with the difficulty of determining a, but this turns out to be easy.

For output units, we have

ak g'(ak) a~k (3.13)

Note that the subscripts have been changed to denote this unit, k, as an output

unit. In words, the above equation is simply stating that the derivative of the error

function with respect to the input of output unit k is the derivative of the error

function with respect to output Yk times the derivative of the activation function.

For hidden neurons this equation becomes

aEn= E Oak (3.14)
o.a k Oak aaj

Hidden units can only influence the error by their output; since their output is

only a function of their input, we can evaluate this function to

Oa= g'(aj) E wkj (3.15)

Since we can explicitly calculate '9E" because we know the output of the network,aa

we can "back-propagate" the errors to the hidden layer. EWkJ can be thought
k &a

of as the contribution of this hidden unit to the error of each of the output units.

If we first computer the output layer's partial derivates, we are able to calculate

all the derivates by moving backwards one layer at a time: this is where the term

"back-propagation" arises from.

In the case of a neural network with a sigmoid activation function and a sum-of-

squares error function, the derivative of the activation function (3.6) is

g'(a) = g(a)(1 - g(a)) (3.16)

31

This has great appeal from a computer science perspective because it is easy

and fast to calculate. The derivative of the error function (3.9) can also be easily

computed:

OE"
O _ = Yk - tk (3.17)
aak

In order to turn this into an algorithm, we must use these derivatives to adjust

the weights for better classification. Two basic techniques for doing so are batch and

online training. Batch training updates the weights after a run through the entire

training set or epoch, such that

Awi = -7 E X (3.18)
n Oa

while online training updates after each training item is evaluated

Awj = -r Xi (3.19)
aaj

The learning rate, q, is the speed at which we want to change the weights or move

down the gradient. Setting the proper learning rate and/or modification of it during

training is critical for efficient training of neural networks. If the learning rate is too

high, the neural network will be slow to converge because it will frequently move too

far on the surface and will move past the descent in the slope. If the learning rate is

too slow, the neural network is more likely to get stuck in many local minima.

3.5.1 Momentum

A popular extension to basic back propagation is to use momentum [28, p. 154].

Momentum factors in the previous weight change in the current iteration so that the

update of the weights becomes

Aw = - O X + a'Awg; (3.20)

32

where a is the amount of momentum to use. This smoothing allows for the algorithm

to (hopefully) skip over small local minima it might otherwise get stuck in by con-

tinuing its general direction. This also tends to be more helpful with large learning

rates, as the smoothing helps to prevent the algorithm from jumping around on the

surface as it finds a local or global minimum.

3.5.2 Batch versus Online training

It is not obviously clear whether batch or online training should lead to faster conver-

gence of a network. For a fixed learning rate, 'rq, the batch algorithm can converge but

the online version will wander for ever (although it may simply be wandering around

the absolute minimum) [28, p. 155]. Theoretically the online algorithm should con-

verge must faster if the dataset is large and repetitive, as a small sampling would

provide the same effect as running through the entire dataset. This is not a worry

in microarray data analysis as we are typically starved for data points to begin with.

Online is also thought to be advantageous because the random sampling introduces

noise that will hopefully allow it to avoid local minima [1, p. 264].

3.5.3 Stopping

With any iterative training algorithm, we must know when to stop. The danger in

stopping too late is to overtrain the neural network. We have already shown that

the multilayer perceptron is capable of approximating any function arbitrarily close.

If we assume that our training algorithm will eventually converge, then we will be

able to find a separating hyperplane for any dataset that is separable. However, if

we let the training error go to an absolute minimum, then we will not be generalized

well for use on a test set, even though the network performs perfectly on the training

set. This is a common problem in all machine learning algorithms which do not have

explicit solutions. The training error will always be decreasing throughout training;

however, there will be a point at which the test error starts to increase. There are no

known easy measures of where this point exists, though many techniques have been

33

suggested and some are implemented in GAINN.

3.6 Regularization

As just mentioned, we want to be careful not to overtrain these networks. One com-

mon technique for machine learners is to introduce a penalty in the cost or error

function for the complexity of the system. Using this error function the neural net-

work, in accordance with Occham's Razor, will favor a less complex system if it can

classify just as well (or perhaps even worse) than a more complex system. In the case

of neural networks, we can consider the size of the weights to be a measure of the

complexity. Thus, if we modify the sum-of-squares error to have a penalty term

E' = E + AC (3.21)

where A is the amount by which we want to factor in this penalization and C is some

measure of complexity, we can now follow the back-propagation algorithm as before

and regularize the weight settings to favor smaller weights.

The overall goal of regularization is to create a neural network that is more gen-

eralized; this will theoretically perform better on test data since it is not overtrained.

Presumably, the smaller the weights, the smoother the function should be. By penal-

izing larger weights, we are forcing the back-propagation algorithm to have a trade-off

between the smoothness of the surface and the total error. This will help to avoid

over-training. One basic equation to use for C is

C = W2 (3.22)

When we use this as the error function and sigmoidal activation units, the weight

updates in (3.19) get modified to

OE
Awji = -7-i- qAwji (3.23)

aT

This causes the weights to be smaller in general [28]. It is also possible to encourage

34

very small weights to decay faster by using an error function of

2

E' = E+A i± (3.24)
i1 + Wij

This is known as weight elimination rather than weight decay, because smaller weights

will be decreased to near zero. The goal of both of these techniques is to cause the

function that fits the data to be smoother.

3.7 Alternative Cost Functions

While sum-of-squares error is the most common and most basic, there are other cost

functions that can be used and are implemented in GAINN. One of the problems

with a simple sum-of-squares error cost function (with or without regularization) is

that a single mislabeled data point or a single outlier will severely inhibit the neural

networks ability to classify data. The sum-of-squares error measure will fit a line that

is effectively the conditional mean of the data [1, p. 210]. One outlier could skew the

mean by a large amount, especially in the case of microarray data where data points

are scarce to begin with.

One alternative cost function is known as the Minkowski error,

E = E y(x") - t"IR (3.25)
n

where R is the can be chosen to be any value (this is also known as the Minkowski-R

error). In the case where R = 2, we have our basic sum-of-squares error. When R = 1,

we are left with an error function that will converge on the conditional median of the

data, rather than the mean. Therefore, outliers and mislabeled data points will not

have as drastic an effect on the separating hyperplane found by the neural network

during training. In addition to this problem, the sum-of-squares error measure makes

certain assumptions about the underlying model generating the dataset.

The sum-of-squares error is derived from a belief that the dataset was generated

from a smooth deterministic function with Gaussian noise [1, p. 230]. In the case of

35

microarray data, however, it is plausible that the data were not generated from such a

function. In fact, we are often only distinguishing between two different classes-such

as types of cancer or positive and negative prognosis. Since the outputs are binary, 0

or 1, there is clearly no Gaussian noise in the output of the function. It makes sense,

then, to look for an alternative cost function that is better at classifying this type of

binary output; an equation that fits this criteria is known as the cross-entropy error

measure

E= {t' ln(y") + (1 - t') ln(1 - y)} (3.26)
n

This makes the derivative of the error function

E (y - t) (3.27)
ayn yn (1 -yn)

and the partial derivate at the hidden layer (using sigmoid activation units)

= y - tn (3.28)

This error measure, coupled with sigmoid activation functions, gives special mean-

ing to the output value of a single neuron for two classes. The value of the single

output neuron will be equal to the probability that the data item belongs to a par-

ticular class, conditioned on the input vector [1].

3.8 Validation and Ensemble Averaging

Now that we have established the training methods, it is necessary to determine

how well the network is performing. Let us take Todd Golub's dataset, for example,

which contains microarray data for 72 different patients, divided into two classes or

cancer: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).

One approach is to just train the network until we reach an absolute minimum in

the training error (for whatever error function we may choose). However, this will

undoubtedly lead to an over-trained network and bad generalization on a test set

36

[1, 28, 13]. There would ideally be a point in the training error decent at which we

could stop and know that this is the optimal place to stop training. However, not

such metric or formula exists to determine where this stopping point is.

One solution is to use a hold-out set as a test-set on training. So, for example, we

could divide the 72 patients into two groups of 36. Train the network on 36 of the

patients, and then test the network on the other 36. While we are moving down the

gradient of the training error, we continuously check the performance on the other

36 patients that we did not use for training. Both errors should stat to decrease at

first, but then the validation error will begin to rise as the neural network overfits (or

loses generalization on) the training set. We would stop at the point in which the

validation error began to rise.

Another popular technique is called n-fold cross-validation. The test set is divided

into n groups; so for n = 6, we would have groups of 12. The neural network is then

trained on n-1 groups and tested on the nth group that was left out. After all groups

have taken been left out, the network that performed the "best" is kept.

Both of these techniques have their downside, however. In the case of just using

one hold-out set, we do not have the benefit of multiple random starting points.

Since the error surface is rough and may contain deep local minima, the starting

point could easily make the difference between getting stuck in a local minima and

finding a true minimum. Also, the performance could be greatly affected by how

the dataset is split. In the case of n-fold cross-validation, typically, only the best

network is kept. Therefore, time is wasted training the n-1 networks that are not

going to be kept. Also, the network that performs best is likely performing best

because of a favorable data split. For example, if the 12 patients in one group of

the 6-fold cross-validation were all extremely easy to classify, the network trained

with this group as the validation set would perform better even if it was not the best

overall network when tested using a hold-out set. Because the subsets are combined

to form the training data, there is no way to determine the "best" network based on

the validation results [23].

One solution to this problem is to use an ensemble of neural networks. Once

37

again, this technique is not unique to just neural networks but is also used in many

other machine learning techniques. Presumably, there has been some computational

time spent training multiple networks; it would be better if we could use all of these

networks for classification rather than just the "best" one. I use the word "best"

loosely here, because there is no way to ensure that any one network is in fact the

best. The basic idea of an ensemble network (or committee) is to use all of the trained

networks to each contribute to the output of the network for a given input [26]. That

is,

y(x) = yi(X) (3.29)
fi=1

where n = 6 in the above example; in this case, each network contributes equally to

the output. If we assume the networks output y(x) is equal to the actual function

that generated the data, h(x) plus some zero mean Gaussian error, we have:

y(x) = h(x) + e(x) (3.30)

The expectation of the squared error of network i is

E[errori] = E[{yi(x) - h(x)}2] (3.31)

The average squared error for the committee is

E[error] = E[(n yi(x) - h(x))2] (3.32)
ji

Now, if it is assumed that the errors are independent, then many terms drop out

of the above equation when it is expanded. Based on our assumptions of Gaussian

distribution and the independence of errors,

E[errori] = 0 (3.33)

and

E[errori x error] = 0 (3.34)

38

when i $ j. This means that the expected error for the ensemble output becomes

n
Errorens = n 2 E[{y(x) - h(x)}2] (3.35)

as compared to the expected error of the average of the networks

I n
Erroravg = - 5 E[{y(x) - h(x)}2] (3.36)

i=1

Combining (3.35) and (3.36) we see that the error of the ensemble is I the error

of the average network, which is a dramatic improvement. However, there are two

problems with the assumptions made in this derivation. First, we cannot assume that

the output of each network equals the real function plus some small amount of noise.

Second, the errors of the two networks are almost definitely not independent. Since

the network are trained using n-fold cross validation, the training patterns overlap

a great deal and the correlation of the errors is high. Therefore, the gain over the

average error is much smaller than - but no worse than the average error [1].

3.8.1 Optimal Voting Weight

The above derivation assumed equal weighting of each network in the ensemble. How-

ever, there is a better way to weight the networks. The networks are not going to

behave equally well, and it makes sense to weight some of the networks vote more

than others. The optimal weights for the networks to minimize the error is

N

F, (C ')ij
ai = N (3.37)

E E (C- 1)kj
k=1 j=1

where C is the correlation matrix. The approximation for each element in the corre-

lation matrix is:

Ciy ~ (yi(X') - t")(yj (x") - t") (3.38)
Cj Nn=1

39

For a thorough derivation of why this is the optimal weighting, please see [1, p. 367].

40

Chapter 4

GAINN Software Overview

This chapter describes the GAINN software package. This first section will briefly

discuss the software design. The rest of the chapter will take the reader through

several screen shots and explain the features that are implemented. To be platform

independent, the software was written in Java 1.4.2. This does cause the implemen-

tation to be slower than Matlab or a language that is not memory managed such as

C++. However, for ease of deployment and modification, Java was the best option.

Furthermore, since I intended the software to be readable by non-expert users, I did

not want to use C++, since it is harder to understand.

4.1 GAINN Software Features

4.1.1 Dynamic GUI Model

One of my goals in the creation the GAINN software package was to make a user

friendly, extensible framework for others. Thus, I was careful to architect the software

in a manner such that adding new features would be a simple. Designing the GUI,

in particular, was a difficult task since I wanted the program to be easy to modify.

Often, GUIs involve a great deal of hard-coding and custom implementation that is

not extensible and must be redone to make small changes. In GAINN, I created a

framework that does not require any modifications to the GUI source code in order to

41

add new features. The Constructor interface is implemented by any property that

may be selected through the GUI as shown in figure 4-1. An object exists for each

parameter the end user may specify in GAINN. For example, the user has the choice

of how to adjust the learning rate throughout training of the neural network:

1. Constant

2. Accelerate as K * weight

3. Converge as)

4. Converge as K

There exists an object LearningRateGenerator, which implements Construc-

tor and contains all methods necessary to determine the learning rate. The class

LearningRateGenerator itself is abstract-as is every class in figure 4-1-and it

contains an inner class for each of the different types of learning rate generators avail-

able. Typically, to create a new learning rate generator, I would have to create the

new class, create a new entry in the GUI's drop down list, and then create additional

if-then clauses to handle the selection of this new type of learning rate generator.

Then, I would have to create a GUI screen to specify all of the parameters for this

new learning rate generator. However, in the GAINN architecture, I simply create a

subclass of LearningRateGenerator, and everything else will be handled by the current

implementation. When the GUI is created for GAINN, each Constructor implemen-

tation is queried for the types of objects it contains. When LearningRateGenerator

is queried, it returns the 4 methods mentioned above.

Each type of object may itself contain other parameters that need to be defined,

and this is queried by the GUI constructor as well. The Constructor implementation

contains methods getValues and setValues, which retrieve and set the information

necessary to make an object that implements the Constructor interface. For example,

when using the constant learning rate generator, a call to getValues on the constant

learning rate object will return "rate" and "momentum". The actual value of these

variables are set by the end user in the GUI, and a call to setValues is made when the

42

NamedOb ect

Erroftoasura
PruiningMetod

ActivationFunction

RegularizabonFactor

LeamingEngi ne
LeamingRateGenerator

WeightGenerator FeatureSelectum

Figure 4-1: Classes that implement the NamedObject.

object is generated. All properties of a neural network that are set by the user in the

GUI follow this pattern, so that the GUI can dynamically generate input boxes for

each parameter that the end user must specify. This model allows GAINN to incor-

porate a new learning rate generator algorithm into software by creating one subclass

in LearningRateGenerator. This implementation of the GUI was designed specif-

ically to allow future additions to the GAINN framework without extensive changes

to the original code base.

4.2 Data Loading

GAINN will read any dataset that is arranged in columns or rows and create a data

matrix to be used in training and testing. The user can specify which features or

items are to be ignored and what is to be used as the output. For efficiency, datasets

are stored as double arrays; thus, it is necessary that all data in a dataset can be

43

P

I File Create

Figure 4-2: Loading a dataset.

parsed as doubles. GAINN is capable of training a dataset for any number of outputs

or inputs, the only limiting factor being the memory and time available. For the

purposes of 2-class separation (such as the datasets I explore in Chapter 5), it is

assumed that all input data with a 0 output is of one class type, and everything else

if of the second class type. It is necessary to make this distinction for binary outputs

when creating ROC (receiver-operator characteristic) curves, which will be addressed

in section 4.6.

The user specifies features that should be ignored. In the Golub dataset, for

example, one of the rows contains a 1 if the patients had AML and another row

contains a 1 if the patient had ALL. AML and ALL are mutually exclusive and

44

I

collectively exhaustive, so each case is either AML or ALL but not both. Therefore,

if the user selects just one of these rows to be the output and does not ignore the

other row, then there will be a feature that is perfectly correlated to the target value.

This would make it trivial to classify the dataset using any technique.

There is also an option to standardize the inputs via a linear transformation such

that the set of neurons to a particular input will have 0 mean and a standard deviation

of 1. This transformation is very useful for starting the neural network in a position

where the neurons are not saturated. Saturation can occur when the inputs to the

activation function are in the range where the slope is near zero. If this occurs,

changes to the weight settings may yield almost no change in the neuron's output,

and it can be difficult for a training algorithm to overcome such a state.

4.2.1 Data splitting

Once a dataset is input, it is necessary to divide the set into the training set, validation

set, and test set. The split may be determined by a percentage of the total data

available or by using a feature in the data set as an indictor. The latter method is

useful when using a dataset in which another researcher has marked which items were

used for training and which ones were used for testing.

When choosing the training set and validation set sizes, it is important to keep the

test set (the remainder of the dataset after determining the training set and validation

set) of a large enough size such that it will be representative of its performance on

future data. For example, if the test set used only contains one training item, we

cannot conclude anything significant about the network's performance based on its

classification of that one data item. I will show that the network's classification

performance on the gene expression data can be greatly affected by how the dataset

is split, because there is such a small number of samples.

'Such is the case with the dataset used by both Singh and Golub.

45

File Create I

Figure 4-3: Choosing the network structure.

4.3 Network Structure

The next step in creating a neural network is to choose the structure of the neural

network that we wish to train. Structure includes the number of neurons, the features,

and the activation functions.

4.3.1 Hidden Neurons

The ability of feed-forward networks to classify non-linear datasets lies in the hidden

neuron layers. In its current state, GAINN allows the user to specify two layers of

hidden neurons as shown at the top of figure 4-3. More layers can easily be added to

the GAINN code. However, based on the results of the gene expression classification,

46

gene expression analysis does not warrant more than two layers. In most cases, one

layer is typically sufficient for excellent performance.

The user can specify how many hidden neurons to include in each layer2 . There

is no known formula to determine how many hidden neurons should be used for a

given dataset. Theoretically, the number of hidden neurons necessary to approximate

an arbitrary decision boundary given the number of inputs cannot be determined as

a function of the number of inputs. For instance, when using threshold activation

functions for the neurons, 2 hidden layers are necessary to approximate any decision

boundary; the first hidden layer has d(2d+1) neurons and the second hidden layer

has 2d+1 neurons [1]. There is, however, no known equation to calculate the weights

and biases for such a network without knowing exactly what the decision boundary

should be. That is, there is no training algorithm known that is guaranteed to

find the correct decision boundary even if we know that the network is capable of

creating such a boundary. When using sigmoid activation units, only one hidden

layer is required to create an arbitrary decision boundary [15]. However, for gene

expression classification, the boundaries are typically not so complex as to warrant a

large number of hidden neurons. Empirically, I have found that there does not seem

to be a significant association between the number of neurons, or even layers, and the

classification performance of the neural networks.

4.3.2 Activation Functions

There are several activation functions for the neurons that may be used in GAINN:

sigmoid, tanh, and linear. There are three other functions available but they do not

have continuous derivatives and thus cannot be used in back-propagation3 ,. Further-

more, the latter three functions yield less flexible networks. These functions only

exist to test network outputs if the weights are loaded from a file.

The flexibility or capability of the neural network will depend on the activation

function chosen. The sigmoid and tanh functions are equivalent in that a network

2 To have only one hidden layer, a 0 can be specified for the number of neurons in layer 2.
3They are clamped functions, threshold, and sign function.

47

with the same number of neurons would be able to produce a network with the same

decision boundary (if a linear transformation of the dataset was performed) [1]. De-

pending on the type of dataset, it may be necessary to use linear activation functions

as the output neuron's activation function. When using sigmoid activation units, the

output of a neuron is constrained to the range [-1, + 1]. This is not a problem for the

gene expression datasets because the outputs are binary values representing which

class they belong to. When using other datasets, however, that are more typical re-

gression sets (data generated by some function plus Gaussian noise), it is quite likely

that in some dataset the output will be outside the range [-1, +1]. If this is the

case, then the neural network will not be able to train properly using sigmoid or tanh

activations for the output neurons.

4.3.3 Feature Selection

One of the key problems to solve with any machine learning technique is determining

which features to use. For example, we could use all 6000+ gene levels from the

Golub dataset, but a vast majority of the genes are expected to be uncorrelated to the

classification task. In GAINN, we solve this problem by determining the correlation

coefficient for each gene and the output. Then, GAINN will limit the number of

features presented for training based on these values. The correlation coefficient is

a simple metric relating the amount one variable appears to co-vary with another4 .

We expect that genes with the highest correlation coefficient would make the best

feature set to use for classification, unless there is significant interaction among genes.

I will demonstrate that using this method, GAINN can obtain excellent classification

results.

With gene expression data, we typically only need a small number of genes (10-30)

to classify the data well. There are other techniques that may be used to limit the

number of features used in the dataset. One popular Bayesian technique is Automatic

4To calculate the coefficient, we calculate, where x is one of the

fea(re2an) (s y2t
features and y is the output.

48

Relevance Determination (ARD). This technique consists of using hyperparameters

to assess the relevance of each input and limiting the weight adjustments based on

these hyperparameters. This is a technique we plan to add to GAINN in the future.

However, for the datasets tested here, it appears to be unneeded for classification

tasks. One benefit of this Bayesian technique is that it does not require a limit on

the feature set a priori. We can train a network with thousands of features and allow

the hyperparameters to shrink the weights of irrelevant features. However, when

using such a large number features, the training time for a neural network drastically

increases.

4.4 Training Parameters

After setting the structure of the network, it is necessary to specify how to train

this structure. There are several options available in GAINN, both in terms of the

training algorithm and the parameters for that algorithm.

4.4.1 Update Technique

GAINN implements several training techniques that can be used:

1. Batch Back-Propagation

2. Online Back-Propagation

3. Listprop

These training techniques are based on the back-propagation algorithm described

in section 3.5. Both online and batch training are available; the only difference

between the two algorithms is when the weights are updated: after one training

sample or one epoch, respectively. When using datasets that have a small number of

samples, it is not likely that an improvement will be found from using online training

as opposed to batch training. This is due to the fact that there will not be a high

49

I File Create

Figure 4-4: Choosing the network structure.

number of data points that are similar. Thus, we will need to examine every data

point multiple times to properly train the neural network.

The other training algorithm available is called Listprop. Listprop works similar to

online back-propagation training. However, if the network already outputs the correct

value for a sample within a certain tolerance, then the weights are not updated for

that sample [4]. This allows the network to avoid overtraining and possibly converge

faster.

Stochastic training is also available, which does not go through the samples in

order, but rather chooses a random order to present the sample or samples to the

neural network. This technique is used to avoid getting stuck in a well on the error

50

I

surface, i. e. local minimum, that may be caused by updating weights for samples in

the same order repeatedly.

4.4.2 Momentum and Learning Rate

As discussed in section 3.5, we need a way to determine the learning rate to use during

training. GAINN implements 4 different learning rate modifiers:

1. Constant

2. Accelerate as K * weight

1
3 . Converge as lgn

4. Converge as K

The two convergence algorithms are based on the fact that improvements in the

error function tend to be much larger at the beginning of training than later in

the training progression. Because the neural network learns more as the training

progresses, adjustments to the weights are not as helpful in improving the overall

error. Therefore, larger steps down the error gradient may be taken at the beginning,

when only the general direction is important. As the weight settings shift to decrease

the error function, the slope of the error gradient will tend to decrease (going to zero

if we reached the absolute minimum). Decreasing the learning rate as the training

moves along will lower the chance that too large a step is taken and the error actually

increases.

The acceleration algorithm is also focused on attempting to move down the error

gradient as quickly as possible without moving too far and inadvertently increasing the

error. The learning rate will be increased after each sample(s) as long as the overall

error continues to decrease5 . Thus, at the beginning of the training, the learning

rate will continually increase allowing larger and larger steps to be taken. Whenever

a weight adjustment is made and the error increases, the error rate is drastically

5The accelerating learning rate will examine the error after each weight update. If the error
decreased, the learning rate is then increased. If the error increased, the learning rate is decreased.

51

reduced. As mentioned, the decrease in the error will lessen as the training progresses.

This algorithm will take smaller steps further into the training since weight changes

are more likely to increase the error than earlier in the training.

4.4.3 Error Measure

There are 4 error measures that are implemented in GAINN

1. Sum of Squares (Mikowski-2)

2. Absolute (Minkowski-1)

3. Cross Entropy

4. Minkowski-R

The optimal error measure to use for training the neural network depends on the

dataset. When doing a typical regression analysis, Minkowski-R error or sum of

squares is the best choice. As mentioned in section 3.7, the sum of squares error will

find the conditional mean, whereas the Minkowski-1 error will find the conditional

median. The benefit of the latter is that it is more resilient to outlying data

When training the neural network to classify into distinct classes, neither of the

error measures just mentioned may be the optimal function to use. Rather, the

cross-entropy error should perform the best for classification as described in section

3.7. This error function optimizes the network for class separation as opposed to a

regression mapping.

4.4.4 Regularization

In some circumstances, it is desirable to regularize the neural network during training.

There are two options available, weight decay and weight elimination. Regulariza-

tion techniques are used in hope of keeping the neural networks more general. In

some situations, generalization will lead to better classification results. Generaliza-

tion techniques lower the weight changes by introducing penalty terms as discussed

in section (3.6).

52

File Create

Figure 4-5: Ensembles and stopping criterion .

4.5 T laining Endpoint

After the structure and algorithm have been set, we must determine when to stop

the training algorithm. In addition, it may be desirable to create an ensemble of

networks, which can lead to more accurate classification.

4.5.1 Stopping Criterion

Once the training algorithm and network structure have been specified, a stopping

point for training must be determined. GAINN allows for several metrics:

1. Number of iterations

53

2. Minimum Training Error

3. Minimum Validation Error

4. Minimum Total Error

5. Percentage Decrease in Total Error

6. Percentage Decrease in Training Error

7. Percentage Decrease in Validation Error

The chosen error function in figure 4-5 not only affects the weight updates but also

the metrics used to determine when to stop training. Minimizing the training error,

when using a large number of iterations, can lead to bad generalization as it will

tend to cause over-fitting. Minimizing the validation error is a better choice, as the

samples in the validation set are not used for training the neural network. Therefore,

the classification results of the validation set will be more indicative of how we expect

the network to perform on the test set or other unseen samples. However, we may not

always wish to use a validation set at all, so that we can train the network on more

sample points; in this case, the stopping criterion can obviously not use the minimum

of the validation error. Another metric I have implemented in GAINN is to use the

total percentage decrease in one of the data splits. The intuition for this method is

that the improvements in the error measure will decrease as the training progresses.

4.5.2 Ensembles

GAINN also allows the user to choose how many ensembles to create and how many

to keep. The purpose of ensembles is to use each network to contribute to a final

answer, thereby not discarding any networks that have been trained.

4.6 Neural Network Performance

GAINN provides the ability to examine the network performance after the training

has completed. The results screen will show the user one of the most important

54

displays of discrimination when creating a two class discriminator: the ROC curve.

The ROC curve, shows a tradeoff between specificity and sensitivity. Sensitivity is

the probability that a patient with a disease will test positive for it, or, in the case of

neural networks, be classified in the correct group:

TP
(4.1)

TP+ FN

where TP is the number of true positives, and FN is the number of false nega-

tives. Specificity is the probability that patients without a particular disease will test

negative:
TN

(4.2)
TN+FP

where TN is the number of true negatives and FP is the number of false positives. We

can obtain perfect sensitivity or specificity by blindly saying that all patients have a

particular disease or all patients do not. However, we obviously hope to obtain much

better classification than this. In the case of classifying between two different types

of cancer, such as in the Golub dataset, we can simply denote one class as a positive

test, and one class as a negative test. Then, each patient is classified into a group by

examining the output of the neural network and using a particular cutoff value. For

example, a cutoff value of 0.3 would mean that all samples that produced an output

of 0.3 or less would be classified as "negative", while all samples that produced an

output above .3 would be classified as "positive". GAINN will show the ROC curve

for increments of 0.05 for the class separation. These 20 values will comprise the ROC

curve, which plots the sensitivity versus 1 - specificity at different cutoff values.

The c-index is the area under the ROC curve and is a standard measure for

determining how useful a medical test is; a higher c-index (1 being the maximum

value) means a particular test is probably better than another6 . We must define

exactly what is meant by a positive test or a negative test. In the gene expression

6It is necessary to say "probably" here because, frequently, specificity and sensitivity are not
valued the same for a particular test. For example, if we are only concerned with finding any and
all patients with a particular disease, then we are more concerned with sensitivity. A diagnostic test
that was more sensitive but had a lower specificity and lower c-index than another test may then be
considered better.

55

datasets, the patients are all classified into two groups. One of the groups outputs

has been set to 0, while the other has been set to not zero. In all datasets used here,

the non-zero values are all equal to 1.

In addition, GAINN will display the error function's performance for all three sets,

training, validation, and test. This is very useful for examining the behavior of the

neural network throughout the training progression. Graphs are available for both

the ROC curve and error function results.

4.7 Multiple Training Networks

The most convenient feature of GAINN is the ability to test all of the properties

shown in figure 4-6 at one time. GAINN provides an easy-to-use interface (created

dynamically) that allows the user to specify many options and range or values over

which to train networks. GAINN will then train separate networks with each of the

parameters specified. For example, if a user wanted to test the performance of neural

networks using 3 different training algorithms and 2 different error functions, (s)he

would simply specify these options in the dialogue shown in figure 4-6 and GAINN

will produce six different networks and show the output. The training and test sets

are kept the same through the creation of all the networks. This allows for extremely

easy exploration of how different neural networks will perform and saves the end user

a great deal of redundant effort. In addition, we often do not know what the best

parameters to use with a particular dataset may be. When using GAINN, determining

the optimal settings becomes much easier than using script-based programs, where

the script may need to be edited over and over to test various parameters.

As shown in figure 4-7, once the training is completed, the results of all networks

are shown in a single window, allowing the user to compare the performance of each

network and see its characteristics. One can then select several networks to create an

ensemble and explore the performance of the ensemble network as well.

56

Figure 4-6: Creating multiple networks. Any parameter may be selected and numer-
ous networks trained for that parameter.

57

Figure 4-7: Viewing the results from multiple networks.

58

Chapter 5

Results

My testing methods were as follows: I tested GAINN's 2 class separation on two

different datasets, one provided by Golub [9] and one provided by Singh [34]. These

datasets contain gene expression data separating patients into two classes.

1. The Golub dataset contains samples of patients with either acute myeloid

leukemia (AML) or acute lymphoblastic leukemia (ALL). The dataset contains

72 samples, each containing the expression level of 7129 genes. There are 47

patients with ALL and 25 with AML.

2. The Singh dataset contains patients that are either "normal" or diagnosed with

prostate cancer. There were 102 samples: 52 from patients with prostate cancer

and 50 from patients without prostate cancer. Gene expression levels were

determined from 12,600 genes.

I will also report GAINN's performance on a multiple class data set provided by

Ramsaway. This dataset contains gene expression data for patients with one of six

different types of cancer. This dataset contains 64 samples and 16063 gene expression

levels for 6 different types of cancer tumors [27].

59

5.1 Learning Algorithm

The following table shows the GAINN's performance on both the Golub and Singh

datasets using the 4 different training algorithms. The network size specifies the

number of features used 1 . For this test, the number of features used is also equal

to the number of hidden neurons in the first layer. GAINN was able to accurately

classify both datasets, but performed slightly better on the Golub dataset. In the

original publishing, Golub was able to able to make a prediction on 29 out of 34 test

samples with 100% accuracy on those 29 test samples. The remaining 5 samples were

deemed unclassifiable. In the original publishing Singh was able to classify 90% of

the samples correctly [34].

Learning Algorithm Performance
Golub

Network Size
5 10 15

Online 0.9331 0.9386 0.9456
Batch 0.9574 0.9732 0.9804
Stochastic Online 0.9381 0.9410 0.9520
ListProp 0.9421 0.9395 0.9446

Singh
Online 0.9186 0.9095 0.9161
Batch 0.9407 0.9387 0.9372
Stochastic Online 0.9142 0.9242 0.9372
ListProp 0.9241 0.9109 0.9314

Table 5.1: ROC area for various network learning algorithms on the test set.

I split the datasets into half training samples and half test cases. The values

shown in table 5.1 are the average c-indexes over 25 trials. The results for any one

cell varied widely during the trials as the largest standard deviation was 0.052 (found

using online learning with a size of 10). This suggests either a large sensitivity to

the training split, or a large sensitivity to the random starting weights. Because

the ROC curve was perfect for the training data in 84% of the trials, the starting

weights were most probably not the reason for the high deviation. Rather, the high

1Unless otherwise stated, the feature selection of the inputs was used by taking the genes with
the highest correlation coefficient.

60

sensitivity to the data split comes from the small number of data samples. In the

Golub dataset, some of the data were collected from a source that used a different

technique to prepare the samples [9], and these samples were found harder to classify

in the original publishing. If the data split contains more of these samples in the

training set, then the performance of GAINN is better. If an unfavorable data split

is randomly created, then GAINN will not be able to learn these patterns and the

prediction will be worse.

Batch training outperformed online training in the Golub and Singh datasets.

Each dataset was trained for 100 epochs. Since the data was collected by averaging

10 networks for each of the parameter settings, some of the 95% confidence intervals

overlapped due to the high standard deviation. Therefore, I performed another ex-

periment comparing online training to batch training for a 10-input neural network

with 10 hidden neurons and sigmoid activation functions. Creating 50 networks for

both online and training algorithms, I found that the batch online algorithm did

outperform the online method as shown in table 5.2:

Golub
Mean C-index Standard Deviation 195% Confidence Interval

Online .931 .041 .919 - .942
Batch .971 .023 .965 - .977

Singh
Online .905 .051 .891 - .919
Batch .941 .034 .931 - .950

Table 5.2: Comparison of c-index for batch vs. online training in a 10 input neural
network.

In both tests here, the batch learning algorithm outperformed the online training

algorithm, and the results were statistically significant 2 . Online training updates the

weights after each sample, so there were actually 7200 updates during training for the

Golub datasets over the 100 epochs. On the other hand, the batch algorithm only

updated after each epoch. Both of the training algorithms had a c-index of 1 on the

2Henceforth, differences in c-index averages will be deemed statistically significant if a t-test on
the different means has a p-value of less than .05. That is, the null hypothesis will be that there is
no difference in the means.

61

training set. However, this does not mean that the error was 0. When training for 100

epochs, the online neural networks were overfitting the dataset and not generalizing

as well as the batch method.

5.2 Error Functions

I tested GAINN's performance on the Golub and Singh datasets with respect to the

error functions used during training. The dataset was split into half training and half

test data. The neural network had 10 features and 10 hidden neurons with sigmoid

outputs. There was one output neuron that had either a sigmoid activation function

or linear activation function. The results shown in table 5.3 are the average c-indexes

over 20 trials.

Error Function Performance
Golub

Activation Function
Sigmoid Linear

Sum of Squares 0.9574 0.9180
Cross Entropy 0.9751 NA
Minkowski-1 0.9536 0.8592

Singh
Sum of Squares 0.9387 0.9012
Cross Entropy 0.9528 NA
Minkowski-1 0.9363 0.8935

Table 5.3: ROC area for various error functions.

Once again, GAINN was able to obtain excellent classification results for both

the Golub and Singh dataset with the Golub dataset performing slightly better. As

mentioned in section 3.7, the cross-entropy error function is theoretically supposed to

perform better on 2-class separation tasks than either of the other two error functions.

This was true in both the Golub and Singh dataset when using sigmoid outputs.

Because the cross-entropy error function uses a logarithm, this method is not capable

of training on linear activation functions if the output is allowed to be negative.

Therefore, it was not used to train the neural networks when linear outputs were

used.

62

0.8

0.6

0.

-6 -4 -2 2 4 6

Figure 5-1: The sigmoid function.

Sigmoid neurons are considered "saturated" when the inputs reach either extreme

of the function around +/- 3.5. At this point, the output of the neuron will be very

close to 0 or 1, as shown in figure 5-1, and small changes in the weights could have

little or no effect on the output of the neuron. The sigmoid function is better than the

linear function for classification tasks because of this characteristic. If the outputs are

not binary, however, sigmoid outputs might perform very poorly even if the output

was restricted to the range [0,1].

Using a linear function as the output should perform worse than the sigmoid

output, and this relationship is shown in table 5.3 It is interesting to note the poor

performance of the Minkowski-1 when using linear outputs 3. The Minkowski-1 error

should be more resilient to over-fitting outlying data, because it finds the conditional

median rather than the conditional mean. The sum-of-squares error-which is equal

to Minkowski-2 error-will receive its highest contributions to weight changes from

the data points with the largest error, because the error is squared. Minkowski-1

simply uses the absolute distance in one dimensional space. Based on the results, it

appears that using the Minkowski-1 error may cause the neural network to underfit

the dataset due to its lack of emphasis on outlying datapoints as compared to the

sum-of-squares error measure.

3See section 3.7 for more information on the Minkowski error measure.

63

5.3 Training Speed

The neural networks used for gene expression classification in GAINN train extremely

fast in real time-only a matter of seconds. This is due to the small number of

inputs, hidden neurons, and small number of data samples. The real time speed of

the training, however, conveys nothing about how the training error is progressing.

The following tests were designed to gain intuition on GAINN's performance during

training on these gene expression data sets.

Figure 5-2 depicts the root mean square (RMS) error on the training set through

the training progression when using a constant learning rate on the Golub dataset.

The learning rate of 1.0 took many more epochs to reach an RMS error below 0.04

as compare to learnrate rates of 1.5 and 2.0. However, the curve is much smoother

than the ones for learning rates of 1.5 and 2.0. All of the learning rates above 1.0

converge to the same value of around 0.3. The learning rate of 2.0 provides a more

erratic decent, as it sometimes moves too far down the gradient and actually increases

the error rate. It appears as though the learning rate will not effect the network's

performance on the training set, because the errors appear to be converging to the

same value. In fact, only the network trained with a 0.1 learning rate had a different

c-index on the test set in this case.

I also compared constant learning rate results to convergent and accelerated learn-

ing rates. However, there was no statistical significance in the difference of the test

set RMS error or the c-index values when using the different learning rates modifiers.

In the case of these datasets, GAINN can perform well regardless of which learning

method it uses.

If datasets that were split unfavorably, however, there were some interesting dif-

ferences. An unfavorable data split would typically lead to c-index of less 0.91 on the

test set, while a favorable data split will lead to networks that score better than 0.95.

In an unfavorable datasplit, both convergent learning rate modifiers would converge

to an RMS higher than the constant learning rate or accelerating learning rate. This

is due to the fact that the convergent learning rate decreases overtime and is not

64

0.1 T

I -

0.08

0.06

LU

0.04

0.02

0
0 100 200 30D 400 500

Iterations

* .1 Learning Rate

m .5 Learning Rate

1.0 Learning Rate

X 1.5 Learning Rate
x 2.0 Learning Rate

Figure 5-2: RMS error vs. training epoch iteration for different learning rates.

capable of learning the final difficult data points. Such an example of this type of

training progression can be seen in figure 5-3. However, the constant and accelerating

learning rates eventually did learn these difficult data points, and performed worse

as a result.

In figure 5-3, we can see that around epoch 48, the network learns the final data

point or points in the training set, and its error drops close to zero. The error for

both the validation set and test set go up at this point, as the learning of this data

65

M

Figure 5-3: RMS error vs. training epoch iteration for a single training progression

point overfits the neural network to the training data.

5.4 Regularization

I tried using regularization during the neural network's training to see if there was

a change in the classification performance 4 . Again, data were organized using half

of the samples for training and half for the test results. The networks were trained

using online training and a network size of 10. The coefficient of the regularization

4A discussion of regularization can be found in section (3.6).

66

term was 0.5, and the network were trained for 200 epochs.

Golub
Mean C-index Standard Deviation 95% Confidence Interval

Online .931 .041 .919 - .941
Regularized .939 .047 .926 - .952

Singh
Online .905 .051 .890 - .919
Regularized .919 .042 .907 - .930

Table 5.4: Comparison of c-index for online training using regularization.

Regularizing the neural networks did not yield statistically significant differences

as compared to training the networks without regularization. The reason for this

is that the sigmoid output neurons are typically operating in the non-linear regions

after the first 50 epochs for almost all of the training samples, so updates made at

this point are small regardless of regularization. This test was repeated with lambda

values for regularization set to 0.25 and 0.75, but no significant changes were observed

on the network performance.

5.5 Stopping Criterion

I also tested the network performance when different stopping criteria were used.

However, once again, there did not appear to be a superior.

For these Golub test cases, the data were split into one third training, one third

validation, and one third test set.

Golub
Training Validation Test

100 epochs 0.996 0.979 0.972
Minimum Training Error 1.000 0.962 0.958
Minimum Validation Error 0.981 0.978 0.965

Table 5.5: Comparison of c-index for different stopping criteria.

Contrary to the expectation that the minimum validation error should generalize

better, training for 100 epochs performed the best. There was a higher standard

67

deviation in the results than when splitting the data into half training and half test

samples. This does meet our expectation because the network has less data to train on

and is therefore even more sensitive to how the data is split. With more complicated

datasets, it is recommended that the validation error, or some other metric, be used

to stop the training. Here, the network was able to reach a perfect ROC curve on the

training set for all data splits. In addition, the network performed very well on the

test set even when the training error was reduced to zero, which suggests that it is

difficult to overtrain a neural network for classification of the Golub dataset.

5.6 Network Structure

As I have discussed, there is no known method for determining an optimal network

structure given a particular dataset. It is not probable that such an equation could be

derived based on the number of inputs either. The underlying function that maps the

inputs to the outputs will dictate how complex the neural network structure should

be. Here, I have created a surface plot of the c-index against the number of neurons

in each of the two hidden layers. The left plot depicts networks trained with sigmoid

activation functions, and 10 inputs. The right plot depicts networks trained with

tanh activation functions and 20 inputs.

The data for the plots in figure 5-4 were collected using three separate data splits

of 40 percent training data and 60 percent test data. The c-indexes were averaged

for each configuration. The number of neurons in both layers ranged from 0 to 40 in

increments of 5.

In both cases, the plot is highly irregular and does not suggest any one configu-

ration or configurations tend to be optimal. Each point represents the average value

over five trials.

68

/

Figure 5-4: Surface plots of the c-index against the number of hidden neurons in each
of two layers . The x-axis and y-axis range from 0 to 40.

5.7 Multiple Class Separation

While GAINN performed very well on the two-class separation problem, it did not

perform as strongly on multiclass separation. For this test, I used 25 features, 20

hidden neurons, and 6 output neurons, all with sigmoid activation.

Ramsaway
Tumor Type C-Index
Breast 0.7660
Colorectal 1.0000
Lung 0.7730
Ovary 0.7628
Prostate 0.9152
Uterus 0.8984

Table 5.6: C-index values for multi class separation.

Here, the c-index is calculated one class at a time. This is not necessarily an

appropriate measure, however, because a sample could be classified into two different

classes simultaneously. In the 15 networks created, only 0.82 samples on average had

two output neurons that were both above 0.5. When classifying the samples simply

based on the highest output neuron's value, the median classification had an accuracy

69

of 100% on the training data and 81% on the test cases.

When using 50 features and 50 hidden neurons, the performance dramatically

decreased as the network overfit the training data, and the classification accuracy

dropped to 45%. In addition, the output's values were less conclusive. By less con-

clusive, I mean that in the networks that overfit the training data, there were more

outputs in the range of [.2,.6] for one sample. A perfectly conclusive output for a

sample would be one in which only one output neuron has a value of 1 and all others

outputs are 05. In general, misclassified datapoints are fare less conclusive. For ex-

ample, in one misclassified test case all of the outputs were in the range of .25 to .34,

yielding no useful information about that test case. In the better structured networks

that generated the data for table 5.6, more of the outputs had only the correct neuron

with an output above 0.1, and all other output neuron values were less than 0.1.

5.8 Feature Selection

I also tested the two-class datasets for performance while varying the numbers of

features. These networks were trained with both batch and online training 5 times

each and averaged. Similar to the optimal network structure search, no optimal

number of features can be reported.

There are no general trends in the performance of the networks except that a very

small number of features did not perform well. The standard deviation was large for

these data points as well, though the standard deviation was slightly smaller in the

range of 11 - 23 features. At some point, the neural networks should start to overfit

the dataset given a huge number of inputs. However, even in a network with 100

inputs and 100 hidden neurons, the performance was not significantly different.

5However, this data point may still be misclassified.

70

Feature Selection Performance

Number of Features Golub Singh
C-index Standard Deviation C-index Standard Deviation

2 .878 .078 .891 .081
5 .937 .041 .915 .051
8 .956 .036 933 .049
11 .972 .035 .921 .042
14 .961 .032 .943 .039
17 .982 .021 .942 .031
20 .953 .027 .953 .036
23 .971 .038 .955 .041
26 .961 .045 .956 .056
29 .952 .044 .934 .036
32 .962 .031 942 .044
35 .951 .042 .949 .051

Table 5.7: ROC area for various numbers of features

71

72

Chapter 6

Contributions and Future Work

My intention in creating GAINN was to provide a robust neural network package that

could be used for various classification tasks. I have implemented the neural network

package and demonstrated the power of GAINN in classifying three gene expression

microarray datasets.

While I discussed the many features that GAINN has available, there are many

more than could be incorporated. A feature I have planned for the next release of

GAINN is to implement the Bayesian automatic relevance determination learning al-

gorithm. When using this algorithm, there is no need to limit the number of features

before the training begins. It will be interesting to contrast the results of a network

trained using ARD as compared to limiting the number of features based on corre-

lation coefficient. In addition, I would like to build a genetic algorithm to combine

parameters used to train the neural networks, not the neural network themselves.

Another goal was to create an open software package that researchers can use

to classify many datasets (such a birth rate defects based on certain preconditions).

GAINN requires little, if any, preprocessing steps and allows the end-user to easily

vary many parameters of neural networks. GAINN graphically provides not only

the error output, but also the ROC curve that is needed to evaluate performance on

diagnostic tests. In addition, GAINN was designed as an easily extensible framework

that future researches can easily add new features in the source code.

GAINN will remain an ongoing, open source project and the latest release and

73

source code will be available on the web. We hope that many others will be able to

use GAINN as a tool for exploring neural networks as a means of classification.

74

Bibliography

[1] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[2] A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Blaisdell, New York, 1969.

[3] Y.X. Chen, J.Y. Fang, H.Y. Zhu, R. Lu, Z.H. Cheng, and D.K. Qiu. His-

tone acetylation regulates p21(wafl) expression in human colon cancer cell lines.

World J Gastroenterol, 10(18):2643-6, 2004.

[4] M.P. Craven. A faster learning neural network classifier using selective back

propogation. In Proceedings of the Fourth IEEE International Conference on

Electronics, Circuits and Systems, volume 1, pages 254-258, Cairo, Egypt, Dec

1997.

[5] G. Cybenko. Approximation by superspositions of sigmoidal functions. Mathe-

matics of Control, Signals, and Systems, 2:303-314, 1989.

[6] B. Farley and W.A. Clark. Simulation of self-organizing systems by digital com-

puter. IRE Transactions on Information Theory, 4:76-84, 1954.

[7] K. Funahashi. On the approximate realization of continuous mappings by neural

networks. Nerual Networks, 2(3):183-192, 1989.

[8] D. Gershon. Microarray technology: an array of opportunities. Nature, 416:885-

891, 2002.

[9] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,

H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S.

75

Lander. Molecular classification of cancer: Class discovery and class prediction

by gene expression monitoring. Science, 286(5439):531-7, Oct 1999.

[10] S.R. Grey, S.S. Dlay, B.E. Leone, F. Cajone, and G.V. Sherbet. Prediction of

nodal spread of breast cancer by using artificial neural network-based analyses of

s100a4, nm23 and steroid receptor expression. Clin Exp Metastasis, 20(6):507-14,

2003.

[11] N. Haraguch, H. Inoue, K. Mimor, F. Tanaka, T. Utsunomiya, K. Yoshikawa, and

M. Mori. Analysis of gastric cancer with cdna microarray. Cancer Chemother

Pharmacol, Aug 2004. Epub ahead of print.

[12] D.O. Hebb. The Organization of Behavior. John Wiley & Sons, New York, 1949.

[13] J. A. Hertz, R. G. Palmer, and A. S. Krogh. Introduction to the theory of neural

computation. Addison-Wesley, 1991.

[14] J.J. Hopfield. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the National Academy of Sciences,

79(8):2554-2558, 1982.

[15] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359-366, 1989.

[16] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann,

F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, and P.S. Meltzer. Classi-

fication and diagnostic prediction of cancers using gene expression profiling and

artificial neural networks. Nature Medicine, 7(6):658-659, 2001.

[17] R. Kurzweil. The emergence of true machine intelligence in the twenty-first

century (abstract). In Proceedings of the 1993 ACM conference on Computer

science, page 507. ACM Press, 1993.

[18] Y. LeCun. A learning scheme for asymmetric threshold networks. In Proceedings

of Cognitiva 85, pages 599-604, Paris, France, 1985.

76

[19] E. Marder and V. Thirumalai. Cellular, synaptic and network effects of neuro-

modulation. Neural Netw., 15(4):479-493, 2002.

[20] W.H. McCulloch, W.S.and Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5:115-137, 1943.

[21] S.A. Minsky, M.L.and Papert. Perceptrons. MIT Press, Cambridge, 1969.

[22] R.M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

[23] R.M. Neal. Neural Networks and Machine Learning, chapter Assessing relevance

determination methods using DELVE, pages 97-129. Springer-Verlag, 1998.

[24] M.C. O'Neill and L. Song. Neural network analysis of lymphoma microarray

data: prognosis and diagnosis near-perfect. BMC Bioinformatics, 4(1):13, 2003.

[25] D.B. Parker. Learning logic. Technical Report TR-47, Center for Computation

Research in Economics and Management Science, Massachusettes Institute of

Technology, Cambridge, MA, 1985.

[26] M.P. Perrone. General averaging results for convex optimizations. In M.C.

Mozer and et al., editors, 1993 Connectionist Models Summer School. Lawrence

Erlbaum Assoc Inc, 1994.

[27] S Ramsaway, KM Ross, ES Lander, and TR Golub. A molecular signature of

metasis in primary solid tumors. Nature Genetics, 33(1):49-54, 2002.

[28] BD Ripley. Pattern Recognition and Neural Networks. Cambridge University

Press, New York, 1996.

[29] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65:386-408, 1958.

[30] F. Rosenblatt. Principals of Neurodynamics. Spartan, New York, 1962.

[31] D.D. Rumelhart, G.E. Hinton, and R.J . Williams. Learning representations by

back-propagating errors. Nature, 323:533-536, 1986.

77

[32] M. Schena, D. Shalon, and P.O. Davis, R.W .and Brown. Quantitative monitor-

ing of gene expression patterns with a complementary dna microarray. Science,

270(5235):467-470, 1995.

[33] M. Schuster and K.K. Paliwal. Learning out time series with bidirectional recur-

rent neural networks. IEEE Transactions on Signal Processing, 45:2673-2681,

1997.

[34] D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, P. Tamayo,

A.A. Renshaw, A.V. D'Amico, J.P. Richie, E.S. Lander, M. Loda, P.W. Kantoff,

T.R. Golub, and W.R. Sellers. Gene expression correlates of clinical prostate

cancer behavior. Cancer Cell, 1(2):203-209, 2002.

[35] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard University, 1974.

[36] B. Widrow. Generalization and information in networks and adaline neurons. In

M. Yovitz, G. Jacobi, and G. Goldstein, editors, Self-organizing systems, pages

435-461. Spartan, Washington DC, 1962.

78

