
Design & Implementation of a Wireless Sensor

Prototyping Kit

by

Jamison Roger Hope

S.B., 2004

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005 [Jhe acC 7

© Massachusetts Institute of Technology 2005. All rights reserved.

.jpartment of Electrical Engineering andf Computer Science
May 19, 2005

Certified by.
Ruaidhri M. O'Connor

Assistant Professor
}~es Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

Author.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

J UL 18 2005

.... LIBRARIES..-.

Design & Implementation of a Wireless Sensor

Prototyping Kit

by

Jamison Roger Hope

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In recent years, wireless sensor networks (WSN) has become an active area of research
among computer scientists. In this work, JONA, a prototyping kit for wireles sensors,
will be described. The intention of this kit is to open WSN research to interested
parties outside of the electrical engineering and computer science communities, who
may wish to use wireless sensor networks in their own work. The kit's hardware
and software are based upon de facto standards for academic research (Crossbow and
TinyOS), with an emphasis on low cost and ease of development. This research has
the dual goals of describing a classroom kit and developing a self-contained document
providing background material suitable for an introductory project-based class on
WSN.

Thesis Supervisor: Ruaidhri M. O'Connor
Title: Assistant Professor

3

.4004"
"

-

--
-

--
--

-
-*

-
-

-
" -

ljj*,-
-

-.
, -

-
11-1-

-
A

i I M
.-I 0 1 1 1.,

Acknowledgments

First of all, I would like to thank Prof. Ruaidhri M. O'Connor for agreeing to super-

vise this thesis and for allowing me this opportunity to learn about wireless sensor

networks. Your guidance and patience have been indispensable throughout this en-

deavor.

I would also like to thank Dr. Nathaniel Osgood, who has consistently made the

dreary, windowless basement of Building 1 a fun place to work. Your enthusiasm has

been an inspiration, and your assistance has proven invaluable time and again.

I must also express my appreciation of the MIT Technology and Development Pro-

gram and its partnership with the Malaysia University of Science and Technology,
which provided me with financial support for this school year, releasing my parents

from a great burden they carried faithfully for my four years as an undergraduate.

My mom, Karen Hope. You were my first teacher, and I can always count on you

for wise counsel. You've always encouraged me to do my best while maintaining a

balance in my life. Most importantly, you taught me to put my trust in God. Happy

birthday!

My dad, Bill Hope. You supported my scholastic education, but you also taught me

and showed me lots of stuff that you don't learn about in school, especially about fish

and wildlife. Thanks for showing me why Florida's such a great and unique place to

be. You also taught me a lot about buildings and engines and all sorts of physical

systems like that. Any knack I now have for engineering has its roots in that.

My cousin, Isaac Benjamin. You remind me that the world isn't always as complicated

as the grown-ups make it seem, and you show me what it means to have faith like a

child. Always remember that Jesus loves you, even when you make mistakes. And if

the Creator of the Universe knows you and loves you, then who cares what anybody

else thinks?

The rest of my family. You've always done nothing but offer me continuous moral

and financial support. Any accomplishments I've realized have only been possible

because of you.

My friends, some of whom I've known just in these past five years, others more

than half my life. Thank you all for always encouraging me and making sure that I

remember that life "es muy divertirse." I truly do get by with a little help from my

friends.

Saving the best for last, my Lord and Savior, Jesus Christ, without whom I would not

be here. What a relief it is to know that I don't have to worry about anything, that,
no matter what, God loves me and will take care of me! Here are some most-excellent

Bible verses:

For the wages of sin is death; but the gift of God is eternal life through

5

Jesus Christ our Lord. Romans 6:23, KJV

Trust in the LORD with all thine heart; and lean not unto thine own
understanding. In all thy ways acknowledge him, and he shall direct thy
paths. Proverbs 3:5-6, KJV

Every good and perfect gift is from above, coming down from the Fa-
ther of the heavenly lights, who does not change like shifting shadows.
James 1:17, NIV

This is the confidence we have in approaching God: that if we ask any-
thing according to his will, he hears us. And if we know that he hears
us-whatever we ask-we know that we have what we asked of him.
1 John 5:14-15, NIV

Do not be anxious about anything, but in everything, by prayer and pe-
tition, with thanksgiving, present your requests to God. Philippians 4:6,
NIV

Commit to the LORD whatever you do, and your plans will succeed.
Proverbs 16:3, NIV

Cast your cares on the LORD and he will sustain you; he will never let
the righteous fall. Psalm 55:22, NIV

"Therefore I tell you, do not worry about your life, what you will eat or
drink; or about your body, what you will wear. Is not life more important
than food, and the body more important than clothes? Look at the birds
of the air; they do not sow or reap or store away in barns, and yet your
heavenly Father feeds them. Are you not much more valuable than they?
Who of you by worrying can add a single hour to his life?

"And why do you worry about clothes? See how the lilies of the field
grow. They do not labor or spin. Yet I tell you that not even Solomon in
all his splendor was dressed like one of these. If that is how God clothes
the grass of the field, which is here today and tomorrow is thrown into
the fire, will he not much more clothe you, 0 you of little faith? So do
not worry, saying, 'What shall we eat?' or 'What shall we drink?' or
'What shall we wear?' For the pagans run after all these things, and your
heavenly Father knows that you need them. But seek first his kingdom
and his righteousness, and all these things will be given to you as well.
Therefore, do not worry about tomorrow, for tomorrow will worry about
itself. Each day has enough trouble of its own." Matthew 6:25-34, NIV

How awesome is that? A Heavenly mandate to relax. Dude, you rock, God.

And now, I guess it's time for me to demonstrate that, as Dilbert says, "there's
nothing wrong with my verbal skills; it only seems that way because my math skills
are so high."

6

Contents

1 Introduction

1.1 Wireless Sensor Networks

1.2 Current Research and WSN Implementations

1.2.1 Berkeley, TinyOS and nesC

1.2.2 Habitat Monitoring on Great Duck Isla

1.2.3 Seismic Monitoring

1.2.4 The MIT pAMPS Project

1.2.5 Other Related Research

1.3 How to Read This Document

2 An Overview of Relevant Theory

2.1 Elementary Circuit Theory

2.1.1 Current

2.1.2 Voltage

2.1.3 Power

2.1.4 Resistance and Resistors

2.1.5 Capacitance and Capacitors

2.1.6 Inductance and Inductors

2.1.7 D iodes

2.1.8 Transistors

2.1.9 Operational Amplifiers

2.2 Microcontrollers and Their Parts

2.2.1 C PU

7

17

17

18

. 18

nd 19

19

20

24

26

29

30

30

32

35

35

40

42

45

46

48

49

50

.

.

2.2.2 I/O Ports and Parallel Communications 53

2.2.3 Serial Communications Options 55

2.2.4 The Analog to Digital Converter (ADC) 58

2.3 Common Laboratory Equipment . 59

2.3.1 M ultim eter . 59

2.3.2 O scilloscope . 60

2.4 Programming Languages & Source Code 60

2.4.1 Open Source Software . 61

3 Motivation and Design Goals 63

3.1 Classroom Needs . 63

3.1.1 1.961/CEM508 . 64

3.1.2 Software Requirements . 64

3.1.3 Hardware Requirements . 65

3.2 D esign G oals . 67

4 Implementation of the JONA Prototyping Kit 69

4.1 The JONA Hardware Platform . 70

4.1.1 The PROBOmega128 Prototyping Board 70

4.1.2 The DR3000-1 Transceiver Module 73

4.1.3 The LedsArray . 77

4.2 The JONA Software Platform . 79

4.2.1 TinyOS Design . 79

4.2.2 nesC D esign . 81

4.2.3 H ello, W orld! . 82

4.2.4 The JONA TinyOS platform directory 91

5 Deployment 107

5.1 LedsA rray . 107

5.2 UART: Bidirectional Communication 115

5.3 ADC&RFM 118

8

5.4

5.5

5.6

5.3.1 Collecting & Transmitting Readings with

5.3.2 Receiving Readings with TOSBase . . .

5.3.3 Displaying Readings with Java

Constructing an ADC Input

Sensing Without the ADC

Alternative Power Sources

5.6.1 The 9V Battery Adapter

5.6.2 Solar/RF Power Harvesting

OscilloscopeJonaRF

.

.

.

.

.

.

.

6 Conclusion

6.1 H ardw are .

6.2 Softw are .

6.3 Final Thoughts .

A Common Prefixes

B Bits, Binary and the Digital Abstraction

C The ASCII Encoding Scheme

D Semiconductors

E PROBOmega128 Schematic

F JONA Radio Module Schematic

G HelloWorld: A nesC/TinyOS Application Example

G.1 HelloWorld.nc

G.2 HelloWorldM.nc.

G.3 Makefile

H Additions Made to the Makerules File to Support JONA

H.1 The Additions

H.2 Makerules

9

121

127

127

127

130

141

141

143

145

145

146

147

149

151

153

157

161

163

165

165

165

167

169

169

175

I JONA Platform Directory Files

1.1 .platform

1.2

1.3

'.4

'.5

1.6

1.7

1.8

'.9

I.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

J Sample Applications

J.1 KnightRider . . .

accel.h

Accel.nc

AccelM.nc

ADCC.nc

ChannelMonC.nc . .

hardware.h

HPLADCM.nc . . .

HPLPotC.nc

HPLSlavePinC.nc . .

HPLUARTM.nc . . .

IntToLed.nc

IntToLedM.nc

IntToLedsArray.nc

IntToLedsArrayM.nc

Led.nc

LedC.nc

LedsArray.nc

LedsArrayC.nc . . .

LedsC.nc

LedsM.nc

photo.h

Photo.nc

PhotoM.nc

RadioTimingC.nc . .

SpiByteFifoC.nc . . .

. .

10

185

185

185

186

187

188

188

191

193

195

196

197

198

198

199

200

201

203

204

206

208

209

210

211

212

213

213

217

217

J.1.1 M akefile . 217

J.1.2 KnightRider.nc . 217

J.1.3 KnightRiderM .nc . 218

J.2 TestUartSendReceive . 219

J.2.1 M akefile . 219

J.2.2 TestUartSendReceive.nc . 219

J.2.3 TestUartSendReceiveM .nc . 220

J.3 OscilloscopeJonaRF . 220

J.3.1 M akefile . 220

J.3.2 OscilloscopeJonaRF.nc . 221

J.3.3 OscilloscopeJonaRFM .nc . 221

J.3.4 OscopeMsg.h . 225

J.4 HumiditySense . 225

J.4.1 M akefile . 225

J.4.2 HumiditySense.nc . 226

J.4.3 HumiditySenseM .nc . 226

K Software Licenses 229

K.1 Berkeley License . 229

K.2 Intel License . 229

K.3 M IT License . 230

Bibliography 231

Index 235

11

C
-4

List of Figures

1-1 Transmission radii in a wireless sensor network. 23

2-1 A simple application of KCL. 31

2-2 Another simple application of KCL. 32

2-3 Two Voltage Sources in Series . 33

2-4 A simple KVL example. 34

2-5 O hm 's Law . 36

2-6 Two Resistors in Series . 36

2-7 Two Resistors in Parallel . 37

2-8 Voltage D ivider . 39

2-9 Two Capacitors in Series . 40

2-10 Two Capacitors in Parallel . 41

2-11 Two Inductors in Series . 43

2-12 Two Inductors in Parallel . 44

2-13 D iode . 45

2-14 Bipolar Junction Transistors: npn (left) and pnp. 46

2-15 Circuit diagram BJTs-npn (left) and pnp-with currents labelled. 47

2-16 An op amp configured to be a voltage multiplier. 49

2-17 Block diagram of the ATmega128 [5]. 51

2-18 Closeup of the ATmega128 CPU, showing the ALU and registers [5]. 52

4-1 PROBOmega128 (Top side) [30]. 71

4-2 PROBOmegal28 (Bottom side) [30]. 71

4-3 Header pin groupings. 72

13

4-4 The serial port, labelled "CONRS232"

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

The DR3000-1 transceiver module.....

The DR3000-1 mounted (Top view).

The DR3000-1 mounted (Bottom view).

The DR3000-1 CONPIO connections.

One LED of the LedsArray.

The LedsArray (in Green).

The HelloWorld string array.

A jumper cap.

CON.ADC with a jumper cap in place. . .

CON-ADC with the jumper cap removed.

5-1 ADXL311EB accele Pvxlirnn hd 7rc1 r9]

5-2 ADXL311EB mounted atop the cantilever.

5-3 The cantilever with the JONA mote at the bottom. . . .

5-4 Screenshot of the Java Oscilloscope, showing accelerometer

ings.

5-5 Voltage vs. Temperature

5-6 Voltage vs. Temperature: -15-40

5-7 HS1101 Frequency Output Circuit [25]

sensor

5-8 HS1101 humidity sensor with circuitry. 1 3 5

5-9 Typical response curve of HS 1100/HS 1101 in humidity [25]

5-10 A 9V battery adapter for the JONA barrel connector.

D -1 Silicon Lattice .

D-2 n-type Doped Silicon Lattice with Negative Charge Carrier (Electron)

D-3 p-type Doped Silicon Lattice with Positive Charge Carrier (Hole) . .

E-1 PROBOmega128 schematic [31]. .

F-i DR3000-1 wiring schematic. .

14

. 73

. 74

. 75

. 76

. 76

. 77

. 78

. 86

. 89

. 90

. 90

120

121

122

128

131

132

134

read-

140

142

157

158

159

162

163

List of Tables

4.1 LedsArray pin connections.. 77

4.2 The TinyOS Directory . 80

4.3 U sage of m ake. 89

4.4 The bitwise or (1) operation. 100

4.5 The one's complement (~) operation. 101

4.6 The bitwise and (&) operation. 101

5.1 The logical NOT (!) operator. 112

5.2 The logical AND (&&) operator. 112

5.3 The logical OR (11) operator. 112

5.4 LedsArray display sequence while dir is FALSE. 113

5.5 LedsArray display sequence while dir is TRUE. 113

5.6 The bitwise exclusive-or (^) operation. 114

5.7 Thermistor Characteristics . 130

A. 1 Common SI and Information Theory Prefixes 150

B.1 Binary and Hexadecimal Representations for 0-15 152

C.1 ASCII Codes 0x00-0x1F . 154

C.2 ASCII Codes 0x20-Ox3F . 154

C.3 ASCII Codes 0x40-Ox5F . 155

C.4 ASCII Codes 0x60-Ox7F . 155

F.1 DR3000-1+-+PROBOmegal28 Connections in the JONA. 164

15

16

Chapter 1

Introduction

1.1 Wireless Sensor Networks

In recent years, wireless sensor networks (WSN) has become an active area of research.

Indeed, wireless sensor networks have been promised to "change the way we live our

everyday lives" [24]. Some of the applications to which networks have already been

deployed include monitoring animal habitats [32], providing inventory control [38],

and monitoring environmental conditions in buildings [34].

A wireless sensor network consists of spatially distributed clusters of autonomous,

smart devices which collectively measure, process, and communicate sensor data

through self-configuring "ad hoc" networks. Each device (or "mote"1) contains a

radio transceiver, a processing unit (microcontroller) and an array of sensors. Motes

are typically powered by batteries, but power harvesting techniques are sometimes

used as well. Depending on the intended application, WSN nodes may be set up to

sense environmental factors such as light, heat, humidity, even seismic activity, or to

detect artificial signals such as radio2 which they can use to triangulate the locations

of objects emitting the signals [18].

'Use of the term "mote" reflects the somewhat ambitious goal of having wireless sensor nodes
the size of microscopic particles, so-called "smart dust" [39].

21n this case, a node may be equipped with something like an RFID tag reader, or it might use
its primary transceiver.

17

1.2 Current Research and WSN Implementations

The apparent applicability of WSN to a diverse set of monitoring needs has led to

widespread interest in the broader engineering community. Research groups at a num-

ber of universities, including MIT, have been investigating WSN-related issues, and

there are already commercial implementations available from vendors including MIT

startups Ember Corp. [17] and Millennial Net, Inc. [33], and UC Berkeley startups

Dust NetworksTM [16] and Crossbow Technology, Inc. [13].

1.2.1 Berkeley, TinyOS and nesC

At the University of California, Berkeley, WSN researchers have produced several

generations of node hardware based on commercial, off-the-shelf components, that

have been manufactured by Crossbow and others. Berkeley research has also focused

on software issues, and they have developed a minimal open source3 operating system

designed specifically for WSN nodes and other embedded devices called TinyOS [23].

Following the initial release of TinyOS, Berkeley researchers went on to develop

a new programming language called nesC [19] to reinforce the programming model

found in TinyOS. Since their introduction, nesC and TinyOS have acquired a large

following [47] and have become the de facto standards for WSN software in academic

research.

Crossbow motes such as MICA-which was, in fact, first developed as a Berkeley

project [22] and then made commercially available by Crossbow-running TinyOS

have become a de facto standard for academic research into WSN, due to the open

source nature of the software and the freely available hardware schematics [47]. Ad-

ditionally, Berkeley researchers have partnered with Intel to create other hardware

platforms for TinyOS [26].

18

3See Section 2.4.1 on page 61.

1.2.2 Habitat Monitoring on Great Duck Island

MICA motes were used-by a Berkeley group in collaboration with the College of the

Atlantic-for a habitat monitoring project on Great Duck Island in Maine [32].

Seabirds, specifically Leach's Storm Petrels, use this island for nesting, and biol-

ogists wanted to study them. However, human incursion into their habitat can have

catastrophic impacts; so, the researchers decided to use a wireless sensor network to

study the birds remotely. Motes were placed around the island-including within

nest burrows-while the birds were away, to prepare for the upcoming mating season.

They were fitted with an array of sensors to measure, among other things, temper-

ature, light levels, humidity, and infrared radiation (to detect the body heat of the

petrels when they were in their nests). The motes formed a network and sent their

sensor readings to a computer connected to the Internet. Researchers could then

receive the data back at Berkeley, safely out of the birds' way. During a four-month

deployment, 1.2 million readings were logged [40].

The experiment was by no means flawless; some motes suffered corrosion in their

battery terminals, and others failed for various reasons. However, the GDI project

served as a valuable proof-of-concept, that wireless sensor networks are a viable alter-

native to traditional habitat monitoring techniques, with many advantages over the

latter, including reduced cost and reduced intrusiveness into sensitive areas.

1.2.3 Seismic Monitoring

Other, even earlier experiments involved using motes-in this case Rene, MICA's

predecessor-to monitor seismic activity. Two controlled experiments were per-

formed [20], one in Japan and the other on the Berkeley campus. In each case,

motes were deployed with two-axis 4 accelerometers to measure accelerations due to

simulated seismic activity.

In Japan, explosive charges were detonated under the ground to induce soil lique-

faction, a phenomenon which occurs during earthquakes. Sensors then measured the

4That is, they can sense acceleration both side-to-side and forward-and-backward.

19

resultant accelerations at ground level in different points.

In the other experiment, motes were placed in a grid formation on a wall and

elsewhere in a full-scale three storey wood-frame building on a shake table. The

building was then shaken to simulate an earthquake and accelerometer data was

collected, to see which parts of the building had suffered the most stress. The WSN

network successfully pointed to a particular area of a side wall-verified by a more

expensive and cumbersome traditional sensor apparatus-which did not show any

obvious visible damage.

There were problems encountered during both of these experiments, particularly

with regards to radio interference, but they demonstrated that WSN technology can

become a useful tool to measure the structural health of buildings and other man-

made structures. For example, a bridge fitted with a WSN network may perform a

self-diagnostic following a tremor and determine whether it is still safe for people to

cross [20].

1.2.4 The MIT pAMPS Project

Some of the more prevalent theoretical WSN research issues are reducing power ex-

penditure to increase battery life; miniaturizing components; and developing software

which will allow individual nodes to form an ad hoc network-one which has not been

carefully designed ahead of time, but rather emerges spontaneously as nodes discover

and begin to communicate with their neighbors-and to work together to solve prob-

lems.

It is self-evident that devices which run on electricity consume more power when

they are on than when they are off. So, one of the simplest ways to conserve energy

in an electronic system is to turn components off when they are not needed. This

technique, called duty cycling, is often employed in laptop computers, which will

turn their CPUs-and other components-off every time they are not needed. Duty

cycling can also be employed in WSN motes, having them shut down sensors and the

radio, and put the processor in a "sleep" mode5 whenever they have nothing to do.
5Microcontrollers which have this type of low-power mode typically have the ability to wake

20

Here at MIT in the Microsystems Technology Laboratories, the pAMPS (micro-

Adaptive Multi-domain Power aware Sensors) Project [10] is focused on extending

node battery life while hardware components are turned on by making components

which are "power aware" [35]. After producing an initial node called pAMPS-1 based

on commercial, off-the-shelf components [11], the Project turned to designing custom

parts, such as a power aware radio transceiver [29].

Some of the recommendations produced by the pAMPS Project to increase power

awareness include dynamic voltage scaling, energy-aware computing, and multi-hop

routing [11].

Dynamic Voltage Scaling

Dynamic voltage scaling [21] is a scheme for making computing devices power aware

by adjusting power consumption based on changes in the computation load. The

speed of a processor depends on a circuit element called a crystal oscillator which

produces a periodic waveform (a "clock signal"). Each computation performed by

the processor takes an integral number of oscillator periods. It is often possible to

make a processor faster by supplying it with a faster oscillator, but this increase does

not come free; for the chip to continue to function properly, its voltage supply must

be increased (which will cause it to consume more energy). The converse is also true:

by reducing clock speed, the chip can operate at a lower supply voltage'.

Therefore, when power consumption is an issue, it is best not to make the computer

faster than it needs to be. Dynamic voltage scaling takes advantage of this idea by

examining the current processing load and setting the supply voltage and associated

oscillator frequency as low as they can be while still getting the job done on time.

themselves back up at predetermined times or in response to some external stimulus. A built-in
timer keeps ticking away while the rest of the microcontroller naps.

6However, there is still an inherent minimum voltage below which the processor will not operate,
regardless of how slow its crystal oscillator is.

21

Energy-Aware Computing

Energy-aware computing is a related concept, but instead of adjusting processor volt-

age based on load, it switches processing elements based on the size of the data to be

processed.

For example, suppose the computer needs to add 3 + 2 = 5. In binary, this

equation is 11+10 = 101. Each of the inputs is two bits long, and the output is three

bits long7 . In a typical PC CPU, each arithmetic operation is performed on 32-bit

inputs. In order to compute 3 + 2 = 5, they perform the addition:

00000000000000000000000000000011
+ 00000000000000000000000000000010
00000000000000000000000000000101

Not only do they compute the values of the three bits needed to hold the result

of 5, they also must compute the values of the other twenty-nine bits. This needless

computation wastes power. In a processor employing energy-aware computing, rather

than having a single 32-bit adder component, it might have several: 5-, 8-, 10-, 16-,

and 32-bit versions, for instance. Then when the computer saw that it had to add

3 + 2 = 5, it could choose to perform the computation using the smallest adder that

could adequately hold the sum, in this case the 5-bit version8 . Then, it only must

add 00011 + 00010 = 00101, avoiding twenty-nine unnecessary 1-bit additions and

their associated waste of power9 .

Multi-Hop Routing

One final suggestion in [11] is to use multi-hop routing for communications. Suppose

a node in a wireless sensor network needs to send a message to another node on

the other end of the network. It can either try to send the message directly to the

'See Appendix B on page 151 for an explanation of binary and bits.
80f course, it would have to make this determination based on seeing two 2-bit inputs, not on

seeing the 3-bit output (which it has yet to compute); it can do this because the sum of any two
n-bit numbers is at most (n + 1) bits long.

9The act of inspecting data input sizes will be a new source of power loss-nothing comes free;
it is assumed that the average amount of power required to examine the data will not exceed the
average amount of power saved by using appropriately-sized components.

22

other node, or it can send it to a closer node which will then forward the message on

toward its destination. Each transmission of the message is called a "hop" because

it hops from node to node. The choice, then, is between single-hop and multi-hop

communication.

It may seem simpler to have every node be able to communicate directly with

every other node; this avoids the problem of having intermediate nodes which must

figure out how to route messages. However, broadcasting a radio signal is one of

the most energy-intensive operations a node can perform, and the energy required to

transmit a message a distance r grows as r2 or faster [29]. Suppose there are four

nodes of a network arranged as shown in Figure 1-1, and Node A has a message to

send to Node D. Let r be the distance between each node.

If Node A is to send its message directly to Node D, it must have a transmission

radius of 3r. The energy requirement is then proportional to (3r)2 = 9r 2 . However,

if Node A sends its message to Node B, Node B sends it to Node C, and Node C

delivers it to Node D, then each node only needs a transmission radius of r. The energy

requirement for the three transmissions is, then, proportional to r 2 + r2 + r 2 = 3r 2,

which is a substantial savings over the original 9r2

3 r . x - - - - -

>A OB 0C OD I
I A A r I I

%\/ x /

Figure 1-1: Transmission radii in a wireless sensor network.

23

1.2.5 Other Related Research

Other theoretical research into specific issues related to wireless networking-and to

the ad hoc networking found in WSN networks in particular-has been going on for

years.

Piconet [7] is an embedded wireless communication network which was introduced

in 1997, three years before the debut of TinyOS. It is a radio protocol designed to

enable ad hoc communication between various nearby personal electronics (much like

today's Bluetooth). Piconet is meant to be an add-on feature for these electronics, and

it could in fact be used in conjunction with TinyOS, which is designed to work with

a variety of interchangeable radio modules, including Bluetooth [8] and ZigBee [50]10.

Regardless of the communication protocol chosen, a wireless network must be

able to send data where it needs to go, when it needs to go. This will generally entail

routing a message from node to node until it reaches its destination. If all the nodes

are stationary, then they may be able to develop routing tables which might say, for

example, that "Node y lies between me (Node x) and Node z. So, if I have a message

for z, I should send it to y and let y worry about routing it onward." Of course, these

tables will change over time; if y's battery dies, then x will have to find a new route

to z.

If nodes are mobile, then routing becomes more tricky. A node cannot simply

send its message to a neighbor, expecting the destination node to be somewhere on

the other side, because that neighbor or the destination (or both) might have moved.

A node could simply transmit its message once to one of its neighbors and hope

that it eventually reaches its destination, but this could lead to a very large delay as

the message makes its way around the network. It may be a better idea to send out

several copies of the message along different paths, so that one of the copies will reach

its destination quicker than the solitary message would have. Flooding the network

with duplicate messages will, on the other hand, increase congestion and reduce the

network's overall data rate. It has been suggested that, for general mobile wireless

0Crossbow offers the MICAz mote which uses the ZigBee protocol for communication; the
Intel@Mote uses Bluetooth. Both run TinyOS as their operating system.

24

networks, the ratio of average delay to average data rate is proportional to the number

of nodes in the network, or higher [37]. In other words, any scheme to reduce delay

by a certain factor will reduce the network's data throughput capacity by at least

that same factor.

In a WSN network, though, battery life may be more of an issue than delay. With

a network of hundreds or thousands of nodes spread throughout an animal habitat,

changing batteries is not an option, so it is important for the radio communication

to consume as little power as possible-even if this makes it take longer for messages

to get where they are going.

As noted previously, the pAMPS group has been looking at ways to make sensor

nodes more energy-efficient and power aware. Section 1.2.4 described energy-aware

computing in which the internals of a processor are dynamically reconfigured to con-

serve energy. Well, peripheral components like radios can also incorporate energy

awareness, but not quite in the same way. For instance, a mote could have its radio

adjust its transmission power-remember from Figure 1-1 that more power means

a larger transmission radius-so that its signals reach their destinations but do not

needlessly carry further. Essentially, the mote would not "shout" if a "whisper" would

suffice.

An energy-aware processor would be able to adjust its own parameters automat-

ically; its energy awareness would be built into the hardware, without needing any

special functionality to be programmed into it. On the other hand, the processor,

which is the brain of the mote, must always remain in control of its peripheral de-

vices, so it would not be good for them to go changing their parameters on their

own without the processor knowing about it. Instead, the microcontroller should

control the power-saving features of the peripherals; for it to do so, this control must

be programmed in the software. To this end, some of the pAMPS effort has been

on designing protocols, algorithms, and applications that are aware of details of the

hardware 1 and can tweak parameters to minimize energy usage [44].

"Note that this is in direct contrast to the programming language abstract layer which allows for
portability across hardware platforms; here, the software must be tailor-made for a specific set of
hardware components.

25

Meanwhile, researchers at MIT's Laboratory for Information and Decision Sys-

tems have also studied the issue of energy efficiency in wireless networks, specifically

the issue of energy efficient communication. In [28], they present "cooperative rout-

ing" which saves energy through a combination of energy-efficient route selection-

i.e. choosing the right hops to minimize energy expenditure-and energy-efficient

transmission-making each hop as efficient as possible. When a node has a message

to transmit and it sends it to some intermediate node as part of a multi-hop path,

there will often be other intermediate nodes which also overhear the message. With

cooperative routing, some subset of the nodes which heard the transmission (possibly

all of them) will all rebroadcast the message at the same time. Their simultaneous

transmissions will reinforce each other and the message will carry further than it

would have if only one node had transmitted it. Equivalently, they can transmit at

lower power than normal and have the message travel as far as it would have if one

transmitted it at full power. The energy savings of cooperative routing comes from

this second formulation. Although an individual node may consume more energy

than it would have without cooperative routing12 , the total amount of energy used

throughout the network in the delivery of the message will be reduced. Depending on

the network's topology-how the nodes are physically arranged-cooperative routing

can provide energy savings of more than 50% [28].

1.3 How to Read This Document

This document introduces a new wireless sensor prototyping platform called the

JONA. This prototyping kit is intended to facilitate the exploration of wireless sensor

networks. Most of the proposed uses of WSN technology are solutions to problems

faced by biologists, civil engineers, factory workers, construction workers, and many

other diverse groups. One thing (perhaps the only thing) these groups have in com-

mon is that their primary disciplines are neither electrical engineering nor computer

12 Consider a node which does not lie along the original multi-hop path but is within hearing
distance. With traditional routing, this node will not transmit at all, so it will use no energy; with
cooperative routing, it will transmit, so its power consumption will increase.

26

science. So, it is not reasonable to assume that all individuals who might be interested

in WSN, and this prototyping kit, are already well-versed in EECS theory; someone

"who wants to use wireless sensor node technology should not have to earn a Com-

puter Science Ph.D. in order to do so" [20]. This document, intended to serve as a

self-contained User's Guide for the kit, therefore provides a survey of the basics of

electronics, microcontrollers, and TinyOS programming prior to a discussion of the

kit itself.

Chapter 2 offers something of a crash course in electrical engineering and computer

science. It is intended to supply the reader with enough of a background to make

sense of the subsequent chapters.

Chapter 3 explains in greater detail the need which the JONA is intended to meet.

It goes on to describe hardware and software requirements which must be satisfied,

along with other design goals.

Chapter 4 presents the implementation of the JONA Prototyping Kit. Along with

an examination of its constituent parts, there is a tutorial on how to program JONA

nodes.

Chapter 5 briefly describes a number of sample applications which have been

developed for JONA nodes, showing how they may be used in an actual deployment

of a wireless sensor network.

Chapter 6 concludes with an analysis of JONA strengths and weaknesses, and

suggests future directions for the prototyping kit.

27

00
C

1

Chapter 2

An Overview of Relevant Theory

This work is aimed at providing material suited to the development of a class on WSN

applications. In particular, the JONA kit was developed for a Civil Engineering course

on WSN being taught simultaneously at MIT-as 1.961-and at Malaysia University

of Science and Technology (MUST)-as CEM508. The text chosen for this class

was Practical Electronics for Inventors by Paul Scherz [43]. This chapter provides

a brief overviewl of some main ideas in electrical engineering and computer science

theory found in that book. A cursory understanding of these concepts is assumed in

later chapters. This chapter also introduces some parts which can be used to achieve

specific functionalities in a prototype, and equipment which will come in handy to

test and monitor the workings of the electronic devices. Each section is fairly self-

contained-though later topics do build on concepts introduced in earlier ones-and

the reader may feel free to skip over familiar material. Sections herein can then be

referred back to while reading the rest of the document without having to reread the

entire chapter.

'The material in this chapter is really a set of "snapshots" of the relevant sections of the text,
which the student should read.

29

2.1 Elementary Circuit Theory

2.1.1 Current

Current, expressed in amperes (A), is a measure2 of the flow of electricity. More

precisely, it represents the rate of flow of electric charges (i.e. electrons) past the point

where the measurement is being taken. In equations, current is usually represented

by the letter I. If a current is constant over time, then it is indicated by the uppercase

I; one that varies over time is signified by the lowercase iP. If the current from point

A to point B in a circuit is measured to be -10mA, it is equivalent to say that the

current from point B to point A is 10mA; by convention, this current would be said

to flow in the direction in which it carries a positive value, i.e. from B to A, and in a

circuit diagram it would be indicated by an arrow from B to A.

This convention that current flows in the positive direction stems from the erro-

neous belief once held that in an electric current, positively-charged particles were

flowing around the circuit. Later, the particles flowing in current-electrons-were

discovered, and were found to be negatively charged. This meant that the particles

actually flowed in the opposite direction4 . However, when an electron moves, it leaves

behind a "hole"5; when another electron comes behind the first, it might fill in the

hole left by the first. In doing so, it will leave its own hole further back. So, as

negatively-charged electrons move in one direction, positively-charged holes "move"

in the opposite direction, i.e. in the direction of current flow.

2 Current is measured using a device called an ammeter. This is typically one of the "meters" in
a multimeter. See Section 2.3.1 on page 59.

3 "i" is really shorthand notation for the symbol "i(t)", which makes the current's nature as a
function of time explicit.

4By definition, a current of 1 ampere is a flow of 1 Coulomb-a unit of positive charge-per
second. This rate of positive-charge influx could either be the result of the arrival of mobile positive
charges, or it could be the result of the departure of mobile negative charges. The latter was found
to be the truth.

'In a neutral atom, there are just enough electrons to counter the positive charge carried by the
protons in the atom's nucleus. When an electron leaves, the atom will have a charge imbalance and
it will have a positive net charge. So, this hole can be thought of as a virtual particle carrying a
positive charge.

30

Kirchhoff's Current Law The Conservation of Mass law of physics states that

matter is neither created nor destroyed. It follows from this statement that all the

electrons which flow into a given point in a circuit must flow back out of it. In other

words, the sum of all the currents flowing into a point in a circuit must equal the sum

of all the currents flowing out of that point,

Sin = iout, (2.1)

and this is true for every point in the circuit. This is known as Kirchhoff's Current

Law (KCL). It is often more convenient-since current flow directions may not be

known a priori-to consider all currents to be flowing inward, and to state KCL as

tirn = 0. (2.2)

Currents which really flow outward will carry a negative sign (ij, = -I), so this

is equivalent to subtracting E it from both sides of Equation 2.1.

KCL can often be used to calculate unknown current values in a circuit. For

instance, consider the left side of Figure 2-1. All the current which flows down

through the top circuit element must go on to flow down through the other three, so

i1 = i 2 + i3 + i 4 . As long as three of these can be found through some other means,

this equation will provide the value of the fourth.

i2i3 i4i42Z

Figure 2-1: A simple application of KCL.

Now notice that the right side of Figure 2-1 shows the same connections between

the circuit elements (although they are rearranged spatially). The relationship be-

tween the currents is the same as before, but it is not as immediately recognizable as

31

such. In a real circuit, it may be difficult to tell at a glance whether currents will be

flowing up or down or right or left, so it is often simpler to let all currents flow inward,

as in Figure 2-2. Once the relationship between the currents has been established (in

this case, 2a ± 4 + l + c d = 0), other information may help to determine which currents

are positive and which are negative.

la

ib Zc Zd

Figure 2-2: Another simple application of KCL.

2.1.2 Voltage

Voltage, expressed in volts (V), is a measure6 of the difference in electrical potential

(the "voltage drop") between two points in space. A place of higher potential is

more positively charged than a place of lower potential. Like charges repel and

opposites attract, so moving a positively charged particle from a lower potential

to a higher potential requires the application of energy to overcome the particle's

natural tendencies. This is analogous to the energy required to lift something; in

each case, the object is being supplied with more potential energy. Voltage measures

potential, though, not potential energy. Just as lifting a more massive object would

require more energy to be applied, so would moving a particle carrying a greater

charge; to determine the potential difference between two points, the measured energy

expenditure must be normalized. The voltage, then, is the energy per unit charge.

Voltage is represented in equations by the letter V. As with current, uppercase V

indicates a constant voltage, and lowercase v or v(t) one which varies over time.

Voltage is a relative measurement; in order to determine the voltage at some

6Voltage is measured using a voltmeter, also a standard component of a multimeter.

32

particular point of interest, it must be compared to that of some other point7 . In a

circuit diagram, a voltage between two points is indicated by a "+" at one point and

a "-" at the other. The voltage drop is the amount by which the voltage drops in

moving from the positive end (+) to the negative end (-). Also, voltage is additive.

Consider Figure 2-3. If the voltage drop across device A is measured to be VA, and

the drop across B VB, then the total potential difference between the "+" terminal

(end) of A and the "-" terminal of B is (VA + VB). Finally, note that if the drop from

the "+" terminal to the "-" terminal of A is VA, then the drop measured from the

"-" terminal to the "+" terminal of A will be -VA: voltage has a direction associated

with it.

VA VB

+ (VA +V) -

Figure 2-3: Two Voltage Sources in Series

Digital electronics typically have two important voltage levels or "rails": power

and ground. Ground, the common reference point, is usually (though there are ex-

ceptions) the lowest potential level found in the circuit, with a potential of OV. The

power rail is (usually) the highest potential found in the circuit, and is the wire which

delivers the electricity to drive each component. It is often referred to' as "Vcc" or

"VDD" and is often 5V, though increasingly devices are being designed to run at 3V

(or lower).

Kirchhoff's Voltage Law Voltages is a vector quantity (it has both magnitude

and direction), so the sum of all the voltage drops around any closed loop in a circuit

7In practice, a single point is chosen to serve as the reference to all other points in a circuit.
In wired equipment (i.e. equipment powered by an electrical outlet rather than by batteries), this
reference point is often connected by a wire to the Earth itself. The equipment is then said to be
"grounded" and the reference point is referred to as "ground". In fact, the reference plane is often
referred to as "ground" even when the circuit is not truly grounded.

8Recall that this voltage is the potential difference between this point and the reference-this
same point.

9These subscripts refer to details of a device's internal construction; their precise meaning is
beyond the scope of this material.

33

must be zero,

S VkO=.0 (2.3)
keloop

This property is known as Kirchhoff's Voltage Law (KVL), and it follows from Con-

servation of Energy 0 .

KVL can be used to calculate unknown voltages. Consider Figure 2-4. There are

two loops, one involving the voltage source, v., and vi, v 2 , and v3 ; and the other

involving v2, v3 and v4.

+ V

V 2

vs V4

V3

Figure 2-4: A simple KVL example.

When a circuit element labelled v is crossed from the negative end to the positive

end", the voltage will increase by v; when it is crossed from positive to negative,

it will decrease by v. So, going clockwise around the left loop, KVL says that v, -

V1 - v 2 - V3 = 0. Meanwhile, the right loop (also clockwise) yields the equation

v3 + v 2 - V4 = 0. If any three of these voltages are determined through measurement

or other calculation, then these two KVL equations can be used to find the remaining

two.

'0 Imagine moving an electron around the loop. As it goes from point to point, energy is either
added to it-as it moves from a place of higher potential to a place of lower potential (energy
must be added to overcome the repellent force between the negatively-charged electron and the

(relatively) negatively-charged point of lower potential)-or taken away from it-as it moves from a
lower voltage to a higher, more positive voltage (to which the electron is naturally attracted); when
the electron gets back to its starting place, it must have the same amount of energy that it started
out with, so all its changes in voltage must have cancelled out. If this were not the case, then sending
the electron around the loop repeatedly would either create more and more energy in the Universe,
or it would drain more and more energy out of the Universe. Either would violate Conservation of
Energy, which states that energy is neither created nor destroyed.

"Note that these designations of a "positive end" and a "negative end" are chosen arbitrarily. If
v happens to be negative, then this "increase by v" will actually be a reduction, and vice versa.

34

2.1.3 Power

Power, expressed in Watts (W), is a measure of the rate of energy usage. Because

voltage is energy per unit charge, and current is charge per unit time, power in

electrical systems can be calculated using the equation,

P = IV, (2.4)

where P denotes power, and I and V are as described above.

For example, suppose there is a two-terminal device connected to a 9V battery.

The voltage drop across the two terminals is measured to be 9V, and the current

through the device is measured to be ImA. Then the device is consuming 9mW of

12
power.

2.1.4 Resistance and Resistors

A resistor is a circuit element which is composed of a material which impedes or

"resists" the flow of electricity through it. Resistance" R is measured in units called

Ohms (Q).

The relation between current, voltage and resistance is described by Ohm's Law:

I =V/R (2.5)

(see Figure 2-5). This equation can be combined with the power equation to express

power consumption in terms of resistance and either current or voltage: P = IV =

I 2 R = V 2 / R.

When two resistors with resistance values R1 and R 2 are placed in series (end-to-

end), the combination is equivalent to a single resistor with value Requiv = R1 + R 2 (see

12The prefix "in" applied to a unit symbol denotes "milli-", i.e. one thousandth of the base unit.
See Appendix A on page 149 for a table of other common prefixes.

13The resistance of a resistor is usually considered to be an intrinsic, unchanging property, so the
uppercase R is used as its symbol in equations. There are related devices such as thermistors whose
resistance changes as a function of some environmental condition-in this case, temperature. For
these, lowercase r might be used for consistency to indicate that the associated resistance is not a
constant, but usually the uppercase R is used even in these cases.

35

V R I=V/R

Figure 2-5: Ohm's Law

Figure 2-6). If they are placed in parallel (side-to-side), the combination is equivalent

to a single resistor with value Requi_ = 1/(1/R 1 + 1/R 2) = R1 R 2/(R 1 + R 2) (see

Figure 2-7). These results follow from Ohm's Law and Kirchhoff's Laws, and they

readily generalize to larger, more complex resistor networks.

Ri

Requiv = R 1 + R 2

R2

Figure 2-6: Two Resistors in Series

Let V and V 2 represent, respectively, the voltages across resistors R 1 and R 2 in

Figure 2-6. By KVL, the total voltage across both resistors, Vequiv, must be equal to

the sum of V and V2 :

Vequiv = V + V2 . (2.6)

By Ohm's Law, the currents through the two resistors are given by

I1 = V1 /R1 (2.7)

and

I2 = V2 /R 2. (2.8)

By KCL, the current through R1 must equal the current through R 2 ,

I = I1 = 12. (2.9)

Now consider a single equivalent resistor, Requiv. The current through this resistor,

36

'equiv, will equal the current flowing through R1 and R 2 :

'equiv = 1, (2.10)

and will, by Ohm's Law, be given by the equation

Iequiv = Vequiv/Requiv. (2.11)

Combining Equation 2.6 with Equations 2.7, 2.8, and 2.11 yields

IequivRequiv =1R 1 + 1 2 R 2. (2.12)

According to Equations 2.9 and 2.10 all the currents are equal, so each term in

Equation 2.12 can be divided by I to give the equivalence relationship for two resistors

in series,

Requiv = R1 + R 2 . (2.13)

If n resistors are placed in series, the equivalent resistance is Requiv - E 1 R i.

R1 R 2 - Requiv = RR 2

Figure 2-7: Two Resistors in Parallel

Now, let V and V2 be the voltages (measured from top to bottom) across the two

resistors R 1 and R 2 in Figure 2-7. According to KVL, the sum of the voltages around

the closed loop formed by R 1 and R 2 must be 0. Following the loop in the clockwise

direction, this says that -V + V2 = 0, or

Vequiv = V1 = V2 (2.14)

According to Ohm's Law, the currents through the two resistors are given by the two

37

equations

11 =V1/R (2.15)

12 V2 /R 2 . (2.16)

By KCL, the current 'equi, flowing down into the pair of resistors must be equal to

the sum of the currents flowing through them,

Iequiv = 11 + '2. (2.17)

Now, an equivalent resistor Requiv will have to satisfy Ohm's Law, so

Iequiv = Vequiv/Requiv. (2.18)

Replacing the terms in Equation 2.17 with the results of Equations 2.18, 2.15, 2.16,

and 2.14 gives V/Requiv = V/R 1 + V/R 2 , or

l/Requiv 1/R 1 + 1/R 2. (2.19)

Solving Equation 2.19 for Requiv yields the equivalence relationship for two resistors

in parallel,

Requiv - 1
= /R1 + 1/fR2

-RjR2 (2.20)
R,1+R2

If n resistors are placed in parallel, the equivalent resistance is Requiv =1/(z' 1 1/Ri).

Voltage Divider

One extremely common application of resistors is as a voltage divider. This is a circuit

which uses two resistors in series to scale down an input voltage by some constant

factor. Consider Figure 2-8. According to KCL, all the current which flows through

38

the resistor marked R1 must" flow through R 2 to ground (indicated by the inverted

triangular symbol at the bottom). As vi, varies over time, this current, i, will follow

it, by Ohm's Law and Equation 2.13, according to the equality

y in . (2.21)

Now consider i as it flows through the second resistor. According to Ohm's Law,

i = vout/R 2. (2.22)

Equations 2.21 and 2.22 can be combined to relate vout to vin:

Vot Vin (2.23)
R 2 R 1 + R 2

Finally, solving for vut,

Vout = Vin .R (2.24)
R1 + R2

For example, if R 1 is 120kQ and R 2 is 180kQ, then Equation 2.24 simplifies to

Vout = 3vin/5. Notice that the scaling factor is determined by the ratio of resistances,

not the actual values themselves. For instance, if R1 were 2Q and R 2 were 3Q,

the output would still be scaled by a factor of 3/5; the current flowing through the

resistors, on the other hand, would be several orders of magnitude larger, and the

voltage divider would consume much more power'

R,

Vin +
R 2 Vout

Figure 2-8: Voltage Divider

1
4 This assumes that no current escapes through the terminal marked v 0st. In general, v0,t will

be connected to other circuitry with some effective resistance of Rload. As long as Rload > R 2 , the
current which escapes into the load will be negligible.

"Recall that power is given by the equation P = V 2 /R. With the voltage fixed, reducing R
increases P.

39

2.1.5 Capacitance and Capacitors

A capacitor is a circuit element which stores charge. How much charge a given capac-

itor can store is indicated by its capacitance, measured in Farads (F). In equations,

capacitance is denoted by C. The relation between voltage and current for a capacitor

is given by

ic = Cdvc/dt, (2.25)

where ic = ic(t) is the (changing) current through the capacitor, dvc/dt is the rate

of change of the voltage (vc(t)) across the capacitor, and C is the capacitance.

Like resistors, capacitors can be placed in series and in parallel; however, the

equations for determining the resultant capacitances are the reverse of their resistor

analogs. If two capacitors with values C1 and C2 are placed in series, the equivalent

capacitance is given by Cequiv = C1 C 2 /(C 1 + C2) (see Figure 2-9). If they are placed

in parallel, the equivalent capacitance is Cequi, = C1 + C2 (see Figure 2-10). As was

the case for resistors, these results can easily be obtained from Kirchhoff's Laws and

the current-voltage relation for capacitors, equation 2.25.

_L

IC C1 euv- dC2

T C2

Figure 2-9: Two Capacitors in Series

Let ic be the current flowing through the capacitors labelled C1 and C2 in Figure 2-

9. By KCL, this current is equal to the current flowing through each capacitor,

'C = iCl = iC2 . (2.26)

Meanwhile, KVL states that the total voltage across the two capacitors, vc, is equal

to the sum of the voltages across them:

VC = VC 1 + VC 2 . (2.27)

40

Taking the first derivative of vc as defined in Equation 2.27 gives

dvc/dt = dvc 1/dt + dvc 2 /dt. (2.28)

Now, using Equations 2.25 and 2.26 to write the currents through C1, C2, and the

equivalent combined capacitor Cequiv yields

ic = C1dvc 1/dt (2.29)

ic = C2dvc 2 /dt (2.30)

iC = Cequivdvc/dt. (2.31)

Solving Equations 2.29, 2.30 and 2.31 for their respective voltage terms and substi-

tuting them into Equation 2.28 produces

iC/Cequiv = ic/C1 + ic/C 2, (2.32)

which simplifies to

1/Cequiv 1/CI + 1/C 2. (2.33)

Noting the similarity to Equation 2.19, this can be rewritten, in a form mirroring

Equation 2.20, as

Cequiv - C1C2 . (2.34)
C1 + C2*

It follows immediately that if n capacitors are placed in series, the equivalent capac-

itance will be given by Cequi, = 1/(ZiU1 1/Ci).

I I
C1 C2 -- Cequiv = C 1 + C 2

T 1
Figure 2-10: Two Capacitors in Parallel

Now consider Figure 2-10. By KVL, the voltages across all three capacitors shown

41

must be the same,

VC 1 = VC 2 VCequiv (2.35)

However, the currents flowing through each of the three capacitors will be different:

ic1 = Cidvc1 /dt (2.36)

' = C2dvc2/dt (2.37)

iCeq = CequivdvceqIdt. (2.38)

According to KCL, the total current through the two capacitors-which will be the

current through the single equivalent capacitor-is equal to the sum of the individual

currents,

ZCequiv = Zc 1 + iC2. (2.39)

Substituting in the terms from Equations 2.36, 2.37, and 2.38, this becomes

Cequivdvceqjdt = Cidvc1/ dt + C2dvc /dt. (2.40)

Due to the equalities presented in Equation 2.35, both sides of Equation 2.40 can be

divided by dCequiv /dt to obtain

Cequiv = C 1 + C2. (2.41)

It then generalizes that if n capacitors are placed in parallel, the equivalent capaci-

tance will be Cequiv = Z'- 1 Ci.

2.1.6 Inductance and Inductors

An inductor is a circuit element which stores current. Inductance is measured in

Henries (H), and is represented in equations by L. The relation between voltage and

current for an inductor is given by

VL = LdiL/dt, (2.42)

42

where VL is the voltage across the inductor as a function of time, diL/dt is the rate

of change of the current (iL(t)) through the inductor, and L is the inductance.

Equation 2.42 and KVL and KCL can be used to determine the combinatorial rules

for inductors. They happen to be the same as those for resistors: if inductors with

values L, and L 2 are placed in series, the result is Lequiv L 1 + L 2 (see Figure 2-11);

if they are placed in parallel, it is Lequiv = L1L2/(L 1 + L 2) (see Figure 2-12).

L,

Lequiv = L 1 + L 2

L2

Figure 2-11: Two Inductors in Series

Consider Figure 2-11. As was the case previously with circuit elements in series,

the overall current is equal to the individual currents,

iLv Li = ZL 2 , (2.43)

and the overall voltage is equal to the sum of the individual voltages,

VL. = VL 1 + VL 2. (2.44)

Each of these voltages can be found using Equation 2.42:

VLequv = LequivdiLeq ui/dt (2.45)

VL 1 = LldiL1 /dt (2.46)

VL 2 = L2diL2 /dt (2.47)

Substituting these terms into Equation 2.44, and noting the equalities of Equa-

tion 2.43, the equivalent inductance is found to be

Lequi L1 + L2. (2.48)

43

For n inductors in series, the overall inductance will be Lequiv = XD 1 Li.

L 1 L 2 - o, Lequiv = $2

Figure 2-12: Two Inductors in Parallel

For inductors in parallel as in Figure 2-12, the voltages will all be the same,

VLequiv = VL 1 = VL 2 ,

and the total current will be the sum of the individual currents,

iLequiv = Li + 2
L2 (

Taking the derivative of both sides of Equation 2.50,

diLequidt = diL1 /dt + diL2 /dt. C

Equation 2.42 can be written for each of the three inductors as

di Le IddLquiv/d

diL1 dt

diL2 /dt

= VLequiv /Lequiv

= VL1 /L1

= VL2 /L 2

2.49)

2.50)

2.51)

(2.52)

(2.53)

(2.54)

Substituting each of these into Equation 2.51,

VLeqjv/Leqtiv = VL1 /L1 + VL 2 /L 2 , (2.55)

and since all the voltages are equal as shown in Equation 2.49, this simplifies to

l/Lequiv = 1/L 1 + 1/L 2. (2.56)

44

This familiar form can be rewritten to solve for Lequiv as:

Lequiv - LL 2 (2.57)
L1 + L 2 (

Additionally, if n inductors are placed in parallel, the equivalent inductance will be

given by Lequiv = 1/(z'l 1/Li).

2.1.7 Diodes

A diode is a two-terminal circuit element16 which only allows current to flow in one

direction-from the anode to the cathode-and only if the voltage applied exceeds a

minimum threshold, generally of about 0.6V for diodes made of silicon (see Figure 2-

13). As long as the applied voltage exceeds the threshold, the diode will pass a

virtually unlimited amount of current 17, so a resistor is typically placed in series with

the diode to limit the current as per Ohm's Law.

A light-emitting diode, or LED, is a diode which emits photons of light when

current flows through it. An LED, like other diodes, will begin to pass current at

0.6V, but at this voltage the amount of light emitted will be imperceptible. Usually

about 1.6V is a good target voltage for a brightly shining LED.

2 jv > 0.6V

Figure 2-13: Diode

6 Specifically, a diode is a pn-junction, i.e. the point of contact between a p-type semiconductor
and an n-type semiconductor. The p-type or positive end is called an "anode", and the n-type or
negative end is called a "cathode"; hence, a "diode" is a device with two (di-) "-odes". For more
information on semiconductors, see Appendix D on page 157.

17The actual current-voltage relation for diodes is beyond the scope of this document. Suffice it
to say that a higher voltage will be accompanied by a higher current.

45

2.1.8 Transistors

A transistor is a three-terminal semiconductor-based device which can be used as

an amplifier or as a switch. It may be helpful to think of a transistor like a kind

of electronic faucet. Rather than controlling the flow of water, a transistor controls

the flow of electric current. In switch applications, the faucet is merely considered

to be open or closed (on or off); in amplifier applications, what matters is how open

the faucet is. This amount can be controlled to achieve a particular target flow.

There are a number of types of transistors. In some, the control mechanism depends

on an applied voltage; in others, on an applied current. This section will consider

a particular class called the bipolar junction transistor, or BJT, which is current-

controlled.

A bipolar junction transistor, as the name suggests, consists of two junctions, each

of which is a pn-junction like the one in a diode. In an npn BJT, a p-type region is

sandwiched between two n-type regions; in a pnp BJT, an n-type region is sandwiched

between two p-type regions (see Figure 2-14).

Collector Emitter

n-type silicon p-type silicon
Base p-type silicon Base n-type silicon

n-type silicon p-type silicon

Emitter Collector

Figure 2-14: Bipolar Junction Transistors: npn (left) and pnp.

Each of the three terminals of a BJT (Collector, Base, and Emitter 18) has a

current associated with it (ic, ZB, and iE). For npn transistors, ic and iB flow into

18The designations "collector" and "emitter" refer to the movement of charge carriers through
the silicon: in an npn BJT, the emitter emits electrons which are then collected by the collector;
in a pnp BJT, the emitter emits holes which are then collected by the collector (In both cases, a
small percentage of the charge carriers are actually collected at the base terminal, as indicated by
Equation 2.59.).

46

the transistor, and iE flows Out Of it; for pnp transistors, iE flows into the transistor,

and Ic and lB flow out of it (see Figure 2-15). The collector current, 1c, is proportional

to the base current, ZB, according to the equation 19

iC= ZB/, (2.58)

where 3 is a large constant 20 (on the order of 100). Finally, the emitter current, tE,

is equal to the sum of the other two currents:

iE = ZC + 2 B- (2.59)

This equality is necessary to satisfy KCL.

As was the case for a diode, a BJT-whose functionality is also based on the char-

acteristics of the pn-junction-has certain minimum voltage requirements necessary

for current to flow. For an npn transistor, vBE-the voltage drop from the base to the

emitter-must be at least about 0.6V, and VCB > 0; for a pnp transistor, vEB-the

drop from the emitter to the base-must be at least 0.6V, and VBC > 0. In other

words, in Figure 2-15, the potential at each terminal must decrease going down (recall

that current flows from higher potential to lower potential).

iC =0 iBE = C + ZB

B [B

ZE iC + Z'B tC = B1

Figure 2-15: Circuit diagram BJTs-npn (left) and pnp-with currents labelled.

19 Equation 2.58 will hold for small values of ZB. As iB grows, ic will be bounded from above by
the amount of current which the power source can supply. Additionally, it will be limited by the
device's ability to dissipate heat. In high-current applications transistors are often fitted with a heat
sink, a piece of metal with a high surface area which helps to draw off heat and keep the transistor
cool.

20The exact value of / varies from transistor to transistor, so a particular value should not be
assumed.

47

In analog circuits, BJTs are useful as amplifiers (iE = iB(/ 3 +1)). Transistor radios

made use of this property to boost the signal received by the antenna before sending

it to the speaker. In digital circuits, they tend to be used as switches. When iB = 0,

the transistor is off and no current flows through it; when iB > 0, the transistor is on

and current flows.

2.1.9 Operational Amplifiers

An operational amplifier (op amp) is a differential amplifier with a very large volt-

age gain. It has two inputs, v+ and v_, and one output, vo,,t. The input-output

relationship is described by

V t = A(v+ - v.) (2.60)

where A is the gain factor. A is large (on the order of 106), and is usually assumed

(safely) to be infinity in calculations2 1 . Feedback between the output and one of

the inputs-i.e. external connections between the terminals through wire, resistors,

capacitors, or other circuit elements-is generally used to provide some predictable

(albeit smaller) gain, and to establish some desired input-output relationship.

For example, suppose an op amp is configured as in Figure 2-16 (the op amp's

power rail connections are generally not shown). This circuit has a voltage divider

between the op amp's output pin and ground, with the divider's output connected

to the "-" input pin. According to Equation 2.24, the voltage at the "-" input,

v-, is 3vo0 t/5. Combining this with Equation 2.60 yields vout = A(vi, - 3vut/5).

Solving for v 0,t, vout = Avi,/(1 + 3A/5). Because A > 1, the denominator can

be approximated by 3A/5, and the A cancels with the one in the numerator. The

input-output relationship for the idealized device then becomes

V t = 5vis/3 (2.61)

so if a 3V signal is applied to vi2 , vut will be 5V. It is important to note that an op

2 'As is the case with the 3 value of a BJT, A for a particular op amp is guaranteed to be large,
but it varies from one chip to the next.

48

amp will only produce voltages up to the difference of its power rails; if the op amp

is powered by 5V and vi, is 4.5V, vest will be 5V, not 7.5V.

Vcc

Vin +

Vout

2.2MQ

3.3MQ

Figure 2-16: An op amp configured to be a voltage multiplier.

2.2 Microcontrollers and Their Parts

The circuit elements introduced thus far are all useful for constructing analog circuitry

to interact with the real world. For instance, a number of sensors function as variable

resistors, with their resistances dependent upon environmental factors such as light

(in the case of a photoresistor) or heat (in the case of a thermistor). These can be

used as R 1 in a voltage divider with a constant vin to create a circuit which produces

an output voltage that depends on the relevant environmental condition. In other

cases, a sensor may produce an analog voltage which is simply too small to deal with

directly, so it must be amplified by an op amp before being measured. Now that these

circuit elements have been introduced, the "brain" of a WSN mote will be discussed.

As with many other embedded devices-electronic systems tailored to particular

applications-WSN motes are typically controlled by a microprocessor (CPU) which

executes a program stored onboard. The microprocessor is often found as part of

a microcontroller. In addition to the processor, a microcontroller contains memory

and other peripheral components all integrated into a single chip. By contrast, these

components are often separated in a desktop PC so that they can be used inter-

changeably with a variety of different microprocessors; in an embedded device, they

are merged and the combined chip is typically optimized for low power consumption

or some other desired trait. In this section, the architecture of a typical microcon-

49

troller is presented. Specific examples are drawn from the Atmel ATmega128 (see

Figure 2-17), which is the microcontroller at the heart of the JONA system.

2.2.1 CPU

Each microcontroller is built around a central processing unit (CPU; see Figure 2-18)

which executes the individual instructions making up the program which controls the

actions of the embedded system. The set of instructions which a particular CPU is

capable of executing is determined by its Instruction Set Architecture (ISA) 2 2. There

are a number of different instruction sets used by a number of different microprocessor

families; fortunately, it is generally possible to write programs in a "portable" lan-

guage like C [27] which can then be translated by a compiler into machine instructions

appropriate to various CPUs 2 3 .

Data Register File

Registers are storage containers which can hold chunks of information. In microcon-

trollers, registers typically hold one byte (eight bits) each, but sixteen-bit registers

are also common. More powerful microprocessors often have registers of thirty-two

or sixty-four bits, or more. The data register file is a set of registers which hold data

which is being processed. The ATmega128's data file contains thirty-two 8-bit general

purpose registers.

Instruction Register

The instruction register, as its name implies, is used to store instructions. Whereas

the ATmega128 has a number of registers in its data register file, it only has a single

register to hold instructions. It uses this register to hold the next instruction which

it must perform. While a particular instruction is being executed, the subsequent

22The ATmega128 uses an ISA called "AVR" [6] which is also used by a number of other micro-
controllers made by Atmel.

23This is fortunate in that if it is later decided to switch to a different microcontroller, the software
already written need not be rewritten using the new instruction set, but only recompiled for the new
architecture.

50

Pro -PF7 PAO- PA7PC P7

J 'PORTFI)DAVERS POR I S pCRTv9VM

MDTA RGSTER DATA DIR. DATAREGISIER DATADIRL DATA R821G I I DATAMDI
PRF RVG. PORW PORTA REM PORTA POR RQ.POT

-BIT VATA NUM

+ AARRIE AAIR DTROSTR DT R AAES7h 2D. i~ ADI

I POTEDIVER POTE RIVES PI1TDDRIERSPORT DRaER

Figur 2-17:M BlcOigamowh ~mgl8[]

51

PROGRAM
COUNTER H
PROG 2RAM

1.EE.FLEE~ASH

m I Immmmm
INSTRUCTION

REGISTER

INSTRUCTION
DECODER I +-

U

I STACK
POINTER

SRAM

GENERAL
PURPOSE

REGISTERS

x
Y

z
1_________________I - I

CONTROL
LINES

Figure 2-18: Closeup of the ATmiega128 CPU, showing the ALU and registers [5].

52

H H41
Vlo.1

I

4-

4-

4-

4(-

I-.

ALU

I I

instruction to be executed will be read into the register. This is known as prefetching

because the instruction is "fetched" from program memory one cycle ahead of when

it is to be executed.

Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) is the component of the CPU which performs arith-

metic (and other) operations on data. It is capable of adding, subtracting, multiply-

ing, and dividing, as well as determining whether one number equals or is greater

than or less than another number.

Program Execution

To execute a particular instruction, the CPU performs the following sequence of steps:

* First, the CPU reads the prefetched instruction from the instruction register

and decodes it.

" If it is a memory access instruction, then the CPU copies the contents of the

indicated SRAM memory address into the indicated data register (for a read)

or copies the data register's contents into the memory location (for a write).

" Otherwise, the instruction will typically tell the CPU to perform some operation

on two inputs and produce an output. So, the CPU configures the ALU to

perform the correct operation, feeds it the appropriate inputs from the data

register file, and then directs the output to the correct data register.

" Meanwhile, the CPU will prefetch the next program instruction from the pro-

gram flash memory into the instruction register to prepare for the next loop.

2.2.2 I/O Ports and Parallel Communications

To communicate with the outside world, a microcontroller has metal pins protruding

from its packaging. Some are used to connect it to the power and ground rails and

a crystal oscillator , while others are used to connect it to other circuit elements to

53

provide input and output (I/O) capabilities. The microcontroller can send bits by

setting voltage levels on pins to ground (for 0) or Vcc (for 1); it can receive bits by

having other devices set these voltage levels, and then testing the pins to see what

they were set to.

Some or all of the I/O pins may be split into groups called ports (indicated by

the groupings along the top and bottom of Figure 2-17) which can send and receive

multiple bits of data in parallel. Each bit is sent on one of the pins. Typically, a port

has eight pins, so that it can send or receive one byte at a time. It is not necessary to

use all eight pins, though; each pin in a port can be individually read from or written

to.

Internally, each port has associated with it registers for input and output. When

the CPU writes a byte to the output register, the register sets the voltage levels on

each of the corresponding pins to the appropriate rail voltage to output the byte to

anything which might be connected to the port. When the CPU reads from the input

register, it translates the voltage levels on the pins-which are presumed to be set

correctly by some other device2 -into a bit/byte of data.

Some microcontrollers, including the ATmega128, have a third register associated

with each port, called a Data Direction Register (DDR). This register is used to set

which pins are inputs which pins are outputs. Before writing to a pin, its correspond-

ing DDR bit must be set to 1 to put it in output mode; before reading from the pin,

its DDR bit must be set to 0 for input mode. If the DDR is not properly set, then

the value read from or written to the port may not be what is seen on the pins. For

example, if DDRA (the DDR for Port A) is holding the value OxFO-i.e. Obl1110000-

-and the value OxCC is written to Port A, then the output could be OxCC, but it may

be anything in OxCO-OxCF. The upper four bits (sometimes called the high nibble)

are setting their pins properly because they are in output mode, but the lower four

are in input mode, so their values are either being set externally or they are floating.

Using an I/O port for communication is fast; in a single clock cycle, 8 bits of data

2 4 If an input pin is not connected to anything, it is said to be floating, and its voltage is not

guaranteed to be at a valid logic level; it may read as a 0 or as a 1.

54

can be transmitted or received. However, this parallel communication is expensive

because it takes up a lot of space and wire. Two devices communicating in parallel

need to have at least 8 wires connecting them25

2.2.3 Serial Communications Options

It is often the case that the speed of parallel communication is not deemed to be

worth the cost of space and materials required. For instance, if the microcontroller

needs to send a 32-bit number, it would have to devote four ports to the task in

order to send it all at once. It would often be more reasonable to send it in small

pieces, one after the other, using fewer wires (albeit requiring more time) to do so.

This is known (especially when one bit is sent at a time) as serial communication.

There are three widespread protocols for serial communication. These are 12C, SPI,

and RS-232. Most microcontrollers implement these protocols, though not all feature

both 12C and SPI; all three are supported by the ATmega128.

Inter Integrated Circuit

Inter Integrated Circuit (12C) is a serial communications protocol designed for sending

data between devices which are typically located on the same circuit board, all being

powered by the same VCC and sharing a common ground rail. It is a multimaster bus,

which means that more than two devices may be connected to the same 12C wires,

and that any of the attached devices may initiate a transmission (i.e. be master).

The 12C bus consists of two wires, SDA and SCL, which are both bidirectional-

the same wire is used for sending and receiving. SDA is the serial data line, and SCL

is the serial clock line. As a transmitting device sends bits on SDA, it sends pulses

on SCL so that the listeners know when to read each bit. Because the bus may have

2 5There will usually be a few other wires in addition to the eight data wires acting as control lines:
for example, there might be one to signal that a device is ready to transmit, another to signal that
it is ready to receive, etc. There may also be address lines to redirect data amongst several chips
connected to a single port, or amongst several registers within a single chip (This is how data is
transferred in a desktop computer between a CPU and one of the millions of storage locations of a
memory chip.). These control/address lines will typically be connected to I/O pins of another port
of the microcontroller.

55

several devices attached to it, the transmitter must be able to indicate which device is

the intended recipient of its data. So, each device on the 12C bus has a 7-bit address,

and the transmitter sends the address on SDA before sending any data. Each other

device on the bus listens to the address to determine whether it should listen to the

rest of the transmission. This is essentially the same mechanism used in telephony;

to call a particular phone number, special sounds corresponding to each digit are sent

on the voice line, and then when someone answers the phone, the caller proceeds to

send data (i.e. talk) on that same voice wire.

Serial Peripheral Interface

Serial Peripheral Interface (SPI) is another protocol used between devices on a cir-

cuit board. Unlike 12C, SPI is not multimaster; one device is the master, and the

others are slaves or peripherals. The master is the only device which may initiate

communication.

SPI uses four wires: MOSI (Master Out Slave In), MISO (Master In Slave Out),

SCK (Serial Clock), and CS (Chip Select). Each of these is unidirectional. The master

first selects a peripheral device by setting its CS line low 26 . It then sends eight pulses

on the SCK line. During each pulse, the master sends one bit on MOSI and the slave

sends one bit on MISO; after the eight pulses, the two devices have each sent the

other one byte.

This full-duplex communication, compared to 12C's half-duplex communication (in

which data is only transmitted in one direction at a time), along with SPI not needing

to transmit any addresses, lets SPI achieve significantly higher data transmission

rates. The tradeoff is that the protocol requires more wires than 12C (but still far

less than would be needed for parallel communication) and that each peripheral may

only communicate with the master device (whereas with 12C any device on the bus

may send data directly to any other device). For more detailed discussions of 12C,

SPI, and how the two compare, refer to [9].
26 The bar over the letters in "CS" indicates that it utilizes negative logic, i.e. a low voltage (logical

0) enables the device while a high voltage (logical 1) disables it.

56

RS-232, the UART, and the Serial Port

The third serial communications protocol, RS-232, was designed for communica-

tion between a DTE (Data Terminal Equipment) and a DCE (Data Communication

Equipment). Unlike the communicating devices in 12C and SPI, the DTE and DCE

are intended to be physically separated and connected by a serial cable which plugs

into each device's serial port. The DTE and DCE have often taken the forms of a

computer and a modem, respectively, but the protocol can be used to connect many

types of equipment. Also in contrast to the other two protocols, RS-232 is not a bus;

it only supports the presence of one DTE and one DCE. To simplify RS-232 com-

munication, the serial port of a device is typically controlled by a component called

the UART (Universal Asynchronous Receiver-Transmitter). This converts between

parallel and serial so that other parts of the device (such as a CPU) may deal with

the data as, for instance, a byte in parallel, rather than having to handle each bit

individually.

RS-232, like SPI, is full-duplex. It has a wire for sending bits and another wire

for receiving bits (simultaneously). Its other wiring differs somewhat from what is

found in 12C or SPI, mostly because it is intended to connect two pieces of equipment,

rather than two chips in one piece of equipment. For example, there is a ground wire,

to ensure that voltages sent from the two ends share a common reference point 27.

There are also lines to signal that a device has data it wishes to transmit, and to

signal that a device is prepared to receive data. One wire RS-232 does not have is

a clock signal. Instead, both devices are configured ahead of time for a particular

transmission rate (usually denoted the "baud rate") -typically several thousand bits

per second-and then during actual communication the receiver is responsible for

reading the incoming bits at the appropriate rate.

Usually, the DTE is a computer and the DCE is some peripheral component, like

a modem. However, it is possible to connect a DTE to another DTE (or a DCE to

another DCE) using a null modem adapter which must be inserted between the serial

2712C and SPI do not explicitly have ground wires as part of their protocols, because it is assumed
that the communicating devices already share common power rails.

57

cable and the serial port (on one end or the other). This adapter rearranges the wires

to make sure that they all end up going to the right places. Another option is to

use a crossover cable, which is a special serial cable that makes these rearrangements

internally.

2.2.4 The Analog to Digital Converter (ADC)

Sensor devices often function by translating some physical property into an analog

voltage. For instance, an accelerometer or tilt-meter might produce an output of

2.5V when it is sitting flat; its output may then continuously move lower toward 2.OV

as it is tilted one way, and higher toward 3.OV as it is tilted the other way. Or, a

microphone may produce a voltage signal whose amplitude is proportional to that of

the incoming sound wave. For a digital device to make sense of this data, it must

convert the analog signal into a digital one. This is the job of the Analog to Digital

Converter (ADC).

An n-bit ADC converts any voltage in its input range-typically between OV and

some configurable upper limit AVcc-into a digital number between 0 and 2n - 1. As

there are an infinite number of voltages in the range [0, AVcc] but only 2n possible

outputs, there is some loss (quantization error) associated with the conversion. Volt-

ages very near each other will likely map to the same digital value; other programs or

devices which read this value will then be unable to distinguish between the various

inputs which could have produced the value.

An n-bit ADC with range [0, AVcc/2] will have twice the resolution of an n-bit

ADC with range [0, AVcC]. So, the resolution of an ADC reading can be improved by

reducing the input range. However, there may be cases in which reducing the input

range is not an option. The input signal may be expected to vary from one end of

the range to the other, perhaps in some extreme situation which must be detected.

For example, an accelerometer may typically produce outputs between 2.3 and 2.7

Volts, but swing all the way from 0 to 5 during an earthquake. In this case, increasing

resolution by decreasing range is not an option; if a higher resolution is required, a

higher-bit, higher-cost (and slower) ADC is the only option.

58

2.3 Common Laboratory Equipment

This section introduces a couple of useful tools which can help with debugging or

otherwise monitoring an electronics project such as a WSN prototype.

2.3.1 Multimeter

A multimeter, as its name suggests, is a device which can measure multiple electrical

properties. In particular, multimeters are able to measure voltage (as a voltmeter),

current (as an ammeter) and resistance (as an ohmmeter). Additionally, many have

the ability to test capacitance and inductance, as well as several other parameters.

Multimeters have two probes-one red for positive, the other black for negative-

which are used to take measurements, and three (or more) sockets into which they may

be plugged. The black probe plugs into the ground socket (often labelled "COM" for

Common). The red probe plugs into one of the other sockets; which one depends on

what is being measured. Usually, one of the remaining sockets is used for measuring

current, and the other is used to measure voltage (and most other quantities). At the

end of each probe is a rigid metal tip or (removable) clip.

To measure current, the multimeter must be inserted in series with the circuit so

that all current is forced to flow through it. For the reading to be meaningful, the effect

of the addition of the multimeter into the circuit must be minimized. In particular,

this means that the multimeter must have a very low resistance. The ammeter socket

(typically labelled with a unit of current like "A" or "mA") is, therefore, set up to

allow substantial currents with negligible internal resistance. Current flowing from

the red probe to the black probe will be measured as being positive.

To measure voltage, the multimeter must be placed across a circuit, in parallel

with it. The voltmeter socket (indicated by a "V") is configured to have very high

resistance between itself and COM, and it is typically unable to support very large

currents.

Another common feature, which can be quite useful, is a setting to test continuity.

In this mode, the multimeter will beep if there is no resistance between the two probe

59

tips (i.e. if the two points being tested are connected only by metal/wire). This can

be used to detect short circuits (if it beeps when it should not) or breaks in the circuit.

2.3.2 Oscilloscope

An oscilloscope is an instrument which displays a graph of one or more potential

differences as functions of time. The display repeatedly updates from left to right,

and so oscilloscopes are particularly useful for observing periodic signals. There is a

probe for each input channel. At the end of the probe there is an alligator clip for

the ground wire and a main clip to connect to the point of interest 28.

There are knobs to adjust the scales and offsets of both the vertical axis (voltage)

and the horizontal axis (time) to zoom in on a particular segment of a waveform.

Each of the input channels shares a common time axis, but their voltage scales and

offsets can be set independently.

To make it easier to find a particular feature in a signal, the oscilloscope can be

triggered from of one of its channels. This synchronizes the displayed waveform so

that it is phase locked with this signal. When the trigger function is on, the scope

will wait for the trigger event-typically, the waveform crossing a specified threshold

from below (in a rising-edge trigger) or above (in a falling-edge trigger)-to occur

before redrawing the display. The trigger event will then be centered on the display

(or offset as desired).

2.4 Programming Languages & Source Code

The lowest-level programming language is called assembly. Each assembly instruction

directly corresponds to an instruction which the microprocessor can execute; assembly

instructions are, in fact, just brief textual descriptions of the underlying machine

28The probe's ground wire is directly connected to that of the electrical outlet through the oscil-
loscope. So, if the device being observed is also plugged into an outlet, then it is important that
the alligator clip only be connected to the circuit's ground; otherwise the clip will introduce a short
circuit.

60

instructions. As mentioned in Section 2.2.1, a CPU will implement one of many

different Instruction Sets. Assembly is not a single language but rather a collection

of dialects, one for each architecture.

At a higher level are many other programming languages like C [27], C++ [45],

and Java [3]. A program written in one of these is more portable-it is not tied to a

particular ISA-because other people have written compilers which will translate it

into instructions appropriate to many different processors. Furthermore, they allow

the programmer to use constructs like variables and complex data structures rather

than being limited to working physical memory addresses and register contents. In

short, they provide an abstraction layer between the program and the hardware on

which it will run.

With languages like C, it is often possible to make use of the abstractions when

they are convenient and yet still be able to directly access the hardware if need be.

This limits the portability of the program-the parts which directly access hardware

must be changed when the hardware changes-but it can make it much more powerful

than it would be if the abstraction barrier were impenetrable.

2.4.1 Open Source Software

When a program is to be distributed to others, the programmer may choose to make

available the source code or just a pre-compiled executable file. Companies typically

release only the executable, so that they can maintain control over the program. How-

ever, some companies and organizations advocate releasing software as open source,

whereby the source code is also released. Users of the program are then allowed 29 to

modify it if they find a bug or want to add a new feature. Academic software, such

as TinyOS, is released as open source because the authors did not intend it to be a

source of revenue but rather as a platform for academic research.

61

2 9Cf. Appendix K.

62

Chapter 3

Motivation and Design Goals

3.1 Classroom Needs

With all the research going on, and the commercial options available1 , it may seem

strange that another set of WSN hardware has been developed for academic research.

The kit described herein is not intended to compete with these other options; rather,

it is intended to complement them by opening up the research to the computer science

laity: to students who have little or no formal education in electronics; students of

civil engineering, environmental engineering, biology, and other fields.

It is toward applications in fields such as these that WSN promises so much, and

so this kit has been designed to provide these students with an introduction to WSN

technology and to demonstrate what this technology can do for them. This way, as

EECS researchers at MIT's MTL and LIDS laboratories and elsewhere continue to

make technological breakthroughs, their future customers can at least know enough

of the basics to understand how those breakthroughs might be significant 2 .

'For instance, Crossbow offers a MICA2 Classroom Kit [14].
2 Qf course, it is entirely possible that students learning about WSN with the JONA kit could

have breakthroughs of their own!

63

3.1.1 1.961/CEM508

The JONA kit is predated by the class for which it was developed. Earlier incarnations

of the course at MIT had used commercially available motes, but students encountered

multiple frustrations-in both hardware and software-which seemed to limit these

motes' usefulness.

The problems were typically caused or exacerbated by design choices which the

mote creators had made-these motes were typically designed for commercial deploy-

ment, not for prototyping and educational lab work. So, it was decided that a new

kit should be developed which would address these issues. The following two sections

will detail the main issues that were faced when using the commercial motes and the

design requirements which they implied for the JONA prototyping kit.

3.1.2 Software Requirements

One requirement of the JONA software was that it should have some basis in pre-

existing WSN software. The JONA kit was being developed to introduce students to

WSN technology, but it was not expected to be the final commercial solution that

they would later use in their jobs; so, what they learned using JONA had to be

relevant to other systems out there.

Additionally, the software should provide complete access to the hardware on

which it was running. One of the motes that was used previously had pre-installed

software which could not be circumvented. Among other things, this software was

responsible for controlling the built-in ADC. When taking measurements, this soft-

ware would take a fixed number of samplings over the course of a second, and then

it would compute the average and provide the user with this single number. The

user was given no provision for accessing the data used to compute the mean, or for

changing the sampling rate.

In some cases, this software limitation is not a major concern. For instance, if

the motes were used to record temperature, the built-in filtering would not matter,

because temperature will not vary significantly over the course of a second. However,

64

civil engineers might be interested in things like vibrations due to seismic activity.

So, students in the class connected an accelerometer to the ADC, to see how the

mote would respond to a simulated earthquake. The software controlling the ADC

prevented them from seeing that the mote had been shaken at all'.

The chief software requirement, therefore, was that the user should be able to

control the hardware directly to obtain the data as he or she saw fit. If the situation

called for onboard statistical analysis, then the mote could be programmed to perform

it; otherwise, it would be able to transmit the raw data back to the user.

Berkeley's TinyOS seemed to satisfy these software requirements well. The class

had encountered it through motes from Crossbow. However, the Crossbow hardware

was less flexible and somewhat fragile in early commercial offerings. More recent

versions have addressed these issues, but it was still decided that a new hardware kit

should be developed.

3.1.3 Hardware Requirements

In the setting of a class examining wireless sensor networking, the WSN nodes must,

above all, facilitate the investigation process. Commercial mote hardware, however,

is designed for deployment; when a set of set of nodes is ready to be deployed, the

nodes have already gone through the prototyping phase and have been specialized

and miniaturized. So, these two design goals are not merely divergent; in fact, they

are antithetical. Hardware designs appropriate for final versions can hinder the study

of alternative options.

Certainly, the software of a production model can be modified and experimented

on, but by this point the choices which went into the design of the hardware have

been set in substrate, so to speak. The Crossbow motes, for example, were designed

to be low-power devices which are as compact as possible. They run on a pair of AA

3Suppose the data is plotted on a graph so that 0 indicates no acceleration, and positive and
negative numbers indicate acceleration as the building sways to the right and to the left. Then
suppose that the data for a particular second is -300, -200, 0, 200, 300, 200, 0, -200. This clearly
indicates some sort of back-and-forth movement, but the average value over the whole set of data
points is 0!

65

batteries, and the circuit board-tightly packed with components-is only slightly

larger in area than the two batteries side-by-side.

The circuit board, which sits atop the battery holder, has parts on both sides of it;

the parts on the bottom side are inaccessible. This is no problem for a mote which is

being deployed, because no one will be planning to access those parts. In a classroom

investigation, however, all the components should be exposed so that they can be

examined with the oscilloscope, or even be replaced by other parts. Additionally, in a

choice between accessibility and size, accessibility should win. A prototyping kit does

not need to be as small as physically possible-especially when this miniaturization

makes investigation more difficult.

The Crossbow motes have an expansion plug to connect secondary boards con-

taining sensors, and there are several sensorboard configurations available on their

website. It is also possible to design and have made custom boards. However, de-

signing and having manufactured a new circuit board is by no means a fast process.

In a class spanning a single semester, time is of the essence, so laboratory equipment

must enable new prototyping ideas to be implemented and tested quickly. Also, the

expansion plug only exposes a subset of the microcontroller's ports and pins. The

rest remain untouchable (except, perhaps, by some very careful soldering). It would

be better if all of the microcontroller were easily accessible without having to resort

to skillful modifications.

Another important feature a classroom mote must possess is good input/output.

The Crossbow motes have three LEDs which can be used, for example, as status

indicators or to provide a visual representation of data which has been collected or

received. This was considered to be a step in the right direction, and so it was

decided that JONA should also have LEDs-it should just have more of them. In

final deployments they should not be used, since they consume a significant amount

of power; but during the prototyping stage, they can provide valuable insight into

what the mote is doing.

Even more importantly, it should be simple and convenient to connect JONA

motes to computers, both for reprogramming and for relaying data once deployed.

66

This was generally not found in commercial motes, which often require other hardware

in order to interface with a PC. In contrast, it was decided that each JONA mote

should have its own serial port for easy RS-232 access.

Finally, the JONA hardware should satisfy the above requirements and cost less

than the commercial options. The disadvantages of the commercial motes will seem

far less significant if the alternative is more expensive.

3.2 Design Goals

In summary, the JONA kit had the following design goals:

* Be a low-cost prototyping kit.

" Be relevant to other work, in terms of both hardware and software, so that

someone learning about WSN via JONA could go on to apply that knowledge

to other WSN products.

" Have software and hardware which facilitates rather than hinders the explo-

ration of alternative configurations. Software should allow direct, easy access

to the hardware (programmatically speaking), and hardware should be some-

what oversized and allow direct, easy access to all microcontroller pins and

peripheral components (physically speaking).

* Be programmable without requiring additional hardware (other than a connect-

ing cable).

* Make prodigious-but not gratuitous-use of that most-important invention of

the solid state era, the blinky light.

67

68

Chapter 4

Implementation of the JONA

Prototyping Kit

The first decision made regarding the implementation of the JONA kit was that

it should run TinyOS for its software. TinyOS had shown great promise with the

Crossbow MICA motes, and it was decided that adapting the operating system to the

new platform-which was allowed by its open source license agreement-would be the

ideal way to equip JONA with a fully capable software environment without having to

build one from scratch. This decision prompted an additional hardware requirement:

the JONA hardware should readily support TinyOS, with only a minimal set of

changes or extensions to the OS needed.

To this end, it was decided that the JONA kit should be built around an At-

mel AVR microcontroller. MICA uses an Atmel chip, and so it had already been

well established that TinyOS would work with this hardware. Similarly, the radio

transceiver would be' the TRIONO by RF Monolithics [42]-the radio found in the

MICA.

'The Chipcon CC1000, found in the MICA2, was also considered, but the TR1000 proved to
have a simpler wiring solution. Both transceivers run at 3V, so incoming and outgoing signals
must be translated between 3 and 5V levels; all TR1000 lines are unidirectional, meaning that the
conversions could be performed by resistor dividers and op amps. The CC1000, on the other hand,
has bidirectional lines, which would necessitate solutions less elementary in nature.

69

4.1 The JONA Hardware Platform

4.1.1 The PROBOmega128 Prototyping Board

After searching for and comparing a number of different Atmel prototyping board

options, the PROBOmegal28 board (see Figure 4-1) developed by Dr. Erik Lins [30]

was chosen to be the basis for the JONA hardware. It provides convenient access to

all pins of the microcontroller, it has a built-in serial port to provide RS-232 access,

it is vendor supported, and it is cost effective.

At the heart of the PROBOmega128 is an Atmel ATmega128 AVR microcontroller

(located on the underside of the board; see Figure 4-2), the 5V version of the low-

power (3.3V) ATmega128L found in Crossbow's MICA2 motes. It runs at a speed

of 14.7456 MHz 2 . The board can be powered by a voltage between 7 and 25 Volts

applied to a barrel connector on the side (from a standard AC adapter, for instance).

A voltage regulator then takes this input voltage and supplies the rest of the board

with a steady 5V. In Figure 4-1, the barrel connector is on the far side of the board,

with the voltage regulator to its right. The serial port is on its left edge.

Nearly all of the ATmega128's sixty-four pins-all, in fact, but five, four of which

are connected to two crystal oscillators-are directly connected to header pins-

large pins spaced one tenth of an inch apart which allow for quick connections to

other components via wirewrapping or ribbon cables-grouped by logical function.

Counter-clockwise from the bottom in Figure 4-1 (see also Figure 4-3), these header

pin groupings are CON-ADC, CON-BUS, CON-PIO, CON-ISP, and the two-pin J1 jumper

connector in the middle, which can be used to reset the microcontroller.

CON-ADC provides access to the ATmega128's built-in 10-bit analog-to-digital con-

verter. The ADC has eight input channels, provided as the alternate functionality

of the eight pins of I/O Port F. The ATmega128 can, therefore, be wired to eight

separate analog voltage sources at the same time. CON-BUS contains data, address

and control lines which can be used to connect external memory or other such de-

2 The MICA2's ATmega128L, being lower-powered, only runs at a clock speed of 8 MHz.
3 These connections can be seen in the schematic in Figure E-1 in Appendix E as the parallel

lines running outward from the square-shaped microcontroller.

70

Figure 4-1: PROBOmega128 (Top side) [30].

Figure 4-2: PROBOmega128 (Bottom side) [30].

71

Figure 4-3: Header pin groupings.

vices which make use of an address and parallel communication. These lines can

also be used as generic I/O, as Ports A, C, and G4 . CONPIO has I/O Ports B, D,

and E. CONISP contains six pins-including the SPI interface's MISO, MOSI and

SCK lines-used to reprogram the microcontroller by a device called an In-System

Programmer (ISP).

The PROBOmega128 also has a built-in serial port (see Figure 4-4) which enables

the board to be programmed even without an ISP. The board is wired as a DTE,

so a crossover cable or null modem adapter must be used when connecting it to a

computer5 . Once a JONA mote has been programmed, its serial port can be used to

transfer information between it and a computer 6. A mote connected to a computer

like this is often used as a base station in a WSN network. Other motes send their

data to the base station via radio, and the base station then sends the data through

its UART to a computer.

40f the ATmega128's seven I/O ports, Ports A-F have eight pins each, numbered 0-7. Port G,
however, is only composed of five pins, two of which are connected to a crystal oscillator which drives

an internal timer. CON-BUS has header pins connected to the other three pins of Port G, namely

PGO, PG1 and PG2.
"See Section 2.2.3 on page 57.
6See Section 4.2.3 on page 82.

72

Figure 4-4: The serial port, labelled "CONRS232".

4.1.2 The DR3000-1 Transceiver Module

For radio communications, the JONA kit is equipped with the DR3000-1 916.50 MHz

transceiver module (see Figure 4-5) from RF Monolithics [41]. This is a prototyping

module which features RFM's TR1000 transceiver integrated with the necessary re-

sistors, capacitors, and inductors on a small printed circuit board (PCB). A piece of

wire about four inches long serves as an antenna. The rest of the module is wired

to the PROBOmega128 as shown in the schematic in Appendix F on page 163 (see

Figures 4-6, 4-7, and 4-8). There are two control lines, CNTRLO and CNTRL1, and

a transmit line, TXMOD, from the microcontroller to the transceiver, and a receive

line, RXDATA, from the transceiver to the microcontroller.

Because the TR1000 is designed to be a low-power device, the DR3000-1 requires

a 3V Vcc, rather than the 5V used by the rest of the JONA (it will not operate at 5V).

To accommodate this requirement, the radio module has its own voltage regulator to

obtain 3V power from the board's 5V power line. Additionally, the control signals

from the microcontroller to the radio chip must go through a voltage divider7 to

reduce their voltages by a factor of (approximately) 3/5, and the RXDATA output

73

7See Section 2.1.4 on page 38.

Figure 4-5: The DR3000-1 transceiver module.

signal must go through an op amp to boost its voltage by a factor of 5/3.

The TXMOD does not need to have its voltage scaled down because the TR1000

looks at the current coming in on that pin, rather than the voltage. It uses this

current measurement to set its transmission power. Putting a resistor in series on

the TXMOD line will reduce the transmission power, which will reduce the mote's

transmission radius. By using a potentiometer-an adjustable resistor-the trans-

mission radius can be tuned to be as small as possible-thereby saving energy-while

remaining large enough to reach the next mote. MICA uses a software-controlled

digital potentiometer to do just that. For the JONA kit, however, it was decided to

keep the wiring simpler; a reduced or adjustable transmission radius is not necessary

to learn the basics of RF communication in wireless sensor networks. At the same

time, interested students can certainly add resistors or potentiometers to evaluate

their effects.

Caveat Lector

Notice from Table F.1 on page 164 that the send line, TXMOD, is connected to SPI

pin MISO (Master In Slave Out) and that the receive line, RXDATA, is connected

to SPI pin MOSI (Master Out Slave In). Additionally, the microcontroller's SPI

chip select pin, SS, is pulled low. These three observations would imply that the

microcontroller is acting as the slave with the DR3000-1 as master.

8 See Section 2.1.9 on page 48.

74

Figure 4-6: The DR3000-1 mounted (Top view).

75

Figure 4-7: The DR3000-1 mounted (Bottom view).

Figure 4-8: The DR3000-1 CONPIO connections.

76

Table 4.1: LedsArray pin connections.

ILedsArray Bit 19 8 7 6 5 4 3 2 1 0
Physical Pin PCI PCO PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

However, the DR3000-1 does not implement the SPI protocol; it simply sends or re-

ceives bits, based on the settings of its two control lines. So, the microcontroller must

also take on part of the master functionality. In particular, recall from Section 2.2.3

that the master is responsible for sending pulses on the Serial Clock line. To this

end, SCK is wired to OC2, which is an output pin from internal Timer/Counter2.

The microcontroller uses Timer/Counter2 to send pulses on OC2, which the SPI unit

detects and interprets as SCK pulses. This bit of hardware trickery-and the software

which makes it work-were borrowed from the MICA platform.

4.1.3 The LedsArray

The last of the major hardware components is the LedsArray, a set of ten LEDs

connected to ten of the pins of CON.BUS: the eight of Port A and pins PCO and PC1 of

Port C (see Figure 4-10). The component is arranged logically as shown in Table 4.1.

The most significant bit of the 10-bit number (the 512's place) is connected to PC1,

and the least significant bit (the 1's place) is connected to PAO. Each LED is wired

as shown in Figure 4-9. When the pin outputs a logical 0 (i.e. OV), there is a voltage

drop across the LED and the resistor and current flows, lighting up the LED; when

the pin outputs a logical 1 (5V), there is no voltage drop and the LED is off.

Vcc

120Q

CON-BUS Pin

Figure 4-9: One LED of the LedsArray.

77

The LedsArray component can be used to provide visual feedback. In particular,

it was designed to be able to display all 10 bits of an ADC conversion 9-each lit LED

indicating a "1", the rest signifying "0". It is not limited to displaying ADC results,

though. The LedsArray hardware is controlled by a LedsArray software module which

can be used in conjunction with any other software that wants to make use of it.

As previously mentioned, it would not be prudent to be running ten LEDs in

an actual WSN deployment; this would decimate the mote's battery life. However,

during the planning and testing stages (i.e. while prototyping) the LedsArray can be

an invaluable component of the JONA Prototyping Kit. See Chapter 5 for several

examples in which the LedsArray is used to verify the proper operation of other

components.

Figure 4-10: The LedsArray (in Green).

9 Compare this to the LEDs of a MICA mote, which can only display three bits at a time.

78

4.2 The JONA Software Platform

The JONA kit runs TinyOS [23]-written in nesC [19]-for its software. To write,

compile, and install TinyOS applications, the TinyOS software distribution must be

installed on a desktop computer. It requires a UNIX-like command line environment

such as that found in Linux or Mac OS X. For Windows, the TinyOS installer includes

a Linux-like environment called Cygwin [15]. The TinyOS software distribution is

arranged as shown in Table 4.2. All JONA-specific extensions to the base distribution

are placed in its platform directory.

4.2.1 TinyOS Design

TinyOS is a modular, event-driven system, designed to be power-efficient, minimal in

size, and easily adaptable to various hardware platforms. The paradigm used is one

of layers built on top of one another, in which communication is achieved through

a combination of commands and events. Lower-level components may trigger events

in the components above them, and higher-level components may issue commands to

the components below them. At the lowest level, events are triggered by hardware

interrupts-signals generated in the microcontroller in response to events such as the

reception of a new byte from the UART or an internal timer going off.

Events are asynchronous, in that the issuer does not wait for a response be-

fore going on to something else; furthermore, they are intended to be fairly small

blocks of code which execute quickly. Commands must also execute quickly, as they

may be called by an event handler which must wait for their return values before it

completes'. Processor-intensive (i.e. time-consuming) jobs are to be done by tasks.

TinyOS provides a small first-in-first-out (FIFO) queue to store tasks waiting to be

performed. Each task runs to completion before the next begins, so they are atomic

(indivisible) with respect to one another, though a task may be interrupted by an

event (hence the desire for events to be processed as quickly as possible).

TinyOS, with its emphasis on size and speed, does not permit common operat-

101n order to prevent infinite loops, commands are not allowed to trigger events.

79

Table 4.2: The TinyOS Directory

apps/ TinyOS applications, each in its own subdirectory.

doc/ TinyOS documentation.

tools/ Various supporting programs to be run on the computer, such as a Java
oscilloscope to graph readings from a mote's ADC.

tos/ TinyOS operating system components used by the applications in apps/.

interfaces/ Interface files (like C header files) listing the commands and events
associated with particular interfaces. Components providing an interface
must provide implementations of each of the listed functions. For example,
any component providing the StdControl interface (defined in StdCon-
trol.nc) must implement initO, startO, and stopo functions.

lib/ Library functions such as Counters and Multihop Routing grouped into
subdirectories.

platform/ Each hardware platform has its own subdirectory here. Files spe-
cific to particular hardware go there, and can override like-named files
anywhere else in this source tree.

sensorboards/ Crossbow sensors are grouped on expansion cards called sen-
sorboards. Each has its own subdirectory here with a header file defining
constants particular to that sensorboard, along with implementation files
for each of the hardware components found on that board. A stub direc-
tory called "none/" containing a blank header file is to be used when no
sensorboard is present.

system/ General system files used (or overridden) by all hardware platforms.

types/ Definitions of TinyOS data structures such as TOS-Msg, representing a
radio packet (in AM.h).

80

ing system features such as dynamic memory allocation 1 and multithreading12 . By

allowing only static memory allocation, the compiler is able to determine the (con-

stant) amount of memory the application will require throughout its lifetime, which

lets it ensure that a wireless sensor node will never run out of storage space. If the

program fits onto the mote during installation, it will fit throughout its entire execu-

tion. Static allocation and lack of multithreading also contribute to faster operation,

because memory addresses can be determined by the compiler (rather than by the

program as it runs) and the mote does not have to spend the time to switch from one

thread to the next.

4.2.2 nesC Design

TinyOS was initially written in C, but it was soon rewritten in nesC, which provides

support for the TinyOS abstraction model in the syntax of the language itself. For

instance, nesC provides keywords to indicate whether a function is a command, an

event, or a task. At the same time, nesC is an extension of C, so traditional C

functions can be called alongside nesC functions, and nesC programs can take ad-

vantage of C's low-level hardware access. On top of the C foundation nesC adds

component-based design structure.

This structure takes the form of three types of files (all of which carry the .nc file-

name extension): interfaces, configurations, and modules. An interface file provides

the description of an interface which modules may provide or use. This interface

defines a contract of how its providers and users will interact, by declaring functions

called commands and events. If a module provides an interface, it must implement

each of the commands listed in the interface file; if it uses the interface, it must imple-

ment each of the events listed in the file. Configuration files "wire together" modules

by connecting the interface used by one to the interface provided by another. Once

"1Dynamic memory allocation refers to the ability of a program to request control of more and
more memory as it runs (and to release control of memory it no longer needs).

"Multithreading refers to the ability of a computer (or embedded device) to execute more than
one program or "thread" at the same time, by running one for a while, then switching to the next,
and so on.

81

this connection is made, the interface user can issue commands to the provider, and

the provider can trigger events in the user.

4.2.3 Hello, World!

In order to demonstrate nesC syntax and TinyOS's event-driven programming model,

a small example program-which, by tradition, displays "Hello, World!"-will now

be investigated. The full text of the program is provided in Appendix G on page 165.

This program uses the ByteComm interface for communication over the UART". When

running this program, the mote should be connected via serial cable to a computer,

and the computer should be running a terminal program (such as Windows's Hyper-

Terminal) to view the incoming message.

The Configuration File

configuration HelloWorld {
}

The HelloWorld configuration file, Hello World.nrc", begins with this declaration

stating that what follows is indeed a configuration by the name of HelloWorld. If the

configuration used or provided any interfaces, they would be listed between the curly

braces.

implementation {
components Main, UART, HelloWorldM;

The next line indicates that what follows-everything between the { and the

matching }-is the implementation of the HelloWorld configuration. The first line

' 3 ByteComm can also be used to send and receive bytes over the radio. This means that by changing
the wiring in a configuration file, a program that used the UART can be modified to use the radio
without having to go through the entire implementation module changing UART commands to radio
commands.

"The TinyOS naming convention is that an application's name is the name of its top-level config-
uration file. Furthermore, the name of a module should end in an uppercase M [48]. So, HelloWorld's
configuration is found in Hello World. nc, and its module, HelloWorldM, is found in Hello WorldM. nc.

82

of the implementation lists the components which will be wired together to create

HelloWorld; in this case Main, UART, and HelloWorldM. All applications use the Main

component, which is in charge of initializing, starting, and stopping the other com-

ponents at runtime. UART is a (software) component which provides access to the

(hardware) UART. HelloWorldM is HelloWorld's module, which contains the actual

code that will send the message out over the serial port.

Main.StdControl -> HelloWorldM;

Main.StdControl -> UART;

These two lines wire the StdControl interface used by Main to the implemen-

tations provided by HelloWorldM and UART. Notice that an interface used by one

component can be wired to multiple implementations.

HelloWorldM.ByteComm -> UART;

}

The next line wires the ByteComm interface used by HelloWorldM to the imple-

mentation provided by UART. Finally, the } marks the end of the implementation,

and the end of the file.

The Module File

module HelloWorldM {
provides {

interface StdControl;

}
uses {

interface ByteComm;

}
}

The HelloWorld module file, Hello WorldM.rnc, begins much like the configuration

file, declaring itself as the HelloWorldM module. In this case, however, the file pro-

vides and uses interfaces, and so they are declared between the curly braces. Recall

that, in the configuration file, the StdControl interface provided here is wired to

83

Main, and the ByteComm interface used here is wired to the implementation provided

by UART.

implementation {
uint8_t index, *string = (uint8_t*)"Hello, World!\r\n";

The implementation section begins with a list of C-style variables which the mod-

ule will be using. In this case, index will be an 8-bit unsigned integer (i.e. a byte

holding a value between 0 and 255), and string will be a pointer to an 8-bit unsigned

integer". This pointer is then set to point to the beginning of the hello world string,

which is cast to be a pointer to a uint8_t.

The last two characters of the hello world string are the special symbols" \r

and \n. These represent a carriage return and a line feed (newline), and will be

transmitted as the two bytes OxOD and OxOA. When the computer's terminal program

receives this sequence, it will move the cursor to the beginning of the next line, just

as if someone had hit the return (enter) key on the keyboard.

command result-t StdControl.init(o {
atomic {

index = 0;
}
return SUCCESS;

}

The first function in the HelloWorldM module is the init() function of the

StdControl interface. It is a nesC command (which will be issued by Main when

15 That is, string will not contain the integer itself; it will contain the integer's memory address.
See Figure 4-11.

16A sequence of characters enclosed in double quotes is represented internally as an array of chars,
which are 8-bit numbers intended to represent regular characters-letters, numerals, punctuation
in some encoding scheme, usually one known as ASCII (see Appendix C on page 153). This array
will occupy sequential locations in memory, and it will be null-terminated-it will end with a byte
holding the value OxOO. Because a char is stored as a byte, it can safely be treated as a uint8-t,
which is also a byte. When treated as a pointer, the array's value is its address in memory-the
location of its first element. So, the variable string will contain the address of the letter "H".
See [27] for more details.

171n C, the backslash ("\") provides a mechanism for representing hard-to-type or invisible char-
acters, using escape sequences such as \r and \n. Others include "\"" to produce a double quote,
"\t" to produce a horizontal tab, and "\\" to produce the backslash itself. When used in a textual
context, the number OxOO is often represented as the escape sequence "\0" to distinguish it from the
numeral "0". Refer to Section 2.3 of [27] for a complete list of C's escape sequences.

84

the mote is first turned on), and it will return a value of the type result-t, indi-

cating success or failure. StdControl. init () does not require any parameters, but

if it did they would be listed inside the parentheses. The init () function sets the

globally-accessible variable index to hold the number 0. Because other functions can

access index, this assignment is enclosed in an atomic block, which will ensure that

nothing else tries to read or write index at the same time. After setting the vari-

able, StdControl.init() finishes by returning the result-t indicating successful

completion of the command.

command result-t StdControl.start() {
uint8_t i;

atomic {
i = index;

++index;

}
return call ByteComm.txByte(string[i]);

}

command resultt StdControl.stop() {
return SUCCESS;

}

HelloWorldM then implements the other two functions of the StdControl inter-

face, start 0 and stop(). There is nothing for the HelloWorldM module to do when

it is commanded to stop, so it just returns SUCCESS. StdControl. start (), however,

is responsible for initiating the machinations which will cause the hello world message

to be transmitted. It has its own private uint8.t called i; inside an atomic block, it

reads the value stored in index-namely the number 0, from StdControl. init ()-

and writes it into i. It then increments by 1 the value stored in index (to the number

1).

Finally, rather than returning a static value like SUCCESS, it lets its return value

be whatever the result is of calling the txByte 0 command of the ByteComm interface.

This command has a single parameter, a uint8-t holding the byte to be transmitted.

StdControl. start() supplies it with this parameter by obtaining the jth element

of the string array18 . So, UART-which is wired to the ByteComm interface used by

"8Arrays in C-based languages are zero-based: the first element is located at index 0, the second

85

HelloWorldM-is commanded to transmit "H" over the serial port.

index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H e 1 1 o , W or 1 d ! \r\n\0

string

Figure 4-11: The HelloWorld string array.

async event result-t ByteComm.rxByteReady(uint8_t dat, bool err,
uint16_t str) {

return SUCCESS;
}

async event result-t ByteComm.txDone() {
return SUCCESS;

}

The rest of the module implements handlers for asynchronous19 events which can

be triggered by ByteComm. The first of these events is rxByteReadyo, which is

triggered when a byte is received at the UART from the serial port (i.e. a byte sent

from the computer). This program will ignore any received bytes, so the event handler

simply returns SUCCESS. The next, txDone (), is triggered as soon as a transmission

has been completed (such as when the "H" has been sent). This is nice to know, but

there is still nothing to do, so the handler returns SUCCESS.

async event result-t ByteComm.txByteReady(bool success) {
uint8_t c, i;

atomic {
i = index;

}
c = string[i];

The txByteReady() event signals that UART, having already sent a byte and sig-

nalled txDone (), is finished cleaning up after itself and is ready to send another byte.

at index 1, and so on. See Figure 4-11.
"The events are labelled asynchronous because they are not part of the regularly-scheduled (syn-

chronous) task queue. Events can interrupt each other, so the compiler uses the async keyword to
check to make sure that one event does not attempt to write to a global variable while another is
reading it (hence the atomic blocks).

86

The boolean parameter-which will be either true or false-indicates whether the

previous transmission was successful. A more defensively-written, robust program

could use this to retransmit a byte in the case of a failure, but in the interests of

simplicity HelloWorld ignores it and assumes that all transmissions are successful.

As in StdControl. start(), this event handler begins by reading the value of

index and storing it in a local variable named 20 . It then reads the byte stored at

index i of the string array and stores it in uint8-t c2 1

if (c) {
atomic {

++index;

}
return call ByteComm.txByte(c);

}

The next statement, if (c), checks whether c is "true." In C (and, therefore, in

nesC), the number 0 is considered to be false, and any nonzero value is considered

to be true. So, c will evaluate as being true all the way to the end of the array, and

then on the next attempt after the \n it will be false22

If c is true, then the instructions between the curly braces will be executed. First,

index will be incremented, so that the next time it will point to the next element

of the hello world string. Then the handler will return, commanding ByteComm to

transmit c as its final act.

else {
return SUCCESS;

}
}

}

If c did not evaluate to true, then string[i] must have been the null character

marking the array's end. In that case, the if statement's else clause will be executed
20Note that this is not the same i as the one found in StdControl. start 0; they have the same

name, but they are distinct.
2 1Even though string is a global variable, this read does not have to occur within an atomic

block because the string array is immutable and all accesses are reads; no function attempts to
write a new value to it.

22Recall that character strings in C are null-terminated.

87

instead. Having reached the end of the string, there is nothing left to do, and so the

event handler returns SUCCESS. The next three } symbols mark the ends of the else

clause, the ByteComm.txByteReadyo event handler, and the HelloWorldM module's

implementation.

Notice how TinyOS's event-driven model comes into play. The first byte is trans-

mitted as a result of a command issued by Main; the rest are sent in response to

events received from UART.

Installation

TinyOS uses the make utility to compile and install applications. So, each application

has in its directory a file called Makefile which tells make what to do. Sometimes a

Makefile must specify where make should look for components, but HelloWorld is a

simple program, and its Makefile is correspondingly simple.

COMPONENT=HelloWorld

include . . /Makerules

The first line sets the COMPONENT variable to be the name of the application,

"HelloWorld". The Makefile then instructs make to include the contents of the file

Makerules, located up one level in the apps/ directory. This file contains the details

of how make should go about making COMPONENT 2 .

Table 4.3 illustrates the various commands which can be issued to make which

are supported by Makerules. To compile HelloWorld for the JONA platform, the

command make jona should be executed from within the HelloWorld application's

directory. To subsequently install it onto a mote, the command to be used is make

reinstall jona. To do both steps at once, the command is make install jona.
Before a JONA mote can be reprogrammed, it must be restarted in programming

mode. When a PROBOmega128 is turned on, it checks whether pin PF7 is being

pulled low; if so, it enters programming mode, otherwise it executes whatever program
23See Appendix H on page 169 for the extensions made to the Makerules file which provide support

for the JONA platform.

88

Table 4.3: Usage of make.

is already installed. So, to reprogram the mote, pin PF7 should be pulled low by

putting a jumper cap24 across CONADC pins 11 and 12 (see Figures 4-13 and 4-14).

If programming mode is successfully entered, the PROBOmega128's LED will blink

thrice and then stay off. The general procedure for programming a JONA mote, then,

is as follows:

Figure 4-12: A jumper cap.

1. Connect the mote to a computer via a serial cable, while the mote is ofl2.

24A Jumper cap is a small clip which fits across two pins and provides an electrical (i.e. metal)

connection between them. See Figure 4-12.
21RS-232 uses relatively high voltages (tens of volts), so connecting the cable while the mote is on

89

Command Result

make <platform> Compiles the application for the indicated
platform.

make all Compiles the application for all available
platforms.

make clean Removes files created during compilation

(such as the executables), leaving only the
source code.

make install[.n] <platform> Compiles the application for the indicated
platform, and installs it onto the connected
mote. If a number n is provided, the mote
is assigned that address.

make reinstall[.n] <platform> Installs the already-compiled application
onto the connected mote, assigning it ad-
dress n if provided.

make docs <platform> Generate documentation files for the indi-
cated platform, placing them in the docs/
directory.

Figure 4-13: CONADC with a jumper cap in place.

Figure 4-14: CONADC with the jumper cap removed.

90

2. Place a jumper cap across CONIADC pins 11 and 12 to ground PF7.

These two steps can be performed in either order. Additionally, although con-

necting the serial cable with the power on is dangerous, connecting the jumper

cap with the power on is not.

3. Turn on the mote (i.e. plug it in).

4. After the LED's three blinks, issue the installation command-make install

jona or make reinstall jona-on the computer.

Execution

After the HelloWorld application has been installed, it is ready to be executed. First, a

terminal program like Windows's Hyper Terminal should be launched on the computer

and set up to communicate with the serial port with a baud rate of 9600, and the

jumper cap should be removed from CON-ADC. Then the mote should be restarted. At

this point, Main will call the StdControl init) and start() commands, which will

trigger the mote to transmit "Hello, World!" to the computer.

4.2.4 The JONA TinyOS platform directory

This section will describe the files found in the jona/ platform directory which enable

TinyOS to work with the JONA hardware. Although TinyOS is intended to be

portable, many of the general files in tos/system/ assume particulars about MICA

hardware, such as the presence of a potentiometer to adjust RF signal strength.

Other platforms, such as MICA2, which do not have this potentiometer must either

provide their own implementations of all of these base files or provide their own

place-holder potentiometer module which does nothing. Some of the following files

are used to override MICA assumptions in the TinyOS system, but others provide

all-new functionality to support features of the JONA hardware. This section will

briefly indicate each file's function, pointing out significant features; see Appendix I

for complete file listings.

may cause voltage spikes which can damage the mote or the computer.

91

General Files

The first two files, .platform and hardware.h, are found in all platform directories.

.platform The .platform file is used by make to set compiler options and to deter-

mine where to look for source code files it needs to include.

Copts = ("-gcc=avr-gcc",
"-mmcu=atmega128",
"-fnesc-target=avr",

"-fnesc-no-debug");

push @opts, "-mingw-gcc" if $cygwin;

Ocommonplatforms = ("mica128", "mica", "avrmote");

The "@opts" list says that the mote's microcontroller is an ATmega128, which

uses the AVR ISA, and that the appropriate C compiler is avr-gcc26 . The "@common-

platf orms" list tells make that if it needs a file, and it does not find it in this platform

directory, it is allowed to look in the mica128/ platform directory. If the file is not

found there, then it may try the mica/ and avrmote/ directories. After searching

in all these places, it then moves on to the general source tree, in tos/interfaces/,

tos/system/, and tos/types/27 . This is how a platform is able to override the

TinyOS defaults; if make finds a required file in the platform directory, then it stops

looking and will never see the original version.

hardware.h While the .platform file contains directives for make, the hardware.h

file contains instructions and definitions for the compiler itself. For instance, consider

the following four lines:

TOSHASSIGN.PIN(RFMRXD, B, 2);
TOSHASSIGNPIN(RFMTXD, B, 3);

26GCC, the GNU Compiler Collection, is a family of open source compilers produced by the Free
Software Foundation. The nesC compiler, ncc, translates the nesC source into a C program, which
is then compiled by avr-gcc into AVR machine code which will execute on the ATmega128.

27If required files are in tos/lib/, the directory must be explicitly included in the application's
Makefile.

92

TOSH.ASSIGNPIN(RFMCTLO, D, 7);
TOSHASSIGNPIN(RFM-CTL1, D, 6);

These assign28 the symbolic names RFM-RXD, RFM-TXD, RFMCTLO and RFMCTL1 to

the physical pins PB2, PB3, PD7, and PD6. Henceforth, other components can refer

to the abstract ideas of the radio's receive, transmit, and control lines, without having

to be aware of where these lines are actually connected.

TOSHASSIGN-PIN (name, port, bit) causes the creation of five functions:

" TOSHSET_##name##_PIN()

" TOSHCLR_##name##_PIN()

* TOSHREAD_##name##_PIN0

" TOSHJMAKE_##name##_UTPUT()

* TOSHYMAKE_##name##_INPUT()

These will, respectively, set the pin's output to 1, clear it to 0, read the pin's

value, and set the port's DDR (see Section 2.2.2) to make the pin an output or

an input. The sequence "##" in the function names indicates concatenation. This

lets TOSH-ASSIGN-PIN() create functions whose names depend on the name argument

passed to it. For example, TOSHASSIGNPIN(RFMRXD, B, 2) will create:

* TOSHSETRFMJRXD_PIN0

" TOSHCLR-RFM-RXDPIN()

" TOSH-READ-RFM-RXD-PIN 0

" TOSH-MAKE-RFMRXD-OUTPUT 0

" TOSHMAKERFMRXD_INPUT0

28 Note that these are the connections indicated by Table F.1 in Appendix F.

93

Sensor Files

The following six files enable the JONA to have sensors without having a sensorboard.

Each of the files is based on its counterpart in the micasb/ sensorboard directory.

The files included are for an accelerometer and for a photosensor; they can be used

as templates to create the files necessary for other analog sensor types.

accel.h & photo.h These two files, based on sensorboard.h, tell the compiler which

ADC pins the accelerometer and photosensor are connected to. In particular, accel.h

states that the accelerometer's x-axis sensor is connected to ADC channel 3 and that

its y-axis sensor is connected to channel 4, while photo.h says that the photosensor is

connected to channel 1.

Accel.nc & Photo.nc Accel.nc and Photo.nc are configuration files for the ac-

celerometer and photosensor. They are unchanged from their micasb/ versions,

except that they read from accel.h and photo.h instead of sensorboard.h.

AccelM.nc & PhotoM.nc AccelM.nc and PhotoM.nc are the implementation files

for the accelerometer and photosensor. They too are based upon the micasb/ coun-

terparts, but in addition to referencing accel.h and photo.h they remove references to

"control pins." In the micasb sensorboard, each sensor can be individually turned on

or off via a control line, because a switch has been placed between each sensor and

the power rail. However, for simplicity, each sensor in the JONA is directly connected

to Vcc.

Files Overriding MICA

This group of files overrides the counterparts in the mica/ platform directory, or in

tos/system/.

HPLPotC.nc & HPLSlavePinC.nc As mentioned previously, the MICA uses

a software-controlled digital potentiometer to adjust the broadcasting power of its

94

TRIOGO radio. The JONA uses this same radio chip, and so it uses many of the

same files as the MICA. However, the JONA has no such potentiometer. So, this

HPLPotC.nc, which is a module file for the "hardware presentation layer" poten-

tiometer component, returns SUCCESS for each of the HPLPot interface's commands

without actually doing anything. This approach is also taken by the MICA2 plat-

form, which has its own "dummy" HPLPotC.nc. Likewise, HPLSlavePinC.nc returns

SUCCESS for the HPLSlavePin interface's commands without doing anything. The

original SlavePin was a feature of the MICA, which had an external memory chip (its

microcontroller, the ATmega103, did not have as much storage space as the newer

ATmega128 has). The SlavePin was a control line associated with this external chip.

As the JONA has no such chip, it has no need of a SlavePin.

ChannelMonC.nc, RadioTimingC.nc, & SpiByteFifoC.nc The three files

ChannelMonC.nc, Radio TimingC.nc, and SpiByteFifoC.nc control aspects of the

JONA's radio. The JONA kit runs at 14.7456 MHz, nearly four times faster than the

4-MHz MICA. This means that if the JONA were to use the MICA radio files, the

radio would have a transmission bit rate four times that of the MICA radio. However,

it turns out that this bit rate exceeds the radio's capability. So, these three files have

been modified from their MICA counterparts to scale down radio-related timings by

a factor of 8.

HPLUARTM.nc The HPLUARTM.nc file is the hardware presentation layer for

the UART. It is responsible for setting up and mediating access to the UART hard-

ware, using the HPLUART interface. The ATmega128 actually has two UARTs called 29

USARTO and USART1. The serial port of the PROBOmega128 is connected to US-

ARTO, and so it is this UART which HPL UARTM.nc controls. As such, it shares

many similarities with the MICA2's HPL UARTOM.nc.

HPL UARTM.nc sets up the UART to have a baud rate of 9600.

29They are called USART because they are capable of operating in a synchronous mode, in
addition to the regular asynchronous operation.

95

ADCC.nc & HPLADCM.nc ADCC.nc and HPLADCM.nc mediate access to

the analog-to-digital converter. ADCC is a software abstraction layer that sits atop

HPLADCM, which directly accesses the ADC hardware. These two files override the

default ADCC.nc and HPLADCC.nc files in tos/system/. Those defaults are based

upon the specifications of the ADC found in MICA's ATmega103 microcontroller;

these are borrowed from MICA2, which features the low-power version of JONA's

own ATmega128 microcontroller.

ADCC.nc is, in fact, identical to the original in the mica2/ platform directory.

The file HPLADCM.nc is functionally equivalent to the MICA2 version, but a short

list of cosmetic changes have been made. In particular, the MICA2 version uses a

deprecated AVR function3
1 called "outp". This version makes use of the replacement

function, "outb".

LED Files

The next six files have to do with the PROBOmegal28's single built-in LED.

Led.nc Led.nc is an interface file declaring the commands appropriate for the soli-

tary LED. It is based upon TinyOS's Leds.nc interface file, which declares func-

tions for the MICA's red, yellow and green LEDs. These are init 0, OnO, Of f 0,
Toggle o, get o, and set o. The functions which are capitalized had three coun-

terparts in Leds.nc (e.g. redOnO, yellow0no, and greenOno); when the interface

was copied and modified into Led, the color prefixes were simply dropped, and the

capitalization remained.

LedC.nc LedC.nc provides the implementation of the Led module. To turn on the

LED, it calls TOSHCLRLED-PINo; to turn it back off, it calls TOSHSETLEDPINo.

This may seem backwards, but recall that the LEDs are wired between a pin of the

microcontroller and Vcc, not ground. To turn the LED on, the pin voltage must be

brought low to create a voltage difference across the diode.

30These "functions" are actually macros defined in <avr/sfrdefs.h>.

96

IntToLed.nc IntToLed.nc provides the configuration of an IntToLed component

which provides the IntOutput interface. It is based on the 3-LED IntToLeds.nc

configuration file.

IntToLedM.nc IntToLedM.nc provides the implementation of the IntToLed com-

ponent. The IntOutput. output O command takes a 16-bit number as a parameter.

IntToLedM will turn on the LED if the number is odd, otherwise it will turn the

LED off. It then sends the IntOutput. outputComplete 0 signal to indicate that it

is finished.

LedsC.nc & LedsM.nc A new single-LED component had been made, but many

TinyOS system files expected to be able to use the LedsC component. LedsC.nc and

LedsM.nc are configuration and module files for a replacement LedsC component. It

simply maps the three Leds LEDs to the one Led LED.

LedsArray Files

The last four files have to do with the physical 10-LED LedsArray component. As

the LedsArray is an entirely new component and not merely the JONA equivalent of

one already found in MICA and the others, they will be examined more closely than

the other platform directory files. These files provide a case study into how to create

TinyOS components and their interfaces.

LedsArray.nc LedsArray.nc defines the LedsArray interface:

interface LedsArray {
async command result._t initO;

async command result-t allOno;

async command result-t allOff ();

async command result-t allToggleo;

async command uint16_t get (;

async command result-t setv(uintl6_t value);

async command result._t incO;

async command result-t deco;

async command result-t setav(uintl6_t value);

async command resultt clrav(uintl6_t value);

}

97

LedsArray. init (is the initializer, which sets up the LedsArray pins to be out-

put. When initialization is complete, all LEDs will be off. LedsArray. allOn () makes

sure that all ten LEDs are turned on, regardless of their previous states. Likewise,

LedsArray. allOff () turns all ten off. LedsArray. allToggle () turns off any LEDs

which are on, and turns on the ones which are off. Each of these returns SUCCESS

upon completion.

LedsArray. get 0 returns a uintl6_t representing the state of the LedsArray.

LedsArray. setv(uint16_t value) sets the LedsArray to display value. In each of

these cases, only the low ten bits of the sixteen-bit uint16_t are used.

LedsArray. inc 0 increments the displayed value by one, and LedsArray. dec 0

decrements it by one. These are equivalent to calling LedsArray. setv 0 with argu-

ments of, respectively, LedsArray. get 0+1 and LedsArray. get 0-1.

The last two functions, setavo and clravO, each take in a uint16_t holding a

10-bit number. For each of the ten bits, if the bit is 0, no action is taken, but if it is 1,

then the corresponding LED is turned on-for setav()-or off-for ciravo. This

allows for individual LEDs to be turned on or off, without inadvertently affecting the

states of the others.

LedsArrayC.nc The LedsArrayC.nc file provides the implementation module of

the LedsArrayC component.

module LedsArrayC {
provides interface LedsArray;

}
implementation

{
uintl6_t leds0n;

First of all, LedsArrayC is declared to provide the LedsArray interface. The

module then declares a global variable, ledsOn, which will be a uintl6_t. ledsOn

will let LedsArrayC keep track of which LEDs are on.

void output(uint16_t num);

98

The output () function is a "helper" which the various LedsArray commands will

use to set the bits of PORTC and PORTA to the appropriate values. output () takes

as a parameter a uint16_t which will be interpreted as a set of bits to write to the

pins. If an LED is supposed to be on, the corresponding bit in num should be a 0;

otherwise, it should be a 1. In either case, the high six bits of num should all be 0

to ensure correct operation. This statement declares to the compiler that a function

called output (uint16_t) exists, so that when other functions refer to it, the compiler

will know what they are talking about. output 0 is not defined, however, until the

end of the file.

async command result-t LedsArray.init() {
atomic {

ledsOn = 0;

DDRC 1= x3;

DDRA = OxFF;
output (Ox3FF);

}
return SUCCESS;

}

The body of the init () function is contained within an atomic block, so that

nothing else can interfere with its assignments. First, the ledsOn variable is set to

be 0, which will represent all LEDs being off. Then, it proceeds to turn off all the

LEDs.

Recall that each Port has a data direction register associated with it, which estab-

lishes which pins of the Port will be input or output, with those bits set to 1 indicating

output. The value OxFF is written to DDRA. OxFF is Ob11111111 in binary31 , so this

sets all eight pins of Port A to be output.

The statement DDRC I = 0x3 is shorthand for DDRC = (DDRC I Ox3). DDRC, the

DDR for Port C, will be assigned the value of the expression (DDRC I Ox3). The

vertical bar, "", is the bitwise or operator. It will construct its output as follows:

for each bit position, if the corresponding bit in DDRC is 1, or the corresponding bit

in Ox3 is 1, then that bit of the output will be 1. It will only be 0 if both input bits

31See Appendix B on page 151.

99

Table 4.4: The bitwise or (1) operation.

are 0. For example, suppose DDRC is initially set to OxAO. In that case, DDRC I Ox3

will be OxA3. If DDRC is already set to 0x3, then DDRC I Ox3 will still be Ox3. So,

regardless of DDRC's previous value, this line will ensure that its lowest two bits, PCO

and PC1, are set to be output.

Having set the DDRs to the appropriate values, output () is called with an argu-

ment of Ox3FF: ten l's. All of the LedsArray pins will output a high voltage, there

will be no drop across the diodes, and all the LEDs will be off.

async command resultt LedsArray.allOn() {
atomic {

output (0);
leds0n = Ox3FF;

}
return SUCCESS;

}

The LedsArray. allOn 0 function sets the ten LedsArray pins to 0, so that the

LEDs will turn on. Finally, the value Ox3FF is stored in ledsOn to record the fact

that all LEDs have been turned on.

async command resultt LedsArray.allOff() {
atomic {

leds0n = 0;
output (Ox3FF);

}
return SUCCESS;

}

LedsArray. allOf f (), like init (), calls output 0 with an argument of Ox3FF to

turn off all LEDs, and stores 0 in ledsOn.

100

Input I Input 211 Output

0 0 0
0 1
1 0
1 111

Table 4.5: The one's complement (~) operation.

Input Output

0 1
1 0

Table 4.6: The bitwise and (&) operation.

async command resultt LedsArray.allToggle() {
atomic {
output(ledsOn);

ledsOn = (~ledsOn & Ox3FF);

}
return SUCCESS;

}

It may be noticed that at any given time, the values of the ten bits of ledsOn and

those of the ten bits written to the pins are opposites. When an LED is lit, its pin

will hold 0, but ledsOn will hold a 1. allToggle() takes advantage of this fact and

simply calls output (with ledsOn as its argument. This will invert the values on

each of the pins, and toggle the states of the ten LEDs.

To invert the bits of ledsOn itself, the one's complement operator is used. This

unary operator changes every 0 to a 1 and every 1 to a 0. Once that is done, though,

the top six bits (which were O's) are now 's. To clear those bits without affecting

the rest, the bitwise and operator is used. This is often used to "mask off" certain

bits. Each bit of output will be 0 unless both input bits are 1. In this case, ledsOn is

anded with Ob0000001111111111, so the high six bits will be 0, and the low ten will

be whatever they are in ~ledsOn. This result is finally written back into ledsOn.

async command uint16_t LedsArray.get() {

101

Input I Input 2 OutputJ

0 0 0
0 1 0
1 0 0

uintl6_t rval;
atomic {

rval = leds0n;

}
return rval;

}

LedsArray. get 0 makes a local copy of the global ledsOn variable and returns it.

In order to return a value stored in a variable, a function must access that variable's

memory location-it must read the variable. By atomically copying ledsOn before

returning its value, get () ensures that nothing else will attempt to write a new value

to ledsOn while it is reading it. In general, this is the appropriate method to pass a

global variable in a return statement.

It would not work to put return ledsOn; within the atomic block, because the

function would exit at the return statement, and the program would never see the

atomic block's closing brace. It would return to whatever had called get() and

still think that it was in the atomic block. This is not what the caller would be

expecting, and could lead to trouble. So, atomic blocks must always end before any

return statement is reached.

async command resultt LedsArray.setv(uint16_t ledsNum) {
atomic {
ledsOn = (ledsNum & Ox3FF);
output(~ledsOn & Ox3FF);

}
return SUCCESS;

}

LedsArray. setv() starts off by writing the value of its parameter, ledsNum, into

ledsOn-after clearing the upper six bits, as always. It then sends ledsOn's one's

complement to output 0. In each of the remaining functions, that same argument is

passed to output 0, but in each case ledsOn is modified in a unique way beforehand.

async command resultt LedsArray.inc() {
atomic {

ledsOn = (leds0n+1) & Ox3FF;
output(~ledsOn & Ox3FF);

102

}
return SUCCESS;

}

async command result-t LedsArray.dec() {
atomic {
ledsOn = (ledsOn-1) & Ox3FF;

output(~ledsOn & Ox3FF);
}
return SUCCESS;

}

In the inc () and dec () functions, ledsOn is increased or decreased by one, and

the low ten bits of the result is stored back in ledsOn.

async command resultt LedsArray.setav(uint16-t turn0n) {
atomic {
ledsOn 1= (turnOn & Ox3FF);
output(~ledsOn & Ox3FF);

}
return SUCCESS;

}

For setav() to turn on some LEDs without affecting the others, the turnOn

variable is combined with ledsOn using the bitwise or operator.

async command resultt LedsArray.clrav(uint16_t turnOff) {
atomic {

ledsOn &= (Ox3FF & ~turnOff);
output(~ledsOn & Ox3FF);

}
return SUCCESS;

}

The bitwise or operation is useful for setting bits; the output is 1 unless both inputs

are 0. Likewise, the bitwise and operation is useful for clearing bits; the output is 0

unless both inputs are 1. LedsArray. clrav() uses it for just that reason. First, the

argument must be inverted, because the bits of turnOf f which are 1 are those which

denote LEDs to turn off; bits of 0 indicate that no action should be taken regarding

their LEDs. By inverting this, LEDs to be turned off will be denoted by a 0. Then

when this number is anded with ledsOn, those bits will be cleared.

103

void output(uint16_t num) {
PORTC = (PORTC & OxFC) I (num >> 8);
PORTA = num & OxFF;

}
}

Lastly, the output (num) function is responsible for writing num to the appropriate

Ports. To do this, it will write values into the special variables PORTC and PORTA. These

are defined" to point to the output registers for Ports C and A, just as DDRC and

DDRA point to those ports' data direction registers. (The third set of Port registers,

the input registers, are named PINC, PINA, and so on for the rest of the Ports.)

The upper byte of num will consist of six 0's and the two bits which must go to

PCI and PCO, while the lower byte will all go to Port A. To extract the upper byte,

nurn is bit shifted to the right eight places. This is equivalent to dividing num by 2'

(and discarding the remainder). For instance, (0x2C5 >> 8) will yield 0x2.

That procedure obtains the proper values for PCI and PCO; the other six Port

C bits should remain as they were. To achieve this, the upper six bits are extracted

from the old value of PORTC by anding it with OxFC (Obi 1111100). These two disjoint

parts3 3 are then ored together to produce the new value for PORTC.

Finally, the low byte is taken from nurn by anding it with OxFF and it is then

written into PORTA.

IntToLedsArray.nc The IntToLedsArray (like IntToLed) is a modification of

IntToLeds which uses LedsArrayC rather than LedsC. The "IntTo. . ." components

provide the interface IntOutput, defined in tos/interfaces/IntOutput.nc:

interface IntOutput {

command result _t output(uint16_t value);

event resultt outputComplete(result-t success);

}

32 These are defined in the <avr/iom128.h> header file, found in /usr/local/avr/include/.
3 3 Note: If the upper 6 bits of (num >> 8) are not 0, then these two parts will not be disjoint, and

num could affect Port C pins other than PC1 and PCO. This is why those six bits must be cleared
before calling output 0.

104

The user will command IntToLedsArray to output an integer, and, having done

so, IntToLedsArray will respond by signalling the outputComplete() event. Int-

ToLedsArray is defined in IntToLedsArray.nc as follows:

configuration IntToLedsArray

{
provides interface IntOutput;

provides interface StdControl;

}
implementation

{
components IntToLedsArrayM, LedsArrayC;

IntOutput = IntToLedsArrayM.IntOutput;

StdControl = IntToLedsArrayM.StdControl;

IntToLedsArrayM.LedsArray -> LedsArrayC.LedsArray;

}

IntToLedsArray claims to provide the interfaces IntOutput and StdControl,

and yet IntToLedsArray.nc contains implementations of neither of them. Instead, it

delegates them to IntToLedsArrayM (which also provides these interfaces). Whenever

some other module wired to IntToLedsArray calls IntOutput .output 0, the call will

actually go to IntToLedsArrayM instead.

The configuration then wires the LedsArray interface used by IntToLedsArrayM

to the implementation provided by LedsArrayC.

IntToLedsArrayM.nc The last file in the jona/ directory, IntToLedsArrayM.nc,

contains the IntToLedsArrayM module which the IntToLedsArray needs.

module IntToLedsArrayM {
uses interface LedsArray;

provides interface IntOutput;

provides interface StdControl;

}

As all modules do, IntToLedsArrayM starts out by declaring which interfaces it

provides and uses. Wirings to these interfaces were made already in IntToLedsAr-

ray. nc.

105

implementation

{
command resultt StdControl.init()

{
call LedsArray.init(;
call LedsArray.allOff();
return SUCCESS;

}

command resultt StdControl.start() {
return SUCCESS;

}

command result-t StdControl.stop() {
return SUCCESS;

}

First, IntToLedsArrayM implements the three commands of the StdControl in-

terface. To initialize itself, IntToLedsArrayM makes sure that LedsArray is ready.

It has nothing to do for start () or stop(), because its only action is in response to

an IntOutput .output () command; it uses no timers or any other components which

might have to be explicitly started or stopped.

task void outputDone()
{

signal IntOutput. outputComplete (SUCCESS);

}

command result-t Int0utput. output (uint16_t value)
{

call LedsArray.setv(value);

post outputDone(;

return SUCCESS;

}
}

When IntToLedsArrayM receives the IntOutput .output (value) command, it tells

LedsArray to display value. It then posts the outputDone 0 task, which in turn

will signal" the IntOutput . outputComplete () event.

"Recall that commands may not directly trigger events. Otherwise, some function in a module
may issue a command, which triggers an event, which causes the command to be issued again, and
so on, with the original function call never terminating.

106

Chapter 5

Deployment

Once the JONA Prototyping Kit had been constructed, it needed to be tested to

see how it would perform as a WSN mote. Additionally, it had been noted that

TinyOS documentation can leave something to be desired, and may not suffice for

someone with little or no programming background. To address these hardware and

software issues, a number of sample applications were written which would test JONA

components and provide examples of how the JONA kit could be used, and how it

could use the facilities provided by the base TinyOS distribution.

This chapter reviews several of these applications-TestLedsArray, TestUart-

SendReceive, OscilloscopeJonaRF, and HumiditySense-pointing out the JONA

features which they are intended to demonstrate. Complete listings of each of the

applications discussed below are available in Appendix J on page 217.

5.1 LedsArray

Before the LedsArray component could be used to verify proper operation of other

modules, its own hardware and software had to be verified. To do so, a program

called TestLedsArray was written which sets a repeating timer, and then changes

the LedsArray display each time the Timer fires.

TestLedsArray was modified to test the different LedsArray commands (inc 0,

deco, setv() and so forth). One particular incarnation, used to test setv() and

107

get 0, will be examined here. This version of the application was also known as

"KnightRider" due to the appearance of the resultant animation.

The Makefile for KnightRider is as simple as that of HelloWorld:

COMPONENT=KnightRider

include ../Makerules

The configuration file, however, introduces something new:

configuration KnightRider {
}
implementation {

components Main, KnightRiderM, TimerC, LedsArrayC;

Main.StdControl -> TimerC.StdControl;

Main.StdControl -> KnightRiderM.StdControl;

KnightRiderM. Timer -> TimerC. Timer [unique ("Timer")] ;
KnightRiderM.LedsArray -> LedsArrayC;

}

Notice the wiring for the interfaces used by KnightRiderM-Timer and LedsArray.

The latter is wired to a component in the jona/ platform directory, and is as one

would expect. However, the Timer connection is a bit strange. It turns out that

TimerC does not provide a single Timer interface; it provides a whole array of them.

This lets an application have and use several timers at once. Consequently, each

Timer interface used must be wired to a particular element of TimerC's Timer []

array.

Furthermore, each Timer interface used in the application should be wired to a

unique element of the Timer [] array; otherwise different timers will interfere with

each other, because they are using the same underlying Timer. This may seem like

a simple problem to solve; merely use a different index number each time something

is wired to TimerC; wire the first to Timer [0], then Timer [1], and so on. How-

ever, other system components could also be using timers, and may have already

'Knight Rider @ MCA Universal City Studios.

108

claimed Timer [1]. Clearly, hard-coding a particular number for the Timer [index

is dangerous at best.

To avoid this difficulty, TinyOS provides the unique 0 function. unique 0 is

designed so that each time it is called with a particular argument-in this case,

"Timer"-it will return a new number-for that argument. So, two calls to u-

nique ("Timer") are guaranteed to yield distinct results, but one call to unique("Ti-

mer") and another to unique("T") could return the same number. To keep things

simple, TinyOS convention says that the argument to unique 0 should be the name of

the interface for which it is being called (in double quote marks). So, the KnightRider

configuration file wires KnightRiderM's Timer to TimerC. Timer [unique ("Timer")],

and it can know for certain that it will have its own Timer, courtesy of TimerC.

KnightRiderM.nc starts out, as always, with a listing of the interfaces it uses and

provides.

module KnightRiderM {
provides {
interface StdControl;

}
uses {

interface Timer;

interface LedsArray;

}
}

There are two ways to list interfaces provided or used by a module. Each interface

listed can be individually preceded by provides or uses, as they are in IntToLed-

sArrayM.nc (see Section 4.2.4 on page 105); or, the two groups can be contained in

blocks delimited by curly braces, as they are here (and as they were in HelloWorldM;

cf. Section 4.2.3 on page 83). The nesC compiler makes no differentiation between

the two styles, so it is largely a matter of personal preference. When a large number

of interfaces are being used or provided, encasing them in blocks like this can make

for a more readable source file.

implementation {

109

uint8_t dir = 0;

command resultt StdControl.init() {
call LedsArray.init();

return call LedsArray.setv(1);

}

command result-t StdControl.start() {
// Start a repeating timer that fires every 100ms

return call Timer.start(TIMERREPEAT, 100);

}

command result-t StdControl.stop() {
return call Timer.stop(;

}

The implementation of KnightRiderM begins with the definition of a uint8_t

variable called dir which will keep track of the direction of motion of the lit LED.

It then implements the three StdControl functions. StdControl. init 0 initializes

the LedsArray and sets its initial value to 1, which will turn on the LED at the low

end of the array.

StdControl. start 0 sets up a Timer that will repeatedly fire at 100 millisecond

intervals. Notice the line beginning with "//". Two consecutive slashes indicates to

the compiler that the rest of that line contains a comment2 , and should be skipped

over. Comments are useful for marking sections which need further attention later,

or for providing a description in words of what nearby code is supposed to be doing.

This latter purpose is highly valuable, because it makes it much easier for someone

else to read and understand one's code; unfortunately, the TinyOS distribution files

tend to be somewhat sparse in their commentary. Examine the code listings in the

appendices for more extensive use of comments.

To start the repeating timer, Timer. start() is called with the two arguments

TIMER-REPEAT and 100. The latter is the timer interval in so-called binary millisec-

onds, units of time equal to 1/1024 of a second. The first argument indicates the type

of timer this shall be, either TIMER-ONESHOT or TIMERREPEAT.

StdControl. stop 0 calls Timer. stop() to stop the repeating timer. It is impor-

2 1t is also possible to make comments which span multiple lines by putting /* at the start and
*/ at the end.

110

tant to note that care must be taken when using a command as a return value. In

this case, Timer. stop() is certain always to provide a value of SUCCESS. However,

Timer. stop() will return FAIL if no timer is running (such as if a TIMERONESHOT

Timer had already fired before stop() were called). If this failure is tolerable and not

indicative of a problem, then StdControl. stop() (or whatever the relevant function

happens to be) should have a body like:

call Timer.stopo;

return SUCCESS;

This would isolate Timer's failure and prevent anything else from seeing it. In

fact, even this implementation of StdControl. stop() would not see it, because

Timer. stop() 's return value is discarded. As an alternative, the return value could

be stored in a local variable of type result_t, or it could be used as the test of an if

statement (if (call Timer. stop())} else ...

event resultt Timer.fired() {
uint16_t cnt = call LedsArray.get(;

if(!dir && (cnt < Ox200)) {
cnt <<= 1;

} else if(dir && (cnt > Oxi)) {
cnt >>= 1;

} else {
dir ^= Oxi;

}
return call LedsArray.setv(cnt);

}
}

The Timer. f ired 0 event handler is where the real action takes place. Each time

the timer fires, this function recalls the old value being displayed by the LedsArray,

updates it appropriately, and then gives the LedsArray the new value to display.

The first time the timer fires, cnt will hold a value of Oxi and dir will be 0. So,

the first if statement will evaluate to true: This test "! dir" means "NOT dir"; it

will be TRUE when dir is zero (i.e. FALSE), and FALSE when dir is nonzero (i.e.

TRUE). The second test checks whether cnt is less than 0x200. These results are

111

Table 5.1: The logical NOT (!) operator.

Input Output

FALSE TRUE
TRUE FALSE

Table 5.2: The logical AND (&&) operator.

Input 11 Input 2 Output
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

combined by the logical AND operator, which evaluates to TRUE when both its left

and right sides are TRUE. There is also a logical OR operator, which evaluates to

TRUE when either operand is TRUE.

So, the first if statement's test will pass and its body will be executed. cnt will

be left-shifted by one bit position. This is the same as multiplying cnt by a factor of

2. So, the LedsArray will display the sequence of numbers shown in Table 5.4.

At this point, the first test will fail, because (0x200 < 0x200) is FALSE. Now

consider when dir has been changed. Then the second if test will be true, because

dir will be nonzero, and 0x200 is greater than 0x1. So then cnt will be right-shifted

by one bit position (divided by 2), and the LedsArray will display the reverse of the

previous sequence, shown in Table 5.5.

Table 5.3: The logical OR (11) operator.

Input I Input 2 1 Output
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

112

Table 5.4: LedsArray display sequence while dir is FALSE.

Table 5.5: LedsArray display sequence while dir is TRUE.

113

Hex Binary
OxOO1 ObOO00000001
0x002 ObOO00000010
0x004 ObOO00000100
0x008 ObOO00001000
OxOlO Ob000G10000
0x020 ObOO00100000
0x040 ObOO01000000
0x080 ObOO10000000
Ox1O ObO100000000
0x200 Ob000000000

Hex Binary
0x200 Obl00000000
Ox1O0 ObO100000000
0x080 ObOO10000000
0x040 ObOO01000000
0x020 ObOO00100000
OxO1O ObOO00010000
0x008 ObOO00001000
0x004 ObOO00000100
0x002 ObOO00000010
OxOO Ob0000000001

Table 5.6: The bitwise exclusive-or (^) operation.

Input II Input

0
0
1
1

2 1 Output

0 0
1 1
0 1
1 0

Then the second test will fail (Ox1 is not greater than Ox1), and it will be time to

reverse directions again. To perform this reversal, the statement

dir ^= Ox1;

is executed. This exhibits the bitwise exclusive-or (xor) operator. For each bit

position, the output will be 1 when exactly one of its inputs is 1. If they are both 1,

or if they are both 0, then the output will be 0. So, when dir is 0, then (dir ^ Ox1)

will be Oxi, and dir will become nonzero. When dir is Ox1, then (dir ^ Ox1) will be

Ox0, and dir will again be zero.

Notice that in KnightRiderM, dir is a global variable and yet it is read and written

without using atomic blocks. This is acceptable because Timer. f ired() is the only

function to access the variable. The nesC compiler realizes this and does not issue a

warning.

Similar programs were written to test the other LedsArray commands as imple-

mented by LedsArrayC. For instance, to test inc (), the Timer. fired() handler was

implemented as follows:

event result-t Timer.fired() {
return call LedsArray.inco;

}

Following these tests, the LedsArray was certified as being fully operational, and

dependable for testing other components and applications.

114

5.2 UART: Bidirectional Communication

The HelloWorld application demonstrated that the JONA UART was capable of

sending data to a computer. It remained to be seen, however, whether it was also

capable of receiving. To remedy this, a program called TestUartSendReceive was

written which would receive bytes from the UART, modify them in some recognizable

way, and then send them back.

In particular, TestUartSendReceive adds one to each received byte. When used

in conjunction with a terminal program like Windows's Hyper Terminal, this has the

effect that whenever a letter is typed, the next letter alphabetically3 is displayed. For

instance, typing "Hello" will produce the output "Ifmmp".

configuration TestUartSendReceive {
}
implementation {
components Main, HPLUARTC, TestUartSendReceiveM, LedC;

Main.StdControl -> TestUartSendReceiveM;

TestUartSendReceiveM.HPLUART -> HPLUARTC;
TestUartSendReceiveM.Led -> LedC;

}

The configuration file for TestUartSendReceive wires its module to HPLUARTC

through the HPLUART interface. Recall that HelloWorld made use of the more abstract

ByteComm interface, which can be used with the UART or the radio. Here, where it

is specifically the UART which is being tested, that abstraction has been removed

and the UART's hardware presentation layer (HPL) is used directly. With the HPL

verified, other applications can safely use ByteComm-the preferred UART interface-

knowing that the underlying hardware is properly configured.

JONA inherits the HPLUARTC component from the avrmote/ platform directory.

The contents of HPL UARTC.nc are as follows:

3Actually, what is displayed is the next symbol in the ASCII encoding scheme. See Appendix C
on page 153.

115

configuration HPLUARTC {
provides interface HPLUART as UART;

}
implementation

{
components HPLUARTM;

UART = HPLUARTM;

}

Notice the provides line. It says that it provides the interface HPLUART as UART.

Interfaces provided or used can be arbitrarily renamed using the as keyword. This

can enable a component to use or provide an interface multiple times, by assigning

each instance a unique name. HPLUARTC defers the implementation of the interface to

HPLUARTM, and HPL UARTM.nc-which is one of the files found in the jona/ platform

directory-uses4 this alias throughout its implementation. Finally, note that this is

the HPLUART interface and not the UART component.

So, HPLUARTC's listings imply that TestUartSendReceive will actually be using

the jona/ directory's HPL UARTM.nc to communicate through the UART. This is

precisely as it should be, since it is this file which needs testing.

module TestUartSendReceiveM {
provides {

interface StdControl;

}
uses {

interface Led;

interface HPLUART;

}
}

Test UartSendReceiveM. nc begins by declaring the interfaces which the configura-

tion file wired for it. Note that TestUartSendReceiveM does not rename the HPLUART

interface. This demonstrates that the provider and user of an interface do not have

to call it the same thing.

implementation {

4cf. the HPLUARTM.nc listings in Section 1.11 on page 197.

116

command resultt StdControl.init() {
call HPLUART.inito;
return SUCCESS;

}

command resultt StdControl.start() {
return SUCCESS;

}

command resultt StdControl.stop() {
return SUCCESS;

}

async event resultt HPLUART.get(uint8_t data) {
uint8_t response = data+1;

call Led.Toggleo;

call HPLUART.put(response);

return SUCCESS;

}

async event resultt HPLUART.putDone() {
return SUCCESS;

}
}

TestUartSendReceiveM uses StdControl. init 0 to initialize the UART. It then

sits idle until the serial port receives a byte. This reception will trigger the HPL-

UART.get() event, in response to which the module will spring into action. It will

prepare its response, toggle the onboard LED, and transmit its reply. It will then go

back to being idle until another byte is received.

This test application, as simple as it was, was sufficient to demonstrate that the

JONA has a working UART. It would not be difficult to expand TestUartSendRe-

ceive into a program providing more meaningful interaction between the mote and

the computer. It could test the received byte and take an action which depended on

its value. For example, the following will capitalize all lowercase letters, and leave all

other characters untouched.

async event result-t HPLUART.get(uint8.t data) {
uint8_t response = data;

if('a' <= response && response <= 'z') {
response += 'A' - a';

}

117

call Led.Toggleo;
call HPLUART.put(response);
return SUCCESS;

}

First, the function checks 5 whether response is between 'a' and 'z'. If so, then

it adds to response the (constant) offset between the lowercase and uppercase letters,

('A' - ' a'). For this to work, it is necessary that the lowercase letters be represented

by consecutive values, increasing from 'a' to 'z', and that the same is true of the

uppercase letters. Note that this is indeed the case for ASCII (cf. Tables C.3 and C.4

in Appendix C). In particular, A-Z is in 65-90 and a-z is in 97-122. To convert to

uppercase, -32 must be added to each lowercase letter.

async event resultt HPLUART.get(uint8_t data) {
if(data == 'Y' II data == 'y') {

call Led.Ono;
} else if(data 'N' || data == 'n') {

call Led.Offo;

}
return call HPLUART.put(data);

}

Consider this version of HPLUART .get 0. Whenever the received byte is the letter

y (either case), it turns on the LED, and whenever it is n, it turns it off. All other

letters and symbols are ignored. Now the UART is not merely swapping one character

for another; it is providing a way to issue commands to a mote from a computer. With

appropriate modifications, this mote could forward the command over its radio, and

the command could then be disseminated throughout an entire network. Of course,

this assumes that the radio is capable of sending information.

5.3 ADC & RFM

The test applications discussed so far have failed to address the two most important

parts of a wireless sensor node: the transceiver and the sensor. To verify the func-

'The sequence <= represents less than or equal to (i.e. <). Other numerical comparisons which
can be used as TRUE/FALSE tests in programs are less than (<), greater than (>), greater than or
equal to (>=), equal to (==), and not equal to (!=). See [27].

118

tionality of the radio and the ADC, the application OscilloscopeRF was adapted to

the JONA platform, as a new program called OscilloscopeJonaRF.

The Oscilloscope programs are a set of TinyOS applications which take sensor

readings and then send them in groups called packets to the computer where they

are displayed by a virtual oscilloscope in the form of a Java program. Oscilloscope

is intended to be used when the mote is directly connected to the PC, as it sends

its sensor readings out through the UART. OscilloscopeRF, on the other hand,

sends its readings over the radio. Another mote, running the TOSBase program, acts

as a base station, receiving the radio packets and forwarding them to the computer

through its serial port.

OscilloscopeRF will compile, install, and run on the JONA platform as is, but

it takes advantage of the separate LEDs of the Leds component; as these all map

to the same physical LED on a JONA, the program was modified to use the Led-

sArray instead. Additionally, the sensor was changed from the photosensor to the

accelerometer'. This latter change was motivated by the idea that the accelerom-

eter would provide a more appreciable demonstration of the relationship between

the factor being observed and the resultant ADC reading; seeing the graph change

in response to the accelerometer being shaken is more readily understandable (and,

frankly, more interesting) than seeing it be affected by changes in lighting.

As mentioned above, this scenario involves two motes and a PC. The software

running on each of these three devices is discussed, respectively, in Sections 5.3.1,

5.3.2, and 5.3.3.

61n particular, the accelerometer used was the ADXL311EB evaluation board from Analog De-
vices [2]. This printed circuit board features their ADXL311 accelerometer chip [1] and accompanying
circuitry, with a 5-pin header providing access to all power and signal lines (see Figure 5-1).

119

Figure 5-1: ADXL311EB accelerometer evaluation board [2].

120

Figure 5-2: ADXL311EB mounted atop the cantilever.

5.3.1 Collecting & Transmitting Readings with Oscilloscope-

JonaRF

The mote with the accelerometer 7 runs OscilloscopeJonaRF. This program is found

in its entirety in Appendix J beginning on page J.3.

Perhaps the first noticeable difference of this program with respect to the others

discussed so far is that its Makefile has an extra line:

COMPONENT=OscilloscopeJonaRF
PFLAGS=-I../Oscilloscope
include . ./Makerules

The PFLAGS variable holds command line arguments to pass to the nesC compiler.

7The accelerometer was mounted to the top of a flexible metal cantilever which could swing back

and forth. See Figures 5-2 and 5-3.

121

Figure 5-3: The cantilever with the JONA mote at the bottom.

122

Makerules will add others, but here it is set to contain the argument -I. . /Oscil-

loscope. The -I flag is an include directive, telling the compiler to look in the

named directory8 when searching for included header and source files during compi-

lation. So, this line of Makefile says to the compiler that it should be sure to check

.. /Oscilloscope/ (i.e. apps/Oscilloscope/) for header files.

This is, of course, the directory containing the original Oscilloscope application.

It is included here because OscilloscopeJonaRF needs to borrow one of the files

found there: OscopeMsg.h. This header file provides a description of the packets

which the Oscilloscope programs use to package up and transmit their readings.

OscilloscopeJonaRF adopts this file from the ../Oscilloscope/ directory, rather

than having to duplicate it in its own.

Having told the compiler where to look for it, OscilloscopeJonaRF actually uses

OscopeMsg.h in the following line, found at the top of both Oscilloscope JonaRF.nc

and Oscilloscope JonaRFM. nc:

includes OscopeMsg;

When the compiler encounters that line, it will look for and read OscopeMsg.h be-

fore continuing. So, the rest of the file may safely refer to the contents of OscopeMsg.h,

knowing that the compiler will understand those references.

OscopeMsg.h contains the following definitions and declarations:

enum {
BUFFERSIZE = 10

};

struct OscopeMsg

{
uint16_t sourceMoteID;
uint16_t lastSampleNumber;
uint16_t channel;
uint16_t data[BUFFERSIZE];

};

struct OscopeResetMsg

8In addition to, not instead of, the locations normally checked.

123

{
/* Empty payload! */

};

enum {
AMOSCOPEMSG = 10,
AMOSCOPERESETMSG = 32

};

In addition to defining the constants BUFFERSIZE, AMOSCOPEMSG and AM-OSCOPE-

RESETMSG, it declares data structures called OscopeMsg and OscopeResetMsg. 0-

scopeMsg represents the packets which the Oscilloscope program will use to send

its sensor readings. In addition to the ten-element data array which will hold the

readings themselves, each OscopeMsg will keep track of which mote it is from and

which ADC channel the readings are from'. It will also include a sequence counter,

so that the PC can keep track of the samples in order and detect when a message is

lost. OscopeResetMsg is a message which can be sent back from the PC which will

instruct the mote to reset this sequence number back to 0. There is no information

to transmit for this message, so its data structure is empty.

The configuration file of OscilloscopeJonaRF does not need to know about the

particulars of how these data structures are defined, but it does make use of the

AMOSCOPEMSG and AMOSCOPERESETMSG constants:

configuration OscilloscopeJonaRF { }
implementation

{
components Main, OscilloscopeJonaRFM, TimerC, LedC, Accel,

GenericComm as Comm, LedsArrayC;

Main.StdControl -> OscilloscopeJonaRFM;
Main.StdControl -> TimerC;

OscilloscopeJonaRFM.Timer -> TimerC.Timer[unique("Timer")];

OscilloscopeJonaRFM.Led -> LedC;
OscilloscopeJonaRFM.SensorControl -> Accel;
OscilloscopeJonaRFM.ADC -> Accel.AccelX;
OscilloscopeJonaRFM.CommControl -> Comm;
OscilloscopeJonaRFM.ResetCounterMsg -> Comm.ReceiveMsg[AMOSCOPERESETMSG];
OscilloscopeJonaRFM.DataMsg -> Comm.SendMsg [AMOSCOPEMSG] ;

9At least, the channel field could be used for this. The Oscilloscope programs actually just
set its value to 1.

124

OscilloscopeJonaRFM. LedsArray -> LedsArrayC;

}

Notice that, like TimerC, GenericComm provides arrays of interfaces. However, in

this case it is not the goal to have a unique instance of the interface, but rather the

particular one corresponding to a specific number. An application could be written

which would send and receive a number of different types of messages; the ReceiveMsg

and SendMsg indices specify which type of message each interface should handle.

In this case, the ResetCounterMsg interface of OscilloscopeJonaRFM is assigned

to take care of AM.OSCOPERESETMSG messages, while its DataMsg interface deals in

AMOSCOPEMSG packets.

The rest of the wiring should be familiar. ADC readings will be taken from the

channel assigned to the x-axis of the (2D) accelerometer, LedC and LedsArrayC will

be used to provide the Led and LedsArray interfaces, and OscilloscopeJonaRFM will

control its own Timer.

module OscilloscopeJonaRFM
{
provides interface StdControl;

uses {
interface Timer;

interface Led;

interface StdControl as SensorControl;

interface ADC;

interface StdControl as CommControl;

interface SendMsg as DataMsg;

interface ReceiveMsg as ResetCounterMsg;

interface LedsArray;

}
}

The OscilloscopeJonaRFM module starts out listing its interfaces. Notice that

two of the interfaces used are StdControl; they have been renamed so that it can

unambiguously use them both. The rest of this discussion will focus on a few excerpts

from OscilloscopeJonaRFM.nc which are significant to understanding what the pro-

gram does. The parts omitted here (which can be found in Appendix J) show how it

does what it does, but they do not provide any particularly useful insight.

125

The timer is set (in the StdControl. start() function) to repeatedly fire every

125 milliseconds. Each time it fires, it commands the ADC to take a reading:

event resultt Timer.fired() {
return call ADC.getDatao;

}

When the ADC is finished with its conversion, it signals the ADC.dataReady()

event. The handler for this event puts the new data in the next available slot in the

OscopeMsg's data array, and posts a task called dataTask() which will transmit the

packet if the array is full. It then executes this sequence (data is the new reading,

and ledsArray is a uintl6t):

if(data < 349) {
ledsArray = OxOO1;

} else if(data < 390) {
ledsArray = Ox003;

} else if(data < 431) {
ledsArray = 0x007;

} else if(data < 472) {
ledsArray = OxOOF;

} else if(data < 513) {
ledsArray = OxOiF;

} else if(data < 553) {
ledsArray = OxO3F;

} else if(data < 594) {
ledsArray = OxO7F;

} else if(data < 635) {
ledsArray = OxOFF;

} else if(data < 676) {
ledsArray = Ox1FF;

} else {
ledsArray = Ox3FF;

}
call LedsArray.setv(ledsArray);

The range of values which data can take on is divided10 into blocks, and each block

turns on one more LED than the last. This lets the LedsArray act like a "volume

indicator" for the ADC. If data is small, then only a few LEDs will be illuminated;

if data is larger, then correspondingly more LEDs will be turned on.

Finally, dataTask() sends the message by calling DataMsg. send().

0The cutoffs between blocks may seem arbitrary. They were based on a "typical" range of values
observed as the accelerometer was being moderately shaken back and forth on the cantilever.

126

5.3.2 Receiving Readings with TOSBase

The message is then received by another mote running TOSBase. This application

works "out of the box" with no modifications for JONA, and so it will not be examined

in detail. All TOSBase does is to forward packets between the radio and the UART. It

can be used with any message type, not just OscopeMsg, and it provides a bidirectional

link (messages received by the radio are sent over the UART, and messages received at

the UART are sent over the radio). So, after passing through TOSBase, the OscopeMsg

finds itself at the serial port of the PC.

5.3.3 Displaying Readings with Java

The PC must be running two programs in order to display the sensor readings on

the oscilloscope. The SerialForwarder program is invoked by the command java

net. t inyos .sf .SerialForwarder -comm serial@COM1: 9600, which tells it to con-

nect to the serial port with a baud rate of 9600 (the rate for which JONA is config-

ured"). It then links the serial port to a TCP/IP port, similar to how TOSBase linked

the radio and UART. Other programs, running on this same PC or on another ma-

chine linked by the Internet, can then communicate with the WSN network through

this port.

One such program is the Java Oscilloscope program, invoked by the command

j ava net. tinyos .oscope . oscilloscope. This will connect to SerialForwarder and

graph the incoming sensor readings (see Figure 5-4). For more information on these

Java utilities, refer to TinyOS Tutorial Lesson 6 [49], and the Java source code, found

in tools/java/.

5.4 Constructing an ADC Input

The accelerometer used in the previous section was a device which produced as its

output a voltage between 0 and Vcc which represented its current state of acceler-

"cf. the description of HPLUARTM.nc on page 95.

127

Figure 5-4: Screenshot of the Java Oscilloscope, showing accelerometer sensor read-
ings.

128

ation. In general, however, a sensor's response to its stimulus could be manifested

by a change in resistance or capacitance, or any other sort of electrical property. It

may then be necessary to construct a circuit which will translate this property into

an analog voltage which can be measured by the ADC.

For instance, a thermistor is a device whose resistance depends on its temperature.

As previously mentioned, a sensible way to use a thermistor with an ADC would be

to use it as one of the resistors in a voltage divider. Recall from Section 2.1.4 that

the relationship between the input and output voltages and the resistances of the two

resistors is given by v 0st = viR 2/(Ri + R2) (Equation 2.24). In that discussion, v0 ut

was taken to be a function of vi,, with constant R 1 and R 2 ; however, the equation

can be equally understood to be a function of R 1 with a constant R 2 and a constant

Vi. (say, Vcc).

Note that when R 1 = R 2 , Vut = Vi/2. This implies that for vut to be roughly

centered between 0 and Vj, R 2 should be chosen to be roughly the average value

that R 1 is expected to take on. Consider Table 5.7. These values were taken from an

ordinary thermistor from RadioShack. By inspection, a decent value for R 1 would be

10k.

So, the thermistor is placed as R1 in a voltage divider configuration (see Figure 2-

8) with a 10k resistor, using Vcc as the input and connecting the output to a channel

of the ADC. The next task is to determine how the voltage will change as a function

of the temperature. One option would be to take Table 5.7, determine what vet will

be for each temperature, and write the table into the program. Then when a voltage

is converted, look up in the table to see what the nearest temperature is (e.g. The

voltage is measured to be 2.48V. The nearest value will be 2.5V which occurs when

the temperature is 250; so, for the voltage to be 2.48V, the temperature must be

slightly less than 25'.). This will work, but it will be slow, because it will take time

to compare the measurement to each table value to find the nearest one (even if it

performs a binary search on the table).

It would be much better to determine explicitly the relationship between the

temperature and the voltage. That way, when a voltage is measured, the temperature

129

Table 5.7: Thermistor Characteristics

Temperature (0C) [Resistance (kQ) 11 Temperature (0C) 1 Resistance (ku)
-50 320.2 35 6.941
-45 247.5 40 5.826
-40 188.4 45 4.912
-35 144 50 4.161
-30 111.3 55 3.537
-25 86.39 60 3.021
-20 67.74 65 2.589
-15 53.39 70 2.229
-10 42.45 75 1.924

-5 33.89 80 1.669
0 27.28 85 1.451
5 22.05 90 1.366

10 17.96 95 1.108
15 14.68 100 0.9375
20 12.09 105 0.8575
25 10 110 0.7579
30 8.313

can be calculated quickly. Unfortunately, the relationship (shown in Figure 5-5) is

quite nonlinear.

However, the range of temperatures indicated in Table 5.7 and Figure 5-5 is prob-

ably larger than the sensor is likely to experience. Consider the section of the graph

between -15 and 40'C (5-104'F), shown in Figure 5-6. On this range of temperatures,

the relation is almost linear. If it is known that the temperature being sensed will be

limited to this range (e.g. if the sensor is measuring room temperature), then approx-

imating it with a line or piecewise-linear function will suffice for most applications.

5.5 Sensing Without the ADC

Sometimes, converting a sensor's output into a steady voltage for the ADC can be a

nontrivial task. For example, the Humirel HS1101 humidity sensor [25] is a variable

capacitor. Recall from Section 2.1.5 that the current-voltage relationship for a capac-

itor is ic = Cdvc/dt (Equation 2.25). If the voltage across the capacitor is constant,

130

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

-60 -40 -20 0 20 40
Temperature CC)

60 80 100 120

Figure 5-5: Voltage vs. Temperature

131

0)

0

-

-2
I

- -

5

4.5-

4-

3.5-

3-

2.5-
0

2-

1.5-

M -

0.5 --

0
-20 -10 0 10 20 30 40

Temperature eC)

Figure 5-6: Voltage vs. Temperature: -15-40'

132

then the current through the capacitor will be 0; but this is true regardless of the

value of C, so applying or reading a constant voltage across the capacitor will provide

no information regarding the value of its capacitance. On the other hand, if a sinu-

soidal voltage is applied to the capacitor, then the current will also be sinusoidal, with

its amplitude proportional to the capacitance. The problem has now become that of

converting an oscillating current into a steady analog voltage (as well as generating

the original sinusoidal voltage signal). This is still far from a simple task.

The HS1101 data sheet [25] proposes an alternative course of action: page 3

provides a schematic (see Figure 5-7) for a circuit, built around the TLC555 timer from

Texas Instruments [46], which will generate a 0-Vcc square wave 12 whose frequency

is a function of the capacitance. This square wave signal can be connected to an input

pin, and then the microcontroller can count the length of an oscillation to determine

the HS1101's capacitance. HumiditySense is an application which does just that.

HuiditySense takes a reading from the humidity sensor circuit (see Figure 5-

8), converts it into an integer representing the relative humidity in hundredths of

a percent, and then sends this number to the LedsArray and the radio using the

IntOutput interface provided by IntToLedsArray and IntToRfm. The latter is found

in the lib/Counters/ directory, for which the Makefile adds an include directive:

COMPONENT=HumiditySense
PFLAGS=-IT/lib/Counters
include ../Makerules

The nesC compiler will replace %T by the TinyOS system directory, so that the

line is interpreted as something like "-I/opt/tinyos-1.x/tos/lib/Counters" [36].

Using the %T abbreviation enables the Makefile to refer to the tos/ directory with-

out having to know or worry about where it actually is. Note that the location of

Makerules must be specified directly, because this line is read and interpreted by

make and not ncc.

2A square wave is a periodic signal which alternates between a steady low value and a steady
high value.

133

R1 -
909K _-

R2 576K R4 49.9K

R3 1K

'Cl
DC

KL

HS11XX
180p@55%RH

GND

Figure 5-7:% HS1101 Frequency Output Circuit [25]

134

3.5 TO 12V

|1

FOUT

TLC555

CV TH

I

Figure 5-8: HS1101 humidity sensor with circuitry.

configuration HumiditySense {

}
implementation {

components Main, HumiditySenseM, TimerC, IntToLedsArray, LedC, IntToRfm;

Main.StdControl -> HumiditySenseM;

Main.StdControl -> TimerC;

Main.StdControl -> IntToLedsArray;

Main.StdControl -> IntToRfm;

HumiditySenseM.Timer -> TimerC.Timer [unique("Timer")];

HumiditySenseM.Led -> LedC;

HumiditySenseM.IntOutput -> IntToRfm;

HumiditySenseM.IntOutput -> IntToLedsArray;

}

HumiditySense.nc wires the interfaces used by HuiditySenseM to the compo-

nents which provide them. Notice that the single IntOutput interface used by

HumiditySenseM is wired to both IntToRfm and IntToLedsArray. HumiditySense

can be changed to use just one or the other-or some other component entirely (which

provides the IntOutput interface)-just by changing the appropriate lines in the con-

figuration. HumiditySenseM.nc can remain untouched.

module HumiditySenseM {
provides {

interface StdControl;

}
uses {

135

interface Timer;

interface Led;

interface IntOutput;

}
}

implementation {

command result-t StdControl.init() {
DDRC &= OxFB;
return SUCCESS;

}

command resultt StdControl.start() {
return call Timer.start(TIMERREPEAT, 500);

}

command result-t StdControl.stop() {
return call Timer.stopo;

}

The HumiditySenseM module starts by using StdControl. init 0 to set pin PC2

(the pin to which the humidity sensor circuit is connected) to be an input. It then sets

up a timer which repeats every 500 milliseconds. The actual sensing and processing

occur in the Timer.f ired() event handler:

event result-t Timer.fired() {
uintl6_t count;

call Led.Toggle(;

loop-until-bit-is.clear(PINC, 2);

The capacitance (in pF) at the current relative humidity, C@L%RH, will be calcu-

lated by using the formula thigh = C@%RH x (R2 + R4) x In 2, found in the HS1101

data sheet [25]. R2 and R4 are constant resistor values, so the only unknown is thigh,

the length of time the square wave spends at its high value in each period. In order to

accurately determine thigh, it must first find a rising edge, when the signal transitions

from low to high. So, it makes sure that it is starting during a low phase by waiting

until the input pin is low before continuing.

count = 0;
loop-until-bit_ is-set(PINC, 2);

do { ++count; } while(bit _is-set(PINC, 2));

136

While the square wave is low, Timer. fired 0 initializes count to be 0, and then

it waits for the rising edge. It then increments count repeatedly, as many times as it

can, while the square wave is high.

Now, in order to convert the final value of count into a time, it must be deter-

mined how long each iteration of the while loop takes. The JONA crystal oscillator

is known to have a frequency of 14.7456MHz [30]; taking the reciprocal, each clock

cycle lasts 0.067817pis. So, the problem is now reduced to determining the number

of clock cycles per iteration. This, of course, depends on what AVR assembly in-

structions are executed each time through the loop. The ATmega128 manual [5] lists

the number of clock cycles which each instruction takes to execute, so once this se-

quence is determined, calculating the loop's realtime length will simply be a matter

of arithmetic.

Fortunately, there is a simple way to see what the assembly version of an appli-

cation looks like. Makerules includes the following block of code:

ifndef OPTFLAGS
OPTFLAGS := -Os
endif

OPTFLAGS is a list of arguments to be passed to avr-gcc. The manual 3 for avr-gcc

says that "-Os" optimizes the machine code for size, to make the program as small

as possible (at least, as small as it can figure out how to make it). There is another

flag mentioned in the manual which will prove useful for the current endeavor: -S.

This argument will instruct avr-gcc to stop once it has produced the assembly code,

rather than going on to turn the assembly code into an executable binary.

So, this implies that setting OPTFLAGS to -S in the Makefile and then running

make will produce the assembly code as output, and then this file can be examined

to see what instructions are going to be called for the loop. However, notice that

Makerules will only set OPTFLAGS if it has not yet been defined. It is important that

3The avr-gcc manual can be accessed by executing the command man avr-gcc at a command
prompt.

137

avr-gcc still see the -Os flag, so that the assembly output is properly optimized. So,

the Makefile should be altered" to be:

COMPONENT=HumiditySense
PFLAGS=-IXT/lib/Counters

OPTFLAGS=-Os -S
include ../Makerules

Now, the command make j ona should be executed as usual. At the last step, there

will be an error message saying that avr-objcopy could not recognize the file format

of build/jona/mai.exe. This is because main.exe is now a text file containing

assembly, rather than the executable that avr-objcopy was expecting. According to

this file, which can be examined with any text editor, the loop

do { ++count; } while(bit-is-set(PINC, 2));

translates into the following assembly instructions (the label .L1617 and the register

r28 may differ):

.L1617:
adiw r28,1
sbic 51-0x20,2

rjmp .L1617

The register r28 holds the count variable; adiw r28, 1 says to add 1 to the

contents of the r28. sbic 51-0x20,2 says that if bit 2 of address 51-0x20-the

address of PINC (cf. [5])-is cleared, then the program should skip over the next two

bytes. Those two bytes contain the instruction rjmp .L1617, which says to jump

back to the label .L1617 and continue execution from there.

So, each iteration of the loop requires the execution of these three instructions.

According to the ATmega128 manual, adiw takes 2 clock cycles, sbic either 1, 2, or

3, and rjmp 2. So altogether, the loop requires either 5, 6, or 7 cycles; but which?

140f course, when it is time to compile and install the program, the OPTFLAGS line should be taken
back out.

138

Well, according to the AVR documentation, when its test evaluates to false-as it will

each time through the loop but the last-then sbic takes 1 cycle [6]. Each iteration,

then, takes 5 cycles, or 5 x 0.067817 = 0.339ps. The value of count can now be

translated into a capacitance:

* Capacitance in pF = (count incs)*(0.339us/inc)/((621k)*1n2)
* = 0.78756 * count
*

* (0.78756 * count) will be a number between 100 and 300
* so mult. by 78.756 will be between 10,000 and 30,000
* which is still 16 bits (this may reduce roundoff error
* since there's no floating point unit)

count *= 78.756; // now count represents cap in 10fF units

At this point, the count variable represents a capacitance, in units15 of femto-

farads. It must still be translated into a humidity measurement. For this task, the

HS1101 data sheet again proves handy. Page 2 provides a graph of capacitance vs.

relative humidity (see Figure 5-9).

This graph is nonlinear16, but like that of the thermistor it can be approximated

by a piecewise linear function. HumiditySenseM does just that, converting count into

a number in units of hundredths of a percent of relative humidity:

* Convert capacitance into XRH:
* Uses a piecewise-linear approximation to the equation in the
* HS1101 datasheet.
*
* count < 18500: %RH*100 = 3*count - 48900
* count > 18500: /RH*100 = 2*count - 30400

if(count < 18500) {
count *= 3;
count -= 48900;

} else {
count *= 2;

count -= 30400;

"See Table A.1 in Appendix A on page 150.
"The curve is actually a cubic function. The data sheet provides the equation C(pf) = C@55% x

(1.2510- 7RH 3 - 1.3610~ 5 RH 2 + 2.1910- 3RH + 9.010-1).

139

205

200

195

190

CL

185

180

175

170

165

160
0 1 2 3% s

% RH

Figure 5-9: Typical response curve of HS 1100/HS 1101 in humidity [25]

}
return call Int Output . output (count);

}

event resultt Int Output. outputComplete (resultt success) {
return SUCCESS;

}
}

As seen in HumiditySense. nc, that call to IntOutput . output () will be heard by

both IntToLedsArray-which will display the low ten bits of count on the LEDs-

and IntToRfm-which will put count in a radio packet and transmit it. A nearby

mote running a program like RfmToLeds (one of the sample applications which comes

with TinyOS) can then listen to the incoming radio packet and display count on its

own LEDs.

If a mote is running TOSBase, then the packet will be sent onward over its

UART to a PC. HumiditySense packets cannot be used with Oscilloscope as is,

because it expects to receive packets containing OscopeMsg messages. However, Se-

rialForwarder could be used to redirect the humidity readings to some other appli-

140

-L__

60 70 so 90 100

cation which understands the messages produced by IntToRfm. Alternatively, the

PC could run the Java program Listen (and not SerialForwarder), which will print

out the received packets byte by byte to the terminal. Listen is invoked with a com-

mand like MOTECOM=serial@COM1: 9600 java net. tinyos. tools. Listen. Refer to

TinyOS Tutorial Lesson 6 [49] for more information.

Finally, it should be noted that HumiditySense is, by far, the least portable

program discussed in this document. Not only does it depend on JONA's hardware

configuration, it also depends on JONA's clock speed. If the clock were replaced by

one which was faster or slower, all of the calculations for capacitance and humidity

based on the number of loop iterations would have to be redone. Additionally, as

with any sensor, if accuracy is of any concern, it is important to test and calibrate

the sensor, to see how it really behaves with a given known humidity. The "typical

responses" indicated on data sheets sometimes have very little to do with reality. That

said, HumiditySense succeeds in taking and transmitting humidity measurements.

5.6 Alternative Power Sources

The PROBOmegal28 draws its power from a standard AC adapter's barrel connector,

but this does not imply that it must be powered from a wall outlet. This section briefly

mentions a few alternatives.

5.6.1 The 9V Battery Adapter

One simple option which has been done here in the lab is to equip a JONA board

with a 9V battery adapter (see Figure 5-10). It will plug into the barrel connector on

the side, and is indistinguishable to the rest of the system from a regular AC adapter.

The downside of this approach is that the battery will die (and if the LedsArray

component is used, it will die very quickly). However, for quick testing of how in-

termote communication works when they are spread out down the hall, the battery

adapter works quite nicely.

141

Figure 5-10: A 9V battery adapter for the JONA barrel connector.

142

5.6.2 Solar/RF Power Harvesting

There is other research being done, both at MIT and at MUST, to power JONA

motes by other means. MUST researchers have connected motes to large solar panels

and associated circuitry which collect solar energy during the day and provide power

to the motes through the night.

Meanwhile, here at MIT, Drs. Nathaniel Osgood and Ruaidhri O'Connor have

used smaller solar panels to collect power from indoor fluorescent lighting, storing

the energy in capacitors in parallel. Once the voltage across the capacitors reach

a certain level, a voltage trigger turns on the mote and powers it long enough to

take a sensor reading and transmit it before the capacitors discharge. It then repeats

the process. They are also looking into harnessing the energy of RF radiation, from

cellular telephones, Wi-Fi, and local radio stations, for example.

143

144

Chapter 6

Conclusion

The JONA mote as presented in Chapter 4 is a functional WSN prototyping kit.

As demonstrated in Chapter 5, JONA motes can be used for wireless communica-

tion, for taking sensor readings-with the ADC or by other means-and for relaying

information between a WSN network and a PC.

They provide ample workspace and oversized connectors to facilitate quick hard-

ware prototyping, and their built-in serial port allows for quick software prototyping.

The JONA software platform is based on TinyOS, an open source operating system

with an active development community and widespread adoption in the academic

community. However, there is still room for improvement in a future JONA2.

6.1 Hardware

As the radio transceiver and other accessories are designed to (or at least can) run

at 3V, the PROBOmega128 board should be modified to have a 3V Vcc. This would

necessitate a reduction in the clock speed, but it would greatly simplify the wiring

between the microcontroller (which would then be the low-power ATmega128L) and

the radio module. It would also permit a 3V battery supply (e.g. a pair of AAs),

rather than the current 9V solution, which has an intrinsic inefficiency associated

with the conversion from 9V to 5V.

Furthermore, the radio module could be built into the main PCB, rather than

145

being a secondary part soldered/wire-wrapped in place. Sensors, the LedsArray, and

the like should continue to be separate add-on components, because each application

will differ in which it may need, but all WSN systems require wireless communications.

It may also be advantageous to replace the RFM TR1000 with the Chipcon

CC1000 [12]. The TR1000 has performed well, but anecdotal evidence suggests that

the CC1000 has better noise immunity and other laudable characteristics (e.g. [20]).

The DR3000-1 modules have been observed to be somewhat sensitive to RF inter-

ference from cellular telephones. (It should be noted that the TR1000 was initially

chosen over the CC1000 because it was the simpler of the two to adapt for the 5V

PROBOmega128 board.)

Going with the Chipcon radio would also permit a more "pure" usage of the

ATmega128's I/O facilities than the somewhat abusive use of the SPI interface which

employing the RFM chip entailed1 ; the CC1000 is a full-fledged 12C device. This

would have the added benefit of freeing the SPI interface for other devices (see below).

6.2 Software

The JONA software platform as described in Section 4.2 is complete for the JONA

hardware at present; most TinyOS applications should compile with no changes (un-

less they are specifically designed for other hardware). Furthermore, it is hoped that

the software examples presented in Chapters 4 and 5 will be more demonstrative to

CS neophytes than perhaps some of the TinyOS Tutorial examples tend to be. This

notwithstanding, there remain two TinyOS technologies (in particular) of which it

would be nice to see good, clearly explained examples: ad hoc multi-hop routing and

in-network programming.

TinyOS provides an automated ad hoc multi-hop routing mechanism, found in the

Broadcast/, Queue/ and Route/ directories of tos/lib/ (see doc/ad-hoc.pdf).

This lets individual applications focus on data collection and processing, without

having to worry about how to route messages back to the base station. TinyOS

icf. Section 4.1.2 on page 74.

146

includes a sample application called Surge which makes use of this to collect pho-

tosensor measurements and send them back to the PC. An associated Java program

will then produce a network graph showing the paths from various nodes back to the

base station (see doc/multihop/multhoproutng.html).

Surge-with slight modification to remove dependency on the micasb sensor-

board-compiles and runs on JONA motes, but it fails to point out certain intricacies

involved with adopting the multi-hop functionality. For instance, multi-hop routing

adds an overhead to each radio packet of 7 bytes. This means that some messages,

such as OscopeMsg, which worked with the regular radio stack will now be too long

and require modification. Ideally, a sample application would take the user through

all the steps of converting an application which uses the radio directly into one which

uses the multi-hop stack, including making necessary changes to the message data

structure. It would also be good to see the Java Oscilloscope program adapted to

display the data from the new application.

In-network programming (INP; see doc/Xnp.pdf) is an add-on which lets motes

receive and install new programming while deployed (i.e. without being physically

connected to a PC). The program is transmitted via radio, and motes listen for

and copy it into memory. The JONA hardware does not support INP, because an

external Flash memory is required to store the program as it is being downloaded.

An appropriate addition to JONA would be the Atmel AT45DBO41B Flash memory

chip [4], which is similar to the chip used in MICA2 (which does support INP).

The AT45DBO41B is an SPI device, so moving the radio to the 12C interface would

simplify matters considerably (see above). With INP supported in hardware, a good

sample application would show how to convert a non-INP program and would offer any

caveats against areas that might cause trouble when creating new INP applications.

6.3 Final Thoughts

The objective of this endeavor was to develop a hands-on educational tool for WSN.

Even without the enhancements suggested in the previous two sections, the JONA

147

Prototyping Kit meets this goal. It provides a good, undaunting starting point for

novice users, while offering a level of flexibility which permits and encourages ad-

vanced experimentation.

The development of JONA has proven to be a valuable experience, presenting

many useful insights into issues of accessibility and usability of this type of kit, and it

provides a solid basis for further work into the design and implementation of JONA

Version 2.

148

Appendix A

Common Prefixes

In most scientific disciplines, prefixes and units used are those of the International

System of Units (SI 1). Each prefix corresponds to a multiple of the base unit, in powers

of 10, where the base unit is the SI standard for measuring some natural physical

quantity, such as the meter for length or the ampere for electrical current 2 . However,

computer science also uses many of the same prefix symbols3 and pronunciations as

binary prefixes (powers of 2) to denote quantities of information, usually with a base

of bits (b) or bytes (B). Table A.1 offers some common prefixes4 along with their SI

and binary meanings. Note that there are no fractional binary prefixes, and that in

each case, the binary value is slightly larger than the SI value.

'The abbreviation "SI" is taken from the system's French name, Systeme International d'Unitis.
2 The official SI base unit of mass is the kilogram, not the gram; but when other SI prefixes are at-

tached to units of mass, they are applied to the gram (e.g. milligram (mg) rather than microkilogram
(pkg)).

3In the case of kilo, the SI symbol for 10 3 is always lowercase "k", but sometimes the uppercase
"K" is used to denote 210.

4The table's set of prefixes is far from exhaustive; there are others to express values both larger
and smaller than the extremes shown here, as well as a few rarely-used intermediate values, like
"deka" for 101 = 10.

149

Table A.1: Common SI and Information Theory Prefixes

150

Prefix Symbol 11 SI Value Binary Value

tera T 1012 = 1 000 000 000 000 240 = 1 099 511 627 776
giga G 10' = 1 000 000 000 230 = 1 073 741 824
mega M 106 = 1 000 000 220 = 1 048 576
kilo k 103 = 1 000 210 = 1 024
centi c 10-2 = 0.01
milli m 10-3 = 0.001
micro p 10-6 = 0.000 001
nano n 10- 9 = 0.000 000 001
pico p 10-12 = 0.000 000 000 001
femto f 10-15 = 0.000 000 000 000 001

Appendix B

Bits, Binary and the Digital

Abstraction

Humans usually deal with numbers using base ten (decimal) arithmetic. Numbers

have a one's place, a ten's place, a hundred's place, and so on. In other words, each

digit represents a place value of the form 10, for i = {0, 1,. . .}. For example, the

number 167 means 1 x 102 + 6 x 101 + 7 x 100. Each digit can take on one of ten

values, namely 0-9.

Binary-base two-numbers have place values of the form 2'. There is a one's

place, a two's place, a four's place, etc. Each binary digit, or bit, can take on one of two

values: 0 or 1. The binary number 10100111 means 1 x2 7+1 x 25 +1 x2 2 +1 x2 1+1 x2 0 ,

or 167 decimal.

Eight bits make up a unit called a byte (B). Binary numbers in computers are

usually stored in one or more bytes. A single byte can store one of 256 values1 , 0-

255. For brevity, numbers which are stored internally as binary are often displayed as

hexadecimal, base sixteen. Every four bits can be represented by a single hexadecimal

digit, which may take on values between 0 and 15. For 10-15, the letters A-F are

used. So, the decimal number 167, which is 10100111 in binary, is A7 in hexadecimal:

10 x 161 + 7 x 160 (see Table B.1). In order to avoid ambiguity regarding a number's

'This range assumes that the numbers are unsigned. If a number is allowed to take on both
positive and negative values, then a byte might store numbers between -128 and +127 (inclusive).

151

intended base, binary numbers are often prefixed by "Ob" and hexadecimal numbers

are often prefixed by "Ox". If a number carries no prefix, it is generally assumed to be

decimal. For example, "10" means ten, "OblO" means two, and "x10" means sixteen.

Table B.1: Binary and Hexadecimal Representations for 0-15.

DecimalI Binary [Hexadecimal 1 Decimal Binary [Hexadecimal

0 ObOO00 Ox0 8 OblO00 0x8
1 ObOO01 0xI 9 Ob1001 0x9
2 ObOO10 0x2 10 Ob1010 OxA
3 ObO011 0x3 11 Ob1011 OxB
4 Ob0100 0x4 12 Ob1100 0xC
5 Ob0101 0x5 13 Ob1101 OxD
6 Ob0110 0x6 14 Ob1110 OxE
7 Ob0111 0x7 15 Ob1111 OxF

Binary is a convenient representation to use for numbers in electronics because

it only requires two states to be defined: one to represent a logical "0" and one to

represent a logical "1". A natural choice is to use voltage levels: low voltage for one,

and high voltage for the other. This often takes the form of ground for 0, VcC for

1. Generally, there are (disjoint) ranges of voltages which represent each, so that if

an input is slightly above ground (or slightly below Vcc) it still maps correctly to

0 (or 1). These two ranges are referred to as valid logic levels. In between them

there is a "forbidden zone" of voltages which are not guaranteed to read as 0 or as

1; some circuitry may respond to them as if they were low (0), while other circuitry

may respond as if they were high (1).

Of course, analog voltages could also represent different numbers: OV for 0, 0.5V

for 0.5, 3V for 3, and so on. The great advantage of using the digital abstraction is

noise immunity. If there is noise on the wire and OV becomes O.4V, the data is still

read as "0"; it is not corrupted (whereas in the analog method, any change in the

voltage signifies a change in the data).

152

Appendix C

The ASCII Encoding Scheme

Tables C.1-C.4 below lists the characters and actions defined by the American Stan-

dard Code for Information Interchange (ASCII). A byte can hold any of the values

between 0 and 255, but ASCII only defines 0-127; values outside of this range have

been used in different ways by different computers to represent accented characters

and other symbols. The first 32 ASCII codes do not represent printable characters

but rather actions to be taken by a device (such as a printer or teletype); these include

the codes indicated by escape sequences like \r (OxD) and \n (OxA) in C.

153

Table C.1: ASCII Codes 0x00-0x1F

Table C.2: ASCII Codes 0x20-Ox3F

Dec Hex Chr Dec Hex Chr
32 0x20 Space 48 0x30 0
33 0x21 ! 49 0x31 1
34 0x22 " 50 0x32 2
35 0x23 # 51 0x33 3
36 0x24 $ 52 0x34 4
37 0x25 % 53 0x35 5
38 0x26 & 54 0x36 6
39 0x27 ' 55 0x37 7
40 0x28 (56 0x38 8
41 0x29) 57 0x39 9
42 0x2A * 58 Ox3A
43 Ox2B + 59 Ox3B
44 x2C , 60 Ox3C <
45 0x2D - 61 x3D =
46 x2E . 62 x3E >
47 Ox2F / 63 Ox3F ?

154

Dec Hex Chr Dec Hex Chr

0 OxO NUL (null) 16 0x10 DLE (data link escape)
1 0x1 SOH (start of heading) 17 0x1I DC1 (device control 1)
2 0x2 STX (start of text) 18 0x12 DC2 (device control 2)
3 0x3 ETX (end of text) 19 0x13 DC3 (device control 3)
4 0x4 EOT (end of trans.) 20 0x14 DC4 (device control 4)
5 0x5 ENQ (enquiry) 21 0x15 NAK (neg. acknowledge)
6 0x6 ACK (acknowledge) 22 0x16 SYN (synchronous idle)
7 0x7 BEL (bell) 23 0x17 ETB (end trans. block)
8 0x8 BS (backspace) 24 0x18 CAN (cancel)
9 0x9 TAB (horizontal tab) 25 0x19 EM (end of medium)

10 OxA LF (line feed, newline) 26 0x1A SUB (substitute)
11 0xB VT (vertical tab) 27 0x1B ESC (escape)
12 OxC FF (form feed) 28 0x1C FS (file separator)
13 0xD CR (carriage return) 29 0x1D GS (group separator)
14 OxE SO (shift out) 30 xiE RS (record separator)
15 OxF SI (shift in) 31 OxIF US (unit separator)

Table C.3: ASCII Codes 0x40-0x5F

rjDec Hex Chr DecI Hex IChr1
64 0x40 A 80 0x50 P
65 0x41 A 81 0x51 Q
66 0x42 B 82 0x52 R
67 0x43 C 83 0x53 S
68 0x44 C 84 0x54 T
69 0x45 E 85 0x55 U
70 0x46 F 86 0x56 V
71 0x47 G 87 0x57 W
72 0x48 H 88 0x58 X
73 0x49 I 89 0x59 Y
74 0x4A J 90 Ox5A Z
75 0x4B K 91 Ox5B
76 Ox4C L 92 Ox5C \
77 0x4D M 93 Ox5D
78 Ox4E N 94 x5E

79 0x4F 0 95 0x5F _

Table C.4: ASCII Codes 0x60-Ox7F

Dec Hex Chr Dec Hex Chr
96 0x60 ' 112 0x70 p
97 0x61 a 113 0x71 q
98 0x62 b 114 0x72 r
99 0x63 c 115 0x73 s

100 0x64 d 116 0x74 t
101 0x65 e 117 0x75 u
102 0x66 f 118 0x76 v
103 0x67 g 119 0x77 w
104 0x68 h 120 0x78 x
105 0x69 i 121 0x79 y
106 Ox6A j 122 Ox7A z
107 Ox6B k 123 Ox7B {
108 Ox6C 1 124 Ox7C
109 Ox6D m 125 Ox7D }
110 x6E n 126 x7E

111 Ox6F o 127 Ox7F DEL

155

156

Appendix D

Semiconductors

Materials which conduct electricity well-like copper-are called conductors; those

which do not-like glass-are called insulators. Conductors and insulators lie at

opposite ends of a spectrum of conductivity. The middle of the spectrum is the

domain of semiconductors-like silicon.

A solitary, electrically-neutral atom of silicon has four electrons in its outermost

layer'. In a crystalline lattice, it shares each electron with a neighboring atom 2 ,

so that each atom in the lattice has a total of eight electrons, filling the layer (see

Figure D-1).

Figure D-1: Silicon Lattice

Electricity does not flow well in pure silicon, because all the electrons are busy

keeping the silicon atoms bonded to each other. This can be remedied by introducing

'These electrons are called valence electrons.2 Two atoms each contribute one electron to a covalent bond which binds them together.

157

impurities into the silicon crystal through a process called doping. In doped silicon,

some of the silicon atoms with their four valence electrons are replaced by atoms of

other elements which have a different number-generally three or five-of valence

electrons. In either case, extra charge carriers are added, in the form of holes or

electrons.

If silicon is doped with phosphorus, which has five valence electrons, then it is

called n-type3 doped silicon. Phosphorus has one more electron than silicon but

it also has one more proton, so the n-type region is still electrically neutral. The

phosphorus atom, like the silicon atom it replaced, uses four valence electrons to

bond with the four atoms around it; unlike the silicon atom, it still has a free electron

after forming these four bonds (see Figure D-2). This free electron is called a carrier

electron, and it really is free: it can move throughout the lattice, carrying its charge.

These carrier electrons facilitate the flow of electricity through the silicon.

Figure D-2: n-type Doped Silicon Lattice with Negative Charge Carrier (Electron)

If silicon is doped with boron, which has only three valence electrons, then it is

called p-type4 doped silicon. The p-type region is electrically neutral because boron,

with fewer electrons, has correspondingly fewer protons. However, when the boron

atom tries to bond with the four silicon atoms around it, it comes up one electron

short; rather than having a full valence shell with eight electrons, it only has seven

(its three plus one from each of its four neighbors; see Figure D-3). In other words,

3 1t is called "n-type" because the added charge carriers are electrons, which are negatively
charged.

4 1t is called "p-type" because the added charge carriers are holes, which are positively charged.

158

replacing silicon atoms with boron atoms introduces holes, which also facilitate the

flow of electricity5 .

Figure D-3: p-type Doped Silicon Lattice with Positive Charge Carrier (Hole)

159

5 See Section 2.1.1 on page 30.

160

Appendix E

PROBOmega128 Schematic

Figure E-1 below shows the schematic for the PROBOmega128, @ Dr. Erik Lins [31]

161

CON ISP

Vm vcc
SICK 3

AVRI'16GN) I

CON-
26

24
23
22
21
20
' 918
17
16
15
4

13
12
1 1
10
9

17

4

C0N26

VCC

VCc

OND PO

PEI 3
PE2 4

P3 5
6
7

9

10
11

1 4

16

IRESET

LED2
R12

165 STATUS

CO?4ADC

CONADC
CON 14

VCC4- - VCC

GND - ND

U17

/PEN EOPA3 AD3 4
RXDO (PD1) PED PA4AD44N

TX1PDO PADS 46
XCKO AINO PE2 PA6 AD6
OC3A AIN] PE3 PA7 AD7
OC3B INT4 PE4 PG2 ALE
OC3C INTS P5 PC7 A5 4

tSS PB8 PC4A12
SCK PB I PC3AlI 3

MC PS 6
OCOP4 C9 36
OCIAPBS PO1/RD 34
OCIBPB6 PGoOWR

GND I-

2
Al tn-al4

p1

-- IOCND

VCC

IC3 c

Noo23 100 U2 16 Fi 7
1 2 C+ CC 15 10

4 - 100R IOR- 5 C+ WN 12 D
-5 GND -fCs C2- RIOUT

6 R4 R5 I 0n V- TIIN
, C 3 2OUT T211N -

| 2"- a0 R2IN R20UT 9
19 00-1 V0 MAX2102

COM G.ND

ON US

3 PEI 1 k

4 4E 7 R115 C""o
6 4k7
7
8
9

11
12
13
14

16
17

1819
20

CON20

VCC

X2

14.74i6MI z

- C9
122P

GND) GND

32.768kHz

~Iri

C
~tz

0

90
D

00

0f

LED1
F,

Vec h
POWER

POWER VR1 IN4M yp
jM7805

3 Vn Vout -D>vcc

DI
:1N40N1- -C1 -C2

ruou v Annel ATrncgaI28 Prototyping Board

Dr. Erik Uns
Am Pfad 9 - 35440 Linden
DeutschlandiGernany
http://www.chip45.com

Arbeitsblatt
PROBOmnegaI28

Beschreibung

Dtum: 3-Dec-2004 I Gendem: Version

VCC VCC

_3
7 4148

IV
Icli

RES T 47n

GNI) OND

D

A A

it HI I I I

C

ATmvega I2za

Dater: PROB~mnanl2ll R12mh 1 S 0 Von a

2 3 4

Appendix F

JONA Radio Module Schematic

Figure F-1 below illustrates the wiring of the JONA radio module. The power supply

connected to Pin 9 (VCC) is provided by a 3V voltage regulator (not shown) which

converts the PROBOmega128's 5V supply into the 3 volts needed by the DR3000-1.

"(NC)" indicates that no connection is made to that pin; the other connections are

as listed in Table F.1.

1T 1

RF GND RFIO

(NC)-2 AGC/VCC CTRO
(NC)- PK DET CTR1
(NC)-- RX BBO DR3000-1 GND

5 RX DATA VCC
TXMOD TX IN LPF ADJ

GND GND

I

NTRLO
NTRL1

3303
330Q

510Q
510Q

12
11
10
1f|

-F- 3V Supply
-- (NC)

Figure F-1: DR3000-1 wiring schematic.

163

4.7MQ 'XDATA

4~2.2MQ
3.3MQ

Table F.i: DR3000-1--PROBOmega128 Connections in the JONA.

164

Figure F-i Label I CONPIO Pin 11 CONPIO Pin 2
PBO (SS) GROUND
PB1 (SCK) PB7 (OC2)

RXMOD PB2 (MOSI) PD4 (IC1)
TXMOD PB3 (MISO)
CNTRL1 PD6 (T1)
CNTRLO PD7 (T2)

Appendix G

HelloWorld: A nesC/TinyOS

Application Example

Below are the contents of Hello World. nc and Hello WorldM. nc, the configuration and

module files for a Hello World application which demonstrates usage of the ByteComm

interface for communication over the UART and exemplifies TinyOS's event-driven

model. Also included is the application's Makefile, used to compile and install the

program.

G.1 HelloWorld.nc

configuration HelloWorld {
}
implementation {

components Main, UART, HelloWorldM;
Main.StdControl -> HelloWorldM;
Main.StdControl -> UART;
HelloWorldM.ByteComm -> UART;

}

G.2 HelloWorldM.nc

module HelloWorldM {
provides {

interface StdControl;

}

165

uses {
interface ByteComm;

}

implementation {
uint8-t index, *string = (uint8-t*)"Hello, World!\r\n";

command result-t StdControl.init() {
atomic {

index = 0;

I
return SUCCESS;

}

command result-t StdControl.start() {
uint8_t i;
atomic {

i = index;

++index;

I
return call ByteComm.txByte(string[i]);

}

command result-t StdControl.stop() {
return SUCCESS;

I

async event result-t

return SUCCESS;

I

async event result-t

return SUCCESS;

I

async event result-t

uint8-t c, i;
atomic {

i = index;

ByteComm.rxByteReady(uint8-t dat, bool err, uint16-t str) {

ByteComm.txDone() {

ByteComm.txByteReady(bool success) {

I
c = string[i];
if(c) {

atomic {
++index;

}
return call ByteComm.txByte(c);

} else {
return SUCCESS;

}
I

I

166

G.3 Makefile

COMPONENT=HelloWorld

include ../Makerules

167

168

Appendix H

Additions Made to the Makerules

File to Support JONA

This appendix discusses the additions made to the Makerules file (in the apps/

directory) which were necessary to extend the base TinyOS distribution to support

the new JONA platform. Section H.1 enumerates these additions, and Section H.2

provides a full listing of the resultant file.

H.1 The Additions

1. When compiling or installing a TinyOS application, the name of the target

platform is passed as an argument to make, as in make install mica2. Each

of the valid platforms is stored in a list in the Makerules file. In the original

Makerules, this list is created by the line:

PLATFORMS = mica mica2 mica2dot pc

The JONA platform has now been included in the list:

PLATFORMS = mica mica2 mica2dot jona pc

169

2. The TinyOS development environment provides several options as to how to

install a program onto a mote. These are listed in the following comment' in

Makerules:

###
Programming Boards : command line input

Command line input for programmers:

none default to parallel programming board

MIB510=<dev> use mib510 serial port programming board at port <dev>
EPRB=<host> use eprb at hostname <host>

AVRISP=<dev> use AVRISP serial programmer at port <dev>
###

The file proceeds to check the command line input to see which option (if

any) was chosen. For instance, to install a program onto a MICA2 mote

using an AVRISP programmer 2 , the command issued might look like make

install mica2 AVRISP=/dev/ttySO. Makerules then sets the PROGRAMMER

and PROGRAMMERFLAGS variables appropriately for the choice indicated. For

instance, it uses the following lines3 if the AVRISP option was selected:

ifdef AVRISP
PROGRAMMER := STK
PROGRAMMERFLAGS=-dprog=stk500 -dserial=$(AVRISP) $(PROGRAMMERPART) \

$(PROGRAMMER-EXTRAFLAGSAVRISP)

endif

If no programming board was specified, Makerules assumes 4 as a default a

Crossbow programmer which is connected to the computer's parallel port:

'In make syntax, a comment starts with the character "#" and continues to the end of the line.
This is analogous to C's "//".

2 That is, an in system programmer (ISP) for AVR microcontrollers.
3The backslash at the end of the PROGRAMMER-LAGS line indicates that what follows is actually a

continuation of the same line; the backslash itself and the subsequent newline should be ignored. In
the file, this facilitates the creation of arbitrarily long statements without the file's individual lines
becoming unwieldily lengthy; here, it enables a representation of the file's contents which does not
violate the document's margins.

4The following two lines are found immediately before the comment listing the other options;
Makerules initially assumes the default and then changes the variables if and when it sees that an
alternative was selected.

170

PROGRAMMERFLAGS=-dprog=dapa $ (PROGRAMMERPART) $ (PROGRAMMER-EXTRAFLAGS)
PROGRAMMER := DAPA

Now, each of these options represents a physical programmer board, connected

to the computer, which motes are plugged into for programming. However, the

JONA hardware has its own serial port and does not need a separate board;

it connects directly to the computer. So, it would not make sense to specify a

new programmer for JONA as a command line option. At the same time, the

default choice, which uses the parallel port, is also inappropriate.

To overcome this minor paradox, the JONA itself is viewed as a programmer

board and made a new option. It is not necessary to create a new command line

option, because j ona already appears as an argument to make to specify the

platform. So, the following lines have been added to this section of Makerules,

which treat JONA as a programmer and yet check for it not as a specified

programmer but as a specified platform.

If the serial port has not been defined, then set it to the

default.

ifeq (x$(SERIALPORT),x)
SERIALPORT=/dev/ttySO -dspeed=115200

endif
If the platform is jona, then use STK on the serial port.

(The jona does not use a separate programmer device, so there

will not be a programmer listed on the command line.)

ifeq ($(PLATFORM), jona)
PROGRAMMER := STK
PROGRAMMER-FLAGS=-dprog=stk500 -dserial=$ (SERIALPORT) $(PROGRAMMERPART)

endif

The JONA mote is presumed to be connected to the serial port accessible as

device ttySO; if it is actually connected to a different serial port, then it can

be specified on the command line (as in make install jona SERIAL-PORT=-

/dev/ttySl -dspeed=115200). The programmer indicated, STK, is the firm-

ware on the JONA mote 5 when enables it to write the new program into its

5 STK500 is also responsible for blinking the mote's LED when it is put into programming mode.

171

memory. The PROGRAMMERPART variable is defined later on in Makerules, and

will be discussed in turn.

3. The Crossbow motes use sensors which are packaged onto cards called sensor-

boards. Recall from Table 4.2 that the TinyOS distribution includes a sensor-

boards/ directory to contain files related to each card. At the very least, each

card's subdirectory contains a file called sensorboard.h which declares what sen-

sors are available on that card. The sensorboards/ directory contains three

subdirectories: basicsb/, micasb/, and none/. The first two correspond to

actual sensorboards, while none/ is a placeholder which is intended to be used

when no sensorboard is actually present.

A particular TinyOS application can specify with which sensorboard it is to be

used by including a line like "SENSORBOARD = micasb" in its Makefile. If it does

not, Makerules sets default values for each platform by executing the following

block of code:

#Sensor Board Defaults

ifeq ($(SENSORBOARD),)
ifeq ($(PLATFORM),mica)
SENSORBOARD = micasb

endif
ifeq ($(PLATFORM),mica2)
SENSORBOARD = micasb

endif
ifeq ($(PLATFORM),mica128)
SENSORBOARD = micasb

endif
ifeq ($(PLATFORM),rene2)
SENSORBOARD = basicsb

endif
ifeq ($(PLATFORM),pc)
SENSORBOARD = micasb

endif
ifeq ($(PLATFORM),mica2dot)
SENSORBOARD = basicsb

endif
endif

The outermost if eq tests whether the variable SENSORBOARD is equal to nothing

(i.e. has not yet been assigned). If that is the case, then it compares the value

172

of the PLATFORM variable-set by the command line argument to make-to the

following platforms 6 : mica; mica2; mica128; rene2; pc; mica2dot. It checks

these one at a time, and upon finding a match it sets SENSORBOARD to the

appropriate value.

The JONA platform does not use bundles of sensors on sensorboard cards;

rather, sensors are wired directly to the PROBOmega128 as needed. Neverthe-

less, TinyOS dictates that any platform using an ADC must define a sensor-

board. The ADC interface file expects to be able to read from a sensorboard.h

file to learn the values of certain constants associated with each sensor (such as

to which ADC channel each sensor is wired). However, the JONA sensors are

independent, and they each have their own files to define these constants.

So, the JONA platform uses the dummy none/ sensorboard directory, because

its sensorboard.h is an empty placeholder. It can safely be included without

the worry that it might override a sensor's definitions. To achieve this, another

inner if eq was added:

if eq ($(SENSORBOARD),)

ifeq ($(PLATFORM),jona)

SENSORBOARD = none
endif

endif

4. Having specified the programmer hardware and the sensor hardware, Makerules

must now specify the hardware of the mote itself, in particular its microcon-

troller. This is the meaning of the PROGRAMMERPART variable mentioned above.

As it did for defining the SENSORBOARD variable, Makerules uses a series of if eq

statements to determine which platform has been selected:

6Note that rene2 and mica128 are not valid platforms, according to the PLATFORMS list. These
are older Berkeley/Crossbow mote platforms which were replaced, respectively, by the mica and
mica2 families. This is one of a number of examples of outdated legacy code which can be found
in the TinyOS source. The mica128 also remains as a platform directory. Its contents are used by
several other platforms, including JONA (see Section 4.2.4 on page 92).

173

ifeq ($(PLATFORM), mica)

PROGRAMMERPART=-dpart=ATmegalO3 -- wr_fuse_e=fd
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMER_EXTRAFLAGS)
ifdef AVRISP

PROGRAMMERFLAGSINP=-dprog=stk500 -dserial=$(AVRISPDEV) -dpart=ATmega103
endif
endif

ifeq ($(PLATFORM), mica128)
PROGRAMMERPART=-dpart=ATmegal28 -- wr-fusee=f f
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMEREXTRAFLAGS)
ifdef AVRISP

PROGRAMMERFLAGSINP=-dprog=stk500 -dserial=$(AVRISPDEV) -dpart=ATmega128
endif
endif

ifeq ($(PLATFORM), mica2)

BOOTLOADER=$(XNPDIR) /inpispm2. srec
PROGRAMMERPART=-dpart=ATmegal28 -- wr_fuse_e=ff
PROGRAMMERFLAGSINP=-dprog=dapa $ (PROGRAMMER.EXTRAFLAGS)
if def AVRISP

PROGRAMMERFLAGSINP=-dprog=stk500 -dseria=$(AVRISPDEV) -dpart=ATmega128
endif
endif

ifeq ($(PLATFORM), mica2dot)

BOOTLOADER =$(XNPDIR)/inpispm2d.srec
PROGRAMMERPART=-dpart=ATmegal28 -- wr_fuse_e=ff
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMER-EXTRAFLAGS)
ifdef AVRISP

PROGRAMMERFLAGSINP=-dprog=stk500 -dserial=$(AVRISP_DEV) -dpart=ATmega128
endif
endif

To support JONA, the following snippet has been added to this set:

ifeq ($(PLATFORM), jona)
PROGRAMMERPART=-dpart=ATmegal28 -- wr_fuse_e=ff
endif

The PROGRAMMERPART variable declares the microcontroller to be an ATme-

ga128. It then instructs the programmer to write the value OxFF into the AT-

mega128's Extended Fuse. This fuse-which is a register that can only be writ-

ten to by the programmer (in particular, the microcontroller cannot change its

value during runtime) -ensures that the ATmega128 is not in ATmega103 com-

patibility mode'. This mode is designed to provide backwards compatibility for

7Cf. Table 117 on page 289 of [5].

174

systems designed around the older microcontroller 8 (for which the ATmega128

was the direct replacement), at the cost of disabling the ATmega128's new fea-

tures. As JONA was not originally designed around the ATmega103, there is

no reason to use this compatibility mode, which would only serve to limit the

microcontroller's capabilities.

5. The last change made to Makerules does not, in fact, have anything to do with

the JONA platform. In the rule for compiling the executable, $(MAINEXE),

"-v" has been added to the compiler's list of command line arguments. This

tells ncc to be verbose, to write out to the terminal a description of each step of

the compilation as it is performed. This output is often helpful to track down

program bugs, and it is also conducive to the understanding of what exactly

the nesC compiler does to turn a TinyOS application's source code into an

executable program.

$(MAINEXE): $(BUILDDIR) FORCE
Qecho " compiling $(COMPONENT) to a $(PLATFORM) binary"

$(NCC) -o $(MAINEXE) -v $(OPTFLAGS) $(PFLAGS) $(CFLAGS) \
$(COMPONENT).nc $(LIBS) $(LDFLAGS)

H.2 Makerules

#-*-Makefile-*-
Base Makefile for nesC apps.

Created: 6/2002, Philip Levis <pal@cs.berkeley.edu>

Updated: 6/18/2002 Rob von Behren <jrvb@cs.berkeley.edu>
Multi-platform support

Updated: 6/20/2002 David Gay <dgay intel-research.net>
Compile via gcc, make tos.th system-wide, not app-wide

(still need to ponder group selection)

Updated: 6/27/2003 Jaein Jeong <jaein@cs.berkeley.edu>

8Such as MICA; notice that the PROGRAMMER-PART definition for MICA says to write OxFD into
the fuse, which makes newer MICA motes, which actually have an ATmega128, still act as though
they contained an ATmega103.

175

In-network programming support for mica2, mica2dot platforms

this needs to be -dlpt=3 on thinkpads
PROGRAMMEREXTRA-FLAGS:=
We don't actually set it here, so you can either set the
PROGRAMMEREXTRAFL AGS environment variable (recommended) or
define it in . ./Makelocal

-include $(shell ncc -print-tosdir)/. ./apps/Makelocal

User configuration:
Specify user values in Makelocal to override the defaults here

ifndef DEFAULTLOCAL-GROUP
DEFAULTLOCALGROUP := Ox7d
endif

ifndef OPTFLAGS
OPTFLAGS := -Os
endif

ifndef NESCFLAGS
NESCFLAGS := -Wnesc-all
endif

configure the base for the app dirs. This is used to generate more
useful package names in the documentation.
ifeq ($(BASEDIR)-x, _x)
BASEDIR := $(shell pwd I sed 'sQ\(.*\)/apps.*$$Q\1Q')
endif

The output directory for generated documentation
ifeq ($(DOCDIR)_x, _x)
DOCDIR := $(BASEDIR)/doc/nesdoc
endif

##

##

ifeq ($(PLATFORMS)_x, _x)
PLATFORMS = mica mica2 mica2dot jona pc
endif

OBJCOPY = avr-objcopy
SETID = set-mote-id
PROGRAMER = uisp

ifdef MSG-SIZE
PFLAGS := -DTOSH-DATALENGTH=$(MSGSIZE) $(PFLAGS)
endif

176

#ifdef APPDIR
#PFLAGS:= -I$(APPDIR) $(PFL AGS)
#endif

This is for network reprogramming
If XNP is defined, add the network reprogramming related files
to the search path and generate a timestamp to make each build unique.
XNP-DIR := . ./. ./tos/lib/Xnp
ifdef XNP
PFLAGS := -1$(XNP-DIR) $(shell $(XNPDIR)/ident.pl ident-install-id $(COMPONENT)) \

$(PFLAGS)
endif

PFLAGS := $(PFLAGS) -Wall -Wshadow \
-DDEFTOS-AM-GROUP=$(DEFAULT-LOCALGROUP) $(NESCFLAGS)

ifndef TINYSEC
TINYSEC false # default: disable tinysec
endif
The tinysec keyfile to use and the default key name (this re matches the
first key. you can explicitly list keys by: make mica KEYNAME=mykeyname
KEYFILE := $(HOME)/.tinyos-keyfile
KEYNAME := \W+

ifeq ($(TINYSEC),true)
TINYSECKEY := $(shell mote-key -kf $(KEYFILE) -kn $(KEYNAME))
ifeq ($(TINYSEC-KEY),)
$(error tinysec key has not been properly set. It is needed for tinysec. \

Check to make sure that the script exists)
endif
PFLAGS $(PFLAGS) -DTINYSECKEY="$(TINYSECKEY)" -DTINYSECKEYSIZE=8
endif

NCC = ncc
LIBS -im

##

Choose platform options, based on MAKECMDGOALS
##

be quieter....
#ifeq ($(VERBOSE-MAKE)-x, _x)
#MAKEFLAGS += -s
#endif
#export VERBOSE-MAKE

define USAGE

Usage: make <platform>
make all
make clean
make install[.n] <platform>

177

make reinstall[.n] <platform> # no rebuild of target
make docs <platform>

Valid platforms are: $(PLATFORMS)

endef

PLATAUX=$(PLATFORMS) all
PLATFORM := $(filter $(PLATAUX), $(MAKECMDGOALS))
PFLAGS := -target=$(PLATFORM) $(PFLAGS)
MAKECMDGOALS := $(filter-out $(PLATAUX), $(MAKECMDGOALS))

###

Programming Boards : flags
###

PROGRAMMERFLAGS=-dprog=dapa $(PROGRAMMER-PART) \
$(PROGRAMMER-EXTRAFLAGS)

PROGRAMMER := DAPA

###

Programming Boards : command line input
Command line input for programmers:
none : default to parallel programming board
MIB510=<dev> : use mib510 serial port programming board at port <dev>
EPRB=<host> : use eprb at hostname <host>
AVRISP=<dev> : use AVRISP serial programmer at port <dev>
###

If MIB510 then
MIB5100 := $(subst MIB510=,,$(filter MIB510=%,$(MAKECMDGOALS)))
ifneq ($(MIB510_),)

MIB510 := $(MIB5100)
endif
MAKECMDGOALS := $(filter-out MIB510=%,$(MAKECMDGOALS))

If STK is a set environment variable or if STK=xxx appears on the command
line, then take it to be a network address and program assuming an stk500
module.
EPRBO := $(subst EPRB=,,$(filter EPRB=%,$(MAKECMDGOALS)))
ifneq ($(EPRB),)

EPRB := $(EPRBO)
endif
MAKECMDGOALS := $(filter-out EPRB=%,$(MAKECMDGOALS))

ifneq (x$(MIB510),x)
PROGRAMMER := STK
PROGRAMMERFLAGS=-dprog=mib510 -dserial=$(MIB510) $(PROGRAMMERPART) \

$(PROGRAMMER-EXTRAFLAGS-MIB)
endif
ifneq (x$(EPRB),x)

PROGRAMMER := STK

178

PROGRAMMERFLAGS=-dprog=stk500 -dhost=z$(EPRB) $(PROGRAMMERPART) \
$(PROGRAMMEREXTRA-FLAGS-STK)

endif
ifdef AVRISP

PROGRAMMER:= STK
PROGRAMMERFLAGS=- dprog=stk500 -dserial=$(AVRISP) $(PROGRAMMERPART) \

$(PROGRAMMEREXTRAFLAGS-AVRISP)
endif

If the serial port has not been defined, then set it to the default.
ifeq (x$(SERIALPORT),x)

SERIALPORT=/dev/ttySO -dspeed=115200
endif
If the platform is jona, then use STK on the serial port.
(The jona does not use a separate programmer device, so there
will not be a programmer listed on the command line.)
ifeq ($(PLATFORM), jona)

PROGRAMMER:= STK
PROGRAMMERFLAGS=-dprog=stk500 -dserial=$(SERIAL-PORT) \

$(PROGRAMMER-PART)
endif

#Sensor Board Defaults
ifeq ($(SENSORBOARD),)

ifeq ($(PLATFORM),mica)
SENSORBOARD = micasb

endif
ifeq ($(PLATFORM),mica2)

SENSORBOARD = micasb
endif
ifeq ($(PLATFORM),mical28)

SENSORBOARD = micasb
endif
ifeq ($(PLATFORM),jona)

SENSORBOARD = none
endif
ifeq ($(PLATFORM),rene2)

SENSORBOARD = basicsb
endif
ifeq ($(PLATFORM),pc)

SENSORBOARD = micasb
endif
ifeq ($(PLATFORM),mica2dot)

SENSORBOARD = basicsb
endif

endif

BUILDDIR = build/$(PLATFORM)
MAIN-EXE = $(BUILDDIR)/main.exe
MAIN-SREC = $(BUILDDIR)/main.srec

ifeq ($(PLATFORM), pc)
OPTFLAGS := -g -00
PFLAGS := -pthread $(PFLAGS) -fnesc-nido-tosnodes=1000 \

179

-fnesc-cfile=$ (BUILDDIR)/app.c
MAIN-TARGET = $(MAINEXE)
else
PFLAGS := $(PFLAGS) -finline-limit=100000 -fnesc-cfile=$(BUILDDIR)/app.c
MAIN-TARGET = $(MAIN-SREC)
endif

PFLAGS := -board=$(SENSORBOARD) $(PFLAGS)

added options to support network reprogramming. This sets the correct bootloader
for mica2 and mica2dot platforms. And this also sets the programmer flag for
native ATmega128.
ifeq ($(PLATFORM), mica)
PROGRAMMERPART=-dpart=ATmegaO3 -- wr_fuse-e=fd
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMER-EXTRAFLAGS)
ifdef AVRISP

PROGRAMMER-FLAGSINP=-dprog=stk500 -dserial=$(AVRISPDEV) \
-dpart=ATmega103

endif
endif
ifeq ($(PLATFORM), mica128)
PROGRAMMERPART=-dpart=ATmegal28 -- wrfusee=ff
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMEREXTRAFLAGS)
ifdef AVRISP

PROGRAMMERFLAGS-INP=-dprog=stk500 -dserial=$(AVRISPDEV) \
-dpart=ATmega128

endif
endif
ifeq ($(PLATFORM), jona)
PROGRAMMER-PART=-dpart=ATmegal28 -- wrjfusee=ff
endif
ifeq ($(PLATFORM), mica2)
BOOTLOADER=$(XNPDIR)/inpispm2.srec
PROGRAMMERPART=-dpart=ATmegal28 -- wr-fusee=ff
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMER-EXTRA-FLAGS)
ifdef AVRISP

PROGRAMMER-FLAGS-INP=-dprog=stk500 -dserial=$(AVRISPDEV) \
-dpart=ATmega128

endif
endif
ifeq ($(PLATFORM), mica2dot)
BOOTLOADER =$(XNPDIR)/inpispm2d.srec
PROGRAMMERPART=-dpart=ATmegal28 -- wrjfuse-e=ff
PROGRAMMERFLAGSINP=-dprog=dapa $(PROGRAMMER-EXTRA-FLAGS)
ifdef AVRISP

PROGRAMMERFLAGSINP=-dprog=stk500 -dserial=$(AVRISPDEV) \
-dpart=ATmega128

endif
endif

##
Rules for documentation generation
##

180

add documentation flags to ncc, if requested
DOCS := $(filter docs, $(MAKECMDGOALS))
MAKECMDGOALS := $(filter-out docs, $(MAKECMDGOALS))
ifeq ($(DOCS)-x, docs-x)
build: FORCE

(echo Making documentation for $(COMPONENT) on $(PLATFORM)"
nesdoc $(DOCDIR)/$(PLATFORM) -fnesc-is-app $(PFLAGS) $(CFLAGS) \

$(COMPONENT).nc
endif

dummy rule for 'docs' target - so make won't complain about it
does:

Ctrue

##
Rules for debugging
##

add documentation flags to ncc, if requested
DBG := $(filter debug, $(MAKECMDGOALS))
MAKECMDGOALS := $(filter-out debug, $(MAKECMDGOALS))
ifeq ($(DBG)_x, debug-x)
OPTFLAGS := -01 -g -fnesc-no-inline
endif

dummy rule for 'debug' target - so make won't complain about it
debug:

Ltrue

For those who like debugging optimised code, there's debugopt
DBGOPT := $(filter debugopt, $(MAKECMDGOALS))
MAKECMDGOALS := $(filter-out debugopt, $ (MAKECMDGOALS))
ifeq ($(DBGOPT)_x, debugopt-x)
OPTFLAGS := $(OPTFLAGS) -g
endif

dummy rule for 'debug' target - so make won't complain about it
debugopt:

©true

##
top-level rules. switch based on MAKECMDGOALS

rules for make clean

ifeq ($(MAKECMDGOALS)-x, clean-x)

181

PLATFORM=

$(PLATAUX):
@echo

else

ifeq ($(PLATFORM)_x,_x)
$(error $(PLATAUX) $(MAKECMDGOALS) $(USAGE))
endif

MAKECMDGOALS $(patsubst install.%,install,$(MAKECMDGOALS))
MAKECMDGOALS := $(patsubst reinstall.%,reinstall,$(MAKECMDGOALS))

rules for make install <platform>

ifeq ($(MAKECMDGOALS)_x, instalLx)

$(PLATAUX):
Ltrue

else
ifeq ($(MAKECMDGOALS)_x, reinstall-x)

$(PLATAUX):
Otrue

else
ifeq ($(MAKECMDGOALS)-x, inp-x)

$(PLATAUX):
Otrue

else
all:

for platform in $(PLATFORMS); do \
$(MAKE) $$pfatform $(DOCS) | exit 1; \

done

$(PLATFORMS): build

endif
endif
endif
endif

##

Begin main rules

##44 ff f ffMf r

182

##

ifneq ($(DOCS)_x, docs-x)
build: $(MAIN-TARGET)
endif

install: $(MAINSREC) FORCE
@$(MAKE) $(PLATFORM) re$@ PROGRAMMER="$ (PROGRAMMER)"

PROGRAMMERFLAGS=" $ (PROGRAMMERFLAGS)"

install.%: $(MAINSREC) FORCE
$(MAKE) $(PLATFORM) re$@ PROGRAMMER="$(PROGRAMMER)"

PROGRAMMERFLAGS= "$ (PROGRAMMERFLAGS) "

ifeq ($(PROGRAMMER),DAPA) ### program via parallel port

reinstall: FORCE
Aecho " installing $(PLATFORM) binary"
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- erase
sleep 1
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- upload if=$(MAIN-SREC)
sleep 1
$(PROGRAMER) $(PROGRAMMERFLAGS) -- verify if=$(MAINSREC)

reinstall.%: FORCE
Aecho " installing $(PLATFORM) binary"
$(SETID) $(MAINSREC) $(MAINSREC).out \

'echo $@ |perl -pe 's/^reinstall.//; $$-=hex if /^Ox/i;"
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- erase
sleep 1
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- upload if=$(MAIN-SREC).out
sleep 1
$(PROGRAMER) $(PROGRAMMERFLAGS) -- verify if=$(MAINSREC).out

else ### Otherwise, program via the stk500 where STK specifies a network address

reinstall: FORCE
Cecho " installing $(PLATFORM) binary"
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- erase -- upload if=$(MAINSREC)

reinstall.%: FORCE
@echo " installing $(PLATFORM) binary"
$(SETID) $(MAIN-SREC) $(MAIN-SREC).$*.out \

'echo $0 1perl -pe 's/reinstall.//; $$-=hex if /^Ox/i;''
$(PROGRAMER) $(PROGRAMMER-FLAGS) -- erase -- upload \

if=$(MAINSREC).$*.out

endif ### Done programming

$(MAIN-EXE): $(BUILDDIR) FORCE
@echo " compiling $(COMPONENT) to a $(PLATFORM) binary"
$(NCC) -o $(MAINEXE) -v $(OPTFLAGS) $(PFLAGS) $(CFLAGS) \

$(COMPONENT).nc $(LIBS) $(LDFLAGS)
Cecho " compiled $(COMPONENT) to $0"

183

Lobjdump -h $(MAIN-EXE) I perl -ne '$$b{$$1}=hex $$2 if \
/^\s*\d+\s*\. (text I data l bss)\s+(\S+)/; END { printf ("%16d bytes in \

ROM\n%16d bytes in RAM\n",$$b{text}+$$b{data},$$b{bss}); }'

$(MAINSREC): $(MAIN-EXE)
$(OBJCOPY) -- output-target=srec $(MAINEXE) $(MAIN-SREC)

$(BUILDDIR):
mkdir -p $(BUILDDIR)

clean: FORCE
rm -rf $(BUILDDIR)
rm -f core.*
rm -f *~

uploading boot loader for network reprogramming. Do this after loading app srec file.
using either 'make install' or 'make reinstall'

inp: FORCE
$(PROGRAMER) $(PROGRAMMERFLAGSINP) -- upload if=$(BOOTLOADER)

FORCE:

.phony: FORCE

184

Appendix I

JONA Platform Directory Files

Below are the contents of the files in the JONA platform directory, in alphabetical

order. See Section 4.2.4 for descriptions of these files organized by function.

1.1 .platform

@opts = ("-gcc=avr-gcc",
"-mmcu=atmega128",
"-fnesc-target=avr",
"-fnesc-no-debug");

push @opts, "-mingw-gcc" if $cygwin;

@commonplatforms = ("mical28", "mica", "avrmote");

1.2 accel.h

* Authors: Alec Woo, David Gay, Philip Levis
* Date last modified: 6/25/02

* @author
* @author
* @author

Alec Woo
David Gay
PhilipLevis

@ @author Jamison Hope

185

* All irrelevant portions of sensorboard.h have been commented out.
* They have been been left in the file (rather than being deleted
* entirely) so that its heritage is more obvious.

enum {
/1 TOSHACTUALPHOTO-PORT = 1,
1/ TOSH-ACTUAL-TEMP-PORT = 1,
// TOSH-ACTUALMIC-PORT = 2,
TOSH-ACTUALACCELXPORT = 3,
TOSHACTUAL-ACCELYPORT = 4,
1/ TOSH-ACTUALMAGXPORT = 6,
// TOSH-ACTUALMAG-Y-PORT = 5

enum {
// TOSADCPHOTO-PORT = 1,
// TOS-ADCTEMPPORT = 2,
/ TOSADCMIC-PORT = 3,

TOSADCACCEL-X-PORT = 4,
TOSADCACCELYPORT = 5,
/ TOSADC-MAG-X-PORT = 6,

// TOSADCVOLTAGEPORT = 7, defined this in hardware.h
// TOSADC-MAGY-PORT = 8,

// enum {
// TOS-MAG-POT-ADDR 0,
// TOS-MICPOTADDR 1

/1 };

/1 TOSHALIASPIN(PHOTOCTL, INT1);
// TOSH.ALIASPIN(TEMPCTL, INT2);
/1 TOSH-ALIASPIN(TONE-DECODESIGNAL, INT3);
/1 TOSH-ALIASOUTPUT-ONLYPIN(MIC-CTL, PWS);
// TOSHALIASOUTPUT-ONLY-PIN(SOUNDERCTL, PW2);
// TOSH-ALIASOUTPUT-ONLYPIN(ACCEL-CTL, PW4);
/1 TOSHALIASOUTPUT-ONLY-PIN(MAG_CTL, PW5);
1/ TOSHALIASOUTPUTONLY-PIN(MIC-MUX-SEL, PW6);

1.3 Accel.nc

* This Accel.nc is based upon micasb's Accel.nc, with the "includes"
* line changed to use accel.h rather than sensorboard.h.

* @author Jamison Hope

includes accel;
configuration Accel

186

{
provides interface ADC as AccelX;
provides interface ADC as AccelY;
provides interface StdControl;

}
implementation

{
components AccelM, ADCC;

StdControl = AcceIM;
AccelX = ADCC.ADC[TOS-ADC.ACCELX-PORT];
AccelY = ADCC.ADC[TOS-ADCACCEL-Y-PORT];
AccelM.ADCControl -> ADCC;

}

1.4 AccelM.nc

* Authors: Alec Woo, Su Ping

* @author Alec Woo
@ @author Su Ping

* This AccelM.nc is based upon micasb's AccelM.nc, with the "includes"
* line changed to use accel.h rather than sensorboard.h. It also
* removes irrelevant "CTL" pin references.

*@author Jamison Hope

includes accel;
module AccelM {

provides interface StdControl;
uses {

interface ADCControl;

}
}
implementation {

command result-t StdControl.init({
call ADCControl.bindPort(TOSADC -ACCEL-X-PORT,

TOSHACTUAL-ACCEL-X-PORT);
call ADCControl.bindPort(TOS-ADCACCEL-Y-PORT,

TOSH-ACTUALACCELY-PORT);
dbg(DBGBOOT, "ACCEL initialized. \n");
return call ADCControl.inito;

}
command result-t StdControl.start() {

return SUCCESS;

187

}

command result-t StdControl.stop() {
return SUCCESS;

}
}

1.5 ADCC.nc

* Authors:
* Date last modified:

Jason Hill, David Gay, Philip Levis
6/25/02

" @author Jason Hill
* @author David Gay
* @author Philip Levis

configuration ADCC

provides {
interface ADC[uint8-t port];
interface ADCControl;

}
}
implementation
{

components ADCM, HPLADCM;

ADC =ADCM;
ADCControl = ADCM;
ADCM.HPLADC -> HPLADCM;

}

1.6 ChannelMonC.nc

* Modified for JONA by Nathaniel Osgood and Jamison Hope.

module ChannelMonC {
provides interface ChannelMon;
uses {

interface Random;

}
}

188

implementation {
enum {

IDLESTATE,
STARTSYMBOLSEARCH,
PACKET-START,
DISABLED-STATE

};

enum {
SAMPLE-RATE = 100/2*4

I;

unsigned short CM-search[2];

char CM-state;

unsigned char CM-1astBit;

unsigned char CM-startSymBits;
short CM-waiting;

async command result-t ChannelMon.init() {
atomic {

CM-waiting = -1;

}
return call ChannelMon.startSymbolSearcho;

}

async command result-t ChannelMon.startSymbolSearcho {
atomic {

//Reset to idle state.
CM-state = IDLE-STATE;
//set the RFM pins.
TOSHSET-RFM-CTLO-PINO;
TOSHSET-RFM-CTL1 -PINO;
TOSHCLR-RFMTXD-PINo;
cbi(TIMSK, OCIE2); // clear interrupts
cbi(TIMSK, TOIE2); // clear interrupts
cbi(TIMSK, OCIE2); // clear interrupts
outb(TCCR2, OxOA); // scale the counter: modified from mica's 0x09 for no

// scaling to OxOa for scale/8
outb(OCR2, SAMPLERATE); // set upper byte of comp reg.
sbi(TIMSK, OCIE2); // enable timeri interupt
outb(TCNT2, OxOO); // clear current counter value
sbi(DDRB, 6);

}
return SUCCESS;

}

TOSH-SIGNAL(SIG-OUTPUT-COMPARE2) {
uint8-t bit = TOSHREADRFM-RXDPINO;
atomic { // Unnecessary, but nesC doesn't understand SIGNAL

//fire the bit arrived event and send up the value.

if (CM-state == IDLE-STATE) {
CM-search[l] <<= 1;
CM-search[0] = CM-search[0] I (bit & Ox1);
if(CM-waiting != -1){

189

CM-waiting -- ;
if(CM-waiting == 1){

if ((CM-search[0] & Oxfff) == 0) {
CM-waiting = -1;
signal ChannelMon.idleDetectO;

}else{
CM-waiting = (call Random.rando & Ox1f) + 30;

}
}

}
if ((CM-search[0] & 0x777) == 0x707){

CM-state = START-_SYMBOLSEARCH;
CM-search[0I = CM-search[1] = 0;
CM-startSymBits = 30;

}
}else if(CM-state == STARTSYMBOL-SEARCH){

unsigned int current = CM-search[CM-lastBit];
CM-startSymBits--;
if (CM-startSymBits ==)

CM-state = IDLE-STATE;

I
if (CM-state != IDLESTATE) {

current <<= 1;
current &= Ox1ff; // start symbol is 9 bits
if(bit) current = Ox1; / start symbol is 9 bits
if (current == 0x135) {

cbi(TIMSK, OCIE2);
CM-state = IDLE-STATE;
signal ChannelMon.startSymDetectO;

I
if (CM-state != IDLESTATE) {

CM-search[CM-lastBit] = current;
CM-lastBit ^= 1;

}
}

}
}
return;

}

async command result-t ChannelMon.stopMonitorChannel() {
//disable timer
atomic {

cbi(TIMSK, OCIE2);
CM-state = DISABLED-STATE;

}
return SUCCESS;

I

async command result-t ChannelMon.macDelay() {
atomic {

CM-search[0] = Oxff;
if(CM-waiting == -1) {

CM-waiting = (call Random.rand() & 0x2f) + 80;

190

}
}

return SUCCESS;
}

}

1.7 hardware.h

/* Authors: Jason Hill, Philip Levis, Nelson Lee, David Gay,
Nathaniel Osgood, Jamison Hope

" @author Jason Hill
" @author Philip Levis
* @author Nelson Lee
* @author David Gay
* @author Nathaniel Osgood
* @author Jamison Hope

" The JONA hardware.h header file. It is based upon the header files of

* mica, mica128, and mica2.

#ifndef TOSH-HARDWAREH
#define TOSH-HARDWARE-H

#define TOSH-NEWAVRLIBC // jona requires avrlibc v. 20021209 or greater
#include <avrhardware.h>

// avrlibc may define ADC as a 16-bit register read. This collides

// with the nesc ADC interface name

uint16-t inline getADC() {
return inw(ADC);

I
#undef ADC

TOSH-ASSIGN-PIN(DEBUG, A, 0);
TOSHASSIGNPIN(LED, B, 7);

/* HPLPowerManagementM.nc, which is inherited from MICA, uses

* ATmega103 names for the registers. In particular, it calls

" the UART control register "UCR". We must map this name
* to the appropriate control register in the ATmega128, namely

* USARTO's control and status register B: UCSROB.*/
#define UCR UCSROB

TOSHASSIGNPIN(INT1, D, 1);
TOSH-ASSIGN-PIN(INT2, D, 2);

191

TOSHASSIGNPIN(INT3, D, 3);

TOSHASSIGNPIN(RFM-RXD, B, 2);
TOSH-ASSIGNPIN(RFM-TXD, B, 3);
TOSHASSIGNPIN(RFMCTLO, D, 7);
TOSHASSIGNPIN(RFMCTL1, D, 6);

/1 These are for SOFTWARE based 12C on pins A4 and A5 only
/1 Hardware based I2C uses different pins. (DO, D1)
TOSHASSIGNPIN(I2CBUS1-SCL, A, 4);
TOSH-ASSIGNPIN(I2CBUS1_SDA, A, 5);

TOSH-ASSIGNPIN(UART-RXDO, E, 0);
TOSH-ASSIGNPIN(UART-TXDO, E, 1);
TOSH-ASSIGNPIN(UARTRXD1, D, 2);
TOSHASSIGNPIN(UARTTXD1, D, 3);

void TOSHSET-PIN-DIRECTIONS(void)
{

outb(DDRA, Ox00);
outb(DDRB, Ox00);
outb(DDRD, Ox00);
outb(DDRE, 0x02);
outb(PORTE, 0x02);
TOSH-MAKE-LEDOUTPUTo;

TOSHMAKE-RFM-CTLOOUTPUTo;
TOSHMAKE-RFM-CTLKOUTPUTO;
TOSHMAKERFMTXDOUTPUT(;

TOSHSET-LED-PINo;
}

// Sensor- independent ADC constants

// The number of virtual ADC channels.
enum {

TOSH-ADC-PORTMAPSIZE = 12

};

enum

{
TOSHACTUALVOLTAGEPORT = 7,
TOSHACTUALBANDGAP-PORT = 30, // Per Table 98 of the ATmega128 manual
TOSH-ACTUALGND-PORT = 31, // (and mica2's hardware.h)

enum

{
TOS-ADCVOLTAGEPORT = 7,
TOS-ADCBANDGAPPORT = 10, // Borrowed from mica2's hardware.h
TOS-ADCGND-PORT = 11, //

};

#endif 11TOSHH ARDWAREH

192

1.8 HPLADCM.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Version: $Id: HPLADCM.nc,v 1.6.4.6 2003/08/26 09:08:16 cssharp Exp $

// The hardware presentation layer. See hpl.h for the C side.
/ Note: there's a separate C side (hpl.h) to get access to the avr macros

// The model is that HPL is stateless. If the desired interface is as stateless
// it can be implemented here (Clock, FlashBitSPI). Otherwise you should
/ create a separate component

* @author Jason Hill
@ @author David Gay

* @author Philip Levis

* This is the mica2 HPLADCM, modified for use with the jona hardware.
* This modification mainly entails replacing the deprecated "outp"
* with its replacement, "outb" (see <avr/sfr-defs.h>).

* @author Jamison Hope

module HPLADCM {
provides {

interface StdControl;
interface HPLADC as ADC;

}
}
implementation

{
/* The port mapping table */
bool init-portmap-done;
uint8-t TOSH-adc-portmap[TOSHADCPORTMAPSIZE];

void init-portmap() {
/* The default ADC port mapping */
atomic {

if(init-portmap-done == FALSE) {
int i;
for (i = 0; i < TOSH-ADCPORTMAPSIZE; i++)

TOSH-adc-portmap[i = i;

// Setup fixed bindings associated with ATmega128 ADC
TOSH-adc-portmap[TOS-ADC-BANDGAP-PORT

= TOSH-ACTUAL-BANDGAP-PORT;
TOSH-adc-portmap[TOSADC.GNDPORT = TOSH-ACTUAL-GNDPORT;
init-portmap-done = TRUE;

}

193

}
}

command result-t StdControl.init() {
call ADC.initO;

}

command resultt StdControl.startO {
}

command result-t StdControl.stopo {
cbi(ADCSR,ADEN);

I

async command result-t ADC.init() {
init-portmapo;

// Enable ADC Interupts,
// Set Prescaler division factor to 64
atomic {

outb(ADCSR, ((1 << ADIE) 1 (6 << ADPSO)));

outb(ADMUX,O);
I
return SUCCESS;

I

async command result-t ADC.setSamplingRate(uint8.t rate) {
uint8_t current-val = inb(ADCSR);
current-val = (current-val & OxF8) I (rate & 0x7);
outb(ADCSR, current-val);
return SUCCESS;

I

async command result-t ADC.bindPort(uint8_t port, uint8-t adcPort) {
if (port < TOSH-ADC-PORTMAPSIZE &&

port 1= TOSADC-BANDGAPPORT &&
port != TOSADC-GND-PORT) {

init-portmapo;
atomic TOSH-adc-portmap[port] = adcPort;
return SUCCESS;

}
else

return FAIL;

I

async command result-t ADC.samplePort(uint8_t port) {
atomic {

outb(ADMUX, (TO SHadc-portmap[port] & OxIF));

}
sbi(ADCSR, ADEN);
sbi(ADCSR, ADSC);

return SUCCESS;

194

I

async command result-t ADC.sampleAgain() {
sbi(ADCSR, ADSC);
return SUCCESS;

I

async command result-t ADC.sampleStop() {
// SIGADC does the stop
return SUCCESS;

I

default async event result-t ADC.dataReady(uintl6_t done) { return SUCCESS; }

TOSH-SIGNAL(SIG-ADC) {
uint16_t data = inw(ADCL);
data &= Ox3ff;
sbi(ADCSR, ADIF);
cbi(ADCSR, ADEN);
-_nesc-enable.interrupt();
signal ADC.dataReady(data);

}
}

1.9 HPLPotC.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/25/ 02

/1 The hardware presentation layer. See hpl.h for the C side.
// Note: there's a separate C side (hpl.h) to get access to the avr macros

// The model is that HPL is stateless. If the desired interface is as stateless
//it can be implemented here (Clock, FlashBitSPI). Otherwise you should
/ create a separate component
// Pot is not used in mica2dot

* @author Jason Hill
* @author David Gay
* @author Philip Levis

* The JONA has no potentiometer, so do nothing.
*

* @author Jamison Hope

module HPLPotC {

195

provides interface HPLPot as Pot;

}
implementation

{
command result-t

return SUCCESS;

}

command result-t
return SUCCESS;

}

command result-t
return SUCCESS;

}
}

Pot.decreaseo {

Pot.increaseo {

Pot.finaliseo {

1.10 HPLSlavePinC.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/25/02

// Low-level slave pin control

* #author Jason Hill
@ @author David Gay

* @author Philip Levis

* The JONA has no slave pin, so do nothing.

* @author Jamison Hope

module HPLSlavePinC {
provides interface HPLSlavePin as SlavePin;

}
implementation

{
async command result-t SlavePin.high({

return SUCCESS;
}

async command result-t SlavePin.low() {
return SUCCESS;

}
}

196

1.11 HPLUARTM.nc

module HPLUARTM {
provides interface HPLUART as UART;

}
implementation {

async command result-t UART.initO {

// Set up UART for 9600 baud rate:

outb(UBRROH, 0); // per ATmega128 manual table 74: 95 =

outb(UBRROL,95); // baud = 9600, osc = 14.7456E6

// Enable reciever and transmitter and their interrupts

outb(UCSROB, ((1<<RXCIE) I (1<<TXCIE) I (1<<RXEN)

// Set frame format: 8 data-bits, 1 stop-bit

outb(UCSROC, ((1<<UCSZ1) I (1<<UCSZO)));

return SUCCESS;

I

async command result-t UART.stop() {

(osc/ (16* baud))- 1

1 (1<<TXEN)));

// Clear out USA RTO's three status registers.

outb(UCSROA, OxOO);
outb(UCSROB, OxOO);
outb(UCSROC, OxOO);

return SUCCESS;

}

async default event result-t UART.get(uint8_t data) { return SUCCESS; }
TOSHSIGNAL(SIG.UARTORECV) {

if (inb(UCSROA) & (1 << RXC))
signal UART.get(inb(UDRO));

}

async default event result-t UART.putDone({ return SUCCESS; }
TOSH-INTERRUPT(SIGUARTO-TRANS)

signal UART.putDone(;

I

async command result-t UART.put(uint8-t data) {
sbi(UCSROA, TXC);
outb(UDRO, data);
return SUCCESS;

}

197

}

1.12 IntToLed.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/25/02

* @author Jason Hill
* @author David Gay
* @author Philip Levis

* Author: Jamison Hope
* Date last modified: 5/10/05

@ @author Jamison Hope

* IntToLedsM modified to use Led

configuration IntToLed

I
provides interface IntOutput;
provides interface StdControl;

}
implementation

{
components IntToLedM, LedC;

IntOutput IntToLedM.IntOutput;
StdControl = IntToLedM.StdControl;
IntToLedM.Led -> LedC.Led;

}

1.13 IntToLedM.nc

* Authors: Jason Hill, David Gay, Philip Levis, Nelson Lee
* Date last modified: 6/25/02

* @author Jason Hill
* @author David Gay
* @author Philip Levis
* @author Nelson Lee

198

* Author: Jamison Hope
* Date last modified: 5/10/05

@ author Jamison Hope

* IntToLedsM modified to use Led

module IntToLedM {
uses interface Led;

provides interface
provides interface

IntOutput;

StdControl;

}
implementation

{
command result-t StdControl.init()
{

call Led.initO;
call Led.Off ();
return SUCCESS;

}

command resultt StdControl.start({
return SUCCESS;

}

command result-t StdControl.stop({
return SUCCESS;

}

task void outputDone()

{
signal IntOutput.outputComplete(SUCCESS);

}

command result-t IntOutput.output(uintl6_t value)

{
if (value & 1) call Led.Ono;
else call Led.Offo;

post outputDone(;
return SUCCESS;

}

1.14 IntToLedsArray.nc

* Authors: Jason Hill, David Gay, Philip Levis

199

}

* Date last modified: 6/25/ 02

* @author
* @author
* @author

Jason Hill
David Gay
Philip Levis

* Author: Jamison Hope
* Date last modified: 11/4/04

@ @author Jamison Hope

* IntToLeds modified to use LedsArray instead.

configuration IntToLedsArray

{
provides interface IntOutput;
provides interface StdControl;

}
implementation
I

components IntToLedsArrayM, LedsArrayC;

IntOutput = IntToLedsArrayM.IntOutput;
StdControl = IntToLedsArrayM.StdControl;
IntToLedsArrayM.LedsArray -> LedsArrayC.LedsArray;

}

1.15 IntToLedsArrayM.nc

* Authors: Jason Hill, David Gay, Philip Levis, Nelson Lee
* Date last modified: 6/25/02

* @author
* @author
* @author
* cauthor

Jason Hill
David Gay
Philip Levis
Nelson Lee

* Author: Jamison Hope
* Date last modified: 5/10/05

200

@ Cauthor Jamison Hope

* IntToLedsM modified to use LedsArray

module IntToLedsArrayM {
uses interface LedsArray;

provides interface IntOutput;
provides interface StdControl;

}
implementation

{
command result-t StdControl.init()

{
call LedsArray.init(;
call LedsArray.allOff();
return SUCCESS;

}

command result-t StdControl.start({
return SUCCESS;

}

command result-t StdControl.stop({
return SUCCESS;

I

task void outputDone()

{
signal IntOutput.outputComplete(SUCCESS);

I

command result-t IntOutput.output(uintl6-t value)

{
call LedsArray.setv(value);

post outputDone(;
return SUCCESS;

}
}

1.16 Led.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/1/03

* Abstraction of the LEDs.

201

*

* @author Jason Hill
* @author David Gay
* @author Philip Levis

* Based upon TinyOS's Leds, this interface provides access to the LED
* on the PROBOmegal28.

* @author Nathaniel Osgood
* @author Jamison Hope

interface Led {

* Initialize the LED; among other things, initialization turns
* it off.

*/ @ return SUCCESS always.

async command result-t initO;

* Turn the LED on.

* @return SUCCESS always.

async command result-t Ono;

* Turn the LED off.

*/ * dreturn SUCCESS always.

async command result-t Off();

* Toggle the LED. If it was on, turn it off. If it was off,
* turn it on.

@ @return SUCCESS always.

async command result-t Toggle();

* Get current Led information

* @return A uint8_t typed value representing Led status

async command uint8_t get();

202

* Set Led to a specified value

* Lparam value ranging from 0 to 1 inclusive; for higher
* values, an even number will turn off the LED, and
* an odd number will turn it on.

* @return SUCCESS Always

async command result-t set(uint8-t value);

}

1.17 LedC.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/2/03

* @author Jason Hill
* @author David Gay
* @author Philip Levis

* Based upon TinyOS's LedsC, this component provides access to the LED

* on the PROBOmega128.
*

* @author Nathaniel Osgood
* @author Jamison Hope

module LedC {
provides interface Led;

}
implementation

{
uint8-t fOn;

async command result-t Led.initO {
atomic {

fOn = 0;
TOSH-SET-LED-PINo;

}
return SUCCESS;

}

async command result-t Led.Ono {
atomic {

TOSHCLRLEDPINo;
fOn = 1;

}
return SUCCESS;

203

}

async command result-t Led.Off({
atomic {

TOSHSETLEDPINo;
fOn = 0;

}
return SUCCESS;

}

async command result-t Led.Toggle() {
resultt rval;
atomic {

if (fOn)
rval = call Led.Offo;

else
rval = call Led.Ono;

I
return rval;

I

async command uint8-t Led.get() {
uint8_t rval;
atomic {

rval = fOn;

I
return rval;

I

async command result-t Led.set(uint8_t p-fOn) {
resultt rval;
atomic {

if (p-fOn % 2) // if p-fOn is even,
rval = call Led.Offo;

else // p-fOn is odd
rval = call Led.Ono;

I
return rval;

}
}

1.18 LedsArray.nc

* Interface file for an array of 10 LEDs intended to be connected
* to PC1, PCO, PA7..PAO (i.e. PC is the MSB and PAO is the LSB).

* @author Jamison Hope

interface LedsArray {

204

* Sets the DDRs for the ten pins to be output, and initializes
* the LedsArray to display OxO00.

async command result-t initO;

* Turns on all LEDs, regardless of previous state.

async command result-t allOno;

* Turns off all LEDs, regardless of previous state.

async command result-t allOff();

* Toggles all LEDs. Those which were on will now be off, and
* vice versa.

async command result-t allToggle(;

* Returns a 16-bit unsigned integer holding a value in the range
* [0,Ox3FF] representing the current displayed value.

async command uint16_t getO;

* Displays value, turning on and off the LEDs as appropriate.

async command result-t setv(uint16-t value);

* Increments the displayed value. Same as setv(get() + 1).

async command result-t incO;

* Decrements the displayed value. Same as setv(get() - 1).

async command result-t deco;

* Turns the corresponding LEDs on without affecting the states of
* the others.

async command result-t setav(uint16-t value);

* Clears the corresponding LEDs without affecting the states of
* the others.

async command result-t clrav(uintl6_t value);

205

}

1.19 LedsArrayC.nc

" Implementation file for an array of 10 LEDs intended to be connected

* to PC1, PCO, PA7. .PAO (i.e. PC1 is the MSB and PAO is the LSB).

* @author Jamison Hope

module LedsArrayC {
provides interface LedsArray;

}
implementation

{
uint16-t ledsOn;

// Defined later, does actual setting of pins.

void output(uint16-t num);

* Sets PC1..0 and PA7..0 to be output, leaves LEDs initially off.

async command result-t LedsArray.init() {
atomic {

ledsOn = 0;

DDRC =x3;
DDRA OxFF;
output(Ox3FF);

}
return SUCCESS;

}

* Turns all LEDs on.

async command result-t LedsArray.allOno {
atomic {

output(0);
ledsOn = Ox3FF;

}
return SUCCESS;

}

* Turns all LEDs off.

async command result-t LedsArray.allOff() {
atomic {

ledsOn = 0;

206

output(Ox3FF);

I
return SUCCESS;

}

* Toggles all LEDs.

async command result-t LedsArray.alToggle() {
atomic {

output(ledsOn);
ledsOn = (~IedsOn & Ox3FF);

I
return SUCCESS;

}

* Return the displayed value.

async command uint16_t LedsArray.get({
uint16_t rval;
atomic {

rval = ledsOn;

I
return rval;

}

* Set the displayed value.

async command result-t LedsArray.setv(uint16_t ledsNum) {
atomic {

ledsOn = (ledsNum & Ox3FF);
output(~ledsOn & Ox3FF);

I
return SUCCESS;

}

* Increment the displayed value.

async command result-t LedsArray.inc() {
atomic {

ledsOn = (ledsOn+1) & Ox3FF;
output(~ledsOn & Ox3FF);

}
return SUCCESS;

}

* Decrement the displayed value.

async command result-t LedsArray.deco {
atomic {

207

ledsOn = (ledsOn-1) & Ox3FF;
output(~1edsOn & Ox3FF);

}
return SUCCESS;

}

* Turn on additional LEDs indicated by parameter.

async command result-t LedsArray.seta(uint16_t turnOn) {
atomic {

ledsOn 1= (turnOn & Ox3FF);
output(~IedsOn & Ox3FF);

}
return SUCCESS;

}

* Turn off additional LEDs indicated by parameter.

async command result-t LedsArray.cra(uint16_t turnOff) {
atomic {

ledsOn &= (Ox3FF & ~turnOff);
output(~ledsOn & Ox3FF);

I
return SUCCESS;

}

" Set the ten LedsArray pins to the value indicated by
" the parameter, which should be in [0,Ox3FF]. Numbers
" outside of this range may affect non-LedsArray pins
" of Port C.

void output(uint16-t nun) {
PORTC = (PORTC & OxFC) I (num >> 8);
PORTA = num & OxFF;

}
}

1.20 LedsC.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/2/03

* @author Jason Hill
* @author David Gay
* @author Philip Levis

208

* Overrides the TinyOS LedsC component to map all Leds commands
* to the JONA Led. Uses module in file LedsM.nc.

* @author Jamison Hope

configuration LedsC {
provides interface Leds;

}
implementation {

components LedC, LedsM;

Leds = LedsM.Leds;
LedsM.Led -> LedC;

}

1.21 LedsM.nc

* Authors: Jason Hill, David Gay, Philip Levis
* Date last modified: 6/2/03

@ @author Jason Hill
* @author David Gay
* @author Philip Levis

/**

* The TinyOS LedsC component modified to map all Leds commands
* to the JONA Led. Wirings are made in JONA's LedsC.nc.

* @author Jamison Hope

module LedsM {
provides interface Leds;
uses interface Led;

}
implementation

{
async command result-t

return call Led.initO;
}

async command result-t
return call Led.Ono;

}

async command result-t
return call Led.Offo;

Leds.init() {

Leds.redOn() {

Leds.redOff() {

209

}

async command result-t Leds.redToggle() {
return call Led.Toggle(;

}

async command result-t
return call Led.Ono;

}

async command result-t
return call Led.Off();

}

async command result-t
return call Led.Toggleo;

}

async command result-t
return call Led.Ono;

}

async command result-t
return call Led.Offo;

}

Leds.greenOn() {

Leds.greenOff() {

Leds.greenToggle() {

Leds.yellowOn() {

Leds.yellowOff() {

async command result-t Leds.yellowToggle() {
return call Led.Toggleo;

}

async command uint8-t Leds.get() {
return call Led.get(;

}

async command result-t Leds.set(uint8_t ledsNum) {
return call Led.set(ledsNum);

}

1.22 photo.h

* Authors: Alec Woo, David Gay, Philip Levis
* Date last modified: 6/25/02

* @author Alec Woo
* @author David Gay
* @author Philip Levis

210

}

* @author Jamison Hope

* All irrelevant portions of sensorboard.h have been commented out.
* They have been been left in the file (rather than being deleted
" entirely) so that its heritage is more obvious.

enum {
TOSHACTUALPHOTO-PORT = 1,
// TOSH-ACTUALTEMP-PORT = 1,
// TOSH-ACTUALMIC-PORT = 2,
// TOSH-ACTUAL-ACCELX-PORT = 3,
/1 TOSHACTUAL-ACCEL-YPORT = 4,
1/ TOSH-ACTUALMAGX-PORT = 6,
// TOSH-ACTUALJMAG-YPORT = 5

};

enum {
TOSADCPHOTO-PORT = 1,
// TOSADCTEMP-PORT = 2,
// TOSADC-MIC-PORT = 3,
/ TOSADC-ACCELXPORT = 4,

1/ TOSADCACCELYPORT = 5,
// TOS-ADCMAGXPORT = 6,
/1 TOSADCAVOLTAGE-PORT = 7, defined this in hardware.h
// TOSADC-MAG-Y-PORT = 8,

// enum {
// TOS-MAG-POT-ADDR 0,
/1 TOSMIC-POT-ADDR 1

// };

/1 TOSH-ALIAS-PIN(PHOTO-CTL, INT1);
// TOSH-ALIASPIN(TEMP-CTL, INT2);
// TOSH-ALIAS-PIN(TONEDECODE-SIGNAL, INT3);
// TOSHALIAS-OUTPUT-ONLYPIN(MIC-CTL, PW3);
/1 TOSH-ALIAS-OUTPUTONLYPIN(SOUNDER-CTL, PW2);
// TOSH-ALIAS-OUTPUT-ONLYPIN(ACCELCTL, PW4);
1/ TOSH-ALIAS-OUTPUT-ONLYPIN(MAG-CTL, PW5);
// TOSHALIASOUTPUT-ONLY-PIN(MICMUX-SEL, PW6);

1.23 Photo.nc

* This Photo.nc is based upon micasb's Accel.nc, with the "includes"
* line changed to use photo.h rather than sensorboard.h. It has also
* been modified to be appropriate to Photo rather than Accel.

* @author Jamison Hope

211

includes photo;
configuration Photo

{
provides interface ADC as PhotoADC;
provides interface StdControl;

}
implementation

{
components PhotoM, ADCC;

StdControl = PhotoM;
PhotoADC = ADCC.ADC[TOSADC-PHOTOPORT];
PhotoM.ADCControl -> ADCC;

}

1.24 PhotoM.nc

* Authors: Alec Woo, Su Ping

* #author Alec Woo
* #author Su Ping

* This Photo.nc is based upon micasb's Accel.nc, with the "includes"
* line changed to use photo.h rather than sensorboard.h. It has also
* been modified to be appropriate to Photo rather than Accel, and it
* removes irrelevant "CTL" pin references.

* @author Jamison Hope

includes photo;
module PhotoM {

provides interface StdControl;
uses {

interface ADCControl;

}

implementation {

command result-t StdControl.initO {
call ADCControl.bindPort(TOSADC-PHOTO-PORT,

TOSHACTUALPHOTO-PORT);
dbg(DBG-BOOT, "PHOTO initialized. \n");
return call ADCControl.initO;

I
command result-t StdControl.startO {

return SUCCESS;

212

}

command result.t StdControl.stopO {
return SUCCESS;

}
}

1.25 RadioTimingC.nc

* Modified for JONA by Nathaniel Osgood and Jamison Hope.

module RadioTimingC {
provides interface RadioTiming;

I
implementation {

async command uint16_t RadioTiming.getTiming() {
/1enable input capture.
cbi(DDRB, 4);
while(TOSH-READ-RFMRXDPIN() { }
outb(TCCR1B, 0x42); /1 Changed from mica's 0x41 so it would get clk/8 from

/1 prescaler (per modification to ChannelMonC and
// SpiByteFifoC, as necessitated by the higher speed
// of the PROBOmega oscillator and limits of the RFM
1/ chip)

//clear capture flag
outb(TIFR, Oxl<<ICF1);
//wait for the capture.
while((inb(TIFR) & (Ox1 << ICF1)) == 0) {
sbi(PORTB, 6);
cbi(PORTB, 6);
return .inw-atomic(ICR1L);

}

async command uint16_t RadioTiming.currentTime() {
return -- inw-atomic(TCNT1L);

}

1.26 SpiByteFifoC.nc

* Modified for JONA by Nathaniel Osgood and Jamison Hope.

module SpiByteFifoC

{
provides interface SpiByteFifo;

213

uses interface SlavePin;

}
implementation

{
uint8_t nextByte;

uint8_t state;

enum {
IDLE,
FULL,
OPEN,
READING

};

enum {
BIT-RATE = 20 * 4 / 2 * 5/4

};

TOSHSIGNAL(SIGSPI) {
uint8_t temp = inb(SPDR);
/1 Assume state == FULL (we've

||isn't...)
outb(SPDR, nextByte);
state = OPEN;
signal SpiByteFifo.dataReady(temy

}

// Not really, but other TinyOS files think so;
/ we either have to change them all, or fake
// it here.

missed a deadline and are dead if it

async command result-t SpiByteFifo.send(uint8-t data) {
result-t rval = FAIL;
atomic {

if(state == OPEN){
nextByte = data;
state FULL;
rval = SUCCESS;

}
else if(state == IDLE){

state = OPEN;
signal SpiByteFifo.dataReady(0);
cbi(PORTB, 7);
sbi(DDRB, 7);
outb(SPCR, OxcO);
outb(SPDR, data);

//set the radio to TX.
TOSH-CLR-RFMCTLOPIN(;
TOSHSET-RFMCTL1_PIN(;
//start the timer.
cbi(TIMSK, TOIE2);
cbi(TIMSK, OCIE2);
outb(TCNT2, 0);
outb(OCR2, BITRATE);
outb(TCCR2, Oxia); // Changed scale from mica's no scaling (0x19) to

214

// clk/8 (x1a)
rval = SUCCESS;

}
}
return rval;

}

async command result-t SpiByteFifo.idle({
atomic {

outb(SPCR, OxOO);
outb(SPDR, OxOO);
outb(TCCR2, OxOO);
nextByte = 0;
TOSH-MAKERFMTXD-OUTPUTO;
TOSHCLR-RFMTXDPINo;
TOSHCLRRFMCTLOPINO;
TOSHCLRRFMCTL1-PINO;
state = IDLE;
nextByte = 0;

}
return SUCCESS;

}

async command result-t SpiByteFifo.startReadBytes(uintl6_t timing) {
uint8-t oldState;
/ This state transition is sufficient because no other
// function can execute when in the READING state. That is,
/1 except txMode() and idle(, but they only modify the RFM control
/1 pins, which this function doesn't deal with. - pal
atomic {

oldState = state;
if (state == IDLE) {

state = READING;

}
}
if(oldState == IDLE){

outb(SPCR, OxOO);
cbi(PORTB, 7);
sbi(DDRB, 7);
outb(TCCR2, OxO);
outb(TCNT2, Oxi);
outb(OCR2, BIT-RATE);
//don't change the radio state.
timing += (400-19);
if(timing > OxfffO) timing = xfffO;

//set the phase of the clock line
outb(TCCR2, Oxia); // Changed scale from mica's no scaling (0x19)

I/to clk/8 (Ox1a)
outb(TCNT2, BIT-RATE - 20);
while(inb(PINB) & 0x80){;}
while(-inw(TCNT1L) < timing){outb(TCNT2, OxO);}
outb(SPCR, OxcO);
outb(SPDR, Ox00);
sbi(PORTB, 6);

215

cbi(PORTB, 6);
return SUCCESS;

}
return FAIL;

}

async command result-t SpiByteFifo.txMode() {
atomic {

TOSHCLRRFM-CTLOPINO;
TOSHSETRFMCTL1 _PINO;

}
return SUCCESS;

}

async command result-t SpiByteFifo.rxMode() {
atomic {

TOSH-CLR-RFM-TXDPINo;
TOSHMAKERFM-TXDINPUTO;
TOSHSET-RFMCTLO-PINO;
TOSHSET-RFMCTL1 -PINO;

}
return SUCCESS;

}

async command result-t SpiByteFifo.phaseShift() {
unsigned char f;
atomic {

f = inb(TCNT2);
if(f > 20) f -= 20;
outb(TCNT2, f);

}
return SUCCESS;

}

* Even though JONA has no chance of signalling this event,
* we must provide an implementation since we officially
* use the SlavePin interface.

event result-t SlavePin.notifyuigho {
return SUCCESS;

}
}

216

Appendix J

Sample Applications

Below are the complete code listings for the sample applications discussed in Chap-

ter 5. In order, they are:

1. TestLedsArray (KnightRider)

2. TestUartSendReceive

3. OscilloscopeJonaRF

4. HumiditySense

J.1 KnightRider

J.1.1 Makefile

COMPONENT=KnightRider
include ../Makerules

J.1.2 KnightRider.nc

/ "I made this." -- Jamison Hope

* Configuration for TestLedsArray application.

configuration KnightRider {

217

}
implementation {

components Main, KnightRiderM, TimerC, LedsArrayC;

Main.StdControl -> TimerC.StdControl;
Main.StdControl -> KnightRiderM.StdControl;

KnightRiderM.Timer -> TimerC.Timer[unique("Timer");
KnightRiderM.LedsArray -> LedsArrayC;

}

J.1.3 KnightRiderM.nc

// "I made this." -- Jamison Hope

* Implementation for TestLedsArray application.

module KnightRiderM {
provides {

interface StdControl;

}
uses {

interface Timer;

interface LedsArray;

}
}
implementation {

uint8_t dir = 0;

* Initialize TestLedsArrayM. In this version,
* set up LedsArray and then output an initial

* value of OxOOL

command result-t StdControl.initO {
call LedsArray.init(;
return call LedsArray.setv(1);

}

* Start the repeating timer.

command result-t StdControl.startO {
// Start a repeating timer that fires every 100ms

return call Timer.start(TIMER-REPEAT, 100);
}

* Stop the timer.

command result-t StdControl.stop() {

218

return call Timer.stopO;

}

* Recall previous value, update it, and
* display the result. When either end
* is reached, reverse the direction.

event result.t Timer.firedo {
uint16-t cnt = call LedsArray.get(;

if(!dir && (cnt < Ox200)) {
cnt <<= 1;

} else if(dir && (cnt > Ox1)) {
cnt >>= 1;

} else {
dir -= Ox1;

}
return call LedsArray.setv(cnt);

}
}

J.2 TestUartSendReceive

J.2.1 Makefile

COMPONENT=TestUartSendReceive
include ../Makerules

J.2.2 TestUartSendReceive.nc

* Based in part upon TestUartSimple.

configuration TestUartSendReceive {
}
implementation {

components Main, HPLUARTC, TestUartSendReceiveM, LedC;

Main.StdControl -> TestUartSendReceiveM;

TestUartSendReceiveM.HPLUART -> HPLUARTC;
TestUartSendReceiveM.Led -> LedC;

}

219

J.2.3 TestUartSendReceiveM.nc

// Note: Communication is at 9600 baud.

module TestUartSendReceiveM {
provides {

interface StdControl;

}
uses {

interface Led;

interface HPLUART;

}
}
implementation {

command result-t StdControl.initO {
call HPLUART.initO;
return SUCCESS;

}

command result-t StdControl.startO {
return SUCCESS;

}

command result-t StdControl.stop() {
return SUCCESS;

}

async event resultLt HPLUART.get(uint8_t data) {
uint8_t response = data+1;

call Led.Toggle(;
call HPLUART.put(response);
return SUCCESS;

I

async event result-t HPLUART.putDone() {
return SUCCESS;

}

J.3 OscilloscopeJonaRF

J.3.1 Makefile

COMPONENT=OscilloscopeJonaRF
PFLAGS=-I../Oscilloscope
include ../Makerules

220

J.3.2 OscilloscopeJonaRF.nc

includes OscopeMsg;

* This configuration describes the Oscilloscope application,
* a simple TinyOS app that periodically takes sensor readings
* and sends a group of readings over the radio. The default
" sensor used is the Photo component. This application uses
" the AM-OSCOPEMSG AM handler.

configuration OscilloscopeJonaRF { }
implementation

{
components Main, OscilloscopeJonaRFM, TimerC, LedC, Accel,

GenericComm as Comm, LedsArrayC;

Main.StdControl -> OscilloscopeJonaRFM;
Main.StdControl -> TimerC;

OscilloscopeJonaRFM.Timer -> TimerC.Timer[unique("Timer")];
OscilloscopeJonaRFM.Led -> LedC;
OscilloscopeJonaRFM.SensorControl -> Accel;
OscilloscopeJonaRFM.ADC -> Accel.AccelX;
OscilloscopeJonaRFM.CommControl -> Comm;
OscilloscopeJonaRFM.ResetCounterMsg -> Comm.ReceiveMsg[AMOSCOPERESETMSG];
OscilloscopeJonaRFM.DataMsg -> Comm.SendMsg[AM-OSCOPEMSG];
OscilloscopeJonaRFM.LedsArray -> LedsArrayC;

}

J.3.3 OscilloscopeJonaRFM.nc

* Authors: Jason Hill
* History: created 10/5/2001

*/

* @author Jason Hill

* @author Jamison Hope

includes OscopeMsg;

* This module implements the OscilloscopeJonaRFM component, which
* periodically takes sensor readings and sends a group of readings
* over the UART. BUFFER-SIZE defines the number of readings sent

221

* in a single packet. The Yellow LED is toggled whenever a new
* packet is sent, and the red LED is turned on when the sensor
* reading is above some constant value.

module OscilloscopeJonaRFM

{
provides interface StdControl;
uses {

interface Timer;
interface Led;
interface StdControl as SensorControl;
interface ADC;
interface StdControl as CommControl;
interface SendMsg as DataMsg;
interface ReceiveMsg as ResetCounterMsg;
interface LedsArray;

}
}
implementation
{

uint8-t packetReadingNumber;
uint16_t readingNumber;
TOS-Msg msg[2];
uint8_t currentMsg;

* Used to initialize this component.

command result-t StdControl.initO {
call Led.initO;
call Led.Off();
call LedsArray.inito;

//turn on the sensors so that
call SensorControl.init();

call CommControl.initO;

atomic {
currentMsg = 0;
packetReadingNumber = 0;
readingNumber = 0;

}

they can be read.

dbg(DBGBOOT, "OSCOPE initialized\n");
return SUCCESS;

}

* Starts the SensorControl and CommControl components.
* @return Always returns SUCCESS.

command result-t StdControl.start() {
call SensorControl.start();

222

call Timer.start(TIMERREPEAT, 125);
call CommControl.start();
return SUCCESS;

}

* Stops the SensorControl and CommControl components.
* @return Always returns SUCCESS.

command result-t StdControl.stopO {
call SensorControl.stop(;
call Timer.stop(;
call CommControl.stopO;
return SUCCESS;

}

task void dataTask() {
struct OscopeMsg *pack;
atomic {

pack = (struct OscopeMsg *)msg[currentMsg].data;
packetReadingNumber = 0;
pack->lastSampleNumber = readingNumber;

}

pack->channel = 1;
pack->sourceMotelD = TOSLOCALADDRESS;

/* Try to send the packet. Note that this will return
* failure immediately if the packet could not be queued for
* transmission.

if (call DataMsg.send(TOS-BCAST-ADDR, sizeof(struct OscopeMsg),
&msg[currentMsg]))

{
atomic {

currentMsg ^= Ox1;
}
call Led.Toggle(;

}
}

* Signalled when data is ready from the ADC. Stuffs the sensor
* reading into the current packet, and sends off the packet when
* BUFFER-SIZE readings have been taken.
* @return Always returns SUCCESS.

async event result-t ADC.dataReady(uintl6-t data) {
uint16_t ledsArray = 0;
struct OscopeMsg *pack;
atomic {

pack = (struct OscopeMsg *)msg[currentMsg].data;
pack->data[packetReadingNumber++] = data;
readingNumber++;

223

dbg(DBG-USR1, "data-event\n");
if (packetReadingNumber == BUFFER-SIZE) {

post dataTasko;

}
}

// Update the LedsArray display
if(data < 349) {

ledsArray = OxOO1;
} else if(data < 390) {

ledsArray = 0x003;
} else if(data < 431) {

ledsArray = 0x007;
} else if(data < 472) {

ledsArray = OxOOF;
} else if(data < 513) {

ledsArray = OxO1F;
} else if(data < 553) {

ledsArray = OxO3F;
} else if(data < 594) {

ledsArray = OxO7F;
} else if(data < 635) {

ledsArray = OxOFF;
} else if(data < 676) {

ledsArray = Ox1FF;
} else {

ledsArray = Ox3FF;
}
call LedsArray.setv(ledsArray);

return SUCCESS;

}

" Signalled when the previous packet has been sent.
* @return Always returns SUCCESS.

event result-t DataMsg.sendDone(TOSMsgPtr sent, result-t success) {
return SUCCESS;

}

* Signalled when the clock ticks.
* @return The result of calling ADC.getData(.

event result-t Timer.fired() {
return call ADC.getData(;

}

* Signalled when the reset message counter AM is received.
* @return The free TOSMsgPtr.

event TOSMsgPtr ResetCounterMsg.receive(TOSMsgPtr m) {

224

atomic {
readingNumber = 0;

}
return m;

}
}

J.3.4 OscopeMsg.h

* Authors: Nelson Lee
* Date last modified: 6/27/02

*/

/* Message types used by Oscope. */

@ @author Nelson Lee

enum {
BUFFER-SIZE = 10

};

struct OscopeMsg

{
uint16_t sourceMoteID;
uint16-t lastSampleNumber;
uint16-t channel;
uint16_t data[BUFFERSIZE;

struct OscopeResetMsg

{
/* Empty payload! */

};

enum {
AM-OSCOPEMSG = 10,
AMOSCOPERESETMSG = 32

};

J.4 HumiditySense

J.4.1 Makefile

COMPONENT=HumiditySense

225

PFLAGS= -I%T/lib/Counters
include ../Makerules

J.4.2 HumiditySense.nc

/* "I made this." - Jamison Hope */

" Configuration file for HumiditySense, an application
" which senses relative humidity from a Humirel HS1101
" whose supporting circuitry is connected to PC2.

configuration HumiditySense {
}
implementation {

components Main, HumiditySenseM, TimerC, IntToLedsArray, LedC, IntToRfm;

Main.StdControl -> HumiditySenseM;
Main.StdControl -> TimerC;
Main.StdControl -> IntToLedsArray;
Main.StdControl -> IntToRfm;

HumiditySenseM.Timer -> TimerC.Timerlunique("Timer");
HumiditySenseM.Led -> LedC;
HumiditySenseM.IntOutput -> IntToRfm;
HumiditySenseM.IntOutput -> IntToLedsArray;

}

J.4.3 HumiditySenseM.nc

/* "I made this." - Jamison Hope +/

* Module file for HumiditySense.

module HumiditySenseM {
provides {

interface StdControl;

}
uses {

interface Timer;

interface Led;
interface IntOutput;

}
}
implementation {

command result-t StdControl.init() {
DDRC &= OxFB; /* set PORTC2 to be input */

226

return SUCCESS;
}

command result-t StdControl.start() {
return call Timer.start(TIMERREPEAT, 500);

}

command result-t StdControl.stopO {
return call Timer.stopo;

}

event result-t Timer.firedo {
uint16-t count;
call Led.Toggleo;
loop-until-bit-is-clear(PINC, 2);
count = 0;
loop-until-bit-is-set(PINC, 2);
do { ++count; } while(bit-is-set(PINC, 2));

* Capacitance in pF = (count incs)*(0.339us/inc)/((62lkOhm)*ln2)
= 0.78756 * count

*

(0.78756 * count) will be a number between 100 and 300
* so mult. by 78.756 will be between 10,000 and 30,000
* which is still 16 bits (this may reduce roundoff error
* since there's no floating point unit)

count *= 78.756; // now count represents cap in 10fF units

* Convert capacitance into %RH:
* Uses a piecewise-linear approximation to the equation in the
* HS1101 datasheet.
*
* count < 18500: %RH*100 = 3*count - 48900
* count > 18500: %R H* 100 = 2* count - 30400

if(count < 18500) {
count *=3;
count -= 48900;

} else {
count *= 2;
count -= 30400;

}
return call IntOutput.output(count);

I

event result-t IntOutput.outputComplete(result t success) {
return SUCCESS;

}
}

227

228

Appendix K

Software Licenses

The following licenses apply to all software files listed in the preceding Appendices.

K.1 Berkeley License

"Copyright @ 2000-2003 The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without written agreement is hereby granted, provided that the above
copyright notice, the following two paragraphs and the author appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS."

K.2 Intel License

Copyright @ 2002-2003 Intel Corporation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

229

" Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

" Neither the name of the Intel Corporation nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

K.3 MIT License

Copyright @ 2004-2005 Massachusetts Institute of Technology.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

230

Bibliography

[1] Analog Devices, Inc. ADXL311 ultracompact ±2g dual-axis accelerom-
eter data sheet. http://www.analog.com/UploadedFiles/Data-Sheets/
243920868ADXL311B.pdf. 119

[2] Analog Devices, Inc. ADXL311EB dual axis accelerometer evaluation board data
sheet. http: //www. analog. com/UploadedFiles/Evaluat ionBoards/Tools/
304023032930274734167868ADXL311EBa.pdf. 14, 119, 120

[3] Ken Arnold, James Gosling, and David Holmes. The JavaTMProgramming Lan-
guage, Third Edition. Addison-Wesley, 2000. 61

[4] Atmel Corporation. AT45DBO41B data sheet. http: //atmel. com/dyn/
resources/proddocuments/doc3443.pdf. 147

[5] Atmel Corporation. ATmega128 data sheet. http: //atmel. com/dyn/
resources/prod-documents/doc2467.pdf. 13, 51, 52, 137, 138, 174

[6] Atmel Corporation. AVR Instruction Set. http: //atmel. com/dyn/resources/
prod-documents/doc0856.pdf. 50, 139

[7] Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopper, Alan Jones, and
David Leask. Piconet: Embedded mobile networking. IEEE Personal Commu-
nications, pages 8-15, October 1997. 24

[8] Bluetooth@. http://www.bluetooth.com/. 24

[9] John Catsoulis. Designing Embedded Hardware. O'Reilly & Associates, 2002. 56

[10] Anantha Chandrakasan, Fred S. Lee, et al. MIT pAMPS Project. http://
www-mtl .mit .edu/research/icsyst ems/uamps/. 21

[11] Anantha Chandrakasan, Rex Min, Manish Bhardwaj, Seong-Hwan Cho, and
Alice Wang. Power aware wireless microsensor systems. In Keynote Paper ESS-
CIRC, Florence, Italy, September 2002. 21, 22

[12] Chipcon AS. CC1000 data sheet. http: //www. chipcon. com/f iles/CC1000_
DataSheet-2_2.pdf. 146

[13] Crossbow Technology, Inc. http: //www. xbow. com/. 18

231

[14] Crossbow Technology, Inc. MOTE-KIT4xOO MICA2 Classroom Kit. http: //
www.xbow. com/Products/productsdetails . aspx?sid=93. 63

[15] Cygwin. http://www.cygwin.com/. 79

[16] Dust NetworksTM. http: //www. dust-inc .com/. 18

[17] Ember Corporation. http: //www. ember. com/. 18

[18] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next
century challenges: Scalable coordination in sensor networks. In Proceedings
of the Fifth Annual ACM International Conference on Mobile Computing and
Networking, 1999. 17

[19] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesc language: A holistic approach to networked embed-
ded systems. In Proceedings of the ACM Conference on Programming Language
Design and Implementation, June 2003. 18, 79

[20] Steven D. Glaser. Some real-world applications of wireless wensor nodes. In
Proceedings, SPIE Symposium on Smart Structures & Materials/ NDE 2004,
San Diego, CA, March 14-18 2004. 19, 20, 27, 146

[21] Vadim Gutnik and Anantha P. Chandrakasan. Embedded power supply for
low-power DSP. In IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, volume 5, number 4, pages 425-435, December 1997. 21

[22] Jason Hill and David Culler. Mica: A wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12-24, November/December 2002. 18

[23] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister. System architecture directions for networked sensors. Architectural Sup-
port for Programming Languages and Operating Systems, pages 93-104, Novem-
ber 2000. 18, 79

[24] Gregory T. Huang. Casting the wireless sensor net. Technology Review,
July/August 2003. 17

[25] Humirel, Inc. HS1100 / HS1101 relative humidity sensor data sheet. http:
//www.humirel.com/product/fichier/HS1101-HS1100.pdf. 14, 130, 133, 134,
136, 140

[26] Intel Corporation. Research - Research Areas - Sensor Nets / RFID. http:
//www. intel. com/research/exploratory/wireless_sensors.htm. 18

[27] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language,
Second Edition. Prentice Hall P T R, 1988. 50, 61, 84, 118

232

[281 Amir Ehsan Khandani, Jinane Abounadi, Eytan Modiano, and Lizhong Zheng.
Cooperative routing in wireless networks. In Allerton Conference on Communi-
cations, Control and Computing, October 2003. 26

[29] Fred S. Lee. Analysis, design, and prototyping of a narrow-band radio for ap-
plication in wireless sensor networks. Master's thesis, Massachusetts Institute of
Technology, Cambridge, May 2002. 21, 23

[30] Dr. Erik Lins. PROBOmegal28 prototyping board. http: //lins. de/index.
pl?page=PROB0mega128&lang=en. 13, 70, 71, 137

[31] Dr. Erik Lins. PROBOmega128 prototyping board schematic. http://www.
chip45. com/en/downloads/probomegal28vl.2bschematic .pdf. 14, 161, 162

[32] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John
Anderson. Wireless sensor networks for habitat monitoring. In ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications, 2002. 17, 19

[33] Millennial Net, Inc. http://www.millennial.net/. 18

[34] Millennial Net, Inc. Millennial Net opens new windows of opportunity
for JELD-WEN. http: //www.millennialnet. com/pr/pressroom-fullstory.
cfm?storyID=55. 17

[35] Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Amit Sinha, Eugene Shih, Al-
ice Wang, and Anantha Chandrakasan. An architecture for a power-aware dis-
tributed microsensor node. In Proceedings of the IEEE Workshop on Signal
Processing Systems, October 2002. 21

[36] ncc Manual Page. http://www.tinyos.net/tinyos-1 .x/doc/nesc/ncc.html.
133

[37] Michael J. Neely and Eytan Modiano. Capacity and delay tradeoffs for ad-hoc
mobile networks. IEEE Transactions on Information Theory, to appear, 2005.
25

[38] Kris Pister, Barbara Hohlt, Jaein Jeong, Lance Doherty, and J.P. Vainio. Ivy: A
sensor network infrastructure for the University of California, Berkeley College
of Engineering. http: //www-bsac. eecs.berkeley. edu/projects/ivy/. 17

[39] Kris Pister, Joe Kahn, Bernhard Boser, and Steve Morris. SMART DUST: Au-
tonomous sensing and communication in a cubic millimeter. http: //www-bsac.
eecs.berkeley.edu/~pister/SmartDust/. 17

[40] Joseph Robert Polastre. Design and implementation of wireless sensor networks
for habitat monitoring. Master's thesis, University of California, Berkeley, 2003.
19

233

[41] RF Monolithics, Inc. DR3000-1 916.50 MHz Transceiver Module data sheet.
http://www.rfm.com/products/data/dr3000-1.pdf. 73

[42] RF Monolithics, Inc. TR1000 916.50 MHz Hybrid Transceiver data sheet.
http://www.rfm.com/products/data/tr000.pdf. 69

[43] Paul Scherz. Practical Electronics for Inventors. McGraw-Hill, 2000. 29

[44] Eugene Shih, Seong-Hwan Cho, Nathan Ickes, Rex Min, Amit Sinha, Alice Wang,
and Anantha Chandrakasan. Physical layer driven protocol and algorithm design
for energy-efficient wireless sensor networks. In Proceedings of the Seventh Annual
ACM International Conference on Mobile Computing and Networking, pages
272-286, July 2001. 25

[45] Bjarne Stroustrup. The C++ Programming Language, Special Edition. Addison-
Wesley, 2000. 61

[46] Texas Instruments, Inc. TLC555 LinCMOSTM timer data sheet. http: //f ocus.
ti. com/lit/ds/symlink/tlc555.pdf. 133

[47] TinyOS Community Forum. http: //www. tinyos. net/. 18

[48] TinyOS Naming Conventions. http://www.tinyos.net/tinyos-1.x/doc/
tutorial/naming. html. 82

[49] TinyOS Tutorial. http://www.tinyos.net/tinyos-1.x/doc/tutorial/. 127,
141

[50] ZigBee TMAlliance. http://www.zigbee.org/. 24

234

Index

accelerometer, 19, 20, 58, 65, 94, 119, 121,
125-127

ad hoc networking, 17, 20, 24, 146
ADC, 58, 64, 65, 70, 78, 80, 94, 96, 118,

119, 124-127, 129, 130, 145, 173
ADC (interface), 126, 173
analog-to-digital converter, see ADC
ATmega128, 50, 54, 55, 70, 72, 92, 95, 96,

137, 138, 145, 146, 174, 175
block diagram of, 51, 52

AVR, 50, 69, 70, 92, 96, 137, 139, 170

base station, 72, 119, 146, 147
Berkeley, 18-19, 65, 173
binary, 22, 99, 149-152
bit, 22, 50, 54-58, 70, 77, 78, 84, 93, 95,

97-104, 112, 114, 138, 140, 149,
151-152

Bluetooth, 24
byte, 50, 54, 56, 57, 79, 82, 84-88, 104,

115, 117, 118, 138, 141, 147, 149,
151, 153

ByteComm (interface), 82-88, 115, 165

capacitance, 40-42, 59, 129, 133, 136, 139,
141

capacitor, 40-42, 48, 73, 130, 133, 143
clock, 21, 54-57, 70, 77, 137, 138, 141, 145
communication

full-duplex, 56, 57
half-duplex, 56
parallel, 53-57, 72
serial, see serial port, 55-58, 77

cooperative routing, see routing, cooper-
ative

Crossbow, Inc., 18, 24, 63, 65, 66, 69, 70,
80, 170, 172, 173

crystal oscillator, see clock, 21, 53, 70, 72,
137

current, 30-32, 35-48, 59, 74, 77, 130,
133, 149

DDR, 54, 93, 99, 100, 104
diode, 45-47, 96, 100

light-emitting, see LED
DR3000-1, 73-77, 146, 163, 164
duty cycling, 20
dynamic voltage scaling, 21

electron, 30, 31, 34, 46, 157, 158
carrier, 158
valence, 157, 158

embedded devices, 18, 49, 50, 81
energy-aware computing, 21-22, 25
environment monitoring, 17

ground rail, 33, 39, 48, 49, 53-55, 57, 59,
60, 91, 96, 119, 127, 133, 152, 163,
164

habitat monitoring, 17, 19, 25
hole, 30, 46, 158, 159

12C, 55-57, 146, 147
inductance, 42-45, 59
inductor, 42-45, 73
Instruction Set Architecture, see ISA
IntOutput (interface), 97, 104-106, 133,

135, 140
inventory control, 17
ISA, 50, 61, 92

JONA Prototyping Kit, 26, 27, 29, 50, 63,
64, 66, 67, 69, 70, 72-74, 78, 79,
88, 89, 91, 94-97, 105, 107, 108,
115-117, 119, 127, 137, 138, 141,

235

143, 145-148, 163, 164, 169, 171,
173-175, 185

implementation of, 69-106
motivation for, 63-67

KCL, see Kirchhoff's Current Law
Kirchhoff's Current Law, 30-32, 36, 38,

40, 42, 43, 47
Kirchhoff's Voltage Law, 33-34, 36, 37,

40, 41, 43
KVL, see Kirchhoff's Voltage Law

Laboratory for Information and Decision
Systems, 26, 63

LED, 45, 66, 77, 78, 89, 91, 96-101, 103,
110, 117-119, 126, 140, 171

LedsArray, 77-78, 97-114, 119, 126, 133,
141

LedsArray (interface), 97-100, 102, 103,
105-108, 110, 114, 125

make, 88, 89, 91, 92, 133, 137, 138, 169-
171, 173

Makefile, 88, 92, 108, 121, 123, 133, 137,
138, 165, 172

Makerules, 88, 123, 133, 137, 169-184
MICA, 18, 19, 69, 74, 77, 78, 91, 92, 94-

97, 173, 175
MICA2, 63, 69, 70, 91, 95, 96, 147, 169,

170, 173, 175
MICAz, 24
[AMPS Project, 20-23, 25
[AMPS-1, 21
microcontroller, 17, 20, 21, 25, 27, 49-58,

66, 67, 69, 70, 72-74, 77, 79, 92,
95, 96, 133, 145, 170, 173-175

Microsystems Technology Labs, 21, 63
MIT, 18, 20, 21, 26, 29, 63, 64, 143
monitoring, 18

environment, 17
habitat, 17, 19, 25
inventory, 17
seismic, 19-20

mote, 17-20, 24, 25, 49, 64-67, 69, 70, 72,
74, 78, 80-82, 85, 88, 89, 91, 92,

107, 117-119, 121, 124, 127, 140,
143, 145, 147, 170-173, 175

multi-hop routing, see routing, multi-hop
multimaster bus, 55, 56
multimeter, 30, 32, 59-60

nesC, 18, 79, 81, 82, 84, 87, 109, 114, 121,
133, 165, 175

network
ad hoc, 17, 20, 24, 146
resistor, 36
wireless, 24, 26
wireless sensor, see WSN

Ohm's Law, 35-39, 45
op amp, 48-49, 69, 74, 163
open source, 18, 61, 69, 92, 145
operational amplifier, see op amp
oscillator, crystal, 21, 53, 70, 72, 137

parallel, 59
capacitors in, 40-42, 143
inductors in, 43-45
resistors in, 36-38

photoresistor, 49
Piconet , 24
potentiometer, 74, 91, 94, 95
power, 17, 20-22, 25, 26, 35, 39, 49, 65,

66, 70, 73, 74, 79, 91, 94, 96, 143,
145

power aware, 21, 25
power rail, 21, 33, 48, 49, 53-55, 57, 73,

77, 94, 96, 119, 127, 129, 133, 145,
152, 163

PROBOmega128, 70-73, 88, 89, 95, 96,
141, 145, 146, 161, 163, 164, 173

schematic of, 162
processor speed, see clock, 21, 70

increase, 21
power consumption tradeoff, 21

register, 50, 54, 55, 61, 104, 174
data, 50, 53, 138
DDR, see DDR
instruction, 50-53

resistance, 35-39, 49, 59, 129, 130

236

resistor, 35-40, 43, 45, 48, 49, 73, 74, 77,
129, 136, 163

RFID, 17
routing

cooperative, 25-26
multi-hop, 21-24, 26, 80, 146, 147
single-hop, 23

RS-232, 55, 57-58, 67, 70, 73, 89

seismic monitoring, 19-20
sensorboard, 66, 80, 94, 147, 172, 173
sensors, 17, 19, 20, 49, 58, 66, 80, 94, 118,

119, 124, 127, 129, 130, 133, 136,
141, 143, 172, 173

acceleration, see accelerometer, 17
humidity, 17, 19, 130, 136
infrared, 19
light, 17, 19, 49, 94, 119, 147
sound, 58
temperature, see thermistor, 17, 19,

49, 129
serial port, see UART, 57, 58, 67, 70, 72,

73, 83, 86, 91, 95, 117, 119, 127,
171

series, 45, 59, 74
capacitors in, 40, 41
inductors in, 43, 44
resistors in, 35-38
voltage sources in, 33

single-hop routing, see routing, single-hop
smart dust, 17
SPI, 55-57, 72, 74, 77, 146, 147
supply voltage, see power rail

thermistor, 35, 49, 129, 139
TinyOS, 18, 24, 27, 61, 65, 69, 79-82, 88,

91, 92, 96, 97, 107, 109, 110, 119,
127, 133, 140, 141, 145, 146, 165,
169, 170, 172, 173, 175

design of, 79-81
topology, 26
TR1000, 69, 73, 74, 95, 146
transistor, 46-48

UART, 57, 72, 79, 82, 83, 86, 95, 115-119,
127, 140, 165

UART (component), 83-86, 88, 116

voltage, 21, 22, 32-49, 54, 56-60, 70, 73,
74, 77, 89, 91, 96, 100, 127, 129,
130, 133, 143, 152

voltage divider, 38-39, 48, 49, 69, 73, 129,
163

voltage regulator, 70, 73, 163
voltage supply, see power rail

wireless sensor network, see WSN
WSN, 17-20, 22-27, 29, 49, 59, 63-65, 67,

72, 74, 78, 107, 127, 145-147

ZigBee, 24

237

