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Abstract

QWIPs which respond to normally incident radiation without the need for an op-
tical grating are of particular interest because they can be fabricated with fewer
process steps and increased expected yield. An important contribution of this work
is the demonstration of the first n-type QWIP (n-QWIP) which showed a significant
detectivity of 4x101 cm-H-z/Watt without the use of an optical grating. This detec-
tivity corresponds to a conversion efficiency of 4 % or, equivalently, a responsivity of
270 mA/W. This detectivity is significant because it is large enough for focal plane
array performance to be limited by the uniformity of processing rather than the size
of the single pixel detectivity.

An important part of this work was the development of numerically accurate physi-
cal models yielding simple analytical expressions for the QWIP leakage current and
photocurrent. This physical model yielded analytical expressions for the number of,
and the distance over which, carriers are depleted from quantum wells whenever the
photocurrent is larger than leakage current. This depletion capacitance is expected to
be important at high frequencies, in situations where the photocurrent is much larger
than the leakage current, and in QWIPs designed with a small number of quantum
wells (as when the quantum efficiency is large or an optical cavity is used).

Studies of the microscopic physics of quantum wells are presented to elucidate the
physical origin of the intersubband absorption of normally incident radiation. A key
result of this work is the derivation within the framework of k ·pf theory of selection
rules for the intersubband absorption of normally incident radiation by hole subbands
in a p-QWIP (p-doped QWIP) in the absence of an optical grating. It is found that
the absorption of normally incident radiation by holes in a p-QWIP in the absence of
an optical grating is largest for heavy hole to light hole transitions. The intersubband
absorption of normally incident radiation by electrons in an n-QWIP in the absence
of an optical grating is found within k - i theory to be much smaller than that in a
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p-QWIP. It is also found that k.- theory predicts that uniaxial strain does not have a
large effect on the strength or the selection rules of intersubband absorption because
the Hamiltonian describing uniaxial strain has the same (tetragonal) symmetry as
that describing the confinement of carriers in the quantum wells along the growth
direction.

Nonuniformity of device parameters across an array of QWIPs is an important issue.
High Resolution X-ray Diffraction (HRXRD) was used to measure the layer width
variations of QWIPs grown by molecular beam epitaxy. The spread of the measured
full-width-half-maxima of superlattice diffraction peaks with the diffraction order was
used with Bragg's Law to obtain the measured layer width variation in the growth
direction. It was found that the fractional layer width variation was about 2% for
three example growths. This layer width variation is consistent with an effusion cell
temperature variation of 1°C during growth.

A theoretical study has been made of different noise mechanisms which contribute to
QWIP performance. A key result found in this work is that when the signal-to-noise
ratio (SNR) is limited by either fixed pattern noise or thermal leakage arrival noise,
the optimal number of quantum wells for a maximum in the expected QWIP SNR is
roughly 7-l- , where 1l is the quantum efficiency of a QWIP having only one quantum
well.

Common QWIP designs used in industry are evaluated. In particular, the commonly
used n-QWIP design in which the confinement barriers are comprised of a semicon-
ductor superlattice is considered. This QWIP design is intended to reduce thermionic
leakage by pushing the three-dimensional continuum of energy further up in energy
by making the miniband transport through the superlattice barrier the means of pho-
tocurrent conduction. A Kronig-Penney model presented in this thesis showed that
this QWIP design, with a superlattice comprising the QWIP barriers, is expected to
have a tunneling leakage which is, at best, commensurate with QWIP barriers which
are made of a single semiconductor material but whose band edge is the average value
of the band edges of the semiconductors comprising the actual barrier superlattice.

The measured thermionic leakage was found to be in good agreement with a model
in which the leakage depends exponentially on an activation energy which varies
linearly with the applied bias. A deviation of the measured thermionic leakage from
the idealized model is proposed as a quantitative measure of the amount of excessive
leakage.

Thesis Supervisor: Clifton G. Fonstad, Jr.
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Band gap engineering allows the peak responsivity in the quantum well infrared pho-

todetector (QWIP) absorption spectrum to be designed to be at any place in the

infrared longer than about 2 Mm. This wavelength regime is useful for the identifica-

tion of unknown gases as well as for use in the Earth's atmosphere in the transparent

spectral regions of 3-5 pm and 8-12 pm. The spectral response of QWIPs is also very

narrow, and this narrow response can be used to determine the absolute temperature

of a target. Modern epitaxy and processing techniques can achieve high uniformity of

semiconductor parameters across entire III-V (GaAs and InP) wafers, which allows

for large Focal Plane Arrays (FPAs) of QWIPs with low spatial (fixed) pattern noise.

1.1 Applications for Infrared Photodetectors

Photodetectors which respond to wavelengths in the infrared (2-10 m) are useful

for the identification of unknown chemical species because many chemical species

have characteristic vibrational spectra in the infrared. Moreover, such photodetec-

tors are useful for sensing the heat radiated by a target, since the spectrum of the

heat radiated by a black body at room temperature has a peak at a wavelength of

10 pm. Photodetectors which respond in this wavelength range are also useful in any
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application which requires transmission through the Earth's atmosphere.

Figure 1-1 shows the calculated [1, 2] transmission through 5 km of summer atmo-

sphere at middle latitudes over farmland with a visibility of 5 km and no rain. The

principle features in the transmission curve are determined by the absorption of water,

carbon dioxide, and particulates in the atmosphere. The highly transmissive "win-

dows" in the infrared which are useful in QWIP applications are the long wavelength

IR window between 8 and 12 m, the "blue spike" in the mid wavelength IR win-

dow just shorter than 4 um, and the "red spike" in the mid wavelength IR window

centered at about 4.5 pum. Many surveillance applications require the detection of

targets of approximately room temperature through the wide spectral region of high

transmission between 8 and 12 Mm.

The different IR transmission windows also show differing photon flux contrast ratios.

The photon flux contrast is the fractional change in the number of radiated photons

for a unit change in temperature. For a black body having a power spectral density

W(A) given by

W(A) = (2 ) ((h/A T ) (1.1)
in units of Watt/cm 2-ster-/um, where W(A) is the power radiated into a unit solid

angle and into a unit wavelength interval centered at A and into both polarizations

for a black body of unit area and temperature TBB, the photon flux Dip radiated from

the black body into the wavelength range AL < A < AH is, in units of 1/cm2 -ster-sec,

P = Xj dA (4) (exp(hc/AksBTBB)-) (1.2)

The photon flux contrast is given by the derivative of Equation (1.2),

1 dp he
-p dT AkBT2

The photon flux (Equation (1.2)) radiated from a black body of temperature near

300K into 1 m wavelength range is shown in Figure 1-2. Figure 1-3 shows the

photon flux contrast, Equation (1.3), the fractional change in the photon flux for

a unit change in the black body temperature. The photon flux contrast is seen to
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Figure 1-1: The calculated [1, 2] transmission through 5 km of summer atmosphere
at middle latitudes over farmland with a visibility of 5 km and no rain.
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be larger at the shorter mid IR wavelengths, even though the total photon flux (see

Figure 1-2) is smaller at the shorter wavelengths. Of significance is the fact that

the flux contrast ratios shown in Figure 1-3 for a unit Kelvin degree temperature

change are of the order of 1%. Thus, a design requirement of a minimum resolvable

temperature (MRT) of 10 mK corresponds to a flux contrast of about 10- 4 , where

the MRT is related to the signal-to-noise ratio (SNR) through,

1 AkBT 2

MRT= SNR hc (1.4)

The narrow spectral responsivity of QWIPs allows lenses, which are cheaper and

smaller than mirrors, to be used, with a minimal amount of chromatic aberration

and dispersion, in the optical systems, which focus infrared radiation onto QWIPs.

This flexibility in the location of the peak in the responsivity spectrum as well as

the narrow spectral width of the responsivity is useful in the design of dual band

[8] and dual color [9] QWIPs. Detection of the infrared radiation emanating from

the target at two different wavelengths makes it possible to ascertain absolute target
temperature and to distinguish the target from the "clutter" surrounding it in fast
missile seeking detectors.

1.2 Focal Plane Arrays on III-V Substrates

Modern epitaxy techniques can achieve high uniformity of semiconductor parameters

across entire III-V (GaAs and InP) w':fers, which allows for large Focal Plane Arrays

(FPAs) of QWIPs with low spatial (fixed) pattern noise. The figure of merit chosen

for a large array of photodetectors is different from that for a single photodetector

because the single photodetector is operated under circumstances different from those

under which a large array of detectors are operated.

Until very recently, large arrays of photodetectors were not available. Single photode-

tectors had to be quickly scanned over a large solid angle, and photocarriers had to

be collected in a short amount of time before they were pointed at a different part of

the target. In those days, the figure of merit for infrared photodetectors was chosen
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Figure 1-2: The photon flux (Equation (1.2)) radiated from a black body of unit area

and temperature near 300K into a unit solid angle and a 1 Im wavelength range. The

fractional change in this photon flux for a unit change in the black body temperature

is shown in Figure 1-3.
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Photon Flux Contrast in a 1 m Wavelength Bandwidth
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Figure 1-3: The photon flux contrast, Equation (1.3), is the fractional change in the

photon flux, Equation (1.2), for a unit change in the black body temperature. The

photon flux contrast is larger at the shorter mid JR wavelengths, even though the

total photon flux is smaller at the shorter wavelengths.
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to be the single device detectivity, where the detectivity D* is defined as [10, 11],

D*= SNR, (1.5)
Popt

where A is the area of a single pixel, Af = 1/2ti is the measurement bandwidth, ti

is the integration time during which photocurrent is collected, Popt is the incident

optical power, and SNR is the measured signal-to-noise ratio. The detectivity differs

from the SNR mainly in the presence of the measurement integration time ti = 1/2Af

in Equation (1.5).

With large arrays of QWIPs now becoming available, each photodetector pixel can

be pointed at the same region of the target for a much longer duration. SNR, rather

than detectivity, then becomes the appropriate figure of merit. Equation (1.5) shows

that a sigificant SNR can be achieved for a single device having a low detectivity if

the measurement integration time ti is made appropriately long (a few milliseconds

to hundreds of milliseconds).

The SNR of an entire focal plane array of QWIPs is different from that for a single

QWIP detector. The focal plane array signal-to-noise ratio [7] can be written as,

NP
SNR Np u (1.6)

where Np is the number of electrons collected by a sampling capacitor, where a is

the read-out integrated circuit noise floor, and where u is nonuniformity of the QWIP

response over the entire focal plane array. The second term in the denominator is

the generation recombination noise. The third term in the denominator is the fixed

pattern noise associated with nonuniform QWIP responsivity. The nonuniformity of

the photodetector responsivity is an important limit to the highest SNR which can

be obtained.

Figure 1-4 shows the dependence of the array signal-to-noise ratio on the uniformity

of the array responsivity and the single pixel quantum efficiency as calculated from

Equation (1.6). In the figure, the higher target temperature indicates a higher photon

flux and thus a higher photocurrent signal. It is seen that even though the HgCdTe

photodetector has a much higher quantum efficiency (about 70% in this model) than
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either the QWIP or the iridium silicide detectors (here modeled as 3.4% and 0.1%,

respectively), the HgCdTe photodetector array signal-to-noise ratio is limited by the

uniformity of its single pixel responsivity. In fact, Equation (1.6) shows that in

the limit of very large quantum efficiency or very large photocurrent signals, the

ultimate array signal-to-noise ratio is 1/u, the inverse of the nonuniformity of the

photodetector response. The calculations in Fig. 1-4 were done for a=200 electrons,

a 9 pm detection peak, a 50 im pixel, a QWIP spectral response with a full-width-

half-maximum (FWHM) of 1 m, f/1.5 optics at a 60 Hz frame rate.

This is a very central idea in photodetector technology: photodetectors having a

small quantum efficiency (such as less than 1% for PtSi detectors) are still viable

in the marketplace for low cost applications if very large, vey uniform (less than

0.02% nonuniformity over a 640x480 PtSi array [12]) arrays of photodetectors can

be fabricated. The technology for making large focal plane arrays of photodetectors

is often limited not by the size of the single detector quantum efficiency but by the

uniformity of this response over the entire array of devices, as shown in Fig. 1-4.

Moreover, electronic correction for the responsivity nonuniformity across a FPA is

never perfect. Even in the best case in which the target and a calibration object

have the same temperature and spectral content, the use of a 12 bit A/D converter

(ADC) for calibrating the QWIP response over an entire FPA will limit the array

nonuniformity to 1 496 = 0.007%.

Figure 1-5 shows an image taken from a 640x480 FPA of QWIPs designed with

barriers consisting [13, 14] of a semiconductor superlattice. An optical grating was

used to couple radiation from f/2 optics at 30 frames per second onto 50 Am pixels.

The measured minimum resolvable temperature was 7 mK. (The image is courtesy

of Charles Parton as Lockheed Martin.) The imaged aircraft is a Mexicana Airlines

Lockheed L1011. The airplane support structure and engine exhaust are clearly

visible.

Growth of QWIPs on GaAs substrates allows for mop1olithic integration [15] of QWIPs

with standard GaAs detector circuits. Monolithic integration removes the necessity

of indium bump bonding, an extra processing step which contributes to expense and

lowered yield. Mo .iolithic integration is also expected to remove the complications
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Figure 1-4: The dependence of the array signal-to-noise ratio on the uniformity of the

array responsivity and the single pixel quantum efficiency. In the figure, the higher

target temperature indicates a higher photon flux and a higher photocurrent signal.

It is seen that even though the HgCdTe photodetector has a much higher quantum

efficiency (about 70% in this model) than either the QWIP or the iridium silicide

detectors (here modeled as 3.4% and 0.1%, respectively), the HgCdTe photodetector

array signal-to-noise ratio is limited by the uniformity of its single pixel responsivity.

The calculations were done for cr=200 electrons, a 9 m detection peak, a 50 m

pixel, a QWIP spectral response with a full-width-half-maximum (FWHM) of 1 um,

f/1.5 optics at a 60 Hz frame rate. 30



Figure 1-5: An image taken from a 640x480 FPA of QWIPs designed with bariers

consisting of a semiconductor superlattice. An optical grating was used to couple

radiation from f/2 optics at 30 frames per second onto 50 m pixels. The measured

minimum resolvable temperature was 7 mK. (The image is courtesy of Charles Parton

as Lockheed Martin.) The imaged aircraft is a Mexicana Airlines Lockheed L1011.

The airplane support structure and engine exhaust are clearly visible.
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resulting from the thermal mismatch between Si electronics and III-V (GaAs) optical

devices.

1.3 Thesis Overview

In Chapter 2, we present general features of QWIP operation. In Chapter 3, we

discuss the appropriate figures of merit for various operating regimes of QWIPs, and

relate these figures of merit to device design parameters. In particular, we present a

discussion of the dependence of different noise mechanisms on QWIP device param-

eters. In the following chapter, Chapter 4, we present the physics of intersubband

transitions. In particular, we present a new analytical expression for the size and

selection rules for the aborption of normally incident radiation in p-doped QWIPs

(p-QWIPs). Then, in Chapters 5 and 6, we discuss molecular beam epitaxial (MBE)

growth and X-ray characterization of QWIPs. In particular, we present a way of

characterizing the uniformity of MBE grown epitaxial layers. Chapter 7 discusses

the process for making devices. Chapter 8 discusses the different optical measure-

ments which were made in this work on QWIPs. Chapter 9 presents an evaluation of

some different device designs. Chapter 10 presents some physical models for QWIPs.

These physical models are compared with the existing literature on QWIP models.

We conclude with a summary in Chapter 11.
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Chapter 2

QWIP Operation

Fig. 2-1 shows a schematic of one quantum well in a Quantum WVell Infrared Pho-

totector (QWIP). The photocurrent density Jp consists of carriers which have been

optically excited with a photon flux from a bound lower state to an upper state,

usually in the energy continuum above the barrier band edge. The strength of the op-

tical transition is proportional to the optical dipole, and is usually discussed in terms

of the quantum efficiency r. Transport of the photoexcited carriers is described in

terms of the photoconductive gain g. The leakage current density JL is the current

density flowing through the QWIP in the absence of any incident radiation.

Photodetectors based on intersubband transitions have had a long history. Esaki and

Sakaki [16] were the first to suggest GaAs/AlGaAs multiple quantum well photodetec-

tors. Smith et ai. [17] did some of the first experimental work. Coon and Karunasiri

[18] and Chiu et al. [19, 20] did some of the early theory. West and Eglash [21] made

the first unequivocal observation of a strongly absorbing intersubband transition in

a stack of 50 quantum wells. Levine [22] was the first to fabricate a QWIP based on

the intersubband transition between bound states in a quantum well. Two significant

improvements [7] to the original QWIPs were the use of much wider confinement

barriers to reduce sequential resonant tunneling and designs placing the upper state

in the continuum above the barrier band edge.
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Figure 2-1: Schematic of one quantum well in a Quantum Well Infrared Phototector

(QWIP). The photocurrent density Jp consists of carriers which have been optically

excited with a photon flux 4) from a bound lower state to an upper state, usually

in the energy continuum above the barrier band edge. The strength of the optical

transition is proportional to the optical dipole, and is usually discussed in terms of

the quantum efficiency 7. Transport of the photoexcited carriers is described in terms

of the photoconductive gain g. The leakage current density JL is dominated by the

sequential resonant tunneling current at very low temperatures, and by the thermal

leakage current at higher (greater than 50K) temperatures.
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The QWIP photocurrent is

ip = qFrlg (2.1)

where F is the incident photon current (sec'), the quantum efficiency

r = 1 - exp(-Nwrhi) (2.2)

describes the strength of the optical absorption for N quantum wells, each with a

quantum efficiency of rl, and the photoconductive gain, g, describes the transport

properties of the QWIP,

9 = VdTL/LTOT - gl/N, (2.3)

where vd is the drift velocity, TL is the lifetime in the upper state (the energy con-

tinuum), LTOT is the total length of the QWIP superlattice, and gl is the photocon-

ductive gain for one quantum well. The photoconductive gain is related to the the

capture probability p, for a carrier in the upper state through,

9l = (1- Pc)/Pc. (2.4)

The incident photons arrive with a current F (sec- 1) equal to

F = )BQAdet, (2.5)

where B (cm-l-ster-l-sec - 1) is the flux of incident photons emitted by the target,

Q is the solid angle subtended by the target as seen by the QWIP, and Adet is the

QWIP pixel area.

In photodetectors, the upper subband must also have favorable transport properties,

such as a high mobility, and this is usually accomplished [7, 18] by choosing this upper

subband to be in the energy continuum above the barriers. For a large absorption

strength, the quantum mechanical wavefunction of the upper subband must retain

more of the localized nature of a "bound" quantum well state, and less of the delo-

calized nature of a true continuum state. This is usually accomplished by choosing

this upper subband to be barely in the energy continuum, usually right at the band

edge of the barrier material.
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The leakage current is the current flowing through the QWIP in the absence of any

incidents radiation. The leakage current is dominated by sequential resonant tunneling

at low temperatures (less than 50K), and can be reduced by using smaller applied

biases, usually requiring QWIPs to utilize a bound-to-continuum transition [7]. Many

applications require the ability to operate the QWIP at as high a temperature as

possible, at least at liquid nitrogen temperature (77K). At these temperatures, the

leakage current is dominated by the thermal population of the upper subband state

by nonradiative processes.

The thermal leakage current ith is

ith = nthqvdA, (2.6)

where A is the area of the device, q is the electronic charge, nth is the thermal

population of carriers in the energy continuum in the steady state,

nth = NCexp(-Ec /kBToP) (2.7)

where Eo = VB - E1 is the lower cutoff energy of a bound to continuum transition,

and the density of states carrier concentration is

N,= 2(27rmB,,,kBT/h 2 )3 /2. (2.8)
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Chapter 3

QWIP Figures of Merit

This section describes figures of merit for QWIPs operating in different temperature

ranges, where different noise mechanisms are dominant. The figure of merit for QWIP

performance is the signal to noise ratio (SNR). The SNR requirement sets a lower

bound on the required conversion efficiency, rig, for any individual device. An upper

bound on the conversion efficiency is set by the size of the capacitor used to collect

the photocurrent. We shall find in Section 4 that for fixed pattern noise limited or

thermal leakage noise limited QWIPs, quantum efficiency is more important than

photoconductive gain for increasing the device SNR. Further, using a larger number

of quantum wells may result inmore uniform device parameters.

3.1 Comparison of Detectivity and Signal-to-Noise

Requirements

The detectivity is defined as

D*-= ALfSNR = R Af (3.1)
Popt iN
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where Af is the measurement bandwidth, Popt is the incident optical power, the

signal-to-noise ratio is SNR=ip/iN, iN is the noise current, and the responsivity is

R qhg (3.2)hv'

the number of photocarriers measured per unit photon of incident radiation. The de-

tectivity differs from the SNR mainly in the presence of the measurement bandwidth

Af in Equation (3.1). Until very recently, detectivity was the figure of merit for the

infrared photodetectors fabricated because single photodetectors had to be quickly

scanned over a large solid angle. Since large arrays of photodetectors were not avail-

able then, single photodetectors had to collect photocarriers in a short amount of

time before they were pointed at a different part of the target.

With large arrays of QWIPs becoming available, each photodetector pixel can be

pointed at the same region of the target for a much longer duration, the inverse of

the frame rate. SNR, rather than detectivity, then becomes the appropriate figure of

merit, as the in ',egration time for photocarrier collection is relatively long for many

applications of focal plane arrays (FPAs). As indicated in Equation (3.1), the same

SNR can be obtained from a lower detectivity photodetector if the measurement

bandwidth is small enough.

Needed conversion efficiency.

The minimum conversion efficiency, rig, needed is determined by the required dynamic

range, SNR. If a dynamic range of SNR is required, then a total of Ne electrons, where

SNR = , (3.3)

must be collected by the integration capacitor in a time ti. For many applications, a

dynamic range of 12 bits, SNR=4096, is required. This requires 16 million electrons

to be collected by the integration capacitor. To collect this many electrons during

the time ti requires a total photocurrent of

qNef = i = qqPBQAdet(yg), (3.4)
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where q is the electronic charge, the frame rate is fr=60 Hz=1/2ti typically, where

the target radiates with a 300K blackbody flux of PB=6.3x10'6/sec-cm2-ster, the

solid angle is Q=0.1963 for an f/2 lens, the detector area is Adet=(22pm)2 . For these

numbers, a dynamic range of SNR=4096 would thus require a conversion efficiency

of

7rg = 1.58 percent. (3.5)

3.2 Noise

Since SNR is the appropriate figure of merit for QWIP FPAs, a discussion of the

differing noise mechanisms which contribute in various operating regimes is now ap-

propriate.

The generation-recombination noise is the fundamental limiting noise mechanism of

photoconductive detectors,

iGR = 4qgipAf. (3.6)

Generation-recombination noise is a result of the random nature of processes that

create and destroy photocarriers.

The fixed pattern noise (FPN) is the spatial noise pattern that emerges from a FPA

as a result of differences in the leakage current in each QWIP pixel in a FPA. This

FPN is proportional to the nonuniformity L, defined as three times the ratio of the

standard deviation to the mean, of the leakage current, as well as the change in the

leakage current as the operating temperature Top drifts,

(dTop.iFN 6= L AdTp (3.7)

The fixed pattern noise is small when the the QWIP cooling mechanism can hold

the operating temperature to be very constant. Typically, for Joule-Thomson (JT)

coolers, ATop=50 mK. The fixed pattern noise is also small for either small leakage

currents or for very uniform leakage currents (6 L small).
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At high enough temperatures, especially above the background limited temperature,

the random creation and destruction of the leakage current carriers contribute a

thermal leakage noise,

ith = 4qgiLAf. (3.8)

The Johnson noise is the noise that results from the uncertainty in the velocities of

the excited carriers,

= (4BTw ) Af. (3.9)

The Johnson noise becomes insignificant when the bias voltage is large enough,

gVbjas > ksBTo/q. (3.10)

The read-out (switch) noise,

,rms (kBTop) (3.11)

also becomes insignificant for a large enough bias voltage,

Vbias > n,rms (3.12)

The photon random arrival noise,

Zihoton = 2qgipAf, (3.13)

is always less than the generation recombination noise, and is usually not considered,

especially for small conversion efficiencies rig.

1/f noise in silicon has traditionally been associated with traps at the interface be-

tween and silicon and its oxide. 1/f noise is less well understood in GaAs, though it is

believed [14] to be less of a problem than it is in silicon devices. We will not discuss

it further.
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3.3 Different Operating Regimes

At very low temperatures, the optimal design is of very large signal-to-noise devices.

At all temperatures, fixed pattern noise is always a concern. At intermediate and

higher temperatures, the SNR is limited by the random creation and destruction of

photocurrent and leakage current carriers.

"Low" and "high" temperatures are defined relative to the Background LImited Per-

formance (BLIP) temperature, which is the operating temperature at which the pho-

tocurrent is the same as the leakage current,

ip(TBLIP) = iL(TBLIP). (3.14)

At different operating temperatures, the SNR is dominated by different noise mech-

anisms. Knowledge of the dominant noise mechanism allows one to choose QWIP

designs which maximize the SNR. This section discusses how SNR can be maximized

by choosing an appropriate quantum efficiency, photoconductive gain, and quantum

well number.

3.3.1 Low Temperature Operation

At low temperatures, the signal to noise ratio is dominated by the generation-recombination

noise (GR) noise. In fact, as long as the noise is dominated by device GR noise, smaller

photoconductive gains yield higher signal to noise ratios. Indeed, one advantage of

photoconductive detectors with respect to photovoltaic detectors is the possibility of

photoconductive gains less than unity. The reason is that the shot noise of carriers in

a pn junction is 2qipAf, which is greater than the photoconductive GR noise when

g>1/4.

Whereas decreasing the photoconductive gain might be a good thing, should the small

photoconductive gain come as a result of having many quantum wells or of having

a small one quantum well photoconductive gain? To answer this question, one must
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consider the Johson noise, as well as the GR noise, as the former becomes important

at small photoconductive gains.

When the dominant noise mechanisms are GR noise and Johnson noise, the SNR is

SNR- = i (3.15)
{4 [qg+ ksTop] ipA/) /2'

For design purposes, the measurement bandwidth Af, equal to the frame rate, is not

arbitrary, but is commensurate with filling up the integration capacitor with some

fixed number of carriers, Ne. In other words, this finite electron storage requirement

says that the desired frame rate Af and the expected photocurrent ip fixes the size

of the integration capacitor to hold some Ne carriers, through the relation,

Af = 1/2tintegration = i/2qNe. (3.16)

The previous SNR can then be written in terms of the integration capacitor size

instead of the measurement bandwidth,

SNR Ne (3.17)
[gl + 9Lopm 1/2

where we have used the definition of the photoconductive gain to write the optimum

photoconductive gain, the value of the photoconductive gain at which the SNR is a

maximum, as

glopm = IlTLVth/Lp, (3.18)

where vth=kBTop/q. This last result comes about because both the photoconductive

gain in the GR noise and the Johnson noise depend on the applied bias voltage

through the drift velocity.

Clearly, in this model, there is an optimal single quantum well photoconductive gain,

but the SNR still increases as the square root of the number of quantum wells used.

Thus, QWIPs which operate at low temperature should be designed with the largest

number of quantum wells that still allows the device GR and Johnson noise to limit
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the SNR. This is shown in Fig. 3-1 for the following typical numbers for an In-

GaAs pQWIP: /p=100 cm2/V-s, rL=2 ps, kBTop=6.6 meV, Lp=50 nm, rl-0.35%,

glopm=0.23 , Af=60 Hz, TB=300K, Ne=4.5x10 5 , F=1.26x1011/s (300K target tem-

perature viewed through f/2 lens with 70% lens transmission with peak responsivity

at 8.55pm), A=(40/um)2 .

Fig. 3-1 also shows that when the one quantum well photoconductive gain, gl, is very

small, the SNR is limited by Johnson noise, and when gl is very large, the SNR is

limited by GR noise.

Of interest is the fact that it is the total number of collected photocarriers, Ne, which

appears in Equation (3.17), and not the photocurrent, ip, by itself. This is a reflection

of our use of the finite size of the integration capacitor, the finite electron storage

requirement of Equation (3.16). It is Ne which appears in Equation (3.17), and not

ip, because if the finite integration capacitor is filled up with Ne photocarriers in a

time less than the inverse frame rate fr, then any additional photocurrent cannot be

collected by the integration capacitor and thus cannot contribute to the SNR.

3.3.2 Fixed Pattern Noise Limited Devices

At all operating temperatures, fixed pattern noise should be kept small. For example,

at temperatures less than the BLIP temperature, the SNR is often determined by both

the GR and the fixed pattern noise. To determine which QWIP device parameters

to optimize, consider the SNR in this operating temperature regime,

SNR= 1/2 (3.19)

4qgipA f + [ d l

It is useful to express this SNR in terms of the noise equivalent change in background

temperature (nedt) that would have resulted, had there been no fixed pattern noise,

SNR = 1 (3.20)

30[6LTpiL[T-(nedt) + LTo2ip Top
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SNR in BLIP Operation
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Figure 3-1: The signal to noise ratio (SNR) at very low operating temperatures. At

very low operating temperatures (below about 50K), the noise is dominated by the

generation-recombination (GR) noise and the Johnson noise. The device parameters

and operating conditions used to calculate these curves are given in the text. Of

interest is the fact that there is an optimal (single period) photoconductive gain

glopm, below which the Johnson noise is very large, and above which the GR noise is

very large.
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The fixed pattern noise degrades the expected SNR by the amount given by the

second term in the denominator of Equation (3.20).

The SNR is large when the ratio of the conversion efficiency to the nonuniformity of

the leakage current, g/cSLiL, is large. A good value of 'qg/ 6 LiL is 250/A for a SNR

of 4000.

The SNR is a maximum at Nw = 1/R71, which is the characteristic absorption length in

the QWIP. This makes sense because most of the incident radiation is absorbed over

the characteristic absorption length, and any additional quantum wells are exposed
to very little of the incident radiation. When the total number of quantum wells
is greater than 1/r71, the total photoconductive gain drops as 1/NW but the total
quantum efficiency is no longer increasing (see Equation (2.2)). When the total

number of quantum wells is less than 1/771, the conversion efficiency is independent

of the number of quantum wells, and the SNR is limited by nonuniformity, which, by

the central limit theorem of statistics, increases as i/VN-/.

This is shown in Fig. 3-2 for the following typical numbers for an InGaAs pQWIP:

TB=300K, Tp=1690K, Top=TBLIP=68K, ATop=50mK, and an initial intended design

criterion of nedt=12mK, 771=0.3 5%, g1=0.23, 6 L = 3(exp {[12.15K/Top]2 } - 1)1/2/N,,

Lp=50 nm, A f=60 Hz, Ne=4.5x 105, F=1.26x10"/s (300K target temperature viewed
through f/2 lens with 70% lens transmission with peak responsivity at 8.55[pm),

A=(401/m)2 .

3.3.3 Thermal Leakage Current Limited Devices

Near the BLIP temperature, the SNR is limited by the random generation and re-

combination of both the photocurrent and the leakage current carriers,

SNR = (3.21)
{4qg(iL + ip)Af 1/2'
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SNR in the Fixed Pattern Noise Limit
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Figure 3-2: The dependence on number of quantum wells of the signal to noise ratio

(SNR) for fixed pattern noise limited devices. At intermediate temperatures, QWIP

FPA noise could be dominated by fixed pattern noise. In this operating regime, the

optimal number of quantum wells to use in a QWIP is determined by minimizing

both the GR and the fixed pattern noise. Using fewer quantum wells than this

optimal number will make the total quantum efficiency small, according to (2.2).

Using too many quantum wells will not increase the total quantum efficiency beyond

one hundred percent, but will continue to decrease the total photoconductive gain.

The device parameters and operating conditions used to calculate these curves are

given in the text.
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It is useful to express this SNR in terms of the minimum resolvable target temperature

(mrt) that would have resulted, had there been no thermal leakage noise,

SNR 1 (3.22)
R iLAf ] + [T'(mrt)] 

The thermal leakage noise degrades the expected SNR by the amount given by the

second term in the denominator of Equation (3.22).

The SNR is large when the second term in the denominator of Equation (3.22) is

small. This is equivalent to a large ratio for r72 g/iL.

The SNR is a maximum at N, = 2/3r11, which is roughly the characteristic absorption

length in the QWIP. As with the analogous argument for fixed pattern noise limited

devices, this makes sense because most of the incident radiation is absorbed over

the characteristic absorption length, and any additional quantum wells are exposed

to very little of the incident radiation. When the total number of quantum wells

is greater than 2/3r/1, the total photoconductive gain drops as 1/N, but the total

quantum efficiency is no longer increasing. When the total number of quantum wells

is less than 1/7lr, the SNR is limited by the total quantum efficiency which increases

as N,. This is shown in Fig. 3-3 for the following typical numbers for an InGaAs

pQWIP: TB=300K, Tp=1690K, Top=77K, TBLIP=68K, ATop=50mK, an initial in-

tended design criterion of mrt=12mK, r71=0.35%, g1=0.23, Lp=50 nm, Af=60 Hz,

Ne=4.5x105, F=1.26x1011/s (300K target temperature viewed through f/2 lens with

70% lens transmission with peak responsivity at 8.55/im), A=(40/um)2 .

3.4 Conclusions

This section has focussed on the QWIP SNR, and the noise contributions to it. A

theoretical study has been made of different noise mechanisms which contribute to

QWIP performance: generation-recombination noise, fixed pattern noise, thermal

leakage random arrival noise, Johnson noise, read-out (switch) noise, and photon

random arrival noise. A key result found in this work is that when the signal-to-
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SNR in the Thermal Noise Limit
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Figure 3-3: The dependence on number of quantum wells of the signal to noise ratio

(SNR) for thermal leakage noise limited devices. At intermediate and higher temper-

atures, QWIP FPA noise could be dominated by the random creation and destruction

of both the photocurrent and the thermal leakage carriers. In this operating regime,

the optimal number of quantum wells to use in a QWIP is determined by minimizing

both the GR and the thermal leakage noise. As with the fixed pattern noise lim-

ited devices, the use of too few quantum wells than this optimal number will make

the total quantum efficiency small, according to (2.2). Use of too many quantum

wells will not increase the total quantum efficiency beyond one hundred percent, but

will continue to decrease the total photoconductive gain. The device parameters and

operating conditions used to calculate these curves are given in the text.
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noise ratio (SNR) is limited by either fixed pattern noise or thermal leakage arrival

noise, the optimal number of quantum wells for a maximum in the expected QWIP

SNR is roughly 711, where r71 is the quantum efficiency of a QWIP having only one

quantum well. The use of a much larger number of quantum wells is not desirable

because the absorption quantum efficiency cannot be increased beyond 100 %, but the

photoconductive gain drops with an increase in the number of quantum wells. The use

of a much smaller number than the optimal number of quantum wells is not desirable

because the absorption quantum efficiency can still be increased considerably with an

increase in the number of quantum wells.

SNR is a relevant device figure of merit, as it is a macroscopic device parameter

which is directly measured. Many other device figures of merit, such as noise equiv-

alent power, noise equivalent irradiance, and minimum resolvable temperature, are

related to the SNR in a very simple way. For example, the minimum resolvable

temperature (MRT), a very convenient measure of detector focal plane array perfor-

mance, describes the smallest change in the target temperature that can be sensed

by QWIPs in a FPA in the presence of a total QWIP noise of (i,), and it is related

to the SNR through

(i,)> T~ 1
MRT TB (3.23)d(ip)/dT Tp SNR' (3.23)

where the angle brackets indicate averaging over the different pixels in the FPA.

Fig. 3-4 shows the temperature dependence of various contributions to the QWIP

MRT ifr the following typical numbers fcr an InGaAs pQWIP: TB=300K, Tp=1690K,

TBLIp=68K, ATopP=50mK, r=0. 35 %, g1=0.23, Lp=50 nm, A f=60 Hz, Ne=4.5x 105,

aL = 3(exp {[12.15K/Tp]2} - 1)1/2 /N,, F=1.26x 101 /s (300K target temperature viewed
through f/2 lens with 70% lens transmission with peak responsivity at 8.55i/m),

A=(40/im) 2. Fig. 3-4 shows that at very low temperatures, GR noise is the limiting

noise mechanism. At higher temperatures, thermal leakage noise becomes important.

Depending on the size of the nonuniformity of the leakage current across a QWIP

FPA, the fixed pattern noise could also be important at intermediate and higher

temperatures.
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Figure 3-4: The temperature dependence of various contributions to the QWIP min-

imum resolvable temperature. The device parameters and operating conditions used

to calculate these curves are given in the text. Under these operating conditions, the

generation-recombination noise is the limiting noise mechanism at low temperatures.

At intermediate and higher temperatures, the limiting noise mechanism is the fixed

pattern noise resulting from nonuniformity of the leakage current across a QWIP focal

plane array.
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Chapter 4

The Intersubband Absorption
Strength

It is desirable to study QWIPs which respond strongly to normally incident radiation

without the use of an optical grating, since the elimination of the processing steps

for the optical grating results in lower cost, higher yield, and more uniform QWIP

FPAs. This requires the study of the microscopic physics of quantum wells in order

to elucidate the physical origin of the polarization selection rules of intersubband

absorption.

The well known selection rules and optical dipoles for a conduction intersubband

transition are reviewed in Section 4.2.3. The possibility of the absorption of normally

incident radiation by electrons in an n-QWIP is also investigated in that section.

A key contribution of this thesis was the derivation of selection rules within the frame-

work of k - theory for the intersubband absorption of normally incident radiation by

holes in a p-QWIP (p-doped QWIP) in the absence of an optical grating. This is done

in Section 4.2.4. It was found that the absorption of normally incident radiation by

holes in a p-QWIP in the absence of an optical grating is largest for transitions from

a heavy hole state to a light hole state. This result is compared with the literature.

It was also found that k p theory predicts that uniaxial strain does not have a
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large effect on the strength or the selection rules of intersubband absorption because

the Hamiltonian describing uniaxial strain has the same (tetragonal) symmetry as

that describing the confinement of carriers in the quantum wells along the growth

direction. This is discussed in Section 4.2.4, where we also relate the transport and

leakage current properties of p-QWIPs to the hole subband dispersion relations.

4.1 The Polarization of Incident Radiation and QWIP
Operating Geometries

Two commonly used geometries for operating QWIPs are shown in Figure 4-1. In

both QWIP operating geometries, the electron transport is along the growth direction.

The waveguide geometry is shown on the left side of the figure. In the waveguide

geometry, radiation is incident upon the edge of the sample wafer. This radiation

propagates in a direction parallel to the epitaxial layers and perpendicular to the

growth direction. Moreover, if the electric field is polarized in the growth direction, the

radiation is TM polarized. The intersubband absorption of TM polarized radiation

is very large. Unfortunately, the necessity of TM polarized radiation to propagate in

a direction perpendicular to the growth direction is inconvenient for operating large

arrays of devices.

The operation of a large array of QWIPs requires that the incident radiation propagate

in a direction normal to the array and parallel to the growth direction. This QWIP

operating geometry is shown on the right side of Fig. 4-1. Consequently, the electric

field is in the plane of the quantum wells and is perpendicular to the growth direction.

Thus, normally incident radiation is always TE polarized. The absorption of TE

polarized radiation is small in n-QWIPs, as discussed in Section 4.2.3, but could

be large in p-QWIPs, as discussed in Section 4.2.4. The fabrication of an optical

grating on the semiconductor surface is required in order to couple normally incident

radiation into an optical mode which is TM polarized within the semiconductor.

It is desirable to study QWIPs which respond strongly to normally incident radiation
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Waveguide Geometry Normally Incident Radiation

Figure 4-1: Two commonly used geometries for operating QWIPs. The waveguide

geometry is shown in the left schematic in the figure. In the waveguide geometry,

radiation is incident upon the edge of the sample wafer. This radiation propagates in

a direction parallel to the epitaxial layers and perpendicular to the growth direction.

Moreover, if the electric field is polarized in the growth direction, the radiation is TM

polarized. The intersubband absorption of TM polarized radiation is very large. The

second geometry for operating QWIPs is shown on the right side of the figure. In

this geometry, radiation is normally incident on the sample wafer with the radiation

wave vector parallel to the growth direction. Consequently, the electric field is in

the plane of the quantum wells and is perpendicular to the growth direction. This

is TE polarized radiation. The absorption of TE polarized radiation is small in n-

QWIPs but could be large in p-QWIPs. This second QWIP operating geometry, in

which radiation is normally incident on the sample surface, is convenient for operating

large focal plane arrays of devices. In both QWIP operating geometries, the electron

transport is along the growth direction.
53

- - kh, 1=



without the use of an optical grating, since the elimination of the processing steps for

the optical grating results in lower cost, higher yield, and more uniform QWIP focal

plane arrays (FPAs). This requires the study of the physical origin of the polarization

selection rules of intersubband absorption, as is done in the rest of this chapter.

4.2 k Theory

In order to understand the size of and polarization selection rules of intersubband ab-

sorption, one must understand the electronic wave functions in semiconductor quan-

tum wells. The electron and hole wave functions in quantum wells contain information

about both the bulk semiconductor which comprises the quantum well, as well as the

confining nature of the potential barriers surrounding the quantum well.

Many III-V compounds, such as GaAs, have the zinc-blende crystal structure, shown

schematically in Figure 4-2 below. There are 8 electrons per unit cell (3 from the

Ga and 5 from the As) which contribute to chemical bonding, and these arise from

sp3 orbitals. In a zinc-blende crystal, where the sp3 orbitals from neighboring atoms

mrix, these hybridized sp3 orbitals form broad bands of energy whose associated wave

functions have a known symmetry. As discussed in Section 4.2.1 below, k p theory

gives explicitly the symmetry of a wave function associated with a particular energy

in the broad energy bands. It is well known that the bonding s-orbitals in GaAs are

tightly bond, and completely filled (2 electrons per unit cell). At zero Kelvin (O K),

the bonding p orbitals are completely filled with the remaining 6 electrons per unit

cell. These bonding p orbitals comprise the valence band. At zero Kelvin, the higher

energy anti-bonding levels are unoccupied. The lowest energy anti-bonding states are

denoted the conduction band, and the lowest conduction band is known to have s

symmetry.

A quantum well differs from a bulk semiconductor in that along the growth direction,

the quantum well has only a finite spatial extent, beyond which a barrier material

has been grown by molecular beam epitaxy (MBE). This is shown schematically in

Figure 4-3, where an InGaAs quantum well has been grown between two confining
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electron: s (antibonding) state

hole: p (bonding) state

Figure 4-2: Schematic diagram showing the zinc-blende primitive cell. Also shown

schematically are the k = 0 lowest energy unoccupied conduction band anti-bonding

IS) state and the k = 6O highest energy occupied valence band bonding P) state

(IX), Y) or IZ)).
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AlGaAs barrier layers. The confinement of electrons or holes to the quantum well

by the difference in the quantum well and the barrier energy band edges can be

described by the "envelope" portion of the full wave function. This envelope function

is slowly varying over a single unit cell, and is a solution of the effective mass equation,

as described in Section 4.2.2 below. A quantum well which is symmetric about its

center will be described by envelope functions which have a definite (either even or

odd) parity. Both the parity of the envelope function and the symmetry of the Bloch

function will determine the intersubband selection rules, as described in Sections 4.2.3

and 4.2.4 below.

4.2.1 The Kane Hamiltonian and the Bloch Functions

Bloch's theorem can be used to understand the symmetry of the wave functions in

a bulk semiconductor. Bloch's theorem states that the translational symmetry of

a bulk semiconductor allows the wave functions n,(rF) in the semiconductor to be

written in the Bloch form,

Tn, k(F) = exp(ik - )Un(r-), (4.1)

where k is an eigenvalue of the translation operator, where n is a band index, and

where the Bloch functions, un,,(r), have the periodicity of the lattice.

In a classic paper, E. O. Kane [23] has shown that the Bloch function at any particular

value of the translation eigenvalue k can be expanded in the complete basis formed

by the Bloch functions at the zone center k = 0,

un() = Cmn(k)Um, (r) . (4.2)
m

In many applications, only a small range of k is accessible to free carriers. In such

situations, the summation in Equation (4.2) can be approximated by including only

a few bands, such as the conduction and valence bands only. The coefficients Cmn in

Equation (4.2), for m,n=conduction and valence bands only, can then be found from

degenerate perturbation theory.
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IP

AIG aAs InGaAs AIGaAs
Figure 4-3: Schematic diagram showing a single quantum well and the two confining

barriers surrounding it. Also shown is the envelope function which is slowly varying

over a single zinc-blende unit cell and which is a solution of the effective mass equation

describing the molecular beam epitaxially grown quantum well and barriers.
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The Kane k p perturbation Hamiltonian [23] is, for k = ky = 0 and finite k,

[O H7

in the basis iS ), 4 Z(X -iY)t). ! 1 , (X + iY)t), iS t), (X+iY)4

Z t), (X -iY) ), respectively, where

E, 0 Pkz 0

H = 0 Ep- A/3 A/3 (4.4)

Pk, 2/Vz/3 E0 o

0 0 0 Ep + A/3

where Es,, Ep are the eigenvalues of H in the absence of the k Y pperturbation, where

E = EG and EG is the band gap energy, where E = -A/3 and is the spin-orbit

splitting of the valence band,

3ih v (4 5)
y4mc2 /

where V is the periodic crystal potential, where the Kane momentum matrix element

P is

P = -i-(S ipIZ). (4.6)
mO

The spin-orbit interaction results from the interaction of the magnetic field seen in

the frame of reference of an accelerating electron with the intrinsic magnetic moment

of that electron. Kane shows that the eigenvalues of Equation (4.4) can be found

from diagonalizing Equation (4.4),

Ehh = 0,
E('EE2 2 2

E'(E' - EG)(E' + A=) - P 2k (E/ + -zA) = 0 (4.7)

where we have defined

h2k2
E'= E- h2k (4.8)

2mo
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In the limit of small k, the eigenvalues of the Kane Hamiltonian, Equation (4.7),

yield parabolic bands,

h2 k2 P2 2 (2 1
EC = EG + + 3 EG + 

h2 k2
Ehh =

2mo

h2k 2 2P2k2
2mo 3EG

h2k2 P2k 2

Esh = - + (4.9)2mo 3(Ec + )'(4.9)

Diagonalization [23] of the Hamiltonian in Equation (4.3) yields the following expres-

sions for the Bloch functions,

ui -ailiS )+bi (X + iY) + ilZ )

Uhhtk = (X + iY) t)
1ui= aiiS ) + bi 1(X- iY) t +cilZ)

Uhhk -JY) (4.10)

where the index i=c,lh,soh denotes the band, and where the coefficients ai, bi, ci are,

1 2
ai = k (Ei + 3-A)

N 3

bi =1 3(Ei- EG)

ci = (E- -E)(E + A) , (4.11)

where N is a normalization constant equal to the square root of the sum of the

squares of the numerators in Equation (4.11). In the limit of zero wave vector, the
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Bloch functions of Equation (4.10) have the well known form,

conduction band = , , =Uc = lis t)

light hole band = P, = U = h + (X + 2 v 3 1} __ +__ -lx V.

1 1 -~412split off hole band = P, 2 ' = Usoh,O | (X + iY) )Z T)

heavy hole band = P, = (X (4.12) 

(and similarly for the other 4 Bloch wave functions), where we have explicitly written

the Bloch functions at k = 0 as eigenfunctions, IJ, Jz), of total (spin plus orbital)

angular momentum J and its z-component J.

For a finite value of k,, Equation (4.10) can be used to write the conduction band

Bloch function in terms of the Bloch functions at zero wave vector,

Pk(E + A) Pk, 2A -1
Uk = lis T) + &(E+c' + a) V2 i)Nk(E +,) "Es 3(E+IŽ )

list) + Pk IZ t) + Pk (X + iY) (4.13)
N EG EG 3(EG +, A) + Y

where E' > EG is measured from the heavy hole band edge Ehh(k = 6) at the zone

center. Equation (4.10) can also be used to write the light hole Bloch function, at a

finite value of kz, in terms of the Bloch functions at zero wave vector,

1 Pk_ ]\A -1 +
Ulh,k= N itZ ) + E - E 3 (E- (X i ))

NE' - E JiS t 3(EIh +) ( iY) 3 EG

where Elh is measured from the heavy hole band edge Ehh(k = 6) at the zone center.

Equations (4.13) and (4.14) are key to understanding Bloch function symmetries and

the intersubband absorption selection rules.
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4.2.2 Envelope Functions and the Effective Mass Equation

Luttinger and Kohn [24, 25] have shown that in the presence of a weak and slowly

varying potential V(r), the envelope function (portion of the total wave function

which is slowly varying over a unit cell) satisfies the effective mass equation,

E [Hmn(-iV) + V(rF)mn] = f(YF) = Efn(F) (4.15)
m

where Hmn(-iV) is the k fi Hamiltonian, as in Equation (4.3) above. The total

wave functions can be written as linear combinations of the envelope functions and

the zone center Bloch functions,

I(rn() = c Cmn(k) fm(i) m,6(). (4.16)
m

If the total wave function is dominated by only one term in Equation (4.16), as is the

case for conduction band electrons and light and heavy holes for small k, then the

effective mass equation reduces to a scalar form,

[-- (½V) + V(r)] fn(f)= Efn(F). (4.17)

This is an important result, as it says that the details of a weak and slowly varying

crystal potential can be summarized by the parameter m*.

Boundary Conditions At the boundary z=O between layer A and layer B, the

envelope function is continuous as is 1/m* times its first derivative,

fn(-e) = fn (+e) (4.18)

Io19f A on1 li 1 lf (4.19)
mA &z -B mB &z +e

The boundary condition of continuity of 1/m* times the first derivative of the envelope

function is equivalent to requiring conservation of probability current.

For conduction band electrons, White and Sham [26] show that Equation (4.19) is

equivalent to requiring that the IS) symmetric and IP) symmetric parts of the electron
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wave functions (the first two terms in Equation (4.20)) are each continuous across the

boundary of the heterojunction.

Equation (4.19) is not the only possible boundary condition. Since Schrodinger's

equation requires that the full wave function (not just the envelope function) and its

first derivative be continuous across a boundary, Equation (4.19) needs to be revised

to account for the Bloch function. There have been many proposed methods to do

this, all with some degree of success. The question of more sophisticated boundary

conditions is beyond the scope of this work, but can be found in the literature [27,

28, 29, 30, 31, 32, 33].

4.2.3 Conduction Band Intersubband Transitions

The total wave function for a conduction band electron of quantum number n is in

the Kane model,

i s lt)f (f) - -IZ t)ivf( (F) + _ ) V2_ X+ iY V ) )

(4.20)

where N is a normalization constant. For quantum wells of uniform composition in

the absence of any external applied potential, the envelope function fn(r) is a linear

combination of plane waves.

The Optical Dipole for Absorption of TM Polarized Radiation

In the limit of infinitely large potential barriers surrounding the quantum well located

between z=0 and z=Lw, the envelope function for conduction band electrons is,

fn(z) = 2sin(n7Lz/Lw),

where n is the integral quantum number. The literature shows that the optical dipole

for the absorption of TM polarized radiation (electric field parallel to the growth

direction) is dominated by the first term in Equation (4.20), and for a transition from
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a bound state of quantum number n to one of quantum number m, the optical dipole

(c, mlzlc, n) has the value [21],

(c, mzlc, n) = { (m2n2)2 for m-n odd, (4.22)
0 otherwise,

which also shows the well known selection rule requiring that m-n be odd for conduc-

tion intersubband transitions in a symmetric square well potential.

The optical dipole (z) is related to the imaginary part X'i of the susceptibility through

[34],

X - 2()(N - N2)9(v), (4.23)

where e is the electronic charge, e0o is the dielectric constant of free space, g(v) is the

absorption lineshape as a function of the frequency v, and N1 -- N2 is the population

difference between the lower state (N1 ) and the upper state (N2). The absorption

coefficient y(v) is defined as the exp(--y(v)z) exponential decay of the power, and is

related to X" through [34],

=kfx"()
Y(v) k, (v) (4.24)

where kfs is the wave vector in free space of the incident radiation, and nr, is the

refractive index of the semiconductor. The optical dipole is related to the Einstein A

coefficient for the spontaneous emission rate through [34],

e2w3n3
A = e 2 (4.25)

3-c 3 h 1(z) ,

where w is the frequency of the radiation, and is the dielectric constant of the

semiconductor.

The Effect of Higher (Anti-Bonding P) Symmetric) Conduction Bands

In the recent QWIP literature, there has been some discussion [35, 36, 37, 38, 39, 40]

as to whether the conduction band Bloch function contains any symmetries other
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than the IS) and the light hole Bloch function symmetries. For example, Yang et

al. [39, 40] and Flatte et al. [35] have considered the amount of the conduction

band Bloch function which is an admixture of the upper conduction (anti-bonding

jP)) states. This is accomplished by considering a k fp Hamiltonian which explicitly

includes the effect of the upper conduction bands,

7 =

G' 0 0 Pik- 1 1 Qkz O O O O -p0k0 0 -Qk_ Qk+
32V2

G1 0 -Plk+ - Qkz 'A -Qkz O O O O -0Qk_ O Qk_

E: qPk- O Qkz -2A 0 0 0 1Pi k -Qk Qk- 0

0 ZPok+ -Pok- Pok+ P'k O -- Pik. O Pok. 0 - ok.

Eo 0 0 0 Qk_ -Qk+ -Pokz O O O

E-o O Qk O -0 Qk_ O O O O0

G' Qk+ -f Qk_ 0 1Pok. O O O

G' 0 0 k+ Qk O0

GP 0 P.0 k - Qkz + - Qkz

EA PLk+ O 2Qkz -3

0 1Pok- Pok+ 2Pok-
EO' 0 0

EO, 0
Qk+ ~Qk_ ~~~~~~~ o

(4.26)

where G', E', EO, G, are, respectively, the heavy (and light) electron energy, the

spin-orbit electron energy, the heavy (and light) hole energy, and the spin-orbit hole

band energy, where k± = (k ± iky)/V, where [41] the hole spin-orbit splitting is

Ao=-0.341 eV, where the upper conduction band spin-orbit splitting is A1=0.171 eV,

where the so-called interband spin-orbit splitting is i=-0.061 eV,

Epo=2moP2/ h2=27.86 eV, Epl=2moPl2/h 2=2.36 eV, EQ=2moQ 2/h 2=15.56 eV, where

for Equation (4.26) we have written the basis in the order, ul, ug, U3 , U11, U5, U13 , U7,
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U8 , U2 , U10, U4, U12 , U6 , U14 , where

light electron band =

heavy electron band =

split off electron band =

conduction band =

light hole band =

heavy hole,band =

split off hole band =

light electron band =

heavy electron band =

1 (X'
= 2 = (x'

- U3 =

1 -1 '
x/3 N//2 + V3Z/' t)

+ iY') t),

(- -1Xv(x'+iY') .) - 1Z t)vlZ 5

= u4 = liS t)

I3

2'

1

2/
3\
2/

= U 1 = + -1(X

- U6 = 1 (X + iY)
/---

P, 2,-) = U7 =
2ll2 7 (X+iY)

1 --1=U = +- -(X'-
1/u- =i

= U = ( x -Y)

') $ + /1Z T)

.)- IZt)

iY') + lz' t)

) 

split off electron band =

conduction band =

light hole band =

heavy hole band =

split off hole band =

iY') t)- 1 I ), 1 1 V=i -1 ,(X
P 2 2 '--u 1 0-/2

s, 2'_ 2 -) = "11 = liS 4)

33\ 1I - U13 = I(x -= rII 2 - (X -. iY,

+1 )

(4.27)

where JX), IY), JZ) denote the IP)-symmetric hole states and IX'), IY'), IZ') denote

the IP)-symmetric anti-bonding higher conduction band states, where Ao, Al, A are,
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respectively,

3iho = 42 Z apy - -ap Y ,

-3 2(=z |PY - Px Yj
A= -Z0xPY yp- Y, (4.28)

where the different momentum matrix elements are,

Po = -i h (SpzlZ),
mo

P1 = -i -(SIPzlZ'),
mo

Q = -ih (X py Z') = i -(X'I pyZ). (4.29)
mO mO

In the literature [41, 42], the Hamiltonian in Equation (4.26) is often solved numeri-

cally for either the band structure or the energy dependent (nonparabolic) effect mass.

However, the approach of this thesis is to avoid an entirely numerical computation of

either the wave functions or the optical dipoles. Rather, the approach of this thesis

is to use Brillouin-Wigner perturbation theory to write down a form for the electron

wave functions, which is numerically approximate but from which the symmetries of

the wave function is explicit. The solution to the k 7 Hamiltonian, Equation (4.26),

which corresponds to the conduction band wave function can be written down by

inspection in Brillouin-Wigner [43] perturbation theory,

cm-iS t)f m t )lh(-ifc,m) 3(E - )o R+ )(-iVf,m) +
(EIiS T-f' (Ec - Elh) P

Pok- _R- )f,,, + PkEIR+ )fcm+ (E - Eh) (E - Elh)+ )fm 
(Ec - E,,)Z t)(iVfCm) + 3(Ec-El2Al )(-if,m) +

+ (EP kI t)fc Pik+ + + (E- E1R') t)J,R + (E E)f (4.30)
where we have used the notation R± = =(X ± iY)/v, and where the subscript "le"

refers to the light electrons. To find the bound states in a quantum well, the boundary
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conditions of Section 4.2.2 are invoked on fc,m, the envelope function associated with

the dominant term in Equation (4.30).

Figures 4-4 and 4-5 show that the analytical, perturbative expansion in Equation (4.30)

is a very accurate approximation to the numerically determined eigenfunctions of

the Hamiltonian in Equation (4.26). Both figures show the full numerical solution

(solid line) and the Brillouin-Wigner perturbative solution (the components of Equa-

tion (4.30) as the dashed line) of the 14x14 Hamiltonian in Equation (4.26) for the

amount at a finite k of the electron Bloch function which has the light electron,

heavy electron, and spin-orbit electron, light hole, heavy hole, and spin-orbit hole

Bloch symmetries at k = . The four plots in each figure show the overlap integral

((u2 iuc,,) for i=8,2,10,4 in Fig. 4-4, and for i=12,6,14,4 in Fig. 4-5, where the ui are

defined in Equation (4.27)) of the electron Bloch function at a finite k with the Bloch

functions at k = 6. (The dashed lines showing (u2u~,,k) and (u6lu,,K) were calculated

in second order perturbation theory, and all other quantities were calculated in first

order perturbation theory.) The Brillouin-Wigner perturbative solution, which can

be written down by inspection, is seen to be a numerically accurate approximation

to the full numerical solution.

The Optical Dipole

The conduction band intersubband transitions in quantum wells is known to be

strongest [7] for TM polarized radiation, with its large electric field component along

the growth direction. The reason is that the conduction band wave function is dom-

inated by the first two terms in (4.30) which have cell periodic Bloch parts that are

s-symmetric or p,-symmetric.

The optical dipole for the intersubband absorption of normally incident radiation can

be calculated from Equation (4.30) to be,

(c, nlxlc,m) = ( ( f l - iVfcm) 3 )2P Ao(iSIZxX) for m-n=odd(fc,n(clfc,m) 3(E Elh (4.31)
(fc, Ifcm) (E-l) (iSIXIX) for m-n=even

where we have made explicit use of the fact that (SlzlZ) = (ZlIz IlS), and that Po > P1.
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Figure 4-4: Full numerical solution (solid line) and Brillouin-Wigner perturbative

solution (the components of Equation (4.30) as the dashed line) of the 14x14 Hamil-

tonian for the amount at a finite k of the electron Bloch function which has the light

electron, heavy electron, and spin-orbit electron Bloch symmetries at k = 6. The

four plots show the overlap integral ((uiluc,K) for i=8,2,10,4, where the ui are defined

in Equation (4.27)) of the electron Bloch function at a finite k with the upper con-

duction Bloch functions at k = 6. The units of kz are 7r/a, where "a" is the lattice

constant. The Brillouin-Wigner perturbative solution, which can be written down by

inspection, is seen to be a numerically accurate approximation to the full numerical

solution. 68
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Figure 4-5: Full numerical solution (solid line) and Brillouin-Wigner perturbative

solution (the components of Equation (4.30) as the dashed line) of the 14x14 Hamil-

tonian for the amount at a finite k of the electron Bloch function which has the light

hole, heavy hole, and spin-orbit hole Bloch symmetries at k = 0. The four plots

show the overlap integral ((uiluck) for i=12,6,14,4 where the ui are defined in Equa-

tion (4.27)) of the electron Bloch function at a finite k with the hole Bloch functions

at k = 0. The units of kz are r/a, where "a" is the lattice constant. The Brillouin-

Wigner perturbative solution, which can be written down by inspection, is seen to be

a numerically accurate approximation to the full numerical solution.
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The dipoles (f,nl- iVlfcm) and (iSjxlX) are calculated in Equations (4.37) and

(4.35) below.

The strength of the intersubband absorption of normally incident radiation depends

on the size of the X) or JY1) component of the electron wave function. For conduction

band electrons, the JX) or Y') component of the wave function is proportional to

either EO or EP- , both of which are small, since the spin orbit energy is (forEC-Eh Eo-Elh'
GaAs) A0 =340 meV and the quantized conduction subband to valence band energy

difference is Ec - Eth 1.7 eV large, and the in-plane energies, set by the doping

levels are also small (10 meV for doping levels on the order of 1012 cm- 2). This

small size of the JX) and Y) component of the electron wave function is the reason

for the weak strength of the intersubband absorption of normally incident radiation.

Equation (4.31) is in qualitative agreement with the numerical work of Flatte et al.

[35] and with the direct diagonalization of the Hamiltonian in Equation (4.26) done

by Yang 39, 40]. Both Flatte et al. [35] and Yang [39, 40] note the necessity of a finite

electron in-plane wave vector for the absorption of normally incident radiation by an

n-QWIP without an optical grating. Yang [39, 40] also noted that semiconductors

with a large spin-orbit splitting (relative to the band gap energy) would exhibit larger

absorption of normally incident radiation without the use of an optical grating, in

agreement with our Equation (4.31). Of course, our derivation of Equation (4.31)

has the virtue of simplicity, as it was obtained, by inspection, from Brillouin-Wigner

perturbation theory. Shik [36, 37, 38] has also arrived at a result very similar to

Equation (4.31) by considering the conduction and valence bands only (and not the

upper conduction bands).

4.2.4 Valence Band Intersubband Transitions

The heavy hole wave function is

qhh,m = (Uhh,)fhh,m

- (X + iY) fhh,m, (4.32)
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where we have used Equation (4.12) for Uhh,6, and where the envelope function as-

sociated with the quantum number m is fhh,m, and the latter has a definite parity

(either odd or even) for a symmetric quantum well. The light hole wave function is

Ih,n = (lh,)f1h,n + - (UcO a

N [ LT)+ -- | (X + i) )) flh,n - liT) (-i )]

(4.33)

where we have used Equation (4.12) for Ulh,6 and u,,6, and where the envelope function

associated with the quantum number n is fh,n, and the latter has a definite parity

(either odd or even) for a symmetric quantum well.

The Optical Dipole within the Kane Hamiltonian

The optical dipole describing the absorption of normally incident, TE circularly po-

larized radiation from a heavy hole state of quantum number m to a light hole state

of quantum number n is,

(h, n xiz - hh ) =i- N fhh, ( -ia n h E EP (XlxliS), (4.34)

where the first factor is a normalization constant equal to N 2 = 1 + - (I)2. Equa-

tion (4.34) can be evaluated quantitatively by noting that the optical dipole for an

interband (conduction band to valence band) transition is known to be [23, 41],

(XliS) =P- (=7.2 A in GaAs), (4.35)
EG

where we have used the following numbers for GaAs [41]: EG=1.424 eV and

Ep=2moP 2 /h 2 =27.86 eV. In the limit of infinitely large potential barriers surround-

ing the quantum well (located between z=0 and z=Lw) and in the limit of small

mixing of the light and heavy hole states, the envelope function for both the light

holes and the heavy holes is,

fn(z)= 2 sin(nz/Lw), (4.36)vw
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where n is the integral quantum number. The integral (fhh,m I-i | fzh,n) has already

been evaluated in the literature [21] on conduction intersubband transitions in a

symmetric square well potential,

a/ I EI \ -4i (--n2) for m-n odd,
fhh,. n flh,.) { 2 tr (4.37)
\··· ci ,0z / O otherwise.

Thus, the optical dipole describing the absorption of normally incident, TE circularly

polarized radiation from a heavy hole state of quantum number m to a light hole

state of quantum number n is,

h,= 2{P2hfor n m--n odd, (4.38)lhn xJ/ hhm) {4 (m V )

X- O otherwise,

in the limit of very large potential barriers surrounding a symmetric, square quantum

well potential, and in the limit of very little mixing of the light and heavy hole states.

When the quantum well cannot be modelled as a symmetric, square quantum well

with very large potential barriers surrounding it, the full expression in Equation (4.34)

must be used (together with Equation (4.35)) with the integral (fhh,m -i - fh,n)

explicitly evaluated.

Equation (4.38) is a key result of this work. This result has never been explicitly stated

in the QWIP literature, but is implicit in the original Kane [23] k 7p theory. (The

only analytical expression we have found in the literature for the optical dipole in an

intervalence band transition is that of Sugimura [44], who estimated the optical dipole

for a heavy hole to spin-orbit hole transition in a bulk semiconductor.) Equation (4.38)

shows that the absorption of normally incident radiation by holes in a p-QWIP in the

absence of an optical grating is largest for transitions from a heavy hole state to a

light hole state. The absorption of normally incident radiation by holes is also largest

for transitions in which n-m=1 because of the term in parentheses (which arises from

the symmetry of the envelope portion fn of the bound states in a symmetric, square

quantum well) in Equation (4.38). In fact, for a transition from the m=1 heavy hole

state to the n=2 light hole state, Equation (4.38) evaluates to

(lh, 21xlhh, 1) = 2.3 A for a Lw=50A GaAs quantum well, (4.39)
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which is comparable to the optical dipole for a standard interband transition, Equa-

tion (4.35). For comparison, it is well known [21] that the optical dipole for the

intersubband absorption of TM polarized radiation from the n=1 to the n=2 con-

duction subbands is (c, 21xlc, 1) = 0.18Lw=8.8A for a Lw=50A GaAs quantum well

in the limit of infinitely large confining potential barriers surrounding the quantum

well.

The value of knowing explicitly the different symmetries contained in the light and

heavy hole wave functions, Equations (4.33) and (4.32) respectively, lies in being

able to understand how to increase the hole intersubband absorption of normally

incident radiation. One common suggestion in the literature is to design devices that

increase the mixing of the light and heavy hole states. From the expressions derived

above for the light and heavy hole wave functions (Equations (4.32) and (4.33)), it

should be clear that the absorption of normally incident radiation is largest for a

transition from a pure heavy hole to a pure light hole state. A large mixing of the

light and heavy hole states does NOT increase the absorption of normally incident

radiation because the absorption of normally incident radiation must involve a state

having IS) symmetry. (The latter is a result of the following argument. The optical

dipole for the absorption of normally incident radiation polarized in the x direction

is nonzero only for the term (X1x[S) because all other terms are zero by symmetry:

(XIxIX) (XIxIY) = 0.) Since light hole states have much more IS) character than

heavy hole states and since the heavy hole state has no IS) character within the Kane

model (see (4.32)), the absorption of normally incident radiation is strongest for a

transition involving a pure light hole state. If this light hole state is now strongly

mixed with a heavy hole state, as in energy degenerate perturbation theory, the

strongly mixed states, denoted as Al, 1k2, must have the form,
1

T1,2 = n(Tth + "Ihh), (4.40)

where A 1h, qlhh are the pure light hole and pure heavy hole states existing in the

absence of the perturbation. Clearly, Equation (4.40) shows that the mixed states

A!, TI2 each have half of the original light hole character Ilh-

Equation (4.38) is consistent with recent numerical work [45, 46] in the literature.

Chang [46] et al. even state in the beginning of their paper that heavy hole to light
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energy gap Eg (eV)

electron effective mass me/mno

heavy hole effective mass mhh/mO

light hole effective mass mlh/mO

electron mobility Ale (cm2/V-s)

hole mobility h (cm2 /V-s)

static dielectric constant es/eo

high frequency dielectric constant inf/Eo

InAs

0.36

0.023

0.6

0.027

28000

450

14.6

12.3

GaAs

1.424

0.063

0.62

0.082

8500

400

12.85

10.95

AlAs InP

2.15 1.35

0.14 0.08

0.76 0.85

0.15 0.089

4500

130

8.2 12.4

10.1 9.55

Table 4.1: Some energy band, electrical, and optical parameters for

III-V semiconductors.

a selection of

hole transitions are allowed in the bulk for both polarizations of incident radiation.

Much of the theoretical work [46] on hole intersubband transitions has been numeri-

cal, and has focussed on holes with a large value of in-plane wave vector. Following

this theoretical work, much of the original experimental work done by Levine [7, 47]

also emphasized p-QWIP designs where the hole in-plane wave vector is designed

to be large, either through heavy doping of the quantum wells or through the use

of asymmetric quantum wells. However, the selection rules and optical dipoles de-

rived above show that the heavy hole to light hole absorption is strong even in the

limit of very small hole in-plane wave vector. The reason is that the absorption is

strong when there exists a large confinement wave vector, k in Equation (4.38) (de-

scribing the amount of the light hole Bloch function which has the IS) symmetry).

Moreover, even for a large doping of 1x10 12cm-2 in the quantum wells, the hole

in-plane wave vector k is still much smaller than the confinement wave vector kz
(k - E 3 me V e where EF, Eupper are respectively the Fermi energy and

kc, - V E,,,E '~ y 200 meV

the upper bound state energy). (We have used the band structure parameters given

in Table 4.1.) Thus, it is the large size of the confinement wave vector kz of the upper

bound state in a quantum well which allows the light hole state to have some S)

character and which allows the optical dipole in Equation (4.38) to be sizeable.
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The central idea is that strong hole intersubband absorption of normally incident

radiation must involve a light hole state. This light hole state should be chosen to

have a large admixture of 15) symmetry through either a large k or a large kx,ky.

In quantum wells illuminated by a moderately powerful radiation source, such as a

room temperature black body, the light holes involved in the optical transition have

a kz much larger than k,,ky, so that just being a bound state in a quantum well will

introduce a large admixture of IS) symmetry to a light hole state.

From the form of Equations (4.32) and (4.33), it is clear that heavy hole to heavy hole

transitions and light hole to light hole transitions (in the limit of small mixing of the

light and heavy holes) follow the usual intersubband selection rule of being nominally

forbidden for normally incident radiation in the absence of an optical grating. Thus,

the optical dipole describing the absorption of TM polarized radiation has the well

known [21] form,

(hh, mlzlhh, n) = (lh, mlzllh, n)

= {LW (m22-n2)2 for m-n odd, (4.41)

0 L (m2_n2)' otherwise,

for a symmetric, square well potential in the limit of infinitely large potential barriers

(and in the limit of small mixing of the light and heavy holes). Equation (4.41) shows

that the optical dipole drops as /m 3 for a transition from a heavy hole state of

quantum number n=1 to a heavy hole state of (large) quantum number m. Thus,

the absorption of TM polarized radiation from a heavy hole ground state of quantum

number n=l1 to a heavy hole upper state in the continuum above the barrier band

edge could be weaker than the absorption of TE polarized radiation from the same

heavy hole ground state to a light hole state in the same continuum because the upper

light hole state would have a smaller quantum number m and the latter transition

also obeys a different selection rule, Equation (4.38) (and not Equation (4.41)). This

may explain why Levine [7] has observed the absorption of TE polarized radiation

to be twice as large as that of TM polarized radiation for one of his p-QWIPs which

was measured in the waveguide geometry.

The value of these selection rules is in designing QWIPs which have a reproducible
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absorption spectrum. The latter requires the choice of an intersubband transition
which is strongly absorbing and not one which is nominally forbidden. For example,

a good choice for a hole intersubband transition which exhibits a strong absorption of

normally incident radiation would be an intersubband transition involving a (pure)

light hole state. Equation (4.38), which is a new result of this work, is an easy selection

rule to remember, and it is consistent with existing numerical and experimental work

on p-QWIPs.

The Hole Subband Dispersion Relations

The Luttinger-Kohn k * p Hamiltonian [48] for the hole subbands with the Pikus-Bir

description of uniaxial strain is, in the absence of interaction with the conduction

band states,

b ib/V 

a_ if

-if* d

-iv23b* 0

O -iv-b*

c* -iv/2c*

-iJcb
i/b

C

0

d -if*

if
-ib*/V2
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where
h2

a+ [(y + -2 [( 2)(k + kY) + (y - 2y 2)kZ] + Vhh (4.43)
2mo

a_ -2m [(y - y2)(kx + ky) + (1 + 2-y2)k] + Vth (4.44)

h 2

b -= ix-y 3 kz(kx - iky) (4.45)
mo

c =-i--h2 [f 2 (k- - k - 2i -3kxky] (4.46)

f = 2m ,2(k +2 _ 2k BbE (4.48)2o m0

A=2 CH - C12) (4.49)

B=3 C11 + 2C12)(4.50)

Cll -

a ll - a (4.51)a
where mo is the free electron mass, Vhh, VIh are respectively the heavy hole and light

hole band edges, 71,72,y3 are Luttinger parameters, a and b, are, respectively,

the hydrostatic and uniaxial valence band deformation potentials, is the strain,

Cl and C12 are elastic constants, all and a are the strained and unstrained in-plane

lattice constants, and where the order of the total angular momentum IJ, Jz) basis

used in (4.42) is: 13/2, +3/2) (heavy hole), 13/2, +1/2) (light hole), 11/2, +1/2) (spin

orbit hole), 11/2,-1/2) (spin orbit hole), 13/2, -1/2) (light hole), and 13/2, -3/2)

(heavy hole).

A detailed discussion of the changes in the hole wave function symmetry which re-

sult from strain and which are relevant to hole intersubband transitions has been

lacking. The hole wave functions n a strained quantum well can be found from di-

agonalizing the Pikus-Bir Hamiltonian [49] H(O1): for growths on a (001) substrate,

H(001) =-a Ei -ii-b Ei eii[J2 - J2] [- [y{JZy}J' + c.p.], where eij, i=x,y,z is the

strain tensor, a is the hydrostatic deformation potential, b, d are uniaxial deformation

potentials, where J, Ji are the total angular momentum and the component of the

angular momentum along the direction i(=x,y,z) respectively, and "c.p." stands for
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cyclic permutation. Terms in the Pikus-Bir Hamiltonian [49] containing ij appear in

exactly the same way as terms in the Luttinger-Kohn k p Hamiltonian containing

kikj. This is a reflection of the fact that both quantum confinement and axial strain

in the growth direction choose the growth direction as the direction of physical signif-

icance, and both effects impart the multiple quantum well with the same (tetragonal)

symmetry.

This symmetry allows the form of the Pikus-Bir Hamiltonian to be written down

directly, with the mixing of the IS) and IZ) states expressed as

(SIH B')IZ) = Pkz + PEzzkz for strained layers grown on an (001) substrate. Thus,

the optical dipole describing absorption from a heavy hole to a light hole state in

strained epilayers grown on an (001) substrate can be obtained from Equation (4.38)

by replacing the Kane k . perturbative energy Pkz in the absence of strain with the

sum Pkz + Pezzkz. Therefore, the heavy hole to light hole transition dipole in strained

quantum wells is larger than the value without strain given in Equation (4.38) by the

factor,

I(lhlxlhh)l with strain
= 1 + e=. (4.52)

I (hIxlhh)[ without strain

For typical strained InGaAlAs layers grown on either InP or GaAs substrates, e,, is

less than 0.01.

Solution of the Pikus-Bir Hamiltonian shows that the hole states which are light hole-

like along the growth direction have heavy hole-like dispersion relations in-plane. In
h221c I2 t~a__~ where m = m/( + 72) andother words, E = ( 2 + 2) + where ml mo/(yl + y) and

m2 = mhh = mo/( 1 - 2y2) for heavy holes, and

ml = mo/(l 1 - 2) and m2 = mlh/(Yl + 272) for light holes.

4.3 Conclusions

Studies of the microscopic physics of quantum wells have been presented to elucidate

the physical origin of the intersubband absorption of normally incident radiation. It

is desirable to study QWIPs which respond strongly to normally incident radiation
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without the use of an optical grating, since the elimination of the processing steps for

the optical grating results in lower cost, higher yield, and more uniform QWIP FPAs.

A key contribution of this thesis was the derivation, in Equation (4.38), of selection

rules within the framework of k 7 theory for the intersubband absorption of normally

incident radiation by holes (in the limit of small hole in-plane wave vector) in a p-

QWIP (p-doped QWIP) in the absence of an optical grating. It was found that the

absorption of normally incident radiation by holes in a p-QWIP in the absence of

an optical grating is largest for transitions from a heavy hole state to a light hole

state. This result is implicit in the original Kane k p theory, but it has never

been explicitly stated in the QWIP literature. Heavy hole to heavy hole transitions

and light hole to light hole transitions follow the usual intersubband selection rule

of being nominally forbidden for normally incident radiation in the absence of an

optical grating. The value of these selection rules is in designing QWIPs which have

a reproducible absorption spectrum. The latter requires the choice of an intersubband

transition which is strongly absorbing and not one which is nominally forbidden.

Much of the theoretical work on hole intersubband transitions has been numerical,

and has focussed on holes with a large value of in-plane wave vector. Following this

theoretical work, much of the original experimental work done by Levine also empha-

sized p-QWIP designs where the hole in-plane wave vector is designed to be large,

either through heavy doping of the quantum wells or through the use of asymmetric

quantum wells. However, the selection rules and optical dipoles derived here show

that the heavy hole to light hole absorption is strong, even in the limit of very small

hole in-plane wave vector, if the confinement wave vector kz is large.

The well known selection rules and optical dipoles for a conduction intersubband

transition have been reviewed. The possibility of the absorption of normally incident

radiation by electrons in an n-QWIP has been investigated. In so doing, it was found

that the cell periodic Bloch function for electrons having a finite wave vector can be

accurately described numerically within kpfltheory by a Brillouin-Wigner perturbative

expansion in terms of the Bloch functions at k = O. This expansion is analytical, and

easy to use. The intersubband absorption of normally incident radiation by electrons

in an n-QWIP in the absence of an optical grating was found within k - theory
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to be much smaller than that in a p-QWIP. The size of the electron intersubband

absorption of normally incident radiation in the absence of an optical grating is found

to be proportional to the size of the electron in-plane wave vector.

It was also found from kp theory that strained layer growth on an (001) substrate does

not significantly affect the intersubband absorption strength. Since the Hamiltonian

describing uniaxial strain has the same (tetragonal) symmetry as that describing the

confinement of carriers in the quantum wells along the growth direction, then the

heavy hole to light hole absorption in strained epilayers grown on an (001) substrate

has an optical dipole which is larger than that in unstrained layers by the amount

given in Equation (4.52), which is only slightly different from unity.
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Chapter 5

MBE Growth

Figure 5-1 shows the three chamber RIBER 2300 system used for the molecular beam

epitaxial (MBE) growth of the III-V semiconductor devices described in this work.

The growth chamber is the chamber at the center and right side of the figure. The

cell flange, shown on the right side of the figure, could accommodate five Group III

Knudsen effusion cells (for the indium, two gallium, and two aluminum sources), two

dopant cells (for beryllium and silicon), and a solid As source with a valved As cracker.

The long black pipes, positioned vertically in the photograph, carry liquid nitrogen to

and from the Meissner trap which is cooled during growth to provide a base pressure

of 8x10-10 Torr when the cells were at their growth temperatures and the As valve

was closed. The electron gun used for Reflection High Energy Electron Diffraction

(RHEED) is shown at the very center of the photograph, attached to a part of the

upper growth chamber near the cell flange. The growth chamber is pumped by an

ion pump, a titanium sublimation pump, (both not visible in the photograph) and a

CTI Cryogenics Cryo-Torr8 cryopump (in the lower left portion of the photograph).

The preparation chamber is situated between two gate valves, and its lower exterior

is covered with aluminum foil in this photograph. The load chamber is on the left

side of the figure.

The thermocouple readings of the effusion cells were kept constant to within about

0.1 °C with Eurotherm Model 818 temperature controllers.
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Figure 5-1: The three chambers of our RIBER 2300 molecular beam epitaxy system.

(The photograph was taken by Dr. Isako Hoshino.)
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5.1 Flux Calibration

5.1.1 Flux calibration by double crystal rocking curve.

The group III fluxes were calibrated by growing thin layers of InGaAs and InAlAs

on an InP substrate in a fixed duration, typically 12 minutes, at a fixed estimated

growth rate, typically 1 gm /hour. Double crystal rocking curves were measured to

obtain empirical compositions and layer thicknesses, from which growth rates were

obtained. Figure 5-2 shows the measured rocking curve of such a calibration growth.

The desired layer was 200 nm of In0.521Al0.479As, and the measured layer was 168 nm

of In0.508A10.492As. The choice of thickness for a calibration growth and the estimation

of its composition are discussed in Chapter 6.

5.1.2 Flux calibration by measuring beam equivalent pres-

sure (BEP) and RHEED oscillations

Measurement of the Group III beam equivalent pressure (BEP) or RHEED oscillation

frequency as a function of the inverse temperature gives an Arrhenius dependence

whose slope is an activation energy for the line-of-sight evaporation of the Group III

sources into a perfect vacuum [54]. (See Equation (6.40) below.) This activation

energy yields the relative growth rates for the Group III sources.

Absolute growth rates are obtained by taking RHEED oscillations. RHEED oscilla-

tions are taken of AlGaAs growth on GaAs, to get Ga and Al growth rates. The In

growth rate is obtained by growing fully relaxed InAs on InP. To obtain growth rates

on the substrate InP based on these RHEED oscillation measurements, one must

account for the difference in lattice constants of the underlying substrates. Since the

number of atoms in one monolayer (ML) of an epitaxial growth is inversely propor-

tional to the square of the lattice constant, the growth rates in ML/s differ according
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Sample 9443: 189nm In0 .514Al0.486As
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Figure 5-2: Double crystal rocking curve for Sample 9443. The desired layer

was 200 nm of In. 521A0o.479As, and the measured layer thickness was 189 nm of

Ino.514Ao10.4 86As. The analysis of this type of measurement is discussed in Chapter 6.
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to,

(growth of matched InAs in ML/s on InP =)

(growth of fully relaxed InAs in ML/s)(anp/aInAs) 2; (5.1)

(growth of matched GaAs in ML/s on InP) =

(growth of matched GaAs in ML/s on GaAs)(aInp/aGaAs)2 . (5.2)

Since the perpendicular lattice constants also differ, the growth rates in pm/hr differ

according to,

(growth of matched Ga in InGaAs in m/hr on InP) =

(growth of matched GaAs ML in /um/hr on GaAs)(aInp/aGaAs) (5.3)

(growth of matched In in InGaAs in m/hr on InP) =

(growth of fully relaxed InAs ML in pm/hr)(aInp/aInAs) (5.4)

So the ratio of lattice matched-growth rates in m/hr on InP to lattice-matched

growth rates on GaAs is (aInp/aGaAs)3, and the ratio of lattice matched-growth rates

in pm/hr on InP to fully relaxed growth rates of InAs is (aInP/alnAs)3

5.2 Growth Conditions

The substrate temperature maintained during most of the growths on InP substrates

was about 500°C, which is a temperature high enough for the aluminum adatom mo-

bility to be adequate during growth but low enough for the indium not to desorb

fiom the sample surface during growth. Growth of AlGaAs/GaAs structures having

low aluminum mole fraction on GaAs substrates was done at substrate temperatures

between 580 and 6000C. Substrate temperature was maintained constant by using

a constant output from the power supply. Reproducibility of the substrate temper-

ature was obtained by calibrating an optical pyrometer with a band pass at 2.3pm.

Calibration of the optical pyrometer was usually done with a GaAs substrate: the

pyrometer setting corresponding to 640°C was determined by observing when the As

stable RHEED 2x pattern changed to a Ga stable 4x pattern in less than 10 sec with
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the As shutter closed and the As beam equivalent pressure (BEP) less than 10- 7 Torr,

about two orders of magnitude less than the usual [55, 56] As BEP during growth.

The pyrometer could also be calibrated by looking for the 2x4 to 4x2 transition on

InP at 518°C.

Growth interruptions of 5-90 seconds were used in some of these growths to change

the cell temperatures, as there was only one Ga and one Al cell when most of these

samples were grown. As such, the As overpressure is also critical, since a larger As

overpressure appears to keep the In from desorbing at 5000 C. This was noticed as a

better lattice-matched structure when a higher As overpressure was used during the

growth interruptions. Too high an As overpressure was avoided, as that would impede

the aluminum adatom mobility during growth. The typical ratio of the Group V to

Group III BEPs during growth was between 15:1 and 25:1.

The growth rate can be monitored in-situ by observing the oscillations in the intensity

of the RHEED specular spot during growth. One period of such RHEED oscillations

corresponds to the growth of one monolayer. Examples of RHEED oscillations are

shown in Figures 5-3 and 5-4. In these two figures, the RHEED oscillations begin

right after the As shutter is closed and then quickly opened.

Figs. 5-3 and 5-4 also show that the optimal As overpressure can be monitored in-situ

by observing the RHEED specular intensity right after the As shutter is closed and

then quickly opened. If the RHEED specular intensity brightens right after the As

shutter is closed, then the growth conditions are slightly As-rich and optimal. This is

shown in Fig. 5-3. However, if the RHEED specular intensity does not increase right

after the As shutter is closed, then the growth conditions are As-deficient. This is

shown in Fig. 5-4.

The growth of a sample under slightly As-deficient conditions leaves the sample sur-

face with the characteristic morphology shown in Figure 5-5. The Group III element

is believed to segregate during growth under As-deficient conditions, forming ripples

in the (110) direction and the Group III-rich regions shown in the figure. The ripples

shown in Figure 5-5 result from the orientation [57] dependence of the interfacial

energy of Group III-rich regions on the compound semiconductor surface. Such As-
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Figure 5-3: The time (horizontal axis) dependence of the intensity (vertical axis)

of the specular spot in the RHEED (Reflection High Energy Electron Diffraction)

pattern right after the As shutter is closed and then quickly opened under slightly

As-rich growth conditions. The RHEED specular intensity is observed to rise right

after the As shutter is closed, thus indicating slightly As-rich growth conditions.
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Figure 5-4: The time (horizontal axis) dependence of the intensity (vertical axis) of the

specular spot in the RHEED (Reflection High Energy Electron Diffraction) pattern

right after the As shutter is closed and then quickly opened under slightly As-deficient

growth conditions. The RHEED specular intensity is observed to drop right after the

As shutter is closed, thus indicating slightly As-deficient growth conditions.
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deficient growth conditions were observed, for example, in June 1997 when the solid

As source was depleted after more than two and a half years of use.

5.3 A sample growth

Figure 5-6 shows a scanning electron micrograph (SEM) of a typical QWIP, Sample

9207, which was comprised of 10 periods of 40 A GaAs and 500 A A10.25 Gao.75As. The

horizontal width of the micrograph corresponds to an in-plane dimension of 1.13 Atm.

The magnification used for this SEM was 100,000x. In this figure, the surface is

located near the top of the figure, and the substrate is located at the bottom of the

figure. The 40 A GaAs quantum wells are the narrow, dark, horizontal lines in Fig. 5-

6, and the 500 A Alo.25Gao.75As barriers are the wider, lighter, horizontal lines in the

figure.

The central portion of Fig. 5-6 appears brighter than the rest of the micrograph, and

the quantum wells appear to be "wiggly" lines instead of straight horizontal lines in

this portion of the micrograph. This is an artifact of the focusing of the SEM.

A stain etch was sed to enhance the contrast between the GaAs and the AlGaAs

layers in Fig. 5-6. The stain etch selectively etches the GaAs but not the AlGaAs.

Prior to the stain etch, the sample was dipped for 5 seconds in buffered oxide etch

(roughly 50% hydrofluoric acid and 50% ammonium fluoride) followed by a quick

rinse in deionized (DI) water. The stain etch itself was a 20 second immersion in

a solution of 4 drops of ammonium hydroxide dissolved in 20 milliliters of hydrogen

peroxide.
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Figure 5-5: The surface morphology of a sample grown under As deficient growth
conditions. This Normarski image was taken under 50x magnification, and the hori-
zontal distance across the image corresponds to 1.9 mm.
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Figure 5-6: Scanning electron micrograph (SEM) of Sample 9207, which was com-

prised of 10 periods of 40 A GaAs and 500 A A10. 25Ga. 75sAs. The horizontal width of

the micrograph corresponds to an in-plane dimension of 1.13 /um. The magnification

used for this SEM was 100,000x.
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Chapter 6

Layer Structure Characterization
by High Resolution X-ray
Diffraction

Characterization of the epitaxial layers by High Resolution X-ray Diffraction (HRXRD)

allows an empirical measurement of the compositions and layer widths, the amount

of relaxation of strained layers, some assessment of the uniformity of the materials

parameters throughout device, the estimation of the sharpness of the semiconductor

heterointerfaces resulting from either smoothly graded interfaces or three dimensional

roughness at the interfaces. When the epitaxial layers are fully pseudomorphic, a sin-

gle rocking curve measurement yields information about both the layer compositions

and thicknesses. This is discussed in Section 6.3.1. When the epitaxial layers have

started to relax, a single rocking curve measurement is not enough to determine both

the layer compositions and the amount of relaxation. A combination of several rocking

curve measurements can be used to determine the amount of relaxation, as discussed

in Section 6.3.2. Measurement of the reciprocal space map of the epitaxial layers

allows one to distinguish between variations in the perpendicular lattice constant re-

sulting from variations in the composition during the course of the growth. This is

discussed in Section 6.4. Section 6.5 discusses the sharpness of the semiconductor
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heterointerfaces resulting from either smoothly graded composition at the interfaces

or three dimensional structures at the interfaces. Epitaxial layer width uniformity

can be ascertained from either a reciprocal space map or a glancing incidence X-ray

reflectivity measurement, as discussed in Section 6.6. The diffractometer used for

making these X-ray measurements is described in Section 6.2.

6.1 Introduction

Diffraction of an incident, monochromatic X-ray beam of wavelength A and incident

wave vector ki produces a diffracted beam with the diffracted wave vector kd and an

electric field amplitude Es of [58, 59]:

ES = Es,1 E exp[i(ld - kl) Ri] E exp[i(kd - k ri) rn]f n(Ri) (6.1)

Es,1 E exp[i(kd - ki) Ri]Ffr, (6.2)
A;

-- Es,lFepilayer+substrate, (6.3)

where [58] E, 1 is the amplitude of the scattered electric field resulting from one

electron, where Ri denote the position vectors of all unit cells which comprise the

entire crystal (the epilayer plus the substrate), where

Fepilayer+substrate = E exp[i(kd - ki') Ri]Fp., (6.4)

is the total crystal structure factor, where denote the position vectors of all the

atoms which comprise a single unit cell, where

FR; = Zexp[i(kd - ki) n]fn(Ri) (6.5)

is the structure factbr for the unit cell located at the position Ri, and where

fn(Ri) = f exp[i(kd - k-i) fa]p(ra)d3ra, is the atomic scattering factor for the atom
located at Fn within the unit cell located at Ri, and where p is the density of the

electron cloud associated with this atom.
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The structure factor approach is equivalent to a kinematical [58] model of X-ray

diffraction, and is valid [60, 61] for most superlattice measurements because the in-

tensity of the satellite peaks is much weaker than that of the central zero-order peak.

High Resolution X-Ray Diffraction (HRXRD) measurements of epitaxial layers grown

by molecular beam epitaxy yield information about the lattice constants in both the

growth direction and the in-plane directions, the widths of the constituent epitaxial

layers, the amount of relaxation, the average variations in the layers widths and

compositions, and the interface sharpness. All of this information is contained in

Equation (6.4), the total crystal structure factor, as Equation (6.4) is observed to

be the Fourier transform of the electron spatial distribution within the total crystal

comprised of both the epitaxial layers and the substrate.

6.2 The Diffractometer

Figure 6-1 shows the triple axis diffractometer, with its three characteristics stages:

the beam conditioner, the second (sample) crystal, and the analyzer crystal.

The X-ray source is a water-cooled iotating copper anode, typically operated at 50 kV

and 200 mA. The emitted Cu-Kl 1 line is at 1.54 A. The cross sectional area of the

X-ray beam as measured by the detector is (250 /um)2.

The beam conditioner provides the incident X-ray beam with more resolution in both

angle and wavelength. In high intensity mode, angular resolution is achieved with

four reflections and subsequent diffraction of the incident beam by a silicon channel

cut crystal. These four reflections reduce the streak in reciprocal space along the

growth direction which results from the semi-infinite extent of the beam conditioner

crystal. The slits following the channel cut collimator in the beam conditioner block

the Cu-Ka2 line. The monochromator provides more wavelength resolution.

The Bede Enhanced Dynamic Range X-ray Detector is composed of a scintillator, a

photomultiplier tube, and amplification circuitry. X-rays diffracted by the sample are

passed through a beryllium window and strike a scintillator crystal sensitive to pho-
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Figure 6-1: The triple axis diffractometer, with its three characteristics stages: the

beam conditioner, the second (sample) crystal, and the analyzer crystal
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tons with energies of 4-20 keV. The scintillator crystal, here made of sodium iodide,

converts with a high efficiency each X-ray photon to a visible photon of wavelength

0.1 ,um. This induced luminescence has a decay time of 200 ns, and thus allows high

speed detection. The photomultiplier tube, usually operated at 1000 V, is comprised

of an active ten-dynode chain, and is linear over the dynamic range of the detector.

The Enhanced Dynamic Range Detector exhibits a background count rate of 0.15 cps

and peak count rates greater than 450,000 cps. Count rates as low as 1 cps are

easily discerned. The integration time of the detector is chosen to achieve a desired

signal-to-noise ratio. Typical single scans took one half hour to finish.

HRXRD refers to any system employing two or more crystals. The two crystals re-

ferred to in a standard double crystal rocking curve measurement are the monochro-

mator and the sample crystals shown in Figure 6-1. A third crystal, a four reflection

silicon (111) analyzer crystal, placed after the sample and before the detector gives

very high resolution to the measured angle of the diffracted beam. When the analyzer

crystal is used in the detector arm of the diffractometer, information about the lattice

constant in the growth direction (i.e., epilayer composition and its variations) can be

separated from information about the lattice constant in the in-plane direction (i.e.,

local tilt of the lattice planes resulting from some amount of relaxation).

In a standard double crystal rocking curve measurement, the detector angle is fixed

while the sample crystal is "rocked" (scanned) through the Bragg angle. In the

literature, this scan is often called an w-scan. When the analyzer crystal is not used in

an w-scan, the detector observes a large section of the Ewald sphere, and information

about the lattice constant along the growth direction cannot be distinguished from

the in-plane lattice constant. When the analyzer crystal is used in an w,-scan, the

variation of the in-plane lattice constant is observed, thus yielding information about

the substrate curvature or the local tilt, possibly due to epilayer relaxation, of the

lattice planes from the normal direction.

In a 0-20 scan, the detector is scanned in unison with the sample but at twice the scan

rate of the sample. In such a scan, as the sample angle is "rocked" by an amount JO

from the Bragg angle, the detector angle is simultaneously moved by an amount -268,

so that the peaks in the diffracted intensity arise from those epitaxial layers whose
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lattice constant in the growth direction deviates from the substrate lattice constant

by an amount that is determined by the Bragg condition (see Equation (6.8) below).

The 0-20 scan thus yields information about the lattice constant (compositional vari-

ations) along the growth direction. The FWHM of the diffraction peak measured in

a 0-20 scan from a high quality silicon sample is about 5 arcseconds or 12 arcsec-

onds, depending on whether the beam conditioner is operated in high resolution or

high intensity mode. This sample FWHM measured in a -20 scan is limited by the

divergence of the input beam.

When the analyzer crystal is used in an w-scan of a high quality silicon sample (sec-

ond crystal), the FWHM of the sample peak is measured to be about 5 arcseconds

or 12 arcseconds, depending on whether the beam conditioner is operated in high

resolution or high intensity mode. The sample FWHM measured with the analyzer

crystal in place in an w-scan is limited by the crystalline perfection of the sample.

Alignment is critical. If the incident X-ray beam does not intersect the sample crystal

at the axis of rotation of the sample crystal, the diffracted peak widths will appear

lower and broader when the X-ray detector has a large aperture size. The reason is

that as the sample is rocked, the diffraction peaks arise from both different lateral

positions in the incident beam cross section and different lateral positions along the

sample surface.

6.3 Measurement of Double Crystal Rocking Curves

6.3.1 Measurement of Epilayer Composition and Layer Thick-
ness

Peaks in the intensity (proportional to the square of Equation (6.4)) of a beam

diffracted from a crystal occur when the radiation scattered by the atoms in con-

secutive planes constructively interfere according to the Bragg condition,

nA = 2d sin OB, (6.6)
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where n is the order of the diffraction, A is the wavelength of the incident radiation, d

is the spacing between the consecutive planes involved in the constructive interference,

and 0 B is the Bragg angle. For diffracting planes of indices (hkl), d is related to the

lattice parameter a through,
a

d = (6.7)
Vh 2 + k2 + 12

When the central (zero order) epitaxial layer peak in the rocking curve is shifted

from the substrate peak by an amount AO, the epitaxial layer has an average lattice

constant along the growth direction that deviates from the substrate lattice constant

by the amount Aal

(a aa L a--asubstrate sinOB 1 t (6.8)

for a symmetric reflection, in which the incidence angle is equal to the exit angle of

the X-rays.

The average composition of the epitaxial layers is related to the average epilayer

lattice constant in the growth direction and the average amount of epilayer relaxation

through [62],

( a)a -asubstrate 1- 2v a
a r asubstrate 1 a 1+V (6.9)

where ar is the lattice constant of a fully relaxed (bulk) crystal having the aine

composition as that of the epilayer being measured, where all is the average in-plane

lattice constant of the epilayer, and where v is the Poisson ratio. The lattice pa-

rameters and Poisson ratios for some [3, 4, 5, 6] III-V semiconductors are shown in

Table 6.1. The amount of relaxation is proportional to Aa ll: a fully coherent layer

has ajl=atetsubstrate, and a fully relaxed layer has all=al=ar.

Layer Composition. Calculation of the lattice constant ar of a fully relaxed crys-

tal having the same composition as that of the sample epilayer allows the average

composition of the epilayer to be extracted from Vegard's Law (here written for In-

GaAs):

ar,InzGal_xAs = Xar,InAs + (1 - x)ar,GaAs, (6.10)
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Lattice Poisson

Semicon- Parameter ratio

ductor (Angstroms) v

InAs 6.0584 0.352

GaAs 5.6532 0.311

AlAs 5.6622 0.274

InP 5.8688 0.360

Table 6.1: The lattice parameters and Poisson ratios for some III-V semiconductors

[3, 4, 5, 6].

which says that the bulk ternary lattice constant can be found by linearly interpolating

the constituent bulk binary lattice constants. Vegard's law [63, 64, 65] has been found

to give good agreement with experiment.

Layer Thicknesses. The contribution to the structure factor, equation (6.4), of a
thin, pseudomorphic epilayer is, in the kinematic theory of X-ray diffraction,

Fepilayer = sin(Nu/2) (6.11)

where u = (kz,d - kz,i)Rz,epilayer and N is the number of unit cells in the epilayer along

the growth direction z. Equation (6.11) shows that around the central zero-order

epilayer peak will appear a number of interference or Pendellosung fringes, whose

angular spacing AO is related to the thickness t of the epilayer by [62]:

AO A (6.12)t sin(2B) (6.12)
A

for symmetric reflections, (6.13)
2t cos 0B

where ah is the cosine of the angle between the diffracted wave vector and the surface

normal, and ah = cos(90 - B) for symmetric reflections. Equation (6.13) is the spac-

ing between consecutive Pendellosung peaks of fringe order ±2 or higher; the fringe

spacing between the central epilayer peak and either of the ±1 peaks is 1.5 times

Equation (6.13).
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An example of a rocking curve obtained from a thin InAlAs epilayer grown on an

InP substrate was shown in Fig. 5-2 of Section 5. The Pendellosung fringe spacing

was measured to be 111 arcsec, corresponding to an epilayer thickness of 168 nm.

The central epilayer peak was measured to be 237 arcsec away (in the direction of

In-deficient compositions) from the InP substrate peak, corresponding to a measured

composition of In0.508A10.492As. Very good lattice matching is observed, with the

substrate peak differing from the central epilayer peak by 237- arcsec. For comparison,

this separation between the epilayer and substrate diffracted intensity peaks can be

compared with the separation of 390 arcsec between the diffracted intensity peaks

contributed by a pseudomorphic AlAs epilayer and its underlying GaAs substrate.

For the purpose of calibration of the growth rate, previous growers [66] within the

group have found that 200 nm was an optimal strained epilayer thickness for the

unambiguous interpretation of a single rocking curve measurement of a calibration

growth sample. If a thinner epilayer were grown as the calibration sample, the Pen-

dellosung fringes became smaller in intensity and more widely spaced. Larger errors

in the estimation of the growth rate were likely when interpreting low, broad Pen-

dellosung fringes. If a thicker epilayer were grown as the calibration growth sample,

then relaxation of the epilayer was possible, making Pendellosung fringes invisible

and the epilayer composition unknown, since the amount of relaxation could not be

ascertained from a single rocking curve measurement.

A superlattice example. Epitaxial layer widths and compositions for a superlat-

tice are easy to obtain from a double crystal rocking curve. Shown in Figure 6-2 is the

double crystal rocking curve for Sample 9351 which was designed to be a top contact

of 350 nm of In0. 532Gao.468As, followed by fifteen periods of the structure, which con-

sisted of 50 nm of a In0.499Ga0.2 74A10.227As barrier and 10.08 nm of a In.6 7Gao.33As

well.

To extract the actual layer widths and compositions, we observe the following. The

substrate peak is at -7074.5 arcsec. The peak at -6993.5 arcsec yields the compo-

sition of the InGaAs contacts and buffer layer. The zero order epilayer peak is at

-7135 arcsec. The barrier composition is given by the peak at -6590.75 arcsec. The
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Figure 6-2: Double crystal rocking curve for Sample 9351. The desired epitaxial layer

was a top contact of 350 nm of Ino.532Gao 468As, followed by fifteen periods of the

structure: 50 nm of a Ino.499Gao.274Al0.227 As barrier and 10.08 nm of a Ino.67Gao.33 As

well. The actual structure was a top contact of 377 nm of Ino.53oGao.470As, followed

by fifteen periods of the structure: 53.5 nm of a Ino.5ooGao.276Alo.224As barrier and

10.84 nm of a Ino.668Ga0.332 As well.
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well composition is given by the low broad peak at -8915 arcsec. The superlattice pe-

riodicity is given the spacing (290 arcsec) between the superlattice fringes. Thus, the

measured superlattice period is 64.34 nm, compared to a desired period of 60.08 nm,

and thus the actual total growth rate was about 7 percent larger than desired.

Since the low broad peak denoting the well composition does not have a clearly

defined peak, we use the positions of the other peaks (the substrate, the InGaAs

top contact, the barrier, and the average superlattice peaks) to calculate the ratio

of the actual to the desired growth rates on the day this sample was grown. Any

two of these peak positions gives the gallium and the aluminum incorporation rates

relative to the indium incorporation rate. These peak positions in combination with

the measured superlattice periodicity yields the ratio of the actual to the desired

growth rates for the indium, gallium, and aluminum cells on that day to be 1.072,

1.081, and 1.055, respectively. So, the structure actually grown on that day was a

top contact of 377 nm of Ino.530Gao.470As, followed by fifteen periods of the structure:

53.5 nm of a Ino.500Gao0 276A10o224As barrier and 10.84 nm of a In0.668Ga0.332As well.

6.3.2 Relaxation and uniformity of epilayers

Epitaxial layers grown in the InGaAlAs materials system may be relaxed, sometimes

intentionally (under the assumption that a small amount of relaxation does not de-

teriorate device behavior by much) and sometimes unintentionally (when the source

fluxes are slightly different from the intended ones). A knowledge of the amount

of relaxation of the epitaxial layers may allow an estimate of the variation of the

layer compositions and thicknesses throughout growth. For example, a large value

of the full width at half maximum (FWHM) of the epilayer diffraction peaks could

come from either a relaxing of the epilayers or composition/thickness variations of

the epilayers during growth. To obtain the amount of relaxation of the epilayers, so

that the layer compositions and the amount of layer variation throughout a growth

can be obtained, a combination of several rocking curves must be measured at both

asymmetric and symmetric Bragg peaks.
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To measure the amount of relaxation of an epitaxial layer, the in-plane lattice con-

stant must be measured. For a partially relaxed epitaxial layer, the in-plane lattice

constants along the [110] and [110] directions could differ because misfit dislocations

form preferentially along the [110] direction. For a partially relaxed epitaxial layer,

the in-plane lattice constant differs from the lattice constant of the underlying sub-

strate.

An asymmetric Bragg reflection is used to measure the in-plane lattice constant.

Here, the normal to the diffracting planes differs from that to the sample surface by

a finite angle 0. If the angle between the incident wave vector and the surface of the

diffracting plane is denoted by OB, then the angle between the incident wave vector

and the sample surface is OB - f glancing incidence measurements and OB + 0 for

glancing exit measurements. This is shown in Figure 6-3.

For asymmetric reflections, the Bragg angles associated with the substrate and the

epilayer will differ by AOB,

AsB =- [( Cos2 q+ (-) sin2q] tan0B (6.14)a II
and the equivalent asymmetric planes in the substrate and the epilayer will have a

relative tilt of angle AqO,

q [()- ( ) ] sinb cosb0, (6.15)

as shown in Figure 6-4. Thus, the substrate and the epilayer peaks measured in an

asymmetric Bragg reflection will differ by

A = AOB T A (6.16)

=(-) (-cos2 tan B sin cosq ) + (-) (-sin 2 tan B :Fsin cos 0),

(6.17)

where the upper signs refer to glancing exit measurements and the lower ones to

glancing incidence measurements.

To assess the amount of partial relaxation of strained layers, the author measured

rocking curves around the (224) asymmetric reflection. For an (001) substrate,
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Glancing Incidence

Glancing Exit

Figure 6-3: Glancing incidence and glancing exit geometries showing Bragg angle 0

and tilt of planes.
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Figure 6-4: Equivalent asymmetric planes in the substrate and in the epilayer will

have a relative tilt of angle Aq5.
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0(224)=35.26'. For an InP substrate, the separation between the epilayer and sub-

strate peaks is [66]

A = -1.031( +0 9-(.a) (6.18)

for a (224) glancing incidence measurement, and is

O = -0.089 a ) .751 ( a) (6.19)

for a (224) glancing exit measurement. For a simple tetragonal distortion, there are

two unknowns: (), and () . These can be found from either two asymmetric

measurements or a combination of one asymmetric and one symmetric measurement.

If the substrate has a miscut angle, then four measurements are made: the same

measurements described in the previous sentence are made at two different in-plane

azimuths of the sample, and then averaged.

For orthorhombic distortion, the in-plane lattice constants differ, and are charac-

terized by (a )11[110] and (a)gi[0]O The epitaxial layer composition must be found

from

a r v a 1 + L a 1g10] a 11[ll]-
___ v F/'Aa\ /Aa\ 1

and three measurements are needed to find ( a) (a)1[11o]' and ( a')1111o] If the

sample has a miscut angle, then six measurements are needed to determine the lattice

parameters.

6.4 Reciprocal Space Mapping

Reciprocal space maps are made by compiling a set of 0-20 scans (or an equivalent

set of w scans) near a Bragg peak. In an w scan, the sample is rocked with its axis

of rotation perpendicular to the plane of incidence, as indicated in Fig. 6-1, with the

detector fixed. In a -20 scan, the detector and sample are rotated in unison, with

the axis of rotation perpendicular to the plane of incidence, and with the detector

scanned at twice the angular frequency as the sample angular scan frequency.
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Reciprocal space maps allow [67] strain or perpendicular lattice parameter distribu-

tions to be distinguished from mosaic tilt or interface roughness. Mosaic tilt manifests

itself as a broadening in the 0-20 direction as a result of the shape of the mosaic block,

and also a further broadening of the superlattice peaks in the w direction, with the

broadening larger for the larger order satellite peaks. In the presence of mosaicity, the

direction of the broadening of the satellite peaks is concentric with circles centered

around the origin (000) of reciprocal space.

Interface roughness broadens the superlattice peaks in directions perpendicular to the

growth direction, with the broadening larger for larger order satellite peaks. Interface

roughness does not tilt the peaks with respect to the growth direction. The width of

the zeroth order superlattice peak is unaffected by the presence of interface roughness.

Variations in the layer thickness broadens the satellite peaks along the growth direc-

tion, with the zeroth order satellite peak width unaffected by variations in the layer

thicknesses.

Near the (004) Bragg peak, the deviation of the specimen angle (i) and the de-

viation of the detector angle (T) from their nominal Bragg positions yields the

diffracted intensity at the point in reciprocal space given by [67]

q[oo] = AV cos B/A (6.21)

q[ll0] = (2Abi - Aq) sin OB/A, (6.22)

where [001] is the growth direction. Thus, the 0-20 scan, with 2A4p = A, is a scan in

reciprocal space parallel to the growth direction, [001], and yields information about

layer thicknesses or lattice constants along the growth direction. The w scan, with

ALp=0, is a scan in reciprocal space perpendicular to the growth direction, and yields

information about the tilt of the growing planes with respect to the nominal growth

direction. The standard double crystal rocking curve is a scan in reciprocal space

perpendicular to the growth direction, with intensities which are the summations

of the diffracted intensities over the wide detector angular aperture (p) along the

Ewald sphere.

The analyzer crystal provides more resolution in the w scan by reducing the aperture
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size A T . The analyzer crystal also reduces the instrumental streak in reciprocal space.

Near an asymmetric Bragg peak, the deviation of the specimen angle (b) and the

deviation of the detector angle (p) from their nominal Bragg positions yields the

diffracted intensity at the point in reciprocal space given by

q[Ol _ sin[OB + O + + A] + sin[0B - 9 + Aqo - Ap] sin[OB + W] + sin[B -]
A A

(6.23)

- cos[0B + , + AX] + cos[OB - + A - A] -cos[OB + 1] + Cos[0B - V]
q[llo] -- A A

(6.24)

where [001] is the growth direction. When the epitaxial layers are coherent, the

in-plane lattice constant throughout the epitaxial layer is the same as that in the

substrate, and the peaks associated with the epitaxial layer must lie parallel to the

q[00ol]-axis. To measure a reciprocal space map near an asymmetric Bragg peak in a

direction parallel to the q[ool]-axis, the detector angle A must be varied in unison

with the sample angle AlI according to

Aq= 1+ sin(B - A(- = 1.085A- near (224) on an InP substrate.

(6.25)

Figure 6-5 shows the reciprocal space map near the symmetric Bragg peak (004) ob-

tained by triple axis diffractometry for the Sample 9351, which was discussed earlier

to consist of a top contact of 377 nm of Ino.530Gao.470As, followed by fifteen peri-

ods of the structure: 53.5 nm of a Ino.s50 Gao.276Al0.224As barrier and 10.84 nm of a

Ino.66 8Gao.332As well. The peak widths along the [001] growth direction indicate layer

width variations.

The peak widths along the [110] u direction indicates either mosaic tilt or interface

roughness of the epitaxial layers. The very narrow FWHM along the w direction

of 12 arcsec remains constant even for the increasing superlattice diffraction orders

shown in Fig. 6-5, and this FWHM corresponds to the resolution limit of the diffrac-

tometer. This very narrow FWHM in the [110] direction and the absence of an
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Figure 6-5: Reciprocal space map of Sample 9351 near the symmetric (004) Bragg

peak. The peaks along the [001] growth direction indicate the different perpendicular

lattice constants and thus the superlattice periodicity. The peak widths along the

[001] growth direction indicate layer width variations. The peak widths along the [110]

w direction indicate mosaic tilt. The very narrow FWHM along the w direction of

12 arcsec is the same for all superlattice diffraction orders shown, and it corresponds to

the resolution limit of the diffractometer. The sample and detector angular positions

are related to a point in reciprocal space through Equation (6.24).

109



increase of this FWHM with increasing diffraction order indicate an amount of mo-

saic tilt or epitaxial interface roughness which is too small to be resolved in this

measurement.

The reciprocal space maps near asymmetric Bragg peaks, such as near (224) in Fig-

ure 6-6 for Sample 9351, yields information about the in-plane lattice constant and

thus the lattice relaxation. If the superlattice had fully relaxed, the superlattice peaks

in Fig. 6-6 would lie along the [224] direction, signified by the black line in the re-

ciprocal space map. Since the superlattice peaks in Fig. 6-6 lie parallel to [001], the

superlattice is pseudomorphic. Further, the very narrow FWHM along the [110] direc-

tion near the asymmetric (224) Bragg peak and the absence of an observed increase

in this FWHM with increasing diffraction order are indications of an unresolvably

small amount of mosaic tilt or interface roughness.

This is to be contrasted with the reciprocal space map of a superlattice which shows

partial relaxation. Shown in Fig. 6-7 is such a structure, Sample 9326, whose nominal

layer structure is a top contact of 350 nm of Ino.532Ga0.468As, followed by fifteen peri-

ods of the structure: 50 nm of a In0.532A10.468As barrier and 6.24 nm of a Ino.45 Gao.55As

well. The measured FWHM of the peaks along the [110] (w) direction for Sample

9326 is about 100 arcsec. This FWHM is much wider than that measured for Sample

9351, and indicates partial relaxation of the epitaxial layers.

The wealth of information in a reciprocal space map is thus illustrated. The large

FWHM in the [110] direction in the reciprocal space map of Sample 9326 was a

clear indication of partial relaxation. That the epilayers in this sample had partially

relaxed was not otherwise clear. This sample was perfectly shiny, even though more

than 2.5 microns of epitaxial layers were grown. Its double crystal rocking curve,

shown in Fig. 6-8, showed many narrow superlattice peaks.

Only by carefully considering the actual compositions obtained during the growth of

Sample 9326 was it clear that the epitaxial layers had partially relaxed because they

were thicker than the Matthews-Blakeslee [68] critical limit. The top contact alone,

designed to be 350 nm of In0.532 Ga0.468As, was actually 343 nm of In0.5183 Ga0.4817As,

which is quite a bit larger than the Matthew-Blakeslee critical limit of 231 nm for
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Figure 6-6: Reciprocal space map of Sample 9351 near the asymmetric (224) Bragg

peak. If the QWIP superlattice had fully relaxed, the superlattice peaks would lie

along the [224] direction, signified in the reciprocal space map by the black line.

The sample and detector angular positions are related to a point in reciprocal space

through Equation (6.24).
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Figure 6-7: Reciprocal space map of Sample 9326 near the symmetric (004) Bragg

peak. The measured FWHM of the peaks along the [110] (w) direction is about

100 arcsec. This FWHM is much wider than that measured for Sample 9351, and

indicates partial relaxation of the epitaxial layers. The sample and detector angular

positions are related to a point in reciprocal space through Equation (6.24).
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growing In0 .51 83 Ga0.4817As. (The composition of the top contact can be obtained

from noting its position at -6499 arcsec in Fig. 6-8 to be 243 arcsec in the indium

deficient direction above the InP substrate peak at -6742 arcsec. The composition of

the barriers can be obtained from the peak at -6364 arcsec to be ln0.5088 A10.4912As,

instead of the desired Ino.532 A10.46 8As. The superlattice fringe spacing of 332 arcsec

corresponds to a measured superlattice period of 56.20 nm, which is very close to the

design goal of 56.24 nm. The ratio of the actual to the desired incorporation of the

indium, gallium, and aluminum in Sample 9326 was 0.95425, 1.00797, and 1.04738,

respectively.)

6.5 Glancing Incidence X-ray Reflectivity and Scat-

tering Measurements

Glancing Incidence X-ray Reflectivity (GIXR) measurements are very sensitive to

the epilayer interface grading/roughness, and allow the interface grading/roughness

to be distinguished from the layer thickness variations. GIXR measurements ascertain

interface grading and roughness without separating the two. Glancing incidence X-ray

scattering (GJXS) measurements allow the interface roughness to be unambiguously

ascertained. Comparison of the simulation and measurement of GIXR allows the

determination of device layer thicknesses and variations thereof, compositions, and

interface grading/roughness.

GIXR measurements are made in the same manner as 0-20 scans, but are made near

0=00 instead of at the Bragg angle. Alignment is critical. After roughly aligning the

detector and sample angular positions, an initial reflectivity measurement is made.

The detector is then moved to twice the incident angle for an epilayer diffraction peak.

Fine adjustments of the sample alignment are made by scanning the sample angular

position through the incident angle for an epilayer diffraction peak. Alignment is

achieved for that sample angular position at which the diffracted intensity (near

glancing incidence) is a maximum.
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Figure 6-8: Double crystal rocking curve for Sample 9326. The desired epitaxial layer

was a top contact of 350 nm of Ino.532Gao.468As, followed by fifteen periods of the

structure: 50 nm of a Ino.532Al0o.468As barrier and 6.24 nm of a InO.45 Ga0.55As well.

The actual structure was a top contact of 343 nm of Ino.5183 Gao.4816 As, followed by

fifteen periods of the structure: 50 nm of a Ino.5088Alo0.4912As barrier and 6.14 nm of

a In0.436 Gao.563 As well.
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Since the penetration depth of the X-rays in GIXR measurements was estimated to

be just several thousand angstroms, the best samples for GIXR measurements were

those with only a thin or no cap layers. Cap layers should not be removed by etching,

since it was noted that the roughness added to the sample surface by etching tends

to dominate the roughness inherent in the layer interfaces.

6.5.1 Glancing Incidence X-ray Reflectivity Measurements

It is well known that the index of refraction must be accounted for in the determi-

nation of the epitaxial layer thicknesses from glancing incidence X-ray measurements

[67, 69]. The index of refraction in most semiconductors is less than unity at the X-ray

wavelengths. If the refractive index in air is assumed to be unity, and the refractive

index in the interior of the semiconductor is assumed to be nI, then the critical angle

OC (in air measured from the sample surface) for total external reflection of X-rays is

found from,

cos Oc = n1 . (6.26)

If the incident angle (exterior to the sample and measured from the sample surface)

is denoted as OE, then the refracted X-ray beam in the interior of the semiconductor

makes an angle of OI with respect to the sample surface, where 0i is related to SE and

0c through,

cos 0I cos Oc = cos E. (6.27)

For small (glancing) incident angles, this last equation is approximately

6 = 2 _ 02 (6.28)

When the epitaxial layers consist of a superlattice having a periodicity of D, the

GIXR measurements show superlattice diffraction peaks at the superlattice Bragg

condition:

sin 01,n = nA/2D, (6.29)
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where n is the diffraction order and i,,n is the angle with respect to the sample

surface of the refracted X-ray beam in the interior of the semiconductor. Using

Equation (6.28), the superlattice diffraction peaks occur at incident angles (in the

exterior of the semiconductor) satisfying,

2=n (=A) + o2 (6.30)

An example of a GIXR measurement is shown in Figure 6-9 for Sample 9089 which

consisted of a superlattice intended to be 50 periods of 80 A AlAs and 27 A GaAs,

with a cap layer of 130 A of GaAs. The points in Fig.6-10 denote the measured

superlattice diffraction peak positions as a function of the diffraction order as obtained

from Fig. 6-9. The solid line in Fig.6-10 is a least squares best fit of the measured

points to Equation (6.30). The slope of he solid line yields the average measured

superlattice periodicity, which was found to be 104 A for Sample 9089. Extrapolation

of this curve to the zeroth diffraction order (the intercept of this curve with the

ordinate axis) yields [69] the critical angle for total external reflection, which was

measured to be about 1100 arcsecs=0.31 ° for Sample 9089. It is well known [67]

that the critical angle for total external reflection of Cu Kc radiation from a GaAs

substrate is 0.31° .

The solid line in Fig. 6-9 represents the reflectivity calculated [70] for a superlattice

in which the layer widths and roughnesses are optimized to minimize the magni-

tude of the difference in the logarithms of the measured and calculated reflectivities.

The modeled superlattice is comprised of a GaAs cap layer, an oxide layer, followed

by 7 repetitions of a 7 period superlattice, for which the layer widths and rough-

ness/interfacial grading are optimized for a best fit. The best fit for the 7-period

superlattice was found to have layers with a mean width of 75.9 A for the AlAs layers

and 28.2 A for the GaAs layers, with a standard deviation of 1.50 A and 0.565 A
for the AlAs and GaAs layers, respectively. The interfaces between the GaAs and

AlAs layers are modeled as not sharp, and were found to have an interfacial grading

or roughness that spans a mean distance 2.69 A and 2.45 A for the AlAs and GaAs,

respectively, with a standard deviation of 0.90 A and 0.53 A for the AlAs and GaAs,

respectively. The best fit to the measured data points required a GaAs cap layer of
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Figure 6-9: The points in this figure represent a GIXR measurement of Sample 9089

intended to be a superlattice consisting of 50 periods of 80 A AlAs and 27 A GaAs,

with a cap layer of 130 A of GaAs. The solid line in the figure represents the re-

flectivity calculated for a superlattice in which the layer widths and roughnesses are

optimized to minimize the magnitude of the difference in the logarithms of the mea-

sured and calculated reflectivities.
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Estimated period = 104.0563 Angstrom and 0 c = 1099.876 arcsec
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Figure 6-10: The points in this figure denote the measured superlattice diffraction

peak positions obtained from Fig. 6-12. The solid line in this figure is a least squares

best fit of the measured points to Equation (6.30). The spacing between the diffraction

peaks (the slope of the solid line) yields the average measured superlattice period-

icity, which was found to be 104 A for Sample 9089. Extrapolation of this curve

to the zeroth diffraction order (the intercept of this curve with the ordinate axis)

yields the critical angle for total external reflection, which was measured to be about

1100 arcsecs=0.31 ° for Sample 9089.
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150 A on which there is an 22.91 A oxide layer of roughness 6.80 A. The need to

include a thin oxide layer to get a better match of the simulated to the measured

GIXR data has been reported previously in the literature [71]. (The optimized 7

period superlattice was found by Kevin Matney at Bede Scientific using their test

software.)

The question arises as to the uniqueness of the layer structure found from this op-

timization procedure. The answer is that the period of the superlattice and the

individual layer widths comprising each period are found with small uncertainty. The

period is inferred from the spacing of the diffraction orders, as shown in Fig. 6-10, and

an uncertainty in the inferred period manifests itself as a deviation of the measured

data points from the best fit straight line in Fig. 6-10. The individual layer widths

comprising each period are found from a comparison of measured and the simulated

strengths of the different diffraction peaks, as shown in Fig. 6-9. Though the mean

layer widths are found from the simulation with small uncertainty, the simulation

may not yield definitive unique values for the layer width and roughness variations as

well as the mean roughnesses. The statistics of the layer width and roughnesses found

in the simulation of Fig. 6-9 should not be taken too literally. For one thing, there

is an extra periodicity coming from the repetition of the 7-period superlattice seven

times in the simulation of Fig. 6-9. This extra periodicity in the simulation appears

in the figure as the seven small peaks (having a separation of about 214 arcsec) which

appear between the much stronger diffraction peaks (having a separation of about

1500 arcsec).

The question also arises as to how sensitive the simulated reflectivity is to this artificial

periodicity introduced by the simulation and to the exact order of the layers in the

model superlattice. To test how sensitive the simulated reflectivities are to the exact

layer structure, different 50-period superlattices were generated with layer widths and

roughnesses having a Gaussian distribution of the same mean and variances as those

in the simulation of Fig. 6-9. These different model superlattices were found to yield

simulated reflectivities that reproduce the peak positions shown in Fig. 6-9, but the

peak intensities are not quite reproduced. One such simulation is shown in Figure 6-

11. Of particular note is that the two highest diffraction peaks (of order 12 and 13)
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simulated in Fig. 6-11 are lower in intensity than the measured intensities.

In Section 6.6 below, we show that the spread of the full-width-half-maxima (FWHM)

with diffraction order for the higher order diffraction peaks is a measure of the layer

width variation. This deterioration of the fit for the higher order diffraction peaks

of Fig. 6-9 affects the assessment of the layer width variation. In fact, in Section 6.6

below, we find that the superlattice period has a distribution with a FWHM of 2 A.
The best fit model of Fig. 6-9 corresponds to a superlattice period having a distri-

bution with a FWHM of 2 /2 log(2)(1.502 + 0.5652)=3.77 A. The agreement is not

perfect because the fit shown in Fig. 6-9 is not as good for the higher order diffraction

peaks.

The reason for the apparent sensitivity of the simulated reflectivity to the precise

layer structure is believed to be insufficient statistics in solving for the properties of

only 7 periods of the superlattice. If the layer widths and roughnesses of all 50 periods

were found directly in the optimization procedure, the simulated reflectivity would

probably better match the measured reflectivity, but the computation time would be

prohibitive.

In fact, when the mean value of the AlAs and GaAs layer widths in the simulations

were changed slightly to 75.6 A and 28.4 A, respectively (keeping all other simulation

parameters the same as in Fig. 6-9), different simulated superlattices having the same

Gaussian distributions for the layer widths and roughnesses all yielded very similar

reflectivities. One such structure is studied in Figure 6-12. The solid line in the figure

represents a calculated reflectivity [70] with a good visual fit to the measured data

in which the superlattice is modeled as having a Gaussian layer width distribution

of mean 75.6 A and 28.4 A for the AlAs and GaAs, respectively) and some standard

deviation (0.68 A and 1.01 A for the AlAs and GaAs, respectively). The interfaces

between the GaAs and AlAs layers are modeled as not sharp, and have an interfacial

grading or roughness that spans a distance which is Poisson distributed with some

mean (3.52 A and 2.98 A for the AlAs and GaAs, respectively) and some standard

deviation (1.73 A and 1.60 A for the AlAs and GaAs, respectively). The model

also assumed a GaAs cap layer of 120.4 A on which there is an 22.9 A oxide layer of

roughness 11.68 A. Better agreement than in Fig. 6-11 is observed in Fig. 6-12 between
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Figure 6-11: The points in this figure represent a GIXR measurement of Sample

9089 intended to be a superlattice consisting of 50 periods of 80 A AlAs and 27 A

GaAs, with a cap layer of 130 A of GaAs. The solid line in the figure represents the

reflectivity calculated for a superlattice in which the layer widths and roughnesses

are Gaussian distributed with the same mean and variances as those found from the

simulation of the optimized structure shown in Fig. 6-9.
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the measurement and the modeled reflectivity for the highest order (the twelfth and

thirteenth) diffraction peak intensities.

That the simulation of Fig. 6-12 is a good fit to the measured data regardless of the

exact order of the layers used in the simulation (as long as the simulated structures

all have the same Gaussian distribution of layer parameters) shows that we have a

good idea of what the layer structure is. As a comparison, two other layer structures

are simulated in Figure 6-13 as examples of what Sample 9089 is NOT comprised.

The two upper curves in Fig. 6-13 are the measured and simulated reflectivities shown

previously in Fig. 6-12. The third curve in Fig. 6-13 shows the simulated reflectivity

of a structure in which all 50 superlattice periods have the same layer widths and

roughnesses. Such a simulated [72] reflectivity shows diffraction peaks which will

always be too narrow to match the measurement, especially at higher diffraction

order. The fourth curve in Fig. 6-13 is for a structure having the same Gaussian

distribution for the layer parameters as used for the second curve in the figure, but

the layer widths have been ordered to increase monotonically from the substrate to the

sample surface. Such a structure has a simulated reflectivity whose diffraction peaks

are much broader and smaller (in peak intensity) than the measured ones. Thus, the

layers comprising Sample 9089 have a Gaussian distribution of layer parameters, and

the layer widths are randomly ordered.

The distribution (mean and standard deviation) of the layer roughnesses used in

the simulation of Fig. 6-12, which gave a good visual fit to the measured data, was

taken to be slightly different from that used in the best fit simulation of Fig. 6-9.

The layer widths chosen in the simulation shown in Fig. 6-12 were changed slightly

to give a better fit to the peak positions than in Figs. 6-9 and 6-11, which show

simulated peak positions which are always at a slightly lower angle than the measured

peak position. The roughness variations chosen in the simulation shown in Fig. 6-12

are larger than those used in Figs. 6-9 and 6-11, in an effort to get the simulated

intensities of the twelfth and thirteenth order diffraction peaks to match experiment.

(The simulation of a roughness that was the same for all layers required a value

that was unrealistically small (0.5 monolayer for all layers) to fit the measured data.)

The roughness of (1.0±0.5) monolayer seen in these simulations is in good agreement
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Figure 6-12: The points in this figure represent a GIXR measurement of Sample 9089

intended to be a superlattice consisting of 50 periods of 80 A AlAs and 27 (0.68 A and

1.01 A for the AlAs and GaAs, respectively). The solid line in the figure represents

a calculated reflectivity with a good visual fit to the measured data in which the

superlattice is modeled as having a Gaussian layer width distribution of some mean

(75.6 A and 28.4 A for the AlAs and GaAs, respectively) and some standard deviation

(0.68 A and 1.01 A for the AlAs and GaAs, respectively).
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Figure 6-13: Comparison of the measured and simulated reflectivities as a function

of incident angle for Sample 9089. The upper curve is the measured reflectivity.

The second curve is the simulation from Fig. 6-12, showing a good visual fit to the

measured data. The third curve was calculated by a simulation which assumed that

all the layer widths were identical and equal to the average measured layer widths.

The fourth curve was calculated by a simulation which assumed the same set of layer

widths as for the second curve, but which also assumed that the layer widths were

increasing monotonically during growth.
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with the literature. The reports of roughness of growths by MBE [67] seem to be in

agreement for the absolute size of the roughness: about 1-3 monolayers. This is not

surprising, as the standard MBE growth front involves about 3 monolayers. Thus, the

roughness of the sample interfaces may be improved with different growth techniques,

such as growth interruptions or migration enhanced epitaxy.

Modeling of the GIXR is done by solution of the Parratt (transmission line) equations

for the electromagnetic fields in a layered structure. The grading and roughness at the

interfaces is accounted for in a distorted wave Born approximation [73, 70] by replacing

the standard Fresnel reflection coefficient at an interface resnel kz,m+k,m+l where

kz,m is the component of the wave vector along the growth direction z in the layer

designated "m," by (r),

oo(z) exp (6.31)

where a is the standard deviation of a Gaussian distribution for the lateral (in-plane)

distribution of the roughness, and g(z) is the normalized first derivative of the electric

susceptibility. In equation (6.31), the first exponential denotes the roughness of the

interface, and the Fourier integral denotes the grading of the electron distribution

across the interface. Roughness and grading cannot be distinguished in a GIXR

measurement because both effects appear in the product in equation (6.31).

For an ideal crystal, it is easy to show from the Fresnel equations for reflection that

the glancing incidence reflectivity drops as the fourth power of the incident angle

[67], as is necessary for a crystal which has a semi-infinite extent. Interface grading

manifests itself in a sharper drop of the glancing incidence X-ray reflectivity with

respect to the incident angle.

6.5.2 Glancing Incidence X-ray Scattering Measurements

Glancing Incidence X-ray Scattering (GIXS) measurements distinguish between in-

terface grading and roughness. GIXS measurements are made in the same manner as

w scans, but are made near 0=0 ° instead of at the Bragg angle. Interface grading and
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roughness can be distinguished because rough surfaces enhance the diffuse scattering

of the glancing incidence X-rays. In contrast, smooth but compositionally graded

interfaces enhance the transmission into (and not the scattering from) the sample.

Calculation of the diffuse scattering of glancing incidence X-rays is very involved. A

key contribution to the diffuse scatter is the surface structure factor S(q) for a given

scattered wave vector q [74]:

$(q) = exp (- [q2 + q 2] 2 /2) [exp {Iqz2 C(x)} -- 1] exp(iqxx)dx,l Z2 l)illuminated surface
(6.32)

where C(x) is a function describing v;hether correlations in the height (in the z or

growth direction) of an interface exist with an in-plane separation of x,

C(x) = (z(O)z(x)) _ cr2exp [--(Ix/g)2h] , (6.33)

where a is the root-mean-square roughness, is the correlation length of the rough-

ness, and h describes how fast C(x) drops for large jxJ. Equation (6.32) shows that

the diffuse scatter structure factor is the Fourier transform of the height correlation

function.

Peaks in the diffuse scatter, known as Yoneda [75] wings, are observed when either

the incident or exit angle of the X-rays is equal to the critical angle for total external

reflection, for which there is a large enhancement of the surface electric field.

Three GIXS measurements of Sample 9089 are shown in Fig. 6-14. The three curves

shown correspond to measurements in which the difference between the scattered

angle and the incident angle are, respectively, 4430, 6230, and 9496 arcsec. In such

a measurement, the detector angle is fixed at twice the angle at which the peaks

occur in Fig. 6-14. (The peaks in Fig. 6-14 occur when the detector angle is exactly

twice the incident angle, and is the situation in which a glancing incident reflection

measurement was made.) The sample angle is then varied from glancing (zero angle

of) incidence to glancing (zero angle of) exit conditions. The Yoneda wings in Fig. 6-

14 are very small because the measurement was made at a superlattice diffraction

peak, for which many superlattice periods are making significant contributions to the
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reflected/scattered radiation, while the relative contribution of the surface roughness

of any one particular layer is small.

Four GIXS measurements are shown in Fig. 6-15 for Sample 9324 consisting of a su-

perlattice of 7 periods of 50 nm In0 .521A10 .479As and 6.73 nm In0.532GaO.468As. The four

curves shown correspond to measurements in which the difference between the scat-

tered angle and the incident angle are, respectively, 3134, 3868, 4860, and 5398 arcsec.

Large Yoneda wings (the cusps) are visible because Sample 9324 is believed to have

rough interfaces. The first InGaAs layer is believed to contain rough three dimen-

sional structures because the Ga shutter did not open for about 10 seconds. Thus,

the first 5 monolayers of the first InGaAs layer is believed to be InAs.

6.6 Measurement of epitaxial layer width unifor-

mity

6.6.1 Introduction

This section describes the measurement of epitaxial layer width variations. The

amount of layer width variation can be separated from the amount of interface grad-

ing/roughness through the measurement of either a reciprocal space map or a com-

bination of a glancing incidence reflectivity and scattering measurements.

An example of this is given for a superlattice of binary alloys: an AlAs/GaAs su-

perlattice. Measuring the layer width variation for a superlattice of binary alloys

gives a measure of the size of the composition variations expected for a ternary. A

comparison is given for a superlattice of ternary alloys.

For QWIPs, composition variations affect the height of the confining potential barrier,

and thus affect the thermal leakage current uniformity. Both composition variations
and roughness affect the layer width uncertainty, which affects the variations in the

responsivity, and sequential resonant and thermionic field assisted tunneling. The
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Figure 6-14: Three GIXS measurements of Sample 9089 consisting of a superlattice

of 50 periods of 75.6 A AlAs and 28.4 A GaAs. The scattered intensity is plotted

as a function of the incident angle. The three curves shown correspond to measure-

ments in which the difference between the scattered angle and the incident angle are,

respectively, 4430, 6230, and 9496 arcsec. This superlattice was designed to be 50

periods of 80 A AlAs and 27 A GaAs, with a cap layer of 130 A of GaAs.
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Figure 6-15: Four GIXS measurements of Sample 9324 consisting of a superlattice of 7

periods of 50 nm Ino.52 A10.479 As and 6.73 nm Ino0 532 Gao.468As. The scattered intensity

is plotted as a function of the incident angle. The four curves shown correspond to

measurements in which the difference between the scattered angle and the incident

angle are, respectively, 3134, 3868, 4860, and 5398 arcsec. Large Yoneda wings (the

cusps) are visible when either the incident or exit angle equals the critical angle of

total external reflection. Sample 9324 is believed to have rough interfaces because

the first InGaAs layer contained rough three dimensional structures: since the Ga

shutter did not open for about 10 seconds, the first 5 monolayers of the first InGaAs

layer is believed to be InAs.
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lateral size of the roughness affects the uniformity across large arrays of QWIPs.

6.6.2 Distinguishing layer width variations from interface grad-
ing/roughness

The separation between superlattice diffraction peaks in a GIXR or a double crys-

tal rocking curve or a 0-20 measurement near a symmetric Bragg peak yields the

periodicity D of the superlattice, according to the Bragg law for the superlattice,

(n- m)A
(On -m) -= 2D cos([0 + m/2) (6.34)

where 0m is the angular position of the m-th order diffraction peak, and the argument

of the cosine in Equation (6.34) can be approximated as zero degrees for a GIXR

measurement and the Bragg angle for a rocking curve or 0-20 measurement.

Fewster [76, 77] pointed out that if the superlattice period varies throughout the
growth, having some statistical distribution of mean D and variation AD, then the

full-width-half-maximum (FWHM) of the diffraction peaks will increase with the

diffraction order. The reason is that each superlattice period contributes to the po-

sition of the n-th order diffraction peak as indicated in Equation (6.34), so that a

variation in the superlattice period D is magnified at the higher diffraction orders,

(n-m), according to Equation (6.34). If variable period thicknesses AD are the dom-

inant contribution to the FWHM A0n,variable thickness of the n-order diffraction peak,

then the increase in the FWHM of the diffraction peaks with the diffraction order

(n-m) can be found by differentiating Equation (6.34) with respect to D. The result,

2/ D(0rt - m) 2 cos([0n '- 0m]/2)
(A0n,variable thickness - A=m,variable thickness) --- , (6.35)(n - m)A

was obtained by Fewster [76, 77]. A simpler form for this equation can be obtained

by substituting Equation (6.34) into Equation (6.35), resulting in,

(AOn,variable thickness - AOm,vaiable thickness) = (n - Om) (DJ) . (6.36)
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Thus, the FWHM of the n-th diffraction peak, when expressed as a fraction of the

position of the n-th diffraction peak, is directly proportional to the variation of the

superlattice period throughout the growth.

Since most semiconductors have a refractive index less than unity at the X-ray wave-

lengths, the incident X-ray beam is refracted upon entry into the semiconductor

according to Equation (6.28). To analyze a GIXR measurement, the semiconductor

refractive index must be accounted for, and the equation analogous to Equation (6.36),

AI,n,variable thickness = 1,n D) (6.37)

is written for the angle 8O,n of the X-ray beam in the interior of the semiconductor.

Since the diffraction peaks are measured as a function of the incident angle E,n in

the exterior of the semiconductor, then the FWHM of the measured diffraction peaks

must be obtained from both equations (6.28) and (6.37), and is related to variations

AD in the superlattice periodicity through,

AOE,n,variable thickness = - (A) (6.38)

In order to get a good fit to Equation (6.38), the contributions to the FWHM which

are unrelated to layer width variations must be removed. If we denote by A00 the

contributions to the FWHM which are unrelated to layer width variations, then the

measured FWHM is the sum (in quadrature) of the contributions related and unre-

lated to the layer width variations,

a2 = AG2 tk a (6.39)
An,measured n,variable thickness (6.39)

The subscript "0" in Ag0 denotes the zeroth order diffraction peak, as the FWHM of

the zeroth order diffraction peak is unaffected by layer width variations. Contributions

to Ag0 come from instrumental broadening and wafer curvature. Wafer curvature is

an important factor at small incident angles, as the portion of the sample surface

illuminated by the X-ray beam goes as (X-ray beam size)/singE. For an X-ray beam

of cross sectional size (250 m) 2 at an incident angle of SE = 0.31 °, the portion of the

sample surface illuminated is 250 pmx4.6 cm. This large area of the sample surface

illuminated by the X-ray beam indicates that GIXR measurements yield information
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about uniformity of the epitaxial layers in the transverse (along the wafer surface) as

well as the growth directions.

An example of a superlattice of binary alloys

Figure 6-16 shows the dependence of the FWHM on the superlattice diffraction order

for the reflectivity measurement of Sample 9089 shown in Fig. 6-12. The points in this

figure are measured data, and the solid line is a least squares best fit of the measured

data to Equation (6.39). The best fit of the measured data yields the parameters

A00 =88 arcsecs and AD=2.0 A.

While reports of the roughness of MBE growths are in agreement over the absolute size

(in numbers of monolayers) of the roughness, the reports of the layer width variations

of MBE growths are in agreement over the fractional variation of the layer widths.

The measured fractional layer width variation of AD/D=2.0 A/104 A=1.92% for our

Sample 9089 is very similar to the fractional layer width variation measured for our

other superlattice growths, one of which is described below to have a layer width vari-

ation of 2.05% (a 11.6 A variation for a 565.7 A period). This fractional layer width

variation of superlattice growths is also in agreement with the literature. Matney

and Goorsky [71] report that for a distributed Bragg reflector (DBR) consisting of 15

periods of 857 A AlAs/718 A GaAs, the variation (=FWHM=2v2og2 x standard

deviation) of the DBR period was 31.9 A which is a 2.03 % layer width variation.

The absolute size of the layer width variation is different for these three structures

(2.0 A, 11.6 A, and 31.9 A, respectively), but the fractional layer width variation is

about 2% for all three growths.

Since both our Sample 9089 and the DBR structure of Matney and Goorsky involve

superlattices of binary (AlAs/GaAs) alloys, then both our layer width variations are

a direct measure of the variation in the incorporation of one single Group III species

during MBE growth. This measured fractional layer width variation of 2 percent is

about the size of the fractional variation in the Group III flux that arises from small

changes in the effusion cell temperatures during growth. More quantitatively, the

Group III flux F during growth can be modeled as line-of-sight evaporation [54] into
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Estimated period variation = 2.0167 Angstroms and FWHMO = 87.5755 arcsec

1 2 3 4 5 6 7 8 9 10 12 13
Satellite order

Figure 6-16: The dependence of the full-width-half-maxima (FWHM) on the super-

lattice diffraction order for the reflectivity measurement shown in Fig. 6-12. The

points in this figure are measured data, and the solid line is a least squares best fit

of the measured data to Equation (6.39). This best fit shows a layer width variation

of 2.0 A for a measured superlattice period of 104 A.
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Activation Growth Flux

Group Energy Temperature Variation

III EA T AF/F

Source (eV) (°C) (percent)

Indium 2.26 780 2.36

Gallium 2.50 890 2.14

Aluminum 2.85 1080 1.80

Table 6.2: Activation energies, growth temperatures, and fractional flux variations

for the Group III effusion cells. The activation energy was found from Arrhenius

plots of either the measured flux or the measured RHEED oscillations as a function

of the effusion cell temperature. The typical growth temperatures correspond to

0.5pm/hour for growth of the binary semiconductor. The fractional flux variation

was for an effusion cell temperature variation of 1°C.

a perfect vacuum, and varies with the effusion cell temperature T according to the

Arrhenius equation,

F=Foexp(-[ A) - (6.40)

where F0 = Po/v/21rMkBT (P0 is the equilibrium vapor pressure and M is the mass

of the species) is approximately independent of the cell temperature, and EA is the

activation energy. The measured activation energies and typical growth temperatures

for our Group III effusion cells are given in Table 6.2. The fractional variation in the

Group III flux,

F E.s) (T ) '· (6.41)AF_ Ea ) ~_BT _T)
for a cell temperature variation of 1C is about 2%, as calculated in Table 6.2. This

size flux variation has been measured directly with an ionization gauge in our growth

chamber right after a cell shutter is opened or when a cell is ramped in temperature

[78].
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An example of a superlattice of ternary alloys

Another sample for which layer width variations were measured was Sample 9331

whose double crystal rocking curve is shown in Figure 6-17. The position of the

InGaAs peak and the different superlattice peaks showed this sample to consist

of a 3415 A of In0.527Ga. 473As top contact, followed by 16 periods of an 79.3 A
In. 527Gao0. 73 As quantum well, and barriers consisting of a superlattice of 29.6 A
Ino.380Ga0.145Alo.475 As (6 repetitions) alternated with 63.6 A In0.587A 0.413As (5 repe-

titions). The intended structure was a 3500 A of In0 . 532 Ga0.468As top contact doped

with Be at 3x 1018 cm- 3 , followed by 16 periods of an 81.3 A In. 532Gao.468As quantum

w ;ll doped with Be at 7x10 l'7 cm- 3 , and unintentionally doped barriers consisting of

a superlattice of 30 A In0.388Gao. 145A10.467 As (6 repetitions) alternated with 64.8 A

Ino.596A10.404 As (5 repetitions).

This sample was interesting for studying the layer width variations which result from

the fast temperature ramps of the Group III effusion cells during growth interruptions

which were used after each layer. Before the growth of the quantum well, 91 seconds

were allowed to elapse while the Ga cell was ramped up 43°C at 30°C/min. The last

5 seconds of this 91-second growth interruption was used to allow the Ga cell to reach

a steady state. Between the growth of the different layers of the superlattice barrier,

65 seconds were allowed to elapse while the Al cell was ramped up or down 28°C

at 30°C/min. The last 7 seconds of this 65-second growth interruption was used to

allow the Al cell to reach a steady state. Direct measurements [79] with a flux gauge

during ramping of the effusion cells showed the Ga cell transients to be in excess of

20 seconds, and the Al cell transients to be about 4 seconds. Therefore, the largest

errors in the layer widths in Sample 9331 are expected for the Ga-rich layers (the

quantum well).

Figure 6-18 shows the measured reciprocal space map of Sample 9331 near the sym-

metric (004) Bragg peak. The peak separation along the [001] growth direction in-

dicates a superlattice periodicity of 565.7 A, which is slightly less than the intended

period of 585.3 A. The very narrow FWHM along the [110] w direction of 12 arc-

sec remains constant for all superlattice diffraction orders shown, thus indicating an
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Figure 6-17: Double crystal rocking curve of Sample 9331, which consisted of a 3415 A
of Ino.527Ga0.473As top contact, followed by 16 periods of an 79.3 A InO.52 7Gao.473As

quantum well, and barriers consisting of a superlattice of 29.6 A In0 .380Gao.145Al0 475As

(6 repetitions) alternated with 63.6 A Ino.587Al0 .413As (5 repetitions). The intended

structure was a 3500 A of Ino.532 Ga0.46 8As top contact, followed by 16 periods of an

81.3 A Ino.532Gao.468As quantum well, and unintentionally doped barriers consisting

of a superlattice of 30 A In0 .388Gao.145Al0.467As (6 repetitions) alternated with 64.8 A

Ino.596Al0 .404As (5 repetitions). As a result of variations in the epitaxial layer widths,

the higher order diffraction peaks are observed to have a larger FWHM than the lower

order diffraction peaks, as would be expected from Equation (6.36).
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Figure 6-18: Reciprocal space map of Sample 9331 near the symmetric (004) Bragg

peak. The peak separation along the [001] growth direction indicates a superlattice

periodicity of 565.7 A. The increase of the peak widths along the [001] growth direc-

tion with increasing satellite order indicates layer width variations. The very narrow

FWHM along the [110] w direction of 12 arcsec remains constant for all superlattice

diffraction orders shown, thus indicating an unresolvably small mosaic tilt and inter-

face roughness. The sample and detector angular positions are related to a point in

reciprocal space through Equation (6.24).
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unresolvably small mosaic tilt and interface roughness. However, the increase of the

peak widths along the [001] growth direction with increasing satellite order indicates

layer width variations.

Figure 6-19 shows the dependence on the superlattice diffraction order of the full-

width-half-maxima (FWHM) along the [001] growth direction for Sample 9331. The

points in this figure are measured data, and the solid line is a least squares best fit of

the measured data to Equation (6.39). This best fit shows a layer -vidth variation of

11.6 A for a measured superlattice period of 565.7 A. Again, the fractional layer width

variation of AD/D=11.6 A/565.7 A= 2.05% is similar to that observed in Sample

9089 and to that reported by Matney and Goorsky.

The effect of the long Ga cell transients is to make the InGaAs layer widths slightly

different from the intended widths. However, the Ga cell transients are probably very

similar from one superlattice period to the next, as the same effusion cell ramp rates

are used during the growth of each superlattice period. Thus, the fractional layer

width variation of 2.05% for Sample 9331 is very similar to that of 1.92% for Sample

9089, for which none of the effusion cells were ramped during growth.

6.7 Conclusions

Characterization of the epitaxial layers by High Resolution X-ray Diffraction (HRXRD)

allows an empirical measurement of the compositions and layer widths and the vari-

ations thereof through a double crystal rocking curve, a 0-20 measurement, or a

glancing incidence reflectivity measurement. The amount of relaxation of strained

layers can be measured through measurement of either a reciprocal space map or a

combination of symmetric or asymmetric double crystal rocking curves.

The amount of layer width variation can be separated from the amount of interlace

grading/roughness through the measurement of either a reciprocal space map or a

combination of a glancing incidence reflectivity and scattering measurements. The X-

ray spot size in a glancing incidence measurement is very large (about 4.6 cm x 250 gm),
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Figure 6-18: Reciprocal space map of Sample 9331 near the symmetric (004) Bragg

peak. The peak separation along the [001] growth direction indicates a superlattice

periodicity of 565.7 A. The increase of the peak widths along the [001] growth direc-

tion with increasing satellite order indicates layer width variations. The very narrow

FWHM along the [110] w direction of 12 arcsec remains constant for all superlattice

diffraction orders shown, thus indicating an unresolvably small mosaic tilt and inter-

face roughness. The sample and detector angular positions are related to a point in

reciprocal space through Equation (6.24).
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Estimated period variation = 11.5507 Angstrcr;ls
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Figure 6-19: The dependence on the superlattice diffraction order of the full-width-

half-maxima (FWHM) along the [001] growth direction for Sample 9331. The points

in this figure are measured data, and the solid line is a least squares best fit of the

measured data to Equation (6.39). This best fit shows a layer width variation of

11.6 A for a measured superlattice period of 565.7 A.
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and thus yields information about epitaxial layer uniformity across a wafer. An ex-

ample presented here of a glancing incidence X-ray reflectivity measurement of an

AlAs/GaAs superlattice with a period of 104 A shows a layer width variation of

1.92%. Another example presented here of a reciprocal space map measured near the

(004) Bragg peak of an InGaAs/InAlAs/InGaAlAs superlattice having a period of

565.7 A shows a layer width variation of 2.05%. This is in agreement with a report

[71] in the literature of a measured layer width variation of 2.03% for an AlAs/GaAs

distributed Bragg reflector having a period of 1575 A. The absolute size of the layer

width variation is different for these three structures (2.0 A, 11.6 A, and 31.9 A, re-

spectively), but the fractional layer width variation is about 2% for all three growths.

This layer width variation is consistent with an effusion cell temperature variation of

1°C during growth.

For QWIPs, composition variations affect the height of the confining potential barrier,

and thus affect the thermal leakage current uniformity. Both composition variations

and roughness affect the layer width uncertainty, which affects the variations in the

responsivity, and sequential resonant and thermionic field assisted tunneling. The

lateral size of the roughness affects the uniformity across large arrays of QWIPs.
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Chapter 7

Device Processing

Figure 7-1 shows the process flow for fabricating QWIPs.

After MBE growth, a positive photoresist, such as Shipley 1400-27 or S1813, is spun

onto the sample at 4500 rpm for 40 seconds, exposed at 300mJ for 10 sec on a Karl

Suss MJB contact aligner, and developed for 60 sec with Shipley MF319. The etch

used is H2 0:H3 PO4 :H20 2 in the ratio of 20:1:1. The etch rate is nominally 2400A/sec

in both InGaAlAs and AlGaAs layers. The duration of the etch is chosen so that the

bottom contact is exposed. The mesas on the mask set used in this work have optically

active areas of (25 /m) 2 , (50 pm) 2, (100 p/m)2, and (200 /m) 2. The different mesa

sizes are useful for determining any area and mesa edge dependences of the leakage

and photocurrents.

After the mesa etch, silicon dioxide is deposited on the entire processed wafer. The

oxide prevents the bond pads on the top contact from shorting to the bottom contact.

The oxide also serves as both an anti-reflection coating and a passivating layer for

dangling InGaAlAs or AlGaAs bonds. Dangling bonds are believed to contribute

traps and 1/f noise [80]. The oxide can be deposited by sputtering, plasma enhanced

chemical vapor deposition (PECVD), or electron beam evaporation.

A second mask is used to create openings, also known as vias, in the oxide for an

ohmic contact metal. Again, a positive photoresist is used. Overexposing the sample
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Figure 7-1: QWIP processing steps include a mesa etch, oxide deposition and via

etch, ohmic metal and bond pad deposition.
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was found to be necessary to develop photoresist out of regions in the bottom contact,

which is located 1-3 ,im further below the mask than the top contact. The trade-off

in doing this is a roughness along the edges of regions that are developed out.

An 100mT oxygen plasma is used for 30sec at 100 watts to remove excess photoresist

before deposition of the ohmic metal.

Buffered oxide etch (BOE) (roughly 50 percent hydrofluoric acid and 50 percent

ammonium fluoride) is used to etch the oxide at roughly 2000 A/sec. The duration of

the etch is determined by observing when a control wafer appears hydrophobic after

the BOE dip. A slight undercut of the oxide under the positive photoresist helps to

ease lift-off of the ohmic metal. Lift-off is achieved with ultrasound in acetone.

The ohmic metal for n-type contacts is Ni:Ge:Au:Ni:Au (50 A:250 A:500 A:100 A:3000 A).

The rapid thermal anneal consisted of a quick ramp at 1000C/min of the sample tem-

perature from room temperature to 2500 C, a steady hold of the sample temperature

at 250°C for 30 seconds, and a rapid rise in the sample temperature at 100°C/min

to the annealing temperature. The Ni:Ge:Au:Ni:Au contact is annealed at the AuGe

eutectic melting temperature of 3630C [81] for 30 seconds. (During the anneal, it

is believed [82, 83, 84, 85] that the lower Ni layer reacts with the GaAs to form

NiGaAs. Gallium is believed to react with the first Au layer to form the ,3-AuGa

phase, and Ge is believed to move into the Ga vacancies, thus forming NiGeAs.

The initial Ni layer on the GaAs sample surface is believed to provide a smoother

interface between the alloyed contact and the GaAs [82].) The ohmic metal for p-

type contacts is Ti:Au (250 A:3000 A) or Cr:Au (250 A:3000 A) or Ni:AuZn:Ni:Au

(250 A:500A:300 A:3000 A). The Ni:AuZn:Ni:Au contact is annealed at the AuZn

eutectic melting temperature of 4200 C [81] for 30 seconds. The Ti:Au and Cr:Au

contacts are not annealed.

Figure 7-2 shows QWIP pixels on a processed die after the second mask step. The

left side of the photograph shows a 4x4 array of (50 pm)2 detectors. Shown are

16 small square ring contacts which are electically connected to the top contact (on

the sample surface) for each of the (50 /um)2 detectors. The much larger square ring

surrounding the entire 4x4 array is the bottom (substrate) contact. On the right
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Figure 7-2: QWIP pixels on a processed die after the second mask step.

side of the photograph are shown two rows of individual pixels. The area within the

small square ring (top) contacts is (25 /m) 2 and (50 /m) 2, respectively, for devices

along the top and second rows. The bottom contacts are the large rectangular metallic

regions right below each ring contact. The mesas defined by the etch in the first mask

step are actually much larger than the area within the small ring (top) contacts. The

mesas also include a (100 jm) 2 area adjacent to the ring contacts. This (100 m) 2

part of the mesa area will seat the bond pads deposited in the third mask step.

Unfortunately, this (100 m)2 area of the mesa under the bond pads contributes no

photocurrent, as the bond pads will block the infrared radiation.
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Figure 7-3 is a detailed view of one single QWIP pixel on a processed die after the

second mask step. The mesa defined by the etch in the first mask step is on the

right side of the photograph. The top contact is the square ring contact. The area

within the square ring contact is (50 tim)2. The bottom (substrate) contact is the

large metallic contact on the left side of the photograph.

After this processing step, the contacts are probed at room temperature for electrical

continuity across the device.

The third mask is used to deposit bond pads on top of the ohmic metal. Three

pm thick NR8-3000 Futurex negative photoresist is spun on at 4500 rpm for 40

seconds, exposed for 40 seconds on at 300mJ on a Karl Suss MJB contact aligner,

and developed for about 5 minutes in Futurex RD2. The bond pad metal is either

Ti:Au or Cr:Au, and is deposited inside the electron beam or the thermal evaporator.

During the cryogenic measurement of the QWIPs following the last processing step

(previous paragraph), it was found that many of the devices were short circuits. We

believe that Ge- and Zn-rich columns diffuse deep into the devices, thus shorting

them. Since the literature reports [82, 86] that the alloyed region is between 1000

and 3000 A deep, fewer short circuited devices were expected with the use of thicker

top contacts (much greater than 3000 A) and the lowest possible anneal temperatures.

Large numbers of oval defects (greater than 500/cm 2=5/mm 2 ) or large numbers of

group III-rich defects on the sample surface are also associated with devices that are

permanently short circuits or that show large leakage currents, even at low tempera-

ture.
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Figure 7-3: Single QWIP pixel on a processed die after the second mask step.

146



Chapter 8

QWIP Measurement Procedures

This chapter describes general procedures for measuring QWIP device parameters.

The example of an n-type QWIP (n-QWIP) will be used throughout the chapter.

Temperature measurements of the leakage give the QWIP thermal leakage activation

energy, as well as the temperature dependences for the sequential resonant tunneling

and thermal leakage currents. Total photocurrent measurements as a function of the

black body target size yield the empirical conversion efficiency, and the product of

the quantum efficiency and the photoconductive gain. The wavelength of the QWIP

responsivity peak is measured by holding the QWIP operating temperature constant

and changing the temperature of the black body target. Spectral measurements

demonstrate that a QWIP, with its characteristic narrow spectrum of responsivity,

has been achieved. Noise measurements give the value of the photoconductive gain.

The current through the QWIPs is measured as a function of the applied voltage with

a HP4145 semiconductor parameter analyzer at cryogenic temperatures. Cryogenic

temperatures can be reached with an RMC (at 3450 South Broadmont Drive, Suite

100, Tucson, AZ 85713, 520-903-9366 or 520-889-7900) cold head cooled within a

closed cycle refrigerator.
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8.1 Leakage Current Measurements

Leakage current measurements are made by covering the QWIP dual-in-line package

(DIP) with aluminum foil, and lowering both the DIP package and the aluminum

foil to cryogenic temperatures. The QWIP is then exposed only to the heat radiated

by the aluminum foil, which is at the same temperature as the QWIP. Figure 8-1

shows the leakage currents as a function of bias voltage for n-QWIP 9066 measured

between 10K and 80K in steps of 10 Kelvin degrees. Sample 9066 was comprised of

10 quantum wells of 54 A In.0 8Ga0.92As doped with Si at 5x1017 cm -3 alternated

with 11 barriers of 450 A Alo.15Gao.8s5As.

At very low temperatures (below about 50K), the leakage current is dominated by

sequential resonant tunneling [7, 87, 88, 89, 90, 91]. The sequential resonant tunneling

shows characteristic peaks as a function of the applied bias as the upper subband in

one quantum well lines up with the lower subband in the adjacent quantum well in

sequence, as shown in Figure 8-2. The peaks and valleys in the (sequential resonant

tunneling) leakage current at temperatures below 50K are quite reproducible upon

repeated measurements of the same device even over many months. The peaks and

valleys in the current-voltage characteristics of the sequential resonant tunneling are

stronger and more distinct at lower temperatures and in devices with thinner barriers.

At intermediate temperatures, above 50K, the leakage current is dominated by thermionic

leakage. The slope of an Arrhenius plot of the leakage current as a function of the

inverse absolute QWIP operating temperature yields an activation energy or equiva-

lently the activation wavelength. Two examples of this are shown in Figure 8-3 and

Figure 8-4 for Sample 9066 at negative and positive applied bias voltages, respectively.

The points indicate measured data and the straight lines are best fit Arrhenius de-

pendences. The leakage currents in Figs. 8-3 and 8-4 both show activation energies

which decrease with the magnitude of the applied bias. Figure 8-5 shows this voltage

dependence of the leakage current activation energy for QWIP 9066.

The leakage activation energy is a measure of the position of the Fermi level in the

quantum wells. The thermionic leakage current in a multiple quantum well structure
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a9066b05, 1 00 microns, (1 OK - 80K)

-2 -1 0
Voltage [Volts]

1 2 3

Figure 8-1: The curves in the figure are the leakage currents as a function of bias

voltage for QWIP 9066 measured between 10K and 80K in steps of 10 Kelvin degrees.

At low temperatures (less than 50K), the leakage is dominated by sequential resonant

tunneling, and at intermediate temperatures, the leakage is dominated by thermionic

or thermionic field assisted tunneling.
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Figure 8-2: When the upper subband in one quantum well lines up with the lower

subband in an adjacent quantum well, as shown in this figure, the sequential resonant

tunneling shows a characteristic peak.
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a9066bO5, 100 microns, (60K - 80K at V=-2.5,-1.8,-0.3, volts)
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Figure 8-3: Arrhenius plots of the leakage current as a function of inverse QWIP

operating temperature for Sample 9066 at negative bias voltages. The points indicate

measured data and the straight lines are best fit Arrhenius dependences. The slope

of the best fit curves yields the thermal leakage activation energies.
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a9066b05, 100 microns, (60K - 80K at V=0.4,1.1,1.8, volts)

1000/(QWIP Temperature) [1/K]

Figure 8-4: Arrhenius plots of the leakage current as a function of inverse QWIP

operating temperature for Sample 9066 at positive bias voltages. The points indicate

measured data and the straight lines are best fit Arrhenius dependences. The slope

of the best fit curves yields the thermal leakage activation energies.
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is given by [92, 93, 94]

J = qNcvdexp (AE -EF) [exp (qFL (8.1)

= qNcvd exp (- qT ( ] (8.2)
kBT [1exp kBT '

where q is the electron charge, Nc is the density of states in the barrier, Vd is the drift

velocity, AEc is the band offset between the quantum well and barrier conduction

band edges, T is the QWIP operating temperature, F is the average field in the

structure, Lw is the well width, and Q(B is the activation energy measured at large

voltages (V > kBT),

)B = (Ec - EF) - qVL/LTOT, (8.3)

where LTOT is the length of the entire QWIP structure.

Fig. 8-5 shows that at small bias voltages, the measured activation energy varies from

very small (<20 meV) to very large (>140 meV) values. In this range, it is probably

unreliable primarily because the leakage current at small bias voltages may be below

the noise floor of the HP 4145 Semiconductor Parameter Analyzer.

Fig. 8-5 shows that at intermediate values of the negative bias voltage (between -0.6 v

and -2.2 v), the measured activation energy is best fit by the relation

IB = 131.2 meV + (7.60 meV/V) x V. (8.4)

A comparison of Equation (8.4) with Equation (8.3), we can infer a measured value of

AEc - EF=131.2 meV. This measured value is indeed close to the calculated value.

For Sample 9066, the doping level yields an EF=10.2 meV above the bound state

subband edge El, and we calculate AEc - EF=135.6 meV.

The slope of Equation (8.4) indicates a measured value of qLw/LToT=7.60 meV/V,

upon comparison with Equation (8.3). This also is close to the calculated: For Sample

9066, Lw=54 A and LB=480 A, and we calculate qLw/LTT=9.28 meV/V. This

20 % discrepancy between the measured and calculated voltage dependence of the

activation energy may result in part from uncertainties in the growth parameters.
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a9066b05, 100 microns, (60K - 80K)

Voltage [V]

Figure 8-5: The voltage dependence of the leakage current activation energy for QWIP

9066. The activation energy was obtained by fitting the measured leakage current to

the thermionic form in Equation (8.2) for temperatures between 60K and 80K.
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However, models to be presented in Chapter 10 reveal how the voltage dependence of

this activation energy b(B may be related to the injection mechanisms in the QWIP.

This voltage dependence of the activation energy 'IB in Equation (8.3) has not been

studied in the QWIP literature. Pelve et al. [95] has made a plot very similar to Fig. 8-

5. However, he interprets the decrease of the activation energy 'IB with finite bias

in terms of Fowler-Nordheim tunneling, and not thermionic leakage, Equation (8.3)

above. The slope of the measured activation energy with respect to small negative

biases can be measured from Fig. 3 of Pelve's work to be 5 meV/V. This is to

be compared with a calculated value of qLw/LToT=2.31 meV/V which would be

predicted from the growth structure given in the paper (50 periods of wells of width

Lw=40 A and barriers of width LB=300 A). Thus, the measured leakage current

shown in Pelve's paper is larger than would be expected from thermionic leakage,

Equation (8.3), alone. This is probably a result of their use of relatively narrow

barriers of width LB=300 A).

The quality of fit of the measured leakage to a thermionic leakage model indicates the

presence or absence of excessive leakage. Williams [96] has measured leakage currents

that are much larger than expected for barrier widths greater than 300 A even at very

low cryogenic temperatures, which he attributes to defect assisted tunneling. Levine

[7] reports a very good match to Equation 8.2 even for barriers of width 500 A at

(small) fields of 5.81 x103 V/cm. The good fit of the measured leakage currents in

Figs. 8-1 and 8-5 at small and intermediate negative bias to the thermionic leakage

model of Equations (8.2) and (8.3) is an indication of the absence of excessive leakage,

such as that which might result from defect assisted tunneling right through our

(large) 500 A barriers.

Excessive leakage currents are observed in Fig. 8-1 at positive voltage biases. It

is clear from Fig. 8-1 that the leakage current rises more quickly with voltage at

positive biases than at negative biases. This is indicated in Fig. 8-5 by a sharper

drop in the activation energy B with increasing positive bias than with increasing

negative bias. This asymmetry in the leakage current-voltage characteristics has been

observed many times in the literature [7] and is believed to result from asymmetries in

the MBE growth conditions: the dopant diffuses towards the surface during growth,
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and the quality of the AlGaAs on GaAs interface differs from the GaAs on AlGaAs

interface.

At very large voltage magnitudes (greater than 2.7 volts in Fig. 8-1), the leakage

current is dominated by Fowler-Nordheim [92] tunneling. This is indicated in Fig. 8-

5 by a very sharp drop in the activation energy 4bB at very large bias magnitudes.

8.2 Photocurrent Measurements

DC photocurrent measurements are made with the HP4145 by exposing the QWIP

through a ZnSe window on the room temperature shield of the cryostat to a calibrated

black body, as shown in Figure 8-6. At the typical black body operating temperatures

of between 300K and 600K, the black body spectra has a peak at wavelengths between

6 and 10 pm. (The peak black body wavelength in microns occurs at 2 8 9 7.8 /TBB,

where TBB is the black body temperature in Kelvin degrees.) Use of higher black

body temperatures tends to warm up the cryostat cold head, so that the measured

QWIP DC current is a combination of both the photocurrent and the larger thermal

leakage current resulting from the warmer QWIP operating (cold head) temperature.

QWIP DC photocurrent measurements are not easy to make because of the presence

of a large background DC current which is comparable to the photocurrent resulting

from the blackbody radiation source. This large background DC current has two main

sources: the room temperature heat generated by a ZnSe viewport right in front of

the QWIP, and the relatively warm (nominally 77K but actually 220K) radiation

shield inside the cryostat.

The small optical f/# of the cryostat when compared with the small solid angle

subtended by the blackbody orifice means that much of the room temperature back-

ground heat generated by the ZnSe viewport in front of the QWIP is also contributing

to the QWIP DC photocurrent. The solution to this problem is to increase the cryo-

stat f/# to correspond to the f/# of the solid angle subtended by the blackbody

target. This is accomplished by decreasing the size of the aperture in the cryostat

156



1~ ~~~~· 21¢0* r~ t r? !w tat
1,-,.o. . . _

i '' , '' ' 

f% * 7, 'f ./, sj ' If

- - ,- sO -6 ', 0.4,0 2 , , ,1,

Figure 8-6: DC photocurrent measurements of a QWIP are made at cryogenic tem-

peratures with a calibrated black body infrared source. Precise distances are given

for aperture sizes and spacings between objects so that a precise incident photon flux

can be calculated.
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77K radiation shield which exposes the QWIP to the ZnSe window.

The radiation shield inside the cryostat, which has a nominal temperature of 77K,

was found to have an actual temperature of 220K. Since a 77K target radiates very

little heat, about 8 orders of magnitude less than a 300K target, it was expected

that when the QWIP was exposed to only the cryostat radiation shield, the QWIP

DC current should be the same as the sequential resonant tunneling current seen at

10K. Instead, it was found that the cryostat radiation shield generated enough heat

to increase the QWIP DC current to about two orders of magnitude higher than the

sequential resonant tunneling current. To reduce this QWIP DC current resulting

from the warm 220K cryostat radiation shield, a copper block was placed in thermal

contact with the cryostat cold head right in front of the QWIP. This copper block

was chosen to have a large enough thickness and a small enough aperture size to be

commensurate with the f/# associated with the solid angle subtended by the black

body target. In this way, the QWIP is exposed to as little of the cryostat radiation

shield as possible, while still seeing the entire black body target.

Figure 8-7 shows the current-voltage characteristics for the leakage current (solid

lines) measured in 10K increments between 1K and 80K, and the photocurrent

(dashed lines) measured at 40K. The QWIP has an 180° field of view of a 220K

background during the measurement of the photocurrent. Both the magnitude and

shape of the photocurrent i-v characteristic is observed to remain virtually unchanged

between 10K and 50K: at a bias of -1.0 volt, the photocurrent increases by 50%

between 10K and 50K, and at a bias of -2.0 volts, the photocurrent changes by less

than 10% between 10K and 50K. Under these measurement conditions, the QWIP is

observed to have a Background LImited Performance (BLIP) temperature of 62K, at

which the leakage current is equal to the photocurrent. Measurement of the QWIP

responsivity is usually done at bias voltages (between -2.0 and -2.6 volts in Fig. 8-

7) where the photocurrents are no longer sharply rising. At these bias voltages, the

photocurrent and responsivities are large, but the Fowler-Nordheim tunneling leakage

is not yet dominant.

In order to measure the wavelength of the QWIP responsivity peak, DC photocurrent

measurements are made at many different black body target temperatures for a fixed
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9066b05, 100lm, Cold Shield Current at QWIP=40 K and Leakage
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Figure 8-7: The current-voltage characteristics for the leakage current (solid lines)

measured in 10K increments between 10K and 80K, and the photocurrent (dashed

lines) measured at 40K. The QWIP has an 180° field of view of a 220K background

during the measurement of the photocurrent.
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QWIP operating temperature and a fixed black body target size. An Arrhenius

plot of the measured photocurrent as a function of the inverse absolute black body

temperature yields the wavelength of the responsivity peak. An example of this is

shown in Fig. 8-8. The slope of the curve in Fig. 8-8 predicts Sample 9066 to have

a responsivity peak at a wavelength of 8.7 m. The points in Fig. 8-8 which were

measured at lower black body temperatures do not lie on the best fit curve because

the infrared radiation generated by the room temperature ZnSe viewport and the

220K radiation shield (which occupies a very large solid angle) is much larger than

the radiation generated by the small black body target at these temperatures.

The conversion efficiency can be obtained from a measurement of the net photocur-

rent, equal to the measured photocurrent minus the cold shield current, as a function

of the black body target size for a fixed black body temperature of 500K. The geom-

etry shown in Fig. 8-6 was used to obtain measured conversion efficiencies for Sample

9066 at 40K as summarized in Table 8.1. The straight line in Figure 8-9 is a best fit

to the measured data points of Table 8.1, which for this sample yields a best fit con-

version efficiency of 4%. This size conversion efficiency corresponds to a responsivity

of 270 mA/W or, equivalently, a detectivity of 4x 101cm-v/Watt, if we assume a

capture probability of 7% as is commonly measured in the literature [97].

This detectivity of 4x10 10 cm-vHz/Watt is significant as it was obtained on an n-

QWIP without the use of an optical grating. Of particular importance is the fact

that this detectivity is also large [7] enough for focal plane array performance to

be limited by the uniformity of processing rather than the size of the single pixel

detectivity. (See Chapter 1.) Moreover, n-QWIPs fabricated without an optical

grating involve fewer processing steps, and could lead to higher yield, lower cost

focal plane arrays. The observation of a significant detectivity for the absorption of

normally incident radiation by an n-QWIP fabricated without an optical grating was

reported concurrently by our group [98] and two other groups [99, 100, 101].

The measurement of the QWIP conversion efficiency or detectivity requires the use

of a black body because the latter has a precisely known photon distribution. The
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7 a9066b05, 100 microns, (293K - 799K at V=2 v)
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Figure 8-8: Arrhenius plot of the photocurrent as a function of inverse black body

temperature for Sample 9066 at 40K. The slope of this curve predicts Sample 9066

to have a responsivity peak at a wavelength of 8.7 m.
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Wheel

Diameter

(cm)

0.1270

0.2540

0.5080

1.0160

1.5240

2.5400

Effective

BB

Diameter

(cm)

0.2015

0.4030

0.8059

1.5396

1.5396

1.5396

Net

Photo-

current

(Amps)

1.3090e-10

7.3850e-10

2.8629e-09

8.1721e-09

9.1921e-09

9.6371e-09

Measured

Conversion

Efficiency

(percent)

3.3008

4.6597

4.5321

3.5894

4.0374

4.2329

Table 8.1: Measured conversion efficiencies for Sample 9066 at 40K as a function of

different black body aperture sizes. The net photocurrent, equal to the measured

photocurrent minus the cold shield current, measured as a function of the black body

target size can by used together with the expressions for the measured photocurrent,

Equation (8.8), and for the QWIP responsivity, Equation (3.2), to allow accurate

measurements of the QWIP conversion efficiencies.
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A9066B05, 100pm, V=2 v, QWIP=40K, BB=500K

8.1721

-
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013090
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Figure 8-9: The points in the figure represent the net photocurrent, equal to the
measured photocurrent minus the cold shield current, as a function of the black body

target size for a fixed black body temperature of 500K. The solid line represents

a best fit of the measured points to a straight line, and yields a best fit conversion

efficiency of 4%. This corresponds to a measured detectivity of 4x 1010 cm- / H/Watt

for Sample 9066 at 40K.
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black body power spectral density W(A) is given by

2hc2 1

W(A) =( 5) (e(hc/AkBT ) - 1(8.5)

in units of Watt/cm 2 -ster-pm. W(A) is the power radiated into a unit solid angle

and into a unit wavelength interval centered at A and into both polarizations for a

black body of unit area and temperature TBB. The black body power P(A) per unit

wavelength incident [7] upon the detector is

P(A) = W(A)QADETCF cos E, (8.6)

where ADET is the area of the detector, where the coupling factors are all lumped

into CF=Tf(1-r), where Tf=0.7 is the transmission of the ZnSe viewport in front of

the QWIP, where r=0.28 is the reflectivity of the GaAs surface, where E = 0° is the

angle of incidence for normally incident radiation, and where

= rsin2(w/2) = r/[4(f/) 2 + 1] (8.7)

is the solid angle subtended by a field of view of w as seen by the QWIP. (If the black

body has an aperture of radius RBB and is located a distance D from the QWIP, then

tan(w/2) = RBB/D and 2f/#=D/RBB.) The measured photocurrent is then

P= dAP(A)R(A) (8.8)

where the integration is over wavelengths where the QWIP responsivity R(A) is size-

able. The expressions for the measured photocurrent, Equation (8.8), and for the

QWIP responsivity, Equation (3.2), along with the measurement geometry shown in

Fig. 8-6 allow accurate measurements of the QWIP conversion efficiencies.

To prevent heating of the cryostat cold head by the 500K black body used in the

measurement of Fig. 8-9, the black body aperture is closed as soon as the measurement

of each point in Fig. 8-9 is accomplished. The duration of the measurement of each

point in Fig. 8-9 is a few seconds. The possibility of heating of the cold head is further

minimized by making the measurement of the points in Fig. 8-9 in order of increasing

black body aperture size. The largest black body aperture sizes, which flood the cold

head with the largest amount of heat, are not used until the end of the measurement
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session so that any possible heating of the cold head does not complicate the earlier

measurements which involve smaller photocurrents, smaller black body aperture sizes,

and smaller possibility of warming up of the cold head.

8.3 Spectral Measurements

Photocurrent spectroscopy measurements for QWIPs are obtained by using a cali-

brated black body as the radiation source. Both the QWIP operating temperature

and the black body temperature are held fixed as a filtered portion of the black body

spectrum is incident upon the QWIP. The function of a spectrometer is obtained with

a circular variable filter, which passes a calibrated wavelength. The f/# of the cryo-

stat is used to determine the spatial extent of that part of the black body radiation

which is incident on the circular variable filter and which also arrives at the QWIP.

This spatial extent of the radiation on the circular variable filter together with the

measurement geometry determines the actual wavelength distribution arriving at the

QWIP.

Figure 8-10 shows the measured responsivity as a function of wavelength thus obtained

for a 100 Mm pixel on Sample 9066 at a QWIP operating temperature of 40K, a black

body temperature of 1323.2K, and a QWIP bias of -2v. The responsivity of the device

shows a very narrow FWHM of 1 pm, as is expected [7] for a QWIP with an upper

state right at the barrier band edge. The peak in the responsivity spectrum of Fig. 8-

10 is at 8.7 pm, as would be expected from the Arrhenius dependence measured in

Fig. 8-8.

8.4 Spatially Resolved Responsivity Measurements

Dr. Sam Wang at Lockheed Sanders has measured the response of our n-QWIP 9066

to a spatially resolved radiation source. The spatially resolved responsivity measure-

ment sheds light on the nature of the absorption of normally incident radiation by an
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A9066B05, 100 microns, V=-2 v, TQWIP =40K, TBB =1323.2K
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Figure 8-10: The measured responsivity as a function of wavelength obtained for a

100 /rm pixel on Sample 9066 at a QWIP operating temperature of 40K, a black

body temperature of 1323.2K, and a QWIP bias of -2v. The responsivity of the

device shows a very narrow FWHM of 1 yum, as is expected [7] for a QWIP with an

upper state right at the barrier band edge. The peak in the responsivity spectrum of

Fig. 8-10 is at 8.7 um, as would be expected from the Arrhenius dependence measured

in Fig. 8-8.
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n-QWIP which has been processed without an optical grating. The results are shown

in Figures 8-11, 8-12, 8-13, and 8-14. Several observations are in order. First, TE

polarized radiation having a small spot size normally incident upon a sample in the

middle of a large optically active area yields a finite response. This response is three

times as large as the measurement background, which we take to be the response

resulting from radiation incident on the sample between QWIP pixels. Second, radi-

ation incident upon the pixels at the pixel boundaries, which are (111) planes, yields

a large response, which is presumed to be dominated by the response due to TM po-

larized radiation. The measured photocurrent is thus a response due to both TE and

TM polarizations. Finally, there is a small amount of responsivity crosstalk between

adjacent QWIP pixels.

Figure 8-11 shows the response at a QWIP bias of -2v, A = 8.4 pm, T=80K for a

(25 pm) 2 optically active area on Sample 9066 to a spatially resolved radiation source

of spot size of 20 pm which is scanned in increments of 1.3 m. This measurement

was accomplished with f/1 reflective optics through a fiber. The relative size of the

photoresponse as a function of distance along the x=55 pm cross section of Fig. 8-11

is shown in Fig. 8-12.

Figs. 8-11 and 8-12 show that the responsivity is largest when the radiation is fo-

cused along the boundaries of the (25 ,um)2 optically active area. (The mesa and the

optically active area for this pixel size is shown in the upper right side of Fig. 7-2.)

At the boundaries of the optically active area, the radiation is no longer normally

incident, but rather is refracted into the pixel by the (111) planes which are cre-

ated by the etch at the mesa boundaries. This is significant because refraction of the

radiation at the mesa boundaries produces both TE and TM polarized radiation prop-

agating through the QWIP pixel. The photoresponse thus could result from either

polarization of radiation, and it is not possible in this measurement to quantitatively

isolate the photoresponse resulting from one particular polarization. However, the

photoresponse resulting from radiation incident on the pixel boundaries is probably

dominated by the absorption of TM polarized radiation as the latter is much stronger

than the absorption of TE polarized radiation.

Figure 8-13 shows the response at a QWIP bias of -2v, A = 8.4 pm, T=80K for
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Spadal Response of QWIP 9066 Measured by Dr. Sam Wang
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Figure 8-11: False contour map of the spatially resolved responsivity at a bias of -2v,

A = 8.4 Mm and T=80K, for a (25 um)2 optically active area on Sample 9066. This

measurement was accomplished with f/1 reflective optics through a fiber to obtain

a spot size of 20 um which is scanned in increments of 1.3 ,/m. (The mesa and the

optically active area for this pixel size are shown on the upper right side of Fig. 7-2.

This measurement was performed by Dr. Sam Wang at Lockheed Sanders.)
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Spatial Response of QWIP 9066 Measured by Dr. Sam Wang at x=55microns
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Figure 8-12:
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[microns]

Spatially resolved responsivity as a function of distance along the

x=55 um cross section of Fig. 8-11.
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Spatal Response of QWIP 9066 Measured by Dr, Sam Wang
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Figure 8-13: False contour map of the spatially resolved responsivity at a bias of -2v,

A = 8.4 Mtm, and T=80K for a (100 m)2 optically active area on Sample 9066. This

measurement was accomplished with f/1 reflective optics through a fiber to obtain a

spot size of 20 pm which is scanned in increments of 5.1 m. (This measurement was

performed by Dr. Sam Wang at Lockheed Sanders.)
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)atial Response of QWIP 9066 Measured by Dr. Sam Wang at x=160mici
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Spatially resolved responsivity as a function of distance along the

x=160 gm cross section of Fig. 8-13.
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a (100 pm) 2 optically active area on Sample 9066 to a spatially resolved radiation

source of spot size of 20 pm which is scanned in increments of 5.1 Am. The relative

size of the photoresponse as a function of distance along the x=160 Am cross section

of Fig. 8-13 is shown in Fig. 8-14.

Analogous to Figs.8-11 and 8-12, Figs. 8-13 and 8-14 show that the responsivity is

largest when the radiation is focused along the boundaries of the optically active

area. However, unlike Fig. 8-11, the spot size of 20 pm used in the measurement

of Fig. 8-13 is much smaller than the optically active area, which is (100 /m) 2 in

Fig. 8-13 but is only (25 pm)2 in Fig. 8-11. Since the focused radiation spot size

is much smaller than the optically active area in the measurement corresponding

to Fig. 8-13, the QWIP responsivity in this measurement is finite for TE polarized

(normally incident) radiation. This response to normally incident radiation is three

times as large as the measurement background, which we take to be the response

resulting from radiation incident on the sample between QWIP pixels, as is clear

from Fig. 8-14.

Finally, there exists a small amount of crosstalk in the response of adjacent QWIP

pixels in Fig. 8-13. In the measurement corresponding to Fig. 8-13, the photocurrent

running though the second (lower) QWIP pixel is being measured, and remains finite

even when the 20 m focused spot of radiation is scanned through the adjacent QWIP

pixel lying above it in the figure. Dr. Sam Wang [102] at Lockheed Sanders reports

that this type of crosstalk between adjacent pixels on a processed wafer is removed

after thinning of the substrate.

8.5 Noise Measurement

Noise measurements are needed to obtain a measured value for the photoconductive

gain, assuming that the noise is dominated by either generation-recombination noise

or thermal leakage random arrival noise. Measured values for the photoconductive

gain, along with measured values of the conversion efficiency, yield measured values

of the quantum efficiency. The purpose of this section is to show that though a noise
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measurement can always be made, the interpretation of that noise measurement may

be difficult as a result of the presence of large stray capacitances in our measurement

setup.

Noise current is usually measured [102, 103] by amplifying it with a low noise tran-

simpedance amplifier, like a Keithley model 428, and then measuring the noise spec-

trum with a spectrum analyzer. The generation-recombination noise is usually taken

from the flat portion of the noise spectrum between 300 Hz and 3 kHz. At low fre-

quencies (lower than 300 Hz), the noise is observed to be dominated by 1/f noise.

At high frequencies (higher than 3 kHz), the noise measurements are limited by the

bandwidth of the transimpedance amplifier.

A question arises as to whether directly connecting the QWIP (inside the closed

cycle refrigerator) to a transimpedance amplifier (outside the closed cycle refrigera-

tor) really amplifies the generation-recombination noise spectrum of the QWIP. The

question arises because the QWIP impedance is very large, and the noise spectrum

will roll off at a low frequency determined by the product of the QWIP resistance

and any stray capacitances across the QWIP. At typical operating temperatures and

biases, the QWIP differential resistance is between 500 MQ and 1 GQ. Directly

connecting the QWIP to a transimpedance amplifier with a one-foot coaxial cable,

which has a capacitance of 30 pF/foot, results in an RC roll-off at a frequency of

[(500 MQ)(30 pF)]-1=2r(10.6 Hz).

To fix this problem of a low frequency RC roll-off resulting from a large QWIP

differential resistance, a source follower circuit, shown in Figure 8-15, is used to

measure the noise. The sour(e follower circuit is designed to achieve nearly unity

gain, so that the source voltage VOUT follows the gate voltage VG, according to

VOUT gmZs (89)= (8.9)
VG Sg,. + 1

- gm gm 1 Rss II j C·) (8.10)

The second line in Equation (8.10) is obtained by substituting for the impedance Z,

seen at the FET source node: Z, = Rss 1I ro 1 i, where CL is the stray capacitance

measured at the source node, g, is the JFET transconductance, Rss is the resistor
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connected to the source of the JFET, and ro is the JFET output resistance. Any stray

capacitance (CL in the figure), perhaps associated with a coaxial cable or an oscillo-

scope probe, does not see the large QWIP resistance RQWIp. Rather, the capacitance

CL sees the output resistance of the source follower, which is the parallel combination

gml 11 Rss h1ro. For most of the measurements made, this parallel resistance is about

equal to g=-1-3 kQ, which is much smaller than the QWIP resistance. In using

this source follower circuit, care must be taken not to put an oscilloscope probe or

a function generator connection at the gate of the FET because this would add a

stray capacitance (CG in the figure, of about 13 pF for a good probe plus 30 pF/foot

for the coaxial cable) in parallel with the large QWIP resistance, thus limiting the

measured bandwidth to very low frequencies.

The circuit elements in Fig. 8-15 were chosen in the following manner. The general

purpose, surface mount, depletion mode JFET was a Motorola MMBF5459LT1 SOT-

23. These JFETs have low leakage current (nanoamperes at room temperature) and

capacitances (Ci,, <7 pF and Crss <5 pF at room temperature). RBB was chosen to

be 300 MQ, which is about equal to the QWIP resistance (a few hundred megaohms

to a few gigaohms) so that the voltages across RQWIP and RBB both make appreciable

contributions to the large and small signal gate voltage. The high value resistors were

bought from the company OHMCRAFT Precision Resistors (3800 Monroe Avenue,

Pittsford, NY 14534, 716-586-0824). Rss should be chosen large enough to achieve

about unity gain from the source follower, but small enough not to contribute much

to the RC roll-off of the cable (at 30pF/foot). Rss was chosen to be 100 kQ for most

of these measurements. VDD can have a wide variety of values in the range of VDS

where IDs does not change much. VBB and VQQ are chosen to satisfy desired values

for VGS and VDET.

The measured transfer function IVOUT/VQQI is expected to verify the low-frequency-

pass behavior of the source follower in Fig. 8-15. In this way, it is expected that noise

measurements can be made with the source follower circuit at frequencies of about

one hundred Hz, where the noise is dominated by the QWIP generation recombina-

tion noise and not 1/f noise. The QWIP geometric capacitance is about 2 pF for a

(100 p/m)(2) QWIP pixel having 10 periods of 500 A barriers. The low frequency roll-
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Figure 8-15: The source follower circuit mounted inside the DIP package alongside a

QWIP to measure the QWIP low frequency response.
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off is expected to occur at (RQwIpCQwp)- 1 s, [(500 Mf)(2 pF)]- l = 27r(160 Hz).

In fact, the measured transfer function VouT/VQQI is expected to yield values for

stray capacitances as well as the QWIP capacitance CQWIP. This is done by fitting

the measured transfer function to that expected for the circuit elements of Fig. 8-15:

VG _ [ ]RBB [RQWIPCQWIPS + 1] 81

- [( RBB+RQW (CB + CQWP) + 

The ratio of the QWIP to bias resistances (RQwlp to RBB) can be obtained from the

low frequency behavior of the transfer function,

VG RBB

VQQ f-,O RBB + RQwIP 

The ratio of the QWIP capacitance CQwIp to the stray capacitances CB = CBB + CG

can be obtained from the high frequency behavior of the transfer function,

VG CQwIP

VQQ fo CBB + CG + CQWIP 

where CBB is the stray capacitance associated with the resistor RBB, and CG is the

stray capacitance connecting the FET gate to ground. (See Fig. 8-15.) Individual
values for the capacitances can be obtained from the break point frequencies; at

frequencies above

1
27rfupper =RwCw' (8.14)

RQIPCQWIP

Equation (8.13) is valid, and at frequencies below

27rfiower = 1(8.15)
[RBB II RQWIP][CQWIP + CBB + CG]' (8.15)

Equation (8.12) is valid.

Figure 8-16 shows the measured low frequency response -VoT = of the source fol-
VQQ

lower circuit in Fig. 8-15 mounted inside the DIP package alongside QWIP 9066, the

bias resistor RBB = 300 M2, and the JFET. The resistor Rss = 100 kQ is located

outside the DIP package and the cryostat because Rss does not limit the band-

width of the source follower. The sinusoidal input is denoted Vqq, and is applied
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at the VQQ node, where the total voltage is VQQ = VQQ + Vqq. The input voltage is

800 mV peak-to-peak, and the output voltage VOUT is measured at the source node

of the JFET. The measured frequency response shown in Fig. 8-16 was achieved with

biases of VQQ=0.67 v, VBB=0.00 v, VDD=4 .9 7 v, and Vss=-0.30 v. The FET is

then operated at VDS=2.0 v, VGS=-2.9 v, iD=3 2 .6 8 HA. Direct measurement of the

FET i-v characteristics at this operating point yields a measured r0=367.6 kQ and

gml=3.13 kQ.

The best fit of the measured data points in Fig. 8-16 to Equation (8.11) is indicated

by the solid line in Fig. 8-16. The best fit values for the QWIP and bias resis-

tors and the QWIP and stray capacitances are RQwIp=365.3 MQ, RBB=321 .1 M2,

CQWIP=60.5 pF, and CBB + CG=483.1 pF, respectively. These values of the resis-

tances are the same as those found by direct measurement of the i-v characteristics at

the measurement temperature. The stray capacitances however seem unusually large.

The QWIP capacitance is expected to be about 2 pF, as discussed above, and the

FET capacitances are expected to be at most a few picofarads at low temperature.

The stray capacitances due to the DIP pins are perhaps 1 pF. There is no known

stray capacitance of the order of 60 pF or 500 pF.

The frequency responses shown in Fig. 8-17 and Fig. 8-18 were measured to get

a better understanding of the stray capacitances inferred from the measurement of

Fig. 8-16. The measurements were accomplished with biases of VDD=8 .65 v, and

Vss=-8.65 v. The FET is then operated at VDS=6.0 v, VGcs=-2.7 v, and iD=113 .0 ,uA.

Direct measurement of the FET i-v characteristics at this operating point yields a

measured r=235.3 k and g-1=1.406 kQ. Also, VQQ=0.9 5 v, VBB=-0. 3 58 v for the

measurement of Fig. 8-17, and VQQ=-3 .3 v, VBB=0. 95 v for the measurement of

Fig. 8-18. Again, RBB = 300 Mf2 (inside the DIP package) and Rss = 100 kQ (out-

side the DIP package). The measured frequency responses shown in Fig. 8-17 and

Fig. 8-18 were both accomplished by replacing the QWIP with a 1 GQ resistor. The

sinusoidal input is 1 v peak-to-peak and is applied at the VQQ node for the measure-

ment of Fig. 8-17 and at the VBB node for that of Fig. 8-18.

The purpose of replacing the QWIP with a 1 GQ resistor is to obtain separate mea-

surements of the different stray capacitances contributing to the measurement of
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QWIP a9066c10 and Source Follower at T=70K and VQWlI=0.6v

2
m

0
I-.

0

Frequency [Hz]

Figure 8-16: The points in the figure are the measured frequency response VQ -

of the source follower circuit mounted inside the DIP package alongside QWIP 9066.

The solid line is the best fit of the measured data to Equation (8.11).

178



300M and 1G resistors and Source Follower at T=70K and V(12GQ)=1v

O

!-00::3C
O
>

Frequency [Hz]

Figure 8-17: The points in the figure are the measured frequency response VoQ =

of the source follower circuit mounted inside the DIP package alongside two resistors

(RQWIP = 1 GQ and RBB = 300 MQ) and no QWIP. The sinusoidal input is denoted

Vqq, and is applied at the VQQ node, where the total voltage is vQQ = VQQ + Vqq. The

solid line is the best fit of the measured data to Equation (8.11).
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1G and 300M resistors, Source Follower at T=70K and V(300Vl2)=1v

Frequency [Hz]

Figure 8-18: The points in the figure are the measured frequency response VoB =

of the source follower circuit mounted inside the DIP package alongside two resistors

(RQwIP = 1 GQ and RBB = 300 MO) and no QWIP. The sinusoidal input is denoted
vbb, and is applied at the VBB node, where the total voltage is VBB = VBB + Vbb. The

solid line is the best fit of the measured data to Equation (8.11).
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Fig. 8-16. Replacing the QWIP with an OHMCRAFT resistor in Fig. 8-15 is impor-

tant for assessing the low frequency response of the biasing circuit in the absence of

the QWIP.

A frequency measurement complementary to that shown in Fig. 8-17 is summarized

in Figure 8-18. The measurement shown in Fig. 8-18 is obtained with the same cir-

cuit as that used for the measurement of Fig. 8-17, where the QWIP was replaced

by a 1 GQ resistor. The difference between the two measurements is that the 1 V

peak-to-peak input sinusoid is injected at the VQQ node in Fig. 8-17 and at the VBB

node in Fig. 8-18. The importance of having both measurements is that Fig. 8-17

yields a measured value for C300Mn + CG, and Fig. 8-18 yields a measured value for

C1 GQ + CG. Both measurements together yield measured values for all three capac-

itances C1 GQ, C300 M, and CG. The best fit values for all three stray capacitances,

taken as a best fit to the values obtained from both Fig. 8-17 and Fig. 8-18, are

C1 cG=24.5 pF, C300 M= 8 3 pF, and Cc= 35 0.1 pF.

These measured values of the stray capacitances are unexpectedly large. At this

time, the origin of these stray capacitances is unclear. The FET capacitances are

expected to be at most a few picofarads at low temperature. The stray capacitances

due to the DIP pins are perhaps 1 pF. There is no known stray capacitance of the

order of 50 pF or 400 pF. In using the source follower circuit, care was taken not to

put an oscilloscope probe or a function generator connection at the gate of the FET

because this would add to the stray capacitance CG at the FET gate. These stray

capacitances may arise from the way the QWIP and the source follower circuit are

mounted inside the DIP package. The superglue used to attach the QWIP, the FET,

and the resistors to the DIP package was measured to have a resistance of about

1 MQ at low temperature. Perhaps the way these electrical components have been

glued into the DIP package adds extra capacitance to the frequency response.

The unexplained stray capacitances inferred from the measurements of Figs. 8-16,

8-17, and 8-18 seem to be purely capacitive in nature, with no significant resistive

component. This can be deduced from the low frequency behavior of the source fol-

lower circuit in Fig. 8-15. The expected low frequency behavior (Equation (8.12))

of the source follower circuit can be used to check the resistances obtained from the
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DC DC

Bias Output

VQQ VOUT

(volts) (volts)

0.85 2.628

0.95 2.650

1.05 2.675

1.15 2.695

Table 8.2: Measured DC voltage VOUT at the FET source node as a function of

different DC bias voltages VQQ for the source follower circuit of Fig. 8-15. All other

bias voltages and resistors used in this circuit are the same as those used in the

measurement of Fig. 8-17.

best fit models (the solid lines) of Figs. 8-16, 8-17, and 8-18. Unfortunately, at the

measured frequencies of above 2 Hz in Figs. 8-16, 8-17, and 8-18, the low frequency

behavior (Equation (8.12)) is not observed. To check the resistive components of the

source follower circuit requires another means, that of measuring DC transfer func-

tions. One such measurement of the measured DC output voltage VOUT as a function

of various DC bias voltages VQQ is shown in Table 8.2 for the circuit used in the

measurement of Fig. 8-17. The numbers in Table 8.2 show a small signal DC transfer

function AVOUT/AVQQ of about 0.235, which is consistent with Equation (8.12) and

the resistances inferred from the best fit procedure shown in Fig. 8-17. Similar mea-

surements of the DC transfer functions of the circuits used in the measurements of

Figs. 8-16 and 8-18 show that the low frequency behavior of both source follower cir-

cuits are completely explained by the bias resistors which were deliberately mounted

into the DIP package.

In summary, measurement of the QWIP generation recombination noise is needed

to get a measured value for the photoconductive gain. Directly connecting the

QWIP (inside the closed cycle refrigerator) to a transimpedance amplifier (outside the

closed cycle refrigerator) is not desirable because the QWIP impedance is very large

(500 MQ-1 G2), and the capacitance of the coaxial cable will cause the noise spectrum
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to roll off at too low a frequency for a reliable measurement of the generation recom-

bination noise. The noise spectrum can still be measured if a source follower circuit is

mounted alongside the QWIP in the closed cycle refrigerator. The noise spectrum can

then be measured at higher frequencies because the capacitance of the coaxial cable

sees the output resistance of the source follower (about g ~ 1 k) instead of the

much larger QWIP differential resistance. Unfortunately, in our measurement setup,

the use of the source follower circuit did not increase the measured noise bandwidth

because of unusually large stray capacitances associated with the QWIP, the bias

resistors and the JFET. The origin of the stray capacitances is unclear at this time.

8.6 Conclusions

This chapter described general procedures for measuring QWIP device parameters.

An example of an n-type QWIP (n-QWIP) was used throughout the chapter.

Leakage current measurements are made as a function of QWIP operating tempera-

ture and bias. At low operating temperatures, the leakage is dominated by sequential

resonant tunneling. At large QWIP bias voltages, the leakage is dominated by Fowler-

Nordheim tunneling. At intermediate operating temperatures (above 50K) and bias

voltages, the leakage is dominated by thermionic leakage. An Arrhenius plot of the

measured leakage as a function of inverse QWIP operating temperature reveals an

activation energy for the leakage. This activation energy can be used to determine

the position of the Fermi level within the occupied quantum well subband. The bias

dependence of this activation energy 1)B has not been studied in the QWIP litera-

ture, and the models to be presented in Chapter 10 reveal how the bias dependence

of this activation energy may be related to the injection mechanisms in the QWIP.

The quality of fit of the measured leakage to a thermionic leakage model indicates

the absence of excessive leakage. Excessive leakage was not observed in this n-QWIP

example at intermediate negative bias voltages.

The conversion efficiency, the product of the quantum efficiency and the photoconduc-

tive gain, can be measured by measuring the net photocurrent as a function of different

183



black body target sizes for a fixed QWIP operating temperature and a fixed black

body temperature. The typical n-QWIP we measured had a conversion efficiency of

4% or, equivalently, a responsivity of 270 mA/W or, equivalently, a detectivity of

4x 101cm-V /Watt without the use of an optical grating. This size conversion ef-

ficiency or detectiv,.y is large enough for focal plane array performance to be limited

by the uniformity of processing rather than the size of the single pixel detectivity.

Measurement of the QWIP photocurrent (for a fixed QWIP operating temperature

and a fixed black body target size) as a function of the inverse black body temper-

ature reveals an Arrhenius dependence whose slope is the energy of the responsivity

peak. The energy of the responsivity peak is separately verified by a direct measure-

ment of the responsivity spectrum using a circular variable filter to isolate particular

wavelengths from a black body infrared source.

The spatially resolved QWIP responsivity measurements shed light on the nature of

the absorption of normally incident radiation by an n-QWIP which has been processed

without an optical grating. First, TE polarized radiation having a small spot size of

20 p/m normally incident upon a sample in the middle of a large 100 tpm optically

active area yields a finite response. This response is three times as large as the

measurement background, which we take to be the response resulting from radiation

incident on the sample between QWIP pixels. Second, radiation incident upon the

pixels at the pixel boundaries, which are (111) planes, yields a large response, which

is presumed to be dominated by the response due to TM polarized radiation. The

measured photocurrent is thus a response due to both TE and TM polarizations.

Finally, there is a small amount of responsivity crosstalk between adjacent QWIP

pixels.

Measurement of the QWIP generation recombination noise is needed to get a mea-

sured value for the photoconductive gain. Attempts to make noise measurements on

QWIPs were inconclusive. Though a noise measurement can always be made, the

interpretation of that noise measurement may be difficult as a result of the presence

of large stray capacitances. Directly connecting the QWIP (inside the closed cycle

refrigerator) to a transimpedance amplifier (outside the closed cycle refrigerator) is

not desirable because the QWIP impedance is very large (500 MQ-1 GQ), and the

184



capacitance of the coaxial cable will cause the noise spectrum to roll off at too low

a frequency for a reliable measurement of the generation recombination noise. The

noise spectrum can still be measured if a source follower circuit is mounted alongside

the QWIP in the closed cycle refrigerator. The noise spectrum can then be measured

at higher frequencies because the capacitance of the coaxial cable sees the output re-

sistance of the source follower (about gm1 ~ 1 k) instead of the much larger QWIP

differential resistance. Unfortunately, in our measurement setup, the use of the source

follower circuit did not increase the measured noise bandwidth because of unusually

large stray capacitances associated with the QWIP, the bias resistors and the JFET.

The origin of the stray capacitances is unclear at this time.
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Chapter 9

Some Device Designs

QWIPs exhibiting a large SNR are one possible design objective. As discussed in

Chapter 3, for very low operating temperatures (below TBLIP), a large SNR can

be obtained with a large single quantum well quantum efficiency, a large number of

quantum wells, and an optimal single quantum well photoconductive gain.

In many cases, the ability to operate a QWIP at the highest possible temperature

while maintaining a particular SNR is a more practical goal, as the cost of buying a

cooler or the time it takes to reach the QWIP operating temperature is the biggest

operating expense. In such cases, maximizing the SNR of a QWIP at some operating

temperature above TBLIP is the design goal. This can be accomplished by increasing

the conversion efficiency or decreasing the leakage current or increasing the device

parameter uniformity across a FPA.

Section 9.1 presents some commonly used n-QWIP designs. Section 9.2 discusses

three p-QWIP designs, and relates their device parameters to the device figures of

merit.
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9.1 Common n-QWIP Designs

Some common n-QWIP designs [14, 13] are shown in Figure 9-1. In all three designs

shown in the figure, the intersubband transition energy (E2 - El) is fixed by the

application.

The uppermost schematic in the figure shows an intersubband transition from a bound

state in a QWIP to an upper state in the continuum of energies above the barrier

band edge. This design is often referred to as the bound-to-continuum QWIP design,

and was first demonstrated at Bell Laboratories [104]. Of the three designs shown in

the figure, the bound-to-continuum QWIP design displays the largest dark current

and the largest absorption spectral full-width-half-maximum (FWHM). This design

shows the largest dark current because the confining potential, VB, is smallest for

a fixed E2 - E1 of the three designs shown. This design shows a large absorption

FWHM because transitions are possible from the quantum well bound state to many

states in the continuum.

The middle schematic shows an intersubband transition from a bound state in a

QWIP to an upper state at the barrier band edge. This design is often referred to

as the bound-to-quasicontinuum QWIP design, and has been studied by Levine [7],

Liu [105], and Gunapala [106]. This design has a higher quantum efficiency than the

uppermost design in Fig. 9-1 because the the upper state in the middle schematic

still retains much of its bound state character. (Transitions between bound states in

a quantum well show stronger[105] absorption than transitions from a bound state

to a state in the continuum.) Carriers excited to the quasicontinuum also show good

escape probability since the uppermost state is at the barrier band edge. This design

shows smaller leakage than the uppermost design in Fig. 9-1 because the confining

potential, VB, is larger for the middle schematic at a fixed E2 - E1 .

In the middle schematic shown in Fig. 9-1, the upper state E2 is designed to be at the

barrier band edge. The optimal barrier width in this design was found experimentally

by Levine [7] to be 500 A, because QWIPs made with thinner barriers exhibited large

sequential resonant tunneling. However, QWIPs made with wider barriers (1000 A)
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Figure 9-1: Some common n-QWIP designs. The uppermost schematic shows an

intersubband transition from a bound state in a QWIP to an upper state in the

continuum of energies above the barrier band edge. The middle schematic shows

an intersubband transition from a bound state in a QWIP to an upper state at the

barrier band edge. The lower schematic shows an intersubband transition between

two bound states in a quantum well, where photocurrent transport is via miniband

transport through the superlattice barrier.
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did not show less [7] sequential resonant tunneling because larger bias voltages were

required to obtain the same photocurrents which were measured for the 500 A barrier

QWIPs.

The lower schematic shows an intersubband transition between two bound states in

a quantum well, where photocurrent transport is via miniband transport through

the superlattice barrier. This design is often referred to as the bound-to-miniband

QWIP design, and it was developed by researchers at Lockheed Martin [107, 13]. This

design has a high quantum efficiency, since it involves a bound-to-bound intersubband

transition. Photoexcited carriers show a high escape probability because the upper

quantum well state is energetically degenerate with the miniband in the superlattice

barrier. This design is expected to show the smallest thermionic leakage of the three

designs shown in Fig. 9-1 because the confining potential VB is largest for this design

at a fixed E2 - El). More quantitatively, if the thermionic leakage for the middle

design shown in Fig. 9-1 is Jth,B-to-QC and the thermionic leakage for the last design

shown in the figure is Jth,B-to-MiniB, it is expected that,

JthB-t.-MiniB =thBtoMiniB exp(-[VB - E2]/kBT)- (9.1)
Jth,B-to-QC

The infrared image shown in Chapter 1 was measured with a 640x480 focal plane

array made from a bound-to-miniband design.

9.1.1 Kronig-Penney Model of the Superlattice Barriers

In this section, we calculate the tunneling through the superlattice barrier shown in

the last design in Fig. 9-1 by comparing the superlattice barrier with a Kronig-Penney

model. For ease of calculation, the periodic potential for these superlattice barriers

is modeled as,

V(z) = V,,L((z - nL) (9.2)

where L is the periodicity of the superlattice barrier, and VavL = 1 f2 V(z)dz is the

average potential barrier (band edge) of the semiconductors comprising superlattice
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barrier. Here, we will assume that Vv > 0 and the carrier energy E > 0, so that

we are considering carriers incident upon a lattice of narrow, tall potential barriers.

Narrow, tall potential barriers, as in Equation (9.2), are chosen to model the QWIP

superlattice barriers because the QWIP superlattice barrier widths must be chosen

to be narrow enough to allow the formation of a miniband for electron transport.

For a periodic potential, the solutions @(z) of Schrodinger's equation satisfy Bloch's

theorem,

(z) = exp(ikz)u(z) (9.3)

where u(z) = u(z + L) has the periodicity of the superlattice, and where k is the

eigenvalue of the translation operator. For E > 0, we define

q2 = 2mE/h2. (9.4)

Kronig and Penney [43, 108] show that the energy eigenvalues form a miniband of

energies whose k value satisfies,

mVav,,L2 sin qL
cos kL = cos qL + h2 qL (9.5)

It is easy to show [43] that minibands of energies are formed when,

(2n + 1)7r - n < qL < (2n + 1)7r

2n7r < qL < 2nr + en

for integral n (9.6)

where En is the energy width of the miniband. The width of the miniband En is

very narrow in the tight binding limit where V,, is large. For bound-to-miniband

QWIPs, it desirable that the miniband be wide enough in energy to yield a reasonable

photoconductive gain at a particular bias voltage.

Much of the work [109, 110] on the bound-to-miniband QWIPs has concentrated

on calculating the miniband energies. What has not appeared in the literature are

detailed, analytical expressions for the tunneling through the minigap regions, the

regions between the miniband energies in Equation (9.6). Equation (9.5) can be used
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to show that the minigap regions are centered about,

qL=0 and qL= n + ) r for integral n. (9.7)

For the superlattice barriers in Fig. 9-1 having a finite width LB (i.e., the super-

lattice does not extend to z=±oo), Bloch's theorem [108] also allows solutions to

Schrodinger's equation of the form,

@(z) = exp(±itsz)u(Z), (9.8)

so that the tunneling through the superlattice barrier through the minigap regions
can be approximated as,

T ~ exp(-2/ULB) -exp - 2LB -(Vtunn-E) , (9.9)

where Vt,, defines an effective tunneling barrier which is derived below, and where

the imaginary part of the wave vector p satisfies the Kronig-Penney equation, Equa-

tion (9.5),

mVavL2 sin qL
cosh pL = cos qL + h2 qL

2 qL
(9.10)

Equation (9.10) can be solved numerically, but more insight can be obtained by

getting an analytical solution. Right in the middle of the minigap, Equation (9.7),

the inverse, pt, of the decay length satisfies,

mV,,,L2
cosh yL = 1 + h2 near qL=O

mV,, L2 1
cosh L = a2 (n + 1r

h2Z (n-v+ )w
near qL= (n + ) 7r.

Equation (9.11) can be cast in a form which is easy to remember.

from Equation (9.10) that,

/2= hm ([Vav (1 ( ))] -

m V,,L 2

for h2 < 1 and qL-0fr2
2 2m V[ (qL)2 1

V2 [av 1- 6 )j
mV,,,L2

for h2 > 1 and qL-'0for

(9.11)

It is easy to show

E)

E)

(9.12)
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where we have used Equation (9.4) for E. Equation (9.12) is physically significant, and

is a key result of this chapter. It says that an electron which has an energy deep within

the first minigap (with qL0O) and which is incident on the superlattice barrier, will

have a probability for tunneling as given in Equation (9.9) with a tunneling barrier

of,

Vtunn Vav ( - (') near qL=O. (9.13)

This tunneling barrier Vtnn can be much smaller than the average superlattice po-

tential, Vav = fL/2 V(z)dz, especially for barriers designed to be highly confining

(for -V 2 > 1). In such cases, the exact expression, Equation (9.11), should be used

to calculate p.

Equation (9.11) can be used to show that

2 2m [ Vav h2]- h 2 (n+)' mL2
at the center of the minigap at qL= (n + ) r. (9.14)

Equation (9.14) shows significant tunneling.

9.2 Design of p-QWIPs with large quantum effi-

ciency and low leakage current.

Both the quantum confinement and the strain contributions to the Hamiltonian have

the same (tetragonal) symmetry. This means that qualitatively, both change the light

hole wave function in exactly the same way: by adding s-symmetry to the nominally

p-symmetric light hole wave functions. In the literature, both quantum confinement

[47] and uniaxial strain [50, 53] have been used to increase the quantum efficiency by

increasing the strength of the absorption of normally incident radiation in the heavy

hole to light hole transition.

This work differs from other works ii the literature in our choice of the use of strain.

Whereas both quantum confinement and uniaxial strain have the same qualitative
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effect, that of adding s-symmetry to the nominally p-symmetric light hole, these

two effects differ in their size and strength. Since quantum confinement energies

(typically several hundred meV) are much larger than strain splittings (a few tens of

meV), quantum confinement is much more effective than uniaxial strain in changing

the symmetry of the light holes and increasing the quantum efficiency. However,

quantum confinement energies are always positive because zero point energies are

always positive. In contrast, strain splittings can have either sign: for tensile strain,

the light hole band is closer to the conduction band than is the heavy hole band, and

for compressive strain, the heavy hole band is closer to the conduction band. Moving

the light hole band relative to the heavy hole has important consequences for the

transport of current carriers and also for the size of the leakage currents.

In our work, uniaxial strain is not used for increasing quantum efficiency. The quan-

tum efficiency for absorption of normally incident radiation by holes is already very

large because of the large size of quantum confinement energies. Rather, strain is used

to change the transport properties of the photocurrents and also to reduce leakage

currents.

By pulling the light hole continuum below the heavy hole continuum, the much smaller

light hole mass becomes the transport mass. Kuroda and Garmire [111] have already

noted this in a theoretical discussion of p-QWIPs designed to have larger photocon-

ductive gains.

Moreover, continuum heavy hole states contribute little photocurrent because the

bound state heavy hole to continuum heavy hole absorption is very weak for nor-

mally incident radiation. In an unstrained semiconductor, the he rj holes dominate

the density of states in the continuum of energies above the barrier, thus contributing

little to the photocurrent and contributing mostly to the leakage current for normally

incident radiation upon a QWIP without an optical grating. By pulling the light

hole continuum closer to the conduction band and away from the heavy hole contin-

uum, the heavy hole continuum, which contributes mostly leakage current, is moved

away from the states (the light hole continuum) contributing mostly photocurrent.

This reduces the leakage current resulting from thermal population of the heavy hole
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continuum. The reduction in the heavy hole thermal leakage current is,

Jth,hh,with strain exp(- E/kBTp), (9.15)
Jth,hh,without strain

where is the splitting of the light hole and heavy hole continua.

The p-QWIP designs presented in this thesis have the new feature that strain is used

to lift the light and heavy hole valence degeneracy in the energy continuum, so that

the lowest energy hole ba-nd in the continuum of energy states can be chosen as light-

hoie-like for both large photoconductive gain and large quantum efficiency. The use

of InP as the substrate allows for both tensile and compressive strain to be possible

with InGaAlAs layers. The photocurrents and leakage currents of devices grown with

either tensilely or compressively strained layers are to be compared. The ability to

have both compressively and tensilely strained ]k'yers also allows the entire growth to

have zero net strain.

9.2.1 Three p-QWIP Designs.

Three QWIP structures were grown to increase size of the quantum efficiency and

photoconductive gain, or to decrease the leakage current. All structures are designed

to have a peak responsivity at 156 meV (8 um) and zero net strain.

The first one, known as "Designl," consists of 15 periods of 50 nm tensile

Ino.499Gao.274 Al0.227 As barriers and 10.07 nm compressive Ino0.67Ga. 33As wells, as shown

in Figure 9-2. It has a large quantum efficiency because it involves a heavy hole (n=l)

to light hole (m=2) transition. The lowest continuum energy states will have a large

photoconductive gain, as the transport effective mass is the light hole mass. Both

the photocurrent and the leakage currents are expected to be larger than that for an

unstrained p-QWIP because of this large photoconductive gain. The splitting of the

light and heavy hole continua in the barrier region is calculated to be 16.8 meV. For

comparison, kBT=6.6 meV at T=77 K.

The second structure, known as "Design2," consists of 15 periods of 50 nm com-

pressive Ino0 532 Al0. 468As barriers and 6.24 nm tensile Ino0 45Gao.55As wells, as shown in
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Figure 9-2: The "Designl" design, consisting of 15 periods of 50

Ino.499Gao.274Alo. 227As barriers and 10.07 nm compressive Ino.67Gao0.33 As

pected to have large quantum efficiency and large photoconductive gain.
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Figure 9-3. It has a large quantum efficiency because it involves a light hole (n=1)

to heavy hole (m=2) transition. It will have a low photoconductive gain because the

lowest continuum band, the strained heavy hole band, has a large transport effective

mass, that associated with the bulk heavy hole band. This structure was designed

to have a small leakage current since the strain induced splitting between the light

hole and heavy hole bands in the energy continuum above the barriers forces the

strained light hole band, which has a large density of states (in-plane) effective mass,

away from the strained heavy hole band, through which the photocurrent is flowing

in the barrier. This strain induced splitting of the light and heavy hole bands in the

energy continuum forces the leakage current to photocurrent ratio down a factor of

exp(-[ELH - EHH]/kBTop) compared with a similar structure for which the barrier

light and heavy hole bands are energetically degenerate. In order to maintain a zero

net strain for the entire growth, the largest strain induced splitting of the light and

heavy hole bands in the energy continuum that is possible with designs consisting of

barriers having just one single composition (Ino0.532A10.468As in this case) is 5.6 meV.

The third structure, known as "Design3," consists of 15 periods of 8.11 nm lattice

matched Ino.532 Ga. 468As wells and a barrier consisting of five periods of 3.0 nm ten-

sile Ino.358Gao.166A 0o.476As barrieri and 6.6 nm compressive Ino0.60A10.40As barrier2, as

shown in Figure 9-4. It has a large quantum efficiency because it involves a heavy

hole (n=l) to light hole (m=2) transition. It will have a low photoconductive gain be-

cause the lowest continuum band, the strained heavy hole band, has a large transport

effective mass, that associated with the bulk heavy hole band. This structure was

designed to have a small leakage current since the strain induced splitting between

the light hole and heavy hole bands in the energy continuum above the barriers forces

the strained light hole band, which has a large density of states (in-plane) effective

mass, away from the strained heavy hole band, through which the photocurrent is

flowing in the barrier. This strain induced splitting of the light and heavy hole bands

in the energy continuum forces the leakage current to photocurrent ratio down a fac-

tor of exp(-[ELH - EHHI/kBTop) compared with a similar structure for which the

barrier light and heavy hole bands are energetically degenerate . "Design3" differs

from "Design2" in that a larger strain induced splitting of 30 meV between the light

and heavy hole bands in the energy continuum is obtained.
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Figure 9-3: "Design2," consisting of 15 periods of 50 nm compressive InO.532 A10 .468 As

barriers and 6.24 nm tensile Ino.45Ga0.55As wells, is expected to have large quantum

efficiency and small photoconductive gain.

197



1- -

ELH2

EHHI

. lAIAS barner.
,Matched &811 n

vd'1 I11 HHi

InSjGa0As wI.

Figure 9-4: "Design3," consisting of 15 periods of 8.11 nm lattice matched

Ino.532Gao.468As wells and a barrier consisting of five periods of 3.0 nm tensile

Ino.358Gao.166Al 0o.476As barrierl and 6.6 nm compressive Ino.60A 0o.4 0As barrier2, is ex-

pected to have large quantum efficiency, small photoconductive gain, and small leak-

age current.
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9.2.2 Some p-QWIP Measurements

Each of the three designs discussed in the previous section were grown at least twice,

each with X-ray rocking curves which showed very good lattice matching. (The

rocking curves showed that the average epilayer peak was within 100 arcsec of the

substrate peak.) After processing the wafers, the devices were measured at cryogenic

temperatures.

The samples which were grown after August 1996 were all found to be short circuits

(for 100% of the pixels measured). The samples all appeared very, very "dusty" even

to the naked eye. Under a Nomarski microscope, all of these samples showed a large

number of Group III droplets on the sample surfaces. Samples which were comprised

of much more InAlAs than InGaAs showed far fewer Group III droplets on the sample

surfaces. It is believed that the Group III droplets are Ga droplets which originated

from the lip of the Ga crucible.

Many Ga droplets accumulated on the lip of the Ga crucible after an accident in

August 1996 in which the Eurotherm temperature controller for the Ga cell failed in

the middle of the growth and had to be quickly replaced by an available Eurotherm.

This temperature controller replacement was accomplished as quickly as possible,

but not before the Ga cell temperature had dropped and then quickly returned to

the growth temperature of 880 °C. Since the Eurotherm had failed, it is not known

how many degrees the Ga cell temperature had plummeted before the Eurotherm

replacement was completed. The quick rise in temperature of the Ga cell following

the replacement of the Eurotherm probably resulted in a large increase in the number

of Ga droplets on the lip of the Ga crucible.

Subsequent replacement of the RIBER Ga cell with a hot-lipped Ga cell and a hot-

lipped Ga "Sumo" cell, both of which were purchased from EPI in St. Paul, MN,

did not solve the problem of the large number of Ga droplets on the wafer surfaces

right after growth. (Samples which were grown with very little Ga still showed far

fewer Group III droplets on the sample surfaces.) It is believed that the hot lips on

both Ga cells purchased from EPI were not hot enough. EPI has since changed the
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designs of both hot-lipped Ga cells.

The samples grown before August 1996 were processed into p-QWIP devices. Many

of the p-QWIP pixels measured on these wafers were also short circuits. About 20%

of the pixels measured did show sufficiently low leakage current to warrant continued

measurement. This yield of about 20% for the p-QWIPs was much smaller than the

yield of about 80% on most of the n-QWIPs measured. In our experience, when the

yield was very low for a particular wafer, the "working" pixels still showed a leakage

current which was too large. This is now discussed.

Figures 9-5 and 9-6 show the measured leakage currents as a function of bias voltage

for 50 tum pixels on Samples 9331 ("Design 3") and 9326 ("Design 1") at QWIP

operating temperatures between 10K and 240K. Samples 9331 and 9326 showed BLIP

(Background LImited Performance) temperatures of 45K and 52K, respectively, for

a 90° field )f view of a 293K background through a ZnSe viewport.

To investigate the size of the leakage currents shown in Figs. 9-5 and 9-6, the leakage

currents in these two figures were fit to the thermionic form in Equation (8.2) of

Chapter 8. It was found that for both samples, the leakage current rises slowly

for temperatures below 90K and then rises sharply above 90K. For both samples,

the leakage current was found to be larger for negative biases of the top contact,

in which case the holes travel toward the sample surface. This larger leakage for

negative bias is believed [7] to result from dopant assisted hole tunneling, and the

fact that dopants diffuse towards the sample surface during growth. To remove the

complication of analyzing the dopant assisted tunneling, we will consider the p-QWIP

leakage currents for positive biases only.

Fig. 9-7 shows the voltage dependence of the leakage current activation energy 1(B,

defined in Equation (8.3), for QWIP 9331 for temperatures between 90K and 200K.

The best fit of the leakage current to Equation (8.2) yields an activation energy for

positive biases of,

B = 122.0 meV - (10.7 meV/V) x V. (9.16)

This measured value of 122 meV at V=0 volts is a bit smaller than the expected value
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a9331b13, 50 microns, (9K - 200K)
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Figure 9-5: The measured leakage current as a function of bias voltage for a 50 m

pixel on Sample 9331 at QWIP operating temperatures of 9K, 20K, 30K, 40K, 50K,

60K, 70K, 80K, 90K, 100K, 130K, 160K, 200K (labeled, respectively, from the low-

ermost the uppermost curve in the figure).
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a9326b1 0, 50 microns, (10 OK - 240K)
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Figure 9-6: The measured leakage current as a function of bias voltage for a 50 m

pixel on Sample 9326 at QWIP operating temperatures of 10K, 20K, 30K, 40K, 50K,

60K, 70K, 80K, 90K, 100K, 130K, 160K, 200K, 240K (labeled, respectively, from the

lowermost the uppermost curve in the figure).
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of VB - EF, which was designed to be 155 meV. The measured value of 10.7 meV/V

for the slope of the activation energy is a bit larger than the expected design value of

qLw/LToT=8.7 meV/V. The 20% discrepancy between both of the measured values

and the designed values could result from uncertainties in the expected values of

the band parameters, as well as large tunneling through the superlattice barrier ,as

discussed in Section 9.1.1 above.

Fig. 9-8 shows the voltage dependence of the leakage current activation energy DB

for QWIP 9331 for temperatures between 60K and 100K. The best fit of the leakage

current to Equation (8.2) yields an activation energy for positive biases of,

B = 80.4 meV - (12.2 meV/V) x V. (9.17)

This measured value of 80.4 meV at V=0 volts is puzzling, as it is much smaller than

the expected value of VB - EF, which was designed to be 155 meV. This very small

value (80.4 meV) of the activation energy could be a result of the small tunneling

barrier calculated in Equation (9.12) above. Indeed, 80.4 meV is about the size of

the average value of the band edges (relative to the quantum well valence band edge)

of the semiconductors comprising the superlattice barrier. The measured value of

12.2 meV/V for the slope of the activation energy is a bit larger than the expected

design value of qLW/LTOT = 8.7 meV/V. This discrepancy could result from uncer-

tainties in the expected values of the band parameters, but is probably a result of the

large tunneling through the superlattice barrier even for energies below that of the

superlattice miniband, as discussed in Section 9.1.1 above.

Fig. 9-9 shows the voltage dependence of the leakage current activation energy B

for QWIP 9326 for temperatures between 90K and 240K. The best fit of the leakage

current to Equation (8.2) yields an activation energy for positive biases of,

(B = 190.5 mneV - (15.3 meV/V) x V. (9.18)

This measured value of 190.5 meV at V=-0 volts is much larger than the expected value

of VB - EF, which was designed to be 155 meV. This discrepancy may be a result of

large uncertainties in the valence band lineup or effective masses in InAlAs/InGaAs,

or of the strain induced valence band splitting. The measured value of 15.3 meV/V
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Figure 9-7: The voltage dependence of the leakage current activation energy for QWIP

9331 for temperatures between 90K and 200K. The activation energy was obtained

by fitting the measured leakage current to the thermionic form in Equation (8.2) in

Chapter 8 for temperatures between 90K and 200K.
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Figure 9-8: The voltage dependence of the leakage current activation energy for QWIP

9331 for temperatures between 60K and 100K. The activation energy was obtained

by fitting the measured leakage current to the thermionic form in Equation (8.2) in

Chapter 8 for temperatures between 60K and 100K.
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is a bit larger than the expected design value of qLw/LToT=10.6 meV/V. The dis-

crepancy could result from a tunneling through the barriers resulting from impurities

which are unaccounted for. Williams [96] has also observed much larger tunneling

through a 500 A barrier for his n-QWIP than was expected.

Fig. 9-10 shows the voltage dependence of the leakage current activation energy C(B

for QWIP 9326 for temperatures between 70K and 100K. The best fit of the leakage

current to Equation (8.2) yields an activation energy for positive biases of,

COB = 70.5 meV - (9.0 meV/V) x V. (9.19)

This measured value of 70.5 meV for the extrapolated activation energy at zero bias

is very small, and cannot be accounted for by any obvious energy in the system.

However, this measured activation energy should not be taken too seriously, as the

value of 1(B for small positive biases (below 1.2 volts in Fig. 9-10) appears very

different, in both slope and intercept, from Equation (9.19). The dominant leakage

current mechanism seems to change at about 1.2 volts in Fig. 9-10. There appears

to be an unknown leakage mechanism in Sample 9326 which depends on both QWIP

bias voltage and operating temperature, and which is not accounted for in the simple

thermionic leakage model of Equation (8.2) in Chapter 8.

In summary, at temperatures above 90K, Sample 9331 seems to have a leakage current

which can be accounted for within the framework of the thermionic leakage model of

Equation (8.2). Both the measured activation energy of VB - EF and the measured

derivative of the activation energy with the applied bias of (-qLw/LToT) were in rea-

sonable agreement with the expected design values for Sample 9331 at temperatures

above 90K. At temperatures between 60K and 90K, the measured leakage currents

for Sample 9331 showed an activation energy which was too small (about 80 meV).

This activation energy could be explained by the lowered tunneling barrier, as seen by

bound carriers in the quantum well, commensurate with a superlattice described in

the Kronig-Penney model (see Equations (9.11) and (9.12) in Section 9.1.1). At tem-

peratures above 90K, Sample 9326 could also be fit to the thermionic leakage model

of Equation (8.2), but with a measured value of 190 meV for VB - EF, which is a

little larger than expected. This could be a result of uncertainties in the band lineup

or strain induced energy splitting. At temperatures between 60K and 100K, Sample
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Figure 9-9: The voltage dependence of the leakage current activation energy for QWIP

9326 for temperatures between 90K and 240K. The activation energy was obtained

by fitting the measured leakage current to the thermionic form in Equation (8.2) in

Chapter 8 for temperatures between 90K and 200K.
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Figure 9-10: The voltage dependence of the leakage current activation energy for

QWIP 9326 for temperatures between 60K and 1OOK. The activation energy was

obtained by fitting the measured leakage current to the thermionic form in Equa-

tion (8.2) in Chapter 8 for temperatures between 60K and 100K.
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9326 was fit to the thermionic leakage model with an inferred activation energy of

70 meV. This 70 meV activation energy is not understood at this time, as no states

are believed to exist within the barrier which are 70 meV above the bound quantum

well state.

It is difficult to say whether the growth or the processing can account for the large

leakage current in Sample 9326. Both samples 9331 and 9326 were grown in the same

week, and both samples were processed together. Both samples showed a relatively

low processing yield of about 20%. Many devices showed extremely low resistances at

the end of the processing. This yield of 20% is troubling. The n-QWIPs which showed

significant detectivity all showed a high yield of at least 80%. The n-QWIPs grown

after August 1996 (after the accident with Eurotherm temperature controller using

either the RIBER cell or the hot lip EPI Ga or Sumo EPI Ga cell) all showed a much

smaller yield of about 20%. Of more than 150 n-QWIP pixels processed on wafers

grown on 15 separate occasions after August 1996, only one single device showed

significant detectivity, though about 20% of these devices showed leakage currents

which were small enough to warrant a closer study of the leakage current. Some

of these n-QWIPs had the same design as those measured in Chapter 8, but they

showed insignificant detectivity. It appeared as though the small processing yield of

about 20% for both the n-QWIPs and the p-QWIPs came at about the same time

that n-QWIP detectivities were unexpectedly low.

9.3 Conclusions

Some common n-QWIP designs used in industry have been evaluated. Some new

p-QWIP designs are presented and measured.

First, we discussed the most common n-QWIP design, in which the barrier is made of

one material, usually AlGaAs and usually of 500 A width. Second, the commonly used

n-QWIP design in which the confinement barriers are comprised of a semiconductor

superlattice is considered. This QWIP design is intended to reduce thermionic leakage

by pushing the three-dimensional continuum of energy further up in energy by making
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the miniband transport through the superlattice barrier the means of photocurrent
conduction.

A Kronig-Penney model presented in this chapter showed that this QWIP design,

with a superlattice comprising the QWIP barriers, is expected to have a larger tun-

neling leakage than QWIPs whose confinement barriers are comprised of a single

semiconductor material. The reason is that the tunneling through the superlattice
barrier is, at best, commensurate with tunneling through a QWIP barrier comprised
of a single semiconductor material but whose band edge is the average value of the

band edges of the semiconductors comprising the actual barrier superlattice.

An experimental investigation was carried out in this work for p-QWIPs which were

designed for reduced thermionic leakage and also for large absorption of normally

incident radiation without the use of an optical grating. These p-QWIP designs

have an additional new feature in that strain is used to lift the light and heavy hole

valence degeneracy in the energy continuum, so that the lowest energy hole band

in the continuum of energy states can be chosen as light-hole-like for both large

photoconductive gain and large quantum efficiency. Electrical measurement of these

p-QWIPs showed excessive leakage current, some of which may be accounted for

within the framework of the Kronig-Penney model.
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Chapter 10

Physical Models

10.1 Introduction

The device model for the quantum well infrared photodetector (QWIP) is usually

taken to be that for a standard photoconductor, and thus is described by two pa-

rameters: the photoconductive gain and the quantum efficiency. In these models,

both the photoconductive gain and the internal electric field are taken to be a con-

stant throughout the entire structure of the device, as shown in Figure 10-1. This

photoconductive gain is equal to the ratio of the drift velocity to the quantum well

capture velocity, or equivalently the ratio of the capture time into a quantum well to

the transport time through the entire QWIP structure.

Recent numerical models [112, 113, 114, 115], which account for the photoexcited,

tunneling, and drift currents, show that there is an electric field inhomogeneity in the

QWIP structure. These numerical models are an extension of the numerical models

[116, 117, 118] which were used to explain experimental observations of the respon-

sivity and gain in QWIPs having only a single quantum well. Key to understanding

these QWIPs having only a single quantum well was an understanding of the charge

distribution and nonuniform potential distribution within these devices under dif-

ferent bias and illumination conditions. This electric field inhomogeneity is distinct
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Ideal Photoconductor

+

Figure 10-1: In the commonly used device model for a QWIP, the electric field across

each period of the structure is the same.
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from the kind of high field domains that form at low temperature (below 10K) as a

result of resonant tunneling from the ground state in one well to an upper state in an

adjacent well. (See Fig. 8-2 in Chapter 8.) Rather, this electric field inhomogeneity

occurs at the more usual QWIP operating temperatures (40K or higher), and is the

result of inadequate injection of carriers from the emitter contact.

The purpose of this chapter is to develop a numerically accurate physical model

which explains the electric field inhomogeneity that exists in a QWIP through which

current is flowing. Solution of the equations describing this physical model is not

computationally intensive, and can be done on a simple calculator. This is described

in section 10.3.

We also review three existing models which are commonly used to describe current

flow through a QWIP: Levine's original model (section 10.2.1), Rosencher's model

(section 10.2.4), and Ershov's rate equation model (section 10.2.5). We compare the

different models. We formulate a new rate equation model which is a combination of

Ershov's and Rosencher's models, and reduces to Levine's model under appropriate

circumstances.

10.2 Review of Existing QWIP Models

10.2.1 Levine Model

10.2.2 Levine Photocurrent Model

Key points, for later discussion, in the Levine model of QWIP photocurrent are the

photoconductive gain g and the excited carrier escape probability pe. This is now

reviewed.

Following Levine and Beck [7], the photoconductive gain is now derived. (A sim-

ilar result was obtained by Liu [97].) The contribution to the photocurrent from
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photoexcitation out of one quantum well is

ip(1) = qi) 1r, (10.1)

where b is the incident photon flux (in sec- 1), and rm is the one quantum well quantum

efficiency. In the steady state, a fraction Pc of the total photocurrent Ip is captured
by any one particular quantum well, but each single quantum well will also contribute

ip(l) to the total photocurrent,

IP = fP - PcIP + ip(1) (10.2)

so that the total photocurrent Ip is related to the single quantum well contribution
ip(1) through

I = ip(1) _g ip(l) (10.3)
Pc

where the capture probability Pc is related to the single quantum well photoconductive

gain gl through,

1 Lp _ T1
Pc = (10.4)

g1 TL Vd TL

where Lp, TL, Vd, TT1 are, respectively, the multiple quantum well (MQW) superlattice
period, the lifetime and the drift velocity of the carriers in the upper state, and the

transport time through one period of the QWIP. The total photoconductive gain [7]

g is 1/Nw times the single quantum well photoconductive gain gl, where Nw is the

total number of quantum wells in the entire QWIP structure,

g 9w1 (10.5)
Nw

Another feature of the Levine QWIP photocurrent model is that the quantum ef-

ficiency is not exactly the same as the optical absorption efficiency 7oa. Rather,

Levine [7] finds that in order to obtain quantitative agreement between theory and

experiment, the quantum efficiency 7r must be equal to the product of the optical

absorption efficiency a and a phenomenological escape probability Pe,

1r = 7aPe, (10.6)
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where the optical absorption efficiency is

n7a = (1 - exp(-T1Nw)), (10.7)

and where the phenomenological escape probability pe is found to have the form

Pe 1 + - (10.8)
r

By measuring the noise to obtain g, and by measuring the absorption to get 7a, and

by measuring the photocurrent to get r7, Levine finds the following empirical form for
Te

TrX

Te /e\.e= (- ) exp(-VToT/Vo)

() exp(-Vlperiod/Vp) (10.9)

where VTOT, V, Vlperiod, Vp and (e) are, respectively, the total bias on the entire

QWIP, Nw times the effective barrier lowering potential, the bias on one period of

the QWIP, the effective barrier lowering potential, and the zero bias escape time

ratio. Some measured values for these quantities for a variety of QWIPs measured

by Levine [7] are shown in Table 10.1.

Rosencher et al. [119] obtained a similar dependence of the quantum efficiency 

on the applied bias, but they interpreted this dependence in terms of a statistical

distribution for the upper state in the intersubband transition.

A central point here is that the photoconductive gain gl is large [7], between 10 and

20, so that the total photocurrent Ip flowing through the device is much larger than

the contribution ip(l) from any single quantum well. Another key idea is embodied

in Equation (10.3), which says that in the steady state, the photoconductive gain
can be obtained from requiring the continuity of the flux of carriers captured into a

quantum well. Yet, another key point is that the quantum efficiency is the product of

the optical absorption efficiency and a phenomenological escape probability Pe, where

the phenomenological escape probability is found by fitting theory to experiment.
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Inter-

sub- Vp

band (meV/
Levine Lw Doping Doping Ap Transi- per-

Sample A x (1018Cm-3) Type Periods (pm) tion (i)r od)

A 40 0.26 1 n 50 8.95 B-C 1.9 13

B 40 0.25 1.6 n 50 9.8 B-C 0.94 17

C 60 0.15 0.5 n 50 13.2 B-C 1.9 16

D 70 0.10 0.3 n 50 16.6 B-C 1.6 16

Table 10.1: Measured [7] zero bias escape time ratio, ()r , and effective barrier

lowering potential per period, Vp, for four GaAs/AlGal_xAs QWIPs. Lw is the

well width. The intersubband transitions are: bound-to-bound (B-B), bound-to-
quasicontinuum (B-QC), and bound-to-continuum (B-C).

10.2.3 Levine Leakage Current Model

Levine [7] writes the leakage current as

JL = qn3d(V)Vd(V), (10.10)

where vd is the drift velocity,

vd(V) = 1+ (10.11)

1\+ (Dt)

where /, F, v,,t are, respectively, the mobility, the average field, and the saturated

drift velocity, where n3d is the effective number of carriers which are excited out of

the well as a function of the bias voltage V,

n3d(V)= (r-2L )| f(E)T(E,F)dE (10.12)

where mw, Lp, El, EF are, respectively, the effective mass in the quantum well, the pe-

riod of the QWIP multiple quantum well structure, the lowest bound state measured
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from the quantum well band edge, and the two-dimensional Fermi level measured

from El, and f(E) is the Fermi-Dirac distribution,

1

1 + exp(E- El - EF)/kBT (10.13)

where the tunneling coefficient is, in the WKB approximation,

T(E, F) =

1

for E> VB

exp (-F []1/2 [B - E]3/2) (10.14)
for VB- qFLB < E < VB

exp (- 4 [2m]/2 ([VB- E]3/ 2 - [VB - E - qFLB]3/2))

for E < VB- qFLB

where VB is the potential barrier.

The energy appearing in the transmission coefficient T(E,F) in Equation (10.12)

is the total energy E of the bound carrier. The reasoning commonly given in the

literature [7] is that in a real system, electron scattering causes the electron wave

function to decay in the barriers according to the total energy E instead of the bound

state El.

The values of mobility and the saturated drift velocity used in Equation (10.11)

are obtained [7] by fitting theoretically modeled to experimentally measured leakage

currents.

At a very low bias of 0.1 volts on a 49 periods of GaAs wells of width Lw = 76 A
and 50 periods of A10.27Gao.73As barriers of width Lw = 88 A, Levine finds a good fit

of the sequential resonant tunneling (for qFLp < h/ir, where T1 is the ground state

scattering time) to

Jt qkBT TE F) 1 1 + exp(EF/kBT) (10.15)
hL2, 1 + exp((EF - qFLB/kBT) '

W~~~~~~

217



which dominates the leakage current at low temperatures, and a good fit of the

thermionic leakage current to,

q2 mw Vd
Jth = 2 (qFLB) exp [-(VB - qFLw - EF - E)/kBT] (10.16)

A key point here is that the mobility and the saturated drift velocity appearing

in Equation (10.12) are numerically adjusted to match modeled leakage currents to

measured leakage currents. Another key point is that it is the total energy E which

appears in the transmission coefficient T(E, F) inside the integral in Equation (10.12)

because it is believed [7] that in a real system, electron scattering is sufficient to cause

the electron wave function to decay in the barriers according to the total energy E
instead of the bound state El.

10.2.4 Numerical Models of Rosencher

A key point in Thibaudeau's [115] work (in Rosencher's group) is that the contribution

Jlwell of each quantum well to the total leakage current or the total photocurrent is

used to solve for the self-consistent field distribution throughout the QWIP in terms

of the injected current. More specifically, the electric field over each period of the

QWIP is found from,

PcJinj = Jlweil at each well, (10.17)

where the contribution Jlwell from each quantum well is calculated from,

qmwkBT f 00 + exp (E-E ]
Jlwell = 2mwhb3 T(E, F) ln kBT() dE

E1 [i +ex EF-qFLp-E)

(scattering as in 3D reservoir). (10.18)

The two natural logarithm terms in Equation (10.18) correspond to the transmitted

current in both the forward direction (from well i to i + 1) and the reverse direction

(from well i + 1 to i)). Equation (10.18) makes the significant assumption that the
current emitted by a two dimensional electron reservoir can be modeled as that emit-

ted by a three dimensional electron contact with an appropriate choice of Fermi level.
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This is believed to be a valid assumption [119, 120] when there is sufficient scattering

[121] of the electrons within the quantum well to make the quantum well equivalent

to a contact as far as calculation of the tunneling is concerned.

An alternative assumption is to model the quantum well electrons as a two dimen-

sional electron reservoir, as in

Jlwell = mw T(E, F)dE 1 xp ) (EFLp EF)
7Trh2 1 + exp kBT + exp kBT )

(scattering as in 2D reservoir). (10.19)

Of significance is the impinging frequency v [7, 115, 122] appearing in Equation (10.19),

1 ( El1 ( 2mw) 1 / 2 (Oppenheimer-Bohr frequency of Rosencher)

Lp (Levine).

(10.20)

Rosencher's group [116, 122] use the Oppenheimer-Bohr oscillation frequency of an

electron on a quantized level, and Levine uses the drift velocity divided by the period

of the multiple quantum well structure. The use of the Oppenheimer-Bohr oscillation

frequency of an electron on a quantized level yields a tunneling transmission which

is very similar to theoretical values obtained from a more involved [122] phase-shift

formalism. Levine [7] obtains a good fit of the measured and modeled leakage currents

by varying the mobility and saturation velocities as free parameters.

Thibaudeau's [115] model has one adjustable physical parameter, the capture proba-

bility p, which is then fit to the functional form,

PC(F) = u exp[v/(F + w)], (10.21)

where F is the electric field across a particular quantum well within the QWIP, and

where the three free parameters, u, v, w, are adjusted until there is good agreement

between the measured leakage current and the modeled leakage current.

Both Pelve et al. [95] and Martinet et al. [122] have reported a good fit of the data,

respectively, from leakage current measurements and from transient-capacitance spec-

troscopy (on carefully designed single quantum wells) to the voltage dependence of
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Equation (10.14) evaluated at E = El=bound state energy. This has important con-
sequences on the use of Equations (10.18) and (10.19), since T(E,F) in both equations

is evaluated at the total energy E and not E = El=bound state energy. Moreover,

Martinet et al. [122] have reported that the Oppenheimer-Bohr frequency in Equa-

tion (10.20) for the impinging of quantum well carriers on the barrier may be two

orders of magnitude larger than the impinging frequency inferred from transient-

capacitance spectroscopy on a carefully designed single quantum well device. Both of

these observations (the use of the total energy in T(E,F) in both Equations (10.18)

and(10.19), and the use of the Oppenheimer-Bohr frequency in Equation (10.20))

may explain why the measured tunneling currents are sometimes [123] smaller than

predicted.

A key point in Rosencher's model is that the contribution of each quantum well

to the total leakage current or the total photocurrent is used to solve for the self-

consistent field distribution throughout the QWIP in terms of the injected current.

An important difference between Levine's model and Rosencher's model for tunneling

leakage is Rosencher's use of the Oppenheimer-Bohr impinging frequency for bound

state carriers onto a barrier. An important feature of both Levine's and Rosencher's

models is that the total tunneling leakage is calculated by assuming that the wave

function decay within the barrier drops as the total energy rather than just the bound

state energy of the carrier in the quantum well.

10.2.5 Numerical Models of Ershov

A complete numerical model of QWIPs would include the various radiative and non-

radiative capture and absorption mechanisms into a quantum well, plus the differing

amounts of drift and tunneling transport. One version of this has recently been done

by Ershov [112, 113, 114]. In this model, we assume that the quantum wells have

only one bound state, and that the upper state in the intersubband transition is in

the continuum of energies above the barrier band edge.

The Poisson equation is written down to describe the concentration N2D of bound
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carriers remaining in each quantum well, in terms of the concentration N + of donor

impurities, and the free carriers nr3D having an energy in the continuum above the

barrier band edge,

d2° = - N2D n3DLp], (10.22)
dz 2 I EB D

where q is the magnitude of the electronic charge, and where 0 is the electric potential

throughout the QWIP. The continuity equation for the flow of carriers into the bound

state in the i-th quantum well is is written as,

ON2D (i) iat( = Lw [ri 90 ] (10.23)

and the continuity equation for the flow of carriers into the upper state from the i-th

quantum well is written as,

an3D 1
at= [Go + GT -R]- V AJ3 D, (10.24)

where the total current density J3D of carriers in the continuum above the barrier

band edge,

aTh3D
J3D = qn3DpF + qD Oz ' (10.25)

is the sum of the drift and diffusion components, where pu, F, D are, respectively,

the mobility, the electric field and the diffusion constants within the barrier, where

90, Go, 9T, GT, r, R are, respectively, appropriately normalized fluxes for the photoex-
cited carriers to the continuum, thermally excited carriers to the continuum, and

thermally relaxing carriers from the continuum,

90 = CI N2D/LW gT = N2D,eq/(TeLW) 7 = n3DVQW/Lw (10.26)

Go = cI N2D/LB GT = N2D,eq/(TeLB) R = n3DVqw/LB, (10.27)

where a, I, vQw, Te are, respectively, the photoexcitation cross section, the incident

photon flux, the recombination velocity [119] from the continuum into each quantum

well, and the thermal excitation time constant.

Ershov et al. [112, 113, 114] write detailed balance for the g and r coefficients as,

N2D,eq
VQWe = 3D,eq(EF,w,eq - VB) exp(AEF,w/kBT) (10.28)
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where AEF,w is the difference between the quasi-Fermi level EF,W and the Fermi

level EF,W,eq, in the presence of and in the absence of the applied bias, respectively,

associated with the two dimensional electron gas in the quantum wells,

zxEF,w = EF,W - EF,,eq (10.29)

where

N2D,eq = - In [1 + exp(EF,W,q/kBT)], (10.30)

n3D,eq(EF,W,eq - VB) = 2 -kh2 exp([EFWeq- VB]/kBT). (10.31)

The key points in the Ershov model are the use of the rate equations in Equa-

tion (10.23) and (10.24), the use of the Poisson equation in Equation (10.22), and the

explicit appearance in the divergence term in Equation (10.24) of the current density

J3 D of the carriers in the continuum. In principle, the use of the rate equations,
together with detailed balance, should yield the same result as directly writing down

the leakage currents and photocurrents, as was done by Levine [7]. The solution of the

rate equations in the vicinity of each well should be equivalent to Thibaudeau's heuris-

tic approach of calculating the flux into and out of each well, as in Equation (10.17).

These two observations allow one to check the results of the Ershov model by com-

paring these results with those of the Levine and Rosencher models. The explicit

appearance in the divergence term in Equation (10.24) of the current density J3D of

the carriers in the continuum, together with the explicit absence of a similar diver-

gence term for the tunneling current from the bound state of one quantum well to an
adjacent well in Equation (10.23), indicates that Ershov's model implicitly assumes

that the total current through the QWIP comes mainly from J3D and not from the

tunneling current through the bound states in the quantum wells.
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10.3 Analytical Expressions from a Physical Model

10.3.1 Insufficient Carrier Injection - Intuitive Picture

Before presenting the physical model developed in this work, we present our intuitive

interpretation of the numerical work of Ershov [112, 113] and Thibaudeau [115].

Figure 10-1 shows the commonly used device model for a QWIP, where the electric

field across each period of the structure is the same. QWIPs which are grown with the

same barrier width and barrier composition in each period of the multiple quantum

well structure cannot be described by the uniform field distribution shown in Fig. 10-

1. The reason is that if J1 is the current density supplied by one quantum well to

the total current density, then the total current density is gJ1 , where g is either the

dark current gain or the photoconductive gain, and this total current density gJ1

is too large to be supplied by the emitter contact in the model shown in Fig. 10-1.

(The photoconductive gain [7] has been measured to be on the order of 10 or 20,

depending on the applied bias.) To see that this total current density gJ1 is too large

to be supplied by the emitter contact, one need only observe that within the model

shown in Fig. 10-1, the barrier on the positive voltage side of each quantum well has

the same height, the same width, and the same field across it as the barrier adjacent

to the emitter. Thus, if each quantum well is contributing a current density of J1

(through or above the barrier on the positive voltage side of it), then the emitter

contact cannot be injecting the much larger current density of gJ1 through or above

an identical barrier.

Figure 10-2 shows a more realistic device model for a QWIP shows an inhomogeneous

field distribution within the device. When a sufficiently large photocurrent is excited

in the body of the QWIP, the quantum wells near the emitter contact must deplete in

order to supply the necessary carriers. The depletion of carriers from those quantum

wells closest to the emitter contact will supply the necessary photoexcited carriers

by accomplishing two feats: this depletion near the emitter will lower the fraction of

the applied voltage that drops over the main part (those quantum wells that are not

too near the emitter contact) of the QWIP structure, thus lowering the fraction of
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Figure 10-2: A more realistic device model for a QWIP shows an inhomogeneous field

distribution within the device. This field distribution results from inadequate carrier

injection from the emitter contact. In the steady state, current continuity and Gauss's

law require that enough carriers deplete from the quantum wells near the emitter

contact in order for the emitter to inject enough carriers to supply the photocurrent

within the bulk of the QWIP. The energy band diagram for the QWIP under dark

conditions and under illuminated conditions are indicated by the solid line and the

dashed line, respectively, in the figure. For a fixed applied bias voltage, more carriers

are depleted from the quantum wells near the emitter (to make the transmission larger

through the barrier closest to the emitter) under illuminated conditions (where the

emitter supplies both photocurrent and leakage current) than under dark conditions

(where the emitter supplies only the leakage current).
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the photoexcited current that reaches the collector contact; this depletion also lowers

the barrier near the emitter which is seen by the tunneling injected carriers, thus

supplying more carriers into the QWIP.

The energy band diagram for the QWIP under dark conditions and under illuminated

conditions are indicated by the solid line and the dashed line, respectively, in the

Fig. 10-2. For a fixed applied bias voltage, more carriers are depleted from the

quantum wells near the emitter (to make the transmission larger through the barrier
closest to the emitter) under illuminated conditions (where the emitter supplies both
the photocurrent and leakage current) than under dark conditions (where the emitter

supplies only the leakage current).

This depletion of the quantum wells near the emitter contact is undesirable, particu-

larly if the depletion is already large under dark conditions. Under these conditions,

the photoconductive gain is small, especially at small voltages. A larger voltage will

increase the photoconductive gain, but it will also increase the leakage current. We

believe that this is reason why the optimal QWIP design for the 8-12 micron wave-

length of operation is usually found experimentally [7] to be one with 500 A barriers.

Use of a larger QWIP barrier increases the depletion of the quantum wells near the

emitter barrier, and thus requires higher operating voltages to get an adequate pho-

toconductive gain. At these higher operating voltages, the leakage currents are higher

than in the optimal QWIP design.

10.3.2 Description of Physical Model

The purpose of this chapter is to develop a numerically accurate physical model

which explains the electric field inhomogeneity that exists in a QWIP through which

current is flowing. Solution of the equations describing this physical model is not

computationally intensive, and can be done on a simple calculator.

In the device model developed in this work, it is found that the inhomogeneous field

distribution in a QWIP is determined by Poisson's equation, current continuity, and

the rate equations for the concentration of bound and free carriers in a QWIP. The
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physical model developed in this work is very similar to Ershov's rate equation model.

However, in the physical model developed in this work, a distinction is made between

two types of tunneling currents: the tunneling between ground states in adjacent

quantum wells, as well as tunneling from a ground state into an upper (continuum)

state.

We start with Poisson's equation in Equation (10.22). We write the continuity equa-

tion for the flow of carriers into the bound state as,

1N2 D(i) 1
-t--= [n3D(i - .)vQw - N2D(i) (Gopt(i) + Gtfa(i) + Gth(i))] - -L(i)V J,tunn,

(10.32)

and the continuity equation for the flow of carriers into the upper state (in the con-

tinuum) as,

tn3D,i Lp,i = [-n3D(i - 1)VQw(i) + N2D,i (Gopt(i) + Gtfa(i) + Gth(i))] - -LpiV JD,
19t q

(10.33)

where the index i denotes the quantum well number, as measured by its distance

from the emitter contact, where Jltunn, Gopt (i), Gtfa (i), Gth (i) are, respectively, the

tunneling current from the ground state in one quantum well to the ground state in

an adjacent well, the optical excitation rate, the net thermionic field assisted tun-

neling rate in the forward direction, and the thermal excitation rate (resulting from

scattering from phonons and other electrons). (These G coefficients in our model are

different from Ershov's G coefficients in Equation (10.27), as the latter are carrier

excitation fluxes and not excitation rates.)

In Equations (10.32) and (10.33), the current flowing above the barrier band edge is,

J3D = q n3DVd- (10.34)

In our notation, detailed balance requires that the coefficients in Equations (10.32)

and (10.33) satisfy,

Gth n3D,eq(EF,W,eq - VB - qFLw)
VQW N2D,eq

N2D,e k 2 exp([EFW, eq - VB + qFLw]/kBT), (10.35)l2Dmek T )3/ 2
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where N2D is given in Equation (10.30) and n3D,eq(EF,W, eq - - qFLw) is Equa-
tion (10.31) evaluated with a potential barrier which is not VB, but is VB - qFLw.

The tunneling current Jltunn in Equations (10.32) from the ground state in one quan-

tum well to the ground state in an adjacent well can be taken to be either of,

qmwTk(T VBEFLP F) ln +e ( k (-T) dE
nn(, qmwkBTf - F[ l+exp (k-]27rh ,,~I - - cxpk r -

(scattering as in 3D reservoir)

Jltunn(F) = W VB-qFL vT(EF)dE
(scattering as in 2D reservoir),

(scattering as in 2D reservoir),

1

1 + exp (E kET F)

(10.36)

1

1 + exp ( E+FLP,-E

(10.37)

where we have given two commonly used forms for the tunneling current: one assumes

that scattering is sufficient to model the 2D (quantum well) electron reservoir appear

like a 3D reservoir, and the other assumes that quantum well electrons do indeed

look like a 2D electron reservoir. (See the discussion following Equations (10.18) and

(10.19).) Similarly, the thermionic field assisted tunneling from the ground state into

the continuum can be taken to be either of

mwkBT rvB
N2DGtfa 27r2h3 -qFLJ v -FL

1 + exp T T(E, F) In 7 p( kBT dE
(exp EFqFLpdE

(scattering as in 3D reservoir)

N2DGtfa = w
; VB-qFLp

vT(E, F)dE [ 1

1 + exp (E-EF)

(scattering as in 2D reservoir).

(10.38)

1

1 + exp ( E+qFLp-EF)

(10.39)

Equations (10.37) and (10.39) differ from the contribution Jlwell made by each quan-

tum well to the total current, given in Equations (10.18) and (10.19), in the limits

of the energy integral: whereas the energy integrals in Equations (10.18) and (10.19)

extend from E1 to oo, the energy integral in Equation (10.37) extends from E1 to

VB - qFLp, and the energy integral in Equation (10.39) extends from VB - qFLp to
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VB. This distinction between the two types of tunneling currents, the net forward

tunneling current Jltunn between ground states in adjacent quantum wells, as well as

the tunneling current N2DGta from a ground state into an upper (continuum) state,

is of particular importance in Equations (10.32) and (10.33), in the correct expression

of continuity of the flux of carriers into each of the two subband states (the bound

quantum well state, and the upper continuum state).

In the steady state, all the time derivatives in Equations (10.32) and (10.33) are

zero. If we assume that the electric fields are uniform within any single barrier

and are denoted by Fi for barrier i, then in the steady state, Poisson's equation

(Equation (10.22)) becomes,

Fi- Fi- 1 = q [N(i) - N2D(i) - n3(i- 1)Lp(i - 1)]. (10.40)

In the steady state, the current continuity equation for the carrier flow into the upper

state (the continuum) becomes,

[-n3D(i - 1)vQw(i) + N2 l)(i)(Gopt(i) + Gtfa(i) + Gth(i))]
I

+ -[J3D(i - 1) - J3D(i)] = 0. (10.41)
q

In the steady state, the current continuity equation for the carrier flow into the lower

(quantum well bound) state becomes,

[n3D(i - 1)VQW(i) - N2D(i)(Gopt(i) + Gtfa(i) + Gth(i))]
1

+ -[Jltunn(i - 1) - Jltunn(i)] = 0 (10.42)
q

The sum of Equation (10.41) and Equation (10.42) shows that in the steady state,

the total current density JTOT,

JTOT = J3D(i) + Jl,tunn(i), (10.43)

is uniform throughout the device. This is as it should be because in the steady state,

continuity of the total current requires that V- JTOT =- = 0.
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Total Current Dominated by either J3D or Jl,tunn

A key assumption which is very realistic is now made. If we have,

IV. J3DI < IV. Jtunn 

or

IV. J3DI > IV. Jtunnl, (10.44)

then we have from either Equation (10.41) or (10.42),

n3D(i - 1)VQW = N2D() (G0 t(i) + Gtfa(i) + Gth(i))

N--N2D(i)Gup(i), (10.45)

where we have defined the term in parentheses on the right hand side of Equa-

tion (10.45) as Gp(i), the total upward transition rate. Equations (10.44) and (10.45)

show that if either Jl,t,,,nn or J3D is divergence-free, then in the steady state, the flux

of carriers which are captured from the continuum into the quantum wells is balanced

by the flux of carriers which are excited out of the quantum wells into the continuum.

One situation in which the assumption in Equation (10.44) is valid occurs when

IJ3DI << Jltunni,

or

IJ3DI > I tunn|, (10.46)

which is the case when the current through the entire QWIP is either dominated by

the tunneling current through the barriers or dominated by the current flowing above

the barrier band edge (which is either the photocurrent or the thermionic leakage).

Thus, the assumption in Equation (10.44) is often valid.

As noted earlier, the explicit appearance in the divergence term in Equation (10.24)

of the current density J3D of the carriers in the continuum, together with the explicit
absence of a similar divergence term for the tunneling current Jltunn from the bound

state of one quantum well to an adjacent well in Equation (10.23), indicates that

Ershov's model implicitly assumes that the total current through the QWIP comes

mainly from J3D and not from the tunneling current through the bound states in the

quantum wells.
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Total Current Dominated by J3D

If the total current is dominated by J3D, which is the current flowing above the barrier

band edge (either photocurrent or thermionic leakage), then

JTOT J3D

= q n3D(i)Vd(i)

q N2D(i)Gup(i) d( i ) (10.47)
VQW

where we have used Equation (10.45) in arriving at the last line above. Equa-

tion (10.47) as well as Poisson's Equation (Equation (10.40)), and the steady state
flux in Equation (10.45) easily yield,

N2D(i) = 1 + - (F- F_l), (10.48)
vQw(i)

n3D(i) = ND(i) (i)

V QW(i(i)(i) 1 [N (Fi -F_l) (10.49)
VQW() + GPi) Lp(i- 1) q (10-50)

VQw(i) 1 + G(i) L (i-1) N- q

Equation (10.49) shows that the quasi-Fermi level for the n3D electrons flowing in

the continuum above the barrier band edge is different from the quasi-Fermi level for

the N2D bound carriers within the quantum wells. The reason is that out of all the
physical (radiative, tunneling, collisional and phonon) processes which contribute to

the total excitation rate, G,p(i) = Gopt(i) + Gtfa(i) + Gth(i), out of a quantum well,
the radiative and tunneling processes which contribute to Gpt(i) + Gtfa(i) are NOT
inverse, in the detailed balance sense, to the processes which contribute to vQw(i).

Relation to Levine and Rosencher Photocurrents To compare the photocur-
rent calculated in this rate equation model with the photocurrent calculated in either

the Levine or the Rosencher models, we set G,,p Gopt in Equation (10.47), which is
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appropriate when the photocurrent is a lot larger than the leakage current. In this

case, Equation (10.47) becomes the photocurrent density Jp,

JTOT X JP

= q N 2D (i)Gpt(i) Vd(i) (10.51)
VQw

Making the observation that carriers are photoexcited at the rate of Q47l in Equa-

tions (10.1) and (10.3), and at the rate of N2D(i)Gopt(i) in Equation (10.51), then we

conclude that Equations (10.3) and Equation (10.51) are consistent when we identify

the photoconductive gain with,

1 vdl =1 - = - , (10.52)
Pc vQw

as was noted by Rosencher et al. [119].

The point is that gl in Levine's model is related to the capture velocity vQw in

Rosencher's model through the Equation (10.52).

Relation to Levine and Rosencher Leakage Currents If the leakage current

is dominated by thermionic field assisted tunneling through the top (the triangular)

part of the barrier, then Gup . Gtfa in the rate equation model of Equation (10.47),

and thus,

J3D = q N2D(i) Gt(i) d(i)
vQW VQW(~) [1mw~~~~~ +PVB~ v F( ~L(0.53) EF+FLBE

(10.53)

where we have used Equation (10.39) for N2DGtfa, and we use Rosencher's value for

the impinging frequency v (the Oppenheimer-Bohr frequency in Equation (10.20)).

A comparison of Equation (10.51) for the photocurrent and Equation (10.53) for

the thermionic field assisted tunneling current shows that both are proportional to

vd/VQw, and this merely says that all the n3D carriers flowing in the continuum see
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the same functional form for the gain, Vd/VQw, regardless of the previous history

(thermionic field assisted tunneling or photoexcitation past) of the carrier in the

continuum.

The thermionic field assisted tunneling leakage of Equation (10.53) in the rate equa-

tion model can be obtained from Equations (10.12) and (10.10) in Levine's model

(for VB - qFLp < E < VB) by replacing a in Levine's model with vd V. The origin

of this difference is in Rosencher's use of Equation (10.20) for the frequency at which

carriers impinge on the barrier. Levine's group [7] does obtain a good fit of modeled to

measured leakage currents with the use of reasonable fitting parame ers, even though

Rosencher's [115] method of using the Oppenheimer-Bohr impinging frequency may

seem correct from first principles.

Carrier Injection and Quantum WVell Carrier Depletion when the Total
Current is Dominated by J3D

The field distribution within the QWIP is found by iteratively solving Equation (10.50)

for Fi in terms of Fi_l, the fields across the barriers closer to the emitter,

JTOTVQW(i) _ 1 N+ (F F )
qGup(i) I +Gp(i)iFi 1+ Lp(i- 1) L -

VQW(i) P

for iFi < Vsat

JTOTVQW(i) _1 [N - (F -F1)
q Gup(i)Vsat 1 + G )p(i) L (i - 1) q

for uLiFi > vsat. (10.54)

(In Equation (10.54), it is almost always true that Gup(i)Lp(i - 1) < vQw(i). For
room temperature black body radiation incident on a (40 pm)2 QWIP pixel, Gopt=314/sec.

Typical [7] designs have Lp=550 A and typical models [7, 115, 112] use vQw=10 5 cm/s.)

The physical model developed here yields analytical expressions, as in Equation (10.54),

for the number of, and the distance over which, carriers are depleted from quantum

wells whenever the photocurrent is larger than the leakage current. For designs hav-

ing the same periodic structure (the same quantum well and barrier compositions and
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layer widths) throughout the QWIP, the carriers in the quantum wells can be shown

to deplete abruptly whenever the photocarrier drift velocity is large (the lower con-

dition in Equation (10.54)), and to deplete linearly whenever the photocarrier drift

velocity is linear in the electric field (the upper condition in Equation (10.54)).

All that is needed now is to find F1 , the field across the barrier closest to the emitter

contact. This is found from the boundary condition,

Jinj(F1) = JTOT', (10.55)

that enough carriers will deplete from the quantum wells closest to the emitter contact

and enough carriers will accumulate in the emitter contact so that the field F1, which

is needed to supply the current (JTOT) from the emitter, drops across the barrier next

to the emitter.

To find the field F1, one needs an expression for the injected current density Jinj(F 1).

Both Levine's [117] group and Rosencher's [116] group write an equation very similar

to Equation (10.18) (with E1 replaced by the conduction band edge E,, in the emitter,

and with EF replaced by the Fermi level EF,em in the emitter contact) for Jij(F 1),

Ji (F ) = qmmk, T T(E, F1) In 1 +. ( -FemkB\ dE. (10.56)
2r2L3 Em1 + exp EF,, +QF1LB-E

When current is injected from the emitter contact predominantly by thermionic emis-

sion over the top of the barrier next to the emitter contact, then [124] Equation (10.56)
can be approximated as,

Jinj(Fl) -Jthermionic

qmem(kBT)2 [ (VB,em - EF,em [ exp (Wem -1 (10.57)~h exp LkBT ) [exp BT) - , (10.57)27r2h kB T )]
where mem is the effective mass in the emitter material, where VB,em is the band edge

(relative to the emitter band edge) of the barrier next to the emitter, where Wem,

Wem = EF,em - EF,em,O, (10.58)
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is the rise in the Fermi level EF,em in the emitter contact with respect to its value

EF,em,O in equilibrium (in the absence of any net current flowing through the device).

Wem is approximately

Wem F1 9( 
2 g(EF,em)'

1
_ qF 1 Ln
2

o EF,em (10.59)

where we have assumed abrupt accumulation of carriers in the emitter contact over

the distance L,, where F1 is the field across the barrier next to the emitter, and where

g(EF,em) is the density of states at the Fermi level in the emitter contact. It is easy

to show that Wem varies very slowly with respect to the emitter contact Fermi level.

It is easy to show from Equation (10.56) that the injection current resulting from

thermionic field assisted tunneling through the triangular part of the barrier is ap-
proximately,

Jini(Fl) ) Jtfa

= Jtfa,OT(EF,em, F1 )

4qEFem m2M) [AEF,em + kBT] [1-exp(-qF 1Lp(1))] T(EF,em, F1 )

for VB,em - qF1 LB < EF,em, (10.60)

where T(EF,em, F1) is the transmission coefficient in Equation (10.14) evaluated at the

Fermi level in the emitter contact, where the terms AEF,em and kBT in the first square

brackets in Equation (10.60) come from energies in the integral in Equation (10.56)

which are respectively less than and greater than EF,em, and where AEF,em refers to

an energy width centered right below EF,em within which the transmission coefficient

in Equation (10.14) is sizeable and AEF, em satisfies,

T(EF,em- AEF,em F) = T(EFem7 )

AEFem = n 2 qF1 m [V EFem]/2 (1061)
EFem n 2qFl] [ 21em] [VB - EFem]/ (10.61)
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It is easy to show that thermionic emission (rather than thermionic field assisted

tunneling) dominates the injection current from the emitter when

Jthermionic > Jtfa when kBT > AEF,em. (10.62)

Numerically, when F1 = 4 x 104 V/cm, VB= 2 2 4 meV, and EF,em=75 meV, the injec-

tion current is dominated by thermionic emission over the barrier near the emitter

(Jthermionic > Jtfa) when T>70K.

It should be easy to see from Fig. 10-2 that the depletion of carriers from the quantunm

wells near the emitter contact is large when the photocurrent is much larger than the

leakage current. The reason is that when the photocurrent is much larger than the

leakage current, much more current must be pulled from the emitter contact through

the first barrier under illuminated conditions than under dark conditions at a fixed

bias. This latter situation requires that the electric field across the barriers near the

emitter is larger under illuminated than under dark conditions, and thus more carriers

must deplete from the quantum wells near the emitter under illuminated than under

dark conditions. This carrier depletion from the quantum wells near the emitter

barrier may cause the applied bias to drop only across the barriers near the emitter

(for small values of the applied bias).

At a large enough applied bias voltage, there is enough field across the barriers near

the emitter contact in order for the emitter to inject enough current through these

barriers to supply a significant photocurrent through the QWIP. At these values of

the applied bias, a larger fraction of the applied bias drops over the main body of the

QWIP, than at smaller values of the applied bias.

To get an idea of how large the electric field must be across the barrier next to the

emitter contact in order for the emitter contact to supply a significant photocurrent,

consider a QWIP at T=40K. At these temperatures, the photocurrent to leakage

current ratio can easily be 30 (see Fig. 8-7 in Chapter 8). At these temperatures,

current injection is by thermionic field assisted tunneling, Equation (10.60), through

the barrier next to the emitter contact. To find the value of the field F1 across

the barrier next to the emitter which is needed to supply a small photocurrent of

Jsmail photocurrent = q N2DGopt 0° ° l v t (and a drift velocity within the body of the QWIPvQw
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which is O.Olvat), we require that the current injected from the emitter contact match

this required photocurrent,

Jinj (Fl) Jsmall photocurrent

Jtfa,OT(EF,em, F1) q NGopt (10.63)
vQw

where we have used Equations (10.47) and (10.60) above for, respectively, the pho-

tocurrent flowing the QWIP and the injected current from the emitter contact.

To evaluate F1 from Equation (10.63), we observe that most of F the dependence in

Equation (10.63) comes from the transmission coefficient T(EF,em, F1), so that if we

write Equation (10.63) as,

[VB - EF,em]3/ 2 3 h2 1/2 _ _(1064)

Wem 2 r B in tfaO (10.64)W".em 2 2mBL2n Jsmall photocurrent

then most of the F1 dependence comes from the left hand side of the above equa-

tion. In Equation (10.64), W is the rise in the emitter Fermi level (relative to its

value in equilibrium, as given in Equation (10.58)) as a result of a finite current flow

through the QWIP, where Ln = / ) -,C E1/4 is the distance over carriers are
accumulated in the emitter contact, and where Jtf, was defined in Equation (10.60).

For a typical [7] n-QWIP having a responsivity peak at 8 um, a spectral FWHM

of 1 m, VB=2 24 meV, EF,e, 0o=90 meV for a doping of 2x1018 cm-3 in the emit-

ter contact, ln=70 A, LB=500 A, Lw=50 A, a detector size of ADET=(40[tm)2, a
transmission coefficient of 0.75 for the GaAs to air interface, a single quantum well

quantum efficiency of 7=0. 3 5%, so that an incident, room temperature, black body

flux of Bs= 4 x 1016/s-cm 2-ster filling a solid angle of Q=0.1965 ster yields an optical

excitation rate of

N2DGoptADET - Rhl1QBADET = 4.4 x 108/s, (10.65)

and Gpt=27.5/sec. For these numbers, Equation (10.64) can be solved on a calculator

to yield Wem = q FL,=12.6 meV, and

F1 = 3.6 x 104 V/cm eBF--F = 2.5 x 1011 cm-2, (10.66)
q
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for, respectively, the internal field across the barrier next to the emitter, and for

the excess charge drawn into the emitter contact to supply the current through the

QWIP.

This value of the internal electric field (about F1 = 3.6 x 104 V/cm) within a QWIP,

which results from carrier depletion from the quantum wells, is in numerical agreement

with that calculated in the numerical models of Ershov et al. [112, 113, 114] and

Thibaudeau et al. [115].

The space charge resulting from depletion of the quantum wells near the emitter

contact has been observed [116, 125] photocapacitance measurements and in leakage

current measurements.

10.3.3 Physical Model of Quantum Well Depletion and Ac-
cumulation with a QWIP Current of J3D

To calculate the potential distribution within a QWIP resulting from the depletion
of the quantum wells near the emitter contact for any given QWIP current J3D,

we consider the case of a QWIP with a large number Nw of quantum wells. (The

generalization to a smaller number Nw of quantum wells will be obvious.)

The electric field near the collector contact (i.e., Fi for large i) is determined by the

excitation rate within the main body of the QWIP (for a given value of J3D),

J3 D = qND+G Vd(Fargei) (10.67)
VQw

The electric field near the emitter contact (i.e., F1 ) is determined by injection past

the barrier next to the emitter (for a given value of J3D),

Jinj(Fl) = J3 D, (10.68)

where Jinj(Fl) is given by Equation (10.56) or one of the approximations, Equa-

tion (10.57) or Equation (10.60). The charge within the body of the QWIP (between
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the emitter and the collector) contacts is clearly,

charge within body of QWIP = (F1 - Flarge i). (10.69)
q

The distribution of this charge through the QWIP can be found from Equation (10.54),

B (Fi - Fi-1) = N+ - JTOTQW(i)

for iFi < sat

1 = + - JTOTVrQw(i)
q qG,,p(i)vsat

for iFi > vsat. (10.70)

Equations (10.67) and (10.70) show that for large i (near the collector and Nw large),

the quantum wells are not depleted at all. (The right hand side of Equation (10.70)

is much smaller than N+.) Equation (10.70) also shows that for an excitation rate

Gup which is large compared to the injected current JTOT, the quantum wells near

the emitter (i small) are almost completely depleted. (The right hand side of Equa-

tion (10.70)) is almost exactly N+.)

For designs having the same periodic structure (the same quantum well and barrier

compositions and layer widths) throughout the QWIP, the carriers in the quantum

wells can be shown to deplete abruptly whenever the photoexcited carrier drift velocity

is large (the lower equation in Equation (10.70)), and to deplete linearly whenever

the photocarrier drift velocity is linear in the electric field (the upper equation in

Equation (10.70)). This can be shown by solving Equation (10.70) for Fi iteratively

in terms of the field Fi_l in the adjacent barrier.

We now consider a n-QWIP having the same quantum well and barrier width through-

out the layer structure and having a responsivity peak at 8 pm, a spectral FWHM

of 1 um, VB=2 2 4 meV, EF,em,o=71 meV for a doping of 2x1018 cm-3 in the emitter

contact, Ln=70 A, LB=500 A, Lw=50 A, a detector size of ADET=(40pum)2, a single

quantum well quantum efficiency of qr1=0.35%, so that an incident, room tempera-

ture, black body flux of B=4 x1016/s-cm 2-ster produces an optical excitation rate

of Gopt=27.5/sec for each of the N2D quantum well carriers. Each quantum well is

238



assumed to be doped at 5x1011cm-2 , and the barrier is assumed to have a mobil-

ity and saturated drift velocity consistent with the literature [7]: yu=1000 cm2 /V-s

and v,,at=5x106 cm/s. We also assume a quantum well capture velocity of [119]

vQw=1X105 cm/s. This VQw is assumed to be independent of field because the mea-

sured photoconductive gain, gl = vd/vQw, is found to be independent of field when

Vd = vst, as would be expected from a field-independent vQw.

The numerical solution of Equation (10.70) is presented in Figures 10-3, 10-4, 10-5,

10-6, 10-7, 10-8.

Very small applied bias regime. The modeled photocurrent is negligibly small

when the bias voltage is less than qFLp. F1 is given approximately by Equa-

tion (10.63), and is the minimum electric field which must drop over the emitter

barrier before any appreciable photocurrent can be injected from the emitter contact

through this emitter barrier.

At these very small bias voltages, the bias voltage drops only over the barrier next to

the emitter. This is shown in Figure 10-3. The electric field lines all originate from

the quantum well closest to the emitter, and terminate on the emitter contact. The

quantum well closest to the emitter is depleted, and has a net charge of

N+ -N2D(1) = -F 1 . (10.71)
q

At these very small bias voltages, the QWIP behaves like a capacitor having the

capacitance associated with just one potential barrier, EBADET/LB(1).

If a very large field F is required to inject carriers from the emitter, which might

occur for a QWIP with a layer structure different from the one we are now considering,

then several of the quantum wells near the emitter contact may be depleted. The

amount of depleted charge can be found from Equation (10.70). Several quantum

wells near the emitter will deplete abruptly if F1 is large (the lower equation in

Equation (10.70)), and they will deplete linearly for smaller values of F1 (the upper

equation in Equation (10.70)).
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Band Edges, Fermi Levels, and Bound Energies
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Figure 10-3: The modeled potential distribution, Fermi levels, and bound state en-

ergies within an n-QWJP having ten quantum wells. The modeled photocurrent is

negligibly small when the bias voltage is less than qFiLp, where F1 is given approxi-

mately by Eqaation (10.63). In the bias regime, the applied bias drops only over he

barrier next to the emitter. At these very small bias voltages, the QWIP behaves

like a capacitor having the capacitance associated with just one potential barrier,

EBADET/LB(1).
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Band Edges, Fermi Levels, and Bound Energies
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Figure 10-4: The modeled potential distribution, Fermi levels, and bound

state energies within an n-QWIP having ten quantum wells. For voltages

qF1Lp < V < qLp(NFsat + F1 ) where Fsat = Vsat/L, some of the applied bias drops

over the main body of the QWIP, and the photocurrent rises linearly with the ap-

plied bias. The photocarrier drift velocity is linear in the electric field in this applied

bias regime.
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Band Edges, Fermi Levels, and Bound Energies
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Figure 10-5: The modeled potential distribution, Fermi levels, and bound

state energies within an n-QWIP having ten quantum wells. For voltages

qLp(NWFsat + F1 ) < V < qLp(Nw + 1)F1, the quantum wells have a net charge of
ND+ - JTTVQW in each of the quantum wells in the partially depleted region. Theq Gupvsat

quantum wells in the partially depleted region are uniformly (and abruptly) depleted,

with a field-independent (see Equations (10.78) and (10.79)) total charge in the en-

tire partially depleted region. In this figure, the partially depleted region extends

over the three quantum wells closest to the emitter. In this bias regime, the photo-

carriers travel at the saturated drift velocity, and the slow rise of the photocurrent

with voltage comes from extra injected carriers through a more transmissive emitter

barrier.
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Band Edges, Fermi Levels, and Bound Energies
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Figure 10-6: The modeled potential distribution, Fermi levels, and bound

state energies within an n-QWIP having ten quantum wells. For voltages

qLp(NwFsat + F1) < V < qLp(Nw + 1)F1, the quantum wells have a net charge of

ND - JToTQW in each of the quantum wells in the partially depleted region. The
q GupVsat

quantum wells in the partially depleted region are uniformly (and abruptly) depleted,

with a field-independent (see Equations (10.78) and (10.79)) total charge in the en-

tire partially depleted region. In this figure, the partially depleted region extends

over the seven quantum wells closest to the emitter. In this bias regime, the photo-

carriers travel at the saturated drift velocity, and the slow rise of the photocurrent

with voltage comes from extra injected carriers through a more transmissive emitter

barrier.
243

m



Band Edges, Fermi Levels, and Bound Energies
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Figure 10-7: The modeled potential distribution, Fermi levels, and bound state en-

ergies within an n-QWIP having ten quantum wells. At a large enough bias, there is

enough carrier injection to make the QWIP electrically neutral in the entire region

between the contacts. This occurs at an applied bias of NF1 Lp, where F1 is given

approximately by Equation (10.63). The current flowing through the device is exactly

JTOT = q N G p '' .VQW
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Band Edges, Fermi Levels, and Bound Energies
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Figure 10-8: The modeled potential distribution, Fermi levels, and bound state en-

ergies within an n-QWIP having ten quantum wells. At very large biases, there is

enough carrier injection to make the quantum wells slightly accumulated. At these

biases, the carrier drift velocity is v,,st and is a constant throughout the QWIP struc-

ture. The free carrier concentration, n3D, (and thus the quantum well population,

N2D, and the accumulated charge density, ND -N2D) is thus uniform throughout the

QWIP layer structure.
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Small drift velocity regime. For slightly larger bias voltages, the field F1 across

the barrier next to the emitter does not need to change much in order to inject the

necessary photocurrent, and thus some of the applied bias drops over the main body

of the QWIP. This is shown in Figure 10-4. In this bias regime, the photocurrent

rises linearly with the applied bias according to,

JTOT -- qND+GUI VJTOT = qU (V - F1) (10.72)VQW LTOT

where LTOT = NwLp + LB is length of the entire multiple QWIP quantum well struc-

ture. For these relatively small applied biases, the photocarrier drift velocity is linear

in the electric field v - F1 across the main body of the QWIP,

Vd IL( - F1). (10.73)

This bias regime is valid when all the photocarriers have drift velocities smaller than

the saturated drift velocity v,,t, and this corresponds to applied bias voltages satis-

fying,

qF1 Lp < V < qLp(NwFsat + F1) (10.74)

where

Fsat = Vat (10.75)

For the numbers given above, Fsat evaluates to 5x103 , which is much smaller than the

typical F1 (see Equation (10.66)) which is needed to inject a sizeable photocurrent.

Saturated drift velocity regime - depleted quantum wells. When the applied
bias voltage is increased into the regime,

qLp(NwFsat + Fi) < V < qLp(Nw + 1)F1, (10.76)

all the photoexcited carriers drift at the velocity Vsat. When the total current through

the QWIP is a little lower than the expected value of q N+GUP ,p 

JTOT < q NDGup V,at (10.77)
vQW
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the quantum wells near the emitter contact are still depleted. However, it is easy to

show from Equation (10.70)) that many of the quantum wells near the emitter are

depleted and that the total amount of depleted charge remains fixed. This is shown

in Figures 10-5 and 10-6.

Mathematically, if the first Nd'pl quantum wells near the emitter are uniformly (and

partially) depleted, then the net charge in each quantum well is,

q [ND+ - JTOTVQW], for 1< i < Ndepl
q[ND - N2D] = Gupvsat - - W (10.78)

for Ndepl < i < Nw.

In Equation (10.81) below, we will use Equation (10.70)) to related the number, N l,

of partially depleted quantum wells to the applied bias voltage.

Equation (10.70)) can be used to show that the total charge, q[N+ - N2 D]NPI in

the partially depleted region is,

q[ND - N2D I = -EB 1-Fsat O ND+ QW Gupat

-B(F1 - Fsat). (10.79)

Since Fst and F1 change very little with the applied bias, the total charge in the

depleted region remains fixed in this operating regime. (Physically, F1 changes very

little with the applied bias in this operating regime where the photocurrent is roughly

linear in the applied bias, because a linear change in F would result in an exponential

change in the injected current. Physically, Flarge i t Fsat and changes very little with

the applied bias in the operating regime defined by Equation (10.76), because current

continuity requires that N2D(large i)vd(large i) - ND+pFat. For thick LB, it also

turns out that F1 > Fsat.) Thus, the total charge in the partially depleted region

changes very little with applied bias, even though the number of partially depleted

quantum wells increases with increasing applied bias (in this operating regime).

Poisson's equation can be used to find the electric field (negative for electrons traveling

towards the cathode in the figures above) within the QWIP,

FF = q- [N JTOTVQW] (i-1), for 1< i < Nde (10.80)
F t (= JTOTVQW for Ndep < i < Nw.
! t qN+GupVsat 
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The electric potential throughout the QWIP multiple quantum well structure is then

found to increase with distance from the emitter according to,

+ F1 + -JTOVQW] (- ) iLfor 1< i < N Pl

+B [ND qGupVsat 2 ) N (10.81)V= (1+ 81 _ JTOTVQW ) Nde'-1 .
CB D q Gupvsat J 2

+Ft ((qN+GupVsat - 1 ) for Nd'P < i < Nw,

where

N2D- JTOTVQW < N+ (10.82)
q GupVsat D

Equation (10.81) shows that the electric potential rises parabolically with distance

from the emitter in the partially depleted region, and rises linearly with distance

in the electrically neutral regions closer to the collector contact. Equation (10.81)

also shows that the current rises linearly and slowly with voltage, in this operating

regime where the QWIP is slightly depleted and the carriers drift at the saturated

drift velocity.

Saturated drift velocity regime - accumulated quantum wells. At a large

enough bias, there is enough carrier injection to make the QWIP electrically neutral

in the entire region between the contacts, as shown in Figure 10-7. This occurs at an

applied bias of NF1 Lp, where F1 is given approximately by Equation (10.63). The

current flowing through the device is then exactly JTOT = q NDGUP Pa.t

At very large biases, the carrier drift velocity is always vsat, and not larger than Vsat.

Thus, the increase in the carrier injection with increased bias manifests itself as an

accumulation of charge within the QWIP. This is shown in Figure 10-8. At these

biases, the carrier drift velocity is a constant (Vsat) throughout the QWIP structure.

The free carrier concentration, n3D, (and thus the quantum well population, N2D, and

the accumulated charge density, N+ - N2D) is thus uniform throughout the QWIP

layer structure.

Negative charges accumulate in the quantum well regions when the injected current
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is large enough to satisfy,

JTOT > qNDGup Vt (10.83)
VQw

for which the accumulated charge in each quantum well is,

q[N - N 2D] = q JTOTVQ] (10.84)

and is uniform (the same for all quantum well periods) throughout the QWIP layer

structure. The field across the i-th period of the QWIP multiple quantum well struc-

ture (<i<Nw+l) thus increases linearly with distance from the emitter according

to,

Fi = F1 + [N JTOTVQW] (i 1), (10.85)

where F1 is negative. The electric potential at the i-th period of the QWIP multiple

quantum well structure thus increases parabolically with distance from the emitter

according to,

V = FiiTOT + E JTOTVQW1 L Nw(Nw + 1) (10.86)
eB LD qGuzpVsat J 2 

Equation (10.86) also shows that the current rises linearly and slowly with voltage, in

this operating regime where the QWIP is slightly accumulated and the carriers drift

at the saturated drift velocity.

In making the measurements shown in Fig. 8-7 of Chapter 8, the signal-to-noise ratio

was observed to be largest when the photocurrent measurement was made at an

applied bias which corresponds to a slight accumulation of carriers within the QWIP,

as shown in Figure 10-8.

Figure 10-9 shows the modeled QWIP photocurrent as a function of the applied

bias voltage obtained from solving Equation (10.70). The modeled photocurrent

is seen to be negligibly small when the voltage drop over the emitter barrier is

too small (voltages less than qF1Lp, which is 0.2 volts in Fig. 10-9). For voltages

qF1Lp < V < Nq(v,at/,,)Lp (of which the latter corresponds to about 0.5 volts in

Fig. 10-9), some of the applied bias drops over the main body of the QWIP, and the
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photocurrent rises linearly with the applied bias. The photocarrier drift velocity is

linear in the electric field in this applied bias regime. For voltages V > Nq(vsat/uP)Lp,

the quantum wells have a net charge of N+ - JOTVQ in each of the quantum wells

in the abruptly depleted (or accumulated) region. In this bias regime, the photo-

carriers travel at the saturated drift velocity, and the slow rise of the photocurrent

with voltage comes from extra injected carriers through a more transmissive emitter

barrier.

The curve in Fig. 10-9 has a shape very similar to the measured photocurrent current-

voltage characteristic shown in Fig. 8-7 in Chapter 8. However, the details of the

photocurrent curves in the two figures are not exactly the same. At low voltages, the

measured curve in Fig. 8-7 rises more slowly (exponentially) than the modeled curve

in Fig. 10-9 (which rises linearly). This is a result of the finite escape probability

Pe which can be small, and is not included in our physical model. We chose not to

model the escape probability because the escape probability appears to depend on

the specific QWIP layer structure: if the optical transition is chosen with its upper

state deep into the continuum of energies above the barrier band edge, then the

observed Pe is [7] measured to be larger than that for optical transitions involving

bound-to-bound or bound-to-quasi-continuum transitions. At larger applied biases,

the measured curve rises a little more quickly than the modeled curve (though still

linearly). We believe this to come from thermionic field assisted tunneling of the

bound carriers from the quantum wells, which is not included in this physical model.

10.3.4 Thermionic Leakage Current Modeling

The leakage current is most often modeled by Equations (10.10) and (10.12), as was

given by Levine [7]. A key point is that it is the total energy E which appears in the

transmission coefficient T(E, F) inside the integral in Equation (10.12) because it is

believed [7] that in a real system, electron scattering is sufficient to cause the electron

wave function to decay in the barriers according to the total energy E instead of the

bound state energy El. This dependence of the transmission coefficient T(E, F) on

the total energy E rather than on the bound state energy E1 makes the computation
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Model QWIP Photocurrent as a Function of Voltage
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Figure 10-9: The modeled QWIP photocurrent as a function of the applied bias

voltage obtained from solving Equation (10.70).
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of the integral in Equation (10.12) laborious. Thus, it is not expected that at any

arbitrary applied bias, the thermionic leakage current will have the simple form given

in Equation (10.16) by Levine for a small applied bias. In fact, Levinc's L ] calculations

show that at intermediate values of the applied bias, there is a very large contribution

to the thermionic leakage coming from the tunneling of carriers through the top part
(the triangular part) of the barriers.

In Fig. 8-3 of Chapter 8, we have plotted an Arrhenius plot of the logarithm of the

measured leakage current as a function of the inverse temperature. In Chapters 8 and

9, we used these Arrhenius plots to fit the measured thermionic leakage currents to

the form [92, 93, 94],

J = qNcvdexp ( AE T - F)[exp (qFLT ) (10.87)

= qNcvd exp (-qB [1 - exp q (10.88)

where q is the electron charge, Nc is the density of states in the barrier, Vd is the drift

velocity, AE is the band offset between the quantum well and barrier conduction

band edges, T is the QWIP operating temperature, F is the average field in the

structure, Lw is the well width, and BI) is the activation energy measured at large

voltages (V > kBT),

IB) = (AEc - EF) - qVLW/LTOT, (10.89)

where LTOT is the length of the entire QWIP structure. Equation (10.88) actually

has the same simple form as Equation (10.16) (apart from the exp (I) term, which

is the reverse current flowing towards the QWIP cathode, within the square brackets

of Equation (10.88)). Both Equations (10.88) and (10.16) show that the leakage

activation energy is a measure of the position of the Fermi level in the quantum wells:

for a voltage drop of VLW/LTOT across each well, the Fermi level is closer to the

barrier band edge by the amount qVLW/LTOT.

Table 10.2 shows the measured and theoretical values of Id4B/dVI for a variety of

QWIPs, taken from both this work and the literature. The measured thermionic

leakage is found to be close to the model given above, in which the activation energy is
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Well/Barrier

GaAs/

Alo.3Ga,. 7As

Ino.53Gao.47As/

InP

Ino.o 8 Gao.92As/

Alo. 15Gao.8 5 As

Ino.52 7 Gao. 4 7 3 As/

superlattice

Ino.45 Gao.55 As/

Ino. 53 2Alo. 4 68 As

Inter-

Sub-

band

Transi-

Nw tion
50 B-C

Lw/LB

A/A

40/300

20 B-C 50/500

10 B-QC 54/450

15 B-MB 79/510

15 B-QC 62/500

Designed

qLW/LTOT

(meV/V)

2.31

4.3

9.3

8.7

10.6

Table 10.2: Measured and theoretical (see Equation (10.89)) values of IdqB/dVI

for a variety of QWIPs. The barriers in Sample 9331 consisted of a superlattice of

29.6 A In0. 38 0Gao.1 4 5 A10.4 75 As (6 repetitions) alternated with 63.6 A In0. 587 A10. 41 3 As

(5 repetitions)

given 4 B = VB - qFLw - EF. A large deviation of the measured thermionic leakage

from this idealized model leakage current, as in perhaps the first and last entries in

Table 10.2, is proposed as a quantitative measure of the amount of excessive leakage.

Our nQWIP 9066 and Jelen's [103] published data showed a thermionic leakage cur-

rent dependence which has a larger (better) activation energy than the value of

B = VB - qFLw - EF in Equation (10.88) over a very large range of bias voltages.

This raises the question of how accurately the measured leakage currents are described

by Equation (10.88). Our measurements show that Equation (10.88) accurately de-

scribes the temperature dependence (as exemplified by the voltage dependence of the

activation energy ICB) of the thermionic leakage current. However, Equation (10.88)

does not give a good description of the voltage dependence of the thermionic leakage
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Sample

Pelve [95]

nQWIP

Jelen [103]

nQWIP

nQWIP

9066

pQWIP

9331

pQWIP
9326

Measured

Id B/dVI

(meV/V)

5

2.8

7.6

10.7

15.3

-I-



current at a fixed temperature.

The points in Figure 10-10 denote the measured leakage current for sample a9066b05

as a function of voltage and at operating temperatures of 60K, 70K, and 80K (labeled,

respectively, from the lowermost curve). The measured data points are taken from

Fig. 8-1 in Chapter 8. The solid line is a best fit of the measured data points to the

form shown in Equation (10.93), which is derived below.

To get a good fit of the measured leakage current in Figure 10-10 to Equation (10.88),

we found that it was necessary for the drift velocity Vd in Equation (10.88) to be di-

rectly proportional to the electric field. However, for the applied biases IVI >0.25 volts

in Fig. 10-10, the drift velocity is no longer proportional to the electric field, but is

equal to the saturated drift velocity, vsat. (For typically used values of the saturated

drift velocity, vsat = 5x106 cm/s, and mobility, u = 103 cm 2/V-s, the drift velocity, d,

is about equal to the saturated drift velocity, vsat, for fields F> 5x103 V/cm, which

in Fig. 10-10 corresponds to IVJ >0.25 volts for a multiple quantum well structure

of total width LTOT = 0.5 prm.) Thus, in order for the coefficients multiplying the

exponential in Equation (10.88) to be linearly proportional to the electric field, the

physics behind Equation (10.88) must be carefully examined.

We believe that in order for the measured thermionic leakage currents in Figure 10-

10 to be accurately modeled, Equation (10.88) must be modified to include the

thermionic field assisted tunneling through the top (triangular) parts of the barri-

ers. This thermionic field assisted tunneling through the top parts of the barriers was

calculated by Levine [7] in his numerical evaluation of the integral in Equation (10.12)

for the effective number of carriers which are excited from each quantum well. In this

work, we take a different approach which does not involve directly calculating Equa-

tion (10.12). We shall see below that the number of carriers in the quantum well

which escape by thermionic field assisted tunneling through the top (triangular) part

of the barrier is directly proportional to the applied electric field.

The contribution of thermionic field assisted tunneling to the total leakage current
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J10
l-'
C

010

Ly

10

-8

9

10

10- 11

-3

a9066b05, 100 microns, (60K - 80K)
IIp i I I 

-2.4 -1.8 -1.2
Voltage [V]

-0.6 C)

Figure 10-10: The points in the figure denote the measured leakage current for sample

a9066b05 as a function of voltage and at operating temperatures of 60K, 70K, and

80K (labeled, respectively, from the lowermost curve). The solid line is a best fit of the

measured data points to Equation (10.93) for the thermionic field assisted tunneling

through the top (triangular) part of the potential barriers. The measured data points

are taken from Fig. 8-1 in Chapter 8.
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was given in Equation (10.53),

JL = qN2DGtf Vd, (10.90)
VQW

where we can approximate the thermionic field assisted tunneling flux in Equa-

tion (10.53) as,

mN2DGtf B VT(E, F) exp 2 - exp
NDGtfVB-qFLp kBT k BT

/() exp (wVB 2 q FLn] EF) [ ( qF
2 ep 2 - kBT kBT

(10.91)

where the energy separation, VB - EF - qFLw between the Fermi level and the bar-2'
rier band edge is smaller by the amount [92, 93, 94] qFLw in the presence of the

electric field. (The Stark shift of the bound state energies in a symmetric quantum

well is quadratic in the electric field, so that we can assume that to first order, the

quantum well bound state energies do not change with the electric field.) We have

also assumed that the largest contribution to the integral in Equation (10.91) comes

from those energies which satisfy 1 > T(E, F) > ', and these latter energies corre-
qFLtunnspond to E > VB - qFLt,n where Ltunn is found from T(E = VB - Ltunn F) = to

be,

Ltunn (3 l2/3 h2 1/3 _ 70 A for F=3.5x10 3 V/cm (10.92)

2 4 n 2mBqFJ 33 A for F=3.5x10 4V/cm

Using Equation (10.91), the contribution of thermionic field assisted tunneling to the

total leakage current becomes,

unn,,t _ty 2 2_A v~w GT-2 q 2 J v exp - -EF- e
VQw 7rh2 k2 kBT BT

(10.93)

The modeled leakage current shown in Figure 10-10 is obtained by fitting the form

(the voltage and temperature dependences) of Equation (10.93) to the measured

leakage current. An arbitrary constant multiplying Equation (10.93) is taken as a free
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parameter. Without this arbitrary constant multiplying Equation (10.93), it is not
possible to match Equation (10.93) to the measured data in Fig. 10-10 for the typically

used values of v,,at = 5x106 cm/s and vQw = 105 cm/s. Of all the constants appearing

in Equation (10.93), there has been some discussion in the literature as to why the

impinging frequency v (given in Equation (10.20)), though pedagogically correct, may

be the parameter whose magnitude is in doubt. Martinet et al. [122] have noted that

the use of the Oppenheimer-Bohr impinging frequency in Equation (10.93) yields

values of the modeled tunneling leakage which are much larger than the measured

leakage for a single quantum well tunneling diode.

As we have noted earlier, Levine's group [7] does obtain a good fit of the modeled

to the measured leakage currents with the use of reasonable fitting parameters by

replacing ~--UV in Equation (10.93) with even though the Oppenheimer-Bohr
vQW Lp :

impinging frequency in v, v may have seemed correct from first principles.
vQW

Our Equation (10.93) actually has the same form as Levine's original equation for

thermionic leakage, Equation (10.16) above, which he [7] found to be accurate for

very small applied biases. Equation (10.93) differs from Equation (10.16) in the

appearance of the tunneling distance Ltunn in the former equation and the appearance

of the barrier width LB in the latter equation.

The point is that the fit of the measured leakage in Fig. 10-10 to the modeled

thermionic leakage currents shows a significant contribution from thermionic field

assisted tunneling through the top (triangular) parts of the barriers. The thermionic
field assisted tunneling is indicated by the form of Equation (10.93): the factor of

F multiplying the exponential (even for a field-independent carrier drift velocity of

Vsat), and the activation energy appearing in the exponential in Equation (10.93) of

)B = VB - qFLtunn _ EF- qFw. Finally, even though Equation (10.93) does have a2 2

voltage and temperature dependence which closely matches the measured thermionic

leakage, the use of the Oppenheimer-Bohr impinging frequency v in Equation (10.93)

makes the numerical value of Equation (10.93) too large to match the measured

values of the leakage current. By replacing vdu in Equation (10.93) with Ld, the
VQW Lp

fit of Equation (10.93) to the measured leakage current is better, even though the

Oppenheimer-Bohr impinging frequency v may have seemed correct from first prin-
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ciples.

10.3.5 Relation to the Escape Probability

We saw earlier in this chapter that Levine's measured QWIP photocurrents indicated

a quantum efficiency, Equation (10.6), which was best fit by a product of the optical

absorption efficiency, Equation (10.7), and a phenomenological escape probability,

Equation (10.8) with the escape time ratio given by Equation (10.9). We also saw

that Rosencher et al. [119] measured a similar dependence of the quantum efficiency

77 on the applied bias, but they interpreted this dependence in terms of a statistical

distribution for the upper state in the intersubband transition.

We now present an explanation of the functional form (the voltage dependence) of

the escape probability, Pe, in the expression, Equation (10.6), for the total quantum

efficiency. We believe that the form of the expressions, Equation (10.8) and Equa-

tion (10.9), for the escape probability comes from the finite tunneling transmission

through the top part of a barrier of a photoexcited carrier.

A carrier which is photoexcited to an upper bound state or quasi-bound state will

tunnel out of the quantum well with the transmissivity [126],

1
T(E, F) 1 + exp(2K) (10.94)

where

exp(-2K) = exp -3 F [ h2 jB [VB- E]3/2 for VB- qFLB < E < VB.

(10.95)

Equation (10.94) is known to be exact for a barrier which varies parabolically with

distance [126].

The functional dependence of Equations (10.94) and (10.95) can be matched to that in

Equations (10.8) and (10.9) by choosing the barrier lowering potential, Vp, appearing
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in Equation (10.9) to be,

V= q B [ VB - E]3 2 (10.96)

Table 10.1 shows that many of the bound-to-continuum n-QWIPs have values of Vp

satisfying,

Vp = 12-17 meV thus corresponding to [VB - E] = 2.3-2.9 meV, (10.97)

for a typical LP of 550 A. Equation (10.97) is meaningful in the sense that the mea-

sured values for Vp must correspond to a realistic value for VB - E. Equation (10.97)

thus shows that the measured values of Vp correspond to upper states in the optical

transition which are within about 2 meV of the top of the barrier.

Levine [7] has also measured the barrier lowering potential, Vp, for many p-QWIPs.

The typical barrier lowering potential Vp for bound-to-continuum p-QWIPs was mea-

sured to be about twice or three times the values given in Table 10.1. This observation

is consistent with Equation (10.95) in that p-QWIPs have a heavy hole mass which is

typically about 10x the typical conduction band electron mass, and Equation (10.96)

shows that Vp should vary as the square root of the mass in the barrier.

10.4 Conclusions

An important part of this work was the development of numerically accurate physi-

cal models yielding simple analytical expressions for the QWIP leakage current and

photocurrent. These physical models do not require the work involved in the fully

numerical solutions already existing in the literature. The physical model developed

in this work is derived in Section 10.3 from Gauss's law, Equation (10.22), and current

continuity, Equations (10.32) and (10.33), for the flux of carriers into the quantum

well bound states and into the continuum of energies above the barrier band edge.

The physical model developed here yielded analytical expressions, as in Equation (10.70)

and Section 10.3.3, for the number of, and the distance over which, carriers are de-

pleted from quantum wells whenever the photocurrent is larger than leakage current.
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For designs having the same periodic structure (the same quantum well and barrier

compositions and layer widths) throughout the QWIP, the carriers in the quantum

wells are found to deplete abruptly whenever the photocarrier drift velocity is large,

and they are found to deplete linearly whenever the photocarrier drift velocity is lin-

ear in the electric field. At very large electric fields, the quantum wells ill the QWIP

are accumulated.

The depletion of the quantum wells near the emitter barrier is expected to be impor-

tant in situations where the photocurrent is much larger than the leakage current.

This depletion is also important for QWIPs designed with a small number of quan-

tum wells, as would be the case for the optimal design (see Chapter 3) when the

single quantum well quantum efficiency is large or when an optical cavity is used.

Moreover, this depletion capacitance is expected to be important at high frequencies

as in optical heterodyne applications [127, 128, 129, 130, 131, 132].

To complete this physical picture, we present a discussion of current injection via

thermionic emission over (see Equation (10.57)) and thermionic field assisted tunnel-

ing through (see Equation (10.60)) the barrier next to the emitter.

The measured thermionic leakage is found to be in good agreement with a model in

which the leakage depends exponentially on an activation energy which varies linearly

with the applied bias. This measured activation energy appears to be

(B = VB- _ qFLtn _ FLw EF- A fit of the measured to the modeled thermionic
leakage currents shows a significant contribution from thermionic field assisted tun-

neling through the top (triangular) parts of the barriers. A large deviation of the

measured thermionic leakage from this idealized model leakage current is proposed as

a quantitative measure of the amount of excessive leakage.

The finite tunneling transmission of a photoexcited carrier through the top part of a

barrier is used to explain the functional form of the phenomenological escape probabil-

ity, defined by Levine to account for the discrepancy between the measured quantum

efficiency and the measured optical absorption efficiency.

We have reviewed several commonly used models for describing the current flow
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through a QWIP. An important difference between Levine's model and Rosencher's

model for tunneling leakage is Rosencher's use of the Oppenheimer-Bohr impinging

frequency for bound state carriers onto a barrier. This difference may need more

study. An important feature of both Levine's and Rosencher's models is that the

total tunneling leakage is calculated by assuming that the wave function decay within

the barrier drops as the total energy rather than just the bound state energy of the

carrier in the quantum well. The rate equation model developed in this work is very

similar to Ershov's rate equation model. However, in the physical model developed in

this work, a distinction is made between two types of tunneling currents: the tunneling

between ground states in adjacent quantum wells, as well as tunneling from a ground

state into an upper (continuum) state. All models reduce to Levine's model under

appropriate circumstances.
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Chapter 11

Conclusions

Quantum well infrared photodetectors (QWIPs) have many potential applications

because their narrow responsivity peak can be designed to be at any place in the

infrared longer than about 2 pm. This is a wavelength regime useful for the iden-

tification of many chemical species, for sensing radiated heat, for determination of

the absolute temperature of an object, and for the transmission of radiation through

the transparent spectral regions of the Earth's atmosphere. The use of GaAs sub-

strates allows QWIPs to take advantage of modern epitaxy and mature processing

technologies as well as possible monolithic integration with GaAs circuits.

11.1 Thesis Accomplishments

This thesis discusses the figures of merit for, the design of, the growth, the (materials,

electrical, and optical) characterization of, and the physical modelling of QWIPs.

QWIPs which respond to normally incident radiation without the need for an op-

tical grating are of particular interest because they can be fabricated with fewer

process steps and increased expected yield. An important contribution of this work

is the demonstration of the first n-type QWIP (n-QWIP) which showed a significant

detectivity of 4x101°cm-/JH/Watt without the use of an optical grating. This de-
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tectivity corresponds to a conversion efficiency of 4 % or, equivalently, a responsivity

of 270 mA/W. This detectivity is significant because it is large [7] enough for focal

plane array performance to be limited by the uniformity of processing rather than

the size of the single pixel detectivity.

An important part of this work was the development of numerically accurate physi-

cal models yielding simple analytical expressions for the QWIP leakage current and

photocurrent. These physical models do not require the work involved in the fully

numerical solutions already existing in the literature. The physical model developed

in this work is derived from Gauss's law, current continuity, and rate equations for the

number of bound and free carriers in a QWIP. This physical model yielded analytical

expressions for the number of, and the distance over which, carriers are depleted from

quantum wells whenever the photocurrent is larger than leakage current. For designs

having the same periodic structure (the same quantum well and barrier compositions

and layer widths) throughout the QWIP, the carriers in the quantum wells are found

to deplete abruptly whenever the photocarrier drift velocity is large, and they are

found to deplete linearly whenever the photocarrier drift velocity is linear in the elec-

tric field. This depletion capacitance is expected to be important at high frequencies,

as in optical heterodyne applications, or when the photocurrent is much larger than

the leakage current, or when QWIPs are designed with a small number of quantum

wells.

The measured thermionic leakage is found to be in good agreement with a model in

which the leakage depends exponentially on an activation energy which varies linearly

with the applied bias. A fit of the measured to the modeled thermionic leakage cur-

rents shows a significant contribution from thermionic field assisted tunneling through

the top (triangular) parts of the barriers. A deviation of the measured thermionic

leakage from the idealized model leakage current is proposed as a quantitative measure

of the amount of excessive leakage.

Studies of the microscopic physics of quantum wells are presented to elucidate the

physical origin of the intersubband absorption of normally incident radiation. A key

result of this work is the derivation within the framework of k f theory of selection

rules for the intersubband absorption of normally incident radiation by holes in a
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p-QWIP (p-doped QWIP) in the absence of an optical grating. It is found that the

absorption of normally incident radiation by holes in a p-QWIP in the absence of an

optical grating is largest for heavy hole to light hole transitions. The intersubband

absorption of normally incident radiation by electrons in an n-QWIP in the absence

of an optical grating is found within k i ptheory to be much smaller than that in

a p-QWIP. The size of the electron intersubband absorption of normally incident

radiation in the absence of an optical grating is found to be proportional to the size

of the electron in-plane wave vector. It is also found that kI ptheory predicts that

uniaxial strain does not have a large effect on the strength or the selection rules of

intersubband absorption because the Hamiltonian describing uniaxial strain has the

same (tetragonal) symmetry as that describing the confinement of carriers in the

quantum wells along the growth direction.

Nonuniformity of device parameters across an array of QWIPs is an important issue.

High Resolution X-ray Diffraction (HRXRD) was used to measure the layer width

variations of QWIPs grown by molecular beam epitaxy. The spread of the measured

full-width-half-maxima of superlattice diffraction peaks with the diffraction order

was used with Bragg's Law to obtain the measured layer width variation in the

growth direction. A glancing incidence reflectivity measurement is particularly useful

for measurement of layer width variations because the large X-ray spot size (about

4.6 cm x 250 pm) also yields information about epitaxial layer width uniformity across

a wafer. It was found that the absolute size of the layer width variation was different

for three superlattice examples, but the fractional layer width variation was about

2% for all three growths. This layer width variation is consistent with an effusion cell

temperature variation of 1°C during growth.

Appropriate figures of merit are discussed for different QWIP operating regimes,

and related to photodetector device parameters. A theoretical study has been made

of different noise mechanisms which contribute to QWIP performance: generation-

recombination noise, fixed pattern noise, thermal leakage random arrival noise, John-

son noise, read-out (switch) noise, and photon random arrival noise. A key result
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found in this work is that when the signal-to-noise ratio (SNR) is limited by either

fixed pattern noise or thermal leakage arrival noise, the optimal number of quantum

wells for a maximum in the expected QWIP SNR is roughly r , where rll is the

quantum efficiency of a QWIP having only one quantum well. The use of a much

larger number of quantum wells is not desirable because the absorption quantum ef-

ficiency cannot be increased beyond 100 %, but the photoconductive gain drops with

an increase in the number of quantum wells. The use of a much smaller number

than the optimal number of quantum wells is not desirable because the absorption

quantum efficiency can still be increased with an increase in the number of quantum

wells.

Common QWIP designs used in industry are evaluated. In particular, the commonly

used n-QWIP design in which the confinement barriers are comprised of a semicon-

ductor superlattice is considered. This QWIP design is intended to reduce thermionic

leakage by pushing the three-dimensional continuum of energy further up in energy

by making the miniband transport through the superlattice barrier the means of pho-

tocurrent conduction. A Kronig-Penney model presented in this thesis showed that

this QWIP design, with a superlattice comprising the QWIP barriers, is expected to

have a tunneling leakage which is, at best, commensurate with QWIP barriers which

are made of a single semiconductor material but whose band edge is the average

value of the band edges of the semiconductors comprising the actual barrier superlat-

tice. An experimental investigation of QWIPs with reduced thermionic leakage was

proposed in this work for p-QWIPs, which are also designed for large absorption of

normally incident radiation without the use of an optical grating. These p-QWIP

designs have an additional new feature in that strain is used to lift the light and

heavy hole valence degeneracy in the energy continuum, so that the lowest energy

hole band in the continuum of energy states can be chosen as light-hole-like for both

large photoconductive gain and large quantum efficiency. Electrical measurement of

these p-QWIPs showed excessive leakage current, some of which may be accounted

for within the framework of the Kronig-Penney model.
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11.2 Recent Research Trends

Recent trends in the development of QWIPs having better performance have focussed

on two main applications: tactical applications, which require the detection of bright

objects at relatively short distances and relatively high QWIP operating tempera-

tures; and space based strategic sensors, which require the detection of faint objects

at large distances and low QWIP operating temperatures.

Tactical applications require the detection of a bright target, such as a room temper-

ature black body with a photon flux of 1016 cm-2 s- 1, from a short distance (less than

a kilometer) away. The detection of bright targets from a short distance away involve

relatively large signals, and thus, relatively large noise may be tolerated. For tacti-

cal applications, an important goal is to be able to use the highest possible QWIP

operating temperature, so that the time and cost of cooling the QWIP is minimized.

Thus, for tactical applications, the QWIP is operated at temperatures above that

for radiation Background LImited Performance (BLIP). At such temperatures, it is

desirable to minimize the QWIP thermionic leakage current.

An important advance in the development of QWIP FPAs for relatively high temper-

ature operation (about 80K) is the novel grating design of Schimert et al. [13, 133]

at Lockheed Martin Vought Systems. The optical grating in Schimert's design is not

made of metallic lines. Rather, the optical grating is obtained by etching the grating

lines right into the QWIP pixel through the top contact and through all the quan-

tum wells. This has the obvious advantage of reducing the total area of the QWIP

pixel without reducing the available optical area. The total leakage current is easily

reduced by a factor of four. By using a metallic reflector with the optical grating,

the quantum wells are placed inside a resonant optical cavity, and Schimert estimates

a doubling of his quantum efficiency with respect to the value in the absence of the

optical cavity. By using fewer quantum wells, he also estimates an increase in the

photoconductive gain in his design by about a factor of two. Schimert then estimated

an increase of the detectivity in his design by at least a factor of five with respect to

the detectivity obtained in other designs.
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The key point in Schimert's design is the reduction in the total leakage current through

each QWIP pixel. (The leakage current for a (35 um)2 pixel was measured to be

150pA/cm 2 at 77K for a bias voltage of 1.5 volts over 18 wells.) The improvement in

the QWIP detectivity is therefore large only when the noise is dominated by thermal

leakage noise. Thus, the projected improvement in the QWVIIP detectivity at tempera-

tures below the BLIP temperature is only about 40%. The reason is that the limiting

noise mechanism at these lower temperatures is generation recombination noise and

not thermal leakage noise.

Space based strategic detection applications [134] require the detection of faint targets

(radiating a photon flux between 109 cm-2 s-1 and 1013 cm-2 s- 1) from large distances

(thousands of kilometers) away. The small photon flux radiated by faint targets re-

quires a correspondingly low leakage current [134] (less than 1 nA/cm 2 ) for a signifi-

cant SNR. This requires low temperature (BLIP) QWIP operation, for which QWIPs

are limited by tunneling leakage rather than thermionic leakage. Read-out circuit

noise also becomes important in the detection of small [134] photon fluxes (less i' Al

1012cm-2s-1).

Spaced based strategic detection applications have stringent requirements [134] on

QWIP response linearity and FPA uniformity. The reason is that the detection of faint

targets is accomplished by precise radiometry (rather than imaging), and responsivity

linearity is important for precise radiometry. Strategic detection applications utilize

larger QWIP pixel sizes, of the order of the spot size of the focussing optics, because

absolute radiometry does not require the small pixels needed for imaging over short

distances. The use of larger pixel sizes requires uniformity over a larger wafer area.

Rogalski [135] has accomplished a study of QWIP and HgCdTe photodiode perfor-

mance at temperatures below 77K. He concluded that QWIPs have a higher detec-

tivity at long wavelengths (cutoff wavelengths greater than 8 Izm) and low operating

temperatures (below 50K). The reason is that at these wavelengths and operating tem-

peratures, n+-p HgCdTe photodiodes are limited by trap assisted tunneling, whereas

QWIPs are in the BLIP regime. These observations, in combination with the mature

III-V processing technology, makes QWIPs a viable option for highly uniform and

highly reproducible, low cost, large area FPAs on a radiation hard substrate.
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