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ABSTRACT 
 

Control of parametric laser-plasma interactions (LPI) is essential to the success of inertial 

confinement fusion (ICF).  Through a research collaboration with the Los Alamos National Laboratory 

(LANL), we have had the opportunity to participate in world-class laser-plasma experiments. The goal of 

these experiments was to gain a fundamental understanding of LPI by studying the interaction of a single 

laser hot spot, or speckle, with a preformed, quasi-homogeneous, long scale-length plasma. Recent single 

hot spot experiments resulted in a wealth of data and the first definitive observation of two LPIs. Namely, 

the Langmuir decay instability (LDI) cascade and stimulated scattering off of an acoustic-like electron 

mode below the usual electron plasma wave frequency. 

The LDI is the result of the electron plasma wave (EPW) generated by stimulated Raman 

scattering (SRS) growing to a sufficient amplitude such that it exceeds a threshold (proportional to the 

damping of the LDI daughter waves) and undergoes parametric decay into another counter-propagating 

EPW and a co-propagating ion acoustic wave (IAW). Subsequent EPW decays due to LDI are possible and 

collectively more than one EPW generated by LDI is called LDI cascade. The LDI cascade can play a role 

in the saturation of SRS since wave energy from the SRS EPW couples into secondary waves that are non-

resonant with the SRS process. 

Stimulated scattering from an electrostatic wave at a frequency and phase velocity (ω ≈0.4ωpe, 

vφ≈1.4ve) between that of an EPW and IAW was also observed.  In this thesis, a Vlasov-Maxwell code is 

used to numerically predict the time evolution of the electron distribution function for the experimental 

parameters.  The resultant distribution function is then modeled as a bi-Maxwellian (one background and 

one beaming) to show that it exhibits linear modes that include the observed electron acoustic wave.  A 

quasimode analysis of laser scattering off of this linear mode is presented as one possible explanation of the 

experimental observation. 
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Glossary 
 

 

 This glossary of terms used throughout the thesis represents to a large extent the 

language of inertial confinement fusion and laser-plasma experiments and theory.  

Although the terms are defined in the chapters in which they are presented, this glossary 

serves as a convenient reference for their definitions. 

 

ICF Acronym for inertial confinement fusion 

I Laser intensity in watts per centimeter squared (W/cm2) 

SHS Acronym for single hot spot.  This is the  interaction volume resulting from focusing a 

nearly diffraction-limited laser beam into a plasma 

ne The electron density (cm-3) 

nc The critical electron density above which light does not propagate (cm-3).  This is found by 

setting the laser frequency equal to the electron plasma frequency. 

ωωωωpe The electron plasma frequency defined by eoepe men εω /2= , where e is the electron 

charge, εo is the permittivity of free space, and me is the electron mass. 

ne/nc The electron density divided by the critical density.  Equivalent to the square of the electron 

plasma frequency to laser frequency, i.e. 22 /)/( Lpece nn ωω=  

LPI Acronym for laser plasma interaction (or laser plasma instability) 

EMW Acronym for electromagnetic wave 

EPW Acronym for electron plasma wave 

EAW Acronym for electron acoustic wave 

IAW Acronym for ion acoustic wave  

SRS Acronym for stimulated Raman scattering.  This is the decay of the incident laser into an 

electromagnetic wave and an electron plasma wave. 

SBS Acronym for stimulated Brillouin scattering.  This is the decay of the incident laser into an 

electromagnetic wave and an ion acoustic wave. 

SEAS Acronym for stimulated electron acoustic scattering.  This is the decay of the incident laser 

into an electromagnetic wave and an electron acoustic wave. 

TP Acronym for the two-plasmon interaction.  This is the decay of the incident laser into two 

electron plasma waves. 

PP Acronym for the plasmon-phonon interaction.  This is the decay of the incident laser into an 

electron plasma wave and an ion acoustic wave. 
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kB Boltzmann’s constant (kB = 1.3807x10-23 J/K) 

eV Electron volt.  A unit of energy equal to 1.6022x10-19 Joule 

Te Electron temperature.  Usually assumed to be multiplied by kB and expressed in eV. 

RPP Acronym for random phase plate.  This is one method used to smooth the intensity profile of 

high intensity laser beams.  As its name implies the plate has in it many randomly placed 

elements that introduce a phase shift in the incident wavefront. 

VTe The electron thermal velocity given by eeBTe mTk /V =  

λλλλDe The electron Debye length given by peTeDe ωλ /V=  
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Chapter 1:  Introduction 
 

Control of parametric laser-plasma interactions is essential to the success of 

inertial confinement fusion (ICF) [1,2]. Stimulated Raman scattering (SRS) [3,4] is one 

such interaction involving the resonant decay of an incident electromagnetic wave 

(EMW) into a scattered EMW and an electron plasma (or Langmuir) wave (EPW). SRS 

is undesirable not only because it can cause losses in drive energy and illumination 

symmetry but also because it can trap and accelerate electrons that could preheat the 

fusion capsule and thus inhibit its compression. The onset and scaling of SRS has been 

the subject of much investigation [5]. 

In quasi-homogeneous ignition-relevant plasmas (i.e. in the context of the indirect 

drive approach to ICF [2]) the EPW amplitude can be large for moderate SRS reflectivity 

and saturation by nonlinear mechanisms is expected [6,7,8,9]. One possible source of 

non-linearity is coupling of SRS to other parametric processes via wave-wave 

interactions. One such mechanism is the Langmuir decay instability (LDI) [10,11], in 

which the daughter EPW from SRS decays into an EPW and an ion acoustic wave 

(IAW). LDI occurs when the amplitude of the primary EPW exceeds a threshold that is 

proportional to the product of the damping rates for the secondary EPW and IAW. The 

growth rate for LDI is maximized when the daughter EPW and IAW are propagating 

anti-parallel and parallel, respectively, to the primary EPW. Subsequent EPW decays due 

to LDI are possible if their amplitudes exceed the threshold. The terminology used in this 

thesis is that an EPW generated by LDI is called an LDI cascade step and, collectively, 

more than one cascade step is called LDI cascade. The LDI cascade can play a role in the 

saturation of SRS since wave energy from the SRS EPW couples into secondary EPWs 

and IAWs that are non-resonant with the SRS process. The saturation effect is strongest 

when the daughter waves are strongly damped, but not so strongly damped that growth 

rate for the interaction does not exceeded the threshold. Backward propagating EPWs 

presumed to be from LDI have been observed [12,13,14] and LDI has been observed in 

ionospheric plasmas [15,16]. Observation of Langmuir turbulence (i.e. the plasma is so 

strongly excited that a continuous spectrum of frequencies is present) in a laser-produced 
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plasma has been reported recently [17]. However, it could not be established whether 

strong turbulence or weak LDI cascade was observed in those experiments due to 

inhomogeneity [18,19]. Additionally, in the French experiments regions in k-space were 

masked off in order to surmise that LDI was occurring at a specific frequency and 

wavenumber and thus true structure was not observed.  In the single hot spot (SHS) 

experiments reported on in this thesis, we obtained the first unambiguous observations of 

multiple LDI cascade steps driven by SRS backscatter [20]. 

The nonlinear evolution of electrostatic waves in plasmas is prevalent in many 

aspects of plasma physics. In laser plasma research, intense lasers can couple nonlinearly 

to weakly damped electrostatic waves in the plasma and produce scattered light waves 

from these modes. Two small-amplitude plasma modes that have been studied 

extensively in unmagnetized plasmas are the EPW [21], and the IAW [22]. Both of these 

modes are weakly damped for a broad range of laser and plasma conditions. Nonlinear 

coupling of the intense laser field to these modes can result in significant loss of laser 

energy via SRS and stimulated Brillouin scattering (SBS) [23]. Early researchers 

[22,24,25], examining the linearized Vlasov electrostatic dispersion relation (which 

ignores particle-trapping effects) also noted solutions which they termed electron acoustic 

waves (EAW) due to their acoustic-like dispersion, i.e. the dispersion is linear 

and k∝ω .  In [24] mode damping was ignored and for regions other than the minimum 

wavelength the analysis resulted in the dispersion relation for undamped EAWs of 

ω≈1.31kVTe, where (ω,k) are the electrostatic wave-frequency and wave number, and 

eeTe mk /TV B=  is the electron thermal velocity (kB is Boltzmann’s constant and Te and 

me are, respectively, the electron temperature and mass).  In [22] and [25] the effects of 

Landau damping were included and, in the long wavelength limit, the analysis resulted in 

the dispersion relation for EAWs of ω≈3.6kVTe.  These intermediate phase velocity 

(vφ=ω/k) modes were obtained in addition to the weakly damped slow phase velocity 

IAW (vφ/VTe<<1), and the high phase velocity EPW (vφ/VTe>>1). The EAW solutions 

were discounted by those early researchers due to their huge linear damping with 

Maxwellian distributions, -Im(ω)/Re(ω)≥1 [22,25]. However, other studies of nonlinear 

Vlasov-Maxwell systems [26,27,28,29,30] found that electrons trapped in the wave 
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electrostatic potential can result in undamped solutions, so-called BGK modes [26], 

allowing a nonlinear EAW mode to exist.  However, the dispersion (obtained by taking a 

limiting case of the nonlinear problem) produces a lower phase velocity EAW 

(ω≈1.31kVTe) [27-30] compared to the least-damped (but still heavily damped) linear 

EAW solution (ω≈3.6kVTe). A fully nonlinear analysis of EPWs gives acoustic-like 

dispersion for ωpi<<ω<<ωpe that depend on the EPW field amplitude [31]. In the SHS 

experiments reported on in this thesis, stimulated scattering from an electrostatic wave 

was observed at a frequency and phase velocity (ω≈0.4ωpe, vφ/VTe≈1.4) between that of 

an EPW and IAW [32]. 

The possibility that particles may become trapped in the potential of large 

amplitude electrostatic wave was mentioned earlier. In theory, these trapped particles are 

responsible for numerous effects including, a nonlinear frequency shift of EPWs 

[33,34,35], generation of hot electron tails [36], a reduction in EPW damping [35], and 

EPW generation due to the beam-plasma or streaming-type interactions [37,38].  In the 

SHS experiments reported on in this thesis, a few shots were taken to probe the plasma 

outside of the SHS interaction volume. As will be shown in Chapter 4, fine structure was 

observed in the Thomson spectra indicating numerous EPWs at distinct frequencies. 

Additionally, numerous EPW Thomson spectra exhibit a time-dependent broadening in 

frequency.  It is possible that we have made the first experimental observation of the non-

linear shift in EPW frequency outlined in [33-35]. 

In summary, the present SHS laser-plasma experiments have generated a wealth 

of high-quality data.  The work for this dissertation was motivated by the desire to 

measure and characterize the EPW spectrum driven by SRS in a plasma and see if indeed 

the distinct daughter waves from the LDI cascade could be observed.  The experiments 

were successful and resulted in various other data such that the dissertation is not simply 

on one topic.  The data shows the first unambiguous observation of LDI cascade and 

stimulated scattering off of an electron acoustic mode below that of the usual EPW 

frequency. 

 The organization of this thesis is as follows.  Chapter 2 outlines the laser system, 

the diagnostics, and discusses in detail the experimental procedures used.  Chapter 3 

presents the theory and observation of Langmuir cascade.  Chapter 4 presents the 
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observation of stimulated electron acoustic scattering (SEAS) and presents one possible 

model for its explanation.  Chapter 5 concludes and summarizes the previous chapters 

and outlines additional work necessary.  Derivations of important equations and results 

presented in the chapters are provided in several appendices. 
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Chapter 2:  Experimental Procedures 
 

 

The experiment was conducted at the Los Alamos National Laboratory (LANL) 

using the TRIDENT laser facility [39]. In the experiment, a preformed plasma is 

illuminated with a nearly diffraction-limited single hot spot (SHS) laser [40] to drive SRS 

in a plasma. Although the TRIDENT laser and the SHS experiments are extensively 

described in the references cited, it is hoped that enough information is provided in this 

chapter so that the reader need not consult them.  Several diagnostics were used to collect 

data in the experiment.  These include  

• An absolutely calibrated photodiode to measure the SRS reflectivity levels, 

• A streaked SRS backscatter diagnostic to resolve the directly backscattered 

light in both time and wavelength, 

• Energy measurements of the incident heater, interaction, and Thomson probe 

beams, 

• A near backscatter imaging (NBI) diagnostic to assess the amount of light 

scattered outside of the incident cone, 

• A transmitted beam diagnostic (TBD) to observe beam steering and breakup, 

and 

• Collective Thomson scattering diagnostics to diagnose the electron plasma 

wave (EPW) spectrum driven by SRS or the thermal ion acoustic wave (IAW) 

spectrum as an indicator of the electron temperature. 

In this chapter, these diagnostics are described in detail and any relevant theory of 

operation is provided.  Calibration information for each diagnostic used for interpreting 
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the data presented in subsequent chapters is also provided where appropriate.  Plasma 

characterization measurements are also provided, e.g. determination of electron 

temperature. 

 

2.1  Overview of the TRIDENT Laser and the Single Hot Spot Configuration 

 

The TRIDENT laser is a Neodymium-Phosphate doped glass (Nd:Glass) system 

configured in the master oscillator power amplifier (MOPA) architecture.  The 

fundamental harmonic or wavelength of the Nd:Glass laser system is λ = 1054 nm.  In 

laser-plasma interaction (LPI) terminology, the fundamental frequency of a laser system 

is referred to as 1ω, and the harmonics as 2ω, 3ω, etc. A low energy seed laser is used to 

form various pulse shapes (e.g. Gaussian or flat-topped) which are then amplified by a 

series of flash-lamp pumped amplifiers. To mitigate heating effects and prevent optical 

damage, these amplifiers change initially from smaller diameter rods in the low-energy 

stages to larger diameter disks in the high-energy stages.  Three beams are available at 

the second harmonic (2ω) wavelength of λ = 527 nm. Two of these beams are high 

energy (~150 J nominal each) and are usually used for plasma formation and heating.  A 

third, lower energy beam (~1 J nominal) is usually used as the interaction beam and can 

also be split and frequency converted to provide an additional λ = 351 nm (3ω) or λ = 

263.5 nm (4ω) probe beam for use in collective Thomson scattering diagnostics. 

A schematic of the experimental setup is shown in Figure 1. The plasma is formed 

by vaporizing a thin foil target and heating it with a line-focused λ=527 nm laser beam. 

The targets may be fabricated from any material available in thin foil form.  However, 
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parylene (C8H8) targets were used primarily in the experiments. The heater beam is 

defocused so as to create a plasma having density scale lengths transverse and parallel to 

the interaction laser focal spot of ~200 µm and ~1000 µm, respectively. Thus, the plasma 

is considered quasi-homogeneous over the entire interaction volume of the SHS 

(discussed in a later section). 

 

 
 

Figure 1.  Schematic diagram of the single hot spot experiment. 
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The relative beam timing is shown in Figure 2. The heater beam has a flat-topped 

pulse profile with duration of 1.2 ns full-width at half maximum (FWHM). At a time 200 

ps after the heater beam is turned off, the interaction beam (λ=527 nm), having a 

Gaussian pulse shape with a 200±10 ps FWHM, is focused into the plasma through an 

f/4.4 lens perpendicular to the plasma flow (i.e. parallel to the original surface of the 

target). The Mach ~2 flow (transverse to the interaction laser beam) has been shown to 

stabilize self-focusing, and produces nonlinear beam steering [41]. The ultraviolet (λ=351 

nm) Thomson probe beam is also a Gaussian pulse with a 200±10 ps FWHM, coincident 

in time with the interaction beam, and is focused into the plasma through an f/4.5 lens. 

The Thomson scattered light is collected through the full aperture of the collection optic 

(f/4). The Thomson scattering diagnostic was set up to look only at the forward 

propagating EPWs, i.e. those propagating in the same direction as the interaction laser. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Beam intensity versus time for the single hot spot experiments. 
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Previous SHS experiments have thoroughly characterized the initial conditions of 

the plasmas used.  Hydrodynamic simulations performed using the computer code 

LASNEX [42] have also been used to predict the plasma conditions.  Data measured on a 

previous SHS experiment and 2D LASNEX simulation data are combined on one graph 

for comparison and shown in Figure 3.  For the experiments described in this thesis, the 

location of the SHS was placed at ~400 µm in front of the target, resulting in ne/nc≈0.03-

0.032 as inferred from the backscattered SRS data shown later. Here, ne is the electron 

density and nc≈4.02x1021 cm-3 is the critical density above which 527 nm light does not 

propagate.  The definition of the critical density is obtained from the linear dispersion 

relation for electromagnetic waves (EMW) in a plasma, i.e. 2222 kcpe += ωω , where 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The experimentally measured (CH plasma at t = 1.0±0.1 ns) electron density and temperature, 
ion temperature, and transverse flow velocity are in rough agreement with 2D LASNEX simulations.  All 

measured values were determined by analyzing the Thomson scattered data in a manner similar to that 
described in a later section of this chapter. 
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eoepe men εω /2=  is the electron plasma frequency.  When ω < ωpe the wavenumber k 

becomes pure imaginary and the EMW is evanescent.  Thus when ω = ωpe the EMW 

ceases to propagate and solving for the critical electron density gives 22 / emn eoLc εω= , 

where ωL is the laser radial frequency The plasma initial conditions are homogeneous on 

the scale of the laser focal spot volume where the interaction occurs, and enables the 

observation of fine spectral structure, e.g. that associated with LDI cascade. This removes 

any ambiguity due to inhomogeneity when interpreting the data.  

The targets used were ~1 mm in diameter and ~6.5 µm thick parylene (C8H8). 

Carbon and Aluminum targets were also used in the experiment but provided little data.  

The carbon targets were first-time prototypes and were prone to severe positioning errors 

due to their surface roughness and thickness.  As a result, no plasma was ever generated 

at the desired density using the carbon targets. A few thin foil aluminum targets provided 

some data but their supply was limited.  So, the bulk of the data was generated using the 

parylene targets. 

The diffraction theory of light through a circular aperture, predicts that the radial 

(in r) and longitudinal (in z) intensity profile of the interaction beam at and near focus is 

given by [43] 
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respectively, where λo is the laser wavelength (527 nm for the SHS interaction laser) and 

F is the f-number of the focusing optic. The f-number F = f/d is defined as the ratio of the 

focal length to the optic diameter or actual beam diameter, whichever is less.  The f-

number is usually specified in shorthand notation as f/#, where # is the calculated f-

number.  For the present experiments described in this thesis, the interaction laser beam 

diameter was set at 36 mm using an opaque aperture and thus the full aperture of the 

focusing lens was not used. The focal length of the focusing lens was 160 mm resulting 

in an f-number of f/4.4.  The actual three-dimensional (3D) intensity distribution near 

focus is much more complicated than (1) and (2) predict.  However, these equations 

allow one to approximate the extents of the interaction volume of the SHS. The width and 

length of the SHS at one half of the maximum intensity are obtained from (1) and (2) and 

given by 

oλF028.1w ≈ , and     (3) 

oλ2F08.7L ≈ ,     (4) 

respectively.  Using these relations and the parameters for the SHS experiments, the laser 

focal spot is characterized by a width of w≈2.4 µm and length of L≈72 µm.  The SHS 

interaction volume is essentially a elliptically-shaped surface of revolution defined by the 

dimensions of w and L given above.  Note that at best focus, the intensity looks like the 

classic Airy pattern [43].  The radius of the first minima (zero) is found by setting 

0)F/(1 =orJ λπ .  The first minima of the J1(x) Bessel function occurs at an argument x = 

1.22π and thus the diameter of the Airy disk is given by λFd 44.2=  [43]. 
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Special care is taken with the interaction beam generation, alignment, and optics 

in order to produce a wave-front with minimal distortion. This entails such things as 

using only rod (rather than disk) amplifiers, paying special attention to details like the 

mounting and alignment of certain optics, minimizing air turbulence throughout the beam 

path, and limiting the beam diameter to 36 mm in order to use small, high-quality optics 

[40].  After alignment and prior to the start of full energy shots, the focal spot of the 

interaction beam is analyzed to see how close it is to the diffraction limit.  Figure 4 shows 

a typical image of the focal spot intensity pattern from a previous experiment.  It is seen 

that the far field contains slightly more energy beyond the first Airy minima compared to 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Figure 4.  (a) Actual hot spot intensity pattern at best focus, and (b) lineout of the intensity pattern (data 
points) compared to the ideal diffraction limit for an f/7 beam.  The stray data point in (b) is most likely due 
to a bad pixel on the CCD camera.  For the f/7 527 nm beam, the first Airy minima is expected to occur at a 

radius of r = 1.22Fλ = 4.5 µm. 
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the ideal diffraction limit.  The performance is very good but not quite perfect and thus 

we characterize the SHS as the result of a “nearly diffraction limited” beam. 

 

2.2 Incident Beam and Backscatter Diagnostics 

 

Grouped in this section are the incident beam energy calorimeter, the fiducial leg, 

the streaked SRS diagnostic, the reflected energy photodiode, and the near backscatter 

imager (NBI).  These diagnostics allowed for measurement of the energy incident in the 

interaction beam, provide an absolute wavelength and time reference, resolution of the 

directly backscattered light in wavelength versus time, measurement of the energy 

reflected by stimulated Raman scattering (SRS), and detecting how much, if any, 

backscattered light did not traverse the incident light cone, respectively. 

A schematic diagram of the incident beam path is shown in Figure 5.  The 

interaction beam (C-beam) is guided from a lower optics table using a polarization 

preserving (i.e. the electric field is not rotated) periscope P1.  Polished and calibrated 

neutral density (ND) filters can be inserted in the beam path to reduce the incident 

energy, and thus, the intensity of the interaction beam.  Nominally, 500 mJ unfiltered will 

produce a focal spot intensity of ~1x1016 W/cm2 in the plasma. The interaction beam then 

passes through a 50/50 beam splitter BS1. Half of the beam goes to a fiducial time delay 

leg and an energy measurement pick off and the other half goes to the target chamber.  

The path length of the fiducial leg is set to produce a time delay of ~1 ns (i.e. ~11.8 

inches round trip path difference) from light directly backscattered from the target. This 

provides an absolute wavelength (λ = 527 nm) and time calibration for all backscattered 
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SRS measurements.  A mirror on a kinematic mount can also be placed in the fiducial 

path to aid in the alignment of the backscatter diagnostics. 

The incident energy is measured directly with a calorimeter.  Prior to the start of 

experiments, several calibration shots are performed to determine the actual energy that is 

being measured.  This is accomplished with the aid of another temporary calorimeter 

placed downstream of BS1 that measures the energy directed into the target chamber.  

Wedge W1 directs any reflections of the incident beam out of the path that the 

backscattered light would follow.  The backscattered light is collected using the f/4.4 

achromatic focusing optic L1 and thus follows approximately the same path that the 

incident beam would.  The backscattered light is reflected off of BS1 and sent to the 

streaked SRS and photodiode diagnostics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Schematic diagram of the incident interaction beam path. 
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 A schematic of the backscatter diagnostics is shown in Figure 6.  Periscope P2 

preserves polarization of the collimated backscattered light beam and lowers it to the 

level of the spectrometer entrance slit.  The backscattered light is split by beam splitter 

BS2 so that half goes to the spectrometer and the other half goes to the reflected energy 

photodiode.  Lenses L2 and L3 focus the light onto the spectrometer slit and the 

photodiode diffuser plate, respectively.  Neutral density filters are placed in front of L2 

and the photodiode diffuser plate to accommodate the wide range of reflected energies 

encountered.  The ½ meter Chromex spectrometer disperses the backscattered light in 

wavelength. Thus, what is actually measured is the free space wavelength of the 

backscattered light.  The Hamamatsu streak camera allows for the temporal resolution of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Schematic diagram of the backscatter diagnostic table. 
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the signal on various time scales.  The CCD camera is thermo-electrically and water 

cooled to provide a low noise background and captures the data image to a binary file. 

Prior to data collection, the dispersion of the particular grating that will be used 

(i.e. wavelength versus pixel on the CCD image) is determined using calibration lamps.  

Calibration lamps containing different gas mixtures are available and those that provide 

spectral lines (i.e. transition radiation) in the region of wavelengths that will be measured 

are used for the calibration. A sample calibration image and lineout are shown in Figure 

7(a).  A linear fit is made to the known wavelengths and a typical calibration plot is 

shown in Figure 7(b).  The 100 grid-per-millimeter (gpmm) grating was used to collect 

the majority of the data on the SRS spectrometer and its calibration was 0.577 nm/pixel.  

On a handful of shots, the SRS spectrometer was used to look for stimulated electron 

acoustic scattering (SEAS) described in a later chapter.  For these shots the 1800 gpmm 

grating was used and its calibration was 0.03 nm/pixel.  The calibration is checked 

periodically or if the spectrometer grating or optical alignment is changed. 

Calibration of the time axis for a particular streak window is performed by 

observing the number of pixels in the full width at half maximum (FWHM) of the 

interaction laser pulse.  The interaction pulse is known to have a FWHM duration of 200 

ps.  For the data shots, the SRS streak camera was kept on the 2 ns streak window and the 

time axis calibration was determined to be 1.77 ps/pixel. 
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A typical SRS diagnostic image is shown in Figure 8.  Knowing the calibration of 

the diagnostic, as described above, one can determine the free-space wavelength of the 

backscattered SRS light. In the very homogeneous SHS plasmas, this wavelength is an 

excellent indicator of the electron density.  Since SRS is a resonant process, i.e. energy 

and momentum are conserved, a rough estimate of the electro

by looking at the frequency matching, condition for the SRS pr

ESSL ωωω += ,  

where ωL, ωS, and ωES are, respectively, the laser, scattered li

frequencies.  The electrostatic wave frequency will be approxi

frequency, i.e. eoepeES mne εωω /2=≈ .  As defined previou
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equal to the plasma frequency at the critical density nc, thus ceLpe nn /)/( =ωω .  

Subtracting ωES from both sides of (5), factoring out the laser frequency, using the 

definitions and approximations above, and realizing that in free space LL c λπω /2= , (5) 

can be recast as 


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or equivalently solving for the ratio ne/nc gives 
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A much better estimate for the electron density is obtained by considering the effect of 

the finite electron temperature on the electrostatic wave frequency.  The linear dispersion 

relation for an electron plasma wave (EPW) in a plasma is given by 

)31(V3 2222222
DeESpeESTepeES kk λωωω +=+= ,   (8) 

where eeBTe mTk /V =  is the electron thermal velocity, kB is Boltzmann’s constant, Te 

and me are the electron temperature and mass, respectively, kES is the EPW wave number, 

and peTe /V ωλ =De  is the electron Debye length.  Usually, the electron temperature is 

considered to be multiplied by kB, converted to electron volts (eV) and grouped into one 

term Te.  So, in actuality the EPW frequency will be greater than the plasma frequency 

and is dependent on its wave number and the electron temperature.  To determine what 

the EPW frequency will be, one needs to consider that SRS is a three-wave resonant 
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process and solve, simultaneously, the linear dispersion relations for the incident laser 

and scattered electromagnetic waves (EMW) 

2222

LpeL kc+= ωω ,     (9) 

2222

SpeS kc+= ωω ,     (10) 

and the linear dispersion relation for the EPW (8), the frequency matching condition (5), 

and the wave number matching (momentum conservation) condition given in one 

dimension (direct backscatter) by 

ESSL kkk += .     (11) 

Of course, the plasma frequency must first be estimated so solving this system is an 

iterative process in which one starts with the measured value for Te, a guess value for the 

electron density and then refines this value such that the scattered light wavelength 

matches the observation.  An even better estimate for the electron density can be obtained 

by replacing (8) with the dispersion relation for an EPW derived using kinetic theory 
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where 'Z  is the derivative of the plasma dispersion function [44] with respect to its 

argument.  .  Since (12) has an infinite number of roots, we choose only the one that is 

weakly damped (i.e. 122 <<Dek λ ) and corresponds approximately to (8).  This method is 

also an iterative process and was the one used to arrive at any electron density values 

stated in this dissertation. 

This iterative process of simultaneously solving the linear dispersion relations and 

resonance matching conditions is referenced many times in the thesis and often referred 
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to as the ideal calculation.  Given input parameters, this ideal calculation is used to 

predict numerous quantities, including 

• ne/nc given the assumed and measured plasma and laser conditions,  i.e. Te, Ti, 

and λL, or vice versa, the expected SRS wavelength given ne/nc, Te, and Ti, 

• The Thomson probe and collection angles given a particular EPW frequency 

and wavenumber determined from resonance matching the SRS-LDI 

interaction, 

• Resonance matching the stimulated electron acoustic interaction outlined in a 

later chapter,  

• Creating plots showing the resonance matching for various laser plasma 

interactions, and 

• Determining instability thresholds and growth rates for various laser plasma 

interactions. 

Mathcad [45], an interactive and integrated environment for performing and 

communicating math-related work, was used to perform the calculations mentioned 

above.  Rather than try to explain these calculations here, the Mathcad worksheets used 

for the calculations are presented in their entirety in Appendix E.  The worksheets have 

been commented to hopefully make clear what is going on.  In addition to its scratch pad 

user interface, the benefit of using Mathcad to solve the resonance matching problem is 

that an arbitrary number of equations can be solved simultaneously for the unknowns in a 

solve block thus making iterative calculations simple.   
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It is apparent that one must still know the electron temperature to get an accurate 

value for the electron density.  In a later section of this chapter, measurements are 

described from which the electron temperature is ascertained using collective Thomson 

scattering off of thermal levels of ion acoustic waves (IAW) in the plasma.  These 

measurements revealed that the electron temperature in these SHS experiments was 

initially ~480±50 eV and decreased to ~300±50 eV over the duration of the probe pulse.  

At the mid-point of the interaction pulse Te ~ 390 eV.  Note that one cannot make a direct 

comparison of these Te values to those shown in Figure 3 as they are measured at 

different times in the evolution of the plasma.  In Figure 3 the electron temperature is 

measured at the tail end of the heater pulse (t ~ 1.0 ± 0.1 ns).  The Thomson scattering 

measurement is performed at ~200-400 ps after the heater beam is turned off and the 

plasma has cooled significantly due to expansion. [46,47]  The plasma cooling can be 

easily understood by considering that the temperature corresponds essentially to an 

energy density.  As the plasma expands, its volume increases.  Without a source of 

energy, e.g. the heater beam, the energy density and thus the temperature of the plasma 

decreases.   

The reflected energy photodiode (see Figure 6) must also be calibrated prior to the 

start of experiments.  This is accomplished during the same calibration shots performed 

for the incident energy calorimeters by placing a mirror in the fiducial leg.  The output of 

the photodiode is a time-dependent voltage. This voltage signal is sent via a low-loss 

coaxial transmission line to a Tektronix 7250 fast transient digitizer (~6 GHz bandwidth).  

Since the response time of the diode is much greater than time duration of the 

backscattered light pulse, what is seen on the digitizer is actually the diode’s impulse 
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response to the applied signal.  Thus, the peak of the diode’s voltage signal represents the 

time-integrated reflectivity, or in other words, the total reflected energy.  Neutral density 

filters must be placed in the path of the light sent to the reflected energy photodiode in 

order to accommodate the wide range of energies encountered without saturating the 

signal.  During the diode energy calibration shots, a reference optical density (OD) must 

be recorded in order to calculate future reflected energies since the filter OD changes 

quite frequently.  The diode voltage is multiplied by the ratio of actual to reference OD 

values to provide a voltage which is then divided by the calibration of the diode (in V/J) 

to obtain the actual reflected energy.  Calibration data for the reflected energy photodiode 

is shown in Figure 9.  The slope of the liner fit to the data points is 0.582 V/J with a 

reference filter OD of 6.88 (attenuation of 10-6.88 = 1.32x10-7). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Calibration curve for the reflected energy photodiode.  The slope of the linear fit to the data is 
0.582 V/J with a reference filter optical density of 6.88. 
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Nonlinear pondermotive beam steering effects may direct the backscattered light 

out of the incident light cone [41].  This light is detected using the near backscatter 

imaging (NBI) diagnostic.  The NBI measures the time-integrated light reflected off of a 

scatter plate placed in front of the interaction beam focusing optic L1.  The scatter plate 

has an aperture slightly larger than the incident beam diameter.  The NBI can be used to 

estimate the amount of backscattered energy directed outside of the incident light cone, 

e.g. when trying to reconstruct an abnormally low reflected energy measurement, and 

also as an indicator of significant nonlinear effects, e.g. beam steering, occurring. Typical 

NBI images are shown in Figure 10. 

 

 

 

 

Figure 10.  NBI images sh
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2.3 Transmitted Beam Diagnostic 

 

As seen in the measured and simulated plasma conditions shown in Figure 3, the 

plasma exhibits a density gradient in a direction perpendicular to the interaction beam.  

This density gradient results in a variation of the index of refraction in the plasma, and 

thus, refraction of the incident beam is expected in a direction opposite to that of the 

density gradient, i.e. towards lower densities or slower phase velocities.  This can be best 

described by rearranging the linear dispersion relation for an EMW in a plasma (9) to a 

form that expresses the index of refraction ωφ /v/ ckcn ==  in terms of other known 

quantities, i.e. 
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For a plasma, the index of refraction is < 1.  As the electron density decreases the index 

of refraction increases towards unity and the phase velocity of the EMW decreases 

towards the limit of the speed of light.  Snell’s law [43] tells us that the angle a light ray 

will make at the interface between media with different indices of refraction n1 and n2 is 

1
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1
22211 sinsinsinsin θθθθ
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If n2 is the index at a lower electron density, n1/n2 > 1 and thus, θ2 > θ1.  Stated simply, 

for a plasma the light ray will refract towards the region having a lower density.  Previous 

experiments [41] and calculations have shown that for the SHS plasmas the maximum 

expected refraction is ~6.5±0.5o and that intensity-dependent, nonlinear flow-induced 

beam steering can act to deflect, or steer, the interaction beam by as much as an 

additional ~3.5o.  Essentially, this beam steering is due to density depleted regions caused 
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by the pondermotive force being swept away from the target by the plasma flow.  The net 

result is that the beam becomes trapped in these density depleted pockets and is then 

steered significantly due to a transverse flow.  The transmitted beam diagnostic (TBD) 

measures any combination of beam refraction and steering and is also an indicator of 

beam break up or filamentation.  Thus, if there are significant nonlinear effects such as 

beam steering or filamentation occurring on a particular shot they will be revealed by the 

TBD.  Additionally, if the TBD shows an undeflected beam this clearly indicates an 

extremely low density plasma or no plasma at all.  Oddly enough, the latter occurred 

several times during the experiments for various reasons, e.g. heater beam misfire, target 

falling off of its stalk, etc.  Typical TBD images are shown in Figure 11. 

 

 

 
   (a)      (b) 

Figure 11.  TBD images showing (a) a low-intensity (I = 2.2x1015 W/cm2) shot with little beam break up, 
and (b) a high-intensity (I = 2x1016 W/cm2) shot with significant beam break up and deflection.  The 

undeflected beam spot is indicated by the dashed line which appears elliptical since the TBD CCD camera 
was not oriented normal to the scatter plate. 

Flow Flow 
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The amount of beam refraction and deflection can be estimated by knowing the f-

number F of the focusing optic and having a reference image of an undeflected beam, i.e. 

an image taken of the transmitted beam spot when no plasma was present.  Via the 

geometry shown in Figure 12, the total angle that the beam spot will span is given by 

)F2/1(tan2 1−=θ .  For example, the cone of a laser beam focusing and defocusing 

through an F/4.4 optic will span ~13o.  One can then compare the deflected beam and 

reference images on the TBD image and determine the degrees of combined refraction 

and deflection based on the relative deviation from the reference image. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  The geometry of a focusing beam is used to determine the angle that the beam cone will span.  
This depends on the f-number of the optic used. 

θ/2 = tan-1(d/2f) 

focal length f 

diameter d 

F = f/d ; (d/2f) = (1/2F) 
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2.4 Collective Thomson Scattering Diagnostics 

 

Collective Thomson scattering was used to diagnose EPWs driven by SRS and 

LDI occurring in the plasma.  A brief tutorial on Thomson scattering is given later in this 

section.  Half of the scattered light was sent to a diagnostic that resolved the scattered 

light in wavelength and time while integrating over all wave vectors (Streaked Thomson) 

and the other half was sent to a diagnostic that resolved the wavelength and angle on the 

collection optic (effectively giving ω vs. k ) while integrating over the time duration of 

the probe pulse (Gated Thomson).  The latter was accomplished by imaging the 

collection optic surface rather than its focal plane [48] and will be described in more 

detail later in this section.  The Gated Thomson optical path also served as a useful tool 

for aligning and verifying the overlap of the interaction and Thomson probe beams.  

Schematic diagrams of the Streaked and Gated Thomson diagnostics are shown in Figure 

13 and Figure 14, respectively.  Data obtained using these diagnostics will be presented 

in the following chapters. 

 
 

Figure 13.  Schematic diagram of the Streaked Thomson diagnostic. 
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As seen in Figure 1, the ultraviolet (λ=351 nm) Thomson probe beam is focused 

into the plasma through an f/4.5 lens at a nominal angle of 50o.  The finite beam diameter 

and focal length of the focusing optic allows for a range of wave vectors at angles of 

50±6.3o to participate in the Thomson scattering process (see Figure 12).  The Thomson 

scattered light is collected at a nominal angle of 63o through the full aperture of the 

collection optic (f/4) thus accommodating wave vectors at angles of 63±7.1o.  The 

collimated scattered light is directed out of the target chamber by a two inch magnesium-

fluoride (MgF2) coated mirror.  Coated mirrors are used throughout the Thomson 

scattering diagnostic beam paths as they offer superior reflectivity over ordinary silver-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Schematic diagram of the Gated Thomson Diagnostic. 
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coated mirrors in the UV range and thus minimize loss of signal.  The scattered light is 

split using BS1 - an OD = 0.5, 2” square inconel on fused silica filter.  This filter was 

used in place of a wideband UV 50/50 beam splitter as one was not available.  It provided 

~30% reflection and transmission with the remainder of the signal being absorbed in the 

filter material.  Half of the scattered light propagates through UV filters, lens L1, and 

mirror M1 and is focused onto the slit of the spectrometer.  M1 has x-y tilt adjustments to 

allow easy alignment on the spectrometer slit.  The other half of the scattered light is sent 

to a polarization-preserving periscope P1 (also constructed using UV mirrors) which 

elevates the light to the level of the Gated Thomson optic table.  Lens L2 provided 

magnification of the image and was positioned to focus the plane of the collection optic 

on the spectrometer slit.  Mirror M2 also had x-y tilt adjustments to allow easy alignment 

on the slit.  Kinematically mounted mirror M3 could be placed in the light path to allow 

looking upstream at the target using a camera and television monitor.  The target 

alignment hole (~100-150 µm in diameter) was used as a reference to align the 

interaction and probe beam overlap prior to every shot.  The gated optical imager (GOI) 

provided a snapshot of the dispersed light over a time duration of ~120-600 ps.  The light 

path from the output of the spectrometer, through the GOI, and to the CCD camera was 

enclosed with opaque material to prevent stray light from contaminating the very weak 

signal. 

 As with the streaked SRS diagnostic, both the Streaked and Gated Thomson 

diagnostics must be calibrated in wavelength using the same method as previously 

described.  Calibration curves and curve fit parameters for these diagnostics are provided 
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in Figure 15 and Figure 16.  The time axis calibration for the ST spectrometer in the 2 ns 

window was calculated to be 1.33 ps/pixel. 
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Figure 15.  Streaked Thomson diagnostic wavelength calibration curves and curve fit parameters for (a) 
100 grid per millimeter (gpmm), (b) 1200 gpmm, and (c) 1800 gpmm gratings. 
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Figure 16.  Gated Thomson diagnostic wavelength calibration curves for (a) 100 gpmm and (b) 1200 
gpmm gratings. 
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Slope:  0.5855 nm/pix 
R2:       0.999994 

Fit Parameters: 
 
Slope:  0.0485 nm/pix 
R2:       0.999998 

Fit Parameters: 
 
Slope:  0.0316 nm/pix 
R2:       0.999994 

Fit Parameters: 
 
Slope:  -0.4454 nm/pix 
R2:       0.999995 

Fit Parameters: 
 
Slope:  -0.0369 nm/pix 
R2:       0.999999 

(a) (b) 

(c) 

(a) (b) 



 46 

 

The Gated Thomson diagnostic required additional calibration so that the angular 

displacement on the optic surface could be determined.  This was accomplished by 

placing an opaque mask having a notch with known dimensions on the collection optic 

and then determining the number of pixels that the notch spanned on the CCD image.  

Knowing a length on the surface of the collection optic and the optic f-number is 

equivalent to knowing an angular displacement and ultimately this can be translated into 

a wave vector magnitude for the EPW being diagnosed.  For our calibration, we placed 

an opaque piece of paper with a 1/8 inch notch in it on the surface of the collection optic.  

A piece of tape (4.44 mm wide) was also placed across the optic for an additional 

reference dimension.  A picture of the calibration mask and the resultant CCD image is 

shown in Figure 17.  The 4.44 mm wide tape was 90 mm from best focus and spanned 39 

pixels giving a calibration of 0.072 o/pixel.  To complete the calibration, a Mathcad 

 

Figure 17.  Mask and CCD image used for angular displacement calibration of the Gated Thomson 
diagnostic. 
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worksheet was used to determine matching conditions for SRS and LDI and thus 

calculate the scattered light angle and wave vector magnitude for multiple LDI cascades.  

The calculated change in EPW wave number normalized to the laser wave number was 

∆k/ko = 0.133 for a change in scattering angle of ∆θ = 4.1o.  Thus, for a given angular 

displacement on the collection optic the normalized change in EPW wave vector 

magnitude is ∆k/ko = ∆θ/30.9.  Knowing this and the previous calibration, one can 

generate an axis calibration that represents the change in EPW wave number normalized 

to the laser wave number.  The resultant calibration was (∆k/ko) = 0.0023/pixel. 

Thomson scattering was used as a diagnostic tool in the experiments.  Rather than 

providing a detailed derivation of the theory of Thomson scattering, an abbreviated 

tutorial is presented.  For more exhaustive theory and derivations the reader is referred to 

the literature (c.f. [14], [49], and [50] and references therein).  Thomson scattering is a 

useful diagnostic in plasma experiments and can yield significant information about the 

plasma, such as the electron temperature and density.  The goal of any diagnostic method 

should be to minimize the perturbation that it will have on the system being measured 

while at the same time gathering the desired information on the state of the system.  

Thomson scattering accomplishes these goals. 

A much simplified explanation for the scattering of EMWs by a plasma is that the 

incident fields, e.g. from the probe laser, accelerate free charges (i.e. electrons and ions) 

in the plasma.  These moving and accelerated charges produce currents which in turn are 

the sources of the scattered radiation.  If the electrons and ions participating in the 

scattering have a thermal velocity spread, the scattered radiation will be broadened due to 

Doppler shifts.  The incident probe EMW causes acceleration of both electrons and ions.  
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The ions are much heavier than electrons as the mass ratio of a proton ion to electron is 

Mi/me≈1837.  Thus, for the same imposed fields the acceleration of and subsequent 

radiation generated by ions is considerably less than that from electrons and can often be 

neglected.  Even though the radiation directly from ions can be neglected they will have 

an effect on the radiation from electrons as the electrons act to shield out the ion charges.  

The radiation due to uncorrelated electrons and ions in the plasma is called incoherent 

Thomson scattering. 

Collective oscillations, such as the EPW and IAW electrostatic normal modes, 

may exist in a plasma.  When electrons are participating in these collective oscillations, 

either directly or indirectly due to their shielding effect on the ions, the radiation they 

emit adds coherently.  The radiation due to correlated electron and ion oscillations in the 

plasma is called collective Thomson scattering.  Thus, the total radiation scattered by a 

plasma will consist of a relatively weaker incoherent component and a stronger coherent 

(or collective) component exhibiting peaks at the electrostatic normal modes present in 

the plasma.  Instabilities such as SRS and Stimulated Brillouin Scattering (SBS) can 

develop in the plasma and enhance the level of EPW and IAW fluctuations above thermal 

levels.  This will result in an enhancement of the collective mode peaks in regions of 

frequency and wavenumber that satisfy the resonance matching conditions for the 

particular interaction. 

The effect of collective modes on the scattered radiation intensity is taken into 

account by a shape factor given by (c.f. [14]) 
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where, χe(k,ω) is the electron susceptibility, f1e and f1i are , respectively, the first order 

electron and ion distribution functions (resulting from the linearization of the electron and 

ion Vlasov equations), Z is the ion charge number, and the permittivity is given by 

∑++=
α

α ωχωχωε ),(),(1),( kkk ie , where the sum is over all ion species present in the 

plasma.  The shape factor is used to numerically fit the experimentally measured 

Thomson scattered light intensity data in order to determine parameters such as the 

electron density and temperature.  The kinetic equations (i.e. Vlasov equation and plasma 

dispersion function [44]) are used to evaluate these effects and determine the 

susceptibility of the individual charge species. 

Basically, the permittivity of the plasma will cause the incoherent spectrum to be 

enhanced at normal modes of the plasma, i.e. electrostatic longitudinal modes such as ion 

acoustic and electron plasma waves.  Like SRS and SBS, scattering off of normal modes 

in the plasma obeys the frequency and wave vector matching conditions ESSP ωωω +=  

and ESSP kkk += , where the subscripts P, S, and ES represent the probe, scattered, and 

electrostatic waves, respectively.  In addition to frequency and wave vector matching, all 

waves involved in the scattering process must also obey their linear dispersion relations.  

Resonant wave vector matching is illustrated in the scattering diagram shown in Figure 

18.  For a given orientation and wavenumber of the ES wave, the probe and collection 

angles must adjust accordingly to satisfy the frequency and wave vector matching 

conditions and thus coherent peaks in the scattered light intensity will only be observed at 

the appropriate probe and collection angles.  
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The growth rate for the SRS instability (presented in a later chapter) is maximized 

when the laser, scattered EMW, and EPW are collinear and the scattered EMW is 

propagating in a direction opposite to that of the laser.  This is called backscattered SRS 

or BSRS for short.  Thus, those EPWs driven by SRS that are collinear with the laser 

wave vector and propagating in the same direction will grow the fastest.  The probe and 

collection angles required to diagnose a particular EPW are determined by frequency and 

wave vector matching the interaction.  The Thomson probe was set up to investigate 

plasma densities near ne/nc≈0.03 based on previous SHS experiments producing 

significant SRS in this regime.  Calculations of the anticipated probe and collection 

angles for an electron temperature Te = 500 eV are presented in Table 1.  These 

calculations were performed using the Mathcad worksheet shown in Appendix E (Section 

16) and determined the nominal angles of 50 and 63 degrees for the probe and collection 

optics (scattering angle θs = 67o).  The finite f-number of these optics allowed probing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Scattering diagram for the electron plasma wave resulting from backscattered SRS. 
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waves parallel to ko (the free space wave number of the SHS laser beam) from 1.34ko to 

1.76ko. We calculated that our diagnostic would allow resolution of the SRS EPW and up 

to three EPWs from subsequent forward-propagating LDI cascade steps.  As pointed out, 

the average Te was somewhat less than 500 eV and this may have affected the total 

number of cascades that could have been observed.  As shown in more detail in a 

subsequent chapter, for an assumed constant density (a good assumption for the SHS 

experiments) a decrease in temperature will result in a larger deviation in wavenumber 

(∆k/ko), and thus, larger angle on the collection optic between subsequent cascade steps.  

If the temperature deviation is large enough, the LDI EPWs will move out of the range of 

the collection optic. 

Table 1:  Calculated parameters used to determine probe and collection angles for 
Te = 500 eV. 

 

On several shots, thermal ion acoustic waves were probed in order to monitor the 

background electron temperature.  Since the deviation in pulse shape and energy of the 

heater beam was negligible and the electron temperature varies little with distance from 

the target (see Figure 3), monitoring the electron temperature on only a small percentage 

of the total number of shots is sufficient to provide an indication of electron temperature 

for all shots in the experiment.  Figure 19 shows the Streaked Thomson image for shot 

n/nc Wave λ λ λ λ (nm) k (m-1) λλλλs    (nm) ks (m
-1) θθθθprobe θθθθcollect

0.05
SRS EPW 2150.22 202222.17 419.47 147412.3 45.14 58.35
2nd cascade 2195.9 176458.8 417.78 148029.8 49.51 65.44
4th cascade 2237.65 150624.76 416.3 148572.12 53.19 72.55

0.03
SRS EPW 2598.6 210228.02 405.81 153455.22 45.65 55.95
2nd cascade 2666.01 190600.25 404.22 154072.04 49.29 61.03
4th cascade 2731.15 170868.66 402.76 154639.3 52.61 66.01
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number 12809.  A horizontal lineout of this image at the peak intensity of the probe pulse 

is presented in Figure 20 along with a numerical fit to the data generated using the multi-

species Thomson scattering form factor (15) corrected for instrument resolution (~1 Å). 

In general, the one-half of the peak separation is an indicator of the acoustic velocity and 

thus the electron temperature.  A difference in the amplitude of the Stokes (downshifted) 

and anti-Stokes (up shifted) peaks may appear due to a relative drift between the 

electrons and ions Vei. The numerical fit underestimates the region between the peaks 

most likely due to the effects of collisions which are neglected in (15).  The early, mid, 

and late times are defined by looking at the peak and FWHM of a Gaussian fit to the 

wavelength integrated scattered light intensity (see Figure 19(b)).  Thus, mid-time 

corresponds to the peak intensity of the scattering image, and the early and late times, 

respectively, correspond to minus and plus one-half of the full width from the mid-time.  

By numerically fitting the Thomson scattering form factor to the data, the early, mid, and 

 

(a)      (b) 

Figure 19.  (a)  Streaked Thomson image from scattering off of thermal levels of ion acoustic waves.  (b)  
Wavelength integrated lineout of data and Gaussian fit showing definitions for early, mid and late time 

temperatures. 
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late time Te, respectively, were determined to be ~480 eV, ~390 eV and ~300 eV (all ±50 

eV).  As with other calculations, a Mathcad worksheet was used to implement the multi-

species Thomson form factor and numerically fit it to the data.  This worksheet is 

provided in Appendix E (Section 21). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.  Mid-time lineout of IAW Thomson scattering data (solid line) and numerical fit (dashed line) of 
the Thomson shape factor.  The amplitudes of both curves have been normalized to their maximum values 

and are presented in arbitrary units (A.U.). 
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Chapter 3:  Observation of Langmuir Cascade 

 

The results presented in this chapter, in my opinion, represent the first 

unambiguous experimental observation of the Langmuir decay instability (LDI) cascade 

driven by stimulated Raman backscatter.  The electron plasma wave (EPW) spectrum 

resulting from SRS and LDI is measured using collective Thomson scattering, and 

structure is observed in the spectra consistent with LDI cascade.  At least two LDI 

cascade steps are inferred from the measurements presented.  The data shows excellent 

agreement between the backscattered SRS, time-resolved Thomson, and time-integrated 

Thomson spectra. 

In this chapter the theory of SRS and LDI is first presented so that a general 

understanding of these effects is gained prior to proceeding to presentation and 

interpretation of the experimental data.  Next, the experimental results are presented and 

explained.  Correlation between LDI and the saturation of SRS is discussed in relation to 

data illustrating these phenomena.  LDI cascade was observed on only a handful of the 

~75 energy-on-target shots.  It is desirable to attempt to develop trends that would predict 

in what regimes the cascade would and would not be present.  All of the data collected in 

the experiment was analyzed for general trends and these are outlined in a later section.  

Clear cut trends on where LDI cascade occurs could not be ascertained.  In general, the 

single hot spot (SHS) experiments yield results that are closely approximated by 

nonlinear coupled mode theory.  As such they are an excellent test bed for theory-to-

practice experiments.   
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Now that LDI cascade has been established, a parameter study is necessary to 

understand the scaling of the number of cascades with plasma parameters, measure the 

energy in the cascade EPWs, and to investigate further the possible role of LDI in 

limiting the growth of SRS.  All of this work is important but must be deferred to future 

experiments. 

 

3.1 The Theory of SRS and LDI 

 

Control of parametric laser-plasma interactions is essential to the success of 

inertial confinement fusion (ICF) [1,2]. Stimulated Raman scattering (SRS) [3,4]is one 

such interaction involving the resonant decay of an incident electromagnetic wave 

(EMW) into a scattered EMW and an electron plasma (or Langmuir) wave (EPW).  SRS 

is undesirable not only because it can cause losses in drive energy and illumination 

symmetry but also because it can trap and accelerate electrons that could preheat the 

fusion capsule. The onset and scaling of SRS has been the subject of much investigation 

[5]. 

The dispersion relation for SRS is derived in Appendix A and it is reiterated here 

for a convenient reference 
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Since the up-shifted, or Stokes, electromagnetic wave (EMW) governed by the dispersion 

relation DT+ does not satisfy the resonance matching condition, LTo ωωω += , it is 
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usually considered non-resonant and its contribution can be neglected.  The dispersion 

relation for SRS is thus simplified to 

( )2222 ˆˆv
4

1
−− •= eekDD opeoTL ω .    (17) 

On the left-hand side is the product of the linear dispersion relations for the EPW and the 

scattered EMW.  On the right-hand side is the coupling or growth term.  The coupling 

term has a geometrical dependence on the polarization vectors of the incident laser and 

scattered EMW.  In a plane containing both the pump and scattered EMW wave vectors, 

the dot product of their polarization vectors can be maximized for any arbitrary 

propagation direction (see Figure 21(a) where oL ee ˆˆ ≡ ).  However, when the two EMW 

wave vectors are propagating anti-parallel resonance matching dictates that the 

magnitude of the EPW wave vector is maximized, thus maximizing the growth rate for 

the SRS interaction.  With respect to the direction of the laser pump propagation, the SRS 

EMW traveling in the directly backscattered direction will have the maximum growth.  

The maximized interaction is then one-dimensional and can be most easily visualized on 

a 1D ω vs. k matching diagram as shown in Figure 21(b).  The maximized SRS 

interaction also happens to be the easiest measurement to perform experimentally.  This 

is because the lens used to focus the incident interaction laser beam is also used to collect 

the backscattered light (see Figure 5). 
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Numerous instabilities, such as, SRS, stimulated Brillouin scattering (S

two-plasmon interaction (TP), the plasmon-phonon interaction (PP), and filam

can occur during the interaction of an intense laser with a plasma.  These instabi

occur simultaneously with SRS and LDI and scatter energy in all directions or in

of filamentation focus down and intensify the incident laser.  The experiment w

set up to monitor SRS in the direct backscatter direction and Thomson probe

propagating EPWs resulting from SRS and LDI.  Thus, based solely on an arg

total energy conservation, it is plausible that these other instabilities could have h

effect on the observed behavior of SRS and LDI cascade, especially if the growth
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Figure 21.  (a) Diagram showing polarizations of the pump and scattered EMWs for both propag
same plane, and (b) 1D frequency and wave vector matching diagram illustrating the maximi

interaction.  Note that frequencies and wavenumbers are normalized to that of the lase
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ŷ  
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the particular instability exceeded its threshold which is proportional to the damping of 

the daughter waves involved in the interaction [65].  For parameters typical of the present 

SHS experiments, the growth rates and thresholds for some the above mentioned 

instabilities are collected in Table 2.  For a more exhaustive stability analysis of these 

(and other) laser-plasma interactions and the definitions for the growth rates c.f. [4, and 

65].  Table 2 is not meant to be a listing of all possible instabilities that could be present, 

but rather, is meant to show the possibility of other processes occurring simultaneously 

with SRS and LDI.  It is seen that SRS, SBS, and LDI are all predicted to be above the 

convective threshold for the chosen parameters.  The growth rates of SRS and SBS are 

even calculated to be above the absolute threshold.  At this low value of ne/nc the 

threshold for the TP and PP interactions is not exceeded due to the large Landau damping 

of the daughter waves. 

The spatial growth rates for thermal and pondermotive filamentation [51] were 

also evaluated and are listed in Table 2.  The threshold for thermal filamentation is 

loosely defined here as providing one e-fold increase in the laser intensity which for a 

plasma of length L implies 2KL = 1.  Taking the growth length as the length of the SHS 

(~75 µm) it is seen that using this simple analysis, both the thermal and pondermotive 

filamentation thresholds are expected to be exceeded.  One element missing from the 

filamentation model in [51] is supersonic (Mach ~2) flow transverse to the direction of 

laser propagation.  This supersonic transverse flow has been experimentally shown to 

stabilize filamentation [41] and is also present in the present SHS experiments.  Thus 

even though the thresholds for thermal and pondermotive filamentation calculated using 
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the simple models are exceeded, filamentation is not expected be significant in the 

present SHS experiments until very high intensities (~1016 W/cm2). 

 

Table 2:  Nonlinear coupled mode growth rates for various laser plasma instabilities for 
the parameters 50/50 CH plasma, ne/nc = 0.03, Io = 2x1015 W/cm2, λL = 527 nm, Te 350 

eV, and Ti = 100 eV.  The growth rates and thresholds are normalized to the laser 
frequency and the direction of maximum growth is with respect to the direction of the 

laser propagation.  The convective and absolute thresholds are represented by γc and γa, 
respectively.  If the growth rate for an interaction is γc < γmax < γa, the spatial growth rate 
κmax (normalized to the laser wavenumber) is given in parenthesis.  Spatial growth rates 

for filamentation are given in µm-1 and for calculating the threshold (i.e. 2KL > 1) L = 75 
µm was used. 

 

Interaction γγγγ  max (κκκκ  max) γγγγ  c γγγγ  a Direction 

SRS:  EMW → EMW+EPW 3.9x10-3 4.73x10-4 2.4x10-3 Backscatter 

SBS:  EMW → EMW+IAW 1.04x10-3 7.7x10-5 4.6x10-4 Backscatter 

LDI:   EPW → EPW+IAW 
1.9x10-4 

(5x10-3) 
1.72x10-4 

2.4x10-4 
Backscatter 

TP:     EMW → EPW+EPW 1.2x10-3 0.387 - At 45o angles in the plane ┴ to kL 
PP:     EMW → EPW+IAW 0.016 0.087 - Sidescatter 

Filamentation K  max (µµµµm-1) 2K  maxL  Direction 

Thermal 0.077 11.5  NA 

Pondermotive 0.021 3.2  NA 

 

In quasi-homogeneous ignition-relevant plasmas, the EPW amplitude can be large 

for moderate SRS reflectivity so that saturation by nonlinear mechanisms is expected and 

observed [6,7,8,9]. One possible source of non-linearity is coupling of SRS to other 

parametric processes via wave-wave interactions. One such mechanism is the Langmuir 

decay instability (LDI) [3,10,11], where the daughter EPW from SRS grows to a 

significant amplitude and decays into an EPW and an ion acoustic wave (IAW). LDI 

occurs when the amplitude of the primary EPW exceeds a threshold that is proportional 

to the product of the damping rates for the secondary EPW and IAW [65]. The growth 



 60 

rate for LDI is maximized when the daughter EPW and IAW are propagating anti-parallel 

and parallel, respectively, to the primary EPW. Thus, the LDI interaction is maximized 

when the SRS interaction is maximized.  Subsequent EPW decays due to LDI are 

possible if their amplitudes exceed the threshold. Here the terminology used is that an 

EPW generated by LDI is called an LDI cascade step and, collectively, more than one 

cascade step is called LDI cascade. The LDI cascade can saturate SRS since wave energy 

from the SRS EPW couples into secondary EPWs and IAWs that are non-resonant with 

the SRS process. The saturation effect is strongest when the daughter waves are strongly 

damped (but not so strongly damped that the threshold for the LDI interaction is not 

exceeded). 

Backward (relative to the direction of the interaction laser) propagating EPWs 

presumed to be from LDI have been observed in laser-plasma experiments [12,13] and 

LDI has been observed in ionospheric plasma experiments [15,16]. Observation of 

Langmuir turbulence (i.e. the plasma was so strongly excited that a continuous spectrum 

of frequencies is present) in a laser-produced plasma has been reported recently [17]. 

However, it could not be established whether strong turbulence or weak LDI cascade was 

observed in those experiments due to inhomogeneity [18,19] and the experiment used a 

random phase plate (RPP) smoothed interaction beam so there were multiple interacting 

hot spots. The conclusions of Montgomery [18] would also apply to all previously 

published “LDI observation” experiments in which the plasma inhomogeneity was too 

large to observe the fine structure associated with LDI cascade. 
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The LDI and subsequent cascades are visualized on the 1D ω vs. k matching 

diagram as shown in Figure 22.  Three cascade steps are shown in the diagram.  Although 

the IAW phase velocity has been exaggerated in Figure 22 to illustrate the LDI cascade 

process, it is still seen that the frequency separation between cascade steps is small.  The 

frequency separation can be estimated using the fluid dispersion relations for EPWs and 

IAWs and LDI kinematics.  Starting with the dispersion relation for EPWs (8) and 

subtracting one EPW from the next subsequent cascade results in 

)(V3 2
2

2
1

22
2

2
1 EPWEPWTeEPWEPW kk −=− ωω .  Expanding the expressions on both sides of this 

equation gives ))((V3))(( 2121
2

2121 EPWEPWEPWEPWTeEPWEPWEPWEPW kkkk −+=−+ ωωωω .  

The difference between EPW frequencies is the IAW frequency and the sum of the EPW 
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wave numbers is the IAW wavenumber.  Additionally, since the EPW frequency is much 

higher than that of the IAW, the sum of EPW frequencies is ~2ωpe.  Using the above 

approximations and defining )( 21 EPWEPWEPW kkk −=∆  results in 

IAWEPWTeIAWpe kk∆= 2V32 ωω .  Since the IAW frequency is given by IAWsIAW kc=ω  and the 

Debye length is defined as peTeDe ωλ /V=  the previous result can be simplified to 

DeEPW
Te

s k
c λ∆=

V3

2
.  The wavenumber separation between two adjacent co-propagating or 

counter-propagating LDI cascade steps is twice this amount and is given by 

Te

s
Deepw

c
k

V3

4≈∆ λ  which for the parameters of the present experiments translates into a 

scattered light wavelength separation on the order of ∆λ≈10 Å.  The plasma uniformity 

within the interaction volume must be ∆n/ne << 1.5% so that the fine spectral structure of 

the LDI cascade is not smeared out.  This homogeneity requirement can be ascertained by 

using the calculation worksheet in Appendix E (Sections 1 and 16) and simply varying 

the density (ne/nc) to observe how much of a change in density gives a change in the LDI 

Thomson scattered wavelength of 10 Å.  Note that for all subsequent cascade steps the 

EPW wavenumber decreases, and thus, so will kλDe for the EPW.  As such, the Landau 

damping on all subsequent cascade EPWs decreases, thus lowering the convective 

threshold for the cascade step.  What this means is that once the LDI cascade starts it is 

predicted that there will be numerous cascades until shut off by some other mechanism, 

i.e. either pump depletion or dephasing. 
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3.2 Observation of LDI Cascade and Interpretation of the Data 

 

The experimental setup and plasma initial conditions were described in detail in 

Chapter 2.  The plasma initial conditions are considered homogeneous on the scale of the 

laser focal spot volume where the interaction occurs, and enables the observation of fine 

spectral structure associated with LDI cascade. This removes any ambiguity due to 

inhomogeneity when interpreting the data. The initial conditions of these plasmas have 

been thoroughly characterized elsewhere [40].  Additionally, since the interaction beam is 

nearly diffraction-limited, there is no ambiguity in interpretation of the observations due 

to multiple interacting hot spots as would be the case with an RPP smoothed beam. 

The location of the SHS was set at ~400 µm in front of the target, resulting in 

ne/nc≈0.03 as inferred from the backscattered SRS data shown later. Here, ne is the 

electron density and nc≈4 x 1021 cm-3 is the critical density above which 527 nm light 

does not propagate (see Chapter 2 for a more detailed description of the critical density). 

The Thomson scattering diagnostic was set up to diagnose only the forward propagating 

EPWs, i.e. those propagating in the same direction as the interaction laser. Although the 

backward propagating EPWs were not diagnosed, their presence is inferred from the 

resultant Thomson spectrum. 

We use collective Thomson scattering [49,50] to observe the electrostatic waves 

driven by SRS and LDI in the plasma (see Chapter 2, Section 2.4). To calculate the probe 

and collection angles required, we use the linear dispersion relation for an EM wave in a 

plasma, a kinetic dispersion relation for EPWs, an analytic expression for IAWs that 

closely matches the kinetic one [52], and then match in frequency and wave vector the 
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probe beam, scattered light, and the electrostatic wave.  This calculation is performed 

using the calculation worksheet provided in Appendix E (Section 16).  In this worksheet, 

parameters anticipated for the experiment are provided.  Resonance matching the SRS 

and LDI interactions provides frequencies and wavenumbers at which the EPWs are 

expected to be observed.  These frequencies and wavenumbers are then used to resonance 

match the Thomson probe interaction thus providing the expected scattered light 

wavelength and collection angle. 

The f-number of the probe and collection optics allows for a finite range of wave 

vectors (and frequencies for the scattered light) to participate in the Thomson scattering 

(see Figure 12). Using calculations performed prior to the experiment, the Thomson 

probe was set up to investigate plasma densities near ne/nc≈0.03. The probe beam was 

focused into the plasma at 50±6.3 degrees and the scattered light was collected at 63±7.1 

degrees, which allowed probing waves parallel to ko (the free space wave number of the 

SHS interaction beam) from 1.34ko to 1.76ko.  Half of the Thomson scattered light was 

sent to a time-resolved diagnostic that integrated over the scattered wave vectors, and the 

other half was sent to a diagnostic that resolved the wavelength versus angle on the 

collection optic effectively providing ω vs. k  (this calibration is described in more detail 

in Chapter 2, Section 2.4) and was time-integrated over the duration of the probe pulse. 

The latter was accomplished by imaging the optic plane of the collection lens, rather than 

its focal plane [48].  This diagnostic was useful for obtaining the dispersion properties of 

the LDI cascades, and in understanding any structure observed in the time-resolved 

(wave vector integrated) Thomson spectra. 
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The backscattered SRS spectrum from a typical shot in a regime where LDI 

cascade was observed is shown in Figure 23. When looking at the data one must 

remember that λ represents the free space wavelength of the measured scattered light, i.e. 

λ=2πc/ω, where c is the speed of light. For this particular shot the laser peak intensity 

was I≈1.9x1015 W/cm2 and the measured SRS reflectivity was R≈3.2%. The SRS 

spectrum begins at ~659 nm and has an intensity weighted centroid of ~657 nm.  Using 

the measured SRS centroid wavelength and the measured mid-time Te, we estimate 

kLλDe≈0.28, where kL is the wavenumber of the SRS Langmuir wave. 

A rough estimate of the Langmuir wave density fluctuation can be obtained from 

the SRS reflectivity, and compared to estimates of the LDI threshold as a consistency 

check [9,53] using the following formulas 

 
 
Figure 23.  The SRS spectrum observed on shot number 12805.  The normalized frequency scale ωES/ωo 

(ωo is the angular frequency of the SHS laser) shows the expected electrostatic wave frequency for a given 
wavelength. 
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2/122
max ])//(4[)/( LknnkRnn oco∆=δ , and   (18) 

2/12/1 )/()/(4)/( pLiaiaDLLDI vvknn ωωλδ = .   (19) 

In these equations, the variables and their assumed values (in parentheses) are:  Rmax 

(0.032) is the maximum reflectivity, ∆k (45,125 m-1) is the spectral width of the SRS (i.e. 

the observed spectral width (∆λSRS≈3.55 nm) corrected in quadrature for the instrument 

resolution (∆λI≈1.79 nm)), n (0.0303nco) is the electron density, ko (2π/527nm) and nco 

(4.02x1021 cm-3) are, respectively, the wave number and critical density of the incident 

beam, L (75 µm) is the interaction length, (νia/ωia) (0.027) is the ratio of the IAW 

damping to its real frequency for our plasma conditions (Ti≈100 eV), and (νL/ωp) (0.007) 

is the ratio of the Langmuir wave damping to the plasma frequency.  We calculate 

(δn/n)=0.024 is sufficient to exceed the LDI threshold of (δn/n)LDI=0.015. 

The SRS spectrum clearly shows curvature towards shorter wavelengths over the 

duration of the laser pulse and there is an abrupt change in the curvature at time t≈-10 ps. 

From the SRS spectrum and measured Te the plasma density on this shot is ne/nc~0.0303. 

The decrease in the SRS wavelength with time is accounted for by the measured decrease 

in Te.  To ascertain this, the Mathcad worksheet in Appendix E (Section 9) was used to 

calculate the change in SRS wavelength assuming a constant ne/nc~0.0303 and a decrease 

in temperature from 480 eV to 300 eV (see Chapter 2 for details on the Te measurement).  

The calculation shows that the SRS wavelength changes from ~662 nm to ~652 nm.  The 

observed change in wavelength is not exactly this much.  However, effects such as local 

heating of the plasma by the SHS and the exact Te at the onset of SRS were not 

considered.  Using the same Mathcad worksheet in Appendix E (Section 16), for these 

conditions the expected separation between the SRS EPW and the first forward 
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propagating EPW from LDI cascade on the Thomson diagnostics would be ~11.5±0.8 Å, 

with the uncertainty being due to the temperature measurement. 

The time-resolved Thomson spectrum corresponding to the SRS spectrum in 

Figure 23 unambiguously shows the signature of LDI cascade (see Figure 24(a)). A 

horizontal lineout of this image where the cascade separation is indicated is shown in 

Figure 24(b). From the SRS data and an ideal calculation (i.e. using nonlinear coupled 

mode theory and resonance matching) we would anticipate the SRS EPW to initially 

occur at a Thomson wavelength of ~406.1 nm and the observed data is in close 

agreement with this. The slight discrepancy in the Thomson wavelength for the SRS 

EPW (∆≈0.5 nm) is within the uncertainties in the calibration of the SRS and Thomson 

diagnostic wavelength scales and the uncertainty in the Te measurement.  As indicated in 

Figure 24(b), the spacing between the SRS EPW and the second cascade is ~10.6 Å and 

is in excellent agreement with the ideal calculation. The curvature in the Thomson 

 
(a)      (b) 

Figure 24.  (a) Time-resolved Thomson spectrum from shot number 12805 showing the forward propagating 
EPW from SRS and the second LDI cascade.  (b) A horizontal lineout taken where the cascade separation is 

indicated in (a). 
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spectrum closely follows that in the SRS spectrum.  When comparing the SRS and 

Thomson data one must remember that the wavelength scales are drastically different.  

Although the calibration of the time axes in Figure 23 and Figure 24(a) are known 

individually, their zero reference is not directly comparable.  The peak of the spectrum in 

each image has been placed at approximately time zero on the axis.  One can still see that 

there is an abrupt change in the Thomson spectrum correlated with that in the SRS 

spectrum.  The amount of change in wavelength is also not directly comparable as the 

scales are different and the EPW spectrum is from Thomson scattering.  One must use the 

calculation worksheet in Appendix E (Section 16) to ascertain the expected behavior 

from the change in electron temperature. 

The LDI does not start immediately with the SRS most likely due to being below 

threshold for the interaction, or due to detuning as indicated by the change in the SRS 

wavelength with time.  Since the SRS process has a finite growth rate, it will take some 

time before the SRS EPW grows to sufficient amplitude to undergo Langmuir decay.  

Remember, the first backward propagating LDI cascade EPW is not shown in the image 

and it also needs time to grow to a sufficient amplitude in order to undergo Langmuir 

decay.  Note that the observed magnitude of the LDI cascade is comparable to that of the 

SRS EPW.  This is an important finding that is in stark disagreement with the results of 

recent numerical modeling [35] that predicts the effect of LDI daughter waves should be 

energetically negligible and not significantly affect the SRS process. 

Note that LDI cascade #2 shuts off before the peak of the SRS EPW.  This could 

be due to several reasons.  Using the calculation worksheet in Appendix E (Section 9) 

shows that for a decreasing temperature and constant density the damping of the LDI 
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daughter EPWs decreases.  This is not only because the wave vector magnitude decrease 

but also because the Debye length decreases.  Thus, kλDe decreases and so does the 

Landau damping for each LDI cascade EPW.  Although the ion damping increases, the 

net effect is a decrease in the threshold for the LDI interaction.  So, the change in 

damping due to the decrease in temperature is not predicted to be responsible for the shut 

off.  One could also argue that the decrease in temperature detunes the interaction.  This 

is not the case as the slow temperature decrease still allows for resonance matching the 

LDI interaction.  As mentioned above and shown in Figure 24(a), the SRS and LDI EPW 

amplitudes are large.  As such, one would anticipate significant particle trapping to be 

occurring.  Nonlinear particle trapping effects have in theory been shown to produce a 

frequency (and wavenumber) shift of large amplitude EPWs [33].  The time-dependency 

of this frequency shift is outlined in [33] and its asymptotic value is ( )BL ωπγ /87.1~ +−  

[54] where Ωo is given by  
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and Eo is the amplitude of the plasma wave electric field, k is the EPW wavenumber, fo is 

the initially homogeneous Maxwellian distribution, vp is the phase velocity of the EPW, ε 

is the longitudinal permittivity function for the EPW, γL is the Landau damping of the 

EPW, and ωL is the initial EPW frequency.  More conveniently, the electric field can be 

written in terms of the bounce frequency eoB mkeE /≡ω  and (20) can be recast as 
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Numerical simulations (outlined in the next chapter) were performed to ascertain the 

value of the bounce frequency and (21) was coded into the calculation worksheet in 

Appendix E (Section 11) to evaluate the nonlinear frequency shift.  Calculations show 

that for the parameters of shot 12805 the expected nonlinear shift in the EPW frequency 

and wavenumber are δω/ωo ≈ -6.05x10-4 and δk/ko ≈ -0.03, respectively, where ωo and ko 

are the SHS interaction laser frequency and wavenumber.  The asymptotic nonlinear 

frequency and wavenumber shift is expected to occur on a time scale of t = 2π/ωB which 

is on the order of ~0.1 ps.  Note that the nonlinear frequency shift calculated is on the 

order of the growth rate for the LDI process (γLDI~1.9x10-4 - see Table 2) and is most 

likely responsible for dephasing and effectively shutting off the LDI interaction.  Also 

note that the frequency shift is not comparable to the SRS growth rate (γSRS~3.9x10-3) and 

thus is not expected to completely dephase this interaction.  There are at least three large 

amplitude EPWs participating in the LDI cascade process each of which will be subject 

to the nonlinear frequency and wavenumber shift described above.  Thus there is 

dephasing on the SRS driven LDI interaction and on the LDI cascade interaction.  It is 

expected that the shift in frequency and wavenumber of each subsequent LDI cascade 

EPW will be the sum of the shifts of the primary EPWs that decayed to form it.  The 

interaction will hold on as long as resonance matching can be satisfied.  When this is not 

the case it is expected that the interaction will abruptly terminate. 
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The LDI cascade has a unique signature in frequency and wavenumber due to the 

combination of the nonlinear shift discussed above and an effect that I introduce here as 

thermal flattening.  The time-integrated Thomson spectrum corresponding to the SRS and 

time-resolved Thomson spectra shown in Figure 23 and Figure 24(a), respectively, show 

this distinct signature (see Figure 25).  Two distinct waves are observed separated in both 

frequency (Thomson wavelength) and wave vector (position on the collection optic). The 

initial spacing in wavelength (∆λ≈10.6 Å) and wave vector (∆k/ko≈-0.13) is consistent 

with the ideal calculation using the density estimated from the SRS spectrum and the 

mid-time measurement of Te. The ω and k-space behavior of the spectrum can be 

modeled using nonlinear coupled mode theory and resonance matching by assuming a 

fixed density and a decreasing temperature. The finite f-number of the SHS focusing lens 

allows for a range of wave vectors and frequencies to participate in the SRS interaction 

 
Figure 25.  Time-integrated Thomson spectrum from shot number 12805 showing the forward propagating 

EPW from SRS and the second LDI cascade. 
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(see Figure 12).  This will result in some fixed initial spread in both ω and k of the SRS 

EPW.  As time progresses, Te, and to a lesser degree, ne/nc decrease due to expansion of 

the plasma [46].  As Te decreases, so does the curvature in the Langmuir wave dispersion.  

I propose that this be described succinctly as thermal flattening as it is a thermal cooling 

effect that leads to flattening of the EPW dispersion.  For any subsequent EPWs 

generated by LDI, a small change in frequency will result in a large change in wave 

number due to this effect.  Additionally, any change in frequency or wavenumber due to 

nonlinear particle trapping effects will be exaggerated due to thermal flattening. 

In an underdense plasma, such as that in the present experiments, the frequency of 

the SHS interaction laser and SRS EM waves are much greater than that of the SRS 

EPW. To satisfy resonance matching as Te decreases, the change in the SRS EPW wave 

number will be relatively small. However, the frequency does change slightly. This 

frequency change combined with the decrease in Te is partly responsible for the spectrum 

shown in Figure 25.  Calculations contrasting the effects of a constant temperature with 

decreasing density and constant density with decreasing temperature are plotted in Figure 

26.  For example, assuming a decrease in Te of 100 eV (from 350 eV), the ideal 

calculation shows that the relative change in ∆λ and ∆k/ko of the second LDI cascade to 

that of the SRS EPW are 0.94 and 7.1, respectively.  What this means is that compared to 

the SRS EPW the LDI cascade EPW is expected to change about the same amount in 

frequency but much more in wavenumber. Thus, the narrow ∆λ, broad ∆k/ko time-

integrated spectrum is characteristic of an EPW generated by LDI in a plasma exhibiting 

a decreasing electron temperature and not some other source of EPWs. The actual change 

in ∆λ and ∆k/ko shown in Figure 25 do not exactly match the ideal calculation (assuming 
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a decrease in Te from 380 to 300 eV) most likely due to uncertainties in the actual Te in 

the SHS and also due to the nonlinear frequency and wavenumber shift mentioned above. 

The LDI cascade signature shown in Figure 25 could possibly be used as a temperature 

diagnostic, at least in the SHS experiments, or also could be used to predict the EPW 

field amplitudes by measuring the nonlinear shift in wavenumber. 

Another interesting shot showing LDI cascade is shown in Figure 27.  This 

Spectrum corresponds to the SRS spectrum shown in Figure 8.  This SRS spectrum is 

bifurcated most likely due to filamentation.  It was originally thought that Figure 27 was 

showing up to the sixth LDI cascade step.  However, closer analysis of the spectrum 

revealed that there are two independent cascade processes due to the bifurcated SRS 

spectrum.  Unfortunately, the gated Thomson diagnostic was grossly misaligned on this 

shot and offers no meaningful data. 
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Figure 26.  SRS and 2nd LDI Langmuir wave behavior in k-space assuming (a) a constant temperature and 
decreasing density and (b) a constant density and decreasing temperature.  Graphs were generated using 

linear theory dispersion relations and resonance matching calculation worksheet in Appendix E (Sections 9 
and 18).  The observed behavior is consistent with graph (b). 
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DI cascade on the SRS amplitude can be gleaned from looking 

MW, SRS EPW and the LDI cascade #2 EPW.  The SRS and 

mages provide a spectrum resolved in wavelength versus time.  

sity) on the CCD image is an indicator of the energy.  Thus, if 

elengths in the spectrum and plot the CCD pixel counts versus 

f the power in the particular wave.  The power in the spectra of 

a) is shown in Figure 28.  All powers have been normalized to 

 spectrum, i.e. the LDI cascade #2 EPW has been normalized to 

 

son spectrum from shot 12767 showing two independent LDI cascade 
 bifurcated SRS spectrum shown in Figure 8.  For this shot Io = 4.35x1015 
m2, R = 4.46 %, ne/nc = 0.035, and kλDe = 0.245. 
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the maximum amplitude of the SRS EPW.  There is evidence that LDI is affecting SRS 

on this shot as indicated by the behavior of the power.  What is not seen in Figure 28 is 

the power in LDI cascades #1 and #3 (if present) as the backward propagating EPWs 

were not diagnosed in the experiment.  However, it is clear from Figure 28 that the 

growth rate of power in the SRS EMW and EPW decreases (γ2 < γ1) presumably when 

LDI cascade #1 becomes significant at t≈60 ps.  When LDI cascade #2 drops off (most 

likely due to dephasing), the power in the SRS EPW is slowly decreasing and the power 

that was in the cascade(s) apparently shifts back to the SRS EMW.  To understand the 

behavior here requires more than independent three-wave analyses as the SRS and LDI 

waves are coupled.  A recent numerical study of the effect of multiple LDI (and SRS) 

cascades on SRS may provide more insight on the time-dependent behavior of the SRS 

and LDI daughter waves [55].  SRS quickly drops off while the laser intensity is still 

above threshold for the interaction.  This is most likely also due to dephasing as the SRS 

EPW has grown to a large amplitude and particle trapping is expected to be significant.  

Unfortunately, it is impossible to extract the exact energies in the EPWs since no 

calibration for this was performed on the instrument.  The relative power behavior does 

however at least qualitatively link LDI cascade to some saturation of SRS.   
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Figure 28.  Power in the SRS EMW, SRS EPW and the LDI #2 cascade.  The power is defined as the 
wavelength integrated counts on the CCD image for the particular wave per unit time.  The LDI cascade 

EPW is normalized to the peak value of the SRS EPW. 
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3.3 Data Sorting and General Trends 

 

In an effort to determine some general trends and regimes for LDI occurrence or 

non-occurrence, qualitative sorting was performed on the data collected in the present 

experiment.  The qualitative data sorting categories and rating numbers are described in 

Table 3.  Visualizations of typical streaked Thomson (ST) and gated Thomson (GT) data 

corresponding to these sorting categories are shown in Figure 29.  Only generalized 

wavelength, time, and wavenumber axes are shown in the Figure 29 as only a qualitative 

analysis is being performed.  Trends are found but they are subtle.  These trends are 

shown graphically and described in the following paragraphs. 

 

 

Table 3.  Qualitative sorting category ratings and descriptions. 

 

Rating Description 

0 GT, ST data are missing (can’t determine the spectral quality), or the shot 

was used for a different purpose (e.g. EAW modes, IAW, low dispersion) 

1 GT shows broad ω, narrow k, and ST shows broadening ω 

1.5 GT shows broad ω, narrow k, but there’s some frequency structure 

2 GT and ST show definitive LDI cascade 

2.5 There are indications of cascade, but also other structures visible 

3 There is a lot of structure, but no definitive LDI cascade 
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Figure 29.  Visualizations of the qualitative data sorting categories and assigned ratings. 
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All of the data collected was analyzed and assigned a rating value as outlined 

above.  For each shot certain other parameters are known from measurements, such as, 

the interaction beam intensity, the reflectivity, the value of ne/nc as determined from the 

backscattered SRS spectrum and measured Te (or equivalently the value of kλDe 

calculated from these numbers).  For the qualitative analysis, one is restricted to plotting 

the sorting category versus one of the aforementioned variables.  Alternatively, 

combinations of the variables may be formed and plotted against if the quantity makes 

sense, e.g. the quantity Io*(ne/nc) in relation to the spatial growth rate for pondermotive 

filamentation [51].  Graphs of the data sorting categories versus the various parameters 

are shown in Figure 30 through Figure 33.  
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Figure 30.  Qualitative data sorting – plot of the rating versus ne/nc. 
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Figure 31.  Qualitative data sorting – plot of the rating versus kλDe. 
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Figure 32.  Qualitative data sorting – plot of the rating versus intensity. 
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 Since the data does not represent what one would consider a large statistical 

group, there is little to be gained from the trend analysis.  However, what one can glean 

from the trend analysis is the following. 

• Data characterized by narrow k, broad ω (Rating=1) tend to be at the highest kλDe. 

These spectral characteristics are what would qualitatively be expected for 

electron trapping [33]. 

• Data characterized by a bursty ω-spectra with k~constant (Rating=3) is what is 

qualitatively expected for SRS occurring is a filamented beam. Rating=3 data tend 

to occur at high densities (for lower intensities), or at “any density” given a “high 

enough” intensity. 
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Figure 33.  Qualitative data sorting – plot of the rating versus the product of Intensity and ne/nc normalized 
to 1014 W/cm2. 
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• LDI, or LDI with filamented SRS, might only occur in a narrow range of kλDe for 

this experiment, being limited at high kλDe by trapping, and being limited at low 

kλDe by strong filamentation.  

 

3.4 Conclusions on the Observation of LDI and Future Work Necessary 

 

In summary, it is clear that LDI cascade was definitively observed in the 

experiment and this is claimed to be the first such observation.  The LDI cascade was 

observed on only a handful of the ~75 energy on target shots.  The amplitude of the LDI 

cascade EPW was comparable to that of the SRS EPW and there is evidence that 

significant particle trapping effects act to quickly dephase and shut off the LDI cascade 

completely before SRS terminates.  A general trend analysis of the data did not reveal 

definitive regimes in which the cascade did and did not exist.  However, the cascade 

process may have been observed in a limited range of kλDe being bordered on one side 

(low kλDe) by filamentation and on the other (high kλDe) by particle trapping effects.  It is 

possible that since the electron temperature measured in the experiment was significantly 

less than that used in preparatory calculations, more than one forward propagating LDI 

cascade EPW existed.  However, these LDI cascade EPWs may not have been detected 

due to the limited range of the probe and collection optics used for the Thomson 

diagnostic.  Future experiments to further characterize the LDI cascade EPWs must 

therefore be conducted on hotter plasmas and use larger probe and collection optic 

apertures.  It would also be very beneficial to simultaneously probe the forward and 

backward propagating EPWs from SRS and LDI and calibrate the streaked Thomson 
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diagnostics so that the energy in the EPWs could be ascertained.  If this is done, a clear 

picture of the effect that the LDI cascade has on SRS could be established. 
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Chapter 4:  Observation of Stimulated Electron Acoustic Wave 

Scattering 

 

This chapter presents observations of, numerical simulation of, and a theory for 

scattering off a new mode observed experimentally in a laser-produced plasma.[32]  

Scattering off of this new mode has been named stimulated electron acoustic scattering 

(SEAS) since the incident laser scatters off of an electron acoustic wave (EAW) to 

produce a scattered electromagnetic wave (EMW). 

In the present single hot spot (SHS) experiments, stimulated scattering was 

observed at a frequency and phase velocity (ω ≈0.4ωpe, vφ≈1.4ve) below that of the SRS 

driven electron plasma wave (EPW) and well above that of the ion acoustic wave (IAW).  

Although this mode has been observed previously [56,57] it was speculated to be a result 

of either stimulated Raman scattering (SRS) from an abnormally low density region in 

the plasma, increased levels of ion mode activity, or non-uniform laser heating of the 

plasma.  However, no physical explanation, supporting theory, or calculations were 

provided to explain the observations.  In the very homogeneous, well characterized 

plasmas used in the SHS experiments, a low density region near the SHS interaction 

volume and non-uniform laser heating of the plasma would be extremely difficult to 

create and there is no significant ion mode dynamics at or near this frequency. 

A one-dimensional (1D), relativistic, finite-length, Eulerian-Vlasov code was 

used to investigate the nonlinear time evolution of the electron distribution function 

during SRS.  It was found that as the potential of the plasma wave becomes large, beam-

like structures (i.e. drifting structures having a thermal velocity less than that of the 
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background plasma) develop in phase space above and below the phase velocity of the 

SRS EPW.  As will be shown later, the electron distribution becomes non-Maxwellian as 

the electrons are redistributed in energy.  This redistribution effectively forms a low 

density beam structure drifting at a velocity much less than the phase velocity of the SRS 

EPW.  The beam structure persists for a time much greater than the growth time of SRS, 

thus allowing the laser to scatter off of new modes that are associated with this beam in 

the plasma. 

Linear modeling of a Maxwellian background plasma containing a single 

Maxwellian beam (described in a later section of this chapter) shows that if the beam 

velocity is sufficiently separated from the phase velocity of the electron plasma wave 

(vφEPW) generated by SRS, additional modes, which may be weakly damped, emerge and 

the SRS driven EPW mode is only slightly perturbed.  It will be shown that these 

additional modes have acoustic dispersion, i.e. obr kv≈ω , where vob is the beam velocity, 

and are thus called electron acoustic waves [58].  One possible explanation for SEAS 

which is put forth in this thesis is that the nonlinear evolution of the SRS-EPW results in 

effectively generating a weak (i.e. low density) electron beam (e-beam), with thermal 

spread, near the bulk of the original Maxwellian distribution.  In addition to the electron 

plasma wave mode, this new distribution supports linear (weakly damped) modes having 

acoustic dispersion.  An explanation for scattering off of this EAW mode, supported by a 

quasimode dispersion relation, is also presented in this chapter. 

 The experimental results are presented first as they are the motivation for the 

work that follows.  Next, the results of numerical modeling of the experiment are 

provided that illustrate the time-evolution of the electron distribution function.  A 
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description of the equations solved and numerical procedures used in the code is provided 

in Appendix D.  The code itself is also provided in Appendix D for a quick reference on 

implementation of the numerical methods.  Additionally, for those interested a working 

version of the code is available on the CDROM attached to this thesis.  A linear theory 

description of how the EAW mode may emerge is then presented using parameters 

gleaned from the numerical modeling as input to the model.  Finally, a Vlasov description 

of scattering off of the new quasimode is outlined. 

 

4.1 Experimental Observation of Stimulated Electron Acoustic Scattering 

 

In the present single hot spot (SHS) experiments, stimulated scattering was 

observed at a frequency and phase velocity (ω ≈0.4ωpe, vφ≈1.4ve) below that of the SRS 

generated electron plasma wave (EPW) and well above that of the ion acoustic wave 

(IAW).  The motivation for the work presented in this chapter was to understand the 

origins of and scattering off of this new electron acoustic wave (EAW) mode.  As it turns 

out, scattering off of this or a similar mode was observed in past experiments [56,57] and 

although not understood it was explained as resulting from either stimulated Raman 

scattering (SRS) from an abnormally low density region in the plasma, increased levels of 

ion mode activity, or non-uniform laser heating of the plasma.  In the very homogeneous, 

well characterized plasmas used in the SHS experiments, a low density region near the 

SHS interaction volume and non-uniform laser heating of the plasma would be extremely 

difficult to create and there is no possibility for an ion mode density fluctuation resulting 

in scattering at or even near this frequency. 
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In past experiments on TRIDENT [57] the energy scattered off of the EAW mode, 

henceforth called SEAS, represented a relatively small percentage of the total scattered 

energy.  It was also observed that the time duration of SEAS was much less than the 

interaction laser pulse and the SRS.  The French experiments [56] were conducted at low 

intensity (~1013-1014 W/cm2) and no backscattered electromagnetic wave (EMW) 

resulting from SEAS was ever observed.  They found that the frequency of the mode was 

intensity-dependent and concluded that the emergence of this mode could not be 

explained by known theory.  No physical explanation was offered in [56] and [57] for the 

presence of the EAW.  They only provided speculation without any supporting 

calculations or theories.  In the present SHS experiments, the mode is energetically 

insignificant when compared to the energy in the SRS EMW.  This is shown by the time-

integrated backscattered spectra shown in Figure 34.  Due to the limited dynamic range 

of the streaked SRS spectrometer diagnostic, observation of both SRS and SEAS spectra 

on the same shot was not possible.  Thus, Figure 34 is a composite of two separate shots 

having approximately the same laser and plasma conditions.  The spectral resolution of 

the instrument is ~1.8 nm for the SRS spectra, and ~0.25 nm for the SEAS spectra. The 

spectrum shows a bright narrow peak at 654 nm (spectral width ~7 nm) corresponding to 

SRS scattering from an EPW with kλDe ≈ 0.27 (Te ≈ 350 – 400 eV). The SRS reflected 

energy was ~0.06 of the incident laser energy.  Also shown is a spectrum recorded in the 

range from 540-600 nm on a separate shot with nearly identical laser and plasma 

conditions. A narrow peak was observed at 566.5 nm (spectral width ~5 nm), whose 

amplitude is ~3000x lower than the SRS peak – this is the EAW mode. The energy in the 
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SEAS mode was at most 2 x 10-5 of the incident laser energy.  Note that the dispersion of 

the EAW mode was not established experimentally. 

As characterization of SEAS was not the primary mission of the experiments, the 

only scaling performed was a variation of the interaction laser intensity.  It was observed 

that at an intensity below I≈3x1015 W/cm2, the SEAS mode dropped below the detection 

threshold of the instrument while SRS was still observed at the 0.005 level.  Due to the 

experimental setup, no other scaling studies were feasible.  Thus all that could be 

concluded is that there was a threshold for SEAS and that the frequency of the mode was 

known. 

The phase velocity of the mode was estimated by assuming the scattering is a 

resonant process and k-matching the interaction.  An example of resonance matching the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.  Composite image from two separate shots showing the time-integrated SRS and SEAS 
signals.  The amplitude of the SEAS is seen to be approximately 3000x less than the SRS signal and 

occurs at a much lower phase velocity. 
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SEAS interaction is shown in Figure 35 along with the SRS interaction.  It is seen that 

since the frequency of the EAW mode is much lower than the laser and SRS EMWs, the 

difference in the wavenumber of the SRS and SEAS EMWs is very small.  What this 

means is that attempting to resolve these two EMWs in wavenumber will be more 

difficult than resolving them in frequency.  This will be elaborated on in more detail in 

the analysis of the numerical simulation data shown in a later section of this chapter. 
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Figure 35.  1D resonance matching diagram showing the SRS and SEAS
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The results of data analysis on the SEAS observations are collected below in 

Table 4.  To summarize, the past and present experimental observations of this mode 

show that  

• The frequency and phase velocity of the mode lies in between that of the EPW 
and the IAW, 

• The energy in the scattered mode is much less that that in SRS, 

• In the French experiments, the frequency of the mode was observed to have a 
dependence on the interaction laser beam intensity, 

• The present SHS experiments noted little deviation in the frequency versus 
interaction laser intensity which may be due to the fact that SRS was saturated, 

• The SEAS interaction exhibited a threshold intensity, and 

• The scattering does not last as long in time as the SRS. 

 

 

Table 4:  Summary of SEAS mode observations.  ∆t is the time duration of the observed 

spectrum. 

S E A S  M o d e  S h o t An a ly s is :

Ca lib ra tio n  in fo rm a tio n : 1 -1 8 0 0 /5 0 0  n m  g ra t in g
n m /p ix : 0 .0 3
R e fe re n c e : 5 5 7 .0 3 a t  p ix e l 6 6 2

S h o t Nu m b e r En e rg y (J) I  (W /cm 2) ∆λ∆λ∆λ∆λF W H M (n m ) λλλλcen ter  (n m ) R S R S (%) ∆∆∆∆ t (p s)
1 2 8 0 7 0 .3 5 4 .1 8 5 E + 1 5 N A N A
1 2 8 0 8 0 .3 3 1 4 .1 2 2 E + 1 5 4 .7 1 5 6 5 .9 2 5 6 .6 1 % 1 5 9 .3
1 2 8 0 9 0 .2 4 4 3 .8 3 1 E + 1 5 4 .8 6 5 6 5 .9 1 2 .0 9 % 1 5 7 .5
1 2 8 1 0 0 .0 9 8 3 .3 4 3 E + 1 5 N A 0 .7 5 %
1 2 8 2 6 0 .1 5 2 3 .5 2 4 E + 1 5 4 .3 2 5 6 6 .3 1 5 0 .9 2 % 1 6 8 .2
1 2 8 2 8 0 .3 7 7 4 .2 7 5 E + 1 5 N A 6 .8 2 %
1 2 8 2 9 0 .5 1 4 .7 1 9 E + 1 5 5 .6 7 5 6 5 .6 5 5 2 .8 7 % 1 3 4 .5  
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On a few shots the Thomson diagnostic was set up to probe EPWs outside of the 

hot spot.  The probe and collection geometry for these shots is shown in Figure 36.  The 

spectra from these shots (c.f. Figure 37) show numerous spectro-temporal events possibly 

indicating that beaming electrons generated by SRS are interacting with the plasma 

outside the SHS and also give an approximate time duration of their interaction.  The 

Thomson probe was carefully aligned to look outside of the interaction hot spot.  

However, it cannot be ruled out that the observed spectrum could have also been due to 

self-focusing and filamentation causing SRS past (i.e. in front of) the best focus position 

of the hot spot [41], but there is no hard evidence or experimental results to back this up.  

On shot 12831 the SRS spectrum (see Figure 37) is very broad and is not indicative of 

filamentation.  On the other hand, distinct spectro-temporal events are noted in the 

streaked Thomson spectrum.  An analysis of how far EPWs generated by SRS and 

electrons beaming at the EPW phase velocity could travel in the plasma was performed.  

These calculations are outlined in Appendix E (Section 10) and are illustrated in Figure 

36.  The calculations show that an EPW generated by SRS in the SHS would travel only 

~2 µm before decaying in amplitude one e-folding due to Landau damping and thus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.  Hot spot and probe geometry for investigation of plasma waves outside of the SHS. 
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would not make it to the Thomson probe point.  However, the mean free path of a 

beaming electron is on the order of ~50 µm and thus it is likely that these beaming 

electrons traveled several mean free paths and, via a beam-plasma interaction, could be 

the source of the EPWs observed outside of the SHS. 

 
(a) 

 
(b) 

 

Figure 37.  (a) SRS and (b) streaked Thomson spectra from shot 12831 where EPWs were probed outside of 
the SHS.  The broad SRS spectrum does not directly correlate to the numerous spectro-temporal events 

observed in the streaked Thomson image.  These EPWs could be the result of beaming electrons interacting 
with the plasma. 
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4.2 Numerical Simulation of SRS Using a 1D Vlasov Code 

 

Numerical modeling using a relativistic, one-dimensional (1D), finite-length, 

Eulerian-Vlasov code with mobile electrons and a single species (also mobile) hydrogen 

ions was used to investigate the nonlinear time evolution of the electron distribution 

function during SRS.  This code, with various boundary conditions and dimensionalities, 

has been used extensively in the past to simulate SRS and beat-wave phenomena [59, 60, 

61, 62, 63, 64].  The equations solved and numerical methods employed are described in 

more detail in Appendix D.  The code is only a numerical model for the physical system.  

As such, one must wonder if the elements of the model are adequate for simulating the 

physical problem of interest so that meaningful results are provided.  We have justified 

the use of a 1D code with the following arguments. 

A Vlasov code by definition neglects the effects of collisions.  To determine if 

this is justified, one must compare the growth rates of the instabilities being studied, the 

evolution time of the electron distribution function of interest, and the simulation time to 

the characteristic collision time of the physical plasma system.  The characteristic 

electron collision time τc is the inverse of the electron-ion collision frequency νei.  If the 

time between collisions is much greater than the simulation time, the plasma can be 

considered essentially collisionless and the Vlasov model is adequate for the simulation.  

The formula for νei is [65] 

)(
)ln(

102 1
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6 −− Λ≈ s
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x

eV

e
eiν ,    (22) 
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where Z is the ion charge state, ne is the electron density (in cm-3), TeV is the electron 

temperature in (in eV), and ZneDe /12 2πλ=Λ  is the plasma parameter defined as the ratio 

of the maximum to minimum impact parameters.  Using parameters typical of the SHS 

plasmas the collision time τc=1/νei is on the order of ~1 ps.  In the numerical simulations 

it is seen that SRS grows up from a small coherent excitation to significant levels even 

prior to the laser transiting one-half of the plasma region.  Since the plasma is very 

underdense, the interaction laser wave front is traveling at essentially the speed of light.  

The length of the plasma region is chosen to model that of the SHS linear dimension (~75 

µm).  The time it would take the laser wave front to traverse the plasma region would be 

~0.25 ps.  Thus, significant SRS is developing in the numerical system prior to one transit 

of the system which takes much less than the collision time.  Therefore, neglect of 

collisions in the numerical model is justified.  Simulations performed for longer than ~1 

ps would be unrealistic using the code as collisional effects would become important. 

One might argue that transverse electromagnetic wave instabilities may develop 

due to temperature anisotropies in the physical plasma, i.e. a Weibel instability.[66]  This 

instability could interfere with experimental observations if the unstable wavenumbers 

are in the range of the SRS wavenumbers, and if this were true it would need to be 

accounted for in the numerical model by increasing the dimensionality of the code.  If the 

effect of this instability is not included in the numerical model, the results of any 

simulations might provide misleading information.  A kinetic stability analysis of counter 

streaming and anisotropic temperature distributions predicts that the range of unstable 

wavenumbers is given by [67] 
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where s represents a particular species in the plasma, sossps men εω /2=  is the plasma 

frequency for the species, kB is Boltzmann’s constant, ⊥sT  and ||sT  are, respectively, the 

perpendicular and parallel temperatures of the species, ms is the mass of the species, vso is 

the drift velocity (if any) of the species component, and c is the speed of light.  One can 

analyze all species in the plasma separately and get a feel for the range of unstable 

wavenumbers that it might contribute to.  It is convenient to normalize the wavenumber 

to that of the free-space interaction laser beam, i.e. nL kkc →ω/ .  Multiplying both sides 

of (23) by the normalization factor Lc ω/  and realizing that csLps nn // =ωω , where nc 

is the critical density for the given laser wavelength, gives 
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Looking only at the non-drifting background plasma, one can estimate the temperature 

anisotropy necessary in order to obtain unstable wavenumbers near that of SRS.  For 

parameters typical of the SHS experiments (ne/nc = 0.03, Te = 400 eV, Ti = 100 eV, CH 

plasma) the normalized SRS wavenumber is expected to be kn = 0.783.  To obtain an 

unstable wavenumber at this magnitude would require a temperature anisotropy of ~21.  

This is totally unrealistic for the heater laser and plasmas generated in the SHS 

experiments since the heater beam is smoothed with a random phase plate (RPP) and 

there is no imposed drive for anisotropy in the experiment, e.g. magnetic field.  For any 

realistically feasible temperature anisotropy, the range of unstable wavenumbers is far 

removed from the SRS wavenumbers.  To date, no one has measured the temperature 
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anisotropy in a laser-produced plasma driven by SRS. [68]  However, the electron 

temperature both along the SHS and perpendicular to the target has been measured 

experimentally and was found to be approximately the same within the accuracy of the 

measurement.[68]  The same arguments for any beaming species can also be applied.  

The beam density, as estimated from the Raman reflectivity levels [69], will be at most 

on the order of ~2% of the background plasma density.  As such, the required anisotropy 

due to temperature alone would be ~2000.  Assuming a beam temperature of roughly 

1/10 that of the background plasma and a beam density of 1% of the background plasma 

would require that the beam velocity be vso ~ 14.3VTe.  From Figure 34 it is seen that for 

these plasma parameters the EPW phase velocity is at roughly 4.2VTe.  The numerical 

modeling predicts that the beam structures will develop near the phase velocity of the 

SRS EPW and thus it is unrealistic for those beams to provide unstable electromagnetic 

wavenumbers at those of the SRS.  One can also look at the temporal growth rate for the 

Weibel instability due to temperature anisotropy alone.  The maximum growth rate is 

given by 
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k .  For the parameters typical of the SHS 

experiments, even assuming an unrealistic temperature anisotropy of 2, the maximum 

growth rate will be ωimax ≈ 0.002 ωpe, at a wavenumber kn ≈ 0.1.  Normalizing this growth 

rate to the laser radial frequency for ne/nc = 0.03 gives ωimax/ωL ≈ 0.0004  The SRS 

growth rate predicted by nonlinear coupled mode theory, normalized to the laser radial 
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frequency, is γSRS~0.004.  Thus, the maximum possible growth rate for the Weibel 

instability is approximately ten times less than that for SRS and occurs at a wavenumber 

nowhere near the SRS wavenumber.  Thus, not accounting for temperature anisotropy 

and using a 1D code is justified, at least for the case of the Weibel instability. 

 If beam like structures, or bumps, in phase space are truly the source of the EAW 

mode one must wonder how long it will take for these bumps to flatten out.  Since 

collisions are not modeled in the code, this flattening could most likely be due to 

quasilinear diffusion (see [70]).  The quasilinear diffusion coefficient is given by 

w

E

m

q

k
wD

g

QL −







∆
≅

v
)(

22π
,    (26) 

where ∆k, vg, 
2E  are, respectively, the spectral width, group velocity, and the mean-

square electric field of the wave packet.  In the context of this section, the wave packet is 

the EAW.  In terms of the bounce frequency associated with a longitudinal electric field 

eB meEk /=ω , (26) can be written approximately as 

wkk
wD

g

B
QL −∆

≅
v

)(
2

4ωπ
.    (27) 

An estimate for the quasilinear diffusion time is then given by 

QL
QL D

2)v(∆≅τ ,      (28) 

where ∆v is the velocity spread of the bump.  The simulation results predict that, for the 

parameters of the experiments peB ωω 1.0≈ .  This can be used to estimate the longitudinal 

electric field amplitude produced by the SRS driven EPW.  However, we are interested in 

the electric field amplitude of the EAW.  The code solves for the longitudinal electric 
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field and Fourier analyzing it can provide its spectral width.  However, the wavenumber 

of the EAW is approximately equal to the wavenumber of the SRS driven EPW.  Since 

the EAW amplitude is expected to be much smaller than the SRS driven EPW it may not 

be detectable in the resultant spectrum (and this was confirmed in the simulations).  To 

estimate the quasilinear diffusion time the following approximations and assumptions are 

made.  The spectral width of the EAW is obtained from the wavelength spread of the 

experimental observation and is ∆k≈1.96x105 m-1.  Also from the experimental 

observation, the ratio of energies in the EAW to SRS modes (see Figure 34) is used to 

estimate the EAW field amplitude given the SRS driven EPW amplitude from the 

simulation ( peB ωω 1.0≈ ).  The wavenumber of the EAW mode is expressed in terms of 

kλDe≈0.28 and the definition of λDe is used to further simplify (27).  The EAW mode is 

not in exact phase resonance with the beam that generates it (see Appendix E, Section 22) 

and thus gives Teg w V5.0v ≈− .  The velocity spread of the beam is estimated by 

assuming the beam temperature is 1/10 that of the background electron temperature thus 

giving 10/Vv Te≈∆ .  Finally, the plasma frequency for the given conditions is 

ωpe≈6.2x1014 s-1.  Using the above assumptions, the quasilinear diffusion time is 

estimated to be τQL≈1.6x10-13 s = 0.16 ps.  What this means is that the beam-generated 

EAW is expected to be a transient process. 

 Additional time scales must be evaluated when one considers that in the SHS 

experiments a plasma flow transverse to the interaction beam is introducing fresh plasma 

into the system on a continuous basis and also that the streak camera diagnostic integrates 

over a small but finite period of time.  These time scales must be considered because as 

the numerical plasma system evolves nonlinearly any phase space structure may be 
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washed out due to quasilinear diffusion or some other effect.  The transverse flow 

velocity at a distance of z ≈ 400 µm (n/nc ≈ 0.03) from the target (see Figure 3) is vz ≈ 

6x107 cm/s.  Considering that the width of the single hot spot in the direction of the 

transverse flow is w ≈ 2.4 µm, the plasma will be completely swept out of the SHS in a 

time t ≈ 4 ps.  Additionally, fresh plasma is being swept into the SHS on a continuous 

basis.  The SRS streak camera CCD had 1024x1024 pixels and the streak time for the 

EAW shots was 2 ns.  Thus, each pixel actually gives a time-integrated picture over a 

period of ~2 ps.  What the preceding analysis was meant to show is that LPI processes 

could be occurring in the plasma on a time scale much less than the integration time of 

the streak camera diagnostic CCD and they could never be resolved.  If the LPI process is 

transient but is resurrected due to a continuous supply of fresh plasma, the time 

integration of the diagnostic will provide a picture that makes the process appear to be 

continuous. 

 

4.3 Results of Numerical Modeling 

 

 Parameters typical of the regime where SEAS was observed are specified as 

inputs to the Vlasov code.  Prior to the simulations, linear theory calculations based on 

these parameters are performed in order to determine the expected frequencies, 

wavenumbers, and phase velocities that would result from SRS.  Although the code will 

evolve the system nonlinearly, these calculations serve as a good first order consistency 

check that the code is working properly.  Parameters typical of the present experiment 

are:  Io = 2x1015 W/cm2, λL = 527 nm, Lsystem = 164.5 (plasma region ~75 µm), Te = 350 
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eV, Ti = 100 eV, ne/nc = 0.032, γSRS/ωL = 0.004 (SRS growth rate), γcSRS/ωL = 0.00023 

(SRS convective threshold).  Although the plasma in the experiment was 50/50 carbon-

hydrogen (CH), the Vlasov code is limited to modeling only a hydrogen plasma.  The 

effects of this limitation will primarily be manifested in the IAW damping which may 

affect SRS through LDI [55] but this is not considered here. 

For convenience in the calculations, the code normalizes all parameters.  These 

normalizations are explained as follows.  Frequencies are normalized to the electron 

plasma frequency ωpe.  Thus, values listed for frequencies are multiples (or fractions) of 

ωpe.  Wavenumbers are normalized to the free space plasma wavenumber ck pepe /ω= , 

where c is the speed of light.  Thus, wavenumber values are presented in multiples (or 

fractions) of kpe.  Electric and electromagnetic fields are normalized to ecmepe /ω  and are 

thus presented in multiples or fractions of this quantity.  Time is normalized to the 

inverse of the electron plasma frequency and are thus presented in multiples of 1−
peω .  And 

finally, momentum is normalized to mec and are thus presented in multiples or fractions 

of this quantity. 

For the above parameters, the results anticipated from the simulation (in 

normalized units) are:  ωo = 5.59, ωSRS = 4.477, ωEPW = 1.113, ko = 5.5, |kSRS| = 4.364, 

kEPW = 9.864, PφEPW = 0.114.  Note that the backscattered SRS wavenumber will in 

actually be in the negative x direction, however, Fourier transforming the fields provides 

only magnitudes at a particular wavenumbers and not the wave vector directions. 

Since the Vlasov code is essentially noiseless [60], it was necessary to add a small 

initial sinusoidal perturbation to the electron distribution in momentum space.  This was 

an exact excitation at the expected spatial frequency of the SRS generated EPW, i.e. 
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ε , where ε is the magnitude of the perturbation.  

As gleaned from the time-zero electron density diagnostic, in terms of a density 

fluctuation this perturbation was δn/n≈6x10-5.  In fact, when conducting initial 

simulations using the Vlasov code it was found that without an initial perturbation there 

was no evolution of SRS during the simulation time period.  Due to the way that the total 

charge in the system is divided equally and placed at the boundaries (see Appendix D) 

there is always some initial noise in the system.  A spectral analysis of this noise revealed 

that it was in a very low frequency range.  If this noise is in a range where the 

longitudinal oscillations are predicted for the SRS interaction then no initial perturbation 

need be added to the system.  However, this was not the case for the present simulations. 

To confirm that SRS is evolving in the numerical system, the longitudinal electric 

field and both forward and backward propagating transverse electromagnetic fields in the 

system are Fourier analyzed for their spectral content.  For the present simulation at a 

time when the laser has propagated the simulation box ~1.2 times (i.e. τ ≈ 197.4 (ωpe
-1), 

or in actual time t ≈ 0.32 ps) the spectral content of the fields is shown in Figure 38.  The 

peaks for the laser, SRS EMW, and SRS EPW are at ko = 5.492, |kSRS| = 4.362, kEPW = 

9.893, respectively.  This agrees closely with what resonance matching the SRS 

interaction predicted.   
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near the left boundary of the simulation box where the laser enters the system.  Particles 

not only become trapped in the vortices but also remain in the vicinity of the separatrix, 

i.e. the boundary between trapped and non-trapped particles.  Thus, the particles can be 

characterized as either trapped, nearly trapped, or passing.  To get an idea of how the 

electron distribution evolves in time, one region in phase space is followed as it is 

moving at the phase velocity of the SRS EPW. 
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initial Maxwellian, a spatial average is taken over approximately three plasma wave 

wavelengths (or vortices).  Spatially averaging the time-evolved distribution function is 

necessary in order to analyze the distribution function in momentum space.  As seen in 

Figure 40(a), the time-evolved distribution differs very slightly from the initial 

Maxwellian.  Since this difference is so small, one cannot get a quantitative feel for it 

unless the initial Maxwellian is subtracted from the time-evolved distribution function.  

Figure 40(b) shows the deviation, or δfe, of the time-evolved distribution function from 

the initial Maxwellian. 

It is seen that a relatively small percentage of the bulk particles are being 

redistributed to higher energies.  Thus, the time-evolved electron distribution may be 

effectively modeled by a Maxwellian with a lower density (compared to the initial 

Maxwellian) combined with a beam-like structure that is nearly Maxwellian.  The 

behavior at this early stage in the evolution is a little noisy in momentum space.  This will 

become more smoothed out as time progresses and the system evolves.  To monitor the 

behavior of the electron distribution function, the vortex centered at x ≈ 8.7 (c/ωpe) at 

time τ ≈ 51.7 (ωpe
-1) is followed in time as SRS evolves. 
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Taking a spatial average of the electron distribution over several vortices in phase 

space and subtracting the initial Maxwellian reveals that a very low density beam-like 

structure develops near the separatrix higher than the phase velocity of the EPW (see 

Figure 40(b)).  Additionally, a beam-like structure with a relatively higher density 

develops below the phase velocity of the EPW.  It is this lower velocity, higher density 

beam that is of interest in the SEAS observation.  This is not to say that the higher 

velocity beam is of no importance.  I believe there is also another weakly damped mode 

generated due to this beam.  However, at the time of the experiments the theory (exposed 

in the following section) did not exist and no thought was ever given to diagnosing this 

other suspected mode.  A future experiment should be performed to investigate this. 

 Plots of the phase space distribution at two points in time and spatial averages 

over three vortices (centered on the original vortex shown in Figure 39 at x = 8.7) are 

provided in Figure 41 and Figure 42.  In these figures the laser wave front is at ~0.75x 

(t≈0.19 ps) and ~1.2x (t≈0.3 ps) the length of the simulation box.  It is obvious that the 

vortices are growing in time and the field growth rate is close to that predicted by 

nonlinear coupled mode theory.  From an analysis of the fields it is apparent that they are 

still growing, and thus, the interaction is not saturated.  Figure 41 shows best the striking 

results of the simulations.  That is, the time-evolved electron distribution is no longer 

Maxwellian but can be crudely approximated by a lower density Maxwellian (relative to 

the initial Maxwellian) and a low density beam-like structure with a velocity less than the 

phase velocity of the SRS driven EPW. 
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Figure 41.  (a) Phase space window from Figure 39 at time τ ≈ 122.2 (ωpe
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The 1D Vlasov code has the model elements necessary to predict scattering off of 

the EAW mode, should it exist.  The k-space spectrum for the specified simulation 

parameters (see Figure 38) shows that SRS is occurring where expected.  However, 

resonance matching predicts that the wavenumbers of the EMWs from SRS and SEAS 

will be very close in magnitude (see Figure 35).  Additionally, the experimental 

observation shows that the amplitude of the SEAS mode is ~3 orders of magnitude less in 

intensity than that of SRS.  Thus, looking at the k-space spectrum would most likely not 

reveal the mode.  In order to ascertain whether or not the code will predict the SEAS 

mode self-consistently, the forward and backward propagating EMWs (see Appendix D) 

are saved at the boundaries of the plasma region at each time step.  This data is Fourier 

analyzed to provide the frequency spectrum of the scattered light wave.  Resonance 

matching predicts that the frequency difference between the SEAS and SRS modes 

should be discernable even for disparate amplitudes.  Figure 43 shows the frequency 

spectrum of the backscattered EMWs at time τ = 128 (ωpe
-1) and there is structure in the 

region where the EAW mode is observed.  The behavior of the spectral structure is bursty 

in time throughout the simulation and does not appear after a time τ ≈ 160 (ωpe
-1).  As 

will be shown in the next section, the damping of this mode is expected to be large 

compared to the SRS EPW (since it is a quasimode) and the growth rate for the SEAS 

interaction will be much less than SRS.  It is believed that the Vlasov code is showing 

SEAS.  However, it is difficult to observe this mode and future simulations must attempt 

to maximize its visibility, e.g. by making the ions more massive so as to eliminate SBS. 
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spread, beam structures.  Thus, the observation of SEAS can be explained as a wave-

wave (quasimode) interaction of the laser with a linear EAW whose existence depends on 

the non-linearly evolved electron distribution in SRS. 

Intrigued by the results of previous numerical simulations showing that beam-like 

structures develop in the electron distribution function during SRS, a simple model was 

developed to investigate the effect of Maxwellian background plasma having a beam 

component.  Only a single beam interacting with the background plasma is considered 

and thus the model is called a bi-Maxwellian.  It is suggested that the EAW mode is 

generated by the interaction of low energy beam (vb < vφSRS-EPW) of electrons, produced 

by the nonlinear evolution of the electron distribution during SRS, with the background 

plasma. Using a bi-Maxwellian electron distribution function to model the beam-plasma 

system, it is found that, in addition to the usual linear beam-plasma mode, there exists 

another linear mode with characteristic features of an EAW. The weakly damped linear 

EAW, obtained from the dispersion relation with the complete plasma dispersion 

function, exists for parameters consistent with the experiments.  

Using Maxwellian electron and ion distributions and a single Maxwellian beam, 

the fully kinetic dispersion relation governing the one-dimensional linear dynamics of 

this system is 
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where eethe mT /2v2 = , ebthb mT /2v2 = , iithi mT /2v2 = , and )/( 22
ossps meZn εω = are, 

respectively, the background electron thermal velocity, the electron beam (e-beam) 

thermal velocity, the ion thermal velocity, and the plasma frequency for the species 
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(either electrons (Z=1) or ions (Z>1).  The drift velocity of the e-beam component is 

given by vb, the temperatures are specified in electron volts (eV), and )(' xZ  is the 

derivative of the plasma dispersion function (or Z-function) [44] with respect to its 

argument.  Since the frequencies of interest are much greater than the ion plasma 

frequency, ignoring the ion dynamics is justified.  Additionally, the analysis provided 

here normalizes frequencies to the background electron plasma frequency, ωpe, and uses 

the conventions 22 v2v Tth =  and 222 /v pTD ωλ =  thus reducing (29) to 
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Equation (30) can be further simplified by letting peωω /=Ω , DekK λ= , Tbb v/vVb =  

and rewriting Dbλ  and Tbv  in terms of Deλ  and Tev  by using ratios of the beaming and 

background electron densities and temperatures.  Thus, (30) simplifies to 
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Solving for the roots of (30) (i.e. D(K,Ω) = 0) the frequency (normalized to the 

background electron plasma frequency) versus Dekλ , the wave vector magnitude (or 

simply the wavenumber) times the background electron Debye length is obtained.  It is 

convenient to specify the drift velocity of the e-beam component as a fraction (or 

multiple) of its thermal velocity.  The beaming and background electron densities can be 

expressed as fractions of the total density as long as the total density adds up to one, i.e. 

ne + nh = 1. 

Equation (31) was solved using Mathcad [45] and a Z-function solver created 

from IMSL routines.  The results are compiled below.  To verify that the model is 



 

working correctly, the e-beam component is turned off and the dispersion of the first and 

second Landau roots for the background electron plasma is solved for.  The Mathcad 

worksheet used for this calculation is provided in Appendix E (Section 22) and the results 

of this calculation are shown in Figure 44.  As expected, the first Landau root exhibits the 

weak damping and dispersion of the electron plasma wave mode.  The second and all 

subsequent Landau roots have acoustic-like dispersions (i.e. k~ω  as 0→k ) and are 

heavily damped. 
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Maxwellian model).  The plasma density is approximated from the SRS spectrum on 

similar shots and is found to be ne/ncrit≈0.03.  For the approximate plasma density and 

background electron temperature, the wavenumber times Debye length is kλDe≈0.28.  We 

do know the frequency of the SEAS mode but did not experimentally determine its 

dispersion.  The parameters of the bi-Maxwellian model are then varied in order to obtain 

a weakly damped root that passes through the observed data point.  The approximations 

we use to obtain these parameters are as follows. 

 

1. The drift and thermal velocities of the beam component can be estimated 

by considering that the hot electrons are trapped by the SRS EPW and 

have an energy given by an electron traveling at the EPW phase velocity 

(i.e. Th≈ ½ me(ωEPW/kEPW)2).  This would be a good estimate for the drift 

velocity.  However, this may not be appropriate for estimating the 

temperature of the beam. 

2. To find the beaming electron fraction, we measure the Raman reflectivity 

for the shot and use Manley-Rowe relations to estimate the energy in the 

EPW (
o

EPW
o

eh RI
mn

ω
ωφ ≈

2

v3

 see [69]).  Then we assume that as a high-end 

estimate all of this energy is being carried away by the kinetic energy of 

the beaming electrons. 

 

Using these assumptions, we arrive at the parameters:  Te = 390 eV, Tb = 3500 eV, ne = 

0.98, nb = 0.02, Vb = 1.4.  Performing the same calculation used to generate Figure 44 it 

is found that the dispersion of the first and second Landau roots using these parameters is 

virtually unchanged from the previous result.  These results are not shown graphically as 

they provide no new information.  It is concluded that a beam having the parameters 

assumed above cannot responsible for the observed SEAS mode. 
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If the fraction of hot electrons is increased, the dispersion of what initially was the 

EPW root becomes acoustic-like and its frequency is lowered.  Using other parameters 

assumed previously, the fraction of hot electrons required to get a weakly damped root 

near Ω≈0.4 is nb = 0.87 (i.e. 87% hot electrons).  This large hot electron fraction is not 

plausible.  Additionally, it is the first Landau root that develops the acoustic-like 

dispersion and the root corresponding to the usual EPW is no longer present in the 

system.  A new root that exhibits EPW-like dispersion emerges, but it does so at Ω≈3 (i.e. 

ω ≈3ωpe) for K→0 and this cannot be the usual EPW mode. Here again, it is concluded 

that a hot beam with an abnormally large electron density is not a plausible explanation 

for the observed SEAS mode. 

The assumption that the temperature of the e-beam distribution is equal to its drift 

velocity is questionable.  Electrons are being trapped from the cooler background 

distribution near the phase velocity of the SRS EPW.  One would envisage that these 

electrons gain kinetic energy and maintain a relatively narrow width in temperature, i.e. 

the spread in energies differs little from the kinetic energy of the beam and their drift 

velocity differs little from the phase velocity of the EPW.  Thus, the width of the 

distribution would be determined by the temperature range of the electrons trapped near 

the phase velocity of the SRS driven EPW.  It is possible that the small number of 

electrons extracted near the phase velocity of the SRS driven EPW form a much colder 

beam rather than a much hotter drifting distribution.  Interesting results emerge when we 

consider that the trapped electrons comprise a relatively cold beam.  In this case it is 

possible to obtain two weakly damped roots at approximately the correct frequencies of 

the SRS driven EPW and the EAW observed in the experiments.  Figure 45 shows the 
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zero contours of (31) at K = 0.28 with parameters Te = 390, Tb = 20, ne = .97, nb = 0.03, 

Vb = 7.42 (~0.4vφEPW).  What this shows is that a small percentage of electrons 

comprising a beam (i.e. an electron beam) with a small thermal spread can leave the SRS 

driven EPW root only slightly modified and also introduce a weakly damped electron 

acoustic mode.  If the beam velocity is sufficiently separated from the phase velocity of 

the SRS driven EPW or if the beam density is very small, calculations have shown that 

the beam has little effect on the EPW mode.  This is the major point of the section.  The 

bi-Maxwellian model shows that electrons beaming through the background plasma are 

one possible explanation for the observed SEAS mode. 

 

 Note that the beam parameters used to generate Figure 45(a) were chosen to 

produce a weakly damped EAW mode at the frequency observed in the experiments.  

Although the numerical modeling does not show a beam develop with these exact 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 

Figure 45.  (a) Zero contours of (31) in the complex ω plane for a bi-Maxwellian plasma with parameters 
Te = 390, Tb = 20, ne = .97, nb = 0.03, Vb = 7.42 (~0.4vφEPW).  (b) Dispersion of the electron plasma wave 

and weakest damped electron acoustic root. 
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parameters, it does show the emergence of a low density beam-like structure at a velocity 

less that that of the SRS driven EPW and structure is exhibited in the backscattered EMW 

spectrum in the vicinity of the experimental observation (see Figure 40 through Figure 

43).  Note that if the beam parameters from the numerical simulations (e.g. from Figure 

40) are used  in the bi-Maxwellian model, the EAW frequency differs significantly from 

that shown in Figure 45 even though the backscattered EMW spectrum (see Figure 43) 

shows structure in the vicinity of the experimentally observed frequency. 

 The effect of the beam density on the frequency and damping of the EAW mode 

is shown in Figure 46.  For the parameters used to generate Figure 45(a), it is seen that 

for larger beam density fractions the EAW mode becomes less damped.  Even for very 

small beam density fractions the mode is not too heavily damped.  Thus, the number of 

particles necessary to produce this mode is very small.  For the experimental observation 

it is expected that only the weakest damped mode would be observed, and thus, this 

would correspond to the beam having the largest density fraction. 

0 0.01 0.02 0.03 0.04 0.05 0.06
0.2

0

0.2

0.4

0.6

ωr

ω i

nb
 

Figure 46.  Plot of the frequency and damping of the EAW mode versus beam density fraction for the 
parameters Te = 390, Tb = 20, Vb = 7.42 (~0.4vφEPW), and kλDe = 0.28. 
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4.5 Vlasov Description for Stimulated Scattering off of Electron Modes and 

Quasimodes in a Plasma 

 

The dispersion relation describing the simultaneous stimulated scattering off of an 

arbitrary number of electrostatic electron modes in the plasma can be obtained using a 

kinetic, or Vlasov, description for the electron density fluctuations.  A nonlinear 

pondermotive correction to the acceleration term is included in the Vlasov equation to 

allow coupling of the electron density fluctuations to the electromagnetic modes.  The 

description, which allows for Landau damped modes, is termed a quasimode analysis of 

the nonlinear coupling of modes.  The complete derivation of this dispersion relation is 

given in Appendix C and the resultant dispersion relation is reiterated here 







+−=

−+ TT
LeoL DD
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11

)(
4

1 22 χv .    (32) 

This model gives the nonlinear (to second order) coupling of linear modes.  However, the 

EAW mode modeled in KL is the result of a nonlinear effect, i.e. the trapping of particles 

in the large amplitude electrostatic wave generated by SRS.  What we are attempting to 

do with the non-linear Vlasov-Maxwell code is to determine the SRS evolved electron 

distribution function whose linear normal modes exhibit EAWs and thus explains the 

observed laser scattering off of the EAW mode.  Using this “new” initial distribution 

function, nonlinear quasimode coupling theory can be applied to describe scattering off 

of the mode contained in the general dispersion relation KL = 0.  The use of the nonlinear 

Vlasov code allows one to model the new equilibrium distribution function.  This 

distribution function can then be modeled as a bi-Maxwellian and used to determine KL 

and χLe.  Using these values in (32) allows one to see where the modes are and predict 



 

what their growth rates will be.  As an example, the results of this calculation are shown 

in Figure 47 for the bi-Maxwellian model using the parameters K = kλDe = 0.28, Te = 390 

eV, Ti = 100 eV, Tb = 20 eV, ne = .97, nb = 0.03, Vb = 7.6 (~0.4vφEPW), and Io=2x1015 

W/cm2.  Solving for the most weakly damped roots of the dispersion relation, i.e. the 

normal modes and quasimodes present, one finds that the usual EPW is present and 

additionally, as a result of the to the electron beam, another mode emerges that exhibits 

acoustic-like dispersion (see Figure 45).  Figure 47 can be directly compared to the 

experimental observation shown in Figure 34.  Note that Figure 47 shows the response, or 

normal modes present in the plasma.  The peaks represent zeros of the dispersion relation, 

i.e. KL = 0.  These peaks are not infinite in magnitude and have some width due to the 

modes being damped. 
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Chapter 5:  Conclusions 

 

It has been established that LDI cascade can be observed in the SHS laser-plasma 

interaction.  In order to more completely understand the effects of LDI cascade on the 

saturation of SRS, more experiments must be performed.  These experiments must be 

designed to look specifically at the energies in the LDI cascade daughter waves and will 

most likely involve the beating of a probe and interaction laser so that with known 

incident energies the energy transfer between beams can be evaluated.  Since using larger 

optics in the Thomson scattering diagnostic is not feasible, future experiments should use 

hotter plasmas in order to reduce thermal effects on the IAW and EPW dispersion and 

thus allow more cascades to be observed with the existing optics.  Additionally, in order 

to more fully understand the possible role of LDI in the saturation of SRS it is desirable 

to simultaneously monitor both the forward and backward propagating EPWs resulting 

from SRS and LDI. 

Stimulated electron acoustic scattering (SEAS) has been experimentally observed 

and a sound basis for pursuing a more in depth theoretical understanding of this mode has 

been presented.  It is believed that for the proper circumstances, many of these trapped 

and beaming particle modes exist in the plasma as a result of other processes such as SRS 

and SBS.  An analytic model for scattering off these modes and quasimodes has also been 

presented.  Again, experiments designed to look specifically at these new modes are 

required to completely understand and characterize them. 

Although the 1D Vlasov-Maxwell model may be adequate, perhaps a better 

approximation for the time evolution of the electron distribution resulting from SRS 
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would be obtained using a 1½ D Vlasov code, i.e. by adding an additional velocity 

component.  Additionally, the Vlasov code used in this thesis only models a single ion 

species.  A better model to approximate the physical plasmas would be obtained if it were 

multi-species in order to more correctly model the IAW damping.  This is not difficult to 

implement but requires time and verification of the code.  Since the code has mobile ions, 

it is possible to model the SRS-LDI interaction.  This area was not explored in this thesis, 

but as alluded to the effect of LDI on SRS is an area ripe for study.  The right-hand 

boundary of the plasma may affect long-time simulation results due to reflection of 

forward propagating waves, e.g. the laser or forward SRS.  A future improvement to the 

code would be to remove these reflections by implementing a smooth or semi-infinite 

boundary condition on the right-hand side of the plasma.  Lastly, the effect of the initial 

noise level on the saturation of the SRS interaction was not explored in this thesis.  All of 

this must be left to future work. 
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Appendix A 
 

 

Derivation of the Dispersion Relation Describing Stimulated Raman 
Scattering [72] 
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In this appendix, the dispersion relation that describes the stimulated Raman 

scattering (SRS) process is derived using a fluid description for the plasma and 

Maxwell’s equations for the fields.  All equations and quantities are in the International 

System of Units, i.e. Systeme Internationale (SI). 

 As usual, we start off with Maxwell’s equations describing the electric and 

magnetic fields  

0=
∂
∂+×∇

t

B
E ,     (A1) 

J
E

B otc
µ=

∂
∂−×∇

2

1
,    (A2) 

oε
ρ=•∇ E , and     (A3) 

0=•∇ B ,      (A4) 

where E is the electric field, B is the magnetic flux density, J is the current density, ρ is 

the charge density, µo and εo are, respectively, the permeability and permittivity of free 

space, and ooc εµ/1=  is the speed of light.  In all equations, boldface letters indicate 

vector quantities. 

Using the vector identity 0)( =×∇•∇ A , the magnetic flux density can be 

expressed as the curl of a vector potential, i.e. AB ×∇= .  Using the Coulomb gauge 

with 0=•∇ A , the electric field is defined by 

t∂
∂−Φ−∇= A

E .     (A5) 

Substituting these definitions for E and B into Ampere’s equation (A2) gives 
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Expanding the first term on the left-hand side of (A6) by using the vector identity 

AAA 2)()( ∇−•∇∇=×∇×∇ , using the Coulomb gauge, and grouping terms gives 
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The scalar potential Φ and the current density J must now be solved for in terms of the 

vector potential A and the electron density ne.  Substituting the charge density from 

Poisson’s equation (A3)  

oε
ρ−=Φ∇2       (A8) 

into the continuity equation 
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∂
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J
t

ρ
     (A9) 

results in 
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Rearranging terms this can be rewritten as 
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The current density is comprised of both longitudinal and transverse parts, i.e. 

TL JJJ += .  For a transverse electromagnetic (TEM) mode, the charge density 0=ρ  

and thus from the continuity equation 0=•∇ TJ .  Using this fact, (A11) can be 

rewritten as 
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Using (A13) in (A7) gives 
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The transverse current JT must now be evaluated.  To do so, we need to look at 

the electron dynamics using the force balance equation 
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Looking at transverse components only, i.e. 0)( =∇• ee vv , it is found that 

T
eT

e e
t

m E
v −=
∂

∂
.  Substituting for E from (A5) and realizing that the scalar potential Φ 

represents the longitudinal component of the electric field gives 

Av
A

E
v

e

eT

e

T

e

eT

m

e

tm

e

m

e

t
=⇒

∂
∂=−=

∂
∂

.   (A16) 

The transverse current density, ignoring ion dynamics and assuming no initial drift 

velocity on the electrons, is eTeT en vJ −= .  Substituting for the transverse electron 

velocity from (A16) yields 
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where 
eo

o
pe m

en

ε
ω

2

=  is the electron plasma frequency, and no is the background electron 

density.  Substituting this definition for the transverse current density into (A14) gives 
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and multiplying both sides of the equation by c2 gives 
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The vector potential is comprised of the sum of two components 

1AAA += o ,     (A20) 

where Ao is the pump EMW, A1 is the scattered EMW.  The electron density also has two 

components  

1nnn eo += ,      (A21) 

where neo is the constant background electron density and n1 is the low frequency, small-

amplitude density fluctuation due to the electron plasma wave (EPW) such that |n1|<<|neo|  

Substituting (A20) and (A21) into (A19) gives 
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Substituting 
n

n

n
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δ=1  in (A22) and rearranging gives 
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Considering at only the resonant terms (i.e. the product of high and low frequency terms) 

and ignoring second order effects, i.e. making assumptions like 10 AA
n

n

n

n δδ >> , (A23) 

can be massaged into a simpler form.  The resultant equation is a very important result.  It 

describes a scattered EMW driven by the beating of a pump EMW and an electron 

density fluctuation and is given by 
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 Now, δn is the density fluctuation associated with the EPW and δn must be 

evaluated in terms of Ao and A1.  To do so, we must again look at the electron dynamics.  

The electron velocity will be composed of longitudinal and transverse components, i.e. 

eTeLe vvv += , and using the previous definition for the transverse velocity component 

gives 
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The electron dynamics are evaluated using the continuity and force balance equations 

which are, respectively,  
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where pe is the pressure due to electrons.  Rearranging (A27) gives 
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Substituting for the electron velocity in terms of its transverse and longitudinal 

components and for the electric field in terms of the scalar and vector potentials gives 
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Canceling like terms from both sides gives 
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Evaluating the curl of the electron velocity and realizing that 0=×∇ eLv  allows 

substituting for the vector potential in terms of the electron velocity, i.e.  
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With this substitution (A30) becomes 
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Rearranging terms and using the vector identity 2
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The continuity equation is now used to substitute for the longitudinal electron 

velocity in terms of the electron density fluctuation.  This is derived in the following 

sequence.  Starting with the continuity equation and expressing the electron density as a 

constant background component combined with a small amplitude perturbation gives 
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Expanding the divergence term gives 
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Realizing that A has only transverse components, i.e. 0=•∇ A , and using the vector 

identity TTT •∇+•∇=•∇ fff )(  reduces (A35) to 
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It was assumed that eoe nn <<δ  and since the density fluctuation is in the longitudinal 

direction, (A36) is simplified to 
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Since both the density fluctuation and the longitudinal electron velocity will be at the 

same frequency, the last term on the left-hand side of (A37) provides only second-

harmonic or zero frequency components.  Thus, the continuity equation ultimately 

reduces to 
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 The 2

ev  term in (A33) can be evaluated in terms of the vector potential, i.e.  
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Substituting 1AAA += o  transforms this into 

)2()(2 2

11

2

2

2

1

22 AAAAAAvvv ++++•+= oo

e

o

e

eLeLe m

e

m

e
.  (A40) 

Evaluating all terms on the right-hand side of (A40), one sees that 2

eLv  is 2nd harmonic or 

zero frequency, 0)( 1 =+• AAv oeL  since the components are transverse to each other, 

and that only one component of )2( 2
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The pressure gradient term is approximated by 

eo

eTe

eeoe

eeoeB

ee

ee

ee

e

n

n

nnm

nnk

nm

n

nm

p δ
δ

δ ∇≈
+

+∇=∇=∇ 2V3

)(

)(T3T3
,   (A42) 

where kB is Boltzmann’s constant, Te is the electron temperature, and eeBTe mk /TV2 =  is 

the electron thermal velocity.  Substituting (A41) and (A42) into (A33) reduces the force 

balance equation to 
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The force balance equation and the continuity equation  can be combined into one 

equation by taking the divergence of (A43) and the time derivative of (A38) and 

substituting for terms involving the longitudinal electron velocity in terms of the density 

fluctuation.  This proceeds as follows 
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Using Poisson’s equation oeo ne εδερ //2 −=−=Φ∇  and substituting (A45) in (A44) 

gives 
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Using the definition of the plasma frequency and grouping terms reduces this to 
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This is another important result.  It describes a density fluctuation arising from the 

beating of a pump and a scattered EMW.  To summarize, the coupled equations 

describing SRS are 
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To finalize the theory of SRS, frequencies are assigned to the pump Ao and the 

density fluctuation (δn/neo) and both are assumed to have a sinusoidal variation in space 

and time, i.e.  
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The scattered EMW can be either up or down-shifted in frequency, i.e. 






+





=





−−++ −•−• tirki

o

tirki

oo

eo

e eNeN
n

n ωωδ *

11 2

1
Re

2

1
Re aaA ,  (A50) 

where the star superscript, as usual, represents the complex conjugate of the quantity, 

oωωω ±=± , and okkk ±=± .  Using these definitions in the coupled equations 

results in 
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It is seen that the quantities in the parenthesis on the left-hand side of (A51) and 

(A52) are the linear dispersion relations for an EMW in a plasma and an electron plasma 

wave, respectively.  If we represent these dispersion relations by 

( )2222

±±± −−= kcD peT ωω , and    (A53) 



 131 

( )2222 V3 kD TepeL −−= ωω      (A54) 

(A51) and (A52) can be rewritten in the more compact form 
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Equation (A55) is really two equations representing the up and down-shifted scattered 

EMW.  Expanding (A55) gives opeT ND aA 1

2

2
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2
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Solving for A+ and A- and substituting these expressions into (A56) gives 
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and rearranging terms gives 
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The transverse electric field is defined in terms of the vector potential, i.e. 

oT t
AE

∂
∂−= .  Assuming the definition for Ao given in (A48) and evaluating the 

derivative gives ooT i aE ω−=  which leads to 
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a = .  The quiver velocity of an 

electron in the transverse electric field is defined as 
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Using this definition in (A58) and canceling like terms on both sides of the equation 

gives the dispersion relation for SRS 
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Usually, the up-shifted scattered EMW is considered non-resonant and (A60) can 

ultimately be reduced to 

222v
4
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peoTL kDD ω=− .    (A61) 

Note that the above derivation assumed that the pump and scattered EMW wave 

vectors, or equivalently their electric field vectors, were collinear.  In general this may 

not be the case.  If the EMW wave vectors are not collinear, a geometry factor will 

reduce the value of the growth rate for the interaction.  To see how this is manifested one 

can split the fields, and thus the vector potentials, into a magnitude multiplying a 

polarization unit vector, e.g. for the pump field 

ooooooo iei âaˆEo ωω −=⇒−= aE .    (A62) 

One can see that since the electric field and the vector potential are in the same direction 

so will be their unit vectors, i.e. ooe âˆ = .  The scattered EMW can also be expressed in a 

similar manner and forming the dot product )( *
−+ •+• AaAa oo  will leave a geometry 

factor 
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 on the right-hand side of (A60).  If we consider only the 

down-shifted scattered EMW to be resonant, the dot product of the two unit vectors can 

be simplified to θcosˆˆ =• −eeo , where θ is the angle between the pump and scattered 

EMW polarization vectors.  Thus, including geometry effects the generalized form of the 

SRS dispersion relation is given by 

θω 2222 cosv
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Appendix B 
 

 

Derivation of the Dispersion Relation Describing the Langmuir Decay 
Instability [72] 
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In this appendix a derivation of the dispersion relation and the underlying physics 

of the Langmuir decay instability (LDI) are presented.  In the context of this thesis, LDI 

is the result of the Langmuir wave generated by stimulated Raman scattering (SRS) 

growing to sufficient amplitude such that it decays into another counter propagating 

Langmuir wave and a co-propagating ion acoustic wave (IAW).  The LDI process 

inherently involves the coupling of electron modes to ion modes in the plasma.  All 

waves involved in the LDI process are electrostatic.  This appendix takes a different 

approach than the former appendix in that a Zakharov fluid description is used [73].  This 

entails evaluating the high and low frequency dynamics of the fluid equations and 

selecting only those components that are resonant with the quantity of interest.  

It is most easy to understand the Zakharov derivations by first providing an 

example of the products of high and low frequency quantities.  All quantities are assumed 

to have a sinusoidal space-time variation.  If we assign fast and slow variations to two 

complex quantities, e.g. E which represents an electric field with fast variation and n 

which represents a density fluctuation with slow variation, and look at their real parts 

these quantities are expressed as 
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Forming the product of either the fast or slowly varying quantity with itself yields e.g.   
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It is seen that the components are either at the second harmonic or zero frequency.  

Forming the product of a fast and slow varying quantities yields a product which is at an 

intermediate frequency that is either up or down-shifted from a particular frequency, i.e. 

the product 
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it is seen to have two pairs of quantities (up and down-shifted) that are complex 

conjugates. 
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The main point to remember is that the product of two quantities having the same 

frequencies provide second harmonic and zero frequency contributions.  The product of 

two quantities one having a fast and the other a slow variation in space and time, is a 

quantity with up and down-shifted variations.  This forms the basis of the following 

derivations.  Additionally, when one looks at quantities that are at the same frequency, 

one must consider their amplitudes and neglect terms that are much lower in amplitude.  

These principles will be reiterated throughout the derivations where appropriate. 

 The derivation proceeds by first separating the high and low frequency dynamics.  

All quantities (except constant background densities) are assumed to have a space-time 

variation tirkie ω−•~ .  The high-frequency, or fast variations labeled using a subscript f, are 

at approximately the electron plasma frequency, i.e. eoeope men εωω /2=≈   The low 

frequency, or slow variations labeled using a subscript s, are at a frequency much less 

than the ion plasma frequency, i.e. ω <<ωpi<<ωpe.  The field dynamics are electrostatic, 

i.e. 

Φ−∇=+= sf EEE      (B5) 

and the perturbed magnetic field is negligible, i.e. B1 = 0.  As in the previous appendix, 

bold-face type represents vector quantities.  We consider a plasma consisting of electrons 

and a single ion species.  There are no equilibrium drifts and the plasma is charge neutral, 

i.e.  

efeseoe nnnn ++= ,     (B6) 

efese vvv += ,     (B7) 

isioi nnn += ,      (B8) 

isi vv = ,      (B9) 

oeoioi nnnZ == ,     (B10) 

where n is the density, v is the velocity, Zi is the ion charge state, and the subscripts e, i, 

o, s, and f refer to, respectively, electrons, ions, equilibrium (or background), slow 

variation, and fast variation.  In addition to fast variations, the electrons will also have 

slow variations due to their shielding effect on the ions.  Note that the background 
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densities are assumed constant and have no space-time variation.  Also, the condition of 

low frequency quasi-neutrality is imposed, i.e. 

sesisi nnnZ ==     (B11) 

and collisions are ignored.  Other approximations in the derivation are that kλDe<<1 (i.e. 

weak damping) and Te>>Ti. 

 For the high-frequency electron dynamics, the electron continuity and momentum 

balance equations must be evaluated.  Ion dynamics are ignored in the high frequency 

derivations due to the previous assumption that ωis<<ωpi<<ωpe.  Using the definitions for 

the electron density and velocity in (B6) and (B7) the electron continuity equation 
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expands to 
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Ignoring derivatives of constant terms, zero frequency, and second harmonic components 

and evaluating for the fast variations with coupling between fast and slow variations, 

(B13) reduces to 
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It is seen that there are two additional second order terms that allow for coupling of the 

fast and slow electron dynamics, in other words, coupling of the electron and ion 

dynamics. 

The momentum balance equation for electrons is 
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Since there is no imposed magnetic field, the Bv ×e  term is neglected since it provides 

only second harmonic effects.  Rearranging (B15) results in  
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The pressure term is approximated by 
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where γe = 1 for isothermal dynamics, or in adiabatic dynamics γe = (d + 2)/d where d is 

the number of degrees of freedom in the dynamics, and kB is Boltzmann’s constant.  For 

the fast variations the electrons are considered to be undergoing one-dimensional 

adiabatic expansion and γe = 3.  Expanding (B16) and looking for fast variations only 

results in 
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The second and third terms on the left-hand side of can be ignored since their magnitudes 

are much less than the first term and thus the momentum equation for fast electron 

variations reduces to 
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Poisson’s equation for the fast electron variations is given by 

f
o

efef

oo

f e
nn

e
EE •∇−=⇒−==•∇ ε

εε
ρ

.  (B20) 

The fast electron dynamics can be expressed in terms of a single equation by combining 

(B14) and (B19) and using (B20) to express nef in terms of the electric field.  This 

proceeds as follows.  Taking the time derivative of (B14) gives 
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Expanding the time derivatives and grouping like terms gives 
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With the assumed space-time variation, the time derivatives result in a multiplication by 

the respective frequency.  The low frequency terms are ignored with respect to the high 

frequency terms resulting in 



 138 

0)(
2

2

=







∂
∂

+
∂

∂
+•∇+

∂
∂

es

efef

eseo

ef

t

n

t
nn

t

n
v

v
.   (B23) 

A final ordering of terms assuming es
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Equation (B19) is used to solve for vef in terms of nef and substituting the result into the 

above equation results in  
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Finally, using Poisson’s equation to express nef in terms of the electric field results in  
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Factoring out and dividing both sides by –(εo/e), rearranging terms, and grouping on the 

divergence operator results in 
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Using the definition of the plasma frequency gives 
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Evaluating the ratio of the two nonlinear terms on the left-hand side of the above 

equation results in 1~
V3
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term can be neglected due to its small amplitude.  The nonlinear component of 
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+12ω  is identified as a modulation of the electron density by the low 



 139 

frequency, slow variation mode.  Finally, the resultant equation for the fast electron 

dynamics is 
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The left-hand side of (B29) is identified as the linear partial differential equation for 

electron plasma waves (EPW) and the right-hand side is the nonlinear coupling of the low 

frequency density fluctuation and the high frequency electric field. 

 The low-frequency dynamics are now evaluated.  The fast, mobile electrons are 

considered to be isothermal and thus γe = 1.  The low frequency momentum balance 

equation, averaging over time the fast variations, is given by 
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The term eses vv )( ∇•  provides only second harmonic or zero-frequency components and 

can be neglected.  Using the low frequency continuity equation 
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and defining the sound velocity 
k

cs

ω= , evaluating the ratio of the first and fourth terms 

on the left-hand side gives 1
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neglected due to its small magnitude.  The average over time of the fast variations is 

taken as follows.  The standard definition of a time-average  
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is used where T is the period of the time-varying quantity.  Via vector algebra 
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since the )( efef vv ×∇×  term is zero for purely longitudinal quantities.  To find vef the 

momentum balance equation (B19), less the thermal correction, is used 
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The fast variations are assumed to have a time dependency ti oe ω−~ .  Evaluating the fast 

continuity equation with this time dependency results in 
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Taking the time average of the right-hand side will result in an additional factor of ½ and 

thus ultimately we find 
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Using the above simplifying assumptions and substituting the above result into (B30) 

gives the dynamic equation for the low-frequency electrons 
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where it has been assumed that the high frequency is approximately equal to the electron 

plasma frequency, i.e. peo ωω ≈ . 

 One last aspect that must be evaluated is the low-frequency dynamics of the ions.  

On this time scale the ions are considered adiabatic and thus γi = 3.  As with the fast 

dynamics, starting with the continuity equation (B12) and ignoring second harmonic and 

zero frequency components yields for the ions 
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The momentum balance equation for the ion dynamics is 
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Substituting for the slow field Es in terms of the fast field using (B38) gives 
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On the right-hand side of (B41), the definition of the electron plasma frequency is used to 

simplify it to 
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Grouping terms and using the neutrality and low frequency quasi-neutrality conditions 

given in (B10) and (B11), respectively, results in 
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where ieis mTZc /2 =  is the ion sound speed.  Taking the divergence of the above 

equation, the time derivative of the low frequency continuity equation, substituting for 

the ion velocity in terms of the density, and using the substitution 
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This is another important result.  It describes the coupling of the high-frequency 

dynamics to the low-frequency dynamics via the pondermotive force created by the high 

frequency field.  Thus, (B29) and (B44) are the coupled non-linear Zakharov equations 

describing the coupling the electron and ion dynamics. 

 As with the derivation of the dispersion relation for SRS in the previous appendix, 

the derivation here is completed by assigning frequencies to the fast field variation and 

slow density fluctuation, i.e.  
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The non-linear drive term on the right-hand side of (B29) produces 
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and thus drives the a high-frequency field that is up and down-shifted from the pump 

frequency, i.e.  
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±± = EE .    (B48) 

The star superscript, as usual, represents the complex conjugate of the quantity.  Using 

the substitutions oωωω ±=±  and okkk ±=±  (B29) can be written more compactly 

as  
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The low frequency dynamics are thus described by 

( ) ( )oo
i

io
sa k

m

Z
nkc EEEE •+•≈− −+

*2
1

222

4

1 εγω .   (B50) 

It is seen that the quantities in the parenthesis on the left-hand side of (B49) and (B50) 

are the linear dispersion relations for an electron plasma wave (EPW) and an ion acoustic 

wave (IAW), respectively.  As done previously in the SRS derivation, (B49) is used to 

solve for E+ and E- which are then substituted into (B50) to yield one equation describing 

the dispersion relation for LDI, i.e.  
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This expression can be simplified by using the definition of the electron quiver velocity 

2
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ω
E=  and introducing the Debye length peTeDe ωλ /V=  in the coupling term to 

finally arrive at 
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Appendix C 
 

 

Vlasov Description for Stimulated Scattering off of Electrostatic Modes 
and Quasimodes in a Plasma [72] 
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In this Appendix, the general theory of stimulated scattering off of electrostatic 

modes in a plasma is developed.  This work was motivated by the experimental 

observation of stimulated scattering off of an electron acoustic mode at a frequency 

peωω 44.0≈  which is not necessarily a weakly damped mode, i.e. it may have 

appreciable Landau damping and is thus termed a quasimode.  Since this scattering 

occurs via essentially the same process as stimulated Raman scattering (SRS), the theory 

presented here builds on that developed in Appendix A. 

In the Vlasov scattering theory, the electron density fluctuation is derived using 

kinetic theory rather than fluid theory.  Kinetic theory involves solving the Vlasov 

equation 

0=∇•+∇•+
∂
∂

eee fff
t vr av ,    (C1) 

to find the electron distribution function.  In this equation, fe is the electron distribution 

function, v  is the velocity, r∇  is the spatial gradient, a  is the acceleration due to the 

Lorentz force, which for electrons, is given by [ ])( BvEa ×+−=
em

e
, and v∇  is the 

velocity-space gradient.  Once the distribution function is known, the density can be 

obtained from it by integrating fe over velocity space.  In the following, as in previous 

derivations, boldface letters represent vector quantities. 

The derivation is simplified by representing the gradient in velocity-space by 

'' ˆ
eoee fnff ==∇ v ,     (C2) 

where no is the constant background electron density and for electrostatic dynamics we 

neglect B.  Additionally, to allow coupling of the electron density fluctuation to the pump 

and scattered electromagnetic waves (EMW), a nonlinear pondermotive correction must 

be added to the linear electric field E in order to obtain the desired nonlinear Vlasov 

equation.  Making the above substitutions into (C1) gives 

[ ] 0ˆ ' =•+−∇•+
∂
∂

eoNL
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ee fn
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e
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t
EEv r .   (C3) 

The term AuE ×∇×=NL  represents a second-order pondermotive correction to the 

electron force where u is the fluid velocity and A is the vector potential.  Note that this 
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vector potential is not a reintroduction of the magnetic field in the acceleration term of 

the electrostatic Vlasov equation, but rather, is obtained from the beating of two 

electromagnetic waves as in the case of stimulated Raman scattering.  This second-order 

pondermotive correction term is evaluated using fluid theory and this derivation has 

already been performed in Appendix A.  For convenience, the results are reiterated here 

substituting the fluid velocity u for v in the equations from Appendix A.  From equation 

(A31) it was found that 

)( Au ×∇=×∇
e

e m

e
     (C4) 

and thus,  
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em

e
uuAu ×∇×−=×∇×− .   (C5) 

Following the derivation in Appendix A starting at (A31), the acceleration term including 

the nonlinear correction is given by the right-hand side of (A33), i.e. 

2
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1
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em

e
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Further, following the derivation in Appendix A through (A41) where the term 2
eu  is 

evaluated gives 
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Thus, the pondermotive correction to the acceleration can be defined as 

e
o
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where  

)( 1

2

AA •= o
em

eψ .     (C9) 

Substituting (C8) into the acceleration term reduces (C3) to 
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 The electron distribution function can be obtained from (C10) in the usual manner 

by assuming a space-time behavior of tii
e eef •−• ωrk~  so that the spatial gradient and time 

derivative become, respectively, kr i→∇  and ωi
t

−→
∂
∂

.  Using the above operations in 

(C10) and rearranging terms gives 
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Solving for fe yields 
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Integrating the electron distribution function over velocity space gives the electron 

density 
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The longitudinal susceptibility for a particular species is obtained by using the plasma 

dispersion function [44], i.e. 
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where 
so

sos
ps m

qn

ε
ω

2

=  is the plasma frequency for the species.  When more than one 

species is present, the total susceptibility is found by summing contributions due to all 

species, i.e. ∑=
s

LsL χχ .  Substituting for the electron plasma frequency in (C13), using 

(C14) to evaluate the integral, and evaluating the one-dimensional dynamics the electron 

density is given by 
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The charge density is thus given by 


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Poisson’s equation (A3) gives 

0E =− ρik      (C17) 

and using the above definition for the charge density gives 

0EE =

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Grouping terms, simplifying, and using the definition of the permittivity LLK χ+= 1  in 

(C18) gives 

e
K LeL

ψ
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−=E .    (C19) 

Finally, operating on the right-hand side with the assumed spatial variation, the electric 

field due to electron density fluctuations is given by 

eK
ik

L

Le ψχ−=E .    (C20) 

 Now, via Poisson’s equation, the charge density will be due to an electron density 

fluctuation δn which can be defined in terms of the electric field given by (C20), i.e. 
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Using definitions for Ao and A1 from Appendix A and evaluating (C9) for terms that are 

resonant with the density fluctuation gives 

)(
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Thus, the electron density fluctuation is ultimately related to the pump and scattered 

electromagnetic fields by 
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Using the definition of the electron plasma frequency and substituting gives 

)(
2

1 *
22

22

−+ •+•









−= AaAa oo

peeL

Le

o m

ek

Kn

n

ω
χδ

.   (C24) 

From Appendix A, the definition for ±A  is given by 
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This can be substituted into (C24) to give 
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Canceling like terms from both sides and in the numerator and denominator of (C26) and 

using the definition of the electron quiver velocity from (A59) gives 
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Finally, rearranging terms gives the Vlasov representation of scattering off of any 

electron modes, including quasimodes, that may be present in the plasma 
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This is an important result.  On the left-hand side is the kinetic permittivity, which when 

set equal to zero gives the dispersion relation for any longitudinal electron modes that 

may be present in the plasma.  The term )(
4

1 22
Leok χ−v  represents the growth rate for the 

nonlinear interaction and +TD  and −TD  are the linear dispersion relations for the up and 

down-shifted scattered, transverse electromagnetic modes, respectively.  Note that the 

derivation presented in this appendix considered only electron modes.  It is 

straightforward to generalize this theory to allow for multiple electron distribution 

functions, e.g. a bi-Maxwellian consisting of a warm background and a colder beam-like 

component, and can include ion modes by including all species present in the definitions 

for the susceptibility and permittivity.  Additionally, as with the derivation of the SRS 

dispersion relation in Appendix A, geometry effects can be considered for the case of the 

pump and scattered EMW electric field vectors not being collinear. 
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Appendix D 
 

 

One-Dimensional (1D) Relativistic Vlasov Code Description  
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A numerical code was used to simulate the evolution of the electron distribution 

function during SRS.  A general overview of the code is presented in the first part of this 

appendix.  The latter part of the appendix contains the actual FORTRAN code showing 

implementation of the routines described in the first part.  The actual code is packaged as 

a Compaq (formerly Digital) Visual FORTRN workspace and is available on the 

CDROM that accompanies this thesis. 

The code is a relativistic, one-dimensional (1D) (in x) Euler-Vlasov with a 

“monokinetic” approximation used to obtain the velocities and current densities in the 

transverse direction (y).  Both electrons and ions are mobile.  The ion time step can differ 

from the electron time step, i.e. since the ions are less mobile, they can be moved less 

frequently.  Currently, the code evolves the distribution functions for electrons and a 

single hydrogen ion species.  However, it can be modified to simulate multiple ion 

species. 

The generalized relativistic Vlasov equation in three dimensions is given by 
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Expanding the differentiation operators in (D1) results in 
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For the code, the distribution function is considered to be a function of x, px, Py, 

and t only, where Py is the generalized or canonic momentum. Thus, the derivatives with 

respect to y, z, and pz are all zero.  Additionally, the following class of exact solution is 

considered 

),,()(),,,( tpxFqAptxpPff xyyxy +== δ ,   (D3) 

What (D3) means that the longitudinal motion obeys the relativistic Vlasov equation for 

F(x,px,t) which describes accurately the longitudinal motion of electrons in the two-

dimensional x–px phase space.  The effective transverse motion of particles is “cold” and 

simply described by a fluid macroscopic equation for the transverse mean velocity 
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mqAuy /−= .  This approximation is justified in the following section and has also been 

explored numerically [74]. 

Using a fluid approximation in the transverse direction is justified by considering 

the 1D propagation of an electromagnetic wave as shown in Figure 48.  Since the 

propagation is 1D, the spatial derivatives in the transverse directions are zero, i.e. 

0=
∂
∂=

∂
∂

zy
.  In the y-direction, the generalized momentum balance equation in one 

dimension is 
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Using the vector identity 0)( =×∇•∇ A , the magnetic flux density can be expressed as 

the curl of a vector potential, i.e. AB ×∇=  and thus for the 1D case considered here 
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Rearranging and grouping on the derivative in the x-direction gives 
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Figure 48.  Geometry for justifying using the fluid approximation for the transverse velocity. 
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The last term on the right-hand side is recognized as the generalized or canonic 

momentum yy qAmP += yu  and thus (D6) can be rewritten as 

yxy P
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Taking the time derivative of the spatial derivative with respect to x of the canonic 

momentum results in 
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Reversing the order of the linear differential operators on the right hand side results in 
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Using the Coulomb gauge the electric field can be written as tAE yy ∂−∂= / .  Using this 

definition for the electric field in (D7) and substituting for tm y ∂∂ /u  in (D9) results in 
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Evaluating the spatial derivative, canceling like terms, and rearranging, (D10) can be 

rewritten as 
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The important result is that if 0/y =∂∂ xP  initially, it will remain zero for all time.  This 

is exactly the case for the 1D simulations and thus use of a fluid approximation for the 

transverse velocity is justified. 

To resume with the derivation of the 1D Vlasov equations, for the problem 

considered here there is no magnetic field in the y-direction and the transverse velocity uy 

is assumed to be much less than the speed of light (this is confirmed to be the case in the 

simulations) so that the relativistic mass correction factor is simplified to 
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With the above considerations and the assumed functional dependency (D3), equation 

(D2) reduces to 
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If one wishes to study the dynamics of a distribution function in a single dimension, the 

Vlasov equation is integrated over the space and momentum variables in the other 

dimensions that have variation in those dimensions.  In our case, we wish to evaluate the 

dynamics in the x-direction and we need only integrate py.  This leads to a new definition 

for the distribution function given by 
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where it is seen that the delta function for the transverse velocity makes the integration 

trivial.  Integration of the last term on the left-hand side of (D13) results in zero 

contribution because periodic conditions are assumed in this direction.  Thus the resultant 

1D Vlasov equation is 
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 In the code, the relativistic Vlasov equations for electrons and ions are solved 

self-consistently with Maxwell’s equations.  The Vlasov equations are given by 
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where the subscript s refers to the particular species (electrons or ions) and the transverse 

velocity is approximated by a fluid equation 
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The longitudinal self-consistent electric field is given by Poisson’s equation 

oερ /=•∇ E  with the electrostatic approximation  
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The density for each species can be found by integrating its distribution function over 

momentum space, i.e. 
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The transverse electromagnetic fields obey Maxwell’s equations.  Simplified for 

the geometry of the code these are given by 
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where the current density is given by  

[ ]eyeiyiy utxnutxneJ ),(),( −= .   (D25) 

Defining E± = Ey ±cBz Maxwell’s equations can be rewritten as 
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which enables solution of Maxwell’s equations along their vacuum characteristics x ± ct 

= constant [75]. 

In the code, all differential equations are solved using the method of 

characteristics.  The well-known fractional step or time splitting scheme [76,77] is 

implemented as follows.  Times on the grid are defined as  

Tntn ∆= ,     (D27) 
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where ∆T is the time step.   Momentum (p) space is divided into Np cells between –pmax 

and +pmax.    The length L of the system is divided into Nx cells.  The electron and ion 

distribution functions are initialized as Maxwellian for each grid point in x-space.  Thus, 

the distribution function is known on NpNx grid points. The factional step method 

involves three steps: 

(1) between tn and tn+½ shift the distribution function in x-space for a time ∆T/2  
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(2) Compute the fields at time tn+½ and then shift in momentum space for a time ∆T 
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(3) between tn+½ and tn+1 shift again in x-space for a time ∆T/2 
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The equation for the perpendicular motion is solved between tn and tn+1 using a time-

centered scheme, i.e.  
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Maxwell’s equations are solved using the time-centered advective scheme between tn-½ 

and tn+½ 

[ ]nyonn
tTcxJTtxEtTcxE ),2/(),(),( 1

2
1

2
1 ∆±∆−=∆± −

−
±

+
± ε   (D34) 

A cubic spline method is used for interpolation of.  In general, expanding about 

some grid point to third order yields 

32 )()(
2
1

)()( iiiiiiii xxgxxsxxpfxy −+−+−+= ,  (D35) 

where 

)( iii xyf =      (D36) 

)(' iii xyp =      (D37) 

)('' iii xys = , and    (D38) 
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The following restrictions on the behavior of the function are imposed, i.e. the function 

and its first and second derivatives are continuous 

)()(1 iiii xyxy =−     (D40) 
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Taking successive derivatives of (D35) and using the above constraints lead to 

iiiii fgspf =+++ −−−− 112
1

11     (D43) 

iiii pgsp =++ −−− 111 3     (D44) 

iii sgs =+ −− 11 6      (D45) 

These equations can be manipulated algebraically to solve for the derivatives in terms of 

the function at known grid points, i.e. 

)(34 1111 −++− −=++ iiiii ffppp ,   (D46) 

)2(64 1111 +−+− +−=++ iiiiii fffsss , and   (D47) 

21111 334 ++−+− +−+−=++ iiiiiii ffffggg .   (D48) 

A shift operator can be formed that depends only on the value of the function at known 

grid points and the amount that the function is to be shifted.  For a shift in the forward 

direction, i.e. iii yxy ~)( =∆+  

21111
~~4~

++−+− +++=++ iiiiiii DfCfBfAfyyy , where  (D49) 

)331( 32 ∆−∆+∆−=A ,    (D50) 

)364( 32 ∆+∆−=B ,     (D51) 

)3331( 32 ∆−∆+∆+=C ,    (D52) 

3∆=D  , and     (D53) 

xxi −=∆      (D54) 

is the deviation from a known grid point xi to the point x at which the function is to be 

evaluated.  For a shift in the backward direction, i.e. iii yxy ~)( =∆− , (D49) is replaced by 
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21111
~~4~
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however, the definitions for A, B, C, and D remain the same. 

The interior point equations (D49) and (D55) are solved using the Tridiagonal 

Algorithm which is a special case of Gaussian elimination, i.e.  

mmmmmmm DWCWBWA =−+− −+ 11 .    (D56) 

To do so, one postulates the existence of two vectors E and F such that 

mmmm FWEW += +1 .     (D57) 

Indexing this equation down one in m yields 

111 −−− += mmmm FWEW .    (D58) 

Substituting into the original equation (D57) and solving for Wm yields 
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and thus for 2≥m  the recursion relations for E and F are 
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The left-hand boundary condition is used to determine E1 and F1 as follows.  With 

m=2 (D58) gives 

1211 FWEW +=      (D62) 

For a Dirichlet condition W1 = a1, this relation must hold for all possible values of W2.  

Thus, for W1 = a1 

111 ;0 aFE ==       (D63) 

A Neumann boundary condition as in 1s
y

=
∂
∂ψ

 implies 

ys ∆=− 112 ψψ      (D64) 

or in other terms ysWW ∆−= 121 .  Comparing this with (D62) shows that for 1s
y

W =
∂
∂

, E1 

= 1 and F1 = -s1∆y.  The right-hand boundary conditions are used to determine WM as 
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follows.  For a Dirichlet condition obviously WM = aM.  A Neumann boundary condition 

as in Ms
y

=
∂
∂ψ

 implies  

ysWW MM ∆−=− 11      (D65) 

Writing (D58) for m = M gives  

111 −−− += MMMM FWEW     (D66) 

Equating the above two equations gives 

1

1

1 −

−

−
∆+=

M

MM
M E

ysF
W      (D67) 

So, the procedure for solving for E, F, and W is as follows.  Set E1 and F1 from 

the left-hand boundary condition.  March out and store the vectors Em and Fm up to 

1−= Mm  according to the recursion relations (D60) and (D61).  Set WM from the right-

hand boundary condition. Finally, use the relation (D59) with the known A, B, C, D, and 

calculated values for E and F to solve recursively for the solution vector Wm from Wm+1 

marching down from 1−= Mm  to 1=m . 

 The initial and boundary conditions are now described.  Both the electron 

and ion distribution functions are initialized as Maxwellian on each grid point in x-space.  

The electron and ion temperatures (and thus their thermal velocities) specified as inputs 

to the simulation.  A variable-length vacuum region (i.e. zero density plasma) can be 

specified on both ends of the plasma.  The bulk plasma length is specified in numbers of 

free-space laser wavelengths.  A piecewise parabolic transition allows for a smooth 

transition from the vacuum to plasma region on both ends of the system.  The total length 

of the simulation system is thus L = 2(LVac + LTrans) + LPlasma. The Maxwellian 

distribution functions are then multiplied by a profile modification to set the initial 

density.  An early-time snapshot of the electron density in a particular simulation and 

close up of the parabolic transition region is shown in Figure 49. 

The transverse electromagnetic field is composed of the sum of forward backward 

propagating waves.  The forward propagating wave E+ is comprised of the laser pump 

and possibly any forward scattered waves, e.g. from forward SRS.  The boundary 

condition on E+ is specified at the left-hand boundary and is given by 

)sin(2),0( tEtxE oo ω==+     (D68) 
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The backward propagating wave E- is comprised of the back-scattered waves and its 

boundary condition, specified at the right-hand boundary, is given by 

0),( ==− tLxE     (D69) 

 

The boundary conditions for the longitudinal electric field are treated by assuming that 

the left (x = 0) and right-hand (x = L) boundaries are isolated capacitor plates.  Thus, as 

energetic particles escape to the boundaries, the potential on the capacitor plates changes 

as they become charged.  Thus, Ex must be specified at x = 0 and x = L and overall 

neutrality imposes the condition 0=xE  at ±∞=x .  When particles escape to the edges 

of the system, the plasma system becomes non-neutral and the electric field at the left and 

right-hand boundaries is given by 
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respectively.  The code is set up to assume that the number of electrons escaping to the 

right boundary N+ is equal to the number of electrons escaping to the left boundary N- 

and thus the total charge in the plasma system (0<x<L) is divided equally between the 

boundaries, i.e.  
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where ρ  is the mean charge density in the plasma. 
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The following is the actual FORTRAN code used for the numerical simulations. 

 

 
C 1D Finite length Vlasov code for simulation of SRS 
C 
C Code obtained 8/10/01 from Dr. Magdi Shoucri of IREQ Canada 
C and subsequently modified and commented by Ron Focia of MIT 
C      
C Declare variables as double precision 
C 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
C Declare external functions called 
C 
C  DFFTCB is an IMSL routine for computing the complex periodic 
C   sequence from its Fourier coefficients - no longer used 
C 
      EXTERNAL DFFTCB 
 
C PARAMETER statements set constants for the program unit they are 
C  in.  The PARAMETER statements are split up into those that 
C  specify parameters for the simulation and those that are derived 
C  from them. 
C 
C M is for momentum space (Px), N is for x-space 
C IZK is the length of the plasma in terms of the number of free space 
C  laser wavelengths 
C NSAUT and NSAUTI are the half-width of the boundary regions on either 
C  end of the plasma region 
C NA and NB can really be set arbitrarily to give the desired vacuum 
C  region width on either end of the plasma. However, currently NA and 
NB 
C  have the same value and NA is determined by a formula. 
C EPSI, EPS, IKI, and IKP are used to specify an initial perturbation 
C  at the spatial frequency predicted by w/k matching.  This is 
necessary 
C  e.g. if the boundaries do not provide enough noise at the particular  
C  frequency to get the simulation going. 
C 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1,ND4P1=N/4+1) 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
      PARAMETER(NA=NVAC*N/(IZK+2*NVAC)+1) 
      PARAMETER(I1=NA-NSAUT/2,I2=NA+NSAUT/2,NB=NP1-NA+1,I3=NB-NSAUT/2) 
      PARAMETER(I4=NB+NSAUT/2,NCH=NB-NA+1) 
      PARAMETER(II1=NA-NSAUTI/2,II2=NA+NSAUTI/2) 
      PARAMETER(II3=NB-NSAUTI/2,II4=NB+NSAUTI/2) 
       
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
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     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      COMMON/WRKS/FZ(NP1,M2P1),YZ(NP1,M2P1) 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      COMMON/TRAC/HH,HS,C1,C3,C2,C5,EEN,C4,C6,VT 
      COMMON/TRAC1/HH1,HH2,HH3,HH5,HH6,HH7,XKE,OMP,JS 
 
      DIMENSION TRHO(NP1),HF(3000),HB(3000),XXX(N),VVX(M2),VVXI(MI2) 
      DIMENSION FTEMP(M2) 
       
      CHARACTER*24 filename 
 
      REAL NENC,IO,LAMBDAL,TE,TI 
C 
C Open files for saving transverse field data at each time step 
C 
      OPEN(UNIT=166,FILE='Ept.dat') 
      OPEN(UNIT=266,FILE='Emt.dat') 
 
C Det IDEBUG to 1 to check file IO at each time step 
C 
      IDEBUG = 0 
 
C Moving window parameters 
C  These are gleaned from prior simulation results and w-k matching 
C 
C IXSTART is the grid point to start at 
C ITSTART is the time iteration to start at 
C IWINDOW is the width of the window for spatial averaging 
C VPEPW is the phase velocity of the EPW normalized to speed of light 
C 
C These will change with the number of grid points used and must be 
C  ascertained from the results of a simulation 
 
      IXSTART = 800 
      ITSTART = 1000 
      IWINDOW = 380 
      VPEPW = 0.11281 
C 
      NSAVEDATA = 1000 
      NSTART = ITSTART 
 
C  ITIME:INTEGRAL TIME COUNT-INCREASED BY 1 EVERY TIME STEP 
C 
      ITIME=0 
C 
C  NGRPH:EVERY NGRPH STEP TRACE IS CALLED 
C 
      NGRPH=128 
C 
C  NPRNT:EVERY NPRNT STEP ENERGY IS PRINTED 
C 
      NPRNT=64 
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C 
C  NPLOT:F IS PLOTTED EVERY NPLOT STEP 
C 
      NPLOT=256 
 
C New parameters for the simulation that other values are based on 
 
C Electron and Ion temperatures in keV 
 
      TE = 0.35 
      TI = 0.1 
 
C There is an option to start off with a bi-Maxwellian plasma 
consisting 
C  of the background and a hot electron component.  This parameter  
C  specifies the hot electron temperature 
 
      TEH = 10.0 
 
C ne/ncrit 
 
      NENC = 0.06 
 
C Laser Intensity in 10^14 W/cm^2 
 
      IO=20.0 
 
C Laser wavelength in microns, 0.527 for the SHS laser 
 
      LAMBDAL=0.527 
 
C VTh specified in keV moralized to mc^2 (510.984 keV) 
C They used a warm and hot distribution to get more particles 
C  at the SRS phase velocity initially 
C 
C Warm electron distribution thermal velocity 
 
      VMAX = 0.5 
      VTH=DSQRT(TE/510.984D0) 
      VT=VTH 
 
C Hot electron distribution thermal velocity 
 
      VTH1=DSQRT(TEH/510.984D0) 
 
C Background electron fraction, the hot fraction is (1-ALP) 
C  Used in INICON to construct a bi-Maxwellian distribution 
C Turn off the hot component by setting ALP = 1.0 
 
      ALP=1.0 
 
C maximum time for the simulation 
 
      TMAX=200. 
 
C parameter specifying the pump quiver velocity normalized 
C  to the speed of light 
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C 
C  Q = (Eo*e/w_p*m_e)/c  or in terms of the quiver velocity 
C  Q = (Vosc/c)/sqrt(n/nc) 
C 
C Typical values for 527 nm laser and n/nc = 0.032: 
C 
C  I = 1x10^15 w/CM^2    ; Q = 0.08 
C  I = 1.92x10^15 w/CM^2 ; Q = 0.11 
C  I = 2x10^15 w/CM^2    ; Q = 0.113 
C  I = 3x10^15 w/CM^2    ; Q = 0.138 
C  I = 4x10^15 w/CM^2    ; Q = 0.159 
C  I = 5x10^15 w/CM^2    ; Q = 0.178 
C  I = 6x10^15 w/CM^2    ; Q = 0.195 
C 
C Should really have as an input the value of n/nc and calculate 
C  parameters that are based on this value 
 
C Ron - New parameter-based expression for Q 
 
      Q=(0.00854265*LAMBDAL*SQRT(IO))/SQRT(NENC) 
 
C parameter specifying the normalized free space wave number of  
C  the pump  XK0 = k_o*c/w_p.  Calculate by specifying the value 
C  of n/nc by 
C 
C  XKO = k_o*w_p/c = sqrt(1/(n/nc) - 1) 
C 
C  So, it's probably better to have an input for n/nc and calculate 
C  XKO using the formula above 
C  For the SHS experiments n/nc ~ 0.032, XKO ~ 5.5 
 
C Ron - New parameter-based expression for XK0 
 
      XK0=SQRT(1/NENC - 1) 
 
C electron to ion mass ratio.  Right now it's just a hydrogen 
C  Plasma but later on we'll add another species and will have 
C  to multiply by the atomic number 
 
      XMEI=1./1836. 
 
C electron to ion temperature ratio 
C for SHS experiments use Te/Ti = 350/100 = 3.5 
 
C Ron - New parameter-based expression for XTEI 
      XTEI=TE/TI 
 
C      XTEI=1. 
 
C Max ion velocity expressed in terms of the electron thermal velocity 
 
C Ron - New expression for VIMAX to make ion distribution roll 
C  off to ~10^-16 based on electron thermal momentum 
 
C      VIMAX=VMAX*VTH/DSQRT(XMEI*XTEI) 
      VIMAX=24.0*VMAX*VTH/DSQRT(XMEI*XTEI) 
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C constant 2*pi 
 
      PI2=4.0*DACOS(0.0D0) 
 
C Plasma length - IZK is the length of the plasma in terms of  
C  the number of free space laser wavelengths.  XK0 is the  
C  laser wave number in terms of c/w_pe 
C So, XL1 is the plasma length in terms of free space plasma 
C  wavelengths 
 
      XL1=IZK*PI2/XK0 
 
C Vacuum length on each end 
 
      XA=NVAC*PI2/XK0 
 
C Total system length 
 
      XL=XL1+2.0*XA 
 
C 2pi divided by the system length in free space plasma wavelengths 
C It's only used in INICON to calculate the normalized plasma wave 
number 
 
      WK=PI2/XL1 
 
C deltaX - total system length divided by the number of grid 
C points in x-space 
 
      DX=XL/DBLE(N) 
 
C Notes on deltaT = deltaX: 
C 
C  Should have about 20*DT in one cycle of the  
C  fastest oscillation, i.e. the laser.  If the length is fixed, 
C  the only way to decrease DT is to increase the number of  
C  grid points in space N 
C 
C  The laser period normalized to the plasma period is 
C   (w_p/w_L) = sqrt(n/nc). For the SHS experiments n/nc = 0.032 
C   sqrt(0.032)/20 = .009.  If XL = 160 then the necessary N~18000 
 
      DT=DX 
 
C Ratio of electron time steps to ion time steps 
 
      NSTEI=6 
 
C deltaT for ions 
 
      DTI=DBLE(NSTEI)*DT 
 
C Ratio of ion to electron deltaTs 
 
      TXI=DTI/DX 
C 
C UNIT 6 is the screen 
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C 
C Output initial data to the screen 
C 
C Ron - added writing simulation data to a text file so that 
C  parameters for a particular simulation need not be  
C  written down 
C 
      OPEN(UNIT=669,FILE='Readme.txt') 
 
      WRITE(6,70) 
      WRITE(669,70) 
      WRITE(6,80) 
      WRITE(669,80) 
  80  FORMAT(14X,'VLASOV SIMULATION OF STIMULATED RAMAN SCATTERING') 
      WRITE(6,70) 
      WRITE(669,70) 
  70  FORMAT(1H ) 
      WRITE(6,60) 
      WRITE(669,60) 
  60  FORMAT(10X,'XL',13X,'VMAX',11X,'DT',12X,'TMAX',12X,'EM0') 
      WRITE(6,50) XL,VMAX,DT,TMAX,Q 
      WRITE(669,50) XL,VMAX,DT,TMAX,Q 
  50  FORMAT(5F15.5) 
      WRITE(6,70) 
      WRITE(669,70) 
      WRITE(6,55) 
      WRITE(669,55) 
  55  FORMAT(10X,'N',11X,'M',10X,'NPRNT',7X,'NPLOT',9X,'V  ',8X,'K  ') 
      WRITE(6,56) N,M,NPRNT,NPLOT,VTH,XK0 
      WRITE(669,56) N,M,NPRNT,NPLOT,VTH,XK0 
  56  FORMAT(4I12,F16.5,F11.5) 
      WRITE(6,57) 
      WRITE(669,57) 
  57  FORMAT(1H ) 
 
 
      PUMP=0.0 
 
C Set initial conditions 
 
C Initialize electron and ion distributions and other variables 
C  on the space and momentum grids 
 
      CALL INICON 
C 
C Write all parameters for the simulation to the Readme file 
C 
      WRITE(669,70) 
      WRITE(669,330) 
      WRITE(669,331) MI,VIMAX,DVI,TI 
  330 FORMAT(10X,'MI',10X,'Vimax',6X,'DVI',9X,'Ti') 
  331 FORMAT(I12,F16.5,F12.5,F12.5) 
      WRITE(669,70) 
      WRITE(669,332) 
      WRITE(669,333) IO,NENC,TE,DV,I2,I3 
  332 FORMAT(10X,'Io',10X,'n',9X,'Te',8X,'DV',9X,'I2',7X,'I3') 
  333 FORMAT(F16.4,3F10.4,2I10) 
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C Done with the parameter README file, close it 
      CLOSE(669) 
 
      WRITE(6,70) 
      WRITE(6,1010) 
 1010 FORMAT(1H ,'   TIME',2X,'Density',1X,' EKx Elec',1X,' EKy Elec', 
     12X,'EK Total',2X,'E-Long',3X,' E-EM   ',2X,' E-Total ') 
      WRITE(6,70) 
C 
C     CALL EZY(RHOI,NP1,'ION DENSITY$') 
 
C Subroutine PREP calculates parameters used for shifting 
C  in space and momentum 
 
      CALL PREP 
 
C Subroutine DENSI calculates the ion charge density  
C  for each point in x-space 
 
      CALL DENSI 
 
C Subroutine ENGY calls TRACE which calculates all 
C  energies 
 
      CALL ENGY 
 
C Subroutine DENS calculates the electron charge density 
C  for each point in x-space 
 
      CALL DENS 
 
C Write x and Px to data files 
C 
C Ron - Modified to write raw data to individual files 
 
C X-vector 
      OPEN(UNIT=66,FILE='X.dat') 
      WRITE(66,*) (FLOAT(I-1)*SNGL(DX),I=1,NP1) 
      CLOSE(66) 
 
C Px-vector for electrons 
      DO J=1,M2 
        VVX(J)=(J-1)*DV-VMAX 
      ENDDO 
      OPEN(UNIT=66,FILE='Pxe.dat') 
      WRITE(66,*) (SNGL(VVX(J)),J=1,M2) 
      CLOSE(66) 
C Px-vector for ions 
      DO J=1,MI2 
        VVXI(J)=(J-1)*DVI-VIMAX 
      ENDDO 
      OPEN(UNIT=66,FILE='Pxi.dat') 
      WRITE(66,*) (SNGL(VVXI(J)),J=1,MI2) 
      CLOSE(66) 
 
C Save initial transverse fields 
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C format specifier to write one data point per line 
366   FORMAT(F8.6) 
      WRITE(166,366) SNGL(EP(I3)) 
      WRITE(266,366) SNGL(EM(I2)) 
 
C Beginning of time step loop 
C T is the actual time not the integer time step 
 
    6 T=T+DT 
C 
C Increment the integer time step 
C 
      ITIME=ITIME+1 
C 
C Set the time-dependent pump amplitude (peak electric field) 
 
      PUMP=2.*Q*DSIN(OMK*T) 
C 
C don’t know what these were used for but they're obviously some  
C  time-dependent shift in the pump frequency 
C 
C     PUMP=Q*DSIN(OMK*T*(1.-T/6000.D0))+Q*DSIN(1.562D0*T) 
C     PUMP=2.*Q*DSIN(OMK*T*(1.-T/1500.)) 
C 
C Only update ion information every NSTEI steps 
C 
      IF(MOD(ITIME,NSTEI).EQ.0) THEN 
        DO 20 I=1,NP1 
C Update ion Vy using half time step and the monokinetic fluid 
approximation 
          VYI(I)=VYI(I)+0.5*DTI*XMEI*(EP(I)+EM(I)) 
   20   CONTINUE 
        CALL STRION 
        CALL DENSI 
      ENDIF 
 
C Update electron Vy using half time step and the monokinetic fluid 
approximation 
      DO 10 I=1,NP1 
        VY(I)=VY(I)-0.5*DT*(EP(I)+EM(I)) 
   10 CONTINUE 
C 
C Shift the electron distributions 
      CALL STREAM 
 
C Calculate the new longitudinal field 
      CALL EFIELD 
 
C Calculate the new transverse fields 
      CALL SPHOTF 
 
C Here the forward and backward propagating transverse fields 
C  are saved at the boundaries for each time step 
C 
C     HB(ITIME)=EM(1)*EM(1)*0.25 
C     HF(ITIME)=EP(NP1)*EP(NP1)*0.25 
C 
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C Accelerate electrons and ions if necessary 
 
      CALL ACC 
      IF(MOD(ITIME,NSTEI).EQ.0) CALL ACCI 
C 
      IF(MOD(ITIME,NGRPH).EQ.0) THEN 
C 
        DO 77 I=1,NP1 
          TRHO(I)=(EP(I)+EM(I))*0.5 
   77   CONTINUE 
C 
        DO 78 I=1,NP1 
          TRHO(I)=EF(I) 
   78   CONTINUE 
C 
      ENDIF 
C 
C     IF(MOD(ITIME,NPLOT).EQ.0)CALL PLOTF 
C 
C Periodically save the spatially averaged electron distribution 
function 
C Must specify a window over which the distribution function will be 
averaged. 
C  Then sum all Fe on the same Px value and divide by the number of 
points 
C  summed over. 
C 
C Additionally, save all data on the last iteration 
 
      IF(((MOD(ITIME,NSAVEDATA).EQ.0).AND.(ITIME.GE.NSTART)) 
     1.OR.(T.GE.TMAX).OR.(IDEBUG.GT.0))THEN 
 
        WRITE(6,98) 
  98    FORMAT(14X,'writing data files...') 
 
C Spatially average the distribution function over a number of bins 
C  moving at the phase velocity of the EPW 
 
C Update the starting index for the moving window. This is only 
meaningful 
C  if we're not debugging 
 
        IF(ITIME.GE.ITSTART)THEN 
          IXSTART = IXSTART + INT(VPEPW*(ITIME-ITSTART)) 
        ENDIF 
 
        NUMBINS=3 
 
        DO 110 K=1,NUMBINS 
 
          DO 112 J=1,M2 
            S=0.0 
            IS = (IXSTART + (K-2)*(IWINDOW+1)) 
            DO 111 I=IS,(IS+IWINDOW) 
              S=S+F(I,J)           
  111       CONTINUE 
            FTEMP(J)=S/(IWINDOW+1) 
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  112     CONTINUE 
 
          WRITE(filename,113) K,ITIME 
  113     FORMAT('FeBin',I1,'T',I8,'.dat') 
          OPEN(UNIT=66,FILE=filename) 
          WRITE(66,*) (SNGL(FTEMP(J)), J=1,M2) 
          CLOSE(66) 
 
  110   CONTINUE 
 
C Forward propagating field 
        WRITE(filename,114) ITIME 
  114   FORMAT('EP',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename) 
        WRITE(66,*) (SNGL(EP(I)),I=1,NP1) 
        CLOSE(66) 
 
C Backward propagating field 
        WRITE(filename,115) ITIME 
  115   FORMAT('EM',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename) 
        WRITE(66,*) (SNGL(EM(I)),I=1,NP1) 
        CLOSE(66) 
 
C Longitudinal field 
        WRITE(filename,116) ITIME 
  116   FORMAT('EF',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename) 
        WRITE(66,*) (SNGL(EF(I)),I=1,NP1) 
        CLOSE(66) 
 
C Electron distribution 
C Save the electron distribution in the plasma region and only in 
positive 
C  momentum space 
        Nx = I3-I2+1 
        Np = M2-(M-1)+1 
        WRITE(filename,117) ITIME 
 117    FORMAT('Fe',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename,ACTION='WRITE',FORM='BINARY',RECL=4) 
        WRITE(66) Nx 
        WRITE(66) Np 
        WRITE(66) ((SNGL(F(I,J)),I=I2,I3),J=M,M2) 
        CLOSE(66) 
 
C Ion distribution 
C Save the ion distribution in the plasma region and only in positive 
C  momentum space 
        Nx = I3-I2+1 
        Npi = MI2-(MI-1)+1 
        WRITE(filename,1171) ITIME 
1171    FORMAT('Fi',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename,ACTION='WRITE',FORM='BINARY',RECL=4) 
        WRITE(66) Nx 
        WRITE(66) Npi 
        WRITE(66) ((SNGL(FI(I,J)),I=I2,I3),J=MI,MI2) 
        CLOSE(66) 
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C Electron density 
        DO I=1,N 
          CINT=0. 
          DO J=1,M2 
            CINT=CINT+F(I,J)*DV 
          ENDDO 
          TRHO(I)=CINT 
        ENDDO 
        WRITE(filename,118) ITIME 
  118   FORMAT('rhoe',I8,'.dat') 
        OPEN(UNIT=66,FILE=filename) 
        WRITE(66,*) (SNGL(TRHO(I)),I=1,N) 
        CLOSE(66)  
 
      ENDIF 
 
      IF(MOD(ITIME,NPRNT).EQ.0)THEN 
         CALL ENGY 
      ENDIF 
C 
      IF(F(2,M2)*F(2,M2).GT.100.0) THEN 
        WRITE(6,1007) 
 1007   FORMAT(' TERMINATION DUE TO NUMERICAL INSTABILITY') 
        IF(MOD(ITIME,NPRNT).NE.0)CALL ENGY 
        STOP 
      ELSE 
 
C Save transverse fields 
      WRITE(166,366) SNGL(EP(I3)) 
      WRITE(266,366) SNGL(EM(I2)) 
 
      IF(T.LT.TMAX) GO TO 6 
 
C End of Main time loop 
C 
C     CALL EZY(HB,ITIME,'BACKWARD FLUX$') 
C     CALL EZY(HF,ITIME,'FORWARD FLUX$') 
C 
      DO 79 I=1,NP1 
        TRHO(I)=0.5*(EP(I)+EM(I)) 
  79  CONTINUE 
C 
 
      WRITE(6,99) 
  99  FORMAT(14X,'Simulation complete') 
 
C Close transverse field data files 
      CLOSE(166) 
      CLOSE(266) 
 
      ENDIF 
C 
C Cancel calling PLOTF until I know whets going on in the routine 
C     CALL PLOTF 
C 
      STOP 
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      END 
C 
C End of main program loop 
C 
C SUBROUTINE INICON sets initial conditions for the simulation 
C 
      SUBROUTINE INICON 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1,ND4P1=N/4+1) 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
      PARAMETER(NA=NVAC*N/(IZK+2*NVAC)+1) 
      PARAMETER(I1=NA-NSAUT/2,I2=NA+NSAUT/2,NB=NP1-NA+1,I3=NB-NSAUT/2) 
      PARAMETER(I4=NB+NSAUT/2,NCH=NB-NA+1) 
      PARAMETER(II1=NA-NSAUTI/2,II2=NA+NSAUTI/2) 
      PARAMETER(II3=NB-NSAUTI/2,II4=NB+NSAUTI/2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      COMMON/TRAC1/HH1,HH2,HH3,HH5,HH6,HH7,XKE,OMP,JS 
C 
C    CALCULATE THE VALUES OF THE EQUILIBRIUM DISTRIBUTION 
C 
      PIE=2.0*DACOS(0.0D0) 
      PIE2=2.0*PIE 
C 
      ARG=IZK*PIE2/DBLE(NB-NA) 
 
C XKE is the normalized plasma wave number 
      XKE=DBLE(IKP)*WK 
 
      XKI=DBLE(IKI)*PIE2/XL 
      ARGI=DBLE(IKI)*PIE2/DBLE(NB-NA) 
      ARGP=IKP*PIE2/DBLE(NB-NA) 
C 
C laser frequency normalized to the plasma frequency 
      OMK=DSQRT(1.0+XK0*XK0) 
 
C Normalized plasma wave frequency 
      OMP=DSQRT(1.0+3.0*XKE*XKE*VTH*VTH) 
 
C Ion wave frequency...what's he doing here? 
C  This is just a weird way to calculate OmI = k*Cs 
C  OMI is first used to calculate Cs^2 and is then  
C  corrected by the mass ratio and Vth 
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      OMI=(3.0/XTEI+1.0/(1.0+XKI*XKI*VTH*VTH)) 
      OMI=DSQRT(DABS(OMI*XMEI))*XKI*VTH 
C 
      WRITE(6,100) XMEI,XTEI,XKE,XKI,OMK,OMP,OMI,VIMAX 
      WRITE(669,100) XMEI,XTEI,XKE,XKI,OMK,OMP,OMI,VIMAX 
  100 FORMAT(2X,'XMEI=',E10.3,' XTEI=',E10.3,' XKE=', 
     1E10.3,' XKI  =',E10.3,/,'  OMK =',E10.3,' OMP =',E10.3, 
     2' OMI=',E10.3,' VIMAX=',E10.3,/) 
 
C plasma wave phase velocity 
 
      VPHI=OMP/XKE 
C 
C Le calcul suivant genere un underflow sqtr(-n) 
C Following calculation generate an underflow-translation from 
babblefish 
C     PPHI=VPHI/DSQRT(1.D0-VPHI*VPHI) 
C     JS=M+IDNINT(M*PPHI/VMAX) 
 
C sqrt of 2pi - Fix: This should be a global constant 
 
      S2PIE=DSQRT(PIE2) 
 
C delta in momentum space.  variables are V but really they 
C  hold Px 
 
      DV=VMAX/(DBLE(M)-0.5) 
      DVI=VIMAX/(DBLE(MI)-0.5) 
 
      DTT=DT 
 
      M2N=M2*N 
 
      T=0.0 
 
C     IF(T.GT.0.0)GOTO 22 
 
C This loop initializes the hot electron distribution in momentum  
C  space for each spatial grid point 
C 
C An initial perturbation can be specified with EPS or EPSI for 
electron 
C  plasma or ion acoustic waves, respectively.  I think this would  
C  translate directly to dn/n. 
C 
      DO 97 J=1,M2 
        V=(J-1)*DV-VMAX 
        DO 97 I=1,NP1 
          ARGPP=ARGP*FLOAT(I-1) 
          ENER1=V-EPS*VTH1*DCOS(ARGPP) 
          ENER1=1.-DSQRT(1.0D0+ENER1*ENER1) 
          ENER1=ENER1/VTH1**2 
          F(I,J)=DEXP (ENER1) 
  97  CONTINUE 
C 
C don't know what this is for, looks like integrating the 
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C  hot distribution function and keeping track of the sum in H 
C  Multiplying by DV gives the total area under F then dividing 
C  by N gives the spatial average 
 
      H=0. 
      CTN=0. 
C 
      DO 51 I=1,N 
        DO 51 J=1,M2 
          H=H+F(I,J) 
   51 CONTINUE 
C 
       CTN=H*DV/DBLE(N) 
 
C     WRITE(6,108)CTN 
C 108 FORMAT(2X,'C CTN DENSITY ',E20.10) 
C 
C This loop specifies the warm electron component in momentum space  
C (on each grid point in x) and then adds it to the hot distribution 
C calculated above 
 
      DO 53 J=1,M2 
        V=(J-1)*DV-VMAX 
        V=V/VTH 
        DO 53 I=1,NP1 
          ARGPP=ARGP*FLOAT(I-1) 
          ENER=0.5*(V-EPS*DCOS(ARGPP))**2 
          FUNCT=ALP*DEXP(-ENER)/S2PIE/VTH 
          F(I,J)=(1.-ALP)*F(I,J)/CTN+FUNCT 
   53 CONTINUE 
 
C Debug - Print out the electron distribution function 
      OPEN(UNIT=66,FILE='FeInit.dat') 
      WRITE(66,*) (SNGL(F(100,I)),I=1,M2) 
      CLOSE(66)    
 
 
C 
C     ENER=0.5*(V-EPS*DCOS(ARGP*DREAL(I-1)))**2 
C     F(I,J)=DEXP(-ENER)/S2PIE/VTH 
C 20  CONTINUE 
 
      XNS=NSAUT 
C 
C modify the electron distribution in space based on the specified 
C  profile 
C 
      DO 27 J=1,M2 
C 
C In the vacuum region the distribution function is zero 
        DO 21 I=1,I1 
          F(I,J)=0.0 
   21   CONTINUE 
C 
C The profile is then ramped up using piecewise parabolic 
C  functions PRFE is simply a profile modification factor 
        DO 22 I=I1+1,NA 
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          PRFE=2.0*(DBLE(I-I1)/XNS)**2 
c     PRFE=DSIN(PIE*DBLE(I-I1)/(2.*XNS)) 
c     PRFE=PRFE*PRFE 
          F(I,J)=F(I,J)*PRFE 
   22   CONTINUE 
C 
        DO 23 I=NA+1,I2 
          PRFE=1.-2.0*(DBLE(I-I2)/XNS)**2 
c     PRFE=DSIN(PIE*DBLE(I-I1)/(2.*XNS)) 
c     PRFE=PRFE*PRFE 
          F(I,J)=F(I,J)*PRFE 
   23   CONTINUE 
C 
        DO 24 I=I3+1,NB 
          PRFE=1.-2.0*(DBLE(I-I3)/XNS)**2 
          F(I,J)=F(I,J)*PRFE 
   24   CONTINUE 
C 
        DO 25 I=NB+1,I4 
          PRFE=2.0*(DBLE(I-I4)/XNS)**2 
          F(I,J)=F(I,J)*PRFE 
   25   CONTINUE 
C 
C F is zero again in the right vacuum region 
        DO 26 I=I4+1,NP1 
          F(I,J)=0.0 
   26   CONTINUE 
C 
   27 CONTINUE 
C 
C Initialize ion distribution, first in momentum space and then 
C  in x-space modifying it with the profile as with the electron 
C  distribution 
C 
C If we later allow multiple ion species, here is where they'll be 
C  initialized 
C 
      CSTE=DSQRT(XMEI*XTEI)/S2PIE/VTH 
C 
      DO 40 J=1,MI2 
        V=(J-1.)*DVI-VIMAX 
        V=V*DSQRT(XMEI*XTEI)/VTH 
        DO 40 I=1,NP1 
          ARGII=ARGI*FLOAT(I-1) 
          ENER=V-EPSI*DCOS(ARGII) 
          ENER=0.5*ENER*ENER 
          FI(I,J)=CSTE*DEXP(-ENER) 
   40 CONTINUE 
C 
C Debug - Print out the ion distribution function 
      OPEN(UNIT=66,FILE='FiInit.dat') 
      WRITE(66,*) (SNGL(FI(100,I)),I=1,MI2) 
      CLOSE(66)    
 
 
      XNS=NSAUTI 
C 
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      DO 38 J=1,MI2 
        DO 31 I=1,II1 
          FI(I,J)=0.0 
   31 CONTINUE 
C 
      DO 32 I=II1+1,NA 
        PRFI=2.0*(DBLE(I-II1)/XNS)**2 
c     PRFI=DSIN(PIE*DBLE(I-II1)/(2.*XNS)) 
c     PRFI=PRFI*PRFI 
        FI(I,J)=FI(I,J)*PRFI 
   32 CONTINUE 
C 
      DO 33  I=NA+1,II2 
        PRFI=1.-2.0*(DBLE(I-II2)/XNS)**2 
c     PRFI=DSIN(PIE*DBLE(I-II1)/(2.*XNS)) 
c     PRFI=PRFI*PRFI 
        FI(I,J)=FI(I,J)*PRFI 
   33 CONTINUE 
C 
      DO 34 I=II2+1,II3 
        PRFI=1.0 
        FI(I,J)=FI(I,J)*PRFI 
   34 CONTINUE 
C 
      DO 35 I=II3+1,NB 
        PRFI=1.-2.0*(DBLE(I-II3)/XNS)**2 
        FI(I,J)=FI(I,J)*PRFI 
   35 CONTINUE 
C 
      DO 36 I=NB+1,II4 
        PRFI=2.0*(DBLE(I-II4)/XNS)**2 
        FI(I,J)=FI(I,J)*PRFI 
   36 CONTINUE 
C 
      DO 37 I=II4+1,NP1 
        FI(I,J)=0.0 
   37 CONTINUE 
C 
   38 CONTINUE 
C 
C Looks like at one point they allowed reading in a distribution 
C  from a file 
C  22 READ(10)((F(I,J),J=1,M2),I=1,N) 
C     REWIND(10) 
C 
C Initialize other parameters on the spatial grid 
 
      DO 30 I=1,NP1 
        VY(I)=0.0 
        VYI(I)=0.0 
        EM(I)=0.0 
C Here we could specify a J1(x)/x profile for the laser 
C  to simulate the SHS profile 
        EP(I)=PUMP 
   30 CONTINUE 
C 
      RETURN 
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      END 
C 
C  SUBROUTINE PREP 
C 
      SUBROUTINE PREP 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1,ND4P1=N/4+1) 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
      PARAMETER(NA=NVAC*N/(IZK+2*NVAC)+1) 
      PARAMETER(I1=NA-NSAUT/2,I2=NA+NSAUT/2,NB=NP1-NA+1,I3=NB-NSAUT/2) 
      PARAMETER(I4=NB+NSAUT/2,NCH=NB-NA+1) 
      PARAMETER(II1=NA-NSAUTI/2,II2=NA+NSAUTI/2) 
      PARAMETER(II3=NB-NSAUTI/2,II4=NB+NSAUTI/2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      DIMENSION DD(M2P1),DDI(MI2P1) 
 
C FOR ELECTRONS 
 
C starting off at an initial velocity of 1/2 the step 
C This makes sense because the center velocity is zero 
 
      V=0.5*DV 
 
C Calculating the momentum in x relativistically 
 
      DO 2 J=1,M 
        PX=V/DSQRT(1.0D0+V*V) 
        S=PX 
        S=DMOD(S,1.D0) 
C S holds the fractional part 
C DSH holds momentum for + and - values 
        DSH(M-J+1)=PX 
        DSH(M+J)=PX 
C DD holds the factional part 
        DD(M-J+1)=S 
        DD(M+J)=S 
        V=V+DV 
  2   CONTINUE 
 
C FOR IONS 
      V=0.5*DVI 
 
CDIR$ IVDEP 
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      DO 3 J=1,MI 
        PX=V*XMEI 
        PX=PX/DSQRT(1.0D0+PX*PX) 
        S=PX*TXI 
        S=DMOD(S,1.D0) 
        DSHI(MI-J+1)=PX*TXI 
        DSHI(MI+J)=PX*TXI 
        DDI(MI-J+1)=S 
        DDI(MI+J)=S 
        V=V+DVI 
    3 CONTINUE 
 
C FOR ELECTRONS 
      X(1)=-0.25 
 
      DO 10 J=2,M2 
        X(J)=-1.0/(4.0+X(J-1)) 
  10  CONTINUE 
 
C FOR IONS 
      XI(1)=-0.25 
 
      DO 11 J=2,MI2 
        XI(J)=-1.0/(4.0+XI(J-1)) 
   11 CONTINUE 
 
C    CALCULATE THE SHIFT COEFFICIENTS 
      E(1)=-0.25 
      G(1)=-0.25 
 
      DO 21 I=2,NM1 
        E(I)=-1.0/(4.0+E(I-1)) 
C As far as I can tell, G is not used anywhere 
        G(I)=+G(I-1)*E(I) 
  21  CONTINUE 
 
C FOR ELECTRONS 
      DO 9 J=1,M2 
        AD=DD(J) 
        A(J)=(1.-AD)**3 
        B(J)=4.0-3.0*AD*AD*(1.0+(1.0-AD)) 
        C(J)=4.0-3.0*((1.0-AD)**2)*(1.0+AD) 
        D(J)=AD*AD*AD 
  9   CONTINUE 
 
C FOR IONS 
      DO 8 J=1,MI2 
        AD=DDI(J) 
        AI(J)=(1.-AD)**3 
        BI(J)=4.0-3.0*AD*AD*(1.0+(1.0-AD)) 
        CI(J)=4.0-3.0*((1.0-AD)**2)*(1.0+AD) 
        DI(J)=AD*AD*AD 
    8 CONTINUE 
 
      RETURN 
      END 
C 
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C  SUBROUTINE NONPERIODIC 
C 
      SUBROUTINE NONPERIODIC (F,V,N) 
      PARAMETER (NM=256) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER N 
C 
C      COMMON/SHFT/X(NM),E(NM),G(NM),EE(NM) 
      DIMENSION X(NM),E(NM),G(NM),EE(NM) 
C 
      DIMENSION  F(N),V(N) 
      DIMENSION FL(N),H(N),ALPHA(N),BETA(N),S(0:N+1),OLD_F(0:N+1) 
C      REAL A,B,C,D,XJ 
C 
      INTEGER I,J 
C 
C     ---------------------------------------------- 
C     Copy F to OLD_F & periodic boundary conditions 
C     ---------------------------------------------- 
      OLD_F(N+1) = F(N) 
      DO I = 1,N 
         OLD_F(I) = F(I) 
      F(I)=0. 
      ENDDO 
      OLD_F(0)   =0. 
CC      OLD_F(N+1) = F(N) 
C     ---------------------------------------------- 
C     Calculate L_i 
C     ---------------------------------------------- 
      DO I = 1,N 
         FL(I)=3.0*(OLD_F(I-1)-2.*OLD_F(I)+OLD_F(I+1)) 
      ENDDO 
C     ---------------------------------------------- 
C     Calculate H_i 
C     ---------------------------------------------- 
      H(1) = FL(1)/4.0 
      H(1)=0. 
      DO I = 2,N 
         H(I) = EE(I)*(H(I-1)-FL(I)) 
      ENDDO 
C     ---------------------------------------------- 
C     ---------------------------------------------- 
C     Calculate S_i 
C     ---------------------------------------------- 
C      S(N) = (FL(N)-BETA(1)-BETA(N-1))/(ALPHA(1)+ALPHA(N-1)+4.0) 
      S(N+1)=H(N)/(1.-EE(N)) 
      DO I = 0,N-1 
C         S(I) = ALPHA(I)*S(N)+BETA(I) 
         S(N-I) =EE(N-I)*S(N-I+1)+H(N-I) 
 
      ENDDO 
C      S(0)   = S(N) 
      S(0)=0. 
C      S(N+1) = S(1) 
C 
C     ============================================== 
C     Begin of interpolation loop over i 
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C     ============================================== 
      DO I = 1,N 
C     ---------------------------------------------- 
C     Calculate "origin" index j for index i 
C     ---------------------------------------------- 
CM         XJ = MODULO(FLOAT(I)-V(I)-1.0,FLOAT(N))+1.0 
         XJ = FLOAT(I)-V(I) 
      IF(XJ.LT.0.0) XJ=0. 
      IF(XJ.GT.N) XJ=FLOAT(N) 
C     ---------------------------------------------- 
C     Calculate A,B,C and D. ( B = delta ) 
cc      FIELD=V(I) 
cc      SS=DMOD(DABS(FIELD),1.0D0) 
cc      IF(FIELD.LE.0.0) THEN 
cc      ISGNF=-1 
cc      ELSE 
cc      ISGNF=+1 
cc      ENDIF 
 
         B =DMOD(XJ,1.0D0) 
cc      B=SS 
 
         A = 1.0 - B 
         C = A*(A-1)*(A+1)/3.0 
         D = B*(B-1)*(B+1)/3.0 
C     ---------------------------------------------- 
C     Calculate J 
C     ---------------------------------------------- 
         J = INT(XJ) 
C     ---------------------------------------------- 
C     Calculate F(I) 
C     ---------------------------------------------- 
         F(I) = A*OLD_F(J)+B*OLD_F(J+1)+C*S(J)+D*S(J+1) 
cc         F(I+INT(ABS(FIELD))*ISGNF) = 
cc     1 A*OLD_F(I)+B*OLD_F(I-ISGNF)+C*S(I)+D*S(I-ISGNF) 
C 
      ENDDO 
C     ============================================== 
C     End of loop over i 
C     ============================================== 
C 
      RETURN 
      END 
C 
C  SUBROUTINE PLOTF 
C 
C  This routine appears to be the only place where external  
C    FFT routines are called 
C 
C  Create phase space plots of the distribution functions to 
C    see the vortices 
C 
C  Ron - This has now been replaced by my Matlab post processing 
C 
      SUBROUTINE PLOTF 
 
C  Declare variables as double precision 
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      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1,ND4P1=N/4+1) 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
      PARAMETER(NA=NVAC*N/(IZK+2*NVAC)+1) 
      PARAMETER(I1=NA-NSAUT/2,I2=NA+NSAUT/2,NB=NP1-NA+1,I3=NB-NSAUT/2) 
      PARAMETER(I4=NB+NSAUT/2,NCH=NB-NA+1) 
      PARAMETER(II1=NA-NSAUTI/2,II2=NA+NSAUTI/2) 
      PARAMETER(II3=NB-NSAUTI/2,II4=NB+NSAUTI/2) 
 
      PARAMETER(LL=9,LL1=LL+1,VAR=200.,NCHS2=(NCH-1)/2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
C  variable TRHO becomes complex the other remainders 
 
C     DIMENSION FPL(192,64),WORK(2,128),TRHO(2,M2P1-1),LWK(LL1),IWK(8) 
      DIMENSION FPL(NCH-1,256) 
C it looks like the line below is used for the IMSL routine 
      COMPLEX*16 TRHO(M2P1-1),GG(M2P1-1),WORK(128),GGW(128) 
c      DIMENSION F1(96,64),F2(96,64) 
C     REAL*8 AR(0:M2-1),AI(0:M2-1) 
      DIMENSION F1((NCH-1)/2,256),F2((NCH-1)/2,256) 
      IFAIL=0. 
      NDI=(NCH-1)/192 
      MDI=M2/64 
      NDI=2 
      DO 102 I=NDI,NCH-1,NDI 
C 
        DO 120 J=1,M2 
C 
C Transform to COMPLEX 
C use one or the other but not both 
C     TRHO(2,J)=0. 
C     TRHO(1,J)=0.0 
        TRHO(J)=DCMPLX(0.0D0,0.0D0) 
C     AR(J-1)=0. 
C     AI(J-1)=0. 
 
        DO 200 IM=-NDI,-1 
          SF=F(I+NA+IM,J) 
C Transform to COMPLEX 
C     TRHO(1,J)=TRHO(1,J)+SF 
          TRHO(J)=DCMPLX(DREAL(TRHO(J))+SF,DIMAG(TRHO(J)))       
C     AR(J-1)=AR(J-1)+SF 
 
  200   CONTINUE 
C     AR(J-1)=AR(J-1)/FLOAT(NDI) 
C     IF(J.LT.M/2.OR.J.GT.3*M/2) AR(J-1)=0. 
 
C Transform to COMPLEX 
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C     TRHO(1,J)=TRHO(1,J)/DBLE(NDI) 
      TRHO(J)=DCMPLX(DREAL(TRHO(J))/DBLE(NDI),DIMAG(TRHO(J)))       
 
  120  CONTINUE 
 
c Fourier Transform version 9.2  A REMPLACER PAR VERSION 10 
c     CALL FFT2C(TRHO,LL,LWK) 
C DFFTCB is a double precision IMSL routine 
      CALL DFFTCB(2**LL,TRHO,GG) 
C C06EAF NAG routine  
C  Single one-dimensional real discrete Fourier transform, no extra 
workspace  
C     CALL C06EAF(AR,M2,IFAIL) 
      DO NI=1,M2P1-1 
        TRHO(NI)=GG(NI) 
      END DO 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 
cc      DO 103 K=1,33 
      DO 103 K=2,256 
      SMOOTH=DBLE(K-1)**2/VAR 
cc      SMOOTH=DEXP(-SMOOTH)/DBLE(M2-1) 
      SMOOTH=DEXP(-SMOOTH) 
C     AR(K-1)=AR(K-1)*SMOOTH 
C     AR(512-K+1)=AR(512-K+1)*SMOOTH 
C Transform to COMPLEX 
C     WORK(1,K)=TRHO(1,K)*SMOOTH 
C 103 WORK(2,K)=-TRHO(2,K)*SMOOTH 
      WORK(K)=DCMPLX(DREAL(TRHO(K))*SMOOTH,-DIMAG(TRHO(K))*SMOOTH) 
  103 CONTINUE 
cc      DO 104 K=2,32 
      DO 104 K=2,256 
C Transform to COMPLEX 
C     WORK(1,130-K)=WORK(1,K) 
C 104 WORK(2,130-K)=-WORK(2,K) 
      WORK(130-K)=DCMPLX(DREAL(WORK(K)),-DIMAG(WORK(K))) 
  104 CONTINUE 
 
      DO 112 K=34,97 
C Transform to COMPLEX 
C     WORK(1,K)=0. 
C 112 WORK(2,K)=0. 
      WORK(K)=DCMPLX(0.0D0,0.0D0) 
  112 CONTINUE 
C C06GBF NAG routine - Complex conjugate of Hermitian sequence  
C      CALL C06GBF(AR,512,IFAIL) 
C C06EBF NAG routine 
C  Single one-dimensional Hermitian discrete Fourier transform, no 
extra workspace  
C      CALL C06EBF(AR,512,IFAIL) 
cc    DO 107 J=257,385 
      DO 107 J=257,257+170 
C  107 FPL(I/NDI,J-256)=AR(J) 
 
c transf de Fourier version 9.2 
c      CALL FFT2C(WORK,7,IWK) 
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      CALL DFFTCB(2**7,WORK,GGW) 
C 
      DO NI=1,128 
        WORK(NI)=GGW(NI) 
      END DO 
C 
cc      DO 107 J=65,128 
C Transform to COMPLEX 
C 107 FPL(I/NDI,J-64)=WORK(1,J) 
  107 FPL(I/NDI,J-64)=DREAL(WORK(J)) 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 
 
  102 CONTINUE 
c      DO 300 J=1,128 
      DO 300 J=1,170 
cc      DO 310 I=1,96 
      DO 310 I=1,(NCH-1)/(2*NDI) 
      F1(I,J)=FPL(I,J) 
 310  CONTINUE 
cc      DO 300 I=97,192 
      DO 300 I=(NCH-1)/(2*NDI)+1,(NCH-1)/NDI 
cc      F2(I-96,J)=FPL(I,J) 
      F2(I-(NCH-1)/(2*NDI),J)=FPL(I,J) 
 300  CONTINUE 
      OPEN(UNIT=3,FILE='contour3.dat') 
      WRITE(3,*) 1 
ccc   WRITE(3,*) 96,64 
cc      WRITE(3,*) (NCH-1)/(2*NDI),128 
      WRITE(3,*) (NCH-1)/(2*NDI),170 
ccc   WRITE(3,*) (SNGL((I-1)*DX),I=1,96) 
      WRITE(3,*) (SNGL((I-1)*NDI*DX),I=1,(NCH-1)/(2*NDI)) 
cc      WRITE(3,*) (SNGL((J-1)*DV),J=1,128) 
      WRITE(3,*) (SNGL((J-1)*DV),J=1,170) 
C     WRITE(3,*) (SNGL((J-1)*DV),J=1,128) 
ccc      WRITE(3,*) ((F1(I,J),I=1,96),J=1,256) 
      WRITE(3,*) ((F1(I,J),I=1,(NCH-1)/(2*NDI)),J=1,170) 
      WRITE(3,*) 0 
      REWIND 3 
      CLOSE(3) 
      OPEN(UNIT=4,FILE='contour4.dat') 
      WRITE(4,*) 1 
ccc   WRITE(4,*) 96,64 
      WRITE(4,*) (NCH-1)/(2*NDI),170 
      WRITE(4,*) (SNGL((I-1)*NDI*DX),I=1,(NCH-1)/(2*NDI)) 
ccc   WRITE(4,*) (SNGL((I-1)*DX),I=1,96) 
      WRITE(4,*) (SNGL((J-1)*DV),J=1,170) 
cc    WRITE(4,*) (SNGL((J-1)*DV),J=1,128) 
ccc      WRITE(4,*) ((F2(I,J),I=1,96),J=1,256) 
c      WRITE(4,*) ((F2(I,J),I=1,96),J=1,128) 
      WRITE(4,*) ((F2(I,J),I=1,(NCH-1)/(2*NDI)),J=1,170) 
      WRITE(4,*) 0 
      CLOSE(4) 
      OPEN(UNIT=5,FILE='contour5.dat') 
      WRITE(5,*) 1 
ccc   WRITE(5,*) 96,64 
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c      WRITE(5,*) (NCH-1)/(2*NDI),128 
      WRITE(5,*) 201,170 
      WRITE(5,*) (SNGL((I-1)*NDI*DX),I=(NCH-1)/(2*NDI)-500, 
     1(NCH-1)/(2*NDI)-300) 
      WRITE(5,*) (SNGL((J-1)*DV),J=1,170) 
      WRITE(5,*) ((F1(I,J),I=(NCH-1)/(2*NDI)-500, 
     1(NCH-1)/(2*NDI)-300),J=1,170) 
      WRITE(5,*) 0 
      REWIND 5 
      CLOSE(5) 
 
CCC   CALL CONREC(F1,96,96,64,0.0001,0.0041,0.001,0,-1,0) 
CCC   CALL FRAME 
CCC   CALL CONREC(F2,96,96,64,0.0001,0.0041,0.001,0,-1,0) 
CCC   CALL FRAME 
      RETURN 
      END 
C 
C  SUBROUTINE ENGY - computes energies for print out 
C 
C  Subroutine TRACE really does all the computations 
C   so what's the use of this function? 
C 
      SUBROUTINE ENGY 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1,ND4P1=N/4+1) 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      COMMON/TRAC/HH,HS,C1,C3,C2,C5,EEN,C4,C6,VT 
 
      CALL TRACE 
 
      WRITE(6,1002) T,C1,C3,C2,C5,EEN,C4,C6 
 1002 FORMAT(F8.2,E9.1,6F10.6) 
 
      RETURN 
      END 
C 
C  SUBROUTINE STREAM - move electrons in space along characteristic 
C 
      SUBROUTINE STREAM 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
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      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      DIMENSION FF(NP1),Y(NP1) 
 
C    SHIFT THE ELECTRON DISTRIBUTION FUNCTION 
C 
C The shift is done differently depending on the positive or 
C  negative velocity space. So, it's split up into two similar 
C  blocks of code 
C 
 
      NM2=N-2 
 
      DO 6 J=1,M 
        A1=A(J) 
        B1=B(J) 
        C1=C(J) 
        D1=D(J) 
        DO 1 I=2,NM2 
    1     FF(I)=A1*F(I-1,J)+B1*F(I,J)+C1*F(I+1,J)+D1*F(I+2,J) 
        FF(1)=B1*F(1,J)+C1*F(2,J)+D1*F(3,J) 
        FF(N-1)=A1*F(N-2,J)+B1*F(N-1,J)+C1*F(N,J) 
        FF(N)=A1*F(N-1,J)+B1*F(N,J) 
        FF(1)=.25*FF(1) 
        DO 2 I=2,N 
          FFIM1=FF(I-1) 
          FFI=FF(I) 
    2     FF(I)=(FFIM1-FFI)*E(I) 
        Y(N)=FF(N) 
C 
C Tridiagonal algorithm is used to solve for the new value 
C  of the distribution function 
C 
C It is possible that the shift is over more than one grid 
C  spacing. The value K accounts for this. 
C  
        DO 3 I=NM1,1,-1 
          YIP1=Y(I+1) 
    3     Y(I)=YIP1*E(I)+FF(I) 
        K=DSH(J) 
        DO 4 I=N-K+1,N 
    4     F(I,J)=0.0 
        DO 5 I=1,N-K 
    5     F(I,J)=Y(I+K) 
    6 CONTINUE 
 
      DO 16 J=M+1,M2 
        A1=A(J) 
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        B1=B(J) 
        C1=C(J) 
        D1=D(J) 
        DO 11 I=3,NM1 
   11     FF(I)=A1*F(I+1,J)+B1*F(I,J)+C1*F(I-1,J)+D1*F(I-2,J) 
        FF(1)=A1*F(2,J)+B1*F(1,J) 
        FF(2)=A1*F(3,J)+B1*F(2,J)+C1*F(1,J) 
        FF(N)=B1*F(N,J)+C1*F(N-1,J)+D1*F(N-2,J) 
        FF(1)=.25*FF(1) 
        DO 12 I=2,N 
          FFIM1=FF(I-1) 
          FFI=FF(I) 
   12     FF(I)=(FFIM1-FFI)*E(I) 
        Y(N)=FF(N) 
        DO 13 I=NM1,1,-1 
          YIP1=Y(I+1) 
   13     Y(I)=YIP1*E(I)+FF(I) 
        K=DSH(J) 
        DO 14 I=1,K 
   14     F(I,J)=0.0 
        DO 15 I=K+1,N 
   15     F(I,J)=Y(I-K) 
   16 CONTINUE 
 
      RETURN 
      END 
C 
C  SUBROUTINE STRION - move ions in space along characteristic 
C 
      SUBROUTINE STRION 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(MI2P1=2*MI+1,MI2=2*MI,NP1=N+1,M2P1=2*M+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,MI2M1=MI2-1,MI2M2=MI2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      DIMENSION FF(NP1),Y(NP1) 
 
C    SHIFT THE ION DISTRIBUTION FUNCTION 
C 
C The shift is done differently depending on the positive or 
C  negative velocity space. So, it's split up into two similar 
C  blocks of code 
C 
      NM2=N-2 
 
      DO 6 J=1,MI 
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        A1=AI(J) 
        B1=BI(J) 
        C1=CI(J) 
        D1=DI(J) 
        DO 1 I=2,NM2 
    1     FF(I)=A1*FI(I-1,J)+B1*FI(I,J)+C1*FI(I+1,J)+D1*FI(I+2,J) 
        FF(1)=B1*FI(1,J)+C1*FI(2,J)+D1*FI(3,J) 
        FF(N-1)=A1*FI(N-2,J)+B1*FI(N-1,J)+C1*FI(N,J) 
        FF(N)=A1*FI(N-1,J)+B1*FI(N,J) 
        FF(1)=.25*FF(1) 
        DO 2 I=2,N 
          FFIM1=FF(I-1) 
          FFI=FF(I) 
    2     FF(I)=(FFIM1-FFI)*E(I) 
        Y(N)=FF(N) 
C 
C Tridiagonal algorithm is used to solve for the new value 
C  of the distribution function 
C 
C It is possible that the shift is over more than one grid 
C  spacing. The value K accounts for this. 
C  
        DO 3 I=NM1,1,-1 
          YIP1=Y(I+1) 
    3     Y(I)=YIP1*E(I)+FF(I) 
        K=DSHI(J) 
        DO 4 I=N-K+1,N 
    4     FI(I,J)=0.0 
        DO 5 I=1,N-K 
    5     FI(I,J)=Y(I+K) 
    6 CONTINUE 
 
      DO 16 J=MI+1,MI2 
        A1=AI(J) 
        B1=BI(J) 
        C1=CI(J) 
        D1=DI(J) 
        DO 11 I=3,NM1 
   11     FF(I)=A1*FI(I+1,J)+B1*FI(I,J)+C1*FI(I-1,J)+D1*FI(I-2,J) 
        FF(1)=A1*FI(2,J)+B1*FI(1,J) 
        FF(2)=A1*FI(3,J)+B1*FI(2,J)+C1*FI(1,J) 
        FF(N)=B1*FI(N,J)+C1*FI(N-1,J)+D1*FI(N-2,J) 
        FF(1)=.25*FF(1) 
        DO 12 I=2,N 
          FFIM1=FF(I-1) 
          FFI=FF(I) 
   12     FF(I)=(FFIM1-FFI)*E(I) 
        Y(N)=FF(N) 
        DO 13 I=NM1,1,-1 
          YIP1=Y(I+1) 
   13     Y(I)=YIP1*E(I)+FF(I) 
        K=DSHI(J) 
        DO 14 I=1,K 
   14     FI(I,J)=0.0 
        DO 15 I=K+1,N 
   15     FI(I,J)=Y(I-K) 
   16 CONTINUE 
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      RETURN 
      END 
C 
C  SUBROUTINE ACC - accelerate electrons along characteristic 
C 
      SUBROUTINE ACC 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      DIMENSION FF(M2P1),VF(M2P1),R(NP1) 
      DIMENSION Y(M2P1) 
 
      DTSDV=DT/DV 
 
      DO 1 I=1,NP1 
        EMF=(VY(I)-0.25*DT*(EP(I)+EM(I)))*(EP(I)-EM(I))*0.5 
C       EMF=0.0 
    1   R(I)=-(EF(I)+EMF)*DTSDV 
 
      DO 12 I=1,N 
        DO 2 J=1,M2 
    2     FF(J)=F(I,J) 
        S=DMOD(DABS(R(I)),1.D0) 
 
C Calculate shift operator coefficients 
 
        SS=1.0-S 
        WS=S*S 
        WSS=SS*SS 
        W1=WSS*SS 
        W2=4.0-3.0*WS*(1.0+SS) 
        W3=4.0-3.0*WSS*(1.0+S) 
        W4=WS*S 
 
        IF(R(I).LE.0.0) THEN 
          VF(1)=W2*FF(1)+W3*FF(2)+W4*FF(3) 
          DO 3 J=2,M2M2 
   3        VF(J)=W1*FF(J-1)+W2*FF(J)+W3*FF(J+1)+W4*FF(J+2) 
          VF(M2M1)=W1*FF(M2M2)+W2*FF(M2M1)+W3*FF(M2) 
          VF(M2)=W1*FF(M2M1)+W2*FF(M2) 
        ELSE 
          VF(1)=W1*FF(2)+W2*FF(1) 
          VF(2)=W1*FF(3)+W2*FF(2)+W3*FF(1) 
          DO 4 J=3,M2M1 
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   4        VF(J)=W1*FF(J+1)+W2*FF(J)+W3*FF(J-1)+W4*FF(J-2) 
          VF(M2)=W2*FF(M2)+W3*FF(M2M1)+W4*FF(M2M2) 
        ENDIF 
 
C Tridiagonal Algorithm used to solve for Y 
 
        Y(1)=0.25*VF(1) 
        DO 5 J=2,M2 
   5      Y(J)=(Y(J-1)-VF(J))*X(J) 
          VF(M2)=Y(M2) 
        DO 6 J=M2M1,1,-1 
          VWK=VF(J+1) 
    6     VF(J)=X(J)*VWK+Y(J) 
 
C K tells if we shifted past one grid point 
 
        IF(R(I).GT.0.0) THEN 
          K=R(I) 
          DO 7 J=1,K 
   7        Y(J)=0.0 
          KK=M2-K 
          DO 8 J=1,KK 
   8        Y(J+K)=VF(J) 
        ELSE 
          K=DABS(R(I)) 
          MK=M2-K+1 
          DO 9 J=MK,M2 
   9        Y(J)=0.0 
          KK=1+K 
          DO 10 J=KK,M2 
  10      Y(J-K)=VF(J) 
        ENDIF 
 
        DO 11 J=1,M2 
  11      F(I,J)=Y(J) 
  12  CONTINUE 
 
      RETURN 
      END 
C 
C  SUBROUTINE ACCI - accelerate ions along characteristic 
C 
      SUBROUTINE ACCI 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(MI2=2*MI,MI2P1=2*MI+1,NP1=N+1,M2P1=2*M+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,MI2M1=MI2-1,MI2M2=MI2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
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     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      DIMENSION  FF(MI2P1),VF(MI2P1),R(NP1) 
      DIMENSION Y(MI2P1) 
 
      DTSDV=DTI/DVI 
 
      DO 1 I=1,NP1 
        EMF=(EP(I)+EM(I))*0.25*DTI*XMEI 
        EMF=(VYI(I)+EMF)*(EP(I)-EM(I))*0.5 
    1     R(I)=(EF(I)+EMF)*DTSDV 
 
      DO 12 I=1,N 
        DO 2 J=1,MI2 
    2     FF(J)=FI(I,J) 
        S=DMOD(DABS(R(I)),1.D0) 
 
C Calculate shift operator coefficients 
 
        SS=1.0-S 
        WS=S*S 
        WSS=SS*SS 
        W1=WSS*SS 
        W2=4.0-3.0*WS*(1.0+SS) 
        W3=4.0-3.0*WSS*(1.0+S) 
        W4=WS*S 
 
        IF(R(I).LE.0.0) THEN 
          VF(1)=W2*FF(1)+W3*FF(2)+W4*FF(3) 
          DO 3 J=2,MI2M2 
   3        VF(J)=W1*FF(J-1)+W2*FF(J)+W3*FF(J+1)+W4*FF(J+2) 
          VF(MI2M1)=W1*FF(MI2M2)+W2*FF(MI2M1)+W3*FF(MI2) 
          VF(MI2)=W1*FF(MI2M1)+W2*FF(MI2) 
        ELSE 
          VF(1)=W1*FF(2)+W2*FF(1) 
          VF(2)=W1*FF(3)+W2*FF(2)+W3*FF(1) 
          DO 4 J=3,MI2M1 
   4        VF(J)=W1*FF(J+1)+W2*FF(J)+W3*FF(J-1)+W4*FF(J-2) 
          VF(MI2)=W2*FF(MI2)+W3*FF(MI2M1)+W4*FF(MI2M2) 
        ENDIF 
 
C Tridiagonal Algorithm used to solve for Y and VF 
 
        Y(1)=0.25*VF(1) 
        DO 5 J=2,MI2 
   5      Y(J)=(Y(J-1)-VF(J))*XI(J) 
        VF(MI2)=Y(MI2) 
        DO 6 J=MI2M1,1,-1 
          VWK=VF(J+1) 
    6     VF(J)=XI(J)*VWK+Y(J) 
 
C K tells if we shifted past one grid point 
 
        IF(R(I).GT.0.0) THEN 
          K=R(I) 
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          DO 7 J=1,K 
   7        Y(J)=0.0 
          KK=MI2-K 
          DO 8 J=1,KK 
   8        Y(J+K)=VF(J) 
        ELSE 
          K=DABS(R(I)) 
          MK=MI2-K+1 
          DO 9 J=MK,MI2 
   9        Y(J)=0.0 
          KK=1+K 
          DO 10 J=KK,MI2 
  10        Y(J-K)=VF(J) 
        ENDIF 
 
        DO 11 J=1,MI2 
  11      FI(I,J)=Y(J) 
 
  12  CONTINUE 
 
      RETURN 
      END 
C 
C  SUBROUTINE EFIELD - calculate the new E-field 
C 
      SUBROUTINE EFIELD 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      DIMENSION GE(NP1),GF(NP1),PHI(NP1),TRHO(NP1) 
 
C PARTICLE DENSITY AND CURRENT DENSITY 
 
      RHOM=0.0 
 
      DO 1 I=2,N 
        DRHO=0. 
        DO 2 J=1,M2 
   2      DRHO=DRHO+F(I,J) 
        DRHO=DRHO*DV 
        CJP(I)=0.5*(DRHO*VY(I)+RHO(I-1)*VY(I-1)) 
        CJM(I)=0.5*(DRHO*VY(I)+RHO(I+1)*VY(I+1)) 
        TRHO(I)=DRHO-RHOI(I) 
        RHOM=RHOM+TRHO(I) 
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    1 CONTINUE 
 
C CAS I=1 
 
      DRHO=0. 
 
      DO 3 J=1,M2 
   3    DRHO=DRHO+F(1,J) 
 
      DRHO=DRHO*DV 
      CJM(1)=0.5*(DRHO*VY(1)+RHO(2)*VY(2)) 
      TRHO(1)=DRHO-RHOI(1) 
      RHOM=(RHOM+TRHO(1))*DX 
C CAS I=N+1 
      CJP(NP1)=0.5*(DRHO*VY(NP1)+RHO(N)*VY(N)) 
 
      DO 8 I=1,N 
   8    RHO(I)=TRHO(I)+RHOI(I) 
 
      RHO(NP1)=RHO(1) 
      TRHO(NP1)=TRHO(1) 
      EF(1)=-0.5*RHOM 
      EF(NP1)=+0.5*RHOM 
      GF(1)=DX*DX*(TRHO(3)-6.0*TRHO(2)-7.0*TRHO(1))/24.0-EF(1)*DX 
 
      DO 10 J=2,N 
        W=GF(J-1) 
        GF(J)=-(TRHO(J-1)+10.0*TRHO(J)+TRHO(J+1))*DX*DX/12.0+W 
   10 CONTINUE 
 
      PHI(1)=0.0 
 
      DO 20 J=2,NP1 
        W=PHI(J-1) 
        PHI(J)=W-GF(J-1) 
   20 CONTINUE 
 
      GE(1)=-1.0 
      GF(1)=2.0*(PHI(2)-PHI(1))/DX+DX*(TRHO(2)-TRHO(1))/6. 
 
      DO 30 J=2,N 
        DNN=4.0+GE(J-1) 
        GE(J)=-1.0/DNN 
        W=GF(J-1) 
        GF(J)=(3.0*(PHI(J+1)-PHI(J-1))/DX-W)/DNN 
   30 CONTINUE 
 
      DO 40 J=N,2,-1 
        W=EF(J+1) 
        EF(J)=GE(J)*W+GF(J) 
   40 CONTINUE 
 
C This was a hack fix for the electron sign change 
      DO J=1,NP1 
        EF(J)=-EF(J) 
      ENDDO 
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      RETURN 
      END 
C 
C  SUBROUTINE SPHOTF 
C 
      SUBROUTINE SPHOTF 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      DIMENSION WKP(NP1),WKM(NP1) 
 
      DO 10 I=2,NP1 
  10    WKP(I)=EP(I-1)+DTT*CJP(I) 
 
C CAS PERIODIQUE, SINON WKP(1)=PUMP 
C     WKP(1)=WKP(NP1) 
 
      WKP(1)=PUMP 
 
      DO 30  I=1,N 
  30    WKM(I)=EM(I+1)+DTT*CJM(I) 
 
C CAS PERIODIQUE, SINON WKM(NP1)=0. 
 
      WKM(NP1)=0.0 
 
      DO 50 I=1,NP1 
        EP(I)=WKP(I) 
  50    EM(I)=WKM(I) 
 
      RETURN 
      END 
C 
C  SUBROUTINE DENS -  
C 
      SUBROUTINE DENS 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
 



 194 

C Integrate the electron distribution function in momentum space 
C  for each grid point in x-space 
 
      DO 1 I=1,NP1 
        DRHO=0. 
        DO 2 J=1,M2 
          DRHO=DRHO+F(I,J) 
   2    CONTINUE 
        RHO(I)=DRHO*DV 
   1  CONTINUE 
 
      RETURN 
      END 
C 
C  SUBROUTINE DENSI -  
C 
      SUBROUTINE DENSI 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(NP1=N+1,MI2=2*MI,MI2P1=2*MI+1) 
 
      COMMON/ARION/FI(NP1,MI2P1),AI(MI2P1),BI(MI2P1), 
     1CI(MI2P1),DI(MI2P1),XI(MI2P1),DSHI(MI2P1), 
     2VIMAX,DVI,DTI,XMEI,XTEI,TXI 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
 
C Integrate the ion distribution function in momentum space 
C  for each grid point in x-space 
 
      DO 1 I=1,NP1 
        DRHO=0. 
        DO 2 J=1,MI2 
    2     DRHO=DRHO+FI(I,J) 
    1   RHOI(I)=DRHO*DVI 
 
      RETURN 
      END 
C 
C  SUBROUTINE TRACE 
C 
      SUBROUTINE TRACE 
 
      IMPLICIT REAL*8 (A-H,O-Z) 
 
      PARAMETER(M=256,MI=128,N=35000,IZK=142,NSAUT=48,NSAUTI=48) 
      PARAMETER(EPSI=0.0,EPS=0.05,NVAC=1,IKP=255,IKI=24) 
 
      PARAMETER(M2P1=2*M+1,M2=2*M,NP1=N+1) 
      PARAMETER(NM1=N-1,ND2=N/2,ND2P1=ND2+1,M2M1=M2-1,M2M2=M2-2) 
 
      COMMON/ARRAY/F(NP1,M2P1),A(M2P1),B(M2P1), 
     1C(M2P1),D(M2P1),P(NP1),E(NP1),G(NP1), 
     2DSH(M2P1),EF(NP1),EEF(NP1),EK(NP1),X(M2P1), 
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     4T,XL,VMAX,DT,TMAX,Q,DV,DX,WK,VTH,VTH1,ALP 
      COMMON/PARTIC/RHO(NP1),RHOI(NP1) 
      COMMON/TRAC/HH,HS,C1,C3,C2,C5,EEN,C4,C6,VT 
      COMMON/TRAC1/HH1,HH2,HH3,HH5,HH6,HH7,XKE,OMP,JS 
      COMMON/PHO/EP(NP1),EM(NP1),VY(NP1),CJP(NP1),CJM(NP1), 
     1VYI(NP1),DTT,XK0,OMK,PUMP 
      DIMENSION TRHO(2,NP1) 
 
      USN=1.0/DBLE(N) 
 
      MP1=M+1 
 
      DO 11 I=1,N 
        HH=0.0 
        H=0.0 
        DO 12 J=1,M 
          V=(DBLE(J)-.5)*DV 
C H holds the first moment - Momentum 
          H=H+V*(F(I,M+J)-F(I,MP1-J)) 
C HH holds the second moment - Energy 
          HH=HH+(DSQRT(V**2+1.0D0)-1.0D0)*(F(I,M+J)+F(I,MP1-J)) 
  12    CONTINUE 
C Multiplying by the spacing in momentum space gives the integral 
C  this is stored on every spatial grid point 
        EK(I)=HH*DV 
        P(I)=H*DV 
  11  CONTINUE 
 
C This is calculating the electron density or charge density  
C This is done in Sub DENS so I don't know why it's done here and 
C  then DENS is called afterwards 
 
      DO 1 I=1,N 
        H=0.0 
        DO 5 J=1,M2 
          H=H+F(I,J)*DV 
   5    CONTINUE 
        RHO(I)=H 
   1  CONTINUE 
 
      EEN=0.0 
      C1=0. 
      C2=0. 
      C3=0. 
      C4=0. 
 
C Summing quantities for all spatial grid points 
      DO 4 I=1,N 
C EF - longitudinal field 
        EEN=EEN+EF(I)*EF(I) 
C Charge density 
        C1=C1+RHO(I)-RHOI(I) 
C Transverse Kinetic energy in electrons 
        C2=C2+RHO(I)*VY(I)*VY(I) 
C more field energies - transverse pump plus scattered 
        C4=C4+EP(I)*EP(I)+EM(I)*EM(I) 
C electron kinetic energy in x 
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        C3=C3+EK(I) 
   4  CONTINUE 
 
C compute spatial averages and RMS values 
      EEN=0.5*EEN/DBLE(N) 
      C1=C1/DBLE(N) 
      C2=0.5*C2/DBLE(N) 
      C3=C3/DBLE(N) 
      C4=0.25*C4/DBLE(N) 
 
C Total electron kinetic energy 
      C5=C3+C2 
 
C Total energy 
      C6=C5+EEN+C4 
 
      RETURN 
      END 
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Appendix E 
 

 

Mathcad Worksheets Used for Various Calculations Cited in the Thesis 
 

 



 198 

 This appendix provides the Mathcad worksheets used to perform various 

calculations cited throughout the thesis.  Presented first is the worksheet used to perform 

the resonance matching calculations, the Thomson scattering probe and collection angles 

calculation, calculate the anticipated growth rates and thresholds, and numerous other 

calculations related to the single hot spot laser-plasma experiments.  Presented next is the 

worksheet used to perform the Thomson scattering form factor fit to the experimental 

data and determine the electron temperature.  Finally, the worksheet used to calculate the 

roots of the bi-Maxwellian dispersion relation is presented. 

The Mathcad worksheets are thoroughly commented in hopes that it is obvious 

what is going on in the calculations.  The original Mathcad worksheets are live math, i.e. 

changing parameters at the beginning of the worksheet update all calculations that depend 

on those parameters.  Thus, the worksheets included in this appendix are only snapshots 

of a particular calculation.  For the interested reader, the actual Mathcad worksheet files 

are available on the CDROM that accompanies this thesis. 
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