
 1

War Upon the Map:
The Politics of Military User Innovation

Jon R. Lindsay
Doctoral Candidate

Massachusetts Institute of Technology
Department of Political Science

DRAFT v3.0
21 June 2006

Word Count: 17,200 (Footnotes: 5,088)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4398612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

ABSTRACT: While military personnel are often involved in the design of
information technology, the literature on military innovation generally
assumes defense contractors are the primary producers. Furthermore,
general organizational theories of user innovation have only been tested on
cases involving corporate employees or private citizens in substantially
less regulated environments than military users. This paper examines user
innovation theory in a military context through a historical study of the
user-led development of FalconView, the popular standard for digital
mapping applications throughout the U.S. military and some other
government organizations. This paper finds that while user innovation
theory can explain aspects of the emergence and diffusion of military user
innovation, existing theory understates the challenges involved with
generating and sustaining user innovation within a complex bureaucracy.
Successfully innovating users must be creative with organizational as well
as technical resources.

The debate over the effect of information technology on war—often called the

Revolution in Military Affairs (RMA)—has attracted enthusiastic forecasts of sweeping

change1 and skeptical criticism,2 yet it has cast surprisingly little light on the practical

day-to-day experience of computer users in military organizations. Too rarely noticed is

that a lot of software in use within military organizations is actually designed or modified

by personnel, often working around the problems of traditionally procured software

programs. User-developed macros, databases, low-level utilities, web pages, and even

sophisticated programs can be found on military networks, interwoven with

commercially produced software and custom software written by defense-contractors.

The iconic RMA image of lightning bolts arcing around a network of ships, aircraft,

1 John Arquilla and David F. Ronfeldt, In Athena's Camp: Preparing For Conflict in the Information Age
(Santa Monica, CA: RAND Corporation, 1997); David S. Alberts et al., Network Centric Warfare:
Developing and Leveraging Information Superiority (Washington D.C.: CCRP Publications Series, 1999);
William A. Owens, Lifting the Fog of War (New York, NY: Farrar, Straus and Giroux, 2000).
2 Jeremy Shapiro, “Information and War: Is It a Revolution?” in Strategic Appraisal: the Changing Role of
Information in Warfare, ed. Zalmay Khalilzad (Santa Monica, CA: RAND Corporation, 1999), 113-153;
Michael E. O'Hanlon, Technological Change and the Future of Warfare (Washington DC: Brookings
Institution Press, 2000); Eliot A. Cohen, "Change and Transformation in Military Affairs," Journal of
Strategic Studies vol. 27, no. 3 (2004): 395-407; Stephen Biddle, Military Power: Explaining Victory and
Defeat in Modern Battle (Princeton University Press, 2004).

 3

satellites, and ground vehicles obscures the fact that low-level innovation is oiling the

entire command, control, and intelligence machine.3

Improvisation is an important part of organizational life, 4 yet is especially

pronounced with information technology because of its complex and changeable

insinuation into organizational practices. 5 For military organizations as well,

improvisations, field expedients, jury-rigs, and technical stratagems abound in combat

histories.6 Ever since the Greeks built the Trojan Horse without bidding the project out to

contractors, the frictions and surprises of real operations have exposed shortfalls in

doctrine and technology and motivated personnel to cobble together expedient solutions.

There are, moreover, several reasons to expect information technology expedients to be

especially prevalent. First, military operations have a large and growing information

processing load because of sophisticated weapons systems, the intelligence and planning

requirements of missions like precision strike and counter-terrorism, and a fluid strategic

environment of coalition, interagency, non-governmental, and adversarial actors. Second,

the defense acquisition bureaucracy, already inefficient in procuring massive hardware

projects, is especially ill adapted to software production.7 Third, powerful and flexible

3 As Joshua Davis, "If We Run Out of Batteries, This War Is Screwed," Wired (June 2003) reports: “I
tracked the network from the generals' plasma screens at Central Command to the forward nodes on the
battlefields in Iraq. What I discovered was something entirely different from the shiny picture of techno-
supremacy touted by the proponents of the Rumsfeld doctrine. I found an unsung corps of geeks
improvising as they went, cobbling together a remarkable system from a hodgepodge of military-built
networking technology, off-the-shelf gear, miles of Ethernet cable, and commercial software. And during
two weeks in the war zone, I never heard anyone mention the revolution in military affairs.”
4 Wanda J. Orlikowski, "Improvising Organizational Transformation Over Time: A Situated Change
Perspective," Information Systems Research vol. 7, no. 1 (1996): 63-93, Karl E. Weick, "Introductory
Essay: Improvisation As a Mindset For Organizational Analysis," Organization Science vol. 9, no. 5
(1998): 543-555, Ted Baker and Reed E. Nelson, "Creating Something From Nothing: Resource
Construction Through Entrepreneurial Bricolage," Administrative Science Quarterly vol. 50, no. 3 (2005):
329-366.
5 John Seely Brown and Paul Duguid, The Social Life of Information (Boston, MA: Harvard Business
School Press, 2000), Claudio Ciborra, The Labyrinths of Information: Challenging the Wisdom of Systems
(Oxford: Oxford University Press, 2002)
6 A few texts treat this theme explicitly: John H. Hay, Tactical and Materiel Innovations, Vietnam Studies
(Washington, D.C.: Department of the Army, 1974), Center of Military History, Improvisations During the
Russian Campaign (Washington DC: United States Army, 1986), Michael D. Doubler, Closing With the
Enemy: How GIs Fought the War in Europe, 1944-1945 (University Press of Kansas, 1995)
7The Defense Science Board, Report of the Defense Science Board Task Force on Defense Software
(November 2000), found that “software is rapidly becoming a significant, if not the most significant,
portion of DoD acquisitions” and yet “programs lacked well thought-out, disciplined program management
and/or software development processes.” The study furthermore noted that almost all the major problems
identified in six major Department of Defense studies on software acquisition since 1987 had not been

 4

software tools are available at relatively low cost, and the U.S. military population is

increasingly computer literate and well educated. In sum, contemporary U.S. military

operations generate a high demand for information processing power, acquisition

institutions are ill suited to efficiently supply it, and at the same time personnel are

empowered to try and supply it for themselves.

Nonetheless, would-be user technology developers in the military lack the legitimacy

of official bureaucratic acquisition and certification processes, and they are constrained

by short tours-of-duty and other war-fighting responsibilities. Although short-term

expedients to deal with the exigencies of combat are an expected part of warfare, in the

long-term, military technology is generally procured and managed through a complicated

system of contractors, government managers, military staff officers, politicians, and

lawyers. Given the high potential for jurisdictional conflict with procurement and

technology management regimes, the interesting questions are whether and how

spontaneous user innovation can possibly give rise to important long-term organizational

consequences.

This paper begins with a discussion of bottom-up user innovation in the literature on

military innovation and in business-oriented innovation theory. Because it is missing

from the former and has not yet been applied to military organizations within the latter,

the paper next frames expectations about user innovation in the idiosyncratic military

context. These are next examined in a historical case study of FalconView, a software

application that emerged through user efforts to develop automated planning tools within

the U.S. Air National Guard F-16 community, yet which went on to become the popular

standard for operational geospatial applications throughout the military services and some

other government agencies as well. This case is then generalized in a discussion of how

corrected (pp. ES1-ES2, 3). Similarly, U.S. General Accounting Office, Stronger Management Practices
Are Needed to Improve DOD’s Software-Intensive Weapon Acquisitions (GAO-04-393, 2004) observes,
“DOD estimates that it spends about 40 percent of its Research, Development, Test, and Evaluation budget
on software—$21 billion for fiscal year 2003. Furthermore, DOD and industry experience indicates that
about $8 billion (40 percent) of that amount may be spent on reworking software because of quality-related
issues….DOD did not have effective and consistent corporate or software processes for software
acquisitions,” (p. 1). Also see David C. Gompert et al., Extending the User's Reach: Responsive
Networking For Integrated Military Operations (National Defense University, Center For Technology and
National Security Policy, Defense and Technology Paper 24, 2006) for a detailed critique of information
technology procurement.

 5

changes in supply and demand side factors can promote user innovation, while

organizational politics nevertheless resist shifting to the new equilibrium.

Explaining Military User Innovation
Like defense procurement institutions, major theories of military innovation have

been built around large-scale capital-intensive projects such as tanks, aircraft carriers, and

nuclear missiles. For such systems, the question of the source of production—user or

contractor?—need never come up. When only private contractors or public arsenals have

the capacity for heavy industrial production, a clear division of labor between producer

and operational user can safely be assumed. Users may be able to perform some post-

production modifications to heavy equipment, as when American soldiers in WWII

fashioned hedgerow cutters for Sherman tanks from German beach obstacles,8 or create

small-scale prototypes later mass-produced by contractors, as was the case with

submarine emergency escape breathing lungs 9 and the first aviation helmets with

embedded radios.10 However, the primary technological functionality associated with

significant military change in the industrial era has generally been built on the assembly

line, with significant per-unit costs. This is not necessarily so for software development,

where programs for a PC can be written on a PC within operationally relevant timeframes,

where perfect copies can be distributed via floppy disk or networks for negligible cost,

and where understanding the detailed context of use is especially critical to the design

process. Short of industrial mass-production, a clear division of labor between developer

and user cannot be assumed ex ante.

The types of theories advanced to explain military innovation include civilian

intervention in response to strategic threat,11 intraservice generational change led by

visionary senior officers, 12 and interservice bureaucratic competition. 13 While

8 Doubler, Closing With the Enemy, 44-46.
9 Peter Maas, The Terrible Hours: The Man Behind the Greatest Submarine Rescue in History (New York,
NY: HarperCollins Publishers, 1999)
10 Timothy Scott Wolters, Managing a Sea of Information: Shipboard Command and Control in the United
States Navy, 1899-1945 (Ph.D. Dissertation, MIT Program Science, Technology, and Society, 2003), 102.
11 Barry R. Posen, Sources of Military Doctrine: France, Britain and Germany Between the World Wars
(Ithaca NY: Cornell University Press, 1984), Deborah D. Avant, Political Institutions and Military Change:
Lessons From Peripheral Wars (Cornell University Press, 1994).
12 Stephen Peter Rosen, Winning the Next War: Innovation and the Modern Military (Ithaca, NY: Cornell
University Press, 1991)

 6

appreciating that the technology involved in these studies is invariably industrially

produced, it’s also important to note that these theories are crafted to explain

organizational and doctrinal innovations for the employment of technology, rather than

the emergence of innovative technology itself. A related literature on the diffusion of

military innovation examines diffusion across militaries,14 but by focusing on industrially

produced technology, it also leaves open the question of the functional origin of

innovation (user or contractor). As a group these macro-level mechanisms don’t speak to

whether and how sources of significant technological variation might emerge bottom-up

from deep within the organization. While these approaches may become important

should user innovation become disruptive enough to require protection or championing

from senior leadership, it’s nevertheless conceivable that a great deal of change might be

initiated and sustained “below the radar” before that occurs.

Some studies of innovation in tactical doctrine highlight the importance of bottom-up

trial-and-error and diffusion of successful practices during wartime.15 The high intensity

combat characteristic of the World Wars gave rise to a more-or-less Darwinian process in

which many novel tactical variations could be attempted, most perishing with the units

that tried them, yet some selected and reinforced through employment and ad-hoc

training. These studies focus on tactical employment more than technological design, but

the same operational incentives that encourage tactical innovation by personnel could

encourage technological innovation as well if barriers to entry for technological design

were low enough. Eliot Cohen asserts that “change tends to come more from below,

from the spontaneous interactions between military people, technology and particular

tactical circumstances,”16 yet he leaves the task of fleshing out these “spontaneous

interactions” to others.

13 Harvey M. Sapolsky, The Polaris System Development: Bureaucratic and Programmatic Success in
Government (Harvard University Press, 1972), Owen R. Coté, The Politics of Innovative Military Doctrine:
the US Navy and Fleet Ballistic Missiles (Ph.D. Dissertation, MIT Department of Political Science, 1996)
14 Thomas W. Zarzecki, Arms Diffusion: the Spread of Military Innovations in the International System
(New York, NY: Routledge, 2002), Emily O. Goldman and Leslie C. Eliason, The Diffusion of Military
Technology and Ideas (Palo Alto, CA: Stanford University Press, 2003)
15 Timothy T. Lupfer, The Dynamics of Doctrine: The Change in German Tactical Doctrine During the
First World War (Fort Leavenworth, KS: U.S. Army Command and General Staff College, 1981), Doubler,
Closing With the Enemy.
16 Cohen, "Change and Transformation in Military Affairs," 400-401.

 7

In the commercial world, users often exploit technology’s “interpretive flexibility,”

sometimes leading to significant industrial change, 17 so organization theory on user

innovation, most explicitly articulated by Eric Von Hippel,18 is a sensible place to begin.

A primary hypothesis of Von Hippel’s theory is that variation in the functional source of

innovation—user, manufacturer, or supplier—is caused by variation in actors’ expected

innovation-related gains. Users gain from immediate in-house results, manufacturers can

gain only when a user market clearly exists, and suppliers gain when they can enhance or

complement the market for the goods they supply. Actors’ expected gains are influenced

by their relative abilities to maintain monopoly control over an innovation, anticipated

costs and benefits of the innovation, and transaction costs of alternative contracting

arrangements. Transaction costs between users and manufacturers can be quite high

because of principal-agent monitoring costs, production time lags, and particularly

because knowledge of user needs and manufacturer technologies is often tacit, embodied,

and situated,19 making it difficult to specify accurate requirements. A primary prediction

of the theory is that increasing transaction costs while lowering production costs (through

changes in user knowledge and resource availability) will shift the functional locus of

innovation from manufacturers to users.

The theory advances three further hypotheses about user innovation specifically.

First, user innovation should be most prevalent among “lead users,” who are users that

are experiencing emerging market needs in advance of other users and who stand to

immediately benefit from finding a solution. Second, users will tend to freely reveal their

innovations to other users because those others may contribute knowledge or resources to

improve the innovation, and because free revealing enhances the innovator’s reputation

and feelings of group solidarity. Third, user innovation tends to be widely distributed in

self-reinforcing “innovation communities,” where free revealing leads to increasing

17 Ronald Kline and Trevor Pinch, "Users As Agents of Technological Change: the Social Construction of
the Automobile in the Rural United States," Technology and Culture vol. 37, no. 4 (1996): 763-795, David
N. Lucsko, Manufacturing Muscle: the Hot Rod Industry and the American Fascination With Speed, 1915-
1985 (Ph.D. Dissertation, MIT Program in Science, Technology, and Society, 2005).
18 Eric Von Hippel, The Sources of Innovation (Oxford University Press, 1988), Eric Von Hippel,
Democratizing Innovation (Cambridge, MA: MIT Press, 2005).
19 Michael Polanyi, Personal Knowledge: Towards a Post-Critical Philosophy (Chicago IL: University of
Chicago Press, 1974), Andy Clark, Being There: Putting Brain, Body, and World Together Again
(Cambridge, MA: MIT Press, 1997), Wanda J. Orlikowski, "Knowing in Practice: Enacting a Collective
Capability in Distributed Organizing," Organization Science vol. 13, no. 3 (2002): 249-273.

 8

returns for all. This phenomenon is often noted regarding open-source software projects,

where a large distributed user group can efficiently identify bugs, find programmers who

know how to fix them, and explore idiosyncratic new use cases more efficiently than

traditionally managed projects.20

Finally, the theory expects production to shift from users to manufacturers once

transaction costs diminish and the needs of the user population become well understood,

since this shifts the relative expected gain to manufacturers and thus the functional locus

of production.21 As a result, lead users often innovate novel prototypes in emerging

markets while manufacturers innovate improvements on established products with

healthy markets. Manufacturers can take advantage of this asymmetry by intentionally

lowering the cost of user innovation by providing toolkits, such as application

programming interfaces (APIs), to facilitate user modification, extension, or design. Of

course, if transaction costs don’t diminish even after markets are established, then user

innovation communities may maintain an enduring competitive advantage (as may be the

case with some open-source software projects, since software contracting problems are

notoriously difficult).

These hypotheses are well supported by evidence from a wide variety of industries

ranging from scientific instrumentation, extreme sports equipment, semiconductor

manufacturing, computer hardware, and computer software.22 However, the users in this

sample are exclusively corporate employees or private citizens. Does the theory still

work in a military environment, where users are involved in the peculiar business of war

and are situated within vast complex bureaucracies?

Unlike any other formal organization, militaries are concerned with the direct,

physical destruction of like kinds. Despite their awesome capabilities, military

organizations can actually be somewhat fragile because complex uncertainty becomes an

existential problem. The stabilizing routines and structures that emerge in response can

20 Eric S. Raymond, The Cathedral and the Bazaar (Revised Edition) (Cambridge, MA: O'Reilly, 2001),
Josh Lerner and Jean Tirole, "Some Simple Economics of Open Source," The Journal of Industrial
Economics vol. 50, no. 2 (2002): 197-234
21 Carliss Baldwin et al., “The Migration of Products From Lead User-Innovators to Manufacturers,” MIT
Sloan School of Management Working Paper (No. 4554-05, 2005)
22 Summarized in Von Hippel, The Sources of Innovation, and Von Hippel, Democratizing Innovation.

 9

thus be expected to resist change even more than normal bureaucracy.23 To be precise,

it’s not that military processes are resistant to technological change per se, but rather that,

as Janowitz points out, “the process of innovation in the military establishment itself has

become routinized.”24 These formal procurement routines, based on a clear distinction

between technology user and provider, tend to select against uncontrolled user innovation

(in ways discussed later).

Furthermore, there is a quite different legal and structural relationship between a user

and a manufacturer than there is between military personnel and acquisition systems: the

former are independent actors in a market while the latter are part of a military hierarchy.

Military personnel operate within a highly regulated, high-risk environment that

constrains resources available to them. They remain in specific jobs for only a few years

at most before transferring. They are evaluated for some war-fighting specialty other

than technology development. Finally, “The Professional officer corps' emphasis on

hierarchy, the chain of command, obedience, and loyalty, make challenge from below

somewhat less probable than one might find in a non-military organization.”25

Given these considerations, if user innovation theory can successfully predict and

explain significant user innovation even in an environment as idiosyncratic and

seemingly hostile to user innovation as the military, that would provide strong evidence

in support of it.

The Functional Sources of Military Innovation
Before proceeding on to that test, it’s important to first characterize the functional

sources of particularly military innovation in more detail. Whereas Von Hippel

distinguishes manufacturers and users, the appropriate functional distinction in the

military case would be formal procurement from defense contractors on the one hand and

operational uniformed personnel on the other. This is an ideal distinction, for in reality

the military employs civilians as well as uniformed personnel, reservists as well as active

duty, and there are many types of contracting entities ranging from private corporations,

23 Barry R. Posen, “Organizations and Innovation,” MIT Security Studies Program Working Paper (2001)
24 Morris Janowitz, Sociology and the Military Establishment, Revised Edition (New York, NY: Russell
Sage Foundation, 1965), 21.
25 Posen, “Organizations and Innovation,” 23.

 10

non-profit federally funded research and development corporations (FFRDCs) like

MITRE and RAND, to government laboratories, workshops, or arsenals. Nevertheless,

the idealized functional sources of significant technical innovation can be characterized

as (1) the formal separation of use and production managed through a detailed

requirements-based contracting process, and (2) the intimate involvement of technology

users in the production of technology.

The acquisition system is a sprawling tangle of regulations, congressional relations,

military program management, and defense contracting. While costly and inefficient, the

system was instrumental to American preeminence during the Cold War, a contest of

weapons development with the Soviets, rather than production as in WWII.26 It provided

the U.S. with the large economies of scale needed for sophisticated hardware requiring

lots of money, space, labor, and time to field; with technical expertise in advanced

technologies and systems integration; and ensured testing, certification, maintenance, and

support mechanisms to move from development to operation. The end of the Cold War,

however, reduced the threat that justified the system’s extent without, unfortunately,

much reducing its long-standing costs.27 These costs include the gross inefficiencies and

potentials for failure or scandal that follow from, on the one hand, rent-seeking within the

“iron triangle” of congress, defense contractors, and the military,28 and on the other, the

tremendous uncertainties associated with fielding complex weapon systems in an

evolving strategic environment.29

The classic defense industrial problem, drawing on Mancur Olson’s insights about

the concentration of powerful interests and under-representation of diffuse interests,30 is

that congressional pork-barrel politics and contractor business interests lead to the

acquisition of expensive systems the military doesn’t really need. Procurement can

unfairly advantage or be captured by contractors. Formal regulations can limit the entry

26 Harvey M. Sapolsky et al., "Security Lessons From the Cold War," Foreign Affairs vol. 78, no. 4 (1999):
77-89.
27 Eugene Gholz and Harvey M. Sapolsky, "Restructuring the U.S. Defense Industry." International
Security vol. 24, no. 3 (2000): 5-51
28 Gordon Adams, The Politics of Defense Contracting: the Iron Triangle (New York, NY: Council on
Economic Priorities, 1981)
29 Rosen, Winning the Next War
30 Mancur Olson, The Logic of Collective Action: Public Goods and the Theory of Groups, Second Edition
(Cambridge, MA: Harvard University Press, 1971)

 11

of competitors by restricting users to the certified “program of record” and prohibiting

other solutions—including user innovations—as unapproved, untested, or unsafe. In the

process, the bureaucratic identities of military program managers and technical officers

(aircraft maintenance officers, computer systems officers, etc.) can lead them to

unwittingly champion a specific contractor solution. A “follow-on imperative” can lead

Congress to generate projects just to “keep the lines warm” in case of national

emergency.31 Savvy contractors can abet all these processes by becoming more adept at

navigating the procurement bureaucracy than servicing end-user needs; that is, it may be

more lucrative to prioritize a core competency in regulatory rent-seeking over defense

technology production. A more subtle version of Olson’s logic is the under-

representation of end-users: formal requirements originate within service acquisition

staffs distinct from operational units, with often little more than lip service to the needs of

the “war fighter,” resulting in expensive systems ill suited to actual end user needs.

Furthermore, the complicated acquisition system generates staggering bargaining and

coordination costs. Bureaucratic politics (including interservice rivalry, Joint service

logrolling, and reform attempts) consumes time and money, potentially leading to threat

inflation, capability duplication, and “gold plating.”32 Contractors spend on lobbying and

marketing in glossy defense journals and industry conferences, and the government

spends on oversight and legal services. Accurate requirements are hard to get because

busy users who are deployed around the world will not immediately benefit their current

mission by taking time to articulate long-term requirements, and their task knowledge is

tacit and situated anyway, thus hard to formalize, while actual input usually comes from

staff officers echelons above and at least a tour away from operational reality.

Furthermore, funding is slaved to the Congressional budget cycle, and even the most

accurate requirements are subject to change because the evolution of technological and

strategic environments is unpredictable in detail.

Simply coordinating thousands of engineers and managers spread across programs,

subcontractors, and geographical locations makes for interminable meetings,

31 James R. Kurth, "The Political Economy of Weapons Procurement: the Follow-On Imperative," The
American Economic Review vol. 62, no. 1 (1972): 304-311
32 Thomas L. McNaugher, “Weapons Procurement: the Futility of Reform,” in America's Defense, ed.
Michael Mandelbaum (New York, NY: Holmes & Meier Publishers, 1989), 68-112.

 12

management procedures, and perpetual PowerPoint presentations. The peculiarities of

software further exacerbate these costs. Brooks’ 1975 software engineering classic, The

Mythical Man Month, points out that software, being nearly “pure thought stuff,” is

irreducibly: complex because abstract components allow for a vast number of states and

non-linear interaction; difficult to visualize because high-dimensional logical abstractions

have no one natural representation; changeable because incremental improvements are

always tractable and the runtime context is highly variable; and arbitrary because

functionality is intimately tied to evolving domain-specific user interactions. As a result,

software projects are unusually susceptible to getting stuck in a “tar pit” of problems that

read uncannily like a description of government projects: late, over-budget, over-

managed, plagued with communications problems, out of touch with users, difficult to

update, difficult to maintain, disappointing, frustrating. His whimsical summary is

“Brooks’ Law: Adding manpower to a late software project makes it later.”33 Ciborra

similarly observes that “Ethnographic research about the implementation and use of

information technology suggests that quite often even in large organizations: leadership is

missing; and the technology is drifting, as if out of control.”34

These inefficiencies collectively add up to large transaction costs for defining new

requirements and turning them into usable technology. User innovation theory would

expect that motivated, technically savvy personnel would rather just design things

themselves if possible. Drawing on tacit, situated understandings of their own

requirements, clarity of purpose gained through actual mission performance, and their

own technical skill, personnel in low-cost niches might realize immediate, small-scale

operational improvements by innovating with locally available resources. Especially

with information processing tasks, stereotyped organizational routines can be offloaded

onto software programs, providing relatively quick returns to user-developers in terms of

error reduction, standardization, and time saved for other tasks that computers can’t do,

such as training, thinking through contingencies, and anticipating the behavior of enemies

33 Frederick P. Brooks, The Mythical Man Month: Essays on Software Engineering, 20th Anniversary
Edition (Reading, MA: Addison-Wesley Publishing Co, 1995), 232.
34 Ciborra, The Labyrinths of Information, 21. The Standish Group’s 1994 CHAOS report
(http://www.standishgroup.com/sample_research/chaos_1994_1.php) estimated that out of a total of $255
billion spent annually on software, $140 billion was wasted, including $80 billion outright from failed
projects; 31.1% of projects were canceled, while 52.7% cost 189% their original estimates.

 13

and allies. Immediate gratification, pride in the creation, and the opportunity to assist

comrades in similar situations would provide positive feedback to the inventor,

encouraging free-revealing and ongoing refinement by the user community.

While these are the familiar expected benefits within user innovation theory, there

are unfortunately also some limitations and pitfalls that the theory doesn’t dwell on.

While present in many organizations, they loom especially large in militaries. Personnel

can be legally directed or prohibited to use a particular technology or procedure by their

chain of command, which will tend to favor tested and certified solutions over user

expedients. For example, all software on military computers is supposed to be tested and

certified by configuration managers in an attempt to control security and interoperability

externalities that could result from amateur or malicious software. This constrains the

size of the sandbox in which users can play, incidentally leading to many user-developed

applications being disguised as Office documents since more powerful programming

packages are not part of the certified configuration.

Coordination problems emerge when users don’t have the time, ability, or inclination

to standardize and support their inventions. Personnel rotate through jobs frequently,

remaining in a given position at most only a couple of years. Combat attrition might,

furthermore, eliminate the sole expert. Militaries are always uncomfortable about

depending on only one or a few individuals’ tacit expertise, so they strive to either

institutionalize or avoid idiosyncratic practices. Institutionalization, however, is difficult.

Users invent things expecting to gain some immediate benefit in their job, leveraging

tacit knowledge of that job gained through active experience. Writing good

documentation and training plans—the challenge of making tacit knowledge explicit—is

often a secondary consideration that does not provide the immediate fun and payoff that

design does. So even though frequent rotation may provide a diffusion channel for user

inventions, it also frustrates long-term support for them. Frequent changes of jobs may

also make it harder to establish stable user innovation communities.

Military user-developers have “day jobs,” an operational task to focus on, and they

are evaluated for their competency in this area, not software development. An aviator’s

career depends on flying not programming. Technology design is not considered a core

 14

war-fighting skill, so superiors and peers are likely to see development and support of

technical innovations as a distraction from a member’s long-term career interest. This

severely curtails the time available for maintenance and support. A final coordination

problem is that low-cost components that users incorporate into their solutions may be

dependent on external commercial support, which could dry up if a company goes out of

business or discontinues a model, leaving the organization in the lurch.

The fact that military information systems handle classified data further advantages

bureaucratic control. When an application carries the imprimatur of formal certification,

it shifts the risk from local managers to the certifying agency. Managers will resist

bearing the risk of security violations or corruption of mission-critical data that might

result from informal user innovation. This is likely to result in the over-protection of risk

by legitimate managerial authority with respect to the more diffuse benefits of user-

experimentation. 35 How much worse for informal improvisation, therefore, when

security and interoperability risks are combined?

This long list of problems and potential negative externalities associated with user

innovation partially justifies some of the regulation clogging military system

management and procurement bureaucracies. The situation is thus that inefficiencies of

formal acquisition encourage user innovation, while the risks of user innovation justify

formal program management. Table 1 summarizes the relative strengths and weaknesses

of each mode of production.

35 A similar dilemma confronts the intelligence field: counter-intelligence protections (e.g., investigating
applicants, controlling data) can be over-provided because the risks of a single mole are quite salient
compared to the diffuse benefits of informal intelligence sharing among analysts.

 15

Table 1: Relative strengths and weaknesses of the functional sources of military innovation

 User Development Formal Procurement

Strengths Clarity of purpose, enthusiasm
Tacit/situated knowledge
Low-cost solution
Immediate marginal improvement
Free revealing, informal diffusion,

increasing returns

Economies of scale (time, manpower,
money)

Technical expertise
Lifecycle/configuration management
Bureaucratic legitimacy

Weaknesses Negative externalities (security,
reliability, configuration)

Coordination problems
(documentation, training,
scalability, maintenance)

Resource constraints (brief tenure,
other job responsibilities,
technical regulations,
undercapitalization)

Under-representation of diffuse user
interests

Formal requirements out of touch
with operational reality
(uncertainty, ambiguity, budget-
cycle reaction time)

Industrial/congressional rent seeking
(including marketing, proprietary
technology)

Steep bargaining & coordination
costs (budgeting, contracting,
requirements-creep/gold-plating,
management, testing, fielding);
increasing with “Jointness”

Anticipating Military User Innovation

The primary hypothesis of user innovation theory is that relative expectations of

innovation-related gain among different functional actors determines the functional

source of innovation. This implies that variations in expectations should translate into

variations in the source of innovation. In the military environment, expectations will

result from a combination of the above considerations. The challenge in any particular

case is to understand how changing supply and demand side factors affect this complex

balance.

All things being equal, changes in the properties of technology or user knowledge

that lower barriers to entry should promote user development. Rapid technological

change or strategic uncertainty should exacerbate the weaknesses of formal procurement,

contributing to unmet demand and growing transaction costs for dealing with acquisition

systems, encouraging user development. User innovation theory furthermore expects that

lead users (who are the first to experience needs in an emerging market, and are poised to

 16

benefit from finding a solution) will be the ones to innovate; that they will freely reveal

solutions to other users; and that they will form distributed innovation communities to

realize increasing returns.

Conversely, the inability of user-developers to overcome the risks—real or

perceived—of informal production should strengthen formal procurement. Unchecked

configuration management bureaucracies can be expected to become more adept over

time at anticipating and identifying weaknesses in user development and suppressing it.

The bureaucratic politics theoretical perspective,36 with respect to technology acquisition,

would expect the procurement system to (1) maintain the essential distinction between

user and producer, (2) to reduce uncertainty through formal program management, (3) to

increase resources for formal programs, and (4) to enhance autonomy by defining

programs within well-understood boundaries.

These contrasting expectations highlight the importance of organizational context for

military user innovation. Although user innovation theory describes ways that changes in

the supply of or demand for technology might promote user innovation, military

bureaucracy can be expected to stiffly resist movement to a new equilibrium. User

innovations in the face of organizational resistance could give rise to a wide range of

outcomes. Most likely would be suppression or withering on the vine, with inventions

abandoned when the inventor transfers. The minimal level of organizational support

would be co-optation into existing bureaucratic processes, since less organizational

change would be required for procurement managers to simply treat user prototypes as

aberrant sources of requirements for formal procurement projects. This may be

inadequate, however, if the conditions which favored user development over formal

procurement in the first place persist; that is, if cooptation does not reduce unmet demand

and transaction costs. More creative (and thus less likely) organizational effort would be

required to support ongoing user innovations in that case. Whereas user innovation

communities seem to arise somewhat spontaneously in Von Hippel’s commercial

36 Morton H. Halperin, Bureaucratic Politics and Foreign Policy (Brookings Institution Press, 1974),
James Q. Wilson, Bureaucracy: What Government Agencies Do and Why They Do It (New York, NY:
Basic Books, 1989), Graham T. Allison and Philip Zelikow, Essence of Decision: Explaining the Cuban
Missile Crisis (New York, NY: Longman, 1999)

 17

examples, determined military user-developers will have to work hard to find a way to

incubate inventions and build organizational support for a user community. Significant

bureaucratic maneuvering to support innovation is not included in the original

presentation of user innovation theory.

Testing Theory with FalconView
The history of aviation mission planning software provides a natural laboratory to

examine military user innovation. It spans two decades during which both the

technological and strategic environments changed rapidly: the commercial PC-based

information technology sector exploded, and the U.S. military became involved in a wide

range of operations after the Cold War. Thus barriers to software production fell while

warfighting problems changed, providing large variation on user innovation theory’s

independent variables that influence relative user and manufacturer expectations of gain.

At the same time this case has factors that appear to favor both users and formal

acquisition. On the one hand, aviation is a technology-intensive activity that non-aviators

never fully understand in detail; aircrew are technically savvy, their education often

beginning with an undergraduate engineering degree and continuing with extensive

specialized military training; and aircrew are responsible for their own intricate pre-flight

planning. Thus, the technological environment, aircrew knowledge, and user

accountability for mission planning all promote informal innovation. On the other hand,

aviation is a tremendous capital investment for an organization and requires a

sophisticated defense industrial base to support. Mishaps are costly, not only because an

aircraft and its aircrew represent significant investments, but also because crashes and

weapon delivery errors create high collateral damage costs. Large risks make testing,

certification, maintenance, safety, standardization, and oversight important, and this

empowers formal institutions. Military aviation is thus a domain with potential for user

innovation, but also with formidable bureaucratic structure.

During this time traditionally procured systems evolved side by side with informal

user efforts. This interaction generated important consequences for the larger military

community, including the emergence of a software application called FalconView that

subsequently became the de facto standard for digital mapping across the U.S.

 18

Department of Defense (to include ground forces, special operations, intelligence, as well

as manned and unmanned aviation). By providing personnel in all services with an

intuitive and inexpensive digital mapping package that improved planning efficiency and

promoted interoperability and adaptability, FalconView was a technical innovation in its

own right, but more importantly it also involved organizational innovation. FalconView

enthusiasts introduced a different way of developing military software, involving

operational users in technical production, and providing tools and support for on-going,

decentralized adaptation to novel situations.

During the past decade, operational users drove FalconView development and

diffusion far beyond its initial scope as an F-16 mission planner, resulting in a versatile

platform for networked planning and operations, all for a total cost of about $20 million.

By contrast, the formal software acquisition program inspired by and intended to replace

FalconView, the Joint Mission Planning System (JMPS), remains millions of dollars

over-budget, years behind schedule, and had yet to field a certified operational version as

of early 2006. Over $1 billion will be spent during JMPS’ first decade, to say nothing of

the opportunity costs associated with acquisition practices ill-suited to software

development. Even then JMPS will remain an aviation-only program lacking important

military-wide capabilities that have evolved subsequently in FalconView.

This narrative covers two general phases of military user innovation and the

acquisition bureaucracy’s reaction to it. The first is the emergence of automated mission

planning for fighter aircraft in the 1980s, culminating with the user-led development of

FalconView in the 1990s. The second phase is user innovation activity that builds upon

FalconView as a foundation as it diffuses to military communities beyond fighter aviation.

Through historical process tracing it should be possible to examine whether technical and

strategic variation catalyzes user innovation in the ways user innovation theory expects—

by altering relative expectations of gain, empowering lead users, and supporting

innovation communities—or whether the idiosyncratic bureaucratic context plays a more

important role in explaining this case. As mentioned above, a case can be made for the

strength of both influences in the military aviation domain.

 19

Sources for this history include interviews and correspondence with key participants,

identified through interviewee referrals, official and unofficial primary source documents,

either in the public domain or provided to the author by participants, and the author’s

experience using FalconView while an active-duty naval officer. Several interviewees

played a key role in both formal and informal programs—an important fact about this

case, as discussed further below—and so were in a good position to report reliably on

events; this helps mitigate against a potential pro-FalconView bias in the interview

sample.

Automated Mission Planning
Aviation mission planning includes all of the information gathering, processing, and

production aircrew must do before take-off. Simply a cross-country flight requires

aviators to: find proper charts; update the status and frequencies of airfields and

navigation aids; create a communications plan; compute aircraft-specific preflight and

flight performance data; file a flight plan; gather weather data; calculate fuel

consumption; and generate knee-board cards summarizing this data and strip-charts (chart

segments for the entire route). An attack mission is even more involved, including all of

the above plus: parsing the air tasking order from higher headquarters; target area study

with imagery; weaponeering calculations; weapons load-out planning; air-refueling

planning; aircraft formation and friendly ground force deconfliction; threat intelligence

and analysis; avoidance and suppression of enemy air defenses; and combat search and

rescue planning. Different missions have different planning requirements, such as slow-

down points and computed air-release points for the C-130 airdrop mission. Some

missions require more effort than others.

Prior to automated mission planning systems, these calculations were a time-

consuming activity involving paper charts, protractors, dividers, whiz wheels, grease

pencils, flight manuals, and paper orders and updates. Turn radii were traced around

coins, strings pulled across charts to measure distances, and strip charts cut with scissors

and glued together. It was not unusual to find some of these practices ongoing in some

squadrons as late as the mid-1990s.

 20

In the late 1970s, aviators were experimenting with automating some of these tasks

using microcomputers and engineering calculators, just then becoming available in the

commercial market. The first mass-produced microcomputers—the Apple II, Tandy

Radio Shack TRS-80, and Commodore PET (Personal Electronic Transactor)—appeared

in 1977. The IBM PC, running Microsoft DOS, followed in 1981. Hundreds of new

firms with no connection to the existing corporate software industry sprang up, and the

software industry’s growth curve turned sharply upward in what one historian describes

as a gold rush. Some of the most successful products for microcomputers at that time—

the VisiCalc spreadsheet, WordStar word processor, dBase II database—were written on

microcomputers by groups of just one or two programmers.37

Just as these affordable machines opened up a whole new commercial market, they

created similar new opportunities for military aviators. “Mission planning is not rocket

science,” one aviator explained, “but it’s complicated with lots of moving parts.” 38

Because many of the computations performed manually were well standardized, they

were ideal candidates for a computer algorithm. Programming computers to perform oft-

repeated and stereotyped calculations essentially off-loads the computational burden onto

the machine, reducing errors, saving time, and freeing humans to focus on other “moving

parts,” especially more intangible considerations about mission scenarios or enemy

actions that are ill-suited to an algorithm.39 In the late 1970s and early 80s, it was both

feasible and natural for military aviators, often electronics enthusiasts in their spare time,

to obtain microcomputers with their own money and begin writing software to aid

mission planning.

A Tale of Two Systems: PC and Unix
Two young A-10 pilots, Captain Jake Thorn and Captain Jerry Fleming, were

stationed at Mertle Beach Air Force Base in 1981. The two were avid electronics

hobbyists and HAM radio operators who began writing software on a TRS-80 Model 1.

The commander of Air Force Tactical Air Command (TAC), General Wilbur L. Creech,

37 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: MIT Press, 2004), 202-221.
38 Jake Thorn, interview by author (13 October 2005).
39 Edwin Hutchins, Cognition in the Wild (Cambridge, MA: MIT Press, 1995); Frank Levy and Richard J.
Murnane, The New Division of Labor (Princeton University Press and the Russell Sage Foundation, 2004)

 21

met the pair during a routine visit and was favorably impressed, asking, “Can you flight

plan on that thing?” Thorn assured him that he could and was invited to give a

demonstration in a month’s time at a Corona meeting of Air Force general officers. The

Captains’ squadron commanding officer agreed to take them off the flight schedule so

they could get to work. The result was “Jake and Jerry’s Two Week Flight Planner,”

which impressed the crowd enough that Creech created the TAC Small Computer

Program to provide every TAC squadron with a microcomputer and begin “squadron

automation.” 40

TAC purchased Cromemco System 2 (CS-2) machines, providing some minimal

infrastructure for every TAC squadron to be able to write and run its own software.41

Various aviator-written programs percolated throughout the community, passed around

on floppy disks from one aviator to another as they commuted around air bases, an

effective form of pre-internet software diffusion. One program that became widely used

was FPLAN (“Flight Planner”), first written in 1983 by Thorn and Fleming together with

another aviator, Captain J. C. Thompson, at Eglin Air Force Base, Florida. FPLAN

performed basic route and fuel calculations, but its real strength was an updatable

database of navigation coordinates and frequencies from the Instrument Flight Rules

(IFR) supplement. Like a garage-start-up software company, the officers’ wives

manually typed in the data from each update so they could make copies on floppy disks

and mail them out to other aviators. Over the next several years, they released several

new versions of FPLAN updates on the side while working other primary jobs, and the

update distribution list grew considerably. FPLAN found its way onto computers of

squadrons across the Air Force and Air National Guard.42

40 Thorn, interview (13 October 2005). General Creech later asked Thorn, “If I wanted to see flight
planning when I first visited, could I?” Thorn answered, “No sir, but I knew I could do it in a month,”
displaying a risk-accepting optimism common among user-developers. “I thought so,” replied Creech.
41 Interestingly, IBM did not submit a bid for the TAC contract, and as a result squadrons had CS2s rather
than PCs until 1987. They were stuck with the CS-2 long after the commercial market had embraced the
PC, foreshadowing the tendency of military IT infrastructure to lag behind the commercial state of the art.
TAC also let a contract to Atlantic Analysis Corporation to design some basic mission-planning software
for the CS-2, but this withered away from neglect as aircrew used their own programs.
42 Thorn, interview (13 October 2005)

 22

FPLAN’s emergence at Eglin is significant because in 1983, TAC established a

center for testing and evaluating automated mission planning systems there.43 This meant

that FPLAN emerged from the one location where contractor-produced mission planning

systems also first entered the force. In a pattern that would repeat itself, the same

aviators involved with official systems were also developing unofficial systems on the

side, having both strong interests in mission planning as well as inside knowledge of the

problems plaguing the official effort. These first official solutions, interestingly enough,

also used the CS-2 platform, but they ran a Unix operating system while the squadron

machines ran a version of DOS. The first Mission Support System (MSS I) included a

digitizer table “big enough to double as a bomb shelter,” on which a paper chart could be

overlaid and coordinates registered with a mouse-like pointing device, enabling some

very basic geometric calculations to be performed.44 MSS I had a lot of problems and

was difficult to use as delivered, leading to a complete software overhaul at Eglin in

1983.45 Captain Thorn was the Operations Officer of the 4485th Test Squadron at Eglin

where MSS I was in Operational Test, during the same time he was working on

FPLAN.46

MSS II followed in 1986, an even larger refrigerator-sized minicomputer system

enclosed in its own ruggedized container that needed four people to lift it and a C-130 to

transport it.47 Aircrew preferred to use FPLAN and other informal programs whenever

possible to avoid MSS II. To be sure, MSS II had capabilities the informal software did

not. These included some of the first digital map displays, which necessitated Unix

minicomputers because PC microcomputers were still too underpowered at that time.48

More importantly, MSS II was needed to load a data transfer cartridge (DTC), a “brick”

43 Jake Thorn, Mission Planning History Slides (2005).
44 Thorn, interview (13 October 2005)
45 Mike Bartgis, “AFMSS MPS and PFPS News,” ANG/DOOM Newsletter (May 2000), 6.
46 Thorn, interview (13 October 2005)
47 John Pyles, correspondence with author (26 October 2005). The MSS II actually consisted of two
computers in the same ruggedized mil-spec container, a MicroVAX for map image processing and a
Cromemco S-100 bus, a holdover from MSS I.
48 John Pyles, interview with author (28 October 2005). These maps were CIA World Databank II vector
(“stick”) maps at the 1:500k-1:1M scale, as well as some Common Mapping System (CMS) raster
(“picture”) maps scanned from aviation charts. The British firm Fairchild Defense supplied the original
MSS raster maps, prompting the Air Force to develop its own CMS scanning and encoding format to
escape foreign dependence. At a 12:1 compression, this format required a lot of storage and graphics
power, so PCs were not even an option in the 1980s.

 23

which was loaded by mission planning computers in squadron operations centers and

then plugged into a jet on the flight line.

The advent of improved capability aircraft with onboard computers to aid navigation

and weapons delivery was a major factor increasing demand for mission planning

software. The F-16C, fielded in 1981, had improved avionics and the first data cartridge.

With only a 8Kb capacity at first, these could be programmed in the cockpit in a pinch,

but by 1990 capacity had grown to 128Kb, and there were some things that could only be

done on an MSS II.49 As more aircraft were fitted with data cartridges, MSS-II was

expanded to cover other TAC aircraft, raising coordination costs considerably for

program managers.

Unfortunately, not all squadrons with F-16Cs had an MSS II, and those that did

found them difficult to move, use and maintain. Air National Guard (ANG) squadrons

were particularly hard pressed on both accounts, being well below active duty squadrons

in priority for new equipment, and needing to be as portable as possible for deployments.

This led ANG Major Walter Sobczyk and Major Robert Sandford to set out to build a

device that would hook up directly with a PC and load the cartridge. The first prototype

was literally carved out of wood at Hill Air Force Base in Ogden, Utah, and dubbed the

“Ogden Data Device” (ODD). The design was refined in-house at the Ogden Air

Logistics Center, and soon ODDs and PCs running FPLAN were available to ANG

aircrew, eliminating the need for MSS II for the bulk of F-16 planning needs.

ODDs crept into active duty squadrons, provoking the ire of TAC, which perceived

them as unsafe and a threat to MSS II, even though aircrew found them to actually be

more reliable and hassle-free than MSS II.50 Major Sandford—who carried business

cards with the slogan “Fly fast, fight dirty, and cheat when necessary”—championed the

ODD in both ANG and active duty channels.51 Officers and squadron commanders were

willing to ignore TAC protests and use the preferred ODD/FPLAN solution. This reflects

a tradition of aircrew responsibility for performing their own planning, but also a degree

49 Mark A. Gillott, “Breaking the Mission Planning Bottleneck: A New Paradigm,” Air University Air
Command and Staff College Research Report AU/ACSC/099/1998-04 (1998), 4-6.
50 Pyles, correspondence (26 October 2005)
51 Mike Bartgis, interview with author (28 October 2005)

 24

of autonomy for TAC fighter squadrons that might not exist, for instance, in Strategic Air

Command (SAC) bomber squadrons equipped with nuclear weapons.

The popularity of PC solutions among aircrew led TAC to direct in 1989 that MSS II

mimic the FPLAN interface, and that further programs developed for the Unix MSS II

also be concurrently developed for the PC;52 basically, user innovations were influencing

requirements for formal systems. At this time, having just returned from a tour with the

Air Force Thunderbirds, now Major Jake Thorn was the Chief of the Tactical Air Force

Mission Support System Projects Office at Eglin.53 Again this individual was a key link

in the interaction between the formal Unix and informal PC efforts, managing Air Force

spending on the former while still participating in the development and distribution of the

latter himself. Although working to improve the formal systems, he was painfully aware

of the problems plaguing their development and the importance of ensuring operators had

something that worked well in the mean time. These twin paths—official, expensive,

something-for-everyone, difficult-to-mange Unix solutions, versus informal, run-on-a-

shoestring, mission-focused, PC solutions—would characterize mission-planning

software throughout the 1990s.

The 1991 Gulf War provided a major stimulus to automated mission planning.

Averaging 2,697 sorties per day for 43 days, the war subjected tactics and equipment to a

rigorous “live fire operational test and evaluation.”54 Many aircrew were exposed to

digital mapping and imagery on the MSS II for the first time and found that it could

reduce both planning time and errors. However, there were never enough to go around,

and the machines were frequently down. Many squadrons did not have an MSS II, and

the ones that did had only one to go around for two-dozen jets. Many squadrons lacked

even PCs. Manual planning with paper charts and grease pencils was still common.

Mission planning took at least six to eight hours and sometimes days for complex strikes;

target imagery and intelligence was often unavailable; coordination with widely dispersed

52 Gillott, “Breaking the Mission Planning Bottleneck,” 7.
53 Jake Thorn, military biography page (2005)
54 Richard J. Blanchfield et al., Gulf War Air Power Survey, Volume 4 (Washington DC: U.S. Government
Printing Office, 1993), 88, 153-170; Lewis D. Hill et al., Gulf War Air Power Survey, Volume 5
(Washington DC: U.S. Government Printing Office, 1993), 234.

 25

members of strike packages was very difficult; and coordination with friendly ground

forces sometimes impossible.55

The war highlighted the importance of improving automated mission planning. The

Air Force established a System Program Office at the Electronic Systems Center (ESC)

to create a common planning system called Air Force Mission Support System (AFMSS).

With a much more ambitious scope than TAC’s already broad MSS II effort, AFMSS

was supposed to provide planning capability for fighter, bomber, airlift, tanker, and

special operations aircraft, as well as headquarters command and control. This effort to

make “something for everyone” at one go would prove quite frustrating for users and

managers alike, as the expense and coordination challenges tended to separate engineers

and users with many layers of bureaucracy.56 The resultant hardware suite, called a

Mission Planning System (MPS), would be even bigger than the already large MSS II.

Exacerbating portability and fielding problems, the entire system was classified, even its

generic navigation functionality, since the system also could display intelligence threat

data. The classified segment was used infrequently, in part because supporting

intelligence organizations and systems were still not well integrated. By contrast,

programs like FPLAN had always been unclassified and easy to disseminate.57

Major Sandford, working on the National Guard Bureau staff in 1992, was

pessimistic that AFMSS would ever be viable for the Air National Guard (ANG). Above

and beyond the design problems he anticipated from the cumbersome contracting process,

he knew AFMSS MPS would be even less mobile than MSS II, a drawback for deploying

Guard units, and furthermore, the Guard likely wouldn’t receive them for years after

55 Thomas A Keaney and Eliot A Cohen, Gulf War Air Power Survey Summary (Washington DC: U.S.
Government Printing Office, 1993), 177-178; Jane Glaser, “When Reflex is a Matter of Life and Death,”
expanded draft version of chapter 21 in Bill Gates, Business @ the Speed of Thought: Succeeding in the
Digital Economy (New York, NY: Warner Books, 1999).
56 AFMSS development exemplified the “gold plating” (also called “requirements creep”) profile described
by McNaugher, “Weapons Procurement,” 95: “Early optimism about cost, performance, and schedule,
combined with inflexibility during development itself, makes it virtually inevitable that the services will
field ‘gold-plated’ weapons—that is, weapons whose capabilities are not cost-effective. Projects are
approved on the basis of optimistic cost-effectiveness assessments. Costs turn out to be higher, often
substantially higher, than was expected. This calls into question the cost-effectiveness of some of the
performance called for in the original requirement. Yet normally little of that performance is sacrificed;
indeed, performance requirements may be augmented during development. And by the time information is
available to inform real cost-effectiveness judgments, the project has acquired a momentum that makes
cancellation difficult.”
57 Gillott, “Breaking the Mission Planning Bottleneck,” 8-12.

 26

active duty squadrons. While FPLAN on PCs with ODDs had worked passably as a

stopgap, FPLAN was nevertheless reaching the limits of its design, with architectural

legacies dating back to the earliest microcomputers (like single character variables) and

several ports across different operating systems.

Sandford envisioned a complete PC alterative, running on a single laptop, displaying

digital maps, supporting graphical mission planning, and loading cartridges via an ODD.

Prevailing on ANG staffers, Sandford obtained unallocated year-end money.58

The Killer App
An easy-to-use PC mapping program seems like a natural development: there are lots

of imaginable military, government, commercial, and recreational applications for a fast,

cheap, PC mapping program; it would seem to have a generic niche like the spreadsheet

or word processor. However, nothing arose in the commercial market to fill it like Lotus

1-2-3 and WordStar did theirs. For one thing, PCs were viewed as far too underpowered

to support graphics-intensive mapping. For another, digital mapping requires digital map

data, and that requires established encoding and compression standards and detailed,

regularly updated coverage over a wide area. What data did exist on the market was

expensive, and it had to be purchased piecemeal, thus the customers who could afford it

could also afford a more powerful Unix machine to work with it. The low-end PC

mapping market was thus rather undeveloped in the 1980s and early 1990s.59 Sandford’s

application, however, would be perfectly positioned: military users could get access to

58 Pyles, correspondence (26 October 2005); Robert Sandford, interview with author (12 October 2005).
The fact that money was available for Sandford’s experiment highlights the role of slack resources in
innovation.
Pyles’ notes from a briefing around this time, reportedly by Sandford, read: “If the federal government
gave each AF squadron $500K to spend on mission planning hardware and software, would the squadron
commander buy:
A) One (1) AFMSS
B) Two (2) MSS IIs
C) A 486/50 Notebook, ODD, Laser printer, and CD ROM for every pilot and save the $250K left.
It is time the government started making buying decisions like individuals.”
59 ESRI did release a PC version of ARC/INFO in 1986 (“ESRI History,”
http://www.esri.com/company/about/history.html), but like the company’s minicomputer products, it
catered to a specialized market of professions like foresters and urban planners, who like the military,
usually had better access to government map data than the public did. ESRI’s products were typically very
powerful, but also very expensive and difficult to learn. The low-end PC mapping market remained
undeveloped until proliferation of hand-held GPS devices increased demand in the late 1990s-early 2000s
and companies like MapQuest and Google made comprehensive, detailed, updated map data freely
available over the internet.

 27

voluminous map data that was being developed for military mapping applications (on

Unix platforms), which took care of the latter problem; and PC performance was

improving by a factor of two every 18 months, so the former problem would take care of

itself.

Sandford contacted engineers at MIT, Stanford, and the Georgia Institute of

Technology about the project. He received a lot of resistance to the idea of doing F-16

mapping software on a PC, reflecting an engineering bias for choosing more powerful

Unix systems for graphics-intensive computation.60 Sandford countered that even if PCs

weren’t fast enough then, they would be soon enough, probably by the time the software

was written. He foresaw correctly that Unix minicomputers would remain scarce,

expensive assets for squadrons, while PCs running Microsoft software would only

become more readily available and accessible. In spring 1993, Sandford found a

sympathetic ear at the Georgia Tech Research Institute (GTRI), the non-profit applied

research arm of the university, in a research scientist named John Pyles. While a

graduate student at GTRI, Pyles had worked on some Army intelligence software that

displayed photographs of maps on PCs, which he saw had great advantages of portability

and usefulness in the field, as well as on a MSS-II project where he became familiar with

military map data formats.61 Like other engineers, Pyles wanted to do Sandford’s project

in Unix, even a PC running Unix, but Sandford was adamant that FalconView would be a

PC DOS-based program. Pyles recruited two more GTRI graduate students onto the team,

Robert Gue and Vincent Solicito.62

The contract was signed in September for a “Flight Plan Simulation Mapping

System,” with the word “simulation” added so that the ANG could piggy-back on an

existing Army Research Labs contract with GTRI for simulation software. This allowed

them to bypass the hassle, delay, and expense of establishing a new contract. GTRI

60 Sandford, interview (12 October 2005). The engineering resistance was understandable. Not only were
Unix machines pervasive in scientific and engineering environments, many attempts by large corporations
to create graphics-heavy windows operating systems for the PC had failed. Only with the release of
Microsoft Windows 3.0 in 1991 had the software matured enough and PCs sped up enough to make
graphical windows based programs really feasible (Campbell-Kelly, From Airline Reservations to Sonic the
Hedgehog, 250-251).
61 Pyles, correspondence (26 October 2005)
62 Pyles, interview

 28

managers also required Pyles to phrase the wording of the contract so that deliverables

would be “beta”—working prototypes rather than finished product—because they felt the

6-month deadline was too ambitious. “We…were just too naïve to realize this ourselves

and just went ahead and finished the initial release anyway,” Pyles recalls, “Being fresh

out of college, $475K sure sounded like a lot of money to us and as a result we were

under a good deal of self-induced pressure to deliver.” The beta version was completed

in January 1994, and a tested version 1.01 was released to F-16 aircrew in June.63

FalconView is essentially a digital version of the classic military map board with

transparent overlays (e.g., one for terrain features, another for enemy disposition, another

for friendly scheme of maneuver, etc.). Presented in a familiar Microsoft Office style

with buttons, menus, and a large graphical workspace, FalconView could display a wide

variety of maps and imagery at different scales;64 its custom overlays could be saved and

shared as small files;65 it included a connection for hand-held GPS receivers and a real-

time moving map display; and also a tactical radio feed to display intelligence data and

63 John Pyles, correspondence with author (7 December 2005). The fresh-out-of-college naivety expressed
itself in other ways, too. Someone on the FalconView team included a copy of the video game Doom on
the CD with version 1.0. Doom remained on the CD for three years until a squadron intelligence officer
called GTRI and told them he was having trouble getting FalconView on his machines because security
managers told him Doom wasn’t accredited (Pyles, interview).
64 Users can pan around and zoom in and out through different scales of maps and imagery while the
overlays move and scale with them. Moving the cursor over the map provides coordinates and elevation
accurate enough to slew optical sensors onto a target. Map, image, and elevation data generally is loaded
from CD-ROMs provided by the National Geospatial-Intelligence Agency (NGA, formerly known as the
National Imagery and Mapping Agency, NIMA) onto local hard-drives or network servers. Greater area
coverage, especially at large scales and with imagery, can require a lot of storage, so users generally only
load up data they need, although deployable map servers with terabytes of data are now available. Maps
were CMS for FalconView 1.0, CDARG by 2.0. The smallest scale available at that time was 1:250,000
scale Joint Operational Graphic (JOG) charts; 1:50,000 terrain land maps and 1:25,000 city graphics are
now available for selected areas. FalconView now also can display USGS and NOAA GeoTIFF and
Digital Nautical Chart (DNC) formats, and users can geo-rectify their own custom-scanned imagery.
Imagery was initially SPOT. Now unclassified commercial satellite Controlled Image Base (CIB) is
available at 10 meter resolution world-wide, many places at 5 meter, and selected areas at 1 meter.
65 There are different kinds of overlays: routes, threats with range rings, local points for targets and
navigation aids, and free-form vector drawings for airspace annotation. Each overlay is saved as a small
file, somewhat like an Office “document,” so it can easily be moved via floppy disk or email. The
separation of generic map data from mission-specific overlay files helped not only in data and storage
management, but also in keeping FalconView itself and the basic map data unclassified. FalconView could
be run on a classified PC and thus manipulate classified overlay data, while all development could remain
unclassified. This gave FalconView a tremendous advantage over AFMSS MSS and TAMPS (which could
only be operated in a classified environment), making it easier to disseminate without classification
controls, and available to user groups with limited security clearance, such as many allies.

 29

friendly force locations.66 “We knew it would be a really cool app if anyone would let us

build it,” said Pyles. Furthermore, the constraint of designing for the Intel 80486

processor (rather than a more powerful minicomputer) in 1994 forced GTRI engineers to

come up with fast and efficient rendering techniques. Although this constraint

evaporated as PC hardware performance improved, it paid dividends later on in fast,

smooth performance. “I knew technology was on our side and we could ride the

hardware wave of hard disks, screen resolution, and PC performance improvement,”

Pyles said.67 AFMSS engineers wedded to Unix solutions did not appreciate that, as

Sandford pointed out, “PCs are disposable.”

Sandford and Pyles consciously based FalconView management on Frederick

Brooks’ The Mythical Man-Month.68 Brooks argues that conceptual integrity is the most

important and elusive part of software design (which, as mentioned above, is

characterized by complexity, non-visibility, changeability, and arbitrariness) and this is

best achieved with a “surgical team” having fewer, higher quality programmers, a chief

programmer controlling the concepts, and frequent end-user interaction to ensure that the

task and solution are coordinated. Pyles played the role of chief programmer, while

Sandford articulated user requirements and remained closely involved in architecture and

interface discussions, sometimes even coding working software to convey a concept.

Although a staff officer at the National Guard Bureau, Sandford was still flying regularly

(a practice since disallowed for Pentagon staff officers), so his understanding of planning

requirements was kept fresh.69

Developing an effective human interface is difficult for engineers to accomplish

working only from formal requirements and lacking an intuitive understanding of the user

situation, a situation common in formal acquisition programs. By contrast, FalconView

developers made the interface a priority. Two early decisions were particularly important.

First, they bet on Microsoft: “it will be whatever Bill Gates decides.” This meant

designing for DOS and later Windows, writing in the C++ language rather than ADA (the

66 These feeds were not added in the initial F-16 version because the aircraft already had a map display
built into the cockpit, but they were some of the first modifications in version 2.0.
67 Pyles, interview.
68 Sandford, interview (12 October 2005).
69 Mike Bartgis, correspondence with author (28 October 2005)

 30

Department of Defense standard at the time), and adopting the interface “look and feel”

of Microsoft Office applications in order to make it easier for users already familiar with

Office to learn FalconView.70 They gave a lot of attention to the graphical user interface

because they wanted a novice user to be productive with daily tasks right away. In stark

contrast to MSS and AFMSS MPS, which required users to memorize cryptic

combinations of keyboard commands, FalconView became an application that people like

to play with the first time they’re first exposed to it. As one aviator commented, “I’ve

learned more in 10 minutes on my own with this software than I did during two weeks of

training on the MPS.”71

Second, version 1.0 would be designed only for F-16 mission planning (hence the

name “FalconView” after the F-16 “Fighting Falcon”). Even though there was interest in

Sandford’s project elsewhere, especially the C-130 lift community, he wanted to avoid

the kind of requirements creep that plagued MSS-II and AFMSS, which in trying to be all

things for all aircraft delivered poor solutions to everyone at great expense. Sandford and

Pyles supposed from the start that FalconView could be broadly useful for other aircraft,

instructor stations in simulators, and non-aviation users, so a challenge would be holding

theses other communities at bay.72 They felt it was essential to first achieve success with

the basics: “do only 80%, but do it perfect.”73 This would set a precedent for small

incremental changes in FalconView, always making sure that basic functionality was

solid before trying to add more, and willing to be flexible on deadlines to do so (an

informal convenience the large programs didn’t share). By focusing on the human

interface rather than just technical functionality, and by limiting the initial scope to the F-

16, Sandford and Pyles laid the foundation for an application that others—and not only

aircrew—would find intuitively attractive.

Growing Pains
FalconView development encountered resistance right from the beginning. While

friction between FalconView and its programmatic competitors might be expected, there

70 Joe Webster, interview with author (25 October 2005)
71 Gillott, “Breaking the Mission Planning Bottleneck,” 15.
72 Webster, interview.
73 Sandford, interview (12 October 2005)

 31

was also chafing between proponents of different user efforts, reminiscent of the

squabbling that can erupt among insurgent factions. In particular, Major Sandford and

Major Thorn developed different opinions about the relationship between user-led

software efforts and the formal programs. Sandford was exasperated with the

inefficiency of MSS and AFMSS, and just as he had pioneered the stand-alone ODD-

FPLAN solution, he sought to bypass the programs altogether with an independently

funded Air National Guard (ANG) system. Thorn, by contrast, who had been officially

involved with MSS-II management as well as informally nursing FPLAN, saw user

software efforts as supplementary stopgaps. Thorn hoped to reform the acquisition

programs, while the more revolutionary-minded Sandford wanted to avoid them

altogether.

The two could at least agree that FPLAN needed to be completely overhauled,

Sandford because he needed the flight planning capabilities for FalconView’s graphical

display, and Thorn because a stopgap was needed until the AFMSS Unix solution was

ready. The AFMSS program was completely opposed to attempting to display maps on a

PC, thought to be an unpromising and wasteful distraction from the Unix effort.

Sandford would thus provide some of his ANG funding for an FPLAN replacement,

dubbed Combat Flight Planning Software (CFPS), and Thorn would achieve reluctant

AFMSS acquiescence by promising keeping it separate from FalconView. CFPS

development began at Eglin under a contract to the Tybrin Corporation, where Jerry

Fleming, one of the original FPLAN developers, now worked as a civilian.74 Thorn’s

DOS-based CFPS would share the same interface with the Unix-based AFMSS systems,

so they could co-exist, to the point that AFMSS eventually began funding further CFPS

development. This also allowed CFPS to leverage Aircraft Weapon Electronics (AWE)

software, also written at Eglin, to facilitate platform-specific cartridge loading.

Sandford’s vision for FalconView, in contrast with Thorn, was a threat to the

AFMSS program. The first version of FalconView could interface with CFPS,

effectively providing CFPS with the map display that AFMSS would not allow. Faced

with the increasingly capable combination of FalconView, CFPS, and the AWEs—

74 Bartgis, “AFMSS MPS and PFPS News,” 6-7; Robert Sandford, interview with author (20 December
2005)

 32

collectively dubbed Portable Flight Planning Software (PFPS)—AFMSS and Thorn tried

to slow its development. They demanded that route coordinates entered through CFPS

remain fixed in FalconView; however, Sandford’s next version allowed users to

graphically construct and modify a route. AFMSS also demanded that FalconView not

be able to build threats, an expensive classified capability of the AFMSS MPS; the next

version allowed users to graphically build threat overlays, a capability that could remain

unclassified because the functionality was independent of classified threat data.75

The FalconView team routinely ignored angry AFMSS protests as they looked into

adding new features. They could get away with this for two reasons. First, the AFMSS

MPS was encountering a lot of development problems and receiving extremely negative

user feedback, so even program managers recognized that a functional stopgap really was

needed. Although Thorn wanted to see AFMSS succeed, he began to appreciate the

growing utility and potential of FalconView. More importantly, however, FalconView

was shielded from direct AFMSS and active duty Air Force influence by sponsorship by

the ANG and Air Force Reserve.

The Reserve, like the Guard, enjoyed a lower AFMSS priority than the active duty

Air Force, so funding further improvements to FalconView was likewise sensible. This

funding was obtained by Lieutenant Colonel Joe Webster, an aviator on the Air Force

Reserve staff. Webster took over detailed FalconView management in 1995 when

Sandford transferred to Nellis Air Force Base, Nevada, to head the F-16 Test Team.

Sandford still spoke frequently with and made monthly visits to GTRI, ensuring that

FalconView development benefited from immediate user feedback. 76 Reservist

involvement in FalconView development also opened up an avenue for ideas about

civilian technology development to enter the military.77

By early 1996, FalconView version 2.0, a Windows 3.1 application with significantly

expanded functionality, was percolating throughout the Air Force, aided by Eglin’s

production of AWEs for more and more different types of aircraft. A tragedy in Croatia

further raised its visibility. On 3 April, an Air Force CT-43 (Boeing 737) carrying U.S.

75 Bartgis, “AFMSS MPS and PFPS News,” 7.
76 Sandford interview (12 October 2005).
77 Glaser, “When Reflex is a Matter of Life and Death.”

 33

Commerce Secretary Ron Brown and 34 others crashed on instrument approach to

Dubrovnik, killing all aboard (Kozaryn, 1996).78 Air Force investigators opined that had

the pilots used the FalconView moving map in the cockpit, the controlled flight into

ground might have been avoided. Later that year, the Air Force made FalconView use

mandatory on all Distinguished Visitor aircraft.79

Frustration with AFMSS mounted and the popularity of FalconView grew, spreading

informally to an estimated 13,000 users by 1997.80 The issue came to a head at a meeting

of Air Force general officers at the Pentagon. The AFMSS Special Program Office

director was fired, and AFMSS was directed to officially incorporate PFPS, although

GTRI and Eglin would continue actual development. AFMSS would still put money into

MPS because there were some missions and aircraft, such as the F-117 stealth fighter,

that were dependent on it, but nonetheless PFPS finally had official endorsement, as well

as $4.4 million of AFMSS money over the next two years.81

That same year FalconView was recognized as one of five finalists in the “core

business” category of the Windows Word Open, an annual competition sponsored by

Microsoft to promote Windows software development;82 Microsoft CEO Bill Gates later

included a chapter on FalconView in a business book singing the praises of information

technology.83 By October 1997, GTRI released FalconView 3.0, the first new version

since FalconView’s victory over AFMSS, updated for the 32-bit Windows 95 operating

system and including 100-meter Digital Terrain Elevation Data.84 With this version,

FalconView really began to diffuse beyond its humble origin.

User innovation theory expects that technological changes that lower barriers-to-

entry for lead users will promote user innovation. Aviators like Jake Thorn, Jerry

78 Linda D. Kozaryn, “Air Force Releases Brown Crash Investigation Report,” American Forces
Information Services (13 June 1996), http://www.defenselink.mil/news/Jun1996/n06131996_9606132.html.
79 Chris Bailey, “FalconView: Mission Planning Tools at GTRI,” PowerPoint presentation (2005).
80 Department of Defense, “Air Reserve Software Program Wins Worldwide Recognition,” Press Release
(3 June 1997), http://www.defenselink.mil/releases/1997/b060397_bt285-97.html.
81 Jake Thorn, interview with author (15 November 2005). $4.4 million was still only a small portion of the
overall $32.6 million AFMSS budget during the same time, FY1999-2000, which covered legacy MPS
development and JMPS development, shared with the Navy (Department of Defense RDT&E Budget
FY2001-2002, PE Number 0208006F).
82 Department of Defense, “Air Reserve Software Program Wins Worldwide Recognition.”
83 Gates, Business @ the Speed of Thought, ch. 21.
84 Chris Bailey, interview with author (14 October 2005).

 34

Flemming, and Bobby Sandford fit the lead user profile well: they were interested in

planning automation well in advance of a larger user population, which discovered the

same needs incrementally later and then en masse during the Gulf War; and as

operational aviators, they were positioned to benefit immediately from improving their

own planning performance. As computers suddenly became affordable for users’ private

purchase or for small units’ discretionary budgets, as the theory expects, lead users

pioneered automated mission planning before formal acquisition programs even existed.

Only after users proactively demonstrated and disseminated their programs was it clear

that “market” potential existed, and thus formal programs were initiated. In the 1980s,

the formal programs were able to innovate improvements beyond the production capacity

of users, most notably the first digital maps, which still required Unix minicomputers and

a determined effort to produce map data. However, the existence of formal programs did

not reduce user innovation activity; in fact, the former actually helped expand demand for

the latter by exposing more users to the benefits of automation, especially during the Gulf

War, and by imposing the high transaction costs typical of the acquisition requirements

process. PC hardware and Microsoft software also continued to improve in capability

and decline in cost, while formal programs remained wedded to Unix architectures,

further catalyzing lead user innovation.

FalconView, nevertheless, was not a pure user innovation. The code was actually

written by full-time GTRI contractors, albeit on a not-for-profit basis. The project

maintained an intimate working relationship with users from the start, with Sandford and

later Webster setting design priorities and occasionally coding prototypes to convey an

idea, and with engineers frequently interacting with operators. This arrangement had the

effect of drastically reducing the transaction costs involved in joining user need

information and technical solution information. Contractors wrote the code, but

operational users were very much a part of the conceptual design process, allowing for

frequent feedbacks with working prototypes somewhat like the software design

philosophy later popularized as “spiral development.” While FalconView’s organization

was quite different than the formalized and bureaucratic processes that procured MSS and

AFMSS, it’s important to recognize that it still represented a minimal amount of

infrastructure in terms of a contracting vehicle, permanent facilities, non-rotating

 35

technical expertise at GTRI, and progressive insinuation into testing and certification

regimes. This put FalconView somewhere between exclusively user innovation and

traditional defense technology acquisition, which, together with protection from the “big

blue” Air Force provided by Air National Guard sponsorship, allowed FalconView

development to capture some of the benefits of user innovation while avoiding its pitfalls

(as summarized in Table 1).

Because users had to work partially within the existing acquisition framework to

realize their desired innovation, one consequence was disagreement among lead users as

to how far this cooptation should go. This disagreement would shape the acquisition

community’s response to the embarrassment of AFMSS and the ascendancy of

FalconView. One possibility, advocated by Sandford and Webster, would be to dispense

altogether with the massive inefficiencies arising from trying to engineer planning

software within the traditional contracting system, and instead invest in the more

decentralized user-integrated FalconView approach. Another, advocated by Thorn,

would be to start from scratch with a new system and a new contract for a robust mission

planning system. The latter would be realized with the initiation of new program of

record in 1998, the Joint Mission Planning System (JMPS), intended to replace

FalconView. Before the JMPS decision and its ensuing problems can be explored in

more detail, however, it’s first important to explain how FalconView’s user group

continued to grow and push its development in novel directions, JMPS notwithstanding.

An Expanding View
Expansion of the user base well beyond the F-16 community occurred in three

stages: first with other Air Force platforms, particularly ANG C-130 airlift and Air Force

Special Operations helicopters and MC-130s; later with Navy and Marine Corps tactical

air; and finally with non-aviation and non-military communities. One irony is that a

small program originally limited to only F-16 support became popular with a very diverse

user group, while large programs designed from the outset to support multiple aircraft

communities failed even to satisfy their target users. Lacking a guaranteed budget,

FalconView had to be responsive to user needs and expanded in a decentralized manner

only as long as it met them, whereas by contrast, AFMSS contractors could retain

 36

lucrative cost-plus contracts by responding only to formal requirements, which tended to

creep ever upward regardless of performance in the field. Formal AFMSS requirements

emerged through a bargaining process within acquisition organizations, involving

contractors and staff officers echelons above and at least a tour away from unit-level

operations, rather than FalconView’s user, “the guy flying the airplane right now.”85

While this history so far has emphasized the Air Force/ANG fighter perspective,

there was also a lot of software developed by aircrew in other communities. The airlift

community was especially conducive to the emergence of user-developed software: C-

130 squadrons had less money and more aircrew than the fighters; their operation tempo

was slower and more predictable, providing time to develop solutions for stable

problems; and aircraft had room for aircrew to bring extra computers with them in flight.

Since navigators already did their own planning, they “could fly with beta software

because if they screwed up it was their wings anyway.”86 One ANG navigator, Major

Mike Bartgis, tried to encourage FPLAN developers to incorporate C-130 functionality

because existing user-developed programs, Low Level Flight Planner (LLFP) and

Computed Air Release Point (CARP), had become unwieldy with each port to a new

operating system. Unfortunately, FPLAN ran into similar re-architecting problems, and

fighter aircrew were also not enthusiastic about supporting transportation. So during the

Gulf War, Bartgis wrote a new program that incorporated functionality of LLFP and

CARP with FPLAN and loaded data onto the C-130’s Self Contained Navigation System

(SCNS). He noted, “The first lesson I learned is all this is a lot easier than contractors

make it sound.”87

In 1992 Bartgis joined the ANG Air Staff and began distributing his program to units.

While there he met Sandford and Thorn and realized that it would be easier to piggyback

on the emerging FalconView/PFPS effort than to start a new one, because even within the

Guard, which had a lower status than the active duty Air Force, airlift was lower-status

still. Willing to wait for the F-16 exclusive version before channeling what limited

funding could be found for C-130 functionality, Bartgis became a key member of the

85 Webster, interview.
86 Bartgis, interview.
87 Bartgis, “AFMSS MPS and PFPS News,” 6.

 37

automated mission planning community. 88 Similarly, Air Force Special Operations

officers found money to support displaying towers and other electronic chart updates (E-

CHUM) to support low flying helicopters and MC-130s.89

Thus a group of aviators from different communities began to gravitate around

FalconView development and lay in more institutionalized support for a growing user

community. A dozen or so officers held the first Mission Planning User Conference

(MPUC) at the Eglin Officers Club in 1993. This became an annual forum to discuss

developments in both PFPS/FalconView and the formal programs, attendance growing to

over 1100 people in 2000.90 AFMSS representatives attended the meetings, downplaying

the significance of the first PFPS 3.0 distribution in 1998 and dismissing FalconView as

an amateur toy; by 2001 the same speakers were apologizing to the crowd that they

hadn’t been able to divest themselves of the big Unix systems fast enough.91 Bartgis on

the ANG staff also began a detailed monthly newsletter called “AFMSS MPS and PFPS

News” that went out to a growing mailing list with detailed technical, operational, and

programmatic detail on both Unix and PC systems. Both the user conference and

newsletter again exemplify the trend in mission planning whereby officers supported both

formal and informal programs at the same time.

As user innovation theory would expect, aircrew-developed applications were freely

revealed, and a user innovation community was emerging. Free revealing is common

among military user innovators; in fact, any code written by servicemembers while in

government employ is legally government property, whereas contractor-written code is

often proprietary licensed software. FalconView developers consciously decided the

88 This cooperation highlighted the fact that “user” is not a monolithic category, since users from one
community can misunderstand the requirements from another just as contractors do. When Eglin, with its
close relationship with fighter operators, began trying to develop PFPS navigation tools for C-130s, they
resorted to unwieldy MSS II interface conventions. Thus a navigator began a program called Thaedra in
order to express interface concepts to Eglin, just as Sandford had produced prototypes for FalconView, but
Thaedra actually became a fully functional airdrop planner, essentially a work around of the work around!
That is, airlift user innovation was catalyzed by having to wait for fighter user innovation to mature. Notes
from the Thaedra help-file also exhibit the pride that amateur developers have in their efforts: “Thaedra
was written by Captain Scott (Scooter) Stephenson…at home, as an unsanctioned personal project.
Thaedra reflected over 1,000 man-hours of coding and was comprised of 12,000 lines of object-oriented
Pascal code” (Bartgis, correspondence).
89 Paul Hastert, interview with author (8 October 2005). This capability was fielded in FalconView 3.0 in
1997 but still not properly working in AFMSS as of 2005
90 Bartgis, “AFMSS MPS and PFPS News,” 1,7.
91 Hastert, interview.

 38

application would be free government-off-the-shelf (GOTS) software so that any

government employee could have access.

The emergence of a self-reinforcing user innovation community had already begun

with the diffusion of software as aircrew traveled around the world for exercises and

operations. Yet, in a military environment where users’ activity is regulated and users

transfer often, more institutional support was needed. For FalconView, this was provided

through the cultivation of small groups of engineers at GTRI and Eglin with low turnover

and close user interaction, eventual cooperation with AFMSS, and most importantly, the

longevity and perseverance of key individuals. Even though officers transferred, they

moved through aviation commands and took FalconView with them, often taking

positions within mission planning acquisition organizations. Furthermore, because ANG

personnel policy differs from the active duty Air Force, Major Bartgis was able to remain

on the Air Staff for eight years, ensuring some continuity and able to wait out obstacles in

the active duty force.92 His role passed to Major Paul Hastert in 2000, an MC-130 aviator

in the Air Force Reserve who had written data cartridge-loading software to work around

yet another dysfunctional official Unix system called MiniCAMPS. As of 2005, Hastert

still worked in the Air Force Combat Support Office, providing a similar kind of

continuity.93

The Navy acquisition experience with automated mission planning was frustratingly

similar to that of the Air Force with MSS II and AFMSS. The Navy Unix minicomputer

program was called Tactical Air Mission Planning System (TAMPS). The system itself

was so large it had to be hoisted from the aircraft carrier hanger deck and through the

floor into the intelligence center above.94 Having evolved from a Tomahawk cruise

missile planning system, the TAMPS contract had passed through three different

contractors, and was completely out of synch with aircrew needs. TAMPS routinely

failed operational test and evaluations because of both interface and basic functionality

issues. Hank Davison, a former A-7 pilot working as a civilian TAMPS instructor at

Naval Air Station Lemoore in the 1990s, confessed, “When just planning, I was having a

92 Bartgis, correspondence.
93 Hastert, interview.
94 Hank Davison, correspondence with author (6 April 2006).

 39

hard time coming up with a use for TAMPS. It took more time than with a pile of charts

and scissors, which was faster and more accurate for adept planners.” 95 Although

TAMPS was the only way to load F/A-18 data cartridges, Navy regulations classified

damage to the cartridge as a class C mishap, technically grounding the aircraft, so

maintenance officers were reticent to let aircrew take the cartridge since aircrew could

still plan without it.96 The introduction of the AGM-84E Stand-Off Land Attack Missile

(SLAM) prior to the Gulf War finally made TAMPS use unavoidable, but even for

SLAM planning aircrew preferred to use paper charts and informal planning techniques,

only then transferring the results to TAMPS to use it merely as a very expensive data

cartridge loader.97

To get around TAMPS, naval aviators obtained copies of FPLAN during joint

exercises with the Air Force. The Naval Mission Planning Systems (NAVMPS) office

was also increasingly frustrated with the system because of the cost ($200,000 per

workstation), schedule slips, and intense user dissatisfaction. TAMPS was tied to F/A-18

production, which meant that NAVMPS itself actually had a relatively small independent

budget and limited leverage. An F/A-18 aviator working at NAVMPS and long-time

FPLAN user, Marine Corps Major John “Festus” Bennett, thus saw cheap PCs and

PFPS/FalconView —free government-owned software—as a viable alternative.

Bennett worked proactively to get the software out to anyone with a Navy or Marine

Corps aviation connection, visiting with aircrew and mailing out hundreds of CDs to

“beta users” before it was ever certified. Network managers complained that they would

find it on one squadron machine and remove it, only to come back and find it on several

more later. Bennett decided he needed fleet “disciples” to overcome the criticism of

scientists and engineers at Navy labs who were focused on Unix and hostile to

“hobbyshop” PC efforts. To build official support, he would ghost-write messages for

units to send to the Chief of Naval Operations staff (OPNAV) with glowing evaluations

and endorsements of PFPS, creatively manipulating bureaucratic process to build

95 Hank Davison, interview with author (18 October 2005).
96 John Bennett, interview with author (19 Octrober 2005).
97 Davison, interview.

 40

institutional support for the emerging FalconView user community. As grassroots

support grew, FalconView “was somewhere between a cult and a virus.”

The entry point into the Marine Corps was Marine Aviation Weapons and Tactics

Squadron One (MAWTS-1) in Yuma, which provided early support for Bennett’s efforts

with a friendly evaluation. From there it diffused to Marine aviation and ground units, as

well as Army helicopter units training with them. FalconView proved a real boon to

Marine Expeditionary Units (MEUs). Deployed on several ships in an Amphibious

Readiness Group, MEU planning often involved flying annotated maps by helicopter

around to the different ships. With FalconView, Marine planners could just transmit

shape files between ships, reducing the number of flights. Marine use led NAVMPS to

fund some important features in FalconView, such as a program called GEORect that

enabled users to take a scanned image of a map or image and tie it to geocoordinates in

the FalconView environment. This allowed Marines afloat to digitize more detailed

ground maps than aviators typically needed, and which NIMA was often unable to

provide.98

The groundswell of user support led to the approval in 1998 of a Navy PFPS

distribution channel via NAVMPS. Although now empowered to send out accredited N-

PFPS CDs to Navy and Marine Corps units, it was still a very informally run, minimally

funded operation. This actually provided Bennett, later joined by Hank Davison and

another naval aviator named Jon Drof, with a lot of flexibility to respond to user requests.

This increased user enthusiasm because they felt they had a voice in development, unlike

with TAMPS. If Bennett and Davison needed Navy-specific applications, they could just

add them to the N-PFPS distribution. If new features were needed, they could leverage

the existing Air Force PFPS contract and send money, usually in small $100,000 lumps,

rather than go through a difficult source selection process.99

This sort of decentralized development process facilitated the growth of FalconView

functionality. The actual requirements and integration was informally coordinated with

GTRI and Eglin, which was successful because engineers either were former aviators or

98 Bennett, interview.
99 Bennett, interview; Hank Davison, correspondence with author (3 April 2006).

 41

had developed and maintained a close relationship with aircrew. A standing contract

with the Ogden Air Logistics Center at Hill Air Force Base provided the vehicle for time

and materials contracts. One result of this was that FalconView’s future was often

uncertain only six months ahead. Most contributions were less than $200,000 (the outlier

being a SOCOM contribution of $2 million in 2003), and if the team didn’t field

something and get good aircrew feedback the program would be in jeopardy. Major

Thorn, Major Sandford, Lt. Col. Webster, and Major Bennett were always “shaking

trees” for small amounts of money from AFMSS, the ANG, Air Force Reserve, Navy

Mission Planning, or other organizations to keep Pyles’ team in business. Every three

months Pyles would have to call one of the aviators and warn, “We’re about to turn into

pumpkins! Do you have more work?”100 The result was something like competitive

pressure for continuous improvement, quality control, and responsiveness to end-user

needs, unlike typical defense contracts.

As in the fable about stone soup, different organizations that wanted new features

contributed money or prototypes, and these improvements then became available to all

users who might leverage them in novel ways. For example, the incorporation of digital

terrain elevation data (DTED) and threat masking algorithms to calculate the effect of

terrain features on radar coverage was funded by Air Force Special Operations so that

aviators could predict which surface to air threats could observe or shoot at them, but this

feature could also be used by ground forces to predict what terrain they would be able to

see from observation points. The Navy funded enhancements like digital nautical charts,

image georectification, and a 3D flight simulator (“SkyView”). Army and U.S. Special

Operations Command (SOCOM) contributions followed in earnest in 2003, adding

ground force symbology, tactical graphics overlays, topographic lines, and illumination

planning to estimate shadowing based on sun or moon position. 101 The minimal,

decentralized, institutional framework for FalconView development allowed different

100 Pyles, interview.
101 Chris Bailey, “Department of Defense Usage of FalconView,” GTRI White Paper (2005),
http://www.falconview.org/docs/FalconView%20Usage%20Throughout%20the%20Department%20Of%2
0Defense.pdf. Army helicopter pilots were eager to use FalconView as an alternative to their own
dysfunctional Unix system, the Army Mission Planning System (AMPS).

 42

service components to achieve a degree of interoperability and coordination that

ostensibly “Joint” programs aspired to, yet without the centralized oversight.

Second-Order User Innovation
The first wave of user innovation in mission planning that gave rise to FalconView

culminated in official recognition and support for the application. FalconView

development requirements were certainly handled more informally than in other software

contracts, and FalconView contractors nurtured a closer relationship with operational

users, yet the design of FalconView proper became, nevertheless, a contract-mediated,

civilian-managed engineering project. With the stabilization of this development,

however, a second wave of user innovation extended the application’s functionality, and

many complementary applications emerged outside of GTRI and Eglin. FalconView

essentially provided a toolkit, inadvertently at first and later deliberately, that users could

use to experiment with novel ways of automating military information processing tasks.

Extensions might be as simple as combining existing features for some unforeseen

purpose, as when bomber crews began using commercial GPS antennas and data loggers

not only for real time navigation, but also for more accurate post-mission analysis.102

Many were programs that generated output files that FalconView could read and display

over maps and imagery, as with a program called Sensor that displayed the actual

footprint on the ground of an aircraft’s forward-looking sensors.103 Others were low-

level utilities that made FalconView more versatile, such as Major Hastert’s PFPS

Update, which automated sharing data among different computers when FalconView was

originally a stand-alone application.104 Private contractors or government civilians also

designed FalconView complements, requested by users but funded by the services, for

inclusion on the PFPS distribution. Interesting examples include the bird avoidance

102 Shawn Fleming, “Using FalconView for Situational Awareness and Post Mission Reconstruction,”
Presentation at Mission Planning Users Group Moving Map Working Group (1999).
103 Davison, interview. For example, if the forward-looking infrared (FLIR) lens, like the cockpit display
screen, is square, the actual area on the ground sensed by the FLIR is trapezoidal because the sensor looks
down at an angle. Aircrew could also use Sensor in reverse, deforming target imagery to produce a
prediction of what would appear in the cockpit display, aiding visual target acquisition. A very similar
program allowed bomber aircrew to dynamically plot the expected pattern on the ground for gravity
(“dumb”) bombs.
104 Hastert, interview. PFPS Update was, significantly, the first user-developed application to be included
on the PFPS CD distribution.

 43

model (BAM), which draws from a database of migratory bird routes to create graphical

overlays depicting the probability of bird strikes at a given time of year,105 and TaskView,

which parses the Air Tasking Order into an interactive FalconView overlay.106

Some user applications helped bridged data from “stovepipe” systems that didn’t

communicate with one another, or worked around them altogether. These were often

written as Visual Basic scripts within Microsoft Office documents to get around

configuration restrictions, with the effect of adding custom functionality to both

FalconView and Office. For example, a database application called Quiver, designed by

an intelligence officer on the USS Kitty Hawk, managed target and threat intelligence

data, outputted target and threat overlays for FalconView, and automatically generated

PowerPoint presentations with target imagery for strike briefs. 107 A similar user-

developed application called Vulture managed Air Force intelligence and operational

planning information for an Air Operations Center, sidestepping some inconveniences of

another large Unix system (Theater Battle Management Core System, TBMCS). One

especially versatile tool called Excel2FV made it possible to import a wide variety of

intelligence and other data formats into FalconView. As an officer managing the battle in

105 Bartgis, interview. Bird strikes are a serious problem, and have led to the loss of or damage to many
high-performance aircraft.
106 The ATO is a long and complicated document with aircraft and mission pairings and associated airspace
control measures. Parsing it out by hand used to take hours. Pamela Bowers, “CrossTalk Honors the 2002
Top 5 Quality Software Projects Finalists,” CrossTalk: The Journal of Defense Software Engineering (July
2003), http://www.stsc.hill.af.mil/crosstalk/2003/07/top5finalists.html .
107 Quiver’s inventor, Lieutenant (Junior Grade) Paul Wilt, demonstrated the program at the Naval Strike
and Air Warfare Center in Fallon, Nevada, where he teamed up with this paper’s author to improve Quiver
for use aboard all Carrier Intelligence Centers (CVIC). Quiver was popular with intelligence personnel and
aircrew, but quite unpopular with SPAWAR, the Navy’s information technology procurement and
management command, since it competed with an expensive Unix intelligence system (GCCS-I3) and was
perceived as beyond the control of configuration managers. Despite thousands of lines of Visual Basic
code and operating system calls, the application was still nominally “just an Access database,” so
SPAWAR technically could not prevent Quiver’s use; indeed, many contemporary user developed
applications masquerade as Office documents because “real” executable programs are uncertified.
Ultimately SPAWAR decided to incorporate Quiver features into a future version of GCCS-I3 and wait for
its military supporters to transfer to new assignments. As with FalconView and AFMSS/JMPS, the
programmatic version spent a lot of money but never managed to reproduce the successful features of the
unofficial version. Yet unlike FalconView, Quiver never found an institutional sanctuary—advocates with
staying power willing to work both formal and informal channels—to weather the resistance. A version of
Quiver called A3 continued evolving in the Naval Special Warfare community. A3 played a critical role in
the management of intelligence for SEAL operations during the 2003 invasion of Iraq, often going through
several new “spiral releases” each week as unexpected information management challenges emerged.
Unfortunately, history repeated itself yet again as A3 moved into programmatic channels, changed names,
and withered away.

 44

Afghanistan’s Shahikot valley during Operation Anaconda commented, Excel2FV

“literally saved lives countless times and was the ONLY way we could've managed the

battle situation.”108

Recognizing the extent of this activity, GTRI first provided deliberate third party

programmer support in 2000 by exposing application program interfaces (APIs) in

version 3.1, and in 2002 by providing a more robust software development kit (SDK) in

version 3.2. End users now had the ability to add buttons, control the FalconView display

from other applications, and accept input from the FalconView interface. This sort of

third party development support was already an important market generating mechanism

in the civilian software industry. When software companies create powerful macro

languages for their applications, like Microsoft’s Visual Basic in Office, or expose

interfaces, modules, code libraries, or web services that other programmers can

incorporate into their own applications, this creates opportunities for third parties,

including users, to become experts in customization. This expands the market for the

original application by enabling it to adapt to domains wasn’t designed for, without the

original developer having to pay for the work. This of course introduces configuration

management liabilities for third party developers, as changes to APIs, for example, can

break their applications, and they are limited to only the functionality the original

developer decides to expose. Yet on the whole, third-party toolkits are a good way for

108 William A. Hastings, correspondence with author (28 October 2005). Excel2FV author Lt. Col. Paul
Hastert writes (correspondence, 13 October 2005), “I had seen for a long time that there was a need to
ingest data from external sources into PFPS, but hadn't done anything about it until 9/11. At that point…I
was spending a lot of time at the CAOC [Combined Air Operations Center] in PSAB [Prince Sultan Air
Base, Saudi Arabia] and definitely saw a huge need for the program. Unfortunately I also discovered that
the chance of getting an ‘unauthorized’ executable on the CAOC network, let alone the [Top Secret]
network was limited….I decided to shift…to Visual Basic for Applications (VBA)…the program
[Excel2FV] masquerades as an MS Office file (in my case a Word Document).” Hastert teamed up with
Maj. Hastings in the CAOC, who writes (correspondence): “We actually didn't start using it until the battle
[Anaconda] had started and had been going maybe about 2 days. There came a point where the data we
were using was becoming unmanageable…. It was desperation that forced the issue… At one point in the
chaos, I went over and found an airman who I had worked with at a previous assignment and I knew was
good with computers. I told him to ‘crack the code’, figure it out, and write down the steps necessary to
import the data from excel (using Excel2FV) into drawing files…. At some point, I found Paul and asked if
there could be a few modifications. I really didn't expect any results. My experience with new software
and the accompanying engineers wasn't positive. It usually took weeks for them to have a solution. By the
end of my shift, Paul had worked out what I needed….I think we made mods almost daily to the program
until by the end, almost the entire targets shop was using this program like it was going out of style (and
wondering how we had done it before without it)…. Wherever I went after that, I preached the gospel of
Excel2FV and trained whomever I could. I'd have to say it was pretty incredible…And we didn’t need to
wait years for an unusable product after spending millions of dollars.”

 45

companies to encourage and leverage lead user innovation to create value (Thomke and

Von Hippel, 2002).109

Explicit third party programmer support in FalconView led to an explosion of new

applications created by users, many on a very small scale never heard of beyond the unit

in which they originated.110 It also enabled GTRI to keep the FalconView team small,

never more than twenty people including administrative support, and to offload support

for their diverse user population onto third parties, including users themselves.111 By

designing in adaptability, GTRI recognized that it would often have no idea how

FalconView was being employed. This is a big contrast to large consolidated programs

like MSS, AFMSS, TAMPS, and JMPS, which on the one hand attempted to centrally

manage support for a very heterogeneous group of aviators, explicitly defining use cases

and functionality, and on the other hand provided no allowance whatsoever to non-

aviation user groups because they were outside of their aviation-only charter.

These non-aviation users are a diverse lot, actively adapting FalconView for

purposes well beyond its initial conception as an aviation planner.112 National Guard

military police in Iraq have used FalconView to aid debriefing Iraqi detainees who are

unable to read maps but can point out locations on unclassified imagery.113 Unclassified

map and satellite imagery also makes it easier U.S. forces to share planning materials

with coalition partners, as well as to send CD-ROM batch updates via regular mail.114

FalconView’s moving map, GPS feed, and tactical radio feed have seen wide use in

special operations aircraft and tactical vehicles, including strapped onto the gas tanks of

All Terrain Vehicles.115 Further blurring the boundary between mission planning and

execution software, users reconfigured FalconView to manage Predator Unmanned Aerial

109 Stefan Thomke and Eric Von Hippel, "Customers As Innovators: A New Way to Create Value,"
Harvard Business Review vol. 80, no. 4 (2002).
110 Bailey, “Department of Defense Usage of FalconView.”
111 Chris Bailey, interview with author (14 October 2005).
112 The actual size of the user population is hard to estimate because the application is unlicensed
government software. CDs can be copied or loaded onto multiple machines. GTRI estimated 13,000 total
users, aviation and non-aviation, in 2000 and 20,000 in 2004.
113 Jason Black, interview with author (31 October 2005).
114 Eric Lipton, “3-D Maps From Commercial Satellites Guide G.I.'s in Iraq's Deadliest Urban Mazes,”
New York Times (26 November 2004).
115 Sean Naylor, Not a Good Day to Die: The Untold Story of Operation Anaconda (New York, NY:
Berkley Books, 2005), 162-3.

 46

Vehicle (UAV) operations in combat: whereas remote pilots used to have limited

situational awareness through the “soda straw” of the Predator’s camera eye, multiple

UAV tracks could now be displayed in real-time over detailed satellite imagery of the

operational area, on multiple FalconView computers anywhere on the network.116

Other unusual uses have included recreating geographic conditions to aid aircraft

crash forensics, tracking whale migrations for a Navy environmental study,117 or a tool

funded by the Air Force Surgeon General to analyze directed energy blinding threats.118

Users in government organizations outside the Department of Defense have obtained

copies of FalconView and contributed new features through the same military contract

vehicle. The U.S. Forest Service uses it to plan airdrops of fire retardants and to track the

spread of forest fires. U.S. Customs funded capability for tracking small drug-running

aircraft.119 The National Geospatial Intelligence Agency (NGA) funds functionality and

distributes a version of FalconView to the intelligence community. FalconView has been

provided to twenty-five other countries through U.S. foreign military sales.120 Countries

that have purchased U.S. F-16s usually receive PFPS/FalconView for mission planning,

and it also receives non-aviation use, as in Colombia where it’s used for intelligence

fusion in counter-insurgency operations. China, moreover, may have illegally obtained a

116 Paul Hastert, “Spiral Development in Wartime,” PowerPoint presentation to NDIA (2005). During the
Kosovo war, frustrated Predator operators developed the concept “on the back of a napkin” of embedding
sensor telemetry in the closed captioning teletext field of the NTSC video feed. Contractors delivered an
expensive, unwieldy solution in 2001 that could display only one aircraft at a time on dedicated
“PowerScene” and “BattleScape” machines on the CAOC floor. By July 2002, Lt. Col. Paul Hastert had
figured out how to adapt FalconView’s GPS feed to accept decoded Predator input, using the existing GPS,
map, imagery, and 3-D viewer tools in FalconView to provide a quantum leap in situational awareness for
Predator operators. By that December, they had a GTRI-developed utility (designed originally for HH-60
helicopter input) to translate the serial Predator feed and broadcast it via TCP/IP to multiple FalconView
machines in different CAOC areas, each secured at different classification levels with different intelligence
feeds (By contrast, the contractor solution was limited to the CAOC floor.). By February 2003 they had a
new “SuperSplitter” program to broadcast the location of multiple Predators over the secure SIPRNET
internet, and display them all on FalconView machines anywhere in the world. This user-led
development—rapidly, during wartime—was further enhanced and folded into development of FalconView
4.0. It’s highly unlikely such rapid progress could be managed through traditional contracts; a willingness
to experiment and refine incomplete solutions in a realistic operational environment was critical.
117 T. J. Becker, “Not for Pilots Only,” GT Research Horizons (Spring/Summer 2004).
118 Bailey, interview.
119 Becker, “Not for Pilots Only.”
120 Hastert, interview.

 47

copy via hackers who broke into computers at Redstone Arsenal to steal, among other

things, FalconView 3.2 (Thornburgh, 2005).121

Many of the second-order user innovations built on the FalconView foundation

traced a by-now familiar pattern. Some tech-savvy user with operational experience

encountered some pressing operational need and rapidly prototyped a solution with the

limited resources that his organizational and technological milieu afforded. Frequent

design iterations (“spirals”) incorporated feedback from operational, sometimes combat,

employment. Solutions were freely revealed to comrades, and user/developer enthusiasm

was high. Every step of this process they contended with expensive but dysfunctional

legacy systems and limitations on development and diffusion imposed by configuration

and security regulations. That is, user innovations built on FalconView bore a striking

resemblance to the user innovations that gave rise to FalconView itself. User innovation

with information technology could make real contributions to combat power, yet

bureaucratic routines continued to treat this as aberrant activity that could eventually be

incorporated into formal requirements-based acquisition.

JMPS Up and Down
Even though FalconView/PFPS became the primary aviation mission planning

system for the Air Force, Navy, and Special Operational Command from 1998 on,

although it catalyzed adaptive second-order user innovation well beyond aviation, and

despite the fact that AFMSS was humbled with the firing of its director in 1997 and the

Air Force endorsement of PFPS, the acquisition community’s immediate response was to

launch yet another formal program, the Joint Mission Planning System (JMPS).

FalconView advocates like Sandford and Webster correctly foresaw that the AFMSS and

TAMPS histories of mounting expense and inefficiency were about to be repeated, but

they were a tiny minority amid the many parties invested in the traditional acquisition

system. Thorn’s contrasting preference to reform the system from within via a fresh start

and a new contract found many more sympathetic allies.

121 Nathan Thornburgh, "The Invasion of the Chinese Cyberspies (And the Man Who Tried to Stop Them):
An Exclusive Look At How the Hackers Called TITAN RAIN Are Stealing U.S. Secrets," Time (5
September 2005).

 48

Ironically, the arguments that FalconView proponents employed early on to secure

needed bureaucratic support (or at least toleration) for its emergence would later be

turned against them. To get Air National Guard funding, Sandford had articulated a

vision of Microsoft-based mission planning software running on cheap commercial PCs.

Accordingly, throughout the 1990s the debate was framed in narrowly technical terms as

a contest between hobby-shop PC efforts and unwieldy Unix programs of record. This

resonated with Air Force and Navy aviators who were quite frustrated with their clunky

Unix boxes. As long as MSS, AFMSS and TAMPS programs were stuck laboring

through their commitments to the Unix installed base and with their great bureaucratic

weight, this debate played out well for PFPS/FalconView, the only viable PC mission

planner available. From the perspective of the AFMSS and NAVMPS program offices,

there seemed to be an obvious architectural lesson in this: a single PC-based program

might be better than struggling with service-specific Unix “stovepipes.” From this point

of view, acquisition processes seemed adequate; they had simply been acquiring the

wrong kind of product. Switching to a better PC-based product, so it seemed, would

make FalconView unnecessary.

Framing the problem like this, however, downplayed the fact that the secret to

FalconView’s success was less that it ran on a PC and much more that end-users were

intimately involved in its development. FalconView requirements were coordinated

informally. Engineers writing code were frequently—often daily—talking to aircrew in

operational units. Users were actually creating new complementary applications.

Success was built up in small increments of working functionality. Such a process would

likely have created decent Unix planning software because the problem it solved—

reducing the transaction costs involved in marrying up tacit user needs with software

development expertise—was not architecture dependent (Moreover, many early CS/2

user efforts were Unix programs). FalconView designers understood this well, but the

stark “PC vs. Unix” distinction was easier to argue in a bureaucratic context than

subtleties about transaction costs in software design. The acquisition program offices

discounted FalconView’s innovative process, however, and focused only on the product:

a common PC-based mission planning system.

 49

Even more, program management offices (PMOs) were actively critical of the

process. They had built up animosity with PFPS/FalconView and were determined to

replace it. “The services would use us as a whip against the PMO,” John Pyles recalls,

because FalconView oft provided new functionality on the cheap that the programs said

was impossible.122 The programs in turn argued that FalconView was maverick software

unsupported by adequate testing, review, and configuration management regimes; it was

not scalable, reliable, or interoperable (ignoring that FalconView’s wide demand-driven

diffusion suggested the contrary). In 1998, right on the heels of the PFPS victory over

AFMSS, the Electronic Systems Center (ESC) commissioned an independent Carnegie

Mellon study of PFPS. The study recommended that, although it was well-designed

software, PFPS should not be the system of record because it was too personality-

dependent and therefore unsustainable. The program offices appealed to the Carnegie

Mellon report and to austere Defense Department configuration management directives to

undermine the renegade PFPS.123

On top of this, NAVMPS did not want to depend on PFPS because it was, since its

1997 coup, officially an AFMSS program; essentially, the Navy did not want to replace

TAMPS with an Air Force program.124 Bureaucratic deadlock was dealt with in the usual

way, by creating a new over-arching Joint entity. The services were finally digesting the

implications of the 1986 Goldwater-Nichols Department of Defense Reorganization Act,

and the Joint Chiefs of Staff 1996 “Joint Vision 2010” called for complete operational,

technical, doctrinal, and cultural “Jointness.” What better way to demonstrate

compliance with the new spirit of the times than the creation of a new program?

With the inauguration of JMPS in late 1998, FalconView once again officially

became merely a temporary stopgap awaiting the development of the larger program of

record. FalconView’s purported unsustainability risked becoming a self-fulfilling

prophecy. Joe Webster and John Pyles had conducted an internal architecture review and

were well aware that FalconView needed a major revision. Although it ran fast and

122 Pyles, interview.
123 Thorn, interview (13 October 2005). Defense Information Infrastructure, Common Operating
Environment/Joint Technical Architecture (DII COE/JTA) standards are set by the Defense Information
System Agency (DISA) to enforce interoperability and information security among the services; attempting
to satisfy excruciatingly detailed DII COE can distract contractors from focusing on user functionality.
124 Thorn, interview (15 November 2005).

 50

reliably, there were legacies dating back to its DOS origins constraining expansion, and

new opportunities in the latest Microsoft NT networked operating system they wanted to

exploit. However, all new development money was going to JMPS, and PFPS was

officially on life support.125 Modest lumps of money would continue to flow to PFPS

from various parties for specific features, as discussed previously, but none of this

supported the kind of deep re-architecting Webster and Pyles sought. JMPS proponents

could furthermore point to the FalconView’s need for an overhaul as yet another

justification for starting anew with JMPS.

Initial hopes for JMPS were high, even among many aviators who had been active

proponents of PFPS against AFMSS and TAMPS.126 Colonel Thorn even returned to

active duty full-time to take charge of the JMPS project, hoping to use the fresh start to

reconstruct the advantages of FalconView with the resources of scale and bureaucratic

legitimacy a managed program could provide. The initial goal appeared achievable:

simply replicate the existing PFPS/FalconView capability on a scalable and extensible PC

Windows architecture within eighteen months, reusing existing software where practical.

Less remarked upon was the fact that JMPS—a Joint program destined for Air Force,

Navy, Marine Corps, Army, and Special Operations aviation—had a far more ambitious

scope than AFMSS, which likewise had been far more ambitious than MSS II. One

unlearned lesson was that coordination costs could be expected to scale steeply upward.

A single program for everyone also made requirement creep inevitable, even though it

was hoped that scoping initial production to PFPS functionality would control it. It

turned out that PFPS proponents’ optimism for JMPS would be short lived as

bureaucratic habits in the acquisition system proved stubbornly resistant to change.

The JMPS systems integration contract was awarded to Northrop Gumman in 1999.

Cursed with a generous $50 million budget to re-implement PFPS 3.1, hundreds of

125 Bartgis, “AFMSS MPS and PFPS News;” Webster, interview. Joe Webster, correspondence with author
(29 May 2006), estimates the needed work would have cost a few million dollars and a new major release
of PFPS. Thorn and other JMPS supporters were confident that JMPS would be able to provide the
necessary functionality on time, and so resisted even this hedge investment,
126 “This project holds great promise to break with the problems of the past” (Gillott, “Breaking the Mission
Planning Bottleneck,” 24); “Since JMPS is based on PFPS, there is no excuse for not meeting the user
needs….the user should be completely happy since the user will be on familiar ground” (Bartgis, “AFMSS
MPS and PFPS News,” 8).

 51

engineers and managers were brought in, interminable meetings were held, an avalanche

of slideshows, messages, flowcharts, and production plans was generated, and the project

started suffocating with red tape. By 2001, cost and schedule overruns began to threaten

the program’s existence, so Northrop Grumman started cutting corners to keep it

afloat.127 With multiple subcontractors involved and incessant development problems,

the bulk of effort was expended on coordination within the program and the contractors,

rather than between users and developers. Things that were easy in FalconView became

hard in JMPS. 128 Exasperated with the situation, the original three FalconView

developers left GTRI in 2000, and Thorn retired from JMPS in 2002. A certified,

operational first version of JMPS had still not been fielded as of early 2006, six years

after the program had originally planned to field a replacement for the 1999 version of

FalconView/PFPS.

Exacerbating JMPS inability to adequately meet initial requirements, users’

operational needs continued to evolve. In Iraq throughout the 1990s, the US conducted

No Fly Zone patrols and periodic strikes. In Kosovo in 1999, the US fought the largest

air war since Desert Storm. In these operations the bulk of mission planning was digital,

and there was a greater emphasis than ever before on time-critical precision strike, which

entailed a greater information processing burden. Inevitably, aircrew and staff officers

discovered new items for their wish lists. Major combat operations in Afghanistan

commencing in 2002 and Iraq in 2003 stressed mission planners in new ways yet,

especially given the importance of special operations and ground force coordination in

these operations. The FalconView user group expanded dramatically beyond the aviation

mission-planning jurisdiction of JMPS, as well as to foreign coalition partners who would

not have access to JMPS.

127 Thorn, interview (15 November 2005).
128 A good example of the difference between working with users, leveraging their situated knowledge, and
working from formal requirements can be seen in the way the two applications treat data sharing. In
FalconView this is accomplished through overlay files that are opened like Office documents, which is
intuitive for users and facilitates easy sharing over email and easy development of complementary
applications that manipulate overlay files. In JMPS this is accomplished through an SQL database server
and a complex sequence of mouse clicks, which is superior only from a narrow engineering perspective.
“You asked for transportability, we gave it to you. The requirement has been met,” explains John Bennett
(interview).

 52

This flux in the strategic environment was only mentioned indirectly in previous

pages, but was as important on the demand side for user innovation as FalconView’s

characteristics were on the supply side. FalconView’s decentralized mode of

development—freely available government software with an open architecture friendly to

third-party development—promoted adaptation to new problems. By contrast, JMPS

response to emerging requirements was unavoidably constrained by a formal

requirements vetting system, a complex and closely controlled architecture, and closed

contractor-licensed software. JMPS, a Joint service aviation mission planning system,

also lacked both the means and mandate to respond to non-aviation user requirements.129

While JMPS was still struggling to field its first version, four new operationally certified

versions of FalconView fielded as of this writing. Much of FalconView’s funding came

from other organizations like Special Operations Command (SOCOM) not tied to JMPS.

JMPS, like MSS II, AFMSS, and TAMPS before it, had much trouble adequately

responding to its original requirements, and even if it managed to, the requirements had

usually changed in the mean time.

The future of JMPS and FalconView is far from settled. The services appear locked

in to JMPS because advanced aircraft like the F-22A, F-35, and F/A-18E/F require it to

fly, and because of growing sunk costs and the opportunity costs of not developing

alternatives. While improvements have been made to PFPS/FalconView, largely funded

by mission planning communities in the Army and SOCOM who view JMPS as

extraordinarily high-risk, the PFPS architecture is not ready to provide all that is expected

of JMPS.130 One interesting development in 2003 was that the original JMPS mapping

engine developed by Boeing Autometric ran into so many problems that GTRI was given

a contract to adapt the FalconView mapping engine for inclusion in JMPS (Bailey,

2005d). This helps GTRI address FalconView’s architectural challenges somewhat and

means, ironically, that JMPS will include pieces of FalconView, and may even be

subsidizing its own competition. The organizational problems with JMPS development,

however, appear to be intractable. All the versions of FalconView have collectively cost

129 Paul Hastert, correspondence with author (31 October 2005), observes, “If it doesn't cut a cartridge then
they've got no interest, and in many cases thinly veiled hostility that people are using ‘their’ software for
something else.”
130 E.g., real-time weather and web-services (Bailey, interview).

 53

about $20 million since 1993, while JMPS will likely cost well over $1 billion in its first

decade. Colonel Thorn, in retrospect, estimated that it should have been possible to

deliver everything JMPS was supposed to do for $200 million using the FalconView

model.131

It’s an open question whether FalconView’s non-aviation supporters—or even Navy

and Air Force aviation commands alarmed with JMPS problems—will begin to seriously

invest in a new FalconView, whether FalconView will just persist in its traditional role as

perennial stopgap, or whether some new mission planning solution will emerge to

displace both JMPS and FalconView. Given the prominence of user innovation in

mission planning software history, this last possibility shouldn’t be dismissed lightly,

especially given that advances in cheap, powerful commercial geospatial software (as

exemplified in Google’s Earth) continue to lower technical barriers to user innovation.

At the same time, mission-planning software, like command, control, and intelligence

software generally, has become a multi-billion dollar defense industry, with all the

congressional, corporate, and bureaucratic politics that entails. This will tend to raise

organizational barriers to user innovation, since the field is far more crowded and

regulated than ever before.

Discussion: War upon the Map
The 19th-century strategist Henri de Jomini wrote, “Strategy is the art of making war

upon the map, and comprehends the whole theater of operations. Grand Tactics is the art

of posting troops upon the battlefield according to the accidents of the ground, or

bringing them into action, and the art of fighting upon the ground in contradistinction to

planning upon a map.”132 Strategy flows from the top down in this classic conception,

from the map to the territory. Theories of military innovation, likewise, depict civilian

leaders and senior officers leading innovative change. However, digital mapping in the

military developed in the opposite direction, bottom up from everyday operational

concerns, discovering along the way a strategically important capability: lead users

provided with powerful toolkits could extend functionality into new domains and

131 Thorn, interview (13 October 2005).
132 Baron Henri de Jomini, The Art of War, trans. by G.H. Mendell and W.P. Craighill, Project Gutenberg
Ebook (2004), 69.

 54

improve operational adaptability. This blurred the distinction between designer and user,

and for aircraft with moving maps, unmanned vehicles, and operations heavily dependent

on reach-back intelligence, blurred the distinction between “fighting upon the ground”

and “planning upon a map.”

The history of automated mission planning is largely a clash between lead users in

low-cost innovation niches and organizational resistance to change. It is more than a

single case, which supports some more confident generalization. While FalconView is

certainly the most significant application to emerge, other user-developed applications

preceded it, developed with it, and were later built upon it. Many user-developed

applications emerged as workarounds to problems with an alphabet soup of formal

programs (MSS I and II, AFMSS MPS, TAMPS, AMPS, MiniCAMPS, JMPS, GCCS,

TBMCS, etc.), or explored totally new areas of functionality that the large programs

ignored or said was too difficult. An entire range of user-developed maintenance,

scheduling, and other administrative applications has not even been discussed, nor have

applications completely outside the domain of aviation.133 As a class, such inventions are

genuine prototypes rather than just local expedients, and as such, they create the

possibility for interaction or interference with formal acquisition.

There are indeed idiosyncratic aspects to FalconView’s story: the maturing of PC

hardware and Windows software; the Unix bias in formal programs; the development of

critical technical complements like GPS, worldwide map and image data on CD-ROM,

and data-hungry weapons systems; aircrew responsibility for their own planning

techniques; the lower priority of the Air National Guard and Reserve with respect to the

active duty Air Force and AFMSS; the demands and capabilities of the single-seat F-16

133 Norman Friedman, Seapower and Space: From the Dawn of the Missile Age to Net-Centric Warfare
(Anapolis, MD: Naval Institute Press, 2000), 217-222, 354n, discusses the example of JOTS, a naval
tactical computer decision aid cobbled together for $25,000 by the enthusiastic staff of the USS Eisenhower
carrier battle group, commanded by Rear Admiral Jerry O. Tuttle, during a large exercise in 1981. JOTS
(originally the “Jerry O. Tuttle System,” later renamed the “Joint Operational Tactical System”) facilitated
air and subsurface interceptions, providing more or less the same capabilities as a costly and complex
system called Task Force Command Center (TFCC), which had been under development for the past
decade by the Naval Electronic Systems Command. Unlike TFCC, JOTS was designed by the staff that
would use it in combat, some of the actual software written by sailors, and it soon replaced TFCC
throughout the fleet. By the early 1990s, Tuttle commanded the Naval Space and Electronic Warfare
Command (SPAWAR, formerly the Naval Electronic Systems Command); JOTS’ transition from informal
experiment to program of record was complete (Friedman, 2000: 217-222, 354n).

 55

for both fighter and attack missions; key personalities involved in both formal and

informal management; the immaturity of military computer network regulations; the end

of the Cold War and the destabilizing of operational expectations.

Nonetheless, the persistent repetition of a basic pattern is striking. Formal programs

had an extraordinarily difficult time producing quality software, while at the same time

the barriers to entry came down for smart users to design software. Traditional

acquisition processes remained stubbornly in place, and user development activity, while

often effective, was generally viewed as unsustainable and illegitimate. This forced lead

users to work within and around the system to develop their applications and to build in

some modicum of organizational support for operation and maintenance. This general

pattern was traced not only by FalconView, but also by simpler applications that preceded

it and others later built to complement it.

In the case of FalconView, a passionate core of individuals remained actively

engaged for several years, laying in an organizational and technical foundation to support

diffusion to and adaptation by an expanding user group. The profusion of user-developed

functionality it catalyzed becomes most interesting when it’s seen not just as a collection

of specific information processing applications, but as an improvement of military

adaptability in general, a novel feature at the organizational level. That is, the important

FalconView macro-innovation was not a specific piece of PC mapping software, but the

establishment of a versatile toolkit and a user innovation community supporting the

decentralized emergence of novel information processing capability across the force.

FalconView was a user innovation that made user innovation easier, a bottom-up process

with macro-level consequences (that have not yet completely played out).

How well does lead user innovation theory explain this case? Given the challenge of

meeting user needs (demand) with technological solutions (supply), the theory predicts

that changes in supply and demand side factors that shift relative expectations of

innovation-related gain among users and acquisition programs will shift the functional

source of innovation. If shifted to users, low-cost innovation will be concentrated with

lead users who will freely-reveal their inventions and form self-reinforcing user

innovation communities.

 56

The two decades studied involved high supply side variation with the emergence of

low-cost personal computing in the 1980s, increasing power and flexibility (to include

sophisticated third-party development tools) throughout the 1990s, and growing computer

literacy in the military population. At the same time there was high growth in

information-processing demand with the introduction of advanced capability aircraft and

growing planning complexity in Joint operations and post-Cold War conflicts. As

expected in theory, falling barriers to production for users who stood to immediately

benefit from solutions to emerging information processing problems allowed them to

develop the first automated mission planning prototypes. These lead users freely

revealed their programs to others. Only later as the market for mission planning became

obvious did formal programs begin providing solutions, and then their advantages of

scale were able to provide novel functionality, such as early digital mapping and

precision-guided weapon support, and standardize training and support.

Furthermore, even after formal programs were established, user innovation continued.

Supply-side evolution of information technology continued lowering barriers to user

production, aided by the emergence of FalconView itself, while user demand continued to

evolve faster than the formal requirements cycle could keep up. Exacerbating rapidly

changing demand, the formal programs floundered on the difficulties of enterprise

software development, further raising transaction costs for users dealing with programs.

Thus lead users continued inventing their own solutions and sharing their software, aided

by the emergence of semi-institutionalized user communities gravitating around

FalconView.

High values on the independent variables lead to the expected result on the

dependent variable, the functional source of innovation, with the expected characteristics

of lead user innovation, so by and large user innovation theory passes this military test.

However, detailed process tracing of this case revealed some important conditions and

constraints on user innovation in the military. Most importantly, users had little choice

but to cooperate to some degree with existing contracting procedures to provide

innovations a stable incubation. While small-scale programs like FPLAN might be

totally user-produced, GTRI’s contract and engineering expertise was essential for

supporting a more robust invention like FalconView. These user-driven efforts,

 57

furthermore, were often managed in conjunction with formal programs by officers with

AFMSS and NAVMPS, as necessary supplements to the beleaguered programs. This

partial cooptation provided FalconView enough legitimacy to survive certification

regimes, and staying power to accumulate a growing user community.

This shows that the distinction between user innovation and formal acquisition can

be an over-simplification, because what is important is the organizational context that

allows one formal arrangement or another to thrive. FalconView could go toe-to-toe with

much larger Air Force programs because it was a contract sponsored and sheltered by the

bureaucratically separate Air National Guard, and later adopted by key personalities in

Air Force, Navy, and Special Operations acquisition channels. FalconView’s

legitimation, along with certification of Microsoft’s Office and other programs on

military networks, provided an umbrella for second-order user innovation as long as it

used these approved components. This also restricted some lead users from pursuing the

ideal solutions they might like, as network management regulations imposed sometimes-

insurmountable barriers to production, even if technical capabilities existed in the

marketplace. Finally, even the FalconView user innovation community, while self-

reinforcing as the theory expected, required some institutional architecting to support it.

Lead users could be quite creative in coming up with solutions for their needs, but they

had to remain attuned to organizational constraints and resources as much as technical

ones.

Lead user theory generally performs well in a military environment, but it is vital to

factor in regulatory constraints and political support and opposition when analyzing

expected innovation-related gains. Within an organization, moreover, although some

informal user collaboration is possible, a robust user innovation community requires the

consent and support of formal organizational authority. Given the organizational support

needed for protecting user innovation communities, it’s reasonable to expect that

increasingly ambitious levels of user innovation would indeed require promotion and

protection from senior officers as Stephen Rosen or civilians as Barry Posen would

expect. Further research should explore these dynamics more in depth.

 58

In the substantive area of military software development, it should be expected that

as military operations grow increasingly complex and computer-dependent, (1) software

acquisition efforts managed by traditional procurement processes will continue to fail to

provide quality software, and (2) the informal user-developed applications arising in the

lacunae will usually be rather immature or stunted in the absence of exceptional

platforms like FalconView that can catalyze their development. The prevalence of

information technology innovation by military personnel itself constitutes an important

organizational innovation, making modern information-intensive operations possible, but

it is also an incomplete one because it is by and large still organizationally illegitimate.

Solutions to this challenge will require re-conceiving enterprise software acquisition

to more actively incorporate lead user innovation rather than merely collecting formal

user requirements. It’s beyond the scope of this paper to offer any detailed theoretical or

policy analysis. 134 Nevertheless it’s likely that the intensive growth of information

processing activity and technology in the military will necessitate new conceptions of

military production, personnel, and organization. As Dallas Irvine pointed out with

respect to a previous generation of military information technology:

“The art of war therefore became, in a sense that it had not been before, an art to be

pursued upon the map, and with an immensely greater number of permutations and

combinations possible than ever before. Obviously, the conduct of war upon this level

required a far different order of intelligence, knowledge, preparation, and skill than the

command of a visible mass of men upon a visible terrain.”135

134 Gompert, et al., Extending the User's Reach, is one recent attempt to analyze the pathologies of
Department of Defense information technology acquisition and the promise of user innovation, but the
authors’ major recommendation is, inexplicably, to further centralize requirements with U.S. Joint Forces
Command. Hope springs eternal that ever more “Jointness” might treat the acquisition blues, but this is
surely a cure worse than the disease, being antithetical to the decentralized nature of user innovation.
135 Dallas D. Irvine, "The Origin of Capital Staffs," The Journal of Modern History vol. 10, no. 2 (1938):
161-179.

