
Path-Planning Strategies for Ambush Avoidance

by

Farmey A. Joseph

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

c© Farmey A. Joseph, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author .
Department of Aeronautics and Astronautics

July 22, 2005

Certified by. .

Eric Feron
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor

Accepted by .

Jaime Peraire
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Studies

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4398608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Path-Planning Strategies for Ambush Avoidance

by

Farmey A. Joseph

Submitted to the Department of Aeronautics and Astronautics
on July 22, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis examines a variety of ambush games in which one player must navigate
between an origin and a destination, and the other player seeks to intercept and
ambush him. These games include single-stage games, in which all decisions are made
at the outset of the game, and multi-stage games, in which the second player may
choose his ambush locations based on real-time updates of the first player’s position.
For both types of ambush games, methods are presented for efficiently computing
the optimal mixed strategies for the first player to navigate between the origin and
destination, so as to minimize the probability of being ambushed. The results are
applicable to a wide range of real-life situations, including the routing of VIPs and
convoys through hostile areas.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I must begin by thanking my advisor, Eric Feron, for all he has given me over the

last two years. I made the decision to begin graduate school at MIT largely for the

opportunity of working with him, and now that I’ve come to the end, I am happy to

say that I am not disappointed with my decision. Eric most generously allowed me

the freedom to pursue my academic interests, and this thesis is a direct result of that.

Certainly, the biggest fringe benefit of studying under Eric has been the friendship

and mentorship provided by his other students. Jan De Mot and Tom Schouvenaars

were the ideal PhD candidates in my eyes, and if I ever choose to become a PhD

student myself, it will be largely due to their inspiration. Vlad and Rodin patiently

imparted to me some of their huge store of practical engineering knowledge. Masha

and Phil gave me some key advice for my research. The rest of my lab mates, including

Emily, Glenn, Greg, Han-Lim, Ji Hyun, Mardavij, Mario, Navid, Olivier, Selcuk, and

others all contributed to my time here, and I am very happy to have known them.

I must express my gratitude to the faculty at MIT. I was very fortunate to work

with John Deyst and Karen Willcox as a teaching assistant, and I will always remem-

ber that experience as one of my most enjoyable at MIT. Asuman Ozdaglar gave me

some key insights into game theory and taught me everything I needed to know about

linear optimization.

I also must thank my parents, who are ultimately responsible for my achievements.

It was a difficult decision for them to send me to the other side of the world to pursue

my education, and I hope they are satisfied with the results! I am grateful also to all

my family and friends, both in the US and in Australia, and particularly to Lily, who

suffered through undergrad with me and remains the finest friend anyone can ask for.

Finally, although IHTFP as much as anyone else, it would be remiss of me not to

thank MIT and its donors for giving me the opportunity to come to the United States

and receive a world-class engineering education. I will return to Australia with very

fond memories of my time here.

5

6

Contents

1 Introduction 15

2 Previous Work 19

3 The Single-Stage Ambush Game 23

3.1 Problem Formulation and Solution 24

3.1.1 1-Ambush Case . 26

3.1.2 k-Ambush Case . 29

3.1.3 Example . 30

3.1.4 Presence of Circulations in Player 1’s Optimal Strategy 34

3.1.5 Dependency of the Expected Game Outcome on k 36

3.1.6 Variation for Multiple Agents 36

3.1.7 Complexity . 37

3.2 Implementation . 38

3.2.1 Modeling . 38

3.2.2 Formulating the Constraints 39

3.2.3 Solving the LP . 40

3.2.4 Generating a Random Path 41

3.3 Cambridge Scenario Application . 42

3.3.1 Environment Model . 42

3.3.2 Single-Agent Scenarios . 43

3.3.3 Multiple-Agent Scenario . 46

7

4 Multi-Stage Ambush Games 49

4.1 Game 1 . 51

4.1.1 Problem Formulation and Solution 51

4.1.2 Complexity . 53

4.1.3 The 2-Node Case . 54

4.2 Game 2 . 57

4.3 Game 3 . 59

4.3.1 Problem Formulation and Solution 59

4.3.2 Complexity . 63

4.4 Example Applications . 64

4.4.1 3x3 Grid . 64

4.4.2 Cambridge Scenario . 67

5 Conclusion 69

5.1 Summary . 69

5.2 Future Work . 70

8

List of Figures

3-1 Example graph . 30

3-2 Example graph solution for 1-ambush case 33

3-3 Map of Cambridge with overlaid graph 43

3-4 Player 1 optimal strategy for 1-, 2-, and 3-ambush scenarios. 45

3-5 Optimal strategies for 3 agents. 47

3-6 Combined optimal strategies for 3 agents, separate vehicles 48

4-1 Example graph . 66

4-2 Optimal strategies for multi-stage ambush games on 3x3 grid 67

4-3 Optimal strategy for Cambridge scenario, Game 3. 68

9

10

List of Tables

3.1 Results for 1-, 2-, and 3-ambush scenarios 44

4.1 Summary of multistage games . 65

4.2 Results for multistage games on 3x3 grid 66

11

12

List of Algorithms

3.1 Populating the Dk matrix . 40

3.2 Populating the A matrix . 40

3.3 Generating a Random Path . 41

4.1 Computing the optimal strategy for Game 1 53

4.2 Computing the optimal strategy for Game 2 59

4.3 Computing the optimal strategy for Game 3 63

13

14

Chapter 1

Introduction

It is an unfortunate fact of today’s world that there are many situations in which

a person must travel from one point to another while running the risk of ambush

by hostile forces. That person is especially vulnerable if he must make the journey

between the same two locations on a regular schedule. An obvious example is a VIP

who must travel from his residence to his place of work at roughly the same time

every morning, and then return that evening. To ensure his own survival, the VIP

must have a sufficiently strong armed escort to deter or defeat any ambush attempt,

or he must evade the enemy by choosing a route that does not pass through the place

of ambush.

Similar examples that occur in modern conflict zones (e.g. Iraq) include: Military

Police who must drive from their base to a designated location each day to provide

security, a humanitarian convoy that must deliver aid every day from a supply base

to a designated aid dispersal site, ambassadors who work at the embassy but live

elsewhere, etc.

An important feature of these scenarios is that the relatively small-scale of the

scenario allows little or no opportunity for deception. Most VIPs, MP units, convoys,

etc. do not command the resources for decoy vehicles, nor is it always practical or

useful to use their own vehicles to “feint” along one route but ultimately choose a

different route. The hostile forces, for their part, cannot place fake ambushes, and

even if they did, it is unlikely that their opponents would have the means to detect

15

them.

Therefore, the agent making the journey is faced with a problem of pure random-

ization. Specifically, how to randomize his routing to make it as difficult as possible

for his opponent to ambush him? This problem of determining the optimal random-

ization is far from trivial, particularly when there are literally thousands of possible

routes between the origin and the destination.

To the author’s knowledge, it appears that most security staff responsible for VIP

security rely on their intuition and experience to select a different route each day.1

While that is superior to not randomizing at all, and on some occasions may be

more than adequate, it would be desirable to have some tool available to rigorously

determine the optimal randomized routing strategy for the given scenario. Of course,

nothing could ever completely guarantee the safety of the VIP, because no matter

how well he randomizes his routing the probability of his being ambushed will always

be greater than zero. However, it is still worthwhile to minimize this probability, and

give the VIP the best possible chance of survival.

The major contribution of this thesis is to develop such a tool for a variety of

different ambush games. Chapter 2 includes a review of previous work in the field of

determining optimal strategies for ambush games. Chapter 3 examines single-stage

ambush games in which the decision on which route to take and the decision on

ambush placement are made at the outset of the game. Chapter 4 examines multi-

stage ambush games in which the enemy can observe the agent’s position and act on

that information as he travels from origin to destination. For both types of ambush

games, methods are presented to efficiently compute the optimal routing strategy.

Finally, Chapter 5 concludes this thesis with a summary of results and suggestions

for future work.

Although the examples in this thesis are concerned with ground transportation,

both air and sea transport may also be vulnerable to ambush. The threat of surface-

to-air missiles (SAMs) against commercial aviation is a real one, as shown by the

attack on an airliner in Kenya in 2002. Since aircraft are most vulnerable to SAMs

1As an example, see http://www.securitydriver.com/aic/index.html

16

when flying close to the ground, it may be advantageous to randomize the arrival

and departure routing at certain airports. Meanwhile, piracy continues to present

a serious problem for the shipping industry in several parts of the world, such as

the Malacca Strait. Randomized routing of cargo ships could reduce the probability

of being intercepted and boarded by armed pirates. The methods presented in this

thesis can be adapted to these scenarios, and indeed any scenario involving the risk

of ambush where the sample area can be discretized.

17

18

Chapter 2

Previous Work

Game theory has been applied to problems of ambush for many years [13]. A typical

ambush game, such as the VIP transport problem referred to in Chapter 1, can be

thought of as a non-cooperative, zero-sum, two-player game. Player 1 (the VIP) must

choose a route from origin to destination. Player 2 (the hostile forces) must choose

some number of locations at which to prepare ambushes. If Player 1’s path passes

through an ambush site, then Player 2 wins. If Player 1’s path avoids all ambush

sites, then Player 1 wins.

One option for Player 1 is to attempt to deceive Player 2 by manipulating the

information available to him. For example, Player 1 could launch a decoy vehicle, or

alternatively use his own vehicle to “feint” and then backtrack. In [7], the authors

demonstrate that deception can be used in such games to increase the expected pay-

off for one of the players, although, somewhat counter-intuitively, the effectiveness

of deception decreases when one player has too much control over the information

available to the other.

An example of the use of deception in a specific military scenario is given in [9]

and [10]. A convoy must journey from one point to another, and small UAVs are used

to overfly the convoy route together with several deception routes in such a way as

to obtain reconnaissance information while simultaneously deceiving the enemy as to

the intended convoy route.

Although deception can be a valuable tool for a person who seeks to avoid ambush,

19

it is not always a feasible option, as discussed in Chapter 1. Instead, the assumption

throughout this thesis is that neither player can manipulate the information available

to the other.

It is unlikely that Player 1’s optimal course of action is to choose the same route

every time the game is played, nor is it likely that Player 2’s optimal course of

action is to choose the same ambush locations every time. For this type of game,

the optimal strategy for each player tends to be a mixed strategy rather than a pure

strategy. Therefore, Player 1’s optimal strategy will consist of a set of probabilities

for choosing among all possible routes from origin to destination. Player 2’s optimal

strategy will consist of a set of probabilities for choosing among all possible ambush

sites.

The most straightforward way to solve for the optimal mixed strategies is to

construct the corresponding game matrix A. The rows of A correspond to all possible

strategies for Player 1, which are the accessible routes from origin to destination. The

columns of A correspond to all possible strategies for Player 2, which are feasible

ambush locations. Aij is then equal to the game outcome if Player 1 pursues strategy

i and Player 2 pursues strategy j. If Player 1’s mixed strategy is p and Player 2’s

mixed strategy is q, then the expected game outcome is p′Aq. Once the game matrix

is available, the optimal strategies p∗ and q∗ can be solved for using a linear program,

as described in [1] or [8]:

maximize 1′p̃ (2.1)

subject to A′p̃ ≤ 1

p̃ ≥ 0

=⇒ p∗ =
p̃∗

1′p̃∗

20

maximize 1′q̃ (2.2)

subject to A′q̃ ≤ 1

q̃ ≥ 0

=⇒ q∗ =
q̃∗

1′q̃∗

where p̃∗ and q̃∗ are the solutions to the two LPs, and p∗ and q∗ are the optimal

strategies for the two players.

Although this approach is conceptually simple, there are two severe limitations

that prevent it from being applied to many real-world ambush problems. The first

is that it requires a list to be made of all possible routes from origin to destination,

which can be a massive problem in itself for a large road network. The second is that

the size of the matrix A and the number of decision variables grow exponentially

with the size and complexity of the scenario map. For a real-life ambush scenario

that takes place in a city with a dense road network, there may be many thousands

of possible routes from origin to destination, and a large number of possible ambush

locations as well. The resulting LP requires massive storage and computational effort

to solve.

As an example, this approach was applied to a scenario involving a map of Cam-

bridge in order to demonstrate its inefficiency. With 50 street intersections, approxi-

mately 450 different routes existed between the origin and destination of the scenario.

When Player 2 could choose 3 ambush sites, the resulting game matrix had a size of

450x19600. The associated LP overwhelmed the memory resources of a desktop PC

and could not be solved.

A number of researchers have avoided these limitations by finding exact solutions

for various ambush games. In [13], the authors consider an ambush game that takes

place on a rectangular lattice, in which one player must choose a path from one side

of the rectangle to the other, and his opponent places barriers of finite length along

21

certain columns inside this rectangle. Optimal strategies for each player are found for

a number of different cases that specify the freedom of movement of the first player

and the number of barriers available to the second player. A continuous version of

this game is discussed in [11] and [14], and further cases of this game are solved in [2].

Problem formulations and solutions for these and other similar games can be found

in [12].

[4] and [16] solve discretized versions of one of these games in which the second

player sets two barriers, and these results are extended for the n-barrier case in [15].

Although these results are significant and cover a wide range of ambush games,

it is difficult to apply them to an arbitrary graph that represents the layout of a

non-uniform city road network.

22

Chapter 3

The Single-Stage Ambush Game

In this section, we find a computationally efficient solution to a single-stage ambush

game that may model the VIP transport problem. This game can be thought of

as a zero-sum game between two players. Player 1 (the VIP) must choose a route

from origin to destination. Player 2 (the hostile forces) must choose one or more

locations, depending on his resources, at which to prepare an ambush. If Player 1’s

path passes through an ambush site, then Player 2 wins, and the outcome of the

game is dependent on the vulnerability of that location to an ambush. If Player 1’s

path avoids all ambush sites, then Player 1 wins, and the outcome of the game is

zero. This game is classified as a single-stage game because both players make their

decisions in one stage at the outset of the game.

The objective is to determine the optimal routing strategy for Player 1 so as to

minimize the expected outcome of the game. Intuitively, it is highly unlikely that

his optimal strategy will be a pure strategy (i.e. choosing a single course of action

with probability 1) because that would imply choosing the same route from origin to

destination on every occasion, which would allow Player 2 to achieve a 100% success

rate of ambushing Player 1. Instead, Player 1’s optimal strategy is likely to be a mixed

strategy, which assigns a probability to each possible route. Every time the game is

played, Player 1 would then choose a route at random based on the probabilities given

by this mixed strategy.

The terms “optimal strategy” and “expected outcome” need some clarification

23

here, because obviously they are also dependent on Player 2’s chosen strategy. Indeed,

Player 1’s optimal strategy is a function of Player 2’s chosen strategy, and vice versa,

and the expected outcome of the game varies accordingly.

In a game between two intelligent players, the rational course of action for one

player is therefore to choose the strategy that will minimize his losses across all of the

other player’s strategies. In this case, in forming his optimal routing strategy, Player

1 should assume that Player 2 will place his ambushes in the worst possible location

from Player 1’s point of view. This solution is referred to as a minimax solution

because Player 1 is minimizing the maximum outcome of the game, by choosing the

strategy whose worst outcome is the minimum worst outcome across all strategies.

From Player 2’s point of view, his own optimal strategy is the maximin solution.

That is, for placing his ambushes, he should choose the strategy whose worst outcome

is the maximum worst outcome across all strategies.

By the Minimax Theorem (e.g. see [1]), the expected outcomes of the minimax

and maximin solutions are equal. If Player 1 pursues his minimax strategy and Player

2 his maximin strategy, the result is a saddle-point equilibrium because each strategy

is optimal against the other, and neither player can unilaterally change his strategy

without making himself worse off.

The minimax strategy is therefore the “optimal strategy” that we seek to find in

the following ambush games. The “expected outcome” of the game refers to the min-

imax value or (equivalently) the expected outcome at the saddle-point equilibrium.

3.1 Problem Formulation and Solution

The game takes place on a graph with undirected edges. One node is designated as the

origin, and another node as the destination. The k-ambush game is played as follows:

Player 1 chooses a path from the origin to the destination. Player 2 simultaneously

chooses k nodes at which to prepare ambushes. The outcome of an ambush at node

i is equal to αi if Player 1’s path passes through node i, or 0 otherwise. (αi models

the fact that some nodes, by virtue of their geography or proximity to safe zones, are

24

more vulnerable to ambush than others. αi will typically be zero at the origin and

destination, since those two locations are likely to be heavily defended.)

Let aj , j = 1...k be the ambush nodes chosen by Player 2, and let xi equal 1 if

Player 1’s path includes node i and 0 otherwise. Then the outcome of the game is

given by:

V =
k

∑

j=1

αaj
xaj

(3.1)

Given a directed graph G = (N , E), origin and destination nodes no and nd, and

ambush outcome values αi for each node, the problem is to find Player 1’s optimal

mixed strategy for choosing among all paths between origin and destination, such

that the expected outcome of the game is minimized.

Key assumptions in this game include:

• Both players have complete information about the environment, including the

origin and destination nodes.

• Both Player 1 and Player 2 must choose their actions before the game begins.

After the game has begun, there is no opportunity for Player 1 to alter his path

or Player 2 to move his ambush sites.

• If Player 1 is ambushed more than once along his route, then the overall game

outcome is equal to the sum of the outcomes of all ambushes.

• All ambushes take place at nodes (i.e. street intersections) rather than along

edges.

• Player 2 is intelligent and will use the optimal strategy to place his ambushes.

Therefore, Player 1’s optimal strategy is the minimax strategy.

The assumption that Player 2 will place his ambushes at street intersections is

not strictly necessary, but it does simplify some of the calculations. The approach

described in this chapter minimizes the maximum weighted probability of Player

25

2 arriving at any k feasible ambush sites. Regardless of whether those sites are

nodes or edges, the objective is still to minimize the maximum of some set of linear

combinations of flow variables, and therefore this assumption could be dropped if

required.

As mentioned earlier, this game can be solved by setting up a matrix with rows

corresponding to all possible paths from origin to destination, and columns corre-

sponding to all possible ambush strategies. However, a significantly more efficient

formulation is to represent the game as a network flow optimization problem, with

the flow along an edge equal to the probability of Player 1 traversing that edge.

3.1.1 1-Ambush Case

Let pij be the probability of Player 1 traversing the edge from node i to node j during

his journey from origin to destination. Let qi be the probability of Player 2 choosing

node i at which to prepare his ambush. Then the expected outcome of the game is

given by:

V =

|N |
∑

j=1

∑

i|(i,j)∈E

pij

 αjqj (3.2)

i.e. take the probability of Player 1 arriving at node j, multiply by the probability

of Player 2 preparing an ambush at that node, multiply again by the outcome of a

successful ambush at that node, then sum across all nodes in the graph.

If both players pursue their optimal strategies, then the expected outcome is:

V ∗ = min
P

max
Q

V = max
Q

min
P

V (3.3)

where P and Q are the sets of valid strategies for Players 1 and 2 respectively. The

above equation is true by the minimax theorem, which holds for a finite, zero-sum,

two-person game.

Let p denote the vector of probabilities pij for every edge (i, j) ∈ E . To determine

the optimal strategy for Player 1 (i.e. p∗), we can use the fact that V ∗ is the minimax

26

of V , and that qi ≤ 1 ∀ i. Player 2 can always maximize V by choosing the node for

which the probability of Player 1 passing through that node weighted (i.e. multiplied)

by the α value of that node is maximum. Therefore, Player 1’s optimal solution is to

minimize that product across all nodes:

p∗ = arg min
P

max
j

∑

i|(i,j)∈E

pij

αj

(3.4)

The above equation simply means that Player 1’s optimal strategy is to minimize

the maximum probability (weighted by αj) of passing through any node j.

Because p is a flow vector, it must also satisfy network flow constraints (i.e. flow

into a node equals flow out of the node):

∑

i|(i,j)∈E

pij =
∑

k|(j,k)∈E

pjk ∀ j \ {no, nd} (3.5)

∑

k|(no,k)∈E

pnok = 1 (3.6)

∑

i|(i,nd)∈E

pind
= 1 (3.7)

And since each pij represents a probability:

pij ≥ 0 ∀ (i, j) ∈ E (3.8)

Note that the upper bound of 1 for each pij is automatically enforced by this constraint

and the fact that the net flow in to the graph is equal to 1.

This minimax problem can be formulated as a linear program by introducing a

new variable z, which is a function of p. The LP should force z to equal the maximum

flow (weighted by αi) into any node:

z(p)← max
j

∑

i|(i,j)∈E

pij

 αj (3.9)

We wish to find the p that will minimize z. The linear program is then:

27

minimize z (3.10)

subject to z ≥
∑

i|(i,j)∈E

pijαj ∀ j ∈ N

∑

i|(i,j)∈E

pij =
∑

k|(j,k)∈E

pjk ∀ j \ {no, nd}

∑

k|(no,k)∈E

pnok = 1

∑

i|(i,nd)∈E

pind
= 1

pij ≥ 0 ∀ (i, j) ∈ E

The LP can be written more concisely as:

minimize z (3.11)

subject to Dp− 1z ≤ 0

Ap = b

p ≥ 0

where the first set of constraints forces z to equal the maximum weighted flow into

any node, the second set of constraints is the network flow conservation equations,

and the third set of constraints prevents negative flows.

Solving this linear program will generate for each edge p∗ij, which represents the

probability of Player 1 traversing edge (i, j) on any given route if he follows his

optimal strategy. p∗ij is proportional but not equal to the transitional probability,

which is the probability of moving from node i to node j given that he is already at

node i. To generate a random path under strategy p∗, at each node i Player 1 must

normalize the outgoing probabilities to 1 before choosing the next node j based on

these probabilities. (See Algorithm 3.3 for details.)

28

3.1.2 k-Ambush Case

In the case where Player 2 has the resources to prepare ambushes in k different

locations, the problem is now to minimize the flow (weighted by αi) into any set of k

nodes, as opposed to minimizing the flow into any one node. Instead of having one

inequality constraint for every node, there is now one inequality constraint for every

set of k nodes, for a total of Ck
|N | constraints. The flow constraints remain the same

as in the 1-ambush case.

Let N1
k , N2

k , . . . be all subsets of k distinct nodes within N :

N l
k = {(nl

1, n
l
2, . . . , n

l
k) | n

l
i ∈ N ∀ i , nl

i 6= nl
j ∀ i, j} (3.12)

Using the same variable z as before, the constraints on z for the k-ambush case

are then:

z ≥
∑

j∈N l
k

αj

∑

i|(i,j)∈E

pij

 ∀ N l
k ⊂ N (3.13)

The constraints in (3.13) are still of the same form as those in (3.9) (i.e. Dp−1z ≤

0). The flow constraints are unchanged. Therefore, the LP for the k-ambush case is

equivalent to the LP for the 1-ambush case, except the matrix D is replaced with a

larger matrix Dk:

minimize z (3.14)

subject to Dkp− 1z ≤ 0

Ap = b

p ≥ 0

In general, for the k-ambush case, the number of decision variables is equal to

the number of directed edges plus one, and the number of constraints is equal to

Ck
|N | + |N |.

29

3.1.3 Example

A simple example graph is shown in Figure 3-1. Node 1 is the origin and node 8

is the destination. In the equations below, these nodes are not included as possible

ambush sites, because in a real-life situation they are likely to be heavily defended

“safe zones”.

1 1
1

2

3

4

5

6

7

8

Figure 3-1: Example graph

30

For the 1-ambush case, the corresponding LP is:

min z

subject to z ≥ α2p12

z ≥ α3p13

z ≥ α4p14

z ≥ α5(p25 + p35)

z ≥ α6(p26 + p36 + p46)

z ≥ α7(p37 + p47)

1− p12 − p13 − p14 = 0

p12 − p25 − p26 = 0

p13 − p35 − p36 − p37 = 0

p14 − p46 − p47 = 0

p25 + p35 − p58 = 0

p26 + p36 + p46 − p68 = 0

p37 + p47 − p78 = 0

p58 + p68 + p78 − 1 = 0

pij ≥ 0

In the form of equation (3.14), the corresponding matrices and vectors are:

p = [p12 p13 p14 p25 p26 p35 p36 p37 p46 p47 p58 p68 p78]T

31

D1 =

α2 0 0 0 0 0 0 0 0 0 0 0 0

0 α3 0 0 0 0 0 0 0 0 0 0 0

0 0 α4 0 0 0 0 0 0 0 0 0 0

0 0 0 α5 0 α5 0 0 0 0 0 0 0

0 0 0 0 α6 0 α6 0 α6 0 0 0 0

0 0 0 0 0 0 0 α7 0 α7 0 0 0

A =

−1 −1 −1 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 −1 −1 −1 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 −1 0 0 0

0 0 0 1 0 1 0 0 0 0 −1 0 0

0 0 0 0 1 0 1 0 1 0 0 −1 0

0 0 0 0 0 0 0 1 0 1 0 0 −1

0 0 0 0 0 0 0 0 0 0 1 1 1

b = [−1 0 0 0 0 0 0 1]T

The optimal solution to this LP gives Player 1’s optimal strategy p∗ for navigating

from node 1 to node 8, and the expected game value z∗ if Player 2 pursues his optimal

strategy. Figure 3-2 shows an optimal solution in the case where αi = 1 for all nodes.

All edges in the figure have probability 1/3, and the remaining edges, such as edge

(2,6), have been assigned zero probability. The expected game value is 1/3 because

under this strategy Player 1 has exactly a 1/3 probability of arriving at any of nodes

2 through 8.

Note that the solution in Figure 3-2 is not unique. For example, if p37 and p46 are

set to zero, and p36 and p47 to 1/3, the expected game value will still equal 1/3.

In the 2-ambush case, the A matrix and b vector remain the same, since the

network flow constraints do not change, but the objective is to minimize the maximum

32

4

1 3

2 5

6

7

8

Figure 3-2: Example graph solution for 1-ambush case

α-weighted flow into any set of 2 nodes. The set of constraints involving z is now:

z ≥ α2p12 + α3p13

z ≥ α2p12 + α4p14

z ≥ α2p12 + α5(p25 + p35)

z ≥ α2p12 + α6(p26 + p36 + p46)

etc.

There are 15 possible ways for Player 2 to choose 2 ambush nodes out of the six

possible ambush nodes (omitting the origin and destination), so there are a total of

15 such constraints in the 2-ambush problem. D2 is then a 15x13 matrix.

33

3.1.4 Presence of Circulations in Player 1’s Optimal Strategy

A cycle in a graph is a path containing nodes i1, . . . , it for which any 2 consecutive

nodes is connected by an edge, and it = i1. A circulation is a flow that is nonzero

for all edges of a cycle and zero for other edges (i.e. a flow that “circulates” within

the graph). The cycle and its circulation are directed if all the edges in the cycle are

forward edges.

In a regular network flow linear optimization problem, a basic solution can not

contain any circulations (e.g. see Chapter 7 in [3]). However, that is not the case for

the LP in (3.14), which contains an extra non-flow variable z. The optimal strategy

for Player 1 will almost always contain at least one undirected circulation (otherwise

the strategy would be a pure strategy with only one path from origin to destination),

but it is also possible for directed circulations to appear in the solution.

Directed circulations can be consistent with an optimal strategy because the ob-

jective is to minimize the maximum weighted flow into any set of k nodes. A directed

circulation will add flow to the set of nodes that compose the cycle, but as long as

the total weighted flow into any one of these nodes does not exceed z∗, then the

circulation does not affect the optimal value.

Although the expected outcome of the game (z∗) is not affected by the presence

of a directed circulation, it is still undesirable from Player 1’s point of view for two

reasons. The first is a practical reason: when navigating from origin to destination by

adhering to the edge probabilities, the agent has the potential to loop around a cycle

one or more times, which is a complete waste of time. Secondly, the LP in (3.14)

assumes the worst case for Player 1: that Player 2 will follow his optimal strategy

and place ambushes at nodes where the incoming weighted flow equals z∗. However,

if Player 2 follows a suboptimal strategy and places ambushes at nodes along the

cycle, then the outcome will be unnecessarily bad for Player 1. Effectively, Player 1

gains nothing but has the potential to lower his payoff if his strategy contains directed

circulations.

Fortunately, the offending circulation can simply be excised from the optimal

34

solution, as shown in the following theorem:

Theorem 3.1. Suppose p∗ is an optimal strategy for Player 1 in the VIP transport

game, as defined in (3.14), and p∗ contains a directed circulation pc. Then (p∗−pc)

is also an optimal strategy for Player 1.

Proof. Assume that the expected game outcome associated with strategy p∗ is z∗. It

is sufficient to show that (p∗ − pc, z∗) is a feasible solution to (3.14):

1. Positive flow : p∗ is a positive flow, and pc is a positive flow contained within

p∗, therefore p∗ > pc > 0 and (p∗ − pc) > 0.

2. Flow conservation: Since pc is a circulation, the flow into any node equals the

flow out of that node, and so it satisfies Apc = 0. We also have Ap∗ = 0 since

p∗ is a feasible flow. Therefore A(p∗ − pc) = 0.

3. Optimality : The coefficients of Dk are either zero or equal to the αi parameters,

which are positive. Since pc is a directed circulation, pc > 0 and therefore

Dkp
c > 0. Finally, since (p∗, z∗) is feasible, we have Dkp

∗ − 1z∗ ≤ 0 and

therefore Dk(p
∗ − pc)− 1z∗ ≤ 0.

Since (p∗−pc, z∗) is a feasible solution to (3.14), and z∗ is known to be the optimal

value of the objective function in (3.14), therefore (p∗−pc) is also an optimal strategy.

Although it is trivial to remove the circulation, it may not be as simple to find the

circulation in the first place. Instead of developing an algorithm to locate and remove

circulations from a flow vector, it is more advisable to slightly modify the LP so that

directed circulations will not appear in the solution. The objective function can be

modified by adding a small cost coefficient δ for every flow variable pij, as shown in

(3.15).

35

min δ
∑

(i,j)∈E

pij + z (3.15)

subject to Dkp− 1z ≤ 0

Ap = b

p ≥ 0

For sufficiently small δ > 0, the modified LP will yield the same solution but

without directed circulations. If δ is chosen too large such that the LP yields a

suboptimal solution (p, z), then we can be sure that z − z∗ < δ · |E|.

3.1.5 Dependency of the Expected Game Outcome on k

Given (p∗
k1

, z∗k1
) as an optimal solution to the k1-ambush game, is there anything that

can be said about the optimal solution to the k2-ambush game, for k2 > k1? This

question may be relevant because the computation time required to determine the

solution increases exponentially with k.

Player 2’s best strategy for the k2-ambush game is obviously to place ambushes at

the k2 nodes with the greatest α-weighted inflow. Suppose Player 1 pursues strategy

p∗
k1

for the k2-ambush game. Then the worst case for Player 1 will occur if, under

this strategy, there are at least k2 nodes which each has an inflow of z∗k1
/k1. An upper

bound on z∗k2
is therefore:

z∗k2
≤

k2

k1
z∗k1

(3.16)

3.1.6 Variation for Multiple Agents

This network flow approach can be extended to compute the optimal strategies for

several VIPs who must simultaneously journey in separate vehicles through the same

city. These VIPs may or may not have different origins and destinations. The ob-

jective is to minimize the max α-weighted flow (summed across all agents) into any

36

set of k nodes. We still assume that the outcome of the game is equal to the sum of

outcomes of each ambush.

With each VIP in a separate vehicle, the network flow problem becomes a multi-

commodity flow problem. Each of the n VIP agents has its own strategy: p1, . . . ,pn.

The new LP is:

minimize z (3.17)

subject to Dkp
1 + Dkp

2 + · · ·+ Dkp
n − 1z ≤ 0

Ap1 = b1

Ap2 = b2

...

Apn = bn

p ≥ 0

This problem has a structure that is particularly suited to Dantzig-Wolfe decom-

position methods. The problem can be reformulated as a master problem and n

subproblems. The primary advantage of this method is that it significantly reduces

the storage requirements compared to applying the regular simplex method to the

original problem. For a more detailed discussion of Dantzig-Wolfe decomposition, see

Chapter 6 in [3].

3.1.7 Complexity

For a linear program in standard form (min x s.t. Ax = b, x ≥ 0), the worst-

case number of computations required to perform a single iteration of the simplex

algorithm is O(mn), where m is the number of equality constraints and n is the

number of decision variables [3].

The linear program in (3.11) that solves the 1-ambush problem has decision vari-

ables p and z for a total of |E| + 1 decision variables. There are |N | inequality

37

constraints (from Dp − 1z ≤ 0) and |N | equality constraints (from Ap = b). To

convert the LP to standard form, a slack variable must be added for each of the

inequality constraints, and therefore the standard form LP will have |E| + |N | + 1

decision variables and 2|N | equality constraints. The worst-case computational re-

quirement for a single iteration of the simplex method is then O(|E||N |+ |N |2), or

simply O(|E||N |) since |E| > |N | for a typical graph.

In comparison, if the naive implementation in (2.1) is used, the number of decision

variables is equal to |R|+ |N |, where R is the set of all possible paths from the origin

to the destination. With N equality constraints in standard form, the worst-case

computational requirement is O(|R||N |). Since |R| >> |E| for a typical graph, the

network flow approach will in most cases yield the optimal solution in significantly

less time.

For the k-ambush case in (3.14), the results are similar except the number of

inequality constraints in the original LP increases from |N | to C
|N |
k . After adding

slack variables, the number of decision variables is C
|N |
k + |E|+1, where the first term

generally dominates. For k << |N | (again, a typical scenario), C
|N |
k ∼ |N |k and

therefore the worst-case computational requirement for a single iteration of simplex

is O(|N |2k).

3.2 Implementation

In this section, we discuss how to implement the methods described in the previous

section to obtain optimal routing solutions for real-life ambush scenarios.

3.2.1 Modeling

The following process is used to model a VIP transport game scenario:

1. Acquire a road map of the area of interest.

2. Identify roads that are traversable by the agent (e.g. sealed roads only, roads

greater than a certain width, etc.).

38

3. Identify the intersections of these roads. Associate each intersection with a node

and record the coordinates of each node. Denote the set of nodes as N .

4. Identify road segments that connect nodes. Associate each segment with an

edge. Denote the set of edges as E .

5. Identify the origin and destination nodes. Denote these nodes as no and nd

respectively.

6. Estimate the expected ambush outcome at each node. Denote the value asso-

ciated with node i as αi. (In the absence of useful information to make this

estimate, αi can be set by default to a value of 0 for the origin and destination

nodes, and 1 for all other nodes.)

7. Estimate the number of ambushes that the enemy is capable of preparing. De-

note this value as k.

Having established the parameters of the problem, the decision variables need

to be specified. Using the network flow formulation, the decision variables are the

probabilities pij associated with all edges (i, j) ∈ E . pij denotes the probability of the

VIP traveling from node i to node j in any journey from the origin to the destination.

These edge probabilities are the elements of the vector p.

3.2.2 Formulating the Constraints

The first step in formulating the constraints is to generate a list of all possible ambush

strategies for Player 2 (i.e. the sets N l
k in (3.12)). N l

k ⊂ N are simply the combina-

tions of size k in the set of nodes N , and there exist many well-known algorithms for

generating combinations from an arbitrary set.

The second step is to populate the Dk matrix using Algorithm 3.1.

39

Algorithm 3.1 Populating the Dk matrix

Dk ← 0

for all N l
k ⊂ N do

for n ∈ N l
k do

for all j | (j, n) ∈ E do

Dk(i, j)← Dk(i, j) + αn

end for

end for

end for

The third step is to populate the A matrix using Algorithm 3.2.

Algorithm 3.2 Populating the A matrix

A← 0

for all (n1, n2) ∈ E do

A(n1, j)← −1
A(n2, j)← 1

end for

Finally, the b vector is simply given by:

bi =

−1 if i = no

1 if i = nd

0 otherwise

3.2.3 Solving the LP

Equation (3.14) can be solved using any implementation of the simplex method (e.g.

revised simplex, full tableau). Although the problem is based on a network flow

approach, the extra non-flow decision variable z ensures that it is not a typical network

flow LP, and so algorithms developed specifically for network flow problems (e.g. the

network simplex algorithm) can not necessarily be applied here.

Empirically, the more general simplex method seems to solve the problem quite

efficiently. For details, see Section 3.3.

40

3.2.4 Generating a Random Path

The solution to the LP includes the optimal mixed strategy p∗ which contains the

optimal probability p∗ij for every edge (i, j) ∈ E . These probabilities are the overall

probabilities across all journeys for traversing a particular edge, and so the sum of

probabilities of edges out of a particular node will not necessarily sum to 1. Therefore,

when generating a random path, at each node the probabilities of outgoing edges must

be normalized to one before an edge is chosen.

Algorithm 3.3 illustrates this procedure.

Algorithm 3.3 Generating a Random Path

/* Let r denote the ordered list of nodes composing the path */
n← 1
r1 ← no

while rn 6= nd do

/* Normalize the probabilities for outgoing edges */
N ← j | (rn, j) ∈ E
Psum ← 0
for all j ∈ N do

Psum ← Psum + p∗rnj

end for

for all j ∈ N do

p̃∗rnj ← p∗rnj / Psum

end for

/* Randomly choose rn+1 based on normalized probabilities */
x← rand[0, 1]
s← 0
i← 1
while s < x do

s← s + p̃∗rnNi

i← i + 1
end while

rn+1 ← Ni

n← n + 1

end while

41

3.3 Cambridge Scenario Application

The methods described in this chapter were applied to a number of different scenarios

set in the city of Cambridge, MA. Cambridge is a good test case because its highly

irregular road network makes the task of determining the optimal routing strategy

quite difficult. This example also serves to demonstrate that these solution methods

are practical and efficient enough to run on a regular desktop or laptop computer.

A program was written to input the parameters of the problem (the graph, origin

and destination nodes, and ambush outcome values for each node) and output the

optimal routing strategy. The two computationally intensive portions of the program

are formulating the constraints and solving the LP. The first is implemented in Mat-

lab, and the second is implemented in C using GLPK1 simplex routines. The program

was run under Windows XP on a Pentium 4 2.20 GHz desktop PC with 512 MB of

RAM.

3.3.1 Environment Model

A map of Cambridge was converted to a a graph containing 50 nodes and 91 edges,

as shown in Figure 3-3. The choice of roads to include was somewhat arbitrary in

this case, but mainly limited to major roads. In practice, operational reasons would

rule out certain roads due to width, load-carrying capacity, obstructions, roadwork,

etc.

Most of these roads are two-way roads, and therefore the corresponding edges are

valid in both directions (e.g. (36,37) and (37,36) are both included in E). A few roads

are one-way—for example, (16, 24) ∈ E but (24, 16) /∈ E .

The ambush outcome at a node was taken to be the smallest of the distances from

that node to any origin or destination nodes. In that way, the cost of an ambush at

an origin or destination was considered to be zero, which accurately reflects the fact

that those locations are likely to be heavily defended and safe against ambush. Also,

1See http://www.gnu.org/software/glpk/glpk.html for further information on this excellent open-
source software package.

42

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28
29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50

Figure 3-3: Map of Cambridge with overlaid graph

as the agent moves further away from these locations, he is more vulnerable if he is

ambushed.

3.3.2 Single-Agent Scenarios

In the single-agent scenarios, Player 1 must navigate through the city of Cambridge

from Fresh Pond to downtown Boston. The origin node is number 5, and the desti-

nation node is number 50. Optimal routing strategies were found for the 1-, 2-, and

3-ambush cases.

The times taken to formulate and solve the 1-, 2-, and 3-ambush cases, together

with the expected game outcomes, are shown in Table 3.1. Note that the upper bound

in (3.16) is satisfied: z∗3 < 3
2
z∗2 , z∗3 < 3z∗1 , and z∗2 = 2z∗1 .

The computation time increases exponentially with the number of ambushes. For-

tunately, in a typical scenario it is unlikely that the enemy will have the resources to

prepare a large number of different ambushes simultaneously.

43

Scenario Constraint Formulation LP Solution Expected Outcome

1-ambush 0.059 s 0.015 s 46.7
2-ambush 1.12 s 0.11 s 93.5
3-ambush 25.41 s 7.81 s 138.3

Table 3.1: Results for 1-, 2-, and 3-ambush scenarios

Figure 3-4 shows an optimal strategy for Player 1 for each of the 3 cases. In general,

the optimal strategy is a result of a tradeoff between (1) avoiding dangerous, high-α

nodes (i.e. those in the NW and SE corners of the map), and (2) incorporating as

many distinct routes as possible, to reduce the probability of arrival at any individual

node.

In this scenario, the optimal strategy for the 1-ambush game turns out to be

optimal for the 2-ambush game as well, and the expected game outcome for the

2-ambush game is exactly double that for the 1-ambush game. However, for the 3-

ambush game, a slightly different strategy is optimal and the expected game outcome

is slightly lower than three times the expected outcome for the 1-ambush game.

The structure of the LP in (3.14) can explain why p∗
2 = p∗

1 and z∗2 = 2z∗1 . Note

that this LP minimizes the maximum α-weighted flow into any set of k nodes, and

let wi equal the α-weighted flow into node i. In the 1-ambush case with strategy p∗
1,

there is at least one node i for which wi = z∗1 , but there can easily exist another node

j for which wj = z∗1 . In the 2-ambush case, unless there exists a strategy for which

the two greatest α-weighted inflows sum to less than 2z∗1 , then the optimal strategy

will simply be p∗
1, which is indeed the case for this example. For the 3-ambush case,

however, there clearly exists a strategy for which the three greatest α-weighted inflows

sum to less than 3z∗1 , and therefore p∗
3 6= p∗

1.

It is important to note that the optimal strategies are not necessarily unique. The

objective function is determined only by those k nodes with the greatest α-weighted

inflow. The flow into the remaining |N | − k nodes can often be rearranged without

the inflow into any of them exceeding wk, and also without affecting the inflow into

any of the critical k nodes. In that case, all such rearrangements would represent

optimal solutions.

44

Player 1 optimal strategy for 1−ambush scenario

Player 1 optimal strategy for 2−ambush scenario Player 1 optimal strategy for 3−ambush scenario

Figure 3-4: Player 1 optimal strategy for 1-, 2-, and 3-ambush scenarios.
Darker lines correspond to higher probability edges.

45

3.3.3 Multiple-Agent Scenario

This scenario includes three VIPs with separate vehicles, origins, and destinations.

The enemy has the capability to prepare one ambush. The goal is to find the optimal

routing strategy for each VIP such that the α-weighted probability of a successful

ambush on any VIP is minimized. The origin nodes for the three VIPs were 5, 1,

and 28 respectively, and the destination nodes were 50, 45, and 27 respectively (see

Figure 3-3).

Figure 3-5 shows the optimal routing strategy for each VIP. Computation time

was 0.05 seconds for formulating the constraints, and 0.06 seconds for solving the LP.

The expected outcome of the game is 92.5.

Figure 3-6 is a combination of the three plots in Figure 3-5. The thickness of

each line is proportional to the sum of the probabilities of any of the three agents

traversing that edge. The optimal strategies for each of the agents combine effectively

to distribute their routing over most of the graph, and prevent the agents from arriving

together at any one node with too high a probability.

46

Optimal strategy for agent 1 of 3

Optimal strategy for agent 2 of 3 Optimal strategy for agent 3 of 3

Figure 3-5: Optimal strategies for 3 agents.
Darker lines correspond to higher probability edges.

47

Figure 3-6: Combined optimal strategies for 3 agents, separate vehicles

48

Chapter 4

Multi-Stage Ambush Games

The VIP transport problem discussed in Chapter 3 is an example of a single-stage

game, in which each player makes only one decision in the course of the game, and

the decisions are made simultaneously at the outset of the game. Such a game would

be an accurate representation of a scenario in which the hostile forces either cannot

observe the VIP’s location unless he reaches an ambush site, or they can observe the

VIP’s location but are unable to take advantage of the information (e.g. because the

ambush site takes too much time to prepare, and must be done well ahead of time).

In this chapter, we discuss a variety of ambush games in which Player 2 can

observe Player 1’s position as Player 1 travels from origin to destination, and Player

2 has the ability to act on the information. We determine Player 1’s optimal strategy

under those circumstances.

We refer to these games as “multi-stage games”. In this chapter, a “stage” refers

to the set of decisions and actions taken every time Player 1 arrives at a new node.

A new stage begins after Player 1 arrives at a new node, and ends with either an

ambush or Player 1’s safe arrival at the next node.

All games considered here take place on a similar graph as the game considered

in Chapter 3. Given a directed graph G = (N , E), origin and destination nodes no

and nd, and ambush cost values αi for each node, the problem is to find Player 1’s

optimal mixed strategy for choosing among all paths between origin and destination,

such that the expected outcome of the game is minimized. The difference now is that

49

Player 2 does not have to choose his ambush sites at the outset of the game, but may

incorporate information about Player 1’s position en route to the destination before

making his decision.

Because of this dynamic element, these multi-stage ambush games can not neces-

sarily be easily solved using the network flow approach of Chapter 3. The limitation

of the network flow approach is that it only concerns the absolute flow through an

edge, and not the time at which the flow through the edge occurs, which is essential

information in the dynamic game.

On the other hand, the multi-stage games can usually be solved one node at a

time using a dynamic programming approach. Each stage of the game is in fact a

game in itself, in which Player 1 chooses the next node to move towards and Player

2 chooses to place an ambush (in Games 1, 2, and 3) or bide his time (in Games 2

and 3). The sub-game at each node is relatively small and quick to solve.

To apply the dynamic programming approach, we assume the principle of opti-

mality as defined in Chapter 7 in [3]. Suppose P∗
ik is the optimal routing strategy

from node i to node k, and j is an intermediate node between i and k. Then the

strategy dictated by P∗
ik between j and k is equivalent to the optimal routing strategy

P∗
jk from j to k. In other words, if the optimal routing strategy from i to k includes

an intermediate node j, then the part of the strategy from j to k is optimal in itself.

It should be noted that these multi-stage ambush games are very similar to an

entire class of games that show up in a variety of different fields. One interesting

example can be found in [6], which refers to the use of game theory to model com-

petitive dancing. At each stage of a dance routine, the dancers select a dance move

and their payoff increases if their chosen move is not guessed by their “opponent”,

the judges. In [5], a dynamic programming approach is actually used to determine

the optimal mixed strategy for a choreographed dance routine.

50

4.1 Game 1

In this game, Player 2 can prepare one ambush at every stage. This game may be an

appropriate model for a scenario in which the hostile forces (Player 2) are divided into

units that are dispersed in a number of stages between the origin and destination, and

each unit has one opportunity to intercept a convoy (Player 1) as it passes through

the unit’s stage. Whenever the convoy passes through a stage, its position is observed

and transmitted to the unit in the next stage, and that unit then must decide the

best location within the next stage to prepare an ambush.

4.1.1 Problem Formulation and Solution

Each stage of this game proceeds as follows:

1. Player 2 observes Player 1’s position.

2. Player 1 chooses an adjacent node to move to.

3. Player 2 chooses an adjacent node at which to place an ambush.

If Player 1 and Player 2 choose different nodes, the outcome of that stage of the

game is zero and the above process repeats at this new node. If Player 1 and Player

2 choose the same node j, there are two possibilities depending on the game rules.

One possibility is that the game ends at that point, in which case the final game

outcome is equal to αj . The other possibility is that the game continues, but the

game outcome is incremented by αj.

Assume Player 1 is currently located at node i, and has the option to move to any

one of nodes j1 . . . jn. Assume that we have already found Player 1’s optimal strategy

if he starts at each of these n nodes, and the expected value of the game (assuming

each player follows his optimal strategy) starting from each node is Vj1 . . . Vjn
. Then

the game matrix at node i is:

51

A =

αj1 Vj1 Vj1 . . . Vj1

Vj2 αj2 Vj2 . . . Vj2

Vj3 Vj3 αj3 . . . Vj3

...
...

...
. . .

...

Vjn
Vjn

Vjn
. . . αjn

(4.1a)

where row x corresponds to Player 1’s choice of node jx to move to, and row y

corresponds to Player 2’s choice of node jy to prepare an ambush.

If the game continues after a successful ambush, then the game matrix is:

A =

Vj1 + αj1 Vj1 Vj1 . . . Vj1

Vj2 Vj2 + αj2 Vj2 . . . Vj2

Vj3 Vj3 Vj3 + αj3 . . . Vj3

...
...

...
. . .

...

Vjn
Vjn

Vjn
. . . Vjn

+ αjn

(4.1b)

Once the game matrix is established, the optimal strategy at that point can easily

be found by solving the linear program in (2.1). Although this method is inefficient

for the large game matrices associated with the single-stage ambush game, in this

case the size of the game matrix is limited by the number of edges leaving the node,

and therefore the LP can be expected to yield a fast solution.

The solution to this linear program at node i gives the optimal probabilities pij

for moving from node i to any adjacent node j, together with the expected game

outcome Vi if the game begins at that node.

To determine Player 1’s optimal strategy from the origin, a dynamic programming

approach is used. The destination node is assigned a value of V = 0 (intuitively, if

Player 1 starts at the destination, then there is no chance of being ambushed on the

way there). Nodes adjacent to the destination will also have a value of 0. Working

backwards from the destination node, the expected game value can be found at each

node, together with the optimal strategy for moving from that node to adjacent nodes.

This method is detailed in Algorithm 4.1.

52

Algorithm 4.1 Computing the optimal strategy for Game 1

/* U = set of unlabeled nodes */
U ← N \ nd

/* L = set of labeled nodes */
L← {nd}

/* O(i) = set of nodes linked from node i */
O(i) = {j ∈ N | (i, j) ∈ E}

Vnd
= 0

while U 6= ∅ do

for all i ∈ U | O(i) ∈ L do

Construct A from (4.1a) or (4.1b)
Solve for Vi and p∗

i using (2.1)
U ← U \ i
L← L ∪ {i}

end for

end while

4.1.2 Complexity

The Game 1 solution requires a matrix game to be solved at every node of the graph

from the destination back to the origin. A total of |N | linear programs must therefore

be solved. In the LP for a particular node i, the number of decision variables is equal

to the number of outgoing edges from that node (i.e. |O(i)|), and the constraint

matrix A′ is a square matrix with length also equal to |O(i)|.

|O(i)| of course varies for each node, but an upper limit is the total number of

nodes |N |. In the worst case, the simplex method will therefore require O(|N |2)

computations to perform a single iteration. Because it is possible (though unlikely)

for the simplex method to visit every vertex of the feasible set before finding the

optimal solution, the maximum number of iterations required is approximately 2|N |

[3]. Finally, with one LP for every node, there are a total of |N | LPs to be solved.

The worst-case computational requirement is therefore O(2|N ||N |3) operations.

53

4.1.3 The 2-Node Case

For this discussion only, make the assumption that αi = 1 ∀ i ∈ N , in which case Vi

represents the exact probability of Player 1 being ambushed when he starts at node i.

Now suppose Player 1 is situated at node 0 and can move to either node 1 or node 2,

with expected outcomes of V1 and V2 respectively. In this simple case, it is relatively

straightforward to find a closed-form solution for each player’s optimal strategy, and

the result is useful for demonstrating that the optimal strategy for Player 1 is not

necessarily intuitive.

If the game terminates with a successful ambush, then the game matrix at node

0 is:

A =

1 V1

V2 1

 (4.2)

Note that this game has no saddle-point in pure strategies since the minimax value

is 1, but the maximin value is max(V1, V2). Therefore, we need to examine the class

of mixed strategies to find the game solution.

Let Player 1’s strategy be p =
[

p 1− p
]T

, so that he chooses node 1 with

probability p and node 2 with probability 1− p. Similarly, let Player 2’s strategy be

q =
[

q 1− q
]T

. The expected outcome of the game at node 0 is therefore:

V0(p, q) = p′Aq

=
[

p 1− p
]

1 V1

V2 1

q

1− q

= pq + (1− p)(1− q) + p(1− q)V1 + (1− p)qV2 (4.3)

Let P and Q be the set of mixed strategies for Players 1 and 2 respectively. The

optimal strategies are:

54

p∗ = arg min
P

max
Q
{V0(p, q)} (4.4)

q∗ = arg max
Q

min
P
{V0(p, q)} (4.5)

To find p∗ and q∗, first calculate the partial derivatives of the value function:

∂V0

∂p
= (2− V1 − V2)q − (1− V1) (4.6)

∂V0

∂q
= (2− V1 − V2)p− (1− V2) (4.7)

Setting the partial derivatives to zero gives the following:

∂V0

∂q
= 0 =⇒ p = p̂ =

1− V2

2− V1 − V2

(4.8)

∂V0

∂p
= 0 =⇒ q = q̂ =

1− V1

2− V1 − V2
(4.9)

We will now show that p∗ = p̂ and q∗ = q̂. Since 0 ≤ V1 ≤ 1 and 0 ≤ V2 ≤ 1

(because αi = 1 ∀ i ∈ N), both p̂ and q̂ lie within [0, 1]. The value of the game with

those strategies is:

V0(p̂, q̂) =
(1− V1)(1− V2)

(2− V1 − V2)2
+

(1− V1)(1− V2)

(2− V1 − V2)2
+

(1− V2)
2V1

(2− V1 − V2)2
+

(1− V1)
2V2

(2− V1 − V2)2

=
V1(1− V2)

2 + 2(1− V1)(1− V2) + V2(1− V1)
2

(2− V1 − V2)2

=
1− V1V2

2− V1 − V2

From (4.6) we see that ∂V0

∂p
is a monotonically increasing function of q, which is

negative for q < q̂ and positive for q > q̂. Since Player 1’s objective is to minimize

V0, his optimal policy p̄(q) in response to Player 2’s policy q is:

55

p̄(q) =

1 , q > q∗

0 , q < q∗

(For q = q̂, since ∂V0

∂p
= 0, all values of p will lead to the same value of V0.)

Finally, we need to show that V0(p̄, q) < V0(p̂, q̂) ∀ q 6= q̂. For q < q̂, we have from

(4.3) and (4.9):

V0(p̄, q) = V0(1, q)

= V1 + (1− V1)q

< V1 +
(1− V1)

2

2− V1 − V2

<
1− V1V2

2− V1 − V2

< V0(p̂, q̂)

And for q > q̂:

V0(p̄, q) = V0(0, q)

= 1− (1− V2)q

< 1−
(1− V2)(1− V1)

2− V1 − V2

<
1− V1V2

2− V1 − V2

< V0(p̂, q̂)

We have now shown that:

V0(p̄, q) < V0(p̂, q̂) ∀ q 6= q̂

⇒ q∗ = q̂

Similarly, it can be shown that:

56

V0(p, q̄) < V0(p̂, q̂) ∀ p 6= p̂

⇒ p∗ = p̂

And therefore:

p∗ =
1− V2

2− V1 − V2
(4.10)

q∗ =
1− V1

2− V1 − V2
(4.11)

The result for p∗ shows that Player 1’s optimal probability for moving to node 1

increases with V1. In other words, Player 1’s optimal mixed strategy is biased to-

wards the more dangerous node, which may appear to be somewhat counter-intuitive

initially.

The intuition behind this result is that Player 2 is also an intelligent agent and

will pursue his own optimal strategy, which, as the result for q∗ shows, is to place his

ambush with a higher probability at the safer node. Therefore, although that node

may be safer for Player 1 if he can arrive without being ambushed, he also has a

higher probability of being ambushed along the way.

4.2 Game 2

This game is identical to Game 1 except now Player 2 can mount only one ambush

over the course of the entire game, as opposed to one ambush at every stage of the

game. This game may be a good model for a situation where the commander of the

hostile forces receives periodic updates about Player 1’s position, and must make the

decision at some stage to commit all his forces to an ambush location.

If Player 2 has not yet committed to an ambush, then one stage of the game

proceeds as follows:

1. Player 2 observes Player 1’s position.

57

2. Player 1 chooses an adjacent node to move to.

3. Player 2 chooses an adjacent node at which to place an ambush, or does not

commit and does nothing until the next stage.

In theory, Player 2 could choose a non-adjacent node at which to place an ambush,

but he would be making his decision without the benefit of the useful information of

Player 1’s next move. Since there is no incentive to choose an ambush location earlier

than necessary, it would never be in his interest to do so.

As in Game 1, a dynamic programming approach can be used here to determine

the optimal strategy for Player 1. The game matrix at node i, where Player 1 has

the option of moving to nodes j1 . . . jn, is:

A =

αj1 0 . . . 0 Vj1

0 αj2 . . . 0 Vj2

...
...

. . .
...

...

0 0 . . . αjn
Vjn

(4.12)

The first n columns of the matrix correspond to Player 2’s decision to stage an

ambush at one of the adjacent nodes to Player 1’s current position. The last column

corresponds to Player 2’s decision to not commit to an ambush location at this stage

of the game, in which case the new expected outcome of the game is equal to the

expected outcome at the node to which Player 1 moves.

The approach to solving this game is identical to the approach for Game 1, except

for the change in the game matrix at each node, and it is detailed in Algorithm 4.2.

The complexity of this solution is also almost identical to the complexity of the

solution for Game 1. The only difference is that the constraint matrix A′ has one

extra row, corresponding to Player 2’s option to wait. However, the single extra

constraint does not affect the order of the number of operations. In the worst case,

the number of operations required is O(2|N ||N |3), as it is for Game 1.

58

Algorithm 4.2 Computing the optimal strategy for Game 2

/* U = set of unlabeled nodes */
U ← N \ nd

/* L = set of labeled nodes */
L← {nd}

/* O(i) = set of nodes linked from node i */
O(i) = {j ∈ N | (i, j) ∈ E}

Vnd
= 0

while U 6= ∅ do

for all i ∈ U | O(i) ∈ L do

Construct A from (4.12)
Solve for Vi and p∗

i using (2.1)
U ← U \ i
L← L ∪ {i}

end for

end while

4.3 Game 3

In this game, Player 2 observes Player 1’s location at every stage of the game. Just

as in Game 2, Player 2 can mount only one ambush and therefore at each stage

chooses whether to commit to an ambush location or wait and defer his decision.

The difference is now that the outcome of a successful ambush is proportional to the

amount of time in advance at which Player 2 committed to the ambush location.

This game corresponds to the situation where the hostile forces are faced with a

tradeoff: early commitment to an ambush location gives them more time to prepare

an ambush, and the resulting ambush (if successful) will be more effective. Later

commitment to an ambush location means a less effective ambush, but more certainty

that the convoy will appear at the ambush site.

4.3.1 Problem Formulation and Solution

The key difference between this game and Game 2 is the following: instead of an

outcome of αj for an ambush at node j, the outcome is now tαj where t is the time

59

between Player 2’s commitment to prepare an ambush at j and Player 1’s arrival at

j.

As in the previous two games, a dynamic programming approach can be used

here to find the optimal strategy for Player 1, although forming the game matrix at

a particular node is substantially more complicated than it is for Games 1 or 2.

At a given node i, Player 1 has the option to move to any adjacent node j | (i, j) ∈

E . Player 2 has the following options:

1. Prepare an ambush at an adjacent node j

2. Prepare an ambush at a non-adjacent node k (between i and the destination)

3. Wait until the next turn

In the first case, we have:

A(j1, j2) =

tijαj if j1 = j2 = j

0 if j1 6= j2

where tij is the time to travel directly from node i to node j.

In the third case, the game matrix entry is simply the expected value of the game

starting from the node which Player 1 moves to:

A(j, wait) = Vj

The second case is more of a challenge. Suppose Player 1 is at node j and Player

2 has just committed to an ambush at node k. Assume that node k is not necessarily

adjacent to node j, in which case there may be more than one possible route between

the two nodes. Let Rjk be the set of possible routes from node j to node k, and

let Pr
jk be the probability that Player 1 follows route r ∈ Rjk from j to k under his

optimal strategy. Then the expected outcome of the game is given by:

E[V] =

∑

r∈Rjk

Pr
jkt

r
jk

 αk (4.13)

60

where trjk is the time to traverse from node j to node k along route r.

Let yjk be the expression in parentheses:

yjk =
∑

r∈Rjk

Pr
jkt

r
jk (4.14)

Suppose Player 1 is at node i, and yjk is already known for all adjacent nodes j

and all subsequent nodes k. Now suppose Player 2 commits to an ambush at node k,

while Player 1 chooses to move to adjacent node j. We can express the corresponding

game matrix element in terms of yjk as follows:

A(j, k) =

∑

r∈Rjk

Pr
jk(tij + trjk)

αk

=

∑

r∈Rjk

Pr
jkt

r
jk +

∑

r∈Rjk

Pr
jk

 tij

 αk

= (yjk + pjktij)αk (4.15)

where pjk is the overall probability under Player 1’s optimal strategy of traveling to

node k when he starts at node j.

We have now expressed A(j, k) for node i in terms of quantities defined at other

nodes between i and the target, which strongly suggests that a dynamic programming

approach can be used to find the optimal strategy. The game matrix at node i is:

A =
[

A1 A2 A3

]

(4.16)

where:

A1 =

tij1αj1 0 . . . 0

0 tij2αj2 . . . 0
...

...
. . .

...

0 0 . . . tijn
αjn

61

A2 =

(yj1k1
+ pj1k1

tij1)αk1
(yj1k2

+ pj1k2
tij1)αk2

. . . (yj1km
+ pj1km

tij1)αkm

(yj2k1
+ pj2k1

tij2)αk1
(yj2k2

+ pj2k2
tij2)αk2

. . . (yj2km
+ pj2km

tij2)αkm

...
...

...

(yjnk1
+ pjnk1

tijn
)αk1

(yjnk2
+ pjnk2

tijn
)αk2

. . . (yjnkm
+ pjnkm

tijn
)αkm

A3 =

Vj1

...

Vjn

Because the game matrix contains one column for every node between the current

node and the destination, it can become quite large and the corresponding linear pro-

gram may require a considerable amount of computational effort to solve. However,

this process can be streamlined by first removing any dominated columns from A.

One column is said to be dominated by another if each element of the first column is

less than or equal to the corresponding element in the second column, with at least

one element strictly less. In that case, Player 2 will never have reason to choose the

first column, and therefore it can be excised from the matrix before solving for the

optimal strategies.

Having determined the game matrix, all that remains is to determine yik and pik

for all nodes k between the current node i and the destination, given yjk and pjk for

all adjacent nodes j. These values can be found by essentially taking a probability-

weighted combination of the values at the adjacent nodes:

yik =
∑

j

pij(yjk + pjktij) (4.17)

pik =
∑

j

pijpjk (4.18)

We now have all the elements needed to develop an algorithm for finding the

optimal strategy for Player 1 in Game 3. This algorithm is shown in Algorithm

62

4.3, and works as follows: at the destination node nd, set Vnd
= 0. Then, working

backwards from the destination, at each node i construct A, solve the associated

LP, and calculate yik and pik for all nodes k between i and the destination. At the

conclusion of this process, the optimal probability pij will be known for every pair

of adjacent nodes i and j. For non-adjacent nodes i and k, pik will specify the total

probability of reaching k from i using any feasible route.

Algorithm 4.3 Computing the optimal strategy for Game 3

/* U = set of unlabeled nodes */
U ← N \ nd

/* L = set of labeled nodes */
L← {nd}

/* O(i) = set of nodes linked from node i */
O(i) = {j ∈ N | (i, j) ∈ E}

Vnd
= 0

pij ← 0 ∀ i, j ∈ N
yij ← 0 ∀ i, j ∈ N

while U 6= ∅ do

for all i ∈ U | O(i) ∈ L do

Construct A from (4.16)
Solve for Vi and pij ∀ j ∈ O(i) using (2.1)
for k ∈ L \O(i) do

for j ∈ O(i) do

pik ← pik + pij ∗ pjk

yik ← yik + pij ∗ (yjk + pjk ∗ tij)
end for

end for

U ← U \ i
L← L ∪ {i}

end for

end while

4.3.2 Complexity

As in Games 1 and 2, for Game 3 an LP must be solved at each node. The number of

decision variables at a node i is again equal to |O(i)|, the number of outgoing edges

63

from that node. However, the number of rows of the constraint matrix A is now

equal to one plus the number of nodes between i and the destination. Although this

number will typically be much greater than |O(i)|, particularly for nodes further away

from the destination, it has the same upper limit of approximately |N | and therefore

the order of the number of operations for solving the LPs is once again O(2|N ||N |3),

as it is for Games 1 and 2.

In addition to solving the LPs, however, the solution to Game 3 also requires the

calculation of pik an yik for every non-adjacent node k between the current node i and

the destination. From (4.17) and (4.18), the number of multiplications required is

2|O(i)| for yik and |O(i)| for pik, or O(|N |) in total. The upper limit for the number

of non-adjacent nodes k is |N |, and these calculations must be carried out for each

node, for a total of |N | times. Therefore, the total number of operations required for

solving Game 3 is O(2|N ||N |3 + |N |3) or simply O(2|N ||N |3).

Although the order is the same as for Games 1 and 2, in practice the actual

number of operations may be significantly higher, because of the increased number

of constraints and the extra calculations for determining yik and pik.

4.4 Example Applications

To illustrate some of the ideas described in this chapter, optimal strategies were

computed for a some example scenarios. For reference, a summary of the various

multistage ambush games can be found in Table 4.1. As in Section 3.3, all computa-

tions were carried out on a Pentium 4 2.20 GHz desktop PC with 512 MB of RAM,

running Windows XP.

4.4.1 3x3 Grid

The optimal strategies for the three multi-stage ambush games were found for a

scenario taking place on the 3x3 grid (plus origin and destination nodes) shown in

Figure 4-1. The origin node is numbered 1 and the destination node is numbered 11.

Each column of the grid represents a “stage” of the game, and at each stage Player

64

Game Scenario

1a 1 ambush per stage
Game ends with a successful ambush

1b 1 ambush per stage
Game continues after a successful ambush

2 1 ambush per game

3 1 ambush per game
Outcome proportional to ambush preparation time

Table 4.1: Summary of multistage games

1 can move one unit in the horizontal direction and up to 1 unit up or down in the

vertical direction.

To simplify the results, α was taken to be 1 for each node (except the origin and

destination, for which α = 0). The time to traverse each edge was also taken to be

1. Although the resulting scenario is very simple and may not represent a real-life

situation, it is nevertheless very useful for illustrating the differences between the

various multistage games.

The results are shown in Table 4.2. The computation times to determine the solu-

tions for Games 1 and 2 are approximately equal, which is to be expected since they

all use essentially the same algorithm. For Game 3, the computational requirements

are higher by a significant amount, due to the larger game matrices at each node, and

the extra calculations to determine yik and pik values.

An expected outcome of 0.795 for Game 1a implies that Player 1 has exactly a

79.5% chance of being ambushed if he pursues his optimal strategy. The corresponding

value of 1.204 for Game 1b is, as expected, higher because it reflects the scenario in

which Player 1 can be ambushed multiple times on the way to the destination. On

the other hand, the outcome of 0.467 for Game 2 implies that Player 1 has only a

46.7% chance of being ambushed when Player 2 is constrained to choosing only one

ambush location for the entire game. Finally, the expected outcome of 1.5 for Game

3 indicates that the expected outcome of the game is for Player 1 to be ambushed

with Player 2 committing to the ambush 1.5 stages before Player 1’s arrival at the

chosen ambush site.

65

1

2

3

4

5

6

7

8

9

10

11

Figure 4-1: Example graph

Game Computation Time Expected Outcome

1a 0.078 s 0.795
1b 0.104 s 1.204
2 0.073 s 0.467
3 0.354 s 1.500

Table 4.2: Results for multistage games on 3x3 grid

66

0.359

0.282

0.359

0.571

0.429

0.364

0.273

0.364

0.429

0.571

0.500

0.500

0.333

0.333

0.333

0.500

0.500

1.000

1.000

1.000

Player 1 optimal strategy for Game 1a
V

1
 = 0.795

0.333

0.333

0.333

0.500

0.500

0.333

0.333

0.333

0.500

0.500

0.500

0.500

0.333

0.333

0.333

0.500

0.500

1.000

1.000

1.000

Player 1 optimal strategy for Game 1b
V

1
 = 1.204

0.467

0.467

0.067

0.500

0.500

0.429

0.429

0.143

0.500

0.500

0.500

0.500

0.333

0.333

0.333

0.500

0.500

1.000

1.000

1.000

Player 1 optimal strategy for Game 2
V

1
 = 0.467

0.333

0.333

0.333

0.250

0.750

0.125

0.750

0.125

0.750

0.250

0.500

0.500

0.333

0.333

0.333

0.500

0.500

1.000

1.000

1.000

Player 1 optimal strategy for Game 3
V

1
 = 1.500

Figure 4-2: Optimal strategies for multi-stage ambush games on 3x3 grid

The optimal strategies for these four scenarios are shown in Figure 4-2. The

edge labels represent the transitional probabilities of Player 1 traversing between

the corresponding nodes. That is, pij for the edge connecting nodes i and j is the

probability that Player 1, under his optimal strategy, will travel to node j given that

he is already at node i.

4.4.2 Cambridge Scenario

Game 3 was solved for the Cambridge scenario described in Section 3.3. One necessary

change made to the scenario was to remove certain edges so that all edges would be

directed towards the origin, allowing Algorithm 4.3 to be applied. The time taken

67

Player 1 optimal strategy for Game 3

Figure 4-3: Optimal strategy for Cambridge scenario, Game 3.
Darker lines correspond to higher probability edges.

to travel between two nodes was assumed to be proportional to the distance between

the nodes.

The optimal strategy for Player 1 is shown in Figure 4-3. The computation time

was 1.22 s. Interestingly, the optimal strategy is heavily biased towards the more

direct routes to the target, which may reflect the fact that a more indirect route

allows Player 2 more time to prepare an ambush.

68

Chapter 5

Conclusion

5.1 Summary

The major contribution of this thesis has been the development of efficient methods

for computing the optimal routing strategies to avoid ambush in a number of ambush

games. Chapter 3 looked at single-stage ambush games, in which Player 2 chooses

his ambush locations at the same time as Player 1 chooses his route. A network flow

formulation of this problem eliminates the need to explicitly determine all routes from

origin to destination, and also leads to a linear program that can be solved rapidly

with inexpensive computer hardware, even for relatively complex scenarios.

In Chapter 4, the focus shifted to multi-stage ambush games, in which Player 2

observes Player 1’s position en route to the destination and uses this information to

select ambush locations. Three different games were defined: one in which Player 2

can place an ambush at every stage of the game, one in which Player 2 can place

only one ambush for the entire game, and one in which Player 2 can place only one

ambush and his payoff is proportional to the ambush preparation time.

For these games, a dynamic programming approach was used to determine the

optimal mixed strategy for Player 1. Again, this approach avoids the need to compile a

list of routes from origin to destination, and the solution methods are computationally

efficient enough to be applied in a real-life setting.

The solutions to these ambush games can be applied to a wide range of realistic

69

ambush situations. In particular, the problem of transporting a VIP through a hostile

area on a regular schedule calls for random routing, and these methods can be used

“in the field” to efficiently and rigorously compute the optimal randomization.

5.2 Future Work

For future work, it may be advisable to revisit some of the assumptions made in the

problem formulation. The assumption that all ambushes occur at nodes (street inter-

sections) rather than along edges (between intersections) has already been discussed,

and may be dropped in situations where it is not valid. Another key assumption is

that Player 2 has full information about the scenario (e.g. origin and destination

nodes) and is intelligent enough to determine his own optimal strategy. If this as-

sumption is too generous to Player 2, then Player 1 may be able to exploit this fact

and obtain a better outcome with different strategies from those proposed in this

thesis.

Another area of work would be to compute optimal strategies for variants of the

games described here. One realistic example is the single-stage game in which one

driver must pick up a number of VIPs from different locations and drop them off at

different locations. (The solution to that game may also be applicable to an armored

delivery van that must stop at a number of different banks.) Another example is the

multi-stage Game 3 in which Player 2 has the capability to mount several ambushes,

but the payoff is still proportional to the time in advance at which he made the

commitment.

Finally, the solution approach to the multi-stage games has an inherent limitation:

it requires all edges to be directed from the origin to the destination, to avoid having

to solve a simultaneous system of optimization problems. To address this limitation,

Player 1’s state during the game can be redefined as a combination of his location

node and the current game stage. The resulting state space will increase in size due

to the addition of time as a state variable, but it will allow the dynamic programming

approach to handle completely arbitrary graphs.

70

Bibliography

[1] T. Basar and G.J. Olsder. Dynamic Noncooperative Game Theory. SIAM,

Philadelphia, PA, 2nd edition, 1999.

[2] V.J. Baston and F.A. Bostock. A continuous game of ambush. Naval Research

Logistics, 34:645–654, 1987.

[3] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, Belmont, MA, 1997.

[4] A.Y. Garnaev. On a Ruckle problem in discrete games of ambush. Naval Research

Logistics, 44:353–364, 1998.

[5] S. Gentry. Dancing cheek to cheek: Haptic communication between partner

dancers and swing as a finite state machine. PhD thesis, Massachusetts Institute

of Technology, 2005.

[6] S. Gentry and E. Feron. Modeling musically meaningful choreography. In IEEE

Systems, Man, Cybernetics Conference, 2004.

[7] J.P. Hespanha, Y.S. Ateskan, and H.H. Kizilocak. Deception in non-cooperative

games with partial information. In 2nd DARPA-JFACC Symposium on Advances

in Enterprise Control, July 2000.

[8] G. Owen. Game Theory. AP, San Diego, CA, 3rd edition, 1995.

[9] P. Root, J. De Mot, and E. Feron. Randomized path planning with deceptive

strategies. In American Control Conference, June 2005.

71

[10] P.J. Root. Collaborative UAV path planning with deceptive strategies. Master’s

thesis, Massachusetts Institute of Technology, 2005.

[11] W.H. Ruckle. Ambushing random walks II: Continuous models. Operations

Research, 29(1):108–120, 1981.

[12] W.H. Ruckle. Geometric games and their applications. Pitman, Boston, MA,

1983.

[13] W.H. Ruckle, R. Fennell, P.T. Holmes, and C. Fennemore. Ambushing random

walks I: Finite models. Operations Research, 24(2):314–324, 1976.

[14] W.H. Ruckle and J.R. Reay. Ambushing random walks III: More continuous

models. Operations Research, 29(2):121–129, 1981.

[15] I.D. Woodward. Discretization of the continuous ambush game. Naval Research

Logistics, 50:515–529, 2003.

[16] N. Zoroa, P. Zoroa, and J. Fernandez-Saez. New results on a Ruckle problem in

discrete games of ambush. Naval Research Logistics, 48:98–106, 2001.

72

