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ABSTRACT 

The research presented in this thesis develops a new device for the passive control of motion in 
building structures: an electromagnetic damper.  The electromagnetic damper is a self-excited 
device that provides a reaction force to an applied motion.  We chose a tubular permanent-
magnet linear machine as this new structural damper, and we derive its mathematical model us-
ing quasi-static electromagnetic theory.  Computer simulations and experimental characterization 
of a small-scale prototype electromagnetic damper validated the mathematical model of the de-
vice.  The behavior of the electromagnetic damper approximates that of an ideal damper. 

We conducted a feasibility study for the application of electromagnetic dampers to full-scale 
buildings.  We used two performance measures: the damping density and the damping cost of the 
device.  Comparing the performance of the electromagnetic damper to that of viscous fluid 
dampers, the maximum damping density of electromagnetic dampers is, at best, equal to that of  
hydraulic dampers, but with a price at least five times higher.  The permanent magnet’s current 
technology and cost are the limiting factors for the electromagnetic damper.  However, the 
electromagnetic damper provides flexibility not available previously to building designers as it 
can be used as a semi-active damper, as an actuator or as an energy regenerator without physical 
modifications to the device. 

Finally, we developed a design methodology for the electromagnetic damper to achieve a speci-
fied damping performance and introduced two techniques for the dynamic response analysis of 
buildings with electromagnetic dampers: One based on frequency domain approximations and 
one based on state-space models. 
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Chapter 1        

Introduction 

This research creates a new method for damping buildings and structures using electromagnetic 

devices.  We demonstrate that the same equation governing an ideal damper can describe a linear 

electrical machine force-velocity relationship when this machine operates as a passive damper, 

effectively developing a new application for electric devices as passive structural dampers   

In the following chapters, we derive a mathematical model of the electromagnetic damper, and 

from that model, we perform a feasibility study of its application to full-scale structures. We also 

develop the design and analytical tools for working with such electromagnetic dampers in the 

design phase of a building. 

1.1 Framework of Research 

Recent trends in structural design favor passive motion control with the introduction of supple-

mental energy dissipation devices to mitigate the impact of earthquake and wind loads (Soong 

and Dargush 1997).  Energy dissipation in current systems and devices is achieved by either 

transferring energy between different vibration modes, or by converting the kinetic energy to 

heat or to inelastic deformations of materials (Housner et al.  1997).  The electromagnetic 

damper is a new device for passive motion control that converts the kinetic energy into electrical 

energy, rather than solely into heat or material deformations. 

Using an electromagnetic damper instead of current structural damping systems provides flexi-

bility not available previously to building designers.  The electromagnetic damper is an electric 

machine, and as such, it can be used as an actuator or a generator.  However, visualizing the elec-

tromagnetic damper as a passive device simplifies its application in structures since design 

methods and rules for using manufactured damping are readily available to building and struc-

ture designers. 

Various strategies exist to control the structural motion and vibrations induced by earthquake and 
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wind disturbances.  These control strategies are classified based on the external energy require-

ment and type of devices used to counteract the disturbance.  Two general types are mainly in 

use: passive and active control.  Passive systems require no external energy to mitigate the ef-

fects of disturbances, while active systems use external energy to power actuators that cancel out 

the dynamic loads.  Hybrid systems are also used that combine active and passive strategies, ei-

ther using the active system to improve the performance of the passive system, or by using the 

passive system to decrease the energy requirement of the active system (Housner et al.  1997). 

In a passive system, motion disturbances are minimized by either modifying the physical and 

geometrical properties of the structures to reduce their susceptibility to a given disturbance 

(Housner et al.  1997), or by increasing the energy dissipation capability of the structure; the 

greater the energy dissipation, the smaller the amplitude of the motion generated by the external 

excitation.  The inherent energy dissipation of the structure is supplemented using materials and 

devices (structural dampers) that dissipate the kinetic energy imparted into the building by the 

disturbance.  Passive control systems are relatively simple and stable systems that have fixed 

properties and are designed or tuned for a particular disturbance.  Once installed, a typical pas-

sive system cannot be adjusted to compensate for a change in the nature of the disturbance 

(Connor 2003).  In recent years however, semi-active devices have been proposed to allow adap-

tive passive control of structural motion.  Semi-active devices are passive devices, whose pa-

rameters can be actively changed, with minimal energy input, to adapt to changes in the nature of 

the disturbance (Jalili 2002 171). 

Active strategies, in the other hand, involve the use of sensors and actuators.   Sensors monitor 

the state of the structure and the nature of the excitation, while actuators provide the necessary 

forces to cancel out the dynamic loads (Connor 2003).   These systems might provide better, and 

broader, disturbance rejection than passive systems; however, they are complex and expensive 

systems highly vulnerable to power failures, which could occur during a seismic event or strong 

winds.  Also, their performance is highly dependent on the control algorithms used and are sus-

ceptible to control-induced instability (Housner et al.  1997).  Full scale applications of structural 

active control systems have been limited mostly to civil structures in Japan, largely due to im-

plementation issues, such as the uncertainty in the modeling of both the physical properties of the 

structures and the disturbances such as earthquakes and wind (Soong 1996). 
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1.2 Research Contributions 

The first contribution of this research is the development of a new type of structural passive 

damper for buildings.  We develop a mathematical model based on quasi-static electromagnetic 

theory, and demonstrate that the force-velocity relation of the electromagnetic damper is similar 

to that of an idealized damper.  The damping coefficient of the electromagnetic damper is de-

scribed in terms of the geometric, magnetic and electric properties of the device.  The electro-

magnetic damper model is validated experimentally using a small-scale prototype. 

The second contribution is a feasibility study of the electromagnetic damper in full-scale build-

ings.  Two performance measures, damping cost and damping density, are used to asses the prac-

ticality of electromagnetic dampers.  Based on these performance measures, the device is 

compared to viscous fluid dampers and the practical limitations of the damper are discussed. 

The third contribution of this work is the development of a design methodology for electromag-

netic dampers.  The dimensions and physical parameters of the damper are obtained from the re-

quired building damping performance and available space. 

 As a fourth contribution, this work introduces techniques for the dynamic response analysis of 

structures with electromagnetic dampers.  These techniques follow two approaches to incorpo-

rate the damper model into the structure model, and presume that the structure is modeled as a 

lumped-mass system.  The first approach is a frequency domain characterization of the electro-

magnetic damper that allows its incorporation as an ideal damper in traditional modal analysis 

methods.  The second approach is based on a state-space representation of multiple degree-of-

freedom structures, and facilitates transient analysis incorporating the non-ideal characteristics of 

the electromagnetic damper. 

Finally, this work provides an initial basis for further research in the field of electromagnetic 

dampers applied to buildings and the control of structural motion.  To the author’s best knowl-

edge, this is the first study in which these devices are systematically analyzed and their practical 

viability to the application of buildings and civil structures investigated. 
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1.3 Organization 

Chapter 2 presents a literature review of previous work where electrical machines are proposed 

as dampers, in both structures and other engineering domains.  Chapter 3 chooses the machine 

type for the electromagnetic damper and derives its mathematical model based on quasi-static 

electromagnetic theory.  Chapter 4 presents the feasibility study of the structural electromagnetic 

damper.  Chapter 5 develops the design methodology for the electromagnetic damper, and Chap-

ter 6 presents the mathematical methods to analyze the dynamic response of building structures 

incorporating electromagnetic dampers.  Chapter 7 presents the experimental characterization of 

a scale model electromagnetic damper.  The chapter gives the descriptions of the experiments 

and their corresponding mathematical models, follower by the results and discussion of the re-

sults from computer simulation and the physical experiments.  Finally, Chapter 8 presents the 

conclusions and future work recommendations. 



 19

Chapter 2        

Electromagnetic Damping Literature Review 

2.1 Introduction 

Electromagnetic (electromechanical) devices, other than eddy current dampers, have been used 

and studied mainly as either force actuators or generators of electrical energy.  Their study as 

passive dampers has been limited to educational systems (Podrzaj et al.  2005) or to regenerative 

braking or regenerative damping systems.  The term “regenerative damper” (Fodor and Redfield 

1992) refers to devices that extract usable energy while providing considerable damping, similar 

to regenerative braking that extracts usable energy from the braking process. 

Regenerative dampers are typically (force) actuators in a control system serving a dual purpose 

depending on their operational state: they counteract the disturbance using energy from an en-

ergy source or energy storage device, or they transfer energy from the disturbance to an energy 

storage device.  Regenerative damping has been studied mostly for vehicle applications, but 

some studies have been made of their possible application to civil structures (Nagem et al.  1995; 

Nerves 1996; Scruggs 1999; Sodano and Bae 2004). 

2.2 Electromagnetic Damping in Structures 

Electromechanical machines in civil structures have traditionally been used as force actuators.  

Recently, electric machines have been proposed as regenerative devices in order to reduce the 

energy requirement of the active control system used to mitigate the effects of disturbances such 

as wind and earthquake.  A review of these proposals is presented in the following paragraphs. 

Studies of structural eddy current dampers are limited to small scale structures, such as beams 

and thin membranes (Sodano and Bae 2004).  Eddy current dampers are electromagnetic devices 

that dissipate energy as heat on a conductor moving inside a magnetic field.  Eddy current damp-

ing has not been applied to large scale civil structure, and is used primary as a braking mecha-

nism in magnetic levitation applications and high-speed vehicles (Jang and Lee 2003) 
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Henry and Abdullah (2002) and Jang (2002) proposed a structural electromagnetic damper simi-

lar to a mechanical tuned mass damper (TMD).  In this device, permanent magnets are attached 

to a big moving mass, while coils attached to the building structure move inside the magnetic 

flux created by the magnets, inducing the damping force. 

Nagem (1995) proposed an electromechanical vibration absorber as a way of avoiding the large 

amplitude mechanical oscillations of conventional mechanical vibration absorbers.  In the pro-

posed realization, he replaced the secondary mechanical oscillator in the absorber by an electro-

mechanical transducer (voice-coil) and a resonant electrical circuit (Series RLC circuit).  The 

system was tested experimentally using a model vibrating cantilever beam and was shown to 

dramatically reduce the vibration amplitude near the beam resonance frequency. 

Nerves (1996; Nerves and Krishnan 1996) studied the feasibility of using electric actuators as 

regenerative devices to provide active control of civil structures.  He proposed a rotational brush-

less DC machine as a regenerative actuator coupled to a hybrid mass damper attached to the 

structure.  The system behavior was simulated in a single-degree-of-freedom structure, a fixed-

base multistory structure and a base-isolated multistory structure.  The simulations were per-

formed using various active control strategies and showed that the use of regenerative electric 

actuators reduces the power and energy requirements of the control system, making it a viable 

alternative for active control.  The simulated energy reduction varied from approximately 20% to 

70% depending on the control method and disturbance signal, with sliding-mode control often 

showing the lowest power and energy requirements. 

Scruggs (1999) analyzed the use of proof-mass actuator as a regenerative actuator for mitigation 

of earthquake disturbances in civil structures.  He stated that with the proper control system de-

sign, it is possible to mitigate a disturbance using mostly energy extracted from it.  A perform-

ance measure of the energy capacity required of the electric power source to implement closed-

loop control of the structure was also developed. 

Vujic (2002) studied feedback control strategies that would improve the energy efficiency of an 

active isolation system by providing electrical energy regeneration.  To model the isolation sys-

tem, he used piezoelectric stack and linear electromagnetic (voice-coil) actuators.  Energy regen-

eration was approached as a closed-loop control problem, which was then solved to optimize 
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regeneration. 

2.3 Regenerative Electromagnetic Damping 

Fodor and Redfield (1992) studied regenerative damping in the context of vehicle suspension 

systems.  A lever with a movable fulcrum, called the Variable Linear Transmission, was pro-

posed as the mechanical device to transfer vibration energy from the wheels to an energy storage 

device, in this particular case a hydro-pneumatic accumulator.  Simulations of the system using 

the quarter car model showed that the operation of the regenerative damper closely approximates 

the operation of a passive viscous damper. 

Beard (1993) presented the concept of regenerative isolation as a way to provide active vibration 

control without its external energy requirements.  In a regenerative isolation system (RIS), the 

energy from dissipative portions of the control cycle is stored rather than dissipated, and used to 

complete the active portions of the control cycle.  The general system proposed by Beard con-

sists of three fundamental components: an actuator to absorb and deliver energy to the controlled 

system, an energy-storing device, and a power management device to direct the flow of energy 

from and to the actuator and storage device.  He also suggests that “the designer of a vibratory 

isolator should consider a RIS after passive and semi-active methods have failed, and before 

considering active approaches.”  The regenerative isolation system was studied and simulated 

using a hydraulic realization of the regenerative system.  However, experimental verification was 

performed using an electrical system analogous (same bond graph) to the studied hydraulic sys-

tem.  Since the regenerative system was proposed as an alternative to active control, the author 

ties the usefulness of the regenerative system to its tracking behavior and control power require-

ments. 

Jolly (1993; Jolly and Margolis 1997) explored the diagnosis, design and utility of power con-

serving subsystems, that is, subsystems that are either passive or regenerative.  A mathematical 

analysis of multi-node linear time invariant (LTI) subsystems imbedded within a host LTI sys-

tem using impedance matrices was performed.  Tools for computing bounds on the average 

power absorption by the subsystem assuming lossless regeneration were presented.  An example 

was developed in his thesis for the control of wind response of multi-story structures from a 
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mathematical point of view.  Jolly also showed that the average power absorption of a subsystem 

is essentially the maximum surplus power available for accumulation by the subsystem assuming 

ideal regeneration.  Ideal regeneration could be approximated by constructing the subsystem us-

ing energy storage components and force actuators that utilize a pulse-width modulation type of 

control. 

Practical implementations of regenerative subsystems were investigated by Jolly and Margolis 

(1997).  Regenerative force actuators were studied in practical applications of base-excited sys-

tems and compound mount systems.  Simulation results of the base-excited suspension systems 

exhibit positive average energy absorption regardless of the nature of the excitation, while the 

compound-mount application energy absorption was dependent upon the nature of the input 

spectrum.  Furthermore, experimental results of the suspension system showed that the device 

could create forces under conditions that passive and semi-active systems cannot. 

Okada and Harada (Okada and Harada 1995; Okada and Harada 1996; Okada et al.  1996) pro-

posed the use of an electro-dynamic actuator as a regenerative damper.  A linear DC motor was 

used as the regenerative actuator, and two batteries, connected to form a bipolar power supply, 

were used as the energy storage element in the system.  During high-speed motion, the motor 

voltage is greater than the battery voltage and the system generates electric power, which is 

stored in the batteries.  During low speed motion, the voltage generated at the motor is smaller 

than the battery voltage and the system was operated either as a passive damper, where the 

power was dissipated by resistor; or as an active damper, where the motor operates as the force 

actuator in closed loop control system.  The authors also proposed the use of the system as a re-

generative vehicle suspension system with active control used during low speed motion.  The 

system was simulated and tested experimentally on a single degree-of-freedom system, using the 

mass of the motor stator as the system mass.  Experimental and simulation results showed a re-

generation ratio of up to 25% around the resonant frequency when regenerative and passive 

damping was used. 

Okada et al.  (1998) presented the application of an electro-dynamic actuator for the regenerative 

control of a moving mass vibration damper.  The actuator was installed between the main mass 

and the auxiliary mass.  The mass, stiffness and damping coefficients of the auxiliary system 



 23

were designed using the Den Hartog optimum tuning condition.  Simulation results showed that 

the regenerated energy was bigger when the equivalent-damping coefficient of the actuator is 

smaller than the optimal damping ratio.  Simulation and experimental results also showed that 

energy was regenerated when big excitation was applied and damping was added to the system.  

No energy was regenerated for small excitations. 

Suda, Nakano et al.  (Suda et al.  1998; Nakano et al.  1999; Nakano et al.  2000) proposed a 

method of vibration control using separate actuator and regenerative damping devices.  In this 

scheme, the electric energy regenerated in a primary system is stored in a capacitor and then used 

by the actuator to control vibrations in a secondary system.  The method was applied to the ac-

tive vibration control of a truck’s cab.  The energy used for the active control of the cab suspen-

sion of a truck was obtained from another subsystem in the truck, the chassis suspension.  A 

generator was installed in the chassis suspension to provide damping and regenerate vibration 

energy.  The regenerated energy was stored in a condenser to be utilized by the cab suspension 

actuator.  The simulations showed that the self-powered active cab suspension had better isola-

tion performance than the one achieved by semi-active and passive isolation systems alone. 

Graves (2000) also studied energy regeneration in vehicle suspension using electromagnetic de-

vices.  He proposed a generalized electromagnetic topology to assist in the design of optimized 

regenerative dampers.  Linear and rotational damping devices as well as the electric and mag-

netic circuits of regeneration devices were studied and compared.  He found that both rotational 

and linear devices were suitable to as regenerative devices.  Rotational devices were better suited 

to provide mechanical amplification of damping and regeneration was easier to achieve using 

rotational devices, but with a negative effect on vehicle high frequency dynamics. 

Kim (2002) improved the damping capability and efficiency of the electro-dynamic regenerative 

damper presented by Okada et al.  by introducing a pulse-width modulated step-up chopper cir-

cuit between the actuator and charging circuit.  This circuit improved the low frequency (low 

speed) regenerative capabilities of the device by decreasing the regeneration dead zone caused 

when the generated voltage is lower than storing device potential.  The proposed damper was 

applied to an active mass damper system, and validated experimentally using a moving coil lin-

ear motor and springs. 
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2.4 Electromagnetic Damper Modeling 

Analysis of electric machines as dampers is limited to simplified equations relating the damping 

coefficient to the machine constants and the circuit resistance when the damper is connected to a 

energy storage capacitor (Okada and Harada 1995; Podrzaj et al.  2005).  This description makes 

no attempt to describe the damping coefficient in terms of the physical parameters of the ma-

chine, such as size and magnetic properties.  Detailed analyses of linear machines presented pre-

viously in the literature are tailored to the machine operating either as a motor or as a generator.  

Therefore, the goal of the majority of the analyses was to calculate the output (maximum and 

average) of the machine, namely the thrust force for motors, and electrical power output and ef-

ficiency for generators, not the equivalent damping coefficient that will result when the machine 

operates as a damper. 

Various analytical methods have been pursued in the literature to analyze tubular linear perma-

nent magnet machines.  Analytical methods provide insight into the relationship between design 

parameters and the machine performance that is not normally gained using more accurate nu-

merical techniques (Wang et al.  2001), such as finite element or finite difference methods.  The 

first analytical studies generalized rotational machine equations to linear machines (Boldea and 

Nasar 1987; Boldea and Nasar 1987; Deng et al.  1987) and assumed sinusoidal excitation as 

well as sinusoidal distribution of the magnetic fields.  More recent analyses have been based on 

different approaches to solve Maxwell’s equations. 

Analyses based on magnetic vector potentials have been performed and found to be in good 

agreement with finite element analyses.  However, the field solutions in cylindrical machines 

involve Bessel functions and the solution of multiple linear equations to determine the coeffi-

cients of the solution functions (Zagirnyak and Nasar 1985; Kim et al.  1996; Wang et al.  1999; 

Wang et al.  2001; Amara et al.  2004). 

Another approach has used integral equations methods to convert the device components into 

equivalent electrical networks.  These methods have been shown to be well suited to moving 

conductor devices and the modeling of electromechanical devices coupled to external electric 

circuits, but have the disadvantage of being characterized by full matrices that might require ex-

tensive computations (Barmada et al.  2000).  The complexity of these equations takes away the 
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practical insight that would be expected from an analytical model. 

Finally, lumped parameter magnetic network (magnetic circuit) methods have also been used to 

model tubular machines.  These methods are based on the magneto-static field equations and 

provide simplified equations that show the dependence of the machine performance on the main 

geometrical parameters, under the limitations stemming from modeling idealized machines.  In 

order to account for non-ideal aspects of the modeled machines, parameter derived from experi-

mentation or numerical calculations are introduced into the model equations (Coutel et al.  1999; 

Bianchi et al.  2001; Canova et al.  2001) 

2.5 Summary 

Electromagnetic machines used for motion control purposes are mostly used as actuators or as 

regenerative devices, the most common being the braking systems used in electric vehicles.  

When the regenerative device is not used in a braking system, it is used as a dual purpose device 

that provides actuation and reduces the external power requirement of the active control system. 

The majority of regenerative dampers proposed in the literature are for vehicle applications.  

Current literature shows that regenerative damping systems have been simulated and experimen-

tally validated using small scale systems.  Application of regenerative dampers to structures is 

currently limited to theoretical studies, numerical simulations, and small scale models.   No large 

scale experiments or tests have been conducted. 

While each of the studies proposed new possibilities for regenerative damping, researchers have 

not focused on the application of electromechanical machines as passive structural dampers, 

which is the primary contribution of the current work. 
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Chapter 3        

Electromagnetic Damper Modeling 

3.1 Introduction 

This research develops a new kind of structural damper, the passive electromagnetic damper.  A 

passive electromagnetic damper is an electromechanical device that provides an opposing force 

to the imparted movement without requiring external electrical energy, unlike typical electric 

machines operating as motors or actuators.  Similar to an electric generator, the electromagnetic 

damper converts kinetic energy into electric energy.  However, there is an important difference: 

the purpose of the damper is to reduce significantly, if not completely, the motion of the mover, 

while the purpose of the generator is to provide electrical energy to the devices in the electric 

circuit to which the generator is connected without detaining the mover. 

This chapter presents the analysis of the electromagnetic damper as a discrete device.  Sections 

§3.2 and §3.3 provide the background for this analysis.  The first section introduces the topology 

of the machine and the selection of a linear tubular permanent-magnet machine as the electro-

magnetic damper, while the later section introduces the quasi-static electromagnetic theory used 

to develop the mathematical model in section §3.4.  In this latter section we also show that the 

force-velocity relationship of the tubular electromagnetic damper is similar to that of an ideal 

mechanical damper where the force dF  is directly proportional to the applied velocity v   

 vcF dd =  (3.1) 

where dc , the damping coefficient, will be determined by the geometric, magnetic and electric 

properties of the device, and is characterized by the electric machine constant and the impedance 

of the electric circuit connected to the device.  Finally, section §3.5 examines the behavior of the 

electromagnetic damper using this mathematical model. 
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3.2 Electromagnetic Damper Machine Topology 

Electric machines are classified in two main groups based on the type of motion provided by the 

mover: rotational motion machines and linear motion machines.  The underlying principles are 

the same for both groups; they differ only in the construction and operation details.  The type of 

motions encountered in a structure, namely lateral deflections and inter-story drifts, are linear in 

nature.  Therefore, we have chosen a linear motion machine for the electromagnetic structural 

damper.  The use of a linear machine simplifies the mechanical interface between the damper 

and the structure since it requires no mechanisms to convert the linear motion of the structure 

into rotational motion, as would be the case with a more common rotational machine. 

3.2.1 Linear Machine Types 

There are two main components in a linear machine: a moving element known as the mover or 

translator, and a static element known as the stator or armature.  Various geometric arrange-

ments are available for linear electric machines, the two basic ones being the planar and the tubu-

lar configurations.  The two geometric configurations are shown in Figure 3.1.  A short internal 

mover is shown for the tubular machine, but external movers can also be used.  The movers can 

also be longer than the stator (Bianchi et al.  2003). 

 
Figure 3.1  Basic Geometric Arrangements of Linear Electric Machines. 

For a structural damper application, a short mover tubular arrangement is favored over a planar 

one because the former is mechanically more rugged, since all the components are enclosed in-

side a piston-like structure.  Also, stray magnetic fields and parasitic forces normal to the direc-

tion of travel of the mover are minimized, if not eliminated, in tubular arrangements due to the 

longitudinal axial symmetry of the device.  Finally, for similar sizes and weights, the force den-
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sity attainable by the tubular machines is greater than that of planar machines (Eastham et al.  

1990; van Zyl et al.  1999). 

Direct (dc) and alternating current (ac) machines are available.  However, the ac ones are the ap-

propriate type of electric machine for structural damping applications due to the oscillatory na-

ture (back-and-forth movements) of structural motion.  Linear ac machines are classified based 

on how the energy conversion process takes place: synchronous, induction, and permanent mag-

net machines (Boldea and Nasar 1997).  In the following paragraphs, the different types are pre-

sented briefly, and their suitability as passive dampers discussed. 

The synchronous machine 

In a synchronous machine, the energy conversion process occurs at a single fixed speed, the syn-

chronous speed (DelToro 1990).  The working magnetic field needed to transfer the kinetic en-

ergy into electric energy as the translator is driven at the synchronous speed is typically produced 

by field windings in the translator powered by dc current.  Permanent magnets can substitute the 

field windings.  When using magnets, the machine will also induce current asynchronously in the 

armature, much like an induction machine.  A synchronous machine is not convenient for struc-

tural damping application because building movement is never at a constant speed (especially 

under earthquake excitation!). 

The induction machine 

The induction machine, similar to most synchronous machines, has windings in both the mover 

and the stator.  However, the mover windings are short-circuited and not connected to a voltage 

external source as in the synchronous generator.  The induction generator can only operate in 

parallel with an electric power system or independently with a load supplemented with capaci-

tors (Beaty and Kirtley 1998).  To generate a moving magnetic field, the armature winding needs 

an excitation ac current.  This excitation current induces a working emf in the translator winding 

by transformer action.  When this excitation current is initially applied, the generator operates as 

a motor at a speed lower than the synchronous speed of the machine.  If the mover is forced to 

travel at a speed higher than the synchronous speed, power is transferred from the mover to the 

stator and converted into electrical energy (DelToro 1990). 
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The permanent magnet machine 

In a permanent magnet machine, the working magnetic field is created using permanent magnets 

mounted on either the translator or the stator of the generator.  The magnetic flux is changed by 

varying the magnetic field across the coils, by changing the magnetic permeability of the flux 

path for the magnetic field, or by moving the magnet relative to the coil. 

From the different types of linear machines presented, a tubular permanent magnet device is fa-

vored as an electromagnetic damper for building structures.  Both the synchronous and induction 

machines need some sort of external excitation to convert the kinetic energy imposed to the 

mover into electrical energy, whether the permanent magnet machines are self-excited.  This is 

particularly important for our purposes, given the intended applications of the machine: to miti-

gate the effects of wind and earthquakes on buildings. 

3.2.2 Machine Topology  

There are three general configurations of permanent magnet machines, as depicted in Figure 3.2: 

(a) moving coil, (b) moving iron, and (c) moving magnet.  Though Figure 3.2 shows short inter-

nal mover tubular machines, the configurations are operational and independent of the machine 

geometric arrangement. 

 
Figure 3.2  Permanent-Magnet Linear Machine Configurations. 

In the moving coil configuration, the magnets are stationary in the armatures and the coils are 

placed on the mover, similar to a typical loudspeaker.  Brushes or flexible coils are needed in 

order to extract the electric energy induced in the coils as they move through the magnetic field. 
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The moving iron configuration has both the coils and magnets placed in the armature.  Moving 

an iron piece changes the magnetic flux linkage by changing the permeability of the space in the 

magnetic field.  This configuration is rugged and easy to fabricate, but has a higher mover mass 

than the other two configurations presented.  Also, the attainable force per unit volume is lower 

than that of the moving coil or magnet machines (Arshad et al.  2002). 

The last configuration is the moving magnet machine.  In this configuration, the mover contains 

the permanent magnets while the armature houses the coils.  Its operation is similar to that of the 

moving coil but with the roles of the stator and mover reversed.  No electrical connection to the 

mover is required.  As a structural damper, the moving magnet configuration seems the more 

suitable of the three configurations presented in Figure 3.2.  The stator of the electromagnetic 

damper contains the windings, which are cylindrical coils, while the translator contains the ma-

chine’s permanent magnets. 

 
Figure 3.3  Tubular Machine Slot-less and Slotted Stator Illustrations 

The armature can be slot-less or slotted, as illustrated in Figure 3.3.  Slotted armatures usually 

have higher force density than slot-less ones, but may present tooth ripple cogging force (Wang 

et al.  1999) as well as a variation of the coil inductance as a function of the relative position of 

the armature and the mover (Wang and Howe 2004). 

The translator typically has permanent magnets with axial or radial magnetization (Figure 3.4).  

The radial magnetization uses ring magnets polarized in the radial direction or slightly curved 

surface mounted rectangular magnets with no pole shoes. 
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Figure 3.4  Tubular Machine Mover Permanent Magnets Configurations. 

Axial magnetization uses cylindrical magnets polarized lengthwise, which are placed between 

ferromagnetic cylindrical pole shoes that are used to guide the magnetic flux over the air gap into 

the stator.  In both cases, the magnets are placed on the mover support in such a way to make the 

magnetic polarities on the surface of the mover alternate in the axial direction.  It has been shown 

(Wang et al.  2001) that both magnetization schemes result in similar machine performance.  In 

this project, an axial magnetization machine is used as the electromagnetic damper prototype. 

Table 3.1 summarizes the selections for the machine that becomes the electromagnetic damper, 

and that is analyzed and modeled in this research. 

Table 3.1  Electromagnetic Damper Configuration 

Machine Type Linear Displacement 
Working Field Permanent Magnet 
Configuration Short Internal Mover 

Geometry Tubular 
Stator Type Slot-less 
Mover Type Axial Magnet 

 

3.3 Electromagnetic Theory Background 

The mathematical description of any electromechanical system can be divided in two parts: a set 

of electrically based equations generalized to include the effects of electromechanical coupling, 

and a set of mechanical based equations, which include forces of electromechanical origin.  The 

electrical equations are based on electromagnetic theory and Maxwell’s equations, while the me-

chanical equations are based on Newton’s laws (Woodson and Melcher 1968). 
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The electromagnetic damper is a quasi-static magnetic field system and therefore is governed by 

quasi-static electromagnetic theory.  The relevant equations used while deriving the damper 

mathematical model are presented in the following paragraphs. 

Lorentz’s law quantifies the force F
r

 experienced by a current i  moving at a given velocity in 

the presence of a magnetic field B
v

.  When the current moves along a direction l
r

 the Lorentz’s 

equation is 

 ∫ ×= BlidF
vvv

 (3.2) 

Ampère’s Law states that the line integral of a magnetic field intensity H
v

around a closed con-

tour C equals the net current ( J
v

 being a current density) passing through the surface S enclosed 

by said contour (Haus and Melcher 1989).  Under quasi-static conditions, the integral form of 

Ampère’s law is 

 ∫∫ ⋅=⋅
SC

sdJldH vvvv
 (3.3) 

Faraday’s Law states that electric fields E
v

 can be generated by time-varying magnetic fields B
r

 

(Woodson and Melcher 1968).  The derivation of the damper equation uses the integral form of 

this relationship 

 ∫∫ ⋅
∂
∂

−=⋅
SC

sd
t
BldE v
v

vv
 (3.4) 

In both Ampère’s law and Faraday’s law equations, the surface S is enclosed by the contour C, 

with vector ld
v

 parallel to the contour and the vector sdr   perpendicular to the surface. 

Moreover, the magnetic flux continuity condition has to be satisfied.  This condition states that 

there is no net magnetic flux emanating from a given space.  Mathematically, this is expressed as 

 ∫ =⋅
S

sdB 0rr
 (3.5) 
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where the vector sdr  is perpendicular to the surface S enclosing an arbitrary volume V. 

Finally, two constitutive relations are required to fully describe quasi-static magnetic systems: an 

electrical and magnetic relation.  The electric relation is Ohm’s law which relates the induced 

free current density J
v

 in a material to the applied electric field E
v

 and the electric conductivity 

σ   of the material 

 EJ
vv

σ=  (3.6) 

The magnetic constituent relation between the flux density B
r

 and the magnetic field intensity H
r

 

is commonly expressed as, 

 )(0 MHB
vvv

+= µ  (3.7) 

where 7
0 104 −×= πµ H/m is the permeability of free space and M

r
 is the magnetization density 

that accounts for the effects of magnetizable materials.  Normally the magnetization density is 

proportional to the field intensity, and the magnetic constituent relation can be written as 

 HB
vv

µ=  (3.8) 

where µ  is the permeability of the material. 

For non-magnetic materials, 0µµ =  for all practical purposes, while for soft ferromagnetic mate-

rials, the permeability is approximated by rµµµ 0= ,where rµ  is the relative permeability of the 

material (El-Hawary 2002) and is typically much greater than unity.  For hard ferromagnetic ma-

terials (permanent magnets) the permeability is not constant, but is a function of the magnetic 

field intensity H
r

. 

The permanent magnet relationship between the flux density and the field intensity is typically 

represented by a hysteresis loop like the one shown in Figure 3.5.  The first quadrant represents 

the initial magnetization of the magnet, while the second quadrant, known as the demagnetiza-

tion curve of the magnet, represents the region in which the magnet typically operates.  That is, it 

is the region where the magnet performs work against an applied reverse field. 
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Figure 3.5  Typical B-H Hysteresis Loop for Permanent Magnet Materials. 

 

Two points in the demagnetization curve are of interest when characterizing the performance of a 

magnet: the remanence or residual flux density remB  (point b); and the coercivity force cH  

(point c).  To simplify analytical estimations, a straight line passing through those two points 

usually approximates the demagnetization curve 

 mrecremm HBB µ+=  (3.9) 

where cremrec HB=µ  is known as the recoil permeability. 

The point ),( mm BH  of values of field intensity mH  and flux density mB  at which a magnet is 

biased when used as a source of magnetic flux is known as the operating point of the magnet.  

This point moves along the demagnetization curve and is usually not known a priori, and is de-

termined by the system in which the magnet operates.  The system is described by a load line, an 

equation that relates the magnet’s field intensity to its flux density in terms of the material and 

geometric properties of the system.  The intersection of the load line and the demagnetization 

curve locates the operating point of the magnet. 
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3.4  Electromagnetic Damper Model Derivation 

The mathematical model derived in this section quantifies the damping coefficient of the elec-

tromagnetic damper given the geometric, magnetic and electric characteristics of the device.  The 

electromagnetic equations presented previously are applied to a linear moving magnet tubular 

machine like the one shown in Figure 3.6 in order to derive its analytical model.  This machine is 

similar in construction to the scale prototype used for the experimental characterization of the 

device (Chapter 6 and 7) and has the following characteristics: 

 
Figure 3.6  The Prototype Electromagnetic Damper. 

1. It has a short translator moving inside the stator. 

2. The translator has a single cylindrical permanent magnet with axial magnetization.  The 

magnet is located between two ferromagnetic pole shoes. 

3. The armature is slot-less with a single phase winding over its length.  The winding is made of 

two coils wound in opposite directions and connected in series. 

4. The end supports are made of non-magnetic material. 

5. The length of each coil equals the length of the translator. 

6. The length of the magnet equals the stroke of the machine, and is smaller than the translator 

length. 

The analysis performed in this section is different to previous studies in that it describes the elec-

tric machine when used as a passive damper.  The purpose of this analysis is to express the ma-
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chine reaction force to an applied velocity.  Analyses of linear machines presented previously in 

the literature are tailored to machines operating either as motors or as generators.  Therefore, 

their goal is to calculate the output (maximum and average) of the machine, namely the thrust 

force for motors, and electrical power output for generators. 

Table 3.2  Electromagnetic Damper Parameters. 

Name Symbol Description 

Pole pitch τp 
It’s the distance between changes in polarity. The distance between adja-
cent pole shoes or radial magnets. 

Magnet Length τm The actual length of the magnets. It is smaller or equal than the pole pitch. 
Pole Shoe Width τf The width of the pole shoes.  mpf τττ −=  
Air gap thickness g The distance between the mover and the armature windings. 
Number of poles p Even number of poles in the machine.  Also, number of coils per phase. 
Coil height hw Height of the coils in the armature or depth of armature slots. 
Coil width τw Width of each coil in the armature. 
Winding pitch τwp The distance between coils on the same electrical phase. 
Wire radius rw Radius of the coil wire. 
Coil turns Nw Number of turns on each coil. 
Active coil turns Na Number of turns on each coil intercepted by the pole shoe flux. 
Mover radius rm Radius to the outside surface of the magnets or the pole pieces. 
Armature radius ri Radius to the inside surface of the armature. 
Stator yoke radius rs Radius to the inside surface of the stator yoke or ferromagnetic shell. 
Machine radius re Radius to the outer surface of the motor (armature shell or stator yoke) 
Yoke thickness hy The thickness of the armature shell. 

A half-section (not to scale) of the device is presented in Figure 3.7.  This figure shows the di-

mensions and integration paths used in the analysis presented below.  Table 3.2 describes the 

geometric parameters of the damper including two coil parameters that not shown in the picture. 

 
Figure 3.7  Damper Half-Section Diagram showing Dimensions and Analysis Integration Paths. 
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3.4.1 Permanent Magnet Operating Point 

Applying Ampère’s law equation to the contour C shown in Figure 3.7 gives 

 0222 =⋅+⋅+⋅+⋅+⋅=⋅ ∫∫∫∫∫∫
Shell

s
Coil

c
Gap

g
Poles

p
Magnet

m
C

ldHldHldHldHldHldH
rrrrrrrrrrrr

 (3.10) 

The above equation is solved under the following assumptions: 

1. The magnetic field H
v

 is parallel to ld
r

, which follows the direction of contour C. 

2. The magnetic field in the air gap is purely radial. 

3. The permeability of copper is similar to that of air; therefore the effective air gap is the 

thickness of both the actual air-gap and coil. 

4. A radial field approximates the magnetic field in the pole shoes. 

5. The magnetic field in the stator yoke (shell) and the magnet are purely axial. 

6. Magnetic leakages in the system are neglected. 

7. There is not magnetic saturation in the materials.  The magnetic field and the magnetic 

flux density outside the magnet are related by rBH µµ0= . 

 Based on the above assumptions, equation (3.10) can be written as 
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 (3.11) 

where 0µ  is the permeability of free space and Feµ  is the relative permeability of iron (or steel) 

used for the stator shell and pole shoes. 

When the various magnetic flux densities in the machine are expressed in terms of the magnet’s 

flux density mB , the above equation becomes the machine load line, which determines the per-

manent magnet operation point. 

The magnetic flux density sB  in the stator yoke is determined by applying the continuity condi-

tion to an enclosing surface S1 that intercepts the yoke and the magnet, creating the cross sec-

tional areas sA  and mA  perpendicular to fields sB  and mB , respectively. 
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Similarly, the air-gap flux density is found using the cylindrical surface S2 of radius r partially 

enclosing the magnet.  This surface intercepts the magnet and gap fields perpendicularly; there-

fore the gap flux density is given by 
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Finally, using the cylindrical surface S3, which creates intercept surfaces pA  and mA  that vary 

with the radius r of S3, the pole shoes flux density is found as  
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Substituting the results from (3.12) thru (3.14) into (3.11) yields the following load line, 
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The intercept of the load line equation and the demagnetization curve determines the operating 

point.  Approximating the demagnetization curve with (3.9) produces the magnet’s flux density 
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Equations (3.15) and (3.16) define the operating point of the magnet in the slot-less electromag-

netic damper.  The flux densities in the various part of the device are then obtained by substitut-

ing the result from the above equation into the corresponding equation. 
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3.4.2 Machine Force 

We use Lorentz law (3.2) to calculate the force exerted on the mover due to a current circi  flow-

ing through the coils.  This current induces a magnetic flux inside the coil in the axial direction, 

perpendicular to the air-gap flux produced by the permanent magnet.  The effect of this current 

induced field on the air-gap field is neglected. 

Let apN  the number of active coil turns, that is the number of turns crossing the magnetic flux at 

any given time, then the force is given by 

 ∫ ×= gcircad BldipNF
rr

  (3.17) 

where ld
v

 is the direction tangential to the coil and gB
r

 is magnetic flux density through the coil 

in the radial direction, thus perpendicular to the coil.  Substituting the value (3.13) for gB  into 

the above equation gives the damper force in terms of the circuit current and device parameters 
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The term fmmaft rBpNK τπ 2
, =  is known as the force constant of the machine and has, in the SI 

system, units of [N/A].  In a passive damper the circuit current, and therefore the force, is deter-

mined by the electric circuit connected to the damper and the voltage induced by the translation 

of the mover. 

3.4.3 Open Circuit Induced Voltage 

To facilitate the derivation of the induced voltage or electromotive force on the coil due to the 

mover translation, let us “flatten” the machine as shown in Figure 3.8 so that the coils are open 

conductors perpendicular to both the air gap magnetic flux and the mover translation. 
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Figure 3.8  Conceptual Flattening of the Tubular Electromagnetic Damper. 

Consider a contour C on the flattened damper, as shown in Figure 3.9, such that one side coin-

cides with a single coil turn under open circuit condition (i.e.  0=circi ) and its enclosed surface S 

overlaps the translator pole shoe, and therefore the working air gap flux, by a distance x  in the 

axial direction.  The right side of Faraday’s equation (3.4) becomes 
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where v  is the relative velocity between the translator and the coil.  The gap flux density is as-

sumed time invariant and is given by equation (3.13). 

 
Figure 3.9  Flat Damper with Single Turn Coil and Integration Contour. 

 The left side of Faraday equation is just the potential difference, or voltage, between the open 

ends of the coils,  
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Equating the two sides gives the induced or back emf voltage on a single turn of the coil.  Since 

there are apN  turns connected in series that are being linked by the air gap magnetic flux, the 

total open circuit voltage induced in the damper is 
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The term fmmaet rBpNK τπ 2
, =  is known as the voltage or electromotive-force (emf) constant 

of the machine and has the same numerical value as the force constant, but with units expressed 

now as [Vs/m].  Notice that dimensionally1, N/A and Vs/m are equivalent since the unit of New-

ton is equivalent to CV/m. 

The damper machine constant is thus naturally defined as ftett KKK ,, == .  This machine con-

stant is expressed below in terms of the geometric and magnetic properties of the device as 
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 (3.22) 

This constant determines, together with the electrical circuit parameters, the force-velocity con-

stitutive relation of the electromagnetic damper. 

3.4.4 Non-Ideal Winding Parameters 

When current flows through the coils (circuit is closed) the non-ideal properties of the windings 

become evident and need to be considered.  First, the finite conductivity of the winding causes a 

voltage drop in the coils, following Ohm’s law, dissipating energy and making the terminal volt-

age of the device lower than the voltage induced by the translator motion.  Second, an axial 

magnetic flux inside the coil develops as a result of the current, and it manifests itself as a circuit 
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inductance.  This inductance introduces a delay between the induced emf and the current which 

translates in a delay between the applied movement and the reaction force.  

The resistance of each coil is computed by adding the total number of turns in the coil wN  and 

the average radius of the coil 2)( si rr + .  Since all the coils are connected in series, the total 

winding resistance is given by 
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+
=  (3.23) 

where σ  is the conductivity of the coil material (copper), wr  is the radius of the coil wire cross-

section, and p  is the number of poles or coils. 

In general, the inductance varies with the relative position of the mover inside the winding, since 

the material inside the winding and hence the flux produced by the current changes.  However, 

when the length of the translator equals the length of the coil ( fmw τττ 2+= ) and its movement 

is constrained as to avoid the edges of the winding, the coil inductance is independent of position 

and can be approximated as, 
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where the geometric variables are as defined beforehand in Table 3.2 and Feµµ0  is the perme-

ability of iron.  For the sake of continuity in the presentation, the derivation of (3.24) is presented 

in appendix A together with assumptions and approximations used. 

3.4.5 Two-Port Model 

Based on the relationships derived in the preceding subsections, the electromagnetic damper can 

be represented as a two-port device (Figure 3.10) coupling the mechanical and electrical domains 

via an ideal transformer relationship 

                                                                                                                                                             

1 Albeit the same, in practice the values measured for the back-emf and force constants might be slightly different 
due to losses not accounted for in their model. 
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where tK  is the damper machine constant defined by equation (3.22). 
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Figure 3.10  Representation of the Electromagnetic Damper Two-Port Device. 

The coil resistance and inductance model the non-ideal characteristics of the device in the elec-

tric side.  Losses of mechanical origin, such as friction, are neglected as these losses can be mod-

eled as part of the mechanical network attached to the damper. 

3.4.6 Force-Velocity Relationship 

When a velocity is prescribed to the damper, the electrical load connected to the damper deter-

mines the relationship between the circuit current i  and the induced emf e .  If the load is a resis-

tor loadR  then the circuit equation is 

 
dt
diLiRRe coilloadcoil ++= )(  (3.26) 

Substituting the transformer relationships into the above equation and rearranging terms results 

in the force-velocity constitutive relation for the passive electromagnetic damper 

 vKFRR
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L tdloadcoil

d
coil
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From the mechanical (structural) point of view, the electromagnetic damper behaves as a linear 

mechanical damper, with a time delay component, whose properties are set by the damper ma-

chine constant and the electrical circuit components.  The solution to the damper equation, and 

therefore the value of the reaction force, depends on the form of the velocity function, v.   
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3.5 Electromagnetic Damper Model Behavior 

3.5.1 Sinusoidal Response 

If the applied velocity profile has a sinusoidal form )cos(ˆ tvv ω=  then the force response is 

composed of a transient term and a sinusoidal term, 
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where loadcoilcirc RRR +=  and the coefficient ℑ  depends on initial conditions. 

After the transient term fades away, the steady-state damper force is also sinusoidal with a time 

shift in relation to the applied velocity signal.  The form of the force-velocity relationship is 

similar to that of an ideal damper (3.1), with the exception of the phase shift, where the damping 

coefficient and phase shift (time delay) are given by 
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Here, circcoild RL=τ  is defined as the damper time constant. 

The equations above show that for sinusoidal excitation, the magnitude of the damping coeffi-

cient and the phase shift angle depend not only on the systems components, but also on the fre-

quency of the excitation signal. 

A decrease in frequency minimizes the inductance effect, so the damping coefficient approxi-

mates circt RK 2  while the phase shift vanishes.  For a sinusoidal excitation, an ideal damper ap-

proximates the electromagnetic damper under two cases: when the coil inductance is much 

smaller than the circuit resistance; or the frequency of excitation is small compared to the device 

time constant. 
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3.5.2 Damper Force-Velocity Relationship 

The relationship between the force and the velocity presents a time delay, or phase shift, caused 

by the inductance of the coil.  This phase shifts causes the force-velocity curve to deviate from 

the straight line expected from an ideal damper.  For a given frequency of excitation, the force 

velocity curve is elliptical in shape, and a general example is presented in the following two fig-

ures.  The ellipse orientation and shape vary according to the relative values of inductance and 

resistance in the network. 
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No-Delay Damping 

 
Figure 3.11  Force-Velocity Response with Varying Resistance and Fixed Inductance. 

Figure 3.11 shows the effect of changing the circuit resistance while keeping the inductance con-

stant.  In Figure 3.12, the inductance varies while the resistance is kept constant.  Both figures 

show that as the circuit impedance becomes more resistive the ellipse becomes flatter, approxi-

mating the ideal damper curve (a straight line).  In addition, as the total impedance increases, the 

slope of the ellipse’s major axis decreases, i.e.  the damping coefficient decreases with increasing 

impedance. 
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Figure 3.12  Force-Velocity Response with Varying Inductance and Fixed Resistance. 

3.5.3 Damper Energy Dissipation 

The energy (power) dissipation capability of the electromagnetic damper depends on the total 

circuit resistance.  Energy imparted to the device will dissipate as heat both internally on the coil, 

and externally on the load resistance. 

For a given instantaneous damper speed v, the current in the circuit is given by 

circtcirccirc RvKRVi == .  Expressing the load resistance in terms of the coil resistance as 

coilload RR α=  so that the total circuit resistance is )1( α+= coilcirc RR  , then the power dissipation 

in the resistances in terms of the damper coefficient and velocity is given by 
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where max,dc  is the damping coefficient obtained at short-circuit condition. 

Figure 3.13 shows the normalized variation in internal and external power dissipation in the 

damper as a function of the ratio of load resistance to coil (internal) resistance. 
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Figure 3.13  Damper Power Dissipation as a Function of Load Resistance. 

The above equations and figure show that as the load resistance increases, the total energy dissi-

pation decreases, but the proportion of energy dissipated externally increases while the internal 

dissipation decreases.  Maximum energy dissipation and damping occurs when the coil is short 

circuited (no load resistance).  Under this condition all the energy is dissipated internally, similar 

to an eddy current damper.  When the load and coil resistances are matched, that is both resis-

tances are equal, the power dissipated on the external load is at a maximum and equals the power 

dissipated on the coil.  At this condition, the damping coefficient and the total energy dissipated 

are half the maximum values obtained with no load resistance. 

The operating temperature of the machine relates directly to the power dissipated internally in 

the device.  To find an estimate of the operating temperature, we assume that under steady-state 
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operation, the temperature is constant throughout the device and the heat generated in the coil 

dissipates to the outside of the machine by convection with the surrounding air.  Therefore, the 

temperature difference between the machine and the ambient is given by the convective energy 

balance equation 

 ( )ambssocoil TTAhP −=  (3.33) 

where ho is the convective heat transfer coefficient around the machine stator, As is the exposed 

machine surface area for heat dissipation, Ts is the stator surface temperature, and Tamb is the am-

bient temperature. 

Substituting (3.31) into (3.33) and assuming that only the external cylindrical surface of the 

damper acts as the dissipation surface, the temperature difference between the machine and the 

ambient under sinusoidal steady state is  
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where v̂  is the sinusoidal velocity amplitude driving the damper.  Note that this temperature dif-

ference is an upper bound temperature, since the heat transfer analysis performed in this section 

is neglecting radiation and heat transfer through the other machine surfaces. 

We can see from the above equation that for a given machine topology, the operating tempera-

ture can be reduced by transferring the dissipation to the external load resistance ( 0>α ), by in-

creasing the convective heat transfer coefficient, or by limiting the amplitude of the driving 

velocity. 

3.6 Summary 

This chapter proposed and analyzed a moving magnet, tubular linear machine as a structural 

electromagnetic damper.  This configuration presents several advantages over other linear ma-

chine configurations, among those the enclosure of all its components in a piston-like assembly 

and the ability to convert the kinetic energy into electric energy without requiring an external 

excitation. 
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This chapter also derived the mathematical model for the tubular permanent magnet damper us-

ing quasi-static electromagnetic theory and demonstrated that the permanent magnet linear elec-

tric machine behaves as a mechanical damper.  The force-velocity constitutive relationship (3.27) 

of the machine is a first-order differential equation with coefficients that depend on the geomet-

ric, magnetic and electric properties of the device.  The damper machine constant, given by 

(3.22), the coil resistance (3.23) and the coil inductance (3.24), together with the load resistance 

connected to the electrical side of the damper make up the coefficients of the damper equation. 

The feasibility of applying this device to full-scale buildings is presented in the next chapter 

from the physical and economical points of view, followed by the design tools needed to apply 

the electromagnetic damper to buildings and to analyze the buildings with this new type of 

dampers. 
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Chapter 4        

Feasibility of the Structural Electromagnetic 

Damper 

4.1 Introduction 

The mathematical model equations of the electromagnetic damper derived in the previous chap-

ter (§3.4) determine the effective damping coefficient of the machine given its dimensional and 

physical parameters, and are the basis for the feasibility study performed in the current chapter.  

To the best of the author’s knowledge, this is the first study of the applicability of the electro-

magnetic damper to full-scale buildings. 

Two performance measures (§4.3) are used to asses the feasibility of the prototype tubular elec-

tromagnetic damper (§4.2) in a building structure: the damping density and the cost.   The first 

value is a measure of the machine volume required to achieve a given damping performance, 

while the second value is a measure of the economic viability of the machine.   The physical 

limitations of the device (§4.4), and its cost (§4.6) are investigated based on these measures, and 

its theoretical performance compared to that of viscous fluid dampers (§4.7).  The benefits from 

using electromagnetic dampers instead of current damping technologies are also discussed 

(§4.8). 

4.2 Prototype Machine Description 

The feasibility study is based on a tubular damper with p poles, like the one depicted in Figure 

4.1.  This machine has the following characteristics: 

• The permanent magnets have axial magnetization.   

• The stator is slot-less with a single-phase winding. 

• There is no change in the polarity through the machine stroke, thus the machine stroke equals 

the magnet length, Strokem l=τ . 
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Figure 4.1  Tubular Electromagnetic Damper with p poles. 

• The length of a coil equals the mover length of a two-pole machine, i.e.  fmw τττ 2+= . 

4.3 Performance and Feasibility Measures 

4.3.1 Damping Density 

The maximum damping coefficient attained by a machine like the one shown in Figure 4.1 is 

proportional to the number of poles p and occurs when the device terminals are short-circuited 

(zero load resistance).   Neglecting frequency and coil inductance effects, the maximum damping 

coefficient is 
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where max,
~

dc , the maximum damping coefficient per pole, depends on the geometric and physical 

properties of the machine pole.   Using a non-zero load resistance causes a reduction in the 

maximum damping coefficient and the energy dissipation (see Figure 3.13), but also shifts the 

dissipation to the external load resistor. 

The volume for the same machine is 

 pVrpV dewd
~2 == πτ  (4.2) 

where re is the external radius of the machine, wτ  is the length of a single coil, and 2~
ewd rV πτ=  is 

the volume per machine pole.   From the above two equations, it can be seen that by varying the 
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number of poles in the machine, the damping coefficient can be changed, but with a correspond-

ing change in the machine volume. 

Although the damping coefficient is a good measure of a damper performance, a better compari-

son measure between different types of damping devices is the damping density, defined as the 

damping capacity per unit volume, 
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This measure is independent of the number of poles used in the machine, and depends only on 

the geometric and physical properties of the material in a single pole of the machine.   In addi-

tion, this measure permits the comparison of the electromagnetic damper with other types of 

dampers, like fluid viscous dampers, as it is a measure of the volume efficiency of dampers.  

This comparison will be made in section §4.7. 

4.3.2 Damping Cost 

The cost estimation of the machine uses the price of commercially available neodymium 

(NdFeB) magnets, and the wholesale price of copper and steel.   Table 4.1 shows the material 

costs used.   Development and manufacturing costs are not taken into consideration. 

The following formula gives the price per pole d$
~

 of the machine, 

 NdFeBNedFeBmCuCuCuFeFeFed VVV $~$~$~$
~

ρρρ ++=  (4.4) 

where iV~ , iρ  and i$  are the volume per pole, density and price, respectively, of the ith material. 

Table 4.1  Sample Prices of EM Damper Materials 

Material Typical Density 
(kg/m3) 

Typical Price 
( per kg) 

Steel 8.0 x103 $0.50 
Copper 8.9 x103 $3.00 

NdFeB Magnet 7.5 x103 $66.00 

Another comparison measure used to evaluate a particular electromagnetic damper design is the 
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damping cost, defined as the price per damping unit, 
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4.4 Damping Capacity Analysis  

This study determines numerically (scripts in Appendix E) the maximum damping density 

achievable by the electromagnetic damper using the equations developed in the previous chapter.   

Table 4.1 lists the properties of the materials used in the electromagnetic damper. 

Table 4.2  Electromagnetic Damper Material Properties 

Material Type Properties 

NdFeB N35 Brem=1.2T, Hc=900kA/m 
Toper=200°C Permanent 

Magnets NdFeB N55 Brem=1.5T, Hc=1080kA/m 
Toper=80°C 

Copper Magnet Wire ρcu=1.77x10-8 Ω-m 
µr=1 

Iron Magnetic Steel µr=2000 
Bsat=2.0T 

Table 4.3 shows the principal dimensions and range of values considered for this analysis.  The 

external radius and coil length of the machine are computed such that the permanent magnet op-

eration point is approximately at the maximum energy product location and the iron’s magnetic 

flux density in the machine is below the iron’s saturation value. 

Table 4.3  Damper Independent Dimensions and Values. 

Parameter Symbol Min.  Value Max.  Value 

Magnet Length (Machine Stroke) τm 5mm 250mm 
Magnet Radius rm 20mm 150mm 

Air Gap g 0.25mm 5.0mm 
Coil Wire Radius rw AWG40 (0.04mm) AWG0 (4.1mm) 

Coil Layers (Coil Height) Nr  (hw) 1 Layer 30 Layers 
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Figure 4.2  Maximum Damping Density as a Function of Air-Gap and Magnet Length (N35 Magnet). 
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Figure 4.3  Maximum Damping Density as a Function of Air-Gap and Magnet Lenght (N55 Magnet). 
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Figure 4.2 and Figure 4.3 show the variation on the maximum damping density as a function of 

air-gap and machine stroke length.   The first figure corresponds to the grade N35 sintered neo-

dymium magnet, while the second figure corresponds to grade N55 neodymium magnet. 

The figures show that the electromagnetic damper is capable of achieving a damping density of 

approximately 2000kN-m-1s/m3 using grade N35 magnets and approximately 3000kN-m-1s/m3 

when using grade N55 magnets.  These limits are for a damper with no-load resistance, that is, a 

short-circuit coil condition.  An increase of the load resistance decreases the damping density 

and energy dissipation capability of the machine. 

N55 grade neodymium magnets have better damping density performance than N35 magnets, 

however they have a lower limit for the operation temperature: 80°C instead of 120°C.  This 

lower operating temperature limits the amount of energy than can be dissipated internally by the 

machine with N55 magnets, and therefore would require special ventilation considerations or 

higher load resistances to shift the energy dissipation outside the device, with the corresponding 

penalty on the damping density value. 

Table 4.4 shows the achievable damping densities when using the N35 magnet for three different 

air gap thicknesses and various magnet lengths.  These damping density values are for two load 

resistance conditions: zero load resistance and matched load resistance.  The table also shows the 

corresponding machine dimensions, coil length and external radius. 

Table 4.4  Achievable Damping Density for Sample Air Gaps and Load Resistances. 

Magnet (mm) Machine  (mm) Damping Density (kN-m-1s/m3) Magnet 
Air Gap 

(mm) Length Radius Length Radius 0 Rcoil 
0.5 50 60 78 80 1683 842 
0.5 50 150 100 180 2191 1095 
1.0 25 60 52.7 74.3 1803 902 
1.0 60 150 117 183 2064 1032 

N35 

5.0 90 150 164 193 1836 918 

Figure 4.4 and Figure 4.5 show the maximum damping density as a function of magnet radius 

and coil wire radius (AWG) for a fixed air gap and magnet length (machine stroke).   Again, all 

the sample figures presented are for the short-circuited machine condition. 
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Figure 4.4  Maximum Damping Density as a Function of Magnet Radius and Wire Gauge (N35 Magnet). 

 
Figure 4.5  Maximum Damping Density as a Function of Magnet Radius and Wire Gauge (N55 Magnet). 
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The last two figures show that the damping density reaches maximum values for magnet radii 

greater than approximately 50mm and coil wire diameters between 10 and 30AWG.  The above 

analysis computed the damping density using the hypothetical values presented in Table 4.3.     

Current manufacturing technology limits the size of neodymium permanent magnets to a radius 

of approximately 50mm and a length of approximately 100mm, therefore the limiting factor for 

the practical damping densities is the permanent magnet used in the machine.   Bigger monolithic 

magnets are available in other materials, such as Anilco or ceramics; however, these materials 

have a substantially smaller energy product than the NdFeB magnets, and therefore result in a 

lower damping performance.  Table 4.5 shows the maximum damping density achievable with 

various permanent magnet materials and the corresponding damping cost, together with their ba-

sic properties values. 

Table 4.5  Performance Comparison with Various Permanent Magnet Materials. 

Material Grade Brem 
(T) 

Hc 
(kA/m) 

BHmax 
(kJ/m3) 

Toper 
(°C)  

Max Density 
(kN-m-1s/m3) 

Damping Cost 
($/kN-m-1s) 

Anilco A902 1.07 119.4 71.6 550 272 $201 
Ceramic C4029 0.41 222.8 32.6 310 227 $72 

N3578 1.21 950 278 200 2296 $77 Sintered 
NdFeB N5563 1.5 1080 438 80 3143 $54 

From the table, we can see that ceramic magnets result in a damping cost similar to NdFeB mag-

nets, but require approximately ten times the machine volume for the same damping perform-

ance.  Anilco magnet machines have a damping density similar to that of ceramic magnets and 

the highest operating temperature, but their damping cost is greater than both ceramic and neo-

dymium based machines.  Neodymium magnets provide the best performance, both in damping 

and in cost, of the various magnetic materials available currently, albeit with the lowest operating 

temperature limit.  In the following section, we determine the limitations imposed on the ma-

chine operation because of operating temperature considerations. 

4.5 Thermal Analysis 

The dependency of the machine temperature on the power dissipated by the tubular electromag-

netic damper was described previously by equation (3.34). That equation can be rewritten in 

terms of the damping density introduced previously in this chapter as  
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where Tκ  is defined as the speed temperature coefficient of the damper. 

The above equation, together with the permanent magnet’s maximum operation temperature, ef-

fectively introduces a lower bound to the maximum velocity at which the electromagnetic 

damper can operate.  Table 4.6 shows the maximum operation velocities for the short-circuited 

electromagnetic dampers considered previously in Table 4.5. 

Table 4.6  Maximum Damper Velocity due to Temperature Limits (ho=5W/m2°C, �=0). 

Material Grade Toper 
(°C)  

External 
Radius (m) 

Damping 
Density 

(kN-m-1s/m3) 

Speed Tem-
perature 

Coefficient 
(°C s2/m2) 

Max. Velocity 
at 25°C (m/s) 

Anilco A902 550 0.175 272 2380 0.5 
Ceramic C4029 310 0.163 227 1850 0.4 

N3578 200 0.178 2296 20.4x103 0.1 Sintered 
NdFeB N5563 80 0.184 3143 28.9x103 0.045 

These velocities are worst-case limits for the EM dampers. By increasing the load resistance, the 

velocity limits also increase as shown in Figure 4.6. This figure shows the velocity limits for the 

electromagnetic damper using N35 magnets at various load resistance conditions at 25°C. 
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Figure 4.6  Maximum Damper Velocity vs. Temperature and Load Resistance (N35 Magnet). 
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The maximum temperature difference shown in the figure (175°C) corresponds to the maximum 

operating temperature of N35 magnets. It is interesting to note that this temperature is below the 

ignition temperature of most construction materials, thus electromagnetic dampers operating un-

der steady-state conditions below the maximum allowable velocities should not be a fire hazard. 

4.6 Economic Analysis 

Table 4.7 shows the estimated costs of the machines presented in Table 4.4, while Figure 4.7 and 

Figure 4.8 show sample plots depicting the variation of the machine cost and  the damping cost 

per pole, respectively, as a function of magnet radius and coil wire diameter.  The estimated 

costs measures correspond to the machines that exhibit the maximum damping density (see 

Figure 4.4 previously) achievable a given magnet and air gap dimensions. 

Table 4.7  Sample Machine Cost per Pole at Maximum Damping Density. 

Magnet (mm)  
Magnet Air Gap 

(mm) Length Radius 

Max.  Damping 
Density  

(kN-m-1s/m3) 

Cost per 
pole 

Damping 
Cost 

0.5 50 60 1683 $285 $108.98 
0.5 50 150 2191 $1779 $79.77 
1.0 25 60 1803 $143 $86.78 
1.0 60 150 2064 $2136 $84.07 

N35 

5.0 90 150 1836 $3212 $91.16 

Both the table and Figure 4.7 show that as the radius of the magnet increases, the cost of the ma-

chine also increases.   Figure 4.8 shows that as the magnet radius increases, the damping cost 

tends to decrease asymptotically to about approximately $80/(kN-sm-1) independently of wire 

diameter. 

The cost estimate is based solely on the cost of the main damper materials: copper for the wind-

ing, iron for the stator and pole shoes, and sintered neodymium permanent magnets for the 

mover.  The cost of supplemental hardware that would be required to build a damper was not 

considered.  In addition, this estimate does not account for R&D and manufacturing costs.  The 

biggest contributor to the price in the machine is the magnet material, both in terms of raw mate-

rial price and quantity required. 



 60

0

50

100

150

0
10

20

30
40
0

200

400

600

800

1000

Magnet Radius (mm)

Machine Cost [g=1.0mm, τm=25mm]

Wire Diameter (AWG)

C
os

t (
$/

po
le

)

 
Figure 4.7  Machine Cost per Pole as a Function of Magnet Radius and Wire Gauge (N35 Magnet). 
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Figure 4.8  Damping Density Cost as a Function of Magnet Radius and Wire Gauge (N35 Magnet). 
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Two main reasons account for the high price of the electromagnetic damper at the time of this 

research.  First, neodymium permanent magnet composition and manufacturing processes are 

currently under patent protection and their production and distribution closely regulated.  Price 

should decrease once these patents expire. 

Second, the damper being still a research device at this time, its price does not reflect the benefits 

of mass production.  The cost estimates were for commercially available magnets quoted at rela-

tively small quantities (about 20,000 units).  Cost should diminish as the damper production 

reaches big enough quantities to take advantage from large-scale reductions in the price of mate-

rials and manufacturing costs. 

4.7 Comparison to Viscous Fluid Dampers 

The comparison of electromagnetic dampers to viscous fluid dampers uses the feasibility meas-

ures presented previously, namely damping density and damping cost.  Two damper designs with 

N35 neodymium magnets and an air gap of only 0.25mm are used for the comparison study. 

 
Figure 4.9  Electromagnetic Damper Performance per Magnet Length and Radius (Fixed Air-Gap). 
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The first damper design uses a magnet with dimensions that can be manufactured using current 

technology, while the second design uses the maximum magnet radius considered previously and 

beyond current manufacturing limits.  The magnet lengths were chosen to maximize the com-

parison measures while minimizing the magnet material.  The selection was based on Figure 4.9, 

which shows a graph of the performance measures in terms of other magnet radii and lengths. 

Table 4.8 shows the design and performance values for the test electromagnetic dampers with no 

load resistance. 

Table 4.8  Sample Electromagnetic Damper Performance Values.  (N35 Magnet, Air-gap=0.25mm) 

Magnet (mm) 
Radius Length 

Diameter 
(mm) 

Coefficient 
(kN-s/m) 

Damping Density
(kN-m-1 s/m3)  Cost/Pole Damping Cost 

($/kN-sm-1) 

51 25 128 1.22 1958 $103 $84.15 
150 50 360 22.3 2190 $1779 $79.62 

The fluid dampers are actual devices manufactured by Taylor Devices Inc.  and installed in the 

San Bernardino County Medical Center, circa 1994, and  in Los Angeles City Hall seismic retro-

fit project, circa 2001 (Rasmussen 1997; Taylor 2003).  Table 4.9 summarizes the manufacturer 

specifications for these dampers while Table 4.10 shows their estimated performance values 

form the manufacturer specifications assuming a linear force-velocity relationship. 

Table 4.9  Taylor Devices Viscous-Fluid Damper Specifications. 

Damper 
Rated 
Force  
(kN) 

Velocity 
(m/s) 

Length 
(mm) 

Diameter 
(mm) 

Volume 
(m3) 

Stroke 
(mm) 

San Bernardino 1423 1.52 3300 336 0.29 1200 
L.  A.  Isolation 1334 1.27 3378 305 0.25 533 
L.  A.  Frame 1000 0.254 1168 305 0.09 102 

 

Table 4.10  Taylor Devices Dampers Performance Values. 

Damper Damping Coefficient 
(kN-s/m) 

Damping 
Density 

(kN-m-1 s/m3) 
Device Cost Damping Cost 

($/kN-sm-1) 

San Bernardino 934 3192 $14000 $15.00 
L.  A.  Isolation 1051 4263 $13000 $12.37 
L.  A.  Frame 3940 46217 $10000 $2.54 
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From the above tables and Figure 4.10 below we can see that the electromagnetic dampers using 

N35 magnets would require at least 1.6 times the volume of the fluid damper to achieve the same 

damping capacity as the dampers used in the San Bernardino County Medical Center or in the 

L.A.  City Hall base isolation system.  Their cost would be slightly over five times higher than 

fluid dampers.  Compared to the dampers used in the frame of L.A.  City Hall building, electro-

magnetic dampers require over 20 times the volume at about 32 times the cost. 
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Figure 4.10  Performance Comparison between Electromagnetic and Viscous Fluid Dampers. 

4.8 Advantages of the EM Damper in Buildings 

The electromagnetic damper in a building provides flexibility not available with current passive 

structural dampers.   First, the dissipation is performed electrically; therefore some of the distur-

bance energy can be dumped away from the device.   Dissipating the energy remotely reduces 

the problems associated with self heating, such as parameter variations and even damage to the 

device, a current problem with fluid dampers, particularly under prolonged cyclic operation 

(Makris 1998). 

Second, the force-velocity characteristic of the electromagnetic damper can be adjusted by 

changing the electric circuit parameters, particularly the electric load connected to the device.  In 

contrast, adjustable fluid based dampers require specialized electro- or magneto-rheological flu-

ids that change properties by the application of electrical or magnetic fields; solid based dampers 
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require mechanical adjustments in order to change their properties (Spencer et al.  1996). 

Furthermore, the electromagnetic damper could be used as an actuator in an active control sys-

tem by reversing the direction of energy flow.   Operation of the damper as an actuator would 

require the use of electric drives (power supplies), which are not uncommon equipment in indus-

trial environments, with no physical modifications to the device.   Changing between the differ-

ent operational modes (fully passive, semi-active and active) of the electromagnetic damper can 

be accomplished by means of simple switching operations, as depicted in Figure 4.11.  In addi-

tion, the form of the force-velocity relationship can be adjusted by changing the type of electric 

load (i.e.  non-linear loads) connected to the device. 

Power Supply

EM Damper Switching Device Variable Electrical 
Load

Electrical Load
Electrical 
Domain

Mechanical 
Domain

(Passive)

(Semi-active)

(Active)
 

Figure 4.11  Operation Modes of the Electromagnetic Damper. 

Table 4.11 compares the electromagnetic damper to current structural dampers in terms of the 

types of control systems application.   Soon and Dargush (1997) provide a unified treatment of 

these devices, including application examples and case studies. 

Table 4.11  Control Type Application Comparison of Passive Damping Mechanisms. 

Control Type Application Damping Device Active Passive Semi-Active Hybrid 
Electromagnetic     

Viscous Fluid     
Tuned Mass Damper     

Tuned Liquid Damper     
Friction     

Metallic Yield     
Hysteretic     

Visco-elastic     
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4.9 Summary and Discussion 

The current chapter is a feasibility study of the structural electromagnetic damper.  Two per-

formance measures determine the applicability of the electromagnetic damper to full-scale struc-

tures: the damping density and the damping cost.  The first value is a measure of the space 

required to achieve a given damping performance, while the second value is a measure of the 

cost to achieve said damping. 

The damping density limit for the electromagnetic damper is approximately 3000kN-m-1s/m3 

when using N55 grade neodymium magnets, and approximately 2000kN-m-1s/m3 when using 

grade N35 neodymium magnets.  These limits are with zero-load resistance connected to the de-

vice and all the energy dissipated internally.  As the load resistance increases, the damping de-

creases but the amount of energy dissipated externally increases.  These values of damping 

density are in the lower range of the sample viscous fluid dampers used for comparison.  To 

achieve the same damping capacity, electromagnetic dampers using N35 magnets require at least 

1.6 times the volume of the fluid dampers. 

The price of the electromagnetic damper is over five times the price of lower-end viscous fluid 

dampers.  This price estimate is based solely on material costs of copper, iron and neodymium 

permanent magnets and does not account for R&D and manufacturing costs.  The machine price 

should decrease once the patents covering the composition and manufacturing of NdFeB mag-

nets expire in the coming years.  Further reductions should occur as the damper production 

reaches big enough quantities to benefit from economies of scale. 

Based on the current study, the electromagnetic damper, from the physical point of view, is a 

feasible alternative for structural dampers, even more due to the flexibility it provides that is not 

available with other types of structural dampers.  On the other hand, as is the case with many 

new technologies, the device might not be economically competitive with current technologies.  

However, as the technology is adopted and further developed, it should become a cost-effective 

solution for structural motion control. 
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Chapter 5        

Method for Electromagnetic Damper Design 

5.1 Introduction 

The precedent chapters introduced the electromagnetic damper for buildings.  The damper 

mathematical model was developed and its feasibility to full-scale building applications shown.  

Yet, in order to use the damper in a building or civil structure, two tools are needed: a design tool 

to determine the parameters of an electromagnetic damper that would achieve a specified damp-

ing; and an analysis tool to verify that using the designed damper results in the desired building 

dynamic response.  This chapter introduces the first tool, whereas the next chapter introduces the 

latter tool. 

5.2 The Design Method 

The design methodology presented is a hybrid method that combines graphical and analytical 

equations to design the damper.  The geometric and electric parameters of the machine are cho-

sen based on the desired damping coefficient and space constraints imposed on the device.  The 

following paragraphs describe and explain the design sequence, while the next section works out 

a design example to demonstrate this method. 

1. Determine the required damping dC  per floor and available volume dV  available in each 

floor for the damper installation.  The procedure of determining the damping requirement of 

a building is covered elsewhere in the literature, for example in (Connor 2003) and is thus 

beyond the scope of this work. 

2. Compute the required damping density 

 ddd kVC=γ̂  (5.1) 

where k is the ratio of total energy dissipation desired inside the machine.  For instance, 

1=k  correspond to whole internal dissipation (zero-load resistance), while 5.0=k  corre-
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sponds to equal internal and external dissipation (matched load resistance). 

3. Based on damping density, choose the magnet length (machine stroke) and biggest air gap 

thickness meeting the requirement (Figure 5.1).  Increasing the air gap has the possible ad-

vantage of reducing production cost, since smaller fabrication tolerances are needed. 

4. Given the air gap and magnet length, choose a magnet radius, and a range of coil wire diame-

ters (wire gauge) that meet the required damping density (Figure 5.2). 

Select the number of coil layers and the wire diameter to maximize damping density (Figure 

5.3) or to meet the machine diameter constraints (Figure 5.4).  The remaining dimensional 

parameters are then determined.  The pole shoe width is found using an approximation of the 

magnet flux density equation (3.16) and setting the magnet’s flux density to half the rema-

nent flux density 
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and the stator iron thickness by applying the no-saturation condition by solving the magnetic 

flux density equation (3.12) at the stator yoke 
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5. Analyze the single pole machine resulting from the above steps to verify that the desired per-

formance was achieved.  The number of machine poles needed is found using  

 
d

d

c
C

p ~= . (5.4) 

where dc~  is the damping coefficient of the single pole machine.  The number of poles can 

then be divided into various physical units such that each unit has at least 2 poles, or a single 

unit depending on the space constraints in the building. 



 68

5.3 A Design Example 

For this example, we want to design a prototype electromagnetic damper for a hypothetical five-

story building.  The required damping is uniform throughout the building and equals 210 kN-s/m 

per floor.  Table 5.1 shows the remaining damper design constraints for the sample building. 

Table 5.1  Building Example Damping Design Parameters per Floor. 

Parameter Symbol (units) Value 
Required Damping Cd (kN-s/m) 210 
Available Damper Volume Vd (m3) 0.5 
Maximum Damper Diameter De=2re (m) 0.25 

If we assume an energy dissipation coefficient of 5.0=k , then the required damping density 

would be 840ˆ =dγ kN-m-1s/m3. 

We use Figure 5.1 to choose a magnet length and air-gap thickness.  This figure is a sample con-

tour plot of the maximum damping density achievable as a function of magnet length (machine 

stroke) and air gap with no load resistance.  Choosing a magnet length of 25=mτ mm and an air 

gap of 1=g mm sets the maximum possible damping density of the machine at 1770kN-m-1s/m3 

when 1=k  and to 885kN-m-1s/m3 when 5.0=k . 

Once the machine air gap and magnet length are selected, we use Figure 5.2 to find suitable val-

ues of magnet radius and coil wire diameter.  This figure shows a contour plot that represents the 

achievable damping density for various combinations of magnet radius and coil wire for a given 

air-gap and magnet length.  In our particular case, any magnet radius above 20mm seems to meet 

our requirement.  Since a radius of 51mm is the practical limit on NdFeB magnets, we choose 

this value as our magnet radius.  Choosing a magnet that provides a higher damping density than 

what we require allows more leeway when choosing the load resistance to increase the energy 

dissipation outside the device. 

Finally, we use Figure 5.3 and Figure 5.4 to determine the remaining two machine parameters, 

coil wire diameter and number of layers.  These two figures show the damping density and out-

side diameter, respectively, as a function the wire gauge number (wire diameter) and the number 

of layers in the coil under fixed magnet and air-gap dimensions.   
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Figure 5.1  Contour Plot of Achievable Damping Density as Function of Air Gap and Magnet Length. 

 
Figure 5.2  Contour Plot of Achievable Damping Density vs.  Magnet Radius and Wire Diameter. 
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Figure 5.3  Damping Density Variation with Wire Diameter and Number of Coil Layers 
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Figure 5.4  Machine Outside Diameter Variation with Wire Diameter and Number of Coil Layers. 
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Since we have constraints both on the outside diameter of the device (<0.25 m) and on the damp-

ing density (>840 kN-m-1s/m3), the two figures set boundaries for the values of wire gauge given 

a number of coil layers, or vice-versa.  Because the combination of wire gauge and number of 

layers that satisfies the constraints is not unique, other coil parameters are considered, namely the 

coil inductance and resistance. 

Table 5.2 shows the upper bound for wire diameter (lower AWG) given the number of layers in 

the coil and the corresponding coil parameters, including coil inductance and resistance.  Simi-

larly, Table 5.3 shows the same information for the lower bound wire diameter. 

Table 5.2  Maximum Wire Diameter Bounds and Corresponding Parameters 

Number 
of Layers AWG Diameter 

(mm) 
Damping 
Density Turns Inductance 

(mH) 
Resistance 

(Ω) 
2 0 147 1209 22 4.63x10-2 0.009 
5 4 162 892 110 10 0.012 

15 13 163 855 930 67 0.803 
25 18 160 921 2650 563 7.20 

 

Table 5.3  Minimum Wire Diameter Bounds and Corresponding Parameters. 

Number 
of Layers AWG Diameter 

(mm) 
Damping 
Density Turns Inductance 

(H) 
Resistance 

(Ω) 
2 23 121 875 118 0.0025 0.85 
5 31 121 879 740 0.100 34.6 

15 40 121 919 6330 7.287 2.35x103 

25 40 123 1270 11450 22.734 4.28x103 

Based on the figures and the information in the tables we select 5 coil layers with a 15 wire 

gauge.  We choose these values because we want to have a coil inductance that is smaller than 

the coil resistance, and this happens with a lower number of turns. 

Once we have the five governing parameters chosen, we determine the remaining machine pa-

rameters using the analysis equations presented previously.  Table 5.4 shows the resulting pa-

rameters for the sample electromagnetic damper designed using the method presented in this 

chapter.  The highlighted rows correspond to the five governing design parameters.  Also, the 

damping and cost values are presented for the design case of k=0.5  (matched load) and for the 

limit case of k=1.  for the sake of comparison.   



 72

Table 5.4  Sample Design Electromagnetic Damper Parameters and Results. 

Value Group Parameter (unit) k=0.5 k=1 
Diameter (mm) 131 
Length (mm) 55.2 Overall Dimensions 

per Pole 
Volume (m3) 7.43x10-4 

Air-Gap Thickness (mm) 1.0 
Layers 5 
Wire Diameter (AWG) 15 
Turns 195 Coil Parameters 

Coil Height (mm) 6.5 
Length (mm) 25 Magnet Radius (mm) 51 

Stator Thickness (mm) 7 
Pole Shoes Width (mm) 15.1 

Circuit Resistance (Ω) 0.422 0.231 
Inductance (mH) 5.1 Electrical 
Machine Constant (N/A) 17.35 

Damping per Pole (kN-s/m) 0.652 1.30 
Damping Density (kN-m-1s/m3) 871.5 1743 

Per Pole $103.66 Cost Damping $159.10 $79.55 
Required Poles 322 161 
Required Volume (m3) 0.24 0.12 
Effective Damping (kN-s/m) 0.242 209.8 Resulting Machine 

Machine Cost $33,382 $16,691 
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5.4 Summary 

The current chapter developed the first of two tools needed to apply the electromagnetic damper 

to a building system design.  The method presented produces the damper geometric parameters 

based on the desired damping density for the device using graphs and analytical equations. 

The method works by selecting five governing parameters such that the device achieves the de-

sired damping performance.  These parameters are the magnet radius and length, the air-gap 

thickness, the coil wire diameter, and the number of layer in the coil.  The selection is performed 

sequentially using graphs that plot the maximum achievable damping density as a function of 

these parameters.  Once the initial parameters are chosen, the remaining damper parameters are 

then found using the analytical damper equations derived in previous chapters. 

The next chapter presents how to incorporate the electromagnetic damper model into the build-

ing analysis methods.  This provides the designer with the ability to analyze the dynamic re-

sponse of a building outfitted with electromagnetic dampers. 
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Chapter 6        

Analysis of Buildings with Electromagnetic 

Dampers 

6.1 Introduction 

The previous chapter introduced the method to design an electromagnetic damper given a desired 

damping, whereas the mathematical framework introduced in the following sections allows the 

designer to analyze the dynamic response of a building with the given electromagnetic damper 

design.  This analysis framework and the design methodology are two basic tools that allow a 

designer to incorporate electromagnetic dampers into the conceptual design of a building struc-

ture. 

Section §6.2 introduces the basic differential equations that describe the motional behavior of a 

building using electromagnetic dampers.  These equations are obtained by combining the build-

ing force equilibrium equations and the damper constitutive differential equation when the build-

ing is modeled as a multi-degree-of-freedom lumped mass system.  The solution to this 

differential equations is performed following to approaches: modal analysis and a state-space 

system models.  Section §6.3 develops the system solution for low-frequency sinusoidal steady-

state excitation by incorporating the damper low-frequency model into the modal analysis equa-

tions of the building, while, section §6.4 merges the damper two-port model representation with 

the state-space model of the building for time-domain transient analysis of the response. 

6.2 Modeling of Buildings with EM Dampers 

In a lumped parameter model, a structure is conceived as a discrete system composed of a finite 

number of masses interconnected by mass-less springs and dampers (Cheng 2001).  Figure 6.1 

shows an n-story building frame with forces at each floor and ground movement, and its corre-

sponding lumped parameter model.  The following assumptions are made (Connor 2003) 
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Figure 6.1  Modeling an N-Story Building as an N-Degree-of-Freedom Lumped Parameter System. 

• The masses of the floors and columns are lumped at the floor levels 

• The columns are regarded as mass-less springs  

• The axial deformation of the columns is small. 

• There is no rotation of the members. 

• The floors experience only lateral displacement. 

• Dampers represent the only energy dissipation mechanisms in the structure. 

Real structures possess an infinite number of degrees of freedom, each with its own dynamic re-

sponse characteristic.  The analysis of a structure as a continuum system usually results in com-

plex and computationally expensive mathematic models based on coupled partial differential 

equations.  It is preferred to simplify the model by describing the structure using lumped parame-

ters that reduce the number of degrees of freedom, and result in coupled ordinary differential 

equations of motion.  This representation is a compromise between the accuracy required and the 

complexity of the mathematical model (Beards 1996). 

Each lumped mass is governed by the following force equilibrium equation 

 1,,1,, ++ +−+−−= isisididgiiii FFFFxmpxm &&&&  (6.1) 

where idF ,  and isF ,  are the damping and spring forces of the thi  mass, respectively. 
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Restricting the system to idealized linear dampers and springs, with force equations of the form 
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then the n system equilibrium equations can be expressed in terms of the displacement variables 

and component coefficients as 

 iiiiiiiiiiiiiiiii pxkxkxkkxcxcxccxm =−−++−−++ ++−+++−+ 11111111 )()( &&&&&  (6.3) 

where the ground acceleration term gi xm &&−  is bundled into the driving force ip . 
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Figure 6.2  N-Degree-of-Freedom Model of Structure with EM Dampers between each Floor. 

The introduction of electromagnetic dampers between floors in the structure, as shown in Figure 

6.2, produces the following equilibrium equations for each mass 

iididiiiiiiiiiiiiiiii pFFxkxkxkkxcxcxccxm =−+−−++−−++ +++−+++−+ 1,,11111111 )()( &&&&&  (6.4) 

Here the forces idF ,  of the thi  electromagnetic dampers are governed by the first-order differen-

tial force-velocity relationship presented below 

 ( )1
2
,,,

,
−−=+ iiitidicirc

id
coil xxKFR

dt
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L &&  (6.5) 

Combining the damper’s electrical equation (6.5) with equation (6.4) increments the order of the 

equations of motion for each mass to which the damper is attached to a fourth-order differential 
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equation.  For the particular case where all the electromagnetic dampers used in the structure 

have the same device parameters, the equation of motion for each mass simplifies to a third order 

equation 
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where circcoild RL=τ  is the damper electrical time constant. 

In practice, the direct solution of equation (6.6) is avoided because of its complexity and its re-

quirement of knowledge of both the excitation signal ip  and its time derivative ip& .  The system 

equations can be simplified following the type of analysis performed, and using approximations 

based on the period of the excitation signal relative to the damper’s time constant. 

Two methods for solving the structural system equations resulting from the utilization of elec-

tromagnetic dampers are presented in the following sections together with the system simplifica-

tions, followed by examples that illustrate these methods. 

6.3 Low Frequency Steady-State Solution 

When the electromagnetic damper is subjected to a steady-state sinusoidal velocity excitation, its 

constitutive force-velocity relationship is reduced to a scalar equation relating the magnitudes of 

the damper force and velocity, and a phase shift or time delay between the force and damper ve-

locity.  This relationship can be expressed as 

 
dd

dd

vF
vcF
φ+∠=∠

=
 (6.7) 

where the operators  and ∠  are the magnitude and angle, respectively.  The damping coeffi-

cient dc and phase shift dφ  in the above equation are given by 
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Equations (6.8) and (6.9) are the frequency response of the damper, and they represent the be-

havior of the damper as the frequency of the excitation varies. 

Figure 6.3 shows the normalized frequency response of the electromagnetic damper.  The fre-

quency axis is expressed in terms of the damper cut-off frequency coilcircdc LR== τω 1 , while 

the magnitude response is normalized to the maximum damping coefficient, circtd RKc 2
max, = . 
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Figure 6.3  Electromagnetic Damper Normalized Frequency Response. 

The frequency response of the damper corresponds to that of a low-pass filter.  It can be seen 

from the figure that at low frequencies satisfying ω≤0.1ωc, that is frequencies less than or equal 

to approximately one tenth the cut-off frequency, the damper response approximates that of an 

ideal damper with a damping coefficient max,dc , and a negligible phase shift. 

Under the assumption of low frequency excitation, a valid assumption given the nature of the 
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disturbances normally affecting building, the system model reverts to n second-order differential 

equations (6.3) with frequency dependent damping coefficients given by 
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The n equations of motion can be arranged into matrix form as 

 PKxxCxM =++ &
)

&&  (6.11) 

where the matrices M , C
)

 and K  are known as the mass, the damping and the stiffness matri-

ces, respectively of an n-degree-of-freedom (n-dof) system.  The mass, damping and stiffness 

matrices are presented below for the case of a system with electromagnetic dampers between 

floors under low-frequency sinusoidal excitation. 
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where the damping coefficients ic)  are given by equation (6.10).   
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The solution to the matrix equation (6.11) under a sinusoidal excitation P  can then be found us-

ing modal analysis.  Modal analysis is presented extensively in the structural dynamics literature, 

such as Beards (1996), Buchholdt (1997) or Cheng (2001), and a brief review is presented in 

Appendix B. 

6.4 Transient Analysis and State-Space Solution 

The sinusoidal approximation of the previous section is useful when the excitation signal can be 

represented using a series of sinusoidal signals or as a power or frequency spectra, such as in the 

case of wind and earthquakes.  However, the solution is given in terms of maximum displace-

ment amplitudes at steady-state, and no transient information is provided in the solution. 

A common way to model dynamic systems that facilitates the derivation of transient information 

is by means of state-space systems equations.  In a state-space representation, the system under 

study is modeled by a set of first order differential equations in the form 

 BuAzz +=&  (6.15) 

where [ ]T
kzzz L21=z  is the system state vector, [ ]T

muuu L21=u  is the input vec-

tor, and the matrices A  and B  are constant matrices of dimension kk ×  and mk × , respec-

tively.  This mathematical model can then be solved using numerical or analytical methods in the 

time domain; or using Fourier or Laplace transform methods in the frequency domain.  A basic 

review of time-domain state-space methods is presented in appendix B. 

Using a state-space description to represent the building system depicted in Figure 6.2 simplifies 

its analysis by solving a set of first-order equations like (6.15) instead of fourth- or third-order 

equations like (6.6). 

To express the system in state-space form, the governing equilibrium (6.4) and damper equations 

(6.5) for each mass are rearranged such that highest derivative term on each function is expressed 

as a function of the lower order terms, 
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If we choose the state variables to be the position, velocity and electromagnetic damper force at 

each mass 
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the corresponding state equations are given by 

 

ni
coil

circ
ni

coil

t
ni

coil

t
ni

g
i

i

i

ni

i

ni
ni

i

i

ni
i

ii
ni

i

i
i

i

i
i

i

ii
i

i

i
ni

nii

z
L
R

z
L
K

z
L
K

z

x
m
p

m
z

m
z

z
m
c

z
m

cc
z

m
c

z
m
k

z
m

kk
z

m
k

z

zz

2

2

1

2

2

122
1

1

1
11

11
1 ...

++−++

−++
++

+

+
+

−++
++

−+

+

−+−=

−++−+

+
−++

+
−=

=

&

&&

&

&

 (6.18) 

Grouping the n sets of state equations defined by (6.18) into matrix form and back substituting 

the state variable definitions (6.17) the system state space model for an n-degree-of-freedom 

structure with inter-story electromagnetic dampers 
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The state matrix  A  in the above equation is of size nn 33 ×  and is made up of the structure’s 

matrices M , C  and K ; the damper’s matrices L , R  and TK ; and the Jordan matrix J .  The 

size of the input matrix B  is )1(3 +× nn  and is composed of the inverse of the mass matrix af-

fecting the driving force vector P  and a vector of zeros and ones affecting ground acceleration 

signal gx&& . 
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The mass, damping and stiffness matrices were defined previously in equations (6.12) to (6.14).  

The damper matrices, corresponding to the last subsystem row in equation (6.19), are the induc-

tance, resistance and damper machine constant matrices, respectively.  All are diagonal matrices 

containing the parameters of the electromagnetic dampers between each floor, and are given be-

low, 
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The Jordan matrix defined as 
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The matrix equation (6.19) defines the state-space model of an n-degree-of-freedom structure 

where the damping is provided using electromagnetic and linear dampers connected between 

floors.  The linear dampers model the inherent damping in the structure while the electromag-

netic dampers provide manufactured energy dissipation. 

6.5 Summary 

This chapter introduced the mathematical framework that allows the dynamic response analysis 

of buildings with electromagnetic damping.  Two methods were developed, one based on a sinu-
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soidal steady-state model (6.11) of the building and electromagnetic damper and another one 

based on a state-space system model representation (6.19). 

The first approach applies when the driving forces can be represented by a sum of sinusoidal 

terms or power spectra, and only the steady-state response of the system is of interest.  Given the 

low frequency and the sinusoidal nature of the disturbances of interest in structural analysis, a 

linear damper with frequency dependent coefficient approximates the electromagnetic damper in 

this model.  The response of the system is then obtained using nodal analysis methods. 

The second model developed combines the equations of motion of the structure with the electri-

cal equations of the electromagnetic dampers into a state-space system representation.  This 

model can be used when the transient response of the system to time-varying disturbances or to 

non-zero initial conditions is investigated.  The solution in the time domain of the system equa-

tion is normally obtained with numerical methods and requires a time-description of the distur-

bance, rather than the frequency description used with the sinusoidal model. 

This analysis framework, together with the design method presented in Chapter 5, is part of the 

tools that would allow designers to incorporate this new type of structural dampers into their 

building designs.  The following chapter presents the experimental validations of the models and 

methods developed up to this point in this thesis. 
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Chapter 7        

Experimental Characterization of the Electro-

magnetic Damper 

7.1 Introduction 

Two experiments were devised to characterize a scale prototype electromagnetic damper, and to 

validate the theory developed in the previous chapters. 

In the first experiment (§7.3), a constant force is applied to the damper and its rate of displace-

ment measured and compared to the displacements computed using the mathematical model of 

the set-up; in the second experiment (§7.4), a prescribed oscillatory displacement is applied to 

the device and its reaction force measured to obtain the experimental force-velocity curves. 

The following section (§7.2) describes the prototype damper and compares it to the model of the 

theoretical machine with the same dimensions and materials.  Subsequent sections then present 

the experimental set-ups and their mathematical models, together with a discussion of the simu-

lation and experimental results. 

7.2 Scale Prototype Description 

A tubular non-commutated moving magnet DC linear motor from Baldor Motors and Drives™, 

model number LMNM2-1F5-1F1, was purchased to perform as the electromagnetic damper in 

these work’s experiments.  The motor datasheets supplied by the manufacturer are presented in 

Appendix C.  The device quoted specifications, in SI units, are summarized for convenience in 

Table 7.1. 

A picture of the prototype damper is shown in Figure 7.1, and a dimensioned drawing (as built) 

in Figure 7.2.  The dimensions in the drawing are in millimeters, and the drawing shows a view 

of the machine where only the stator and end supports are sectioned for clarity. 
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Figure 7.1  Linear Motor from Baldor Motors and Drives, Model LMNM2-1F5-1F1. 

Table 7.1  BaldorTM Linear Motor Parameters. 

Parameter Symbol Value 
Back EMF Constant Kt(e) 7.874 Vs/m 

Force Constant Kt(f) 7.918 N/A 
Coil Resistance Rcoil 3.89 � 
Coil Inductance Lcoil 2.03 mH 
Number of Poles p 2 

Motor Length 2hw 108 mm 
Motor Diameter 2re 38 mm 
Stroke Length τm 25.4 mm 
Mover Mass mm 230 g 

All dimensions in mmPermanent Magnet
Pole Shoe

coil 1 (+)

coil 1 (-) coil 2 (+)

coil 2 (-)

 
Figure 7.2  BaldorTM Linear Motor Dimensioned Drawing. 

When the experimental damper machine is compared to the theoretical electromagnetic damper 

described previously in this thesis, the following is observed: 
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• The coils extend beyond the allowed travel of the mover.  A linear inductance independent of 

mover position results from this arrangement.   

• The pole shoes are composed of two cylinders of equal width but slightly different diameter, 

approximately 1.3 mm.  The mathematical model uses the diameter of the largest shoe and 

the combined thickness of both cylinders as the dimensions for the pole shoes.   

• The diameter of the permanent magnet equals the diameter of the smaller pole shoes cylin-

der.  In the theoretical model the magnet diameter is equal to the larger cylinder diameter. 

The dimensions obtained from the prototype device were used to compute the theoretical elec-

tromagnetic damper parameters using the model equations from Chapter 3.  Given that the coil 

was not disassembled due to practical reasons, the number of turns per coil and the wire diameter 

were assumed as 270 and 24AWG, respectively.  Table 7.2 presents the numerical comparison 

between the actual damper values and the theoretical model damper values of machine constant, 

coil resistance and coil inductance. 

Table 7.2  Mathematical Model and Prototype Electromagnetic Damper Comparison. 

Parameters Symbol (Units) Mathematical Prototype Difference 
Machine Constant Kt (N/A) 7.582 7.896 -3.98% 

Coil Resistance Rcoil (Ω) 4.43 3.9 13.6% 
Coil Inductance Lcoil (mH) 1.72 2.03 -15.3% 

The values in the above table verify that the mathematical model derived in Chapter 3 is a good 

representation of the damper machine, as the theoretical values are within 15% of the measured 

values. 

The mathematical models of the experiments described in the following sections are obtained 

following the analytical methods presented in the previous chapter.  These methods are based on 

differential force-velocity relationship of the electromagnetic damper (3.27), which is repeated 

here for convenience, 

 vKFRR
dt

dF
L tdloadcoil

d
coil

2)( =++  (3.27) 

This equation will be used with the machine values provided by the manufacturer while simulat-

ing the experimental systems responses. 
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7.3 Constant Force Response 

7.3.1 Experiment Description 

This experiment studies the electromagnetic damper displacement when a constant force is ap-

plied to it.  The constant force is provided by a mass under gravity.  The mass is attached to the 

moving element of the damper and released from a constant height.  As the mass drops, the 

damper develops a force opposing the fall. 

The experimental setup, as shown in Figure 7.3, consists of a weight support attached to the 

damper shaft, a base to keep the damper vertical and a latch-and-release mechanism. 

 
Figure 7.3  Damped Mass Drop Experimental Setup. 

The mass drops from a height of 24.5mm.  The force applied to the damper is varied by adding 

weights (3/8” nuts) to the weight support.  A potentiometer is connected to the leads of the 

damper to vary electric circuit resistance, and therefore the damping coefficient of the device. 

Drops from the specified height are performed for each one of the circuit resistance values pre-

sented in Table 7.3 using all four mover-masses shown.  The table also shows the expected 

damping coefficient and applied force corresponding to the circuit resistances and weights. 
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Table 7.3  Damped Mass Drop Experimental Parameters. 

Total Resistance  
Rcirc (Ω) 

Damper Coefficient 
(N-s/m) 

 Total Mover 
Mass (g) 

Applied 
Force (N) 

R0 Open Circuit 0  m0 272.5 2.67 
R1 14.2 4.39  m1 336.3 3.30 
R2 9.5 6.57  m2 400.1 3.92 
R3 4.4 14.20  m3 463.9 4.55 

A high-speed digital video camera with a macro lens records the drop of the mover after the 

weight support is released from the latch mechanism.  The video is recorded at a rate of 500 

frames per second with a resolution of 320x280 pixels and a field view of 37x32mm.  Figure 7.4 

shows a sequence of three frame shots extracted from one of the videos created.  The video 

frames are then analyzed using the software provided with the camera system to extract time and 

position data. 

 
Figure 7.4  Sample Picture Frames extracted from High Speed Digital Video. 

The experimental displacement profiles are presented in the following sub-sections and com-

pared to the theoretical displacement profiles obtained from the system model derived in the sub-

sequent paragraphs. 

7.3.2 System Model 

The experimental setup is a single degree of freedom mass-spring-damper system under constant 

force.  Figure 7.5 shows the body diagram of the experimental system.  In the diagram, the two-

port device represents the electromagnetic damper while an ideal damper (cf) represents me-

chanical losses, such as friction, in the system.  A spring (ks=0) is shown in the diagram for the 

sake of generality, even though there are no actual springs in the experimental setup (with the 

possible exception of rubber grommets in the damper shaft that are used as displacement stops). 
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Figure 7.5  Damped Mass Drop Experiment Body Diagram 

From the diagram in Figure 7.5 the governing equation of the system is derived as, 

 mgFxkxcxm dsf +−−−= &&&   (7.1) 

where vx =& , and the damper force dF  is governed by equation (7.1).  Rearranging the system 

into a state-space system following the methodology introduced in §6.4, using the electromag-

netic damper force (Fd), position (x) and velocity ( x& ) as the state variables and the gravity g as 

the input to the system, gives 
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In the above equation, Rcirc=Rcoil+Rload, and ks=0. 

7.3.3 Simulation Results 

The system described by equation (7.2) is simulated using Matlab® for the different values of cir-

cuit resistance and masses presented in Table 7.3.  The simulations are run until the displacement 

equals the prescribed drop height of 24.5mm.  Appendix E presents the simulation scripts. 

The value of the parasitic damping coefficient used during the simulations is cf=8.2Ns/m.  This 



 90

value was estimated from the experimental data following the method described in Appendix D. 

Since the experimental device produces both the parasitic damping and the electromagnetic 

damping, the actual damper force acting on the mass is  

 vcFF fddamper +=  (7.3) 

This force is used to compute the effective damping coefficient of the device. 

In the simulation, when the weight reaches the end of its displacement, its movement stops 

abruptly, however, during the actual experiment the mass oscillates before resting at the end of 

its displacement run because of the spring effect provided by the rubber stops.  These oscillations 

are ignored during the Matlab® simulation, but are visible on the experimental data. 

The time needed for the weight to reach the end of its displacement is shown in Table 7.4  for the 

various combinations of mass and circuit resistance used in the simulations.  The simulated dis-

placement profiles for the smallest mover mass and the four circuit resistances tested are shown 

in Figure 7.6.  The maximum velocities developed, which occurred at the end of its displace-

ment, by the different masses under the different resistance values are presented in Table 7.5 

while sample velocity profiles are shown in Figure 7.7. 

Table 7.4  Simulated Time (s) to End of Travel. 

  Circuit Resistance 
  R0 R1 R2 R3 

m0 0.106 0.136 0.152 0.216 
m1 0.096 0.118 0.130 0.180 
m2 0.092 0.108 0.118 0.156 

Drop 
Mass 

m3 0.088 0.102 0.108 0.140 
 

Table 7.5  Simulated Maximum Velocity (m/s). 

  Circuit Resistance 
  R0 R1 R2 R3 

m0 0.31 0.21 0.18 0.12 
m1 0.36 0.26 0.22 0.15 
m2 0.40 0.30 0.26 0.18 

Drop 
Mass 

m3 0.44 0.34 0.30 0.20 
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Figure 7.6  Sample Position Curves for Various Circuit Resistance Values. 
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Figure 7.7  Sample Velocity Profiles for Various Circuit Resistance Values. 
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7.3.4 Experimental Results 

The position data extracted from the video frames was differentiated numerically to obtain the 

velocity and acceleration profiles.  This process amplified the noise present in the position data, 

therefore the position data was smoothed and fitted with a function of the form 

 DCtBeAev tt +++= −− 21 ττ  (7.4) 

using the curve-fitting toolbox in Matlab®.  This function was differentiated to obtain the veloc-

ity and force estimates of the damper device. 

Sample position and velocity profile curves are shown in Figure 7.8 and Figure 7.9, respectively.  

Both plots show the mass displacement as a positive value so that the end of the displacement is 

at the top of the graph.  Notice the oscillations of the mass described previously at the end of its 

displacement.  These oscillations are discarded during the curve fitting process and the compari-

son with the simulation results in the following sub-section. 

Table 7.6 and Table 7.7 summarize the experimental results.  The first table shows the fall time 

measured from the position data, while the second table shows the terminal velocities reached by 

the falling mass. 

Table 7.6  Experimental Time (s) to End of Travel. 

  Circuit Resistance 
  R0 R1 R2 R3 

m0 0.102 0.133 0.154 0.238 
m1 0.091 0.111 0.125 0.181 
m2 0.087 0.101 0.108 0.148 

Drop 
Mass 

m3 0.083 0.095 0.099 0.130 
 

Table 7.7  Experimental Maximum Velocity (m/s). 

  Circuit Resistance 
  R0 R1 R2 R3 

m0 0.38 0.22 0.18 0.11 
m1 0.43 0.30 0.25 0.15 
m2 0.46 0.35 0.29 0.18 

Drop 
Mass 

m3 0.47 0.39 0.34 0.22 
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Figure 7.8  Sample Experimental Position Curves for Various Circuit Resistance Values. 
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Figure 7.9  Sample Experimental Velocity Curves for Various Circuit Resistance Values. 
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7.3.5 Discussion 

A sample graphical comparison between the experimental and simulated position profiles gener-

ated using the biggest mass for all four resistances is shown in Figure 7.10.  Table 7.8 shows the 

numeric comparison between the simulated and experimental results as a percentage difference.   

Table 7.8  Time (ms) to End Comparison Between Simulated and Experimental Results. 

 R0 R1 R2 R3 
 Sim. Exp. Diff. Sim. Exp. Diff. Sim. Exp. Diff. Sim Exp. Diff. 

m0 106 102 -4% 136 133 -2% 152 154 1% 216 238 10% 
m1 96 91 -5% 118 111 -6% 130 125 -4% 180 181 1% 
m2 92 87 -5% 108 101 -6% 118 108 -8% 156 148 -5% 
m3 88 83 -6% 102 95 -7% 108 99 -8% 140 130 -7% 

Experimental and simulated data agree within 10% for the measured time.  The table shows that 

for a given mass, the time to the end of travel decreases as the damping decreases, that is as the 

circuit resistance increases.  Also, higher masses (forces) resulted in shorter times. 

Table 7.9 offers a similar comparison to the one presented for the position, while Figure 7.11 

shows graphically the comparison for the experimental and simulated velocities. 

Table 7.9  Final Velocity (m/s) Comparison Between Simulated and Experimental Results. 

 R0 R1 R2 R3 
 Sim. Exp. Diff. Sim Exp. Diff. Sim. Exp. Diff. Sim. Exp. Diff. 

m0 0.31 0.38 23% 0.21 0.22 5% 0.18 0.18 0% 0.12 0.11 -8% 
m1 0.36 0.43 19% 0.26 0.30 15% 0.22 0.25 14% 0.15 0.15 0% 
m2 0.40 0.46 15% 0.30 0.35 17% 0.26 0.29 12% 0.18 0.18 0% 
m3 0.44 0.47 7% 0.34 0.39 15% 0.30 0.34 13% 0.20 0.22 10% 

Experimental agree within 25% of the simulation data.  Higher damping results in lower veloci-

ties, and higher forces applied result in lower velocities developed.  Figure 7.11 also shows that 

at higher damping conditions (lower circuit resistance) the velocity of the mass reaches the ter-

minal velocity of the system.  That is, the velocity when the force of the damper equals the 

weight of the mass. 

In general, the discrepancy between experimental and simulation data increases as the mover 

mass increases, and decreases as the damping increases. 
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Figure 7.10  Position Profile Comparison for Experimental and Simulation Data (m3=463.9g) 
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Figure 7.11  Velocity Profile Comparison for Experimental and Simulation Data (m3=463.9g). 
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 Table 7.10  Damping Coefficient Values as function of Circuit Resistance. 

Damping Coefficient cd (N-s/m) Circuit Resistance  
Rcirc Theoretical Simulated Experimental 

R0=∞ 0 8.2 3.4 
R1=14.2 Ω 4.39 12.7 8.2 
R2=9.5 Ω 6.57 14.8 11.2 
R3=4.4 Ω 14.2 22.5 23.3 

Table 7.10 compares the effective damping coefficients obtained experimentally and from the 

simulation with the theoretical values for the electromagnetic damper.  The experimental and 

simulation coefficients include the effects of the parasitic and the electromagnetic damping, 

whether the theoretical value only includes the electromagnetic damping. 

The table shows a relatively big discrepancy between the theoretical and both the simulated and 

experimental values.  This was expected as the theoretical calculations neglected the damping 

produced by mechanism other than the electromagnetic effects.   The difference between the 

theoretical and simulated is constant and corresponds to the non-electromagnetic damping mod-

eled as linear damping in the simulation.  The difference between the theoretical and experimen-

tal coefficients increases as the damping increases. 

The differences between the simulated and experimental data, also vary with the circuit resis-

tance value.   However, this variation is different than with the theoretical damping. As the 

damping increases, the difference between the coefficients decreases. With no electric load con-

nected to the machine, the difference is 4.8N-s/m while at the lowest circuit resistance tested the 

difference reduces to just 0.8N-s/m. This is because at smaller circuit resistances, the electro-

magnetic force increases overcoming the forces from other mechanisms, such as friction, there-

fore the better agreement between the simulation and the experimental results. 
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7.4 Oscillatory Velocity Response 

7.4.1 Experiment Description 

This experiment measures the force produced by damper and its effective damping coefficient, 

when the device is excited using cyclic velocity profiles.  The experimental set up is depicted in 

Figure 7.12.  It consists of a brushless rotational dc motor attached to the electromagnetic 

damper through a rotational-to-linear linkage.  A load cell is located in the linkage between the 

motor and the damper. 

 
Figure 7.12  Cyclic Velocity Experimental Setup. 

A closed-loop control system is used to regulate the angular velocity of the motor, which through 

the geometry of the linkage, prescribes the linear velocity of the damper.  A proportional-integral 

controller is implemented as the regulator using operational amplifier circuits.  The regulator is 

designed to minimize the effects of the damper reaction torque on the angular velocity. 

The load cell is a tension-compression load cell manufactured by Honeywell, model 31.  A regu-

lated 5V power supply powers the sensor, and an instrumentation amplifier magnifies the output 

signal.  The circuit diagrams and parameters of the force measurement system, as well as that of 

the control system, are presented in Appendix C. 

The velocity is measured by a tachometer connected to the motor shaft, while the damper reac-

tion force is measured by the load cell in the system.  The angular position is read by a potenti-

ometer also on the motor shaft. 
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The measurements are recorded and processed on a personal computer equipped with analog-to-

digital conversion card and data acquisition software.  Table 7.11 shows the conversion factors 

for the sensors monitored in the system. 

Table 7.11  System Sensors Constant Values. 

Sensor Signal Gain 
Tachometer Ang.  Velocity 0.0286 V-s/rad 

Potentiometer Ang.  Position 0.25 V/rad 
Load Cell Force 0.231 V/N 

The experiment is repeated for each of the values of angular velocity shown in Table 7.12 and, to 

facilitate the comparison of the data produced by the various experiments, the resistance values 

shown in Table 7.3 previously. 

Table 7.12  Prescribed Velocity Experiment Parameters. 

Motor Velocity 
(rad/s) 

Control Voltage 
(V) 

Max.  Damper 
Velocity (m/s) 

4.19 0.12 0.05 
8.38 0.24 0.10 
20.4 0.59 0.25 
40.8 1.18 0.50 

7.4.2 System Model 

Geometric Relationships 

Since the purpose of this experiment is to determine the damper force given its displacement 

rate, in this section we determine the relationships between the damper velocity and the system 

measurements of angular position and velocity of the driving motor. 

The geometry of the linkage mechanism between the rotational motor and the linear electromag-

netic damper determines the linear velocity profile applied to the damper given the angular 

movement of the motor.  Figure 7.13 shows the geometric description of the system shown in the 

picture of Figure 7.12.  The circle centered at O with radius r represents the motor, while the 

electromagnetic damper moves in the direction of segment CD.  The linkage connects to the mo-

tor at point A and to the damper at point B, and has a length l.  The location x and speed v  
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Figure 7.13  Geometric and Force Diagram of Linkage System. 

of point B are a function of the angle θ and  the constant angular velocity ωm of point A as it ro-

tates counter-clockwise on the circumference O. 

Applying trigonometry to the triangle ABO in Figure 7.13 we have: 
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Solving this set of equations in terms of θ, we find the following expression for the position x 

 θθ 222 sincos rllrx −−+−=  (7.6) 

Since ωm is constant, we can substitute tmωθ =  and take the time derivatives of the position to 

find the expression for the velocity v and acceleration a of the damper shaft 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+=

)(sin

)cos(
1)sin(

222 trl

tr
trv

m

m
mm

ω

ω
ωω  (7.7) 

 
( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

−

−
+= 23222

224

222

222
2

)(sin

)(sin)(cos

)(sin

)(sin)(cos
)cos(

trl

ttr

trl

ttr
tra

m

mm

m

mm
mm

ω

ωω

ω

ωω
ωω  (7.8) 

Notice that as the length l of the linkage increases relative to the radius r of the driving circle, the 

velocity and acceleration profiles approximate that of a pure sinusoidal displacement profile.  

Figure 7.14 shows the normalized graphs of equations (7.6) through (7.8) together with the cor-

responding sinusoidal displacements for one cycle period. 
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Figure 7.14  Normalized Damper Displacement Profiles and Ideal Sinusoidal Profiles. 

Force Measurement 

Given that the velocity is a function of the angular position and velocity, we can estimate the 

damper reaction force Fd using the constitutive relationship (3.27) with the value v from the 

above equation, 
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The load cell is located between the damper and the motor linkage (Figure 7.12), therefore it 

measures the damper force together with the force due to the moving mass md of the damper.  

Applying the force equilibrium equations to the sensor and mover mass shown in the left of the 

body diagram in Figure 7.13 we find the sensor force measurement 

 amFF dds +=  (7.10) 

Appendix E shows the Matlab® scripts used to obtain the theoretical reaction force of the damper 

and the expected load cell measurements for the various angular velocities of Table 7.12. 
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7.4.3 Simulation Results 

Table 7.13 below summarizes the simulation force results with and without considering the para-

sitic damping in the machine.  The parasitic damping used is the same as used previously, 

cf=8.2N-s.m. 

Table 7.13  Simulated Maximum Measured Damper Force. 

Max.  Damper Force (N) Motor Velocity 
(rad/s) 

Max.  Damper 
Velocity (m/s) R0 R1 R2 R3 

4.19 0.052 0.025 0.45 0.23 0.66 0.34 0.77 .735 1.16 
8.38 0.103 0.05 0.89 0.46 1.30 0.68 1.52 1.47 2.31 
20.4 0.252 0.12 2.19 1.11 3.18 1.66 3.73 3.58 5.65 
40.8 0.504 0.24 4.37 2.22 6.35 3.31 7.44 7.15 11.3 

Figure 7.15 and Figure 7.16 show the top sections of the simulated force profiles for the damper 

and sensor for the lowest and highest velocity tested experimentally at both a high and a low 

damping settings.  These plots show that the actual and measured damper forces are close 

enough that for experimental purposes their difference is negligible. 
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Figure 7.15  Simulated Force Profiles at Low Velocity. 
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Figure 7.16  Simulated Force Profiles at High Velocity. 
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Figure 7.17  Simulated Measured Force-Velocity Plot at High Velocity 
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7.4.4 Experimental Results 

Table 7.14 summarizes the maximum measured for the different system velocities and damping 

settings (load resistance values).   Sample time-domain force plots for the maximum damping 

setting are shown in Figure 7.18 and Figure 7.19.  The first plot shows the force profile at a low 

velocity, while the second figure shows the profile at the highest velocity tested.   

Table 7.14  Experimental Maximum Measured Damper Force. 

Max.  Damper Force (N) Motor Velocity 
(rad/s) 

Max.  Damper 
Velocity (m/s) R0 R1 R2 R3 

4.19 0.044 0.52 0.69 0.77 1.08 
8.38 0.096 0.76 1.03 1.22 1.81 
20.4 0.249 1.58 2.19 2.63 4.02 
40.8 0.51 4.08 4.85 5.71 8.31 
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Figure 7.18  Sample Force Measurement Signal at Low Velocity and Highest Damping Setting. 

Figure 7.19  exhibits oscillations in the force measurement curve that are not present in Figure 

7.18.  These oscillations result from the dynamic response of the force sensor, and they become 

more severe as the speed of the damper mover increases. 
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Figure 7.19  Sample Force Measurement Signal at High Velocity. 
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Figure 7.20  Sample Measured Force-Velocity Plot at Low Velocity. 
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Figure 7.20 above shows a sample force-velocity plot obtained from the data collected.  This plot 

shows that the general profile of the force-velocity relationship of the electromagnetic damper 

approximates that of a linear damper. 

7.4.5 Discussion 

Table 7.15 shows the numerical comparison between the simulated force amplitude and the force 

measured experimentally.  The data show better agreement at lower damper velocities than it 

does at higher velocities. The sensor dynamic behavior tainted the accuracy of the measurements 

at higher velocities by causing artificial oscillations in its output. 

Table 7.15  Comparison Between Simulated and Experimental Maximum Damper Force.(N). 

R0=∞ R1=14.2 Ω R2=9.5 Ω R3=4.4 Ω Damper  
Velocity 

(m/s) Sim Exp % 
Diff Sim Exp % 

Diff Sim Exp % 
Diff Sim Exp % 

Diff 
0.044 0.45 0.52 15.6 0.66 0.69 4.5 0.77 0.77 0.0 1.16 1.08 -6.9 
0.096 0.89 0.76 -14.6 1.30 1.03 -20.8 1.52 1.22 -19.7 2.31 1.81 -21.6
0.249 2.19 1.58 -27.9 3.18 2.19 -31.1 3.73 2.63 -29.5 5.65 4.02 -28.8
0.51 4.37 4.08 -6.6 6.35 4.85 -23.6 7.44 5.71 -23.3 11.3 8.31 -26.5

 

Table 7.16  Damping Coefficient Values as a Function of Circuit Resistance. 

Damping Coefficient cd (N-s/m) Circuit Resistance  
Rcirc Theoretical Simulated Experimental 

R0=∞ 0 8.65 8.12 
R1=14.2 Ω 4.39 12.7 10.6 
R2=9.5 Ω 6.57 14.8 12.4 
R3=4.4 Ω 14.20 22.4 18.1 

Table 7.16 presents the effective damping coefficients obtained from the simulation and experi-

mental data.  The theoretical values of damping coefficient are smaller than both simulated and 

experimental values.  This is due to the presence of damping mechanisms in the system that were 

not accounted in the mathematical model.  In addition, the simulated coefficients are larger than 

the experimental ones because uncertainties on the parasitic damping estimation and the nonlin-

ear behavior of these damping mechanisms, like friction, which are not accounted for during the 

simulations of the damper model. 
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7.5 Summary 

We performed two experiments to examine the behavior of the electromagnetic damper and vali-

date the derived mathematical models of the device.  In the first experiment, a constant force was 

applied to the device and its displacement measured to estimate the damper force.  In the second 

experiment, the machine was driven with a prescribed displacement and the reaction force of the 

damper measured.  The characterization of the device was performed by computing the effective 

damping coefficients from the collected data and comparing it to the coefficients computed using 

the mathematical models of the experimental systems. 

The results obtained from the two experiments verified that a linear permanent magnet machine 

behaves as a damper when a resistive load is connected across its terminals.  The general shape 

of the force-velocity curve of the electromagnetic damper approximated that of a linear damper 

with the damping coefficient increasing with lower load resistances. 

Table 7.17  Summary of Experimental Damping Coefficients (N-s/m). 

Circuit Resis-
tance (Ω) Simulated Constant 

Force 
Oscillatory 

Velocity 
Open Circuit 8.65 3.4 60.7% 8.12 6.13% 

14.2 12.7 8.2 35.4% 10.6 16.5% 
9.5 14.8 11.2 24.3% 12.4 16.2% 
4.4 22.4 23.3 4.02% 18.1 19.2% 

Numerically, however, the experimental values of damping coefficient (Table 7.17) were smaller 

than the values obtained from the simulations in both experiments.  The oscillatory velocity ex-

periments results were within 20% of the simulation results.  This agreement was better than the 

constant force experiment, with the exception of the highest damping case (smallest resistance) 

in which the experimental damping coefficient was only 4% greater than the simulated value, 

versus 19% for the oscillatory response.  Discrepancies between the simulation and experimental 

values can be attributed in part to the inaccuracies in the data acquisition systems and uncertain-

ties in the model of the non-electromagnetic damping. 
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Chapter 8        

Conclusions and Recommendations 

8.1 Conclusions 

The research presented in this thesis developed a new kind of passive structural damper based on 

electromagnetic effects.  This electromagnetic damper converts the kinetic energy imparted to a 

building by a disturbance, like wind or an earthquake, into electric energy rather than just heat or 

material deformation as do current structural damping devices. 

The immediate contributions of this thesis are the following: 

• The development of the structural electromagnetic damper as a passive device  and its mathe-

matical description; 

• A feasibility study of the electromagnetic damper applied to full-scale buildings; 

• The methodology to design an electromagnetic damper given a desired damping performance 

and; 

• The introduction of the mathematical model for the dynamic response analysis of building 

with electromagnetic dampers. 

This research introduces not only a new application for electric machines and a new type of 

damping device, but also the design and analysis tools to use this new device.  These are de-

scribed and summarized in the following sections. 

8.1.1 Damper Modeling 

This research started by proposing and analyzing a tubular linear permanent magnet machine as a 

structural damper.  A mathematical model of the device was derived from quasi-static electro-

magnetic principles, demonstrating that the force-velocity relationship of the tubular electromag-

netic damper is similar to that of an ideal damper.  The mathematical analysis of the 

electromagnetic is different than previous analyses of electric machines in that it describes the 
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behavior of the machine operating as a damper, rather than as a motor or a generator.   

The damper behavior is described by a first order differential equation relating the damper veloc-

ity to the damper reaction force.  Under sinusoidal excitation, the damper force-velocity relation-

ship can be expressed in terms of an effective damping coefficient and a time delay (or phase 

shift) that depend on the machine constant and impedance on the electric side of the machine.  

The geometric, magnetic and electric parameters of the device determine the damper constants 

and circuit impedances.  The mathematical model was validated via experimental work using a 

scale prototype electromagnetic damper. 

8.1.2 Damper Feasibility 

Once the mathematical model describing the force-velocity behavior of the electromagnetic 

damper was developed, a feasibility study of the device applied to full-scale building structures 

was conducted.  Two performance measures, damping density and damping cost, were used to 

evaluate and compare the electromagnetic damper with other damping devices, in particular vis-

cous fluid dampers.   

To obtain the same damping capacity as a lower-end fluid damper, the electromagnetic damper 

uses at least one-and-a-half times the volume of the fluid damper.  However, as the magnet tech-

nology progresses creating magnets with higher energy products, the damping density will cer-

tainly increase.   

With the state of current magnet prices and technology, electromagnetic dampers have a cost that 

is at least five times bigger than that of fluid dampers.  However, the price should drop following 

two conditions: the expiration of the permanent magnet patents currently held by two companies 

and the economies of scale obtained with mass production of the device. 

Although the performance of the electromagnetic damper using current technology and materials 

is lower than the performance of viscous fluid dampers, the electromagnetic damper has flexibil-

ity not available with other damping devices provided by using electricity as its dissipative 

mechanism.  For example the electromagnetic damper can operate as an actuator or as semi-

active damper without any physical changes to the device, but this thesis only addresses passive 

operation of the damper. 



 110

8.1.3 Damper Design and Building Response Analysis 

Two tools were developed that facilitate the application of electromagnetic damper to buildings 

and structures.  The first one is a basic design methodology for the electromagnetic dampers, 

while the second is an analysis methodology for buildings with electromagnetic dampers. 

The design methodology follows a hybrid graphical and analytical approach to find the damper 

parameters that meet a specified damping criteria and space constraints.  The design criteria for 

the geometric parameters of the device are chosen sequentially based on the performance meas-

ures introduced during the feasibility study.  The methods takes advantage of the modularity in-

herent to electric machines and reduces the design process to an hypothetical single pole machine 

which is then scaled by a scalar multiplication of the pole unit to meet the specified damping. 

The analysis methodology follows two different approaches to the modeling of lumped-

parameter buildings with electromagnetic dampers.  The first approach is based on modal analy-

sis, or frequency domain, methods and characterizes the dampers as idealized dampers whose 

damping coefficients depend, in addition to the machine properties, on the frequency of excita-

tion.  The second approach is based on a time-domain state-space representation of lumped-

parameter building and the electromagnetic dampers.  The space of the system is augmented to 

incorporate the dampers relationships with their dynamic characteristics. 

The former approach is used when investigating the steady-state sinusoidal response of the sys-

tem or when the disturbance signals can be represented by means of power or amplitude spectra.  

The latter approach applies to transient response analysis of the system and requires a time de-

scription of the disturbance signal. 

The design and analysis methodologies described in this section provide basic tools for incorpo-

rating electromagnetic dampers in buildings or civil structures.  The design tool is applied to find 

the electromagnetic damper device the meets the damping requirement of the building.  The 

analysis tool is used to verify the dynamic building response when the designed electromagnetic 

damper is used in the building. 
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8.2 Areas of Future Research 

The current work opens a new area of research in the field of structural motion control devices, 

and as such it introduced the basic concepts and model of the electromagnetic damper.  In order 

to bring the electromagnetic damper to a practical implementation, research is needed in the fol-

lowing areas: 

• Modeling and analysis: for example, higher order effects, such as self-heating and tempera-

ture, should be considered in the model of the device.  Also, the effects of changes of polarity 

in the coil caused by the translator moving more than a magnet length distance should be in-

vestigated. 

• Manufacturing: an actual implementation of electromagnetic damper in buildings depends 

greatly on the fabrication of the device.  Practical consideration such as material handling, 

permanent magnets assemblies and magnetization, supporting hardware, connections details, 

to name a few, are of great importance. 

• Materials: the performance of electromagnetic dampers significantly depends on the physical 

properties of the materials used in the device construction. 

• Design optimization: algorithms should be developed in order to optimize the design of the 

electromagnetic damper to increase their performance or reduce their cost. 

• Device operation: one of the advantages the electromagnetic damper has is the flexibility it 

offers.  Power electronic circuits and control algorithms should be developed to take advan-

tage of this flexibility by allowing the operation of the device in the different modes (active, 

passive, hybrid or regenerative) or by adjusting its force-velocity relationship. 
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Appendix A      Tubular Electromagnetic Damper Inductance 

The self-inductance of a two pole tubular machine is derived using magnetic circuits or reluc-

tance networks.  Mutual inductance between the coils in the machine is neglected, as well as flux 

leakages.  Also, the magnetic flux in the machine due to the current in the coil is assumed to be 

axial while the magnetic flux due to the permanent magnet is neglected.  The total inductance of 

the device is computed by finding the inductance of each coil and adding them up, since the coils 

are connected in series. 

The inductance L is defined as 

 
i

L
∂
Λ∂

=  (A.1) 

where Λ  is the flux linkage.  For a tightly wound coil, the flux linkage is defined as 

 Φ=Λ N  (A.2) 

where Φ  is the flux through each of the N coils.  The magnetic flux relates to the magnetomotive 

force of the coil through the total reluctance seen by the coil as 

 NiRtot =Φ  (A.3) 

Substituting equations (A.3) and (A.2) into (A.1) gives the inductance of the coil in terms of the 

total reluctance, 

 
totR

NL
2

=  (A.4) 

Figure A.1 shows a schematic diagram of the two-pole electromagnetic damper.  This figure de-

picts the relevant dimensions for computing the system reluctances and the relative position of 

the stator and mover, while Figure A.2 shows the equivalent reluctance networks seen by each 

coil in the damper.  The reluctance of a component is computed using 

 ∫=
C A

dlR
µ

 (A.5) 



 117

τ

τ τ

w

mfrr mi

coil 1 (+)

coil 1 (-) coil 2 (+)

coil 2 (-)

magnet

pole 
shoe

pole 
shoe

x

 
Figure A.1  Electromagnetic Damper Schematic Diagram. 
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Figure A.2  Electromagnetic Damper Coil Reluctance Network  

The above equation is applied to the four elements surrounded by the coils and depicted in the 

reluctance network, giving the following reluctances 
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The equivalent reluctance seen by each source (coil) is computed using 

 
1

2
1

1

2
1 ''

1
'
1'11'

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
++=+=

mpair
air

mpair
airequequtot RRR

R
RRR

RRRR  (A.10) 

which give the following equivalent reluctances 
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The above equivalent reluctances are simplified using the approximations mi rr ≈  and 1≈mµ  

which results in the total reluctance for each coil 
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thus the total inductance of the device is the sum of the inductance of each coil since they are 

connected in series 
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Appendix B       Review of Structural Dynamic Response Analysis 

The dynamic response of a structure with the system equation described by 

 PKxxCxM =++ &&&  (B.1) 

to a given excitation profile P  can be predicted by solving the given matrix differential equation.  

The non-homogeneous solution of this equation will depend on the form of the excitation signal.  

Two general approaches are used to solve the dynamic equation: frequency domain methods and 

time domain methods.  In the following sections, modal analysis, a frequency method, and time-

domain state-space analysis are reviewed in this section from the analysis point of view.  We are 

only concerned with the dynamic response of the structure, and it is assumed that the parameters 

of the structure were established previously.  The reader is directed to the literature (for example 

(Connor 2003)) for information regarding the determination of the structural parameters from the 

desired structural response. 

B.1 Modal Analysis 

Modal analysis is a frequency method of analysis the response of a structure.  The dynamic re-

sponse of a structure is characterized in terms of the maximum values attained by the variables of 

interest due a particular excitation (Buchholdt 1997). 

B.1.1 Natural Frequencies and Mode Shapes 

Each degree of freedom in a structure has an associated natural frequency and a characteristic 

mode shape, or vibration mode.  The determination of these quantities is done by finding the ei-

genvalues and eigenvectors associated with system of equations that define its un-damped mo-

tion.  The square roots of the eigenvalues iλ  give the natural angular frequencies iω  of the 

structure, while the eigenvectors represent the mode-shapes iΦ  associated with each natural fre-

quency.  For an n-dof structure, the n eigenvalues of the system are found by solving the charac-

teristic equation  

 ( ) 0det =− MK λ  (B.2) 
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where M  is the mass matrix and K  is the stiffness matrix of the structure.  The damping matrix 

C  is neglected because it has no effect on the natural frequencies of the structure. 

The eigenvectors are defined by the following equation 

 iio Φ=Φ − KM 1λ   (B.3) 

The determination of the eigenvectors is not a trivial task, especially for higher order system.  

Various analytical and numerical procedures for determining the eigenvectors (mode shapes) are 

covered in detail in the dynamics and control literature, for example (Beards 1996; Buchholdt 

1997; Cheng 2001).  In the discussion the follows, it is presumed that the mode shapes and cor-

responding modal frequencies are known. 

B.1.2 Steady-State Harmonic Solution 

Once the natural frequencies and corresponding mode shapes are determined, the response of the 

system is found by solving uncoupled differential equations of motion, one for each mode.  The 

total response of the structure is obtained by superposition of these solutions or modal responses 

to the driving signal, hence the term modal analysis. 

The coupled differential equations of motion for an n-dof system are uncoupled by means of a 

space transformation from x  to q  defined by 

 qΦx,qΦxΦq,x &&&&&& ===   (B.4) 

where [ ]nΦΦΦΦ L21=  is the mode shape matrix.  Substituting equation (B.4) into 

(B.1) and pre-multiplying by TΦ  gives the uncoupled set of equations of motion in terms of the 

modal displacements q  

 PΦqKqCqM T=++ ~~~
&&&  (B.5) 

where the terms MΦΦM T=~ , KΦΦK T=~ , and CΦΦC T=
~  are referred to as the modal mass, 

modal stiffness, and modal damping matrices, respectively.  Since the mode shape matrix is 

composed of the eigenvectors that are orthogonal to each other, the modal matrices are diagonal 

matrices. 
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The problem now reduces to solving n second order differential equations independently and 

then obtaining the complete response by applying equation (B.4) to the resulting modal position 

vector q .  Each modal equation is of the form 

 PΦT
iiiiiii qkqcqm =++

~~~ &&&  (B.6) 

If we divide by the modal mass we can express the each equation in terms of the natural fre-

quency iω  and the damping coefficient iξ  of the thi  mode 

 i
T
iiiiiii fqqq ==++ PZ22 ωωξ &&&  (B.7) 

which is the canonical form a the second order equation, where iii mk ~~2 =ω  and . iiii mc ~~2 =ωξ . 

The solution to (B.7) is composed of a homogeneous or transient component which depends on 

the initial conditions, and a particular or forced response component which depends on the driv-

ing force if . 

When the forcing term is sinusoidal in form, that is )sin( tff i ω
r

=  then the solution is 

 ( ))(sin)(
22 1

2
1

1 ωαωωξωξωωξ
iii

tjtjt
i tfheFeFeq iiiiii ++⎟

⎠
⎞⎜

⎝
⎛ += −−−−  (B.8) 

The first term is the transient component where the constants 1F  and 2F  depend on initial condi-

tions ( 1−=j ).  The second term is the forced component.  Neglecting the transient term, the 

response of the mode is given by 

 ( ))(sin)( ωαωω iiii tfhq +=  (B.9) 

where the functions )(ωih  and )(ωα i  are given by 
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Figure B.1  Modal Sinusoidal Steady-State Response vs. Frequency and Damping Coefficient. 

Another interpretation of the functions )(ωih  and )(ωα i  is as the magnitude and phase, respec-

tively, of the thi  mode transfer function.  Their variation with respect of the normalized fre-

quency iωω /  and the nodal damping coefficient is shown in Figure B.1. 

The steady-state response of a structure to an input to which the spectra is known can therefore 

be calculated by computing the value of the transfer function ( )(ωih  and )(ωα i ) at the spectra 

frequencies for each of the modes and obtaining the corresponding modal displacement using 

equation (B.9).  The actual structure displacements are then computed with equation (B.4). 
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B.2 Time-Domain State Space Analysis 

B.2.1 State-Space Definition 

A common way to model dynamic systems is by using state-space equations.  In this approach, 

the mathematical representation of the process or system under study is by a set of first order dif-

ferential equations (Friedland 1986).  When the system of interest is a linear system, these equa-

tions can be written in matrix form as 

 
DuCxy
BuAxx

+=
+=&

 (B.12) 

where [ ]T
nxxx L21=x  is the system state vector, [ ]T

muuu L21=u  is the input vec-

tor, and [ ]T
kyyy L21=y  the output vector.  For the case of time-invariant systems, the 

matrices A , B , C  and D  are constant matrices of dimension nn × , mn × , nk × , and mk × , 

respectively.  The plant and input matrices, A  and B  respectively, are the ones that determine 

the dynamic response of the system.  The matrix C  represents the effect of the state on the out-

puts and is called the observation matrix, while the matrix D  quantifies the direct connection 

between the inputs and the outputs.  Both C  and D  have no effect on the dynamic response of 

the system and thus it will be neglected in the discussion that follows. 

The state vector x  is a set of physical quantities that, in the absence of external excitation, com-

pletely determines the behavior of the system over time from an initial condition.  The number of 

state variables in a given system is fixed, and is know as the order of the system; their choice is 

not unique and is normally determined by the quantities that are of interest in the system under 

examination. 

B.2.2 State Space Time-Domain Solution 

The state x  of the system represented by equation (B.12) at some time t  is determined by the 

initial state 0x  at some time τ  and the input )(tu .  The solution of )(tx  is a function of the state-

transition matrix ),( τtS .  When the system is linear-time-invariant (a reasonable assumption for 

structural systems), )(),( ττ −= tetS A , and the state solution is 
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 ∫ −− +=
t tt deet

τ

λτ λλ)()( )(
0

)( Buxx AA  (B.13) 

where teA  is the matrix exponential function defined as ∑
∞

=

=
0 !k

k
kt

k
te AA . 

The reader is directed to the literature (Friedland 1986) or (Nise 2002) for a detailed derivation 

of the above result, and for a description of methods available to evaluate the solution of the 

state-space system. 

B.3 Structural Representation in State-Space Form 

For an n-dof structural system, a convenient choice of state variables are the position and the ve-

locity of each of the lumped masses, which results in a system of order 2n.  This choice of vari-

ables provides a straight forward conversion of the equations of motion into state-space form. 

If we consider the equation of motion for the thi  mass, 

 iiiiiiiiiiiiiiiii pxkxkxkkxcxcxccxm =−−++−−++ ++−+++−+ 11111111 )()( &&&&&  (B.14) 

 the first “obvious” choice of state variables are ii xx =−12   and ii xx &=2 .  With this choice, the 

state equations are 
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We see that in the second equation above, the stiffness and damping terms are interleaved when 

the state variables are arranged sequentially.  A more convenient choice of state variables is ob-

tained grouping the position and velocities together such that the stiffness and damping coeffi-

cients are clustered together.  This choice of state variables are ii xx =  and ini xx &=+ , and the 

state equation for the thi  mass are then 
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Grouping the state equations for the n masses, and taking the force vector P  as the input vector 

results in the state space representation of the n-dof structure: 
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 (B.17) 

where the state matrix A  is constructed with the matrices M , C  and K .  These are the mass, 

damping and the stiffness matrices used previously in equation (B.1).  Notice that if we pre-

multiply the second matrix row in the above equation by M  we obtain equation (B.1). 

The state of the structure, that is the position and velocities of the floors at any instant t , due to 

an excitation P  is found by applying equation (B.13) to the state-space system defined by 

(B.17).  Typically, this operation is performed numerically or by frequency transformation meth-

ods (such a Laplace and Fourier methods).  The reader is directed to the dynamics and control 

literature, for example (Friedland 1986) or (Nise 2002) for a detailed explanation of these meth-

ods. 



 127

Appendix C       System Parameters and Descriptions 

C.1 Baldor Linear Motor Datasheet 

 
Figure C.1  BaldorTM Test Data Sheet 
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Figure C.2  Linear Motors Baldor Electric Co.  Catalog Data Sheet (2005). 
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C.2 Velocity Excitation Experimental Setup 

C.2.1 Velocity Control System Description 

The system used to drive the damper under a prescribed velocity is described by Figure C.3.  A 

detailed description from the experiment’s point of view was given in section §7.4.  The descrip-

tion from the control point of view is given here. 

PI 
Controller

Current Power 
Amplifier

Motor and 
Inertial Mass

mV i m

mθωm

refω

Li
nk

ag
e Electromagnetic 

Damper

 
Figure C.3  Experimental Set-up Relational Block Diagram. 

To perform the system simulation, the components of the experimental setup are modeled using 

transfer functions, which are derived from the device time-domain equations (differential equa-

tions) using the Laplace Transform (Nise 2002).  In a transfer function model, the output of a 

system is expressed as the multiplication of the input by a function of complex frequency (s).  

The system is then described using interconnected blocks (Figure C.4), where the input of one 

block is the output of another (or a linear combination of others).   

 
Figure C.4  Experimental Set-up Signal Block Diagram. 

The governing differential equations and corresponding transfer functions for the control system 

components are presented in Table C.1.  Since the linkage mechanism is a transformer that inter-
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faces the rotational and linear mechanical domains, it is treated as a time varying (dependent on 

θ) coefficient of the damper equation. 

Table C.1  Experimental Setup Components Equations 

Constitutive Relation Component Input/Output Time Domain Function Transfer Function 

PI   Con-
troller 
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Table C.2  Experimental Setup Components Parameter Values. 

Subsystem Constant Value  Description 

iK  100  Integral Gain 
PI Controller 

pK  10  Proportional Gain 

aK  2 A/V  Amplifier Gain 

mK  0.17 Nm/A  Motor Torque Constant Power Amp.  
And Motor 

mJ  3.8x10-4 Kgm2  Inertial Mass 

tK  7.9 N/A  Force Constant 

coilL  2.03 mH  Coil Inductance 

coilR  3.89 Ω  Coil Resistance 
Electromagnetic 

Damper 

loadR  0 Ω  Load Resistance 
r  12 mm  Linkage Radius Linkage l  52 mm  Linkage Length 
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The system is simulated using Simulink®, a component of Matlab®, for a constant reference an-

gular velocity.  The Simulink diagram is shown in Figure C.5, while sample results of the simu-

lation for two sets of controller gains are shown in Figure C.6 and Figure C.7.  The values for the 

system parameters used in the simulation are shown Table C.2. 

 
Figure C.5  Simulink® Model Diagram of the Control System. 
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Figure C.6  Velocity and Torque Response for Controlled System (High Gains). 
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Figure C.7  Velocity and Torque Response for Controlled System (Low Gains) 

C.2.2 PI Controller Circuit Diagram 

Figure C.8 shows the circuit that implements the PI controller described previously.  Table C.3 

presents the components values of the circuit below. 
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Figure C.8  Controller PI Controller Circuit Diagram. 
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Table C.3  PI Controller Component Values. 

Sub-System Component Value 
IC1 LM3403 (1/4) 
Ra1 10kΩ 
Rb1 10kΩ Error Summer 

Rf1 1kΩ 
IC2 LM3403 (2/4) 
Ra2 1kΩ Proportional Gain 
Rf2 10kΩ 
IC4 LM741 
Ra4 10kΩ 
Cf 10�F Integral Gain 

Roff 100kΩ Pot 
IC3 LM3403 (3/4) 
Ra3 10kΩ 
Rb3 10kΩ Output Summer 

Rf3 100kΩ 
 

C.2.3 Honeywell Tension/Compression Miniature Load Cell 

The calibration values provided by the manufacturer are presented in Table C.4.  Figure C.9 

shows the diagrams of the 5V supply and signal conditioning circuits.  An instrumentation am-

plifier with a gain of 1000 was used to interface the load cell to the analog-to-digital converter. 

Table C.4  Load Cell Calibration Parameters 

Parameter Value 
Excitation 5 V 

Calibration Factor 2.054 mv/V 
FS Range 10 lbs (44.48 N) 

Input Resistance 355 Ω 
Output Resistance 354 Ω 

50Ω INA111

-Vcc

 Vcc

V f

0.1µF

0.1µF

Load 
Cell 
31

L7805

cc V

0.1µF0.33µF

 
Figure C.9  Load Cell Supply and Signal Conditioning Circuit Diagram. 
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Appendix D      The Parasitic Damping Coefficient 

When the load resistance is set to an open circuit, the electromagnetic damper does not contrib-

ute to the system damping; therefore the system equation, setting the spring constant to zero, re-

duces to 

 mgxcxm f =+ &&&  (D.1)  

The solution to equation (D.1), given zero initial conditions, is  
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The solution (D.2) and its components are plotted in Figure D.1.  It can be seen from the figure 

that the solution approximates the straight line equation as the exponential component dies off. 

The parasitic damping coefficient can thus be estimated from the experimental data by estimat-

ing the slope of the curve, after allowing the exponential component to decay.  A linear regres-

sion fit is performed on the “straight” part of the data curve. 

0 0.05 0.1 0.15
0

5

10

15

20

25

30

35

40

Time (s)

D
ro

p 
(m

m
)

Damped Drop Equation Solution Components

Total Solution
Particular
Homogeneous

 
Figure D.1  Components of the Damped Drop Solution without EM Damping. 
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Appendix E       Matlab® Code and Data 

E.1 Feasibility Study Code 

function output=feasibility(Folder) 
 
% Function to generate data to study the feasibility of the electro-
magnetic 
% damper.  Files for each of the values of magnet radius, air gap 
thickness  
% and magnet lenght are gemerated.  Each file contains the damper 
desing and 
% analysis paramaters for at each value of coil wire diameter and coil 
% layers. 
% 
% 
% (c) July 2005 Rogelio Palomera-Arias 
output=0; 
strokes=.005:.0025:.25;     % Magnet legnths=strokes (m)    
gaps=.25e-3:.05e-3:5e-3;    %  Air Gaps {m} 
rm=(.2:.1:15)'*1e-2;        % Radius of axial magnet {m} 
awg=0:40;                   % AWG wire numbers 
Nr=(1:30)';                 % Number of layers in coil 
h=waitbar(0,'Processing'); 
iter=length(strokes)*length(gaps)*length(rm); 
for indexs=1:length(strokes) 
    for indexg=1:length(gaps) 
        for indexr=1:length(rm) 
            waitbar(indexs*indexg*indexr/iter,h) 
            [DimensionPa-
ram,DampingParam,CostParam,OperationPoint]=AnalyzeMachine(rm(indexr),s
trokes(indexs),gaps(indexg),awg,Nr); 

            File-
name=sprintf('h:/%s/FeasibilityR%dG%dS%d',Folder,indexr,indexg,indexs)
; 
            save(Filename); 
            output=output+1; 
        end 
    end 
end  
close(h); 
 
function [DimensionPa-
ram,DampingParam,CostParam,OperationPoint]=AnalyzeMachine(rm,Taum,g,aw
g,Nr) 
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% Function to generate the machine design and analysis parameters 
given the magnet radius, 
% length, air gap, coil wire radius and number of coil layers. 
% 
% (c) July 2005 Rogelio Palomera-Arias 
 
%%%%%%%%%%%%%%%%% Material Properties%%%%%%%%%%%%%%%%% 
Mu0=pi*4e-7;                % Permeability of free space 
% NdFeB Magnet Properties (N35) 
Brem=1.2;                   % Remanence {T} 
Hc=900e3;                   % Coercivity {A/m} 
%Brem=1.5;                   % N55 magnet 
%Hc=1050e3; 
Murec=Brem/Hc;              % Recoil permeability 
magnet=[Brem Hc Murec/Mu0]; 
PriceMagnet=66;             % Price per weigth {$/kg^3} 
DensityMagnet=7.5e3;        % Density (kg/m^3) 
% Cu Properties 
Rho=1.77e-8;                % Resisitivity {Ohms-m} 
PriceCu=3;                  % Price per volume {$/kg} 
DensityCu=8.9e3;            % Density (kg/m^3) 
% Fe Properties 
Mufe=2000;                  % Relative permeability 
Bsatfe=2.0;                 % Saturation Magnetic Flux Density 
PriceFe=0.5;                % Price per volume {$/kg} 
DensityFe=8e3;              % Density (kg/m^3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Machine Design %%%%%%%%%%%%%%%%%%%%%%%% 
rw=0.0254*0.46/2*0.890525.^(awg+3); % Wire radii {m} 
Ro=Rho./(pi*rw.^2);         % Wire resistance {Ohms/m} 
hw=((Nr-1)*sqrt(3)+2)*rw;   % Height of coil {m} 
ri=rm+g;        % inside radius of coil 
rs=ri+hw;     % inside radius of yoke 
Tauf=Murec/Mu0*rm^2/Taum*log(rs/rm); % Width of pole shoe 
Bm0=Bm_initial(rm,Taum,rs,Tauf,magnet); 
hy=-rs+sqrt(rs.^2+rm^2*Bm0/(0.9*Bsatfe)); % Thickness of yoke 
re=rs+hy;                % Outside radius of machine 
Bm=Bm_all(rm,Taum,rs,Tauf,magnet,hy,Mufe); 
Hm=(Bm-Brem)./Murec; 
Bp=Bm*rm./(2*Tauf); 
Bs=Bm*rm^2./(hy.*(rs+re)); 
[Nl,Tauw]=CoilDimension(Tauf,Taum,rw); 
Nw=diag(Nr)*Nl;         % Total number of turns per coil 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% Machine Analysis %%%%%%%%%%%%%%%%%%%%%%%% 
% Machine constant 
Kt=pi*Nw.*Bm*rm^2./Tauw; 
% Coil resistance 
Rcoil=Nw.*(ri+rs)*diag(Ro); 
% Maximum damping coefficient 
Cd=Kt.^2./Rcoil; 
% Coil inductance 
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Lcoil=Mu0*Mufe*pi*ri^2*Nw.^2./(2*Tauf+2*Mufe*(Tauw-Tauf)); 
% Machine volumes 
MachineVolume=pi*re.^2.*Tauw; 
MagnetVolume=pi*rm^2*Taum; 
PolesVolume=2*pi*rm^2*Tauf; 
StatorVolume=pi*(re.^2-rs.^2).*Tauw; 
CopperVolume=Rcoil*diag(1./Ro)*pi*diag(rw.^2); 
% Machine prices 
MagnetPrice=MagnetVolume*PriceMagnet*DensityMagnet; 
FePrice=(PolesVolume+StatorVolume)*PriceFe*DensityFe; 
CuPrice=CopperVolume*PriceCu*DensityCu; 
MachinePrice=(MagnetPrice+FePrice+CuPrice); 
% Performance Measures 
DampingDensity=Cd./MachineVolume/1000;  % {kN/(m/s)/m^3} 
CostDamping=MachinePrice./(Cd/1000);      % {$/(kN/(m/s))} 
CostDampingDens=MachinePrice./DampingDensity; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   Output Structures %%%%%%%%%%%%%%%%%%%%%% 
% Dimensions Parameters 
DimensionParam.Diameter=2*re; 
DimensionParam.Length=Tauw; 
DimensionParam.Volume=MachineVolume; 
DimensionParam.CoilLayers=Nr; 
DimensionParam.CoilTurns=Nw; 
DimensionParam.CoilWire=rw; 
DimensionParam.CoilHeight=hw; 
DimensionParam.YokeThickness=hy; 
% Damping and Electrical Parameters 
DampingParam.Kt=Kt; 
DampingParam.Rcoil=Rcoil; 
DampingParam.Lcoil=Lcoil; 
DampingParam.Cd=Cd; 
DampingParam.Density=DampingDensity; 
% Cost Parameters 
CostParam.Machine=MachinePrice; 
CostParam.Cu=CuPrice; 
CostParam.Fe=FePrice; 
CostParam.Magnet=MagnetPrice; 
CostParam.Damping=CostDamping; 
CostParam.Density=CostDampingDens; 
% Magnet and Iron Operation Point 
OperationPoint.Bm=Bm; 
OperationPoint.Hm=Hm; 
OperationPoint.Poles=Bp; 
OperationPoint.Stator=Bs; 
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E.2 Constant Force Experiment  

E.2.1 Simulation Programs 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%  Damped Mass Drop Experiment Simulation 
%%% 
%%%  (c) Rogelio Palomera-Arias, March 2005 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%% Linear Damper Parameters 
Kte=7.874;      % Back EMF Constant {Vs/m} 
Ktf=7.918;      % Force Constant    {N/A} 
Rcoil=3.89;     % Coil Resistance   {Ohms} 
Lcoil=2.03e-3;  % Coil Inductance   {H} 
Mm=230e-3;      % Mover mass        {Kg} 
%%% Testing Parameters 
T=0:0.002:0.3; 
g=9.81;         % Gravity constant  {m/s^2} 
Mass=[42.5 106.3 170.1 233.9]*1e-3; 
Rload=[inf 10.3 5.6 0.5]; 
Rcirc=Rcoil+Rload; 
m=Mass+Mm; 
%%% Set-up Parameters 
Height=24.5e-3; % Drop Height       {m} 
ks=0;           % Spring Constant   {N/m} 
%cfDetermineC(R0s,Time,m); % Parasitic damping {Ns/m} 
cf=8.2; 
%%% System Model. State Variables: x, v and Fd 
B=[ 0 
    g 
    0]; 
C=[ 1 0 0 
    0 1 0 
    0 0 1]; 
D=[ 0 
    0 
    0]; 
for index1=1:length(Mass) 
    for index2=1:length(Rcirc) 
        if isinf(Rcirc(index2)) 
            A=[ 0 1 0 
                -ks/m(index1) -cf/m(index1) -1/m(index1) 
                0 0 0]; 
        else 
            A=[ 0 1 0 
                -ks/m(index1) -cf/m(index1) -1/m(index1) 
                0 Kte*Ktf/Lcoil -Rcirc(index2)/Lcoil]; 
        end 
    System=ss(A,B,C,D); 
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    Y=step(System,T); 
    keep=find(Y(:,1)<=24.5e-3); 
    Crossing(index1,index2)=T(keep(end)); 
    MaxVelocity(index1,index2)=Y(keep(end),2); 
    MaxForce(index1,index2)=Y(keep(end),3); 
    subs=find(Y(:,1)>24.5e-3); 
    SimX{index1,index2}=[Y(keep,1);24.5e-3*ones(size(subs))]; 
    SimV{index1,index2}=[Y(keep,2);zeros(size(subs))]; 
    SimF{index1,index2}=[Y(keep,3);zeros(size(subs))]… 

+cf*SimV{index1,index2}; 
end 
end 
 
function cf=DetermineC(Y,T,M) 
% Function to estimate the parasitic damping coefficient using 
% a linear regression on the straight part of the displacement data. 
%  
%% cf=DetermineC(Y,M) 
% 
% Y: displacement profiles in mm when Rload=open circuit 
% T: time vector corresponding to displacement matrix 
% M: corresponding mass values in kg 
% 
% (c) April 2005 Rogelio Palomera-Arias 
dimension=size(Y); 
for index=1:dimension(2) 
    rawdata=Y(:,index)/1000; 
    remove=find(rawdata>24.5e-3);  
    cleandata=rawdata(1:remove(1)); 
    time=T(1:remove(1)); 
    remove=find(time<=0.05); 
    cleandata=cleandata(remove(end):end); 
    cleantime=time(remove(end):end); 
    % linear regression fit 
    X=[ones(size(cleantime)) cleantime]; 
    regression=X\cleandata; 
    c(index)=M(index)*9.81/regression(2); 
end 
cf=min(c); 
 

E.2.2 Data Manipulation Files and Methods 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Script to extract velocity from position data 
%% then smooth the result using a lowess local  
%% regression smoothing. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for index1=1:4 
    for index2=1:4 
        % Creating Velocity Cell in m/s 
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        ExpV{index1,index2}=diff(ExpX{index1,index2})/.002/1000; 
        % Smoothing Things Out 
       ExpVS{index1,index2}=… 

SmoothingData(Time(2:end),ExpV{index1,index2}); 
    end 
end 
 
 
function Ys=SmoothingData(X,Y) 
%Smoothing Data Y with respect to X using a  
% 11 point  "lowess" local regression algorithm  
N=length(X); 
dimension=size(Y); 
dim=find(N~=dimension); 
if dim==1 
    Y=Y'; 
end 
for index=1:dimension(dim) 
Ys(:,index) = smooth(X,Y(:,index),11,'lowess'); 
End 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Script to plot experimental and simulation results from 
% damped drop mass experiment 
% 
% Data is in DropDataCells.mat file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Selection Menus 
sel=menu('Chose the provfile to plot','Position','Velocity'); 
sel2=menu('Chose type of 
plot','Experimental','Simulation','Comparison'); 
% Define  plot type and text arrays 
tit={'Position' 'Velocity'};            % Title Type  
ylab={'Drop (mm)' 'Velocity (m/s)'};    % Y Axis Type 
assign={'Exp=ExpX{indexm,indexr};Sim=1000*SimX{indexm,indexr};T=Time;'    
'Exp=ExpVS{indexm,indexr};Sim=SimV{indexm,indexr};Sim=Sim(2:end);T=Tim
ev;'}; 
% Plotting Instruction based on sel2 
exec={'plot(T,Exp,marker{index},''LineWidth'',2.5)' 
'plot(T,Sim,marker{index},''LineWidth'',2.5)' 
'plot(T,Sim,T,Exp,''.'')'}; 
% Parameters for plotting and legends 
marker={'--' ' ' '-.' ':'}; 
Resis={'R_0=\infty' 'R_1=14.2\Omega' 'R_2=9.5\Omega' 'R_3=4.4\Omega'}; 
Mass={'m_0=272.5g' 'm_1=336.3g' 'm_2=400.1g' 'm_3=463.9g'}; 
% Releasing figures 
for indexm=1:4 
    figure(indexm) 
    figure(indexm+4) 
    hold off 
    if sel2~=3 
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        subplot(111) 
    end 
end 
% Plotting 
for indexm=1:4 
    figure(indexm) 
    for indexr=1:4 
        eval(assign{sel}); 
        switch sel2 
            case 3 % Comparison plots 
                subplot(220+indexr) 
                eval(exec{sel2}); 
                xlabel('Time (s)') 
                ylabel(sprintf('%s',ylab{sel})) 
                title(sprintf('%s Profile for m_%d and 
R_%d',tit{sel},indexm-1,indexr-1)) 
                legend('Simulated','Experimental') 
            case {1,2}  % Result plots 
                figure(indexm) % Constant Mass 
                index=indexr; 
                eval(exec{sel2}); 
                title(sprintf('%s Plots for 
%s',tit{sel},Mass{indexm})) 
                legend(Resis) 
                hold on 
                figure(indexr+4) % Constant Resistance 
                index=indexm; 
                eval(exec{sel2}); 
                title(sprintf('%s Plots for 
%s',tit{sel},Resis{indexr})) 
                legend(Mass) 
                hold on 
        end 
        xlabel('Time (s)') 
        ylabel(sprintf('%s',ylab{sel})) 
    end 
    orient landscape 
end 
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E.2.3 Sample Experimental Position Graphs 
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Figure E.1  Experimental Drop Profiles for Various Mover Masses (R=4.4 Ω). 
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Figure E.2  Experimental Drop Profiles for Various Circuit Resistances (m=272.5g) 
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E.2.4 Sample Experimental Velocity Graphs 
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Figure E.3  Experimental Drop Velocity as a Function of Mass (Rcirc=4.4Ω). 
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Figure E.4  Experimental Drop Velocity as a Function of Resistance (Mass=272.5g). 



 144

E.2.5 Sample Experimental Force Graphs 
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Figure E.5  Experimental Damper Force (fitted) as a Function of Mass (Rcirc=4.4Ω). 
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Figure E.6  Experimental Damper Force (fitted) as a Function of Resistance (Mass=272.5g). 
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E.3 Oscillatory Velocity Experiment 

E.3.1 Simulation Program 

function [F,X]=CyclicDamper(Rload,Omega,t) 
% Function to simulate the damper reaction force given a displacement 
% imparted through a rotational-linear linkage at constant angular ve-
locity 
% 
%   [F,X]=CyclicDamper(Rload,Omega,t) 
% 
%   F=[Fs Fd] 
%   X=[x v a] 
% 
% (c) July 2005 Rogelio Palomera-Arias 
 
%%% Linear Damper 
Kte=7.874;      % Back EMF Constant {Vs/m} 
Ktf=7.918;      % Force Constant    {N/A} 
Rcoil=3.89;     % Coil Resistance   {Ohms} 
Lcoil=2.03e-3;  % Coil Inductance   {H} 
Md=200e-3;      % Mover mass        {Kg} 
Rcirc=Rload+Rcoil; 
num=Kte*Ktf; 
den=[Lcoil Rcirc]; 
damper=tf(num,den); 
%%%% Linkage Parameters 
r=12e-3; 
l=50e-3; 
Theta=Omega*t; 
CosFact=sqrt(l^2-r^2*sin(Theta).^2); 
x=CosFact-l+r*cos(Theta); 
v=-r*sin(Theta).*(1+r*cos(Theta)./CosFact).*Omega; 
a=-Omega*2*(r*cos(Theta)+r^2*(cos(Theta).^2-
sin(Theta).^2)./CosFact+r^4*cos(Theta).^2.*sin(Theta).^2./(CosFact).^3
); 
%%%%% Damper Response 
Fd=lsim(damper,v,t); 
% If load resistance is open circuit, no damper force 
if isinf(Rcirc) 
    Fd=zeros(size(Fd)); 
end 
% Sensor Force 
Fs=Md*a+Fd; 
F=[Fs Fd]; 
X=[x v a]; 
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E.3.2 Data Manipulation Scripts 

function [Time,Data,DataRaw]=ReadLabViewData(filename) 
DataRaw=load(filename); 
[N,Chs]=size(DataRaw); 
fs=6000;    % Data sampling rate 
% Cleaning data to remove 60Hz components 
%for index=1:Chs 
%DataClean(:,index)=smooth(DataRaw(:,index),101); 
%end 
n=10; 
r=12e-3; 
l=50e-3; 
% Adjusting Position to zero 
DataRaw(:,2)=DataRaw(:,2)-DataRaw(1,2); 
DataClean=DataRaw; 
Time=(0:1/fs:(N-1)/fs)'; 
% Moving Time to 0 
plot(DataRaw(:,2)); 
axis([0 300 -.2 .2]) 
[pos,y]=ginput(1); 
pos=ceil(pos); 
% Cleaning Data but Position 
for index=1:N-1 
    if (index+n-1)>N 
        DataClean(index,[1 Chs])=mean(DataRaw(index:N,[1 Chs])); 
    else 
        DataClean(index,[1 Chs])=mean(DataRaw(index+[0:n-1],[1 Chs])); 
    end 
end 
% Defining conversions 
%Va=1/.25; 
%Ia=1/.5; 
W=2000*pi/(3*60);   % Angular Velocity 
P=1/.25;            % Angular Position 
F=44.48/(2.054*5); 
% Converting data 
K=[-W 0 0  
    0 P 0  
    0 0 F ]; 
Data=DataClean*K; 
DataRaw=DataRaw*K; 
Time=Time(pos:end); 
Time=Time-Time(1); 
Theta=Data(pos:end,2); 
Omega=Data(pos:end,1); 
CosFact=sqrt(l^2-r^2*sin(Theta).^2); 
x=-(CosFact-l+r*cos(Theta)); 
v=r*sin(Theta).*(1+r*cos(Theta)./CosFact).*Omega; 
Data=[x v Data(pos:end,3)]; 
DataRaw=DataRaw(pos:end,:); 
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