

Surface-Surface Intersection with Validated Error Bounds
by

Harish Mukundan

Submitted to the Department of Ocean Engineering
and the Department of Mechanical Engineering

on November 29, 2004, in partial fulfillment of the
requirements for the degrees of

Master of Science in Ocean Engineering
and

Master of Science in Mechanical Engineering

Abstract

This thesis presents a robust method for tracing intersection curve segments between
continuous rational parametric surfaces, typically rational polynomial parametric sur-
face patches. Using a validated ordinary differential equation (ODE) system solver
based on interval arithmetic, we obtain a continuous, validated upper bound for the
intersection curve segment in the parametric space of each surface. Application of
the validated ODE solver in the context of eliminating the pathological phenomena of
straying and looping is discussed. We develop a method to achieve a continuous gap-
free boundary with a definite numerically verified upper bound for the intersection
curve error in parameter space. This bound in parametric space is further mapped to
an upper bound for the intersection curve error in 3D model space, denoted as model
space error, which assists in defining robust boundary representation models of com-
plex three-dimensional solids. In addition, we also discuss a method for controlling
this model space error so that it takes values below a predefined threshold (tolerance).
Application of the above method to various examples is further demonstrated.

Thesis Supervisor: Nicholas M. Patrikalakis, Kawasaki Professor of Engineering,
Professor of Ocean and Mechanical Engineering

Acknowledgments

This thesis is the culmination of two years of my work at MIT. I recognize that
this learning experience is just a formal introduction to the more informal experience
called life. At this point I would like to thank so many people without whose help
this thesis would never have been possible.

First of all I would like to thank my advisor Prof. Nicholas M. Patrikalakis for his
motivation, mentorship and his expert guidance through the labyrinth of research. I
would also like to thank Prof. Takashi Maekawa and Prof. Takis Sakkalis and Dr.
Kwang Hee Ko for all their help, and many a fruitful discussions on my research. I
also am grateful to Prof. C. M. Hoffmann, Prof. N. S. Nedialkov, Prof. T. J. Peters
and Prof. N. F. Stewart for useful discussions and their comments on my work. I
gratefully acknowledge the funding for this work which came from NSF under the
grants DMS-0138098 and CCR-0231511.

I feel fortunate to have been taught by the masters in their corresponding fields at
MIT, Professors T. R. Akylas, K. J. Bathe, J. J. Connor, D. C. Gossard, S. Hunter,
E. Kausel, P. Koev, A. T. Patera, N. M. Patrikalakis, J. Peraire, R. Stocker, N. P.
Suh, A. Techet, A. Toomre, K. J. Vandiver, D. Veneziano, J. K. White and D. K.
P. Yue. I gratefully remember and acknowledge my Professors at IIT-Madras V. G.
Idichandy, S. Surendran and R. Natarajan for their recommendation letters without
which I would not have been at MIT in the first place.

Many thanks to Design Laboratory staff Dr. C. Evangelinos, Dr. W. Cho and
Mr. F. Baker and current as well as previous members Da, Hongye, Micaela, Megumi,
Namik, Stephen and Vanessa. I also thank my colleagues Dee, Ding, Ioannis, Irena,
Josh, Keith, Louiz, Mei, Steve, Susan, Tadd, Tian Run, Vivek for the pleasant working
environment. My friends Bhanu, Khade, Reejis, Sreekar and Xiaojing for many an
arbitrary chat sessions. Thanks are due to past and present administrative staff at
Ocean Engineering Steve Malley, Kathy de Zengotita and Eda Daniel. I would also
like to thank the so many unknown faces who have helped me in every aspect of my
life in the last two years.

I can never forget my Parents T. Mukundan and B. Lali for their unconditional
support and encouragement for 24 years without which I cannot even imagine (I don’t
want to imagine) where I would have been. Finally I thank the Almighty for guiding
me through some of the most difficult and confusing times and to keep up my morale.
This quote from Bible has been a source of constant encouragement for me: He who
dwells in the shelter of the Most High will rest in the shadow of the Almighty. I will
say of the LORD, “He is my refuge and my fortress, my God, in whom I trust.”

Contents

Abstract 3

Acknowledgments 4

1 Introduction 13

1.1 Motivation . 13

1.2 Solution Methods for RPP-RPP Surface Intersection 14

1.3 Robust Solution Methods: A Brief Review 15

1.4 Solution Method . 15

1.5 Assumptions . 16

1.6 Thesis Outline . 17

2 Review of Interval Methods 19

2.1 Definition . 19

2.2 Basic Interval Operations . 20

2.2.1 Arithmetic Operations . 20

2.2.2 Trigonometric Operations . 20

2.2.3 Other Operations . 21

2.3 Properties of Interval Operations . 21

2.4 Interval-Valued Functions . 22

2.4.1 Basic Interval Functions . 22

2.4.2 Mean Value Theorem . 22

2.5 Interval Vectors and Matrices . 23

2.6 Rounded Interval Arithmetic . 23

3 Tracing a Surface-Surface Intersection 25

3.1 Evaluation of Starting Points for Intersection 26

3.1.1 Transversal Intersection . 26

3.1.2 Tangential Intersection and Multiplicity 27

3.2 Interval ODEs for Surface Intersection 27

3.2.1 Transversal Intersection . 28

3.2.2 Tangential Intersection . 29

5

4 Nonlinear ODE Solvers for Marching 33

4.1 Problem Statement . 33

4.2 Overview of Existing Methods . 33

4.2.1 Runge-Kutta Method . 34

4.2.2 Adams-Bashforth Method . 34

4.2.3 Taylor Series Method . 35

4.3 Uniqueness and Existence Theorems 35

4.3.1 Existence Theorem . 36

4.3.2 Uniqueness Theorem . 36

4.4 Conventional Solution Methods and Issues 36

4.4.1 Inherent Errors . 36

4.4.2 Straying or Looping . 37

4.5 Interval Nonlinear ODE Solvers . 38

4.5.1 Advantages of an Interval ODE Solver 38

5 Validated ODE Solver in Tracing Surface-Surface Intersections 41

5.1 Overview of the Method . 41

5.2 Phase I Algorithm . 42

5.3 Phase II Algorithm . 44

5.3.1 Interval Taylor Series Method 44

5.3.2 Interval Hermite Obreschkoff Method 46

5.4 Formulation Based on Validated ODE Solver 47

5.5 Resolving Singularities and Preventing Straying or Looping 48

5.6 Complexity Analysis . 49

6 Automatic Differentiation 51

6.1 Introduction . 51

6.2 Forward Mode Automatic Differentiation 52

6.3 Backward Mode Automatic Differentiation 52

6.4 Automatic Generation of Taylor Coefficients 53

6.5 Complexity Analysis . 54

7 Error Bounds in Model Space 57

7.1 Mapping into Model Space . 57

7.2 Intersection in Model Space and Reduction of Model Space Error Bound 58

7.3 Monotonic Control of Error Bounds 60

7.3.1 Conservative Relation . 62

7.3.2 Approximate Relation . 65

7.3.3 Controlling A Priori Enclosure in a Validated ODE Solver . . 65

7.3.4 Comparison of Two Methods 66

7.4 Complexity Analysis . 68

6

8 Examples 69
8.1 Transversal Intersection of Surfaces 69

8.1.1 Intersection of two Bicubic Bézier Surfaces 69
8.1.2 Intersection of two Biquadratic Bézier Surfaces 70
8.1.3 Intersection with Singularity (Example: 1) 72
8.1.4 Intersection with Singularity (Example: 2) 73
8.1.5 Torus-Cylinder Intersection (Trigonometric Functions) 75

8.2 Tangential Intersection of Surfaces . 75
8.2.1 Planar Intersection Curve . 75
8.2.2 Non-Planar Intersection Curve 77

8.3 Self-Intersection of Surfaces . 80
8.3.1 Self-Intersection of a Bicubic Bézier Patch 80

8.4 Resolving Straying and Looping . 80
8.4.1 Example 1 Depicting Resolving Straying and Looping 82
8.4.2 Example 2 Depicting Resolving Straying and Looping 86

8.5 A Difficult Case . 86

9 Conclusions 91
9.1 Conclusions . 91
9.2 Recommendations for Future Research 93

A Tables 95

7

8

List of Figures

3-1 A given intersection can have many components as depicted in this
figure which was modified from [7]. 25

3-2 This figure illustrates transversal intersection of two surfaces. 28

4-1 Phenomenon of straying or looping. 37

5-1 Steps involved in validated scheme for solving ODEs depicted for the
case involving a single dependent variable. 43

5-2 The series of a priori enclosures in parametric spaces which enclose
the true intersection curve segement. 47

7-1 Mapping of the pre-image of the intersection curve segment from the
parameter space to the model space. Note that the boxes obtained in
the parameter space of each of the surface is continuous, gap free and
ordered. 59

7-2 Depicts how we want to obtain tolerance in parametric space from
tolerance in model space. 60

7-3 The flow chart representing control mechanism. 61

7-4 Mechanism to control the size of the a priori enclosure in a validated
ODE solver. 66

8-1 Transversal intersection of two bicubic Bézier surfaces corresponding
to a maximum relative model space error of 0.00350. 71

8-2 Transversal intersection of two tensor product Bézier surface patches.
This figure depicts convergence of error bounds. 71

8-3 An example of transversal intersection with a singular point involving
tracing four separate intersection curve segments. 73

8-4 Transversal intersection of a hyperbolic surface and a plane involving
tracing four separate intersection curve segments. 74

8-5 Transversal intersection of a Torus and a Cylinder. 76

8-6 Dependence of error in parametric space on the width of starting point
for a transversal intersection involving a Torus and a Cylinder. 77

8-7 Tangential intersection of two cubic-quadratic Bézier patches for a
maximum relative model space error = 0.0050. Note that the control
points of the surfaces are chosen such that the curve of intersection lies
on a plane. 78

9

8-8 Tangential intersection of tensor product Bézier surface patches. Con-
trol points of surfaces are chosen such that the curves of intersection
do not lie on a plane. 79

8-9 Self-intersection of a bicubic Bézier patch. 81
8-10 Integration using ode45 in Matlab. Looping is seen at the region close

to the singularity in the σ, t parameter space. 83
8-11 Integration using ode113 in Matlab. Straying and looping is seen at

the region close to the singularity in the σ, t parameter space. 83
8-12 Integration using a validated ODE solver, not crossing the singular

region in σ, t parameter space. 84
8-13 Result from ode113 in Matlab in the σ, t parameter space. This exper-

iment is done for the case of a small perturbation of one of the surface
[Q3](u, v). 84

8-14 Result from ode45 in Matlab in the σ, t parameter space. This experi-
ment is done for the case of a small perturbation of one of the surface
[Q3](u, v). 85

8-15 Result from a validated ODE solver in the σ, t parameter space for a
case involving a small perturbation of one of the surface [Q3](u, v). . 85

8-16 Example depicting how validated ODE solver prevents straying and
looping. Figure (a) shows the surface [Q3](u, v) perturbed along the
positive z-direction, the intersection curve segment is correctly traced
by the validated ODE solver. Figure (b) in a similar way illustrates
how the validated ODE solver successfully trace the correct intersection
curve segment when the perturbation is in the negative z-direction. . 87

8-17 Resolving straying and looping of curve of intersection for the intersec-
tion of a hyperbolic surface [P4](u, v) and a plane [Q4](u, v). Figure (a)
shows the plane ([Q4](u, v)) perturbed along the positive z-direction,
the intersection curve segment is correctly traced by the validated ODE
solver. Figure (b) in a similar way illustrates how the validated ODE
solver successfully trace the correct intersection curve segment when
the perturbation is in the negative z-direction. 88

8-18 Figure shows an intersection where the intersection becomes difficult
to solve as the governing differential equation fail. 89

10

List of Tables

6.1 Common Unary Operations . 53

6.2 Common Binary Operations . 53

7.1 The tolerance in parametric space of surface [Q3](u, v) obtained from
the given tolerance in model space. 67

7.2 The tolerance in parametric space of surface [P1](σ, t) obtained from
the given tolerance in model space. 67

7.3 The tolerance in parametric space of surface [P3](σ, t) obtained from
the given tolerance in model space. 68

8.1 Variation of the model space error with the number of steps for a
bicubic Bézier intersection. 70

8.2 The effect of changing the width of the starting point for the number
of steps required, the maximum relative model space error and the
VNODE global error for a VNODE tolerance of 10−50. 72

8.3 The number of steps needed, the time taken for various VNODE tol-
erances to trace one of the four branches of the intersection of a hy-
perbolic surface and a plane. 74

8.4 Table comparing maximum relative model space error bound with the
time taken, number of steps required and the VNODE tolerance for an
intersection involving a torus and a cylinder. 75

8.5 Variation of the model space error with the number of steps for the
tangential intersection of two surfaces. The intersection curve lies on
a plane. 78

8.6 Variation of the model space error with the number of steps for the
tangential intersection of two surfaces. The intersection curve does
not lie on a plane. 80

8.7 Number of steps required for tracing the curve of intersection of the
surface for different orders of the Taylor series. Note that the VNODE
tolerance is kept constant at 1× 10−25. 81

8.8 Resolving singularities of the curve of intersection for the intersection
of a bi-cubic surface and a cubic-quadratic surface. Table shows the
perturbations along the common normal and the corresponding number
of steps needed to trace the intersection. 86

11

8.9 Resolving singularities of the curve of intersection for the intersection
of a hyperbolic surface and a plane. We tabulate the perturbations
along the common normal (z-axis) and the steps needed to trace the
intersection. A constant VNODE tolerance of 1× 10−20 was used. . . 89

A.1 Interval Notations. 96

12

Chapter 1

Introduction

1.1 Motivation

Surface to surface intersection is a fundamental process required to build and inter-
rogate complex CAD models. It is needed in representing complex objects using the
boundary representation (B-rep) method, in finite element discretization, computer
animation, feature recognition, manufacturing simulation, numerically controlled ma-
chining, collision avoidance and scientific visualization for implicitly defined objects
and for contouring multivariate functions that represent some properties of a system
[28].

In general surface-surface intersection can be quite complicated. Intersection of
two surfaces can have many components; open segments, closed loops and these
components can also have a very complicated topological structure. Moreover the in-
tersection can be a transversal intersection, a tangential intersection or it can result
in an overlap of surfaces. A resolution of these different aspects of intersection is a ne-
cessity of the CAD/CAM community. These requirements could be listed objectively
as:

• to obtain all components of the intersection,

• to estimate the components accurately and,

• to obtain a strict error bound for the above estimate.

A variety of methods, focusing mainly on numerical techniques have been developed
(Section 1.2) to address these issues. But there are cases where completely catas-
trophic answers are returned without any warning, and this lack of robustness can
cause severe topology violations as shown by Hu et al. [13]. This inconsistency
prevails as a major impediment in the full automation of several design and man-
ufacturing processes, and causes frequent system crashes, which to a large extent
hinders productivity as described by Hoffmann [9, 10]. It is thus a challenge to re-
alize the above goals within the constraints of available computational power and
storage requirements.

13

Two types of surfaces are of main interest: implicit algebraic and rational para-
metric. An implicit algebraic (IA) surface is represented by a polynomial function
defined as f(r) = 0, where r is the position vector of a point on the surface [29]. The
rational polynomial parametric (RPP) type includes Bézier, rational Bézier, B-spline
and NURBS surface patches [29], which are represented with two parameters σ and t
as P = P(σ, t), 0 ≤ σ, t ≤ 1. These surfaces are popular in CAD/CAM and geometric
design, and NURBS surfaces are chosen as the standard format in industry. Depend-
ing on the surfaces involved in intersection, we have three distinct classes: IA-IA,
RPP-IA and RPP-RPP. The most frequent surface to surface intersection problem is
the last one namely RPP-RPP, which is defined as follows:

P(σ, t) ∩ Q(u, v), (0 ≤ σ, t ≤ 1 , 0 ≤ u, v ≤ 1)

where P(σ, t) =
(

XP (σ,t)
WP (σ,t)

, YP (σ,t)
WP (σ,t)

, ZP (σ,t)
WP (σ,t)

)T
and Q(u, v) =

(
XQ(u,v)

WQ(u,v)
,

YQ(u,v)

WQ(u,v)
,

ZQ(u,v)

WQ(u,v)

)T
.

Formulation involves setting P(σ, t) = Q(u, v) which leads to three nonlinear polyno-
mial equations in four unknowns σ, t, u, v. This is an under-constrained system. The
solutions are typically not isolated points but curves [30].

1.2 Solution Methods for RPP-RPP Surface In-

tersection

There are three major techniques for solving RPP-RPP surface intersections: lattice
methods, subdivision based methods and marching methods. Detailed reviews can be
found in [27, 28, 29].

Lattice Methods

Essentially, the lattice method reduces the dimensionality of the problem by comput-
ing intersections of a number of iso-parametric curves of one surface with the other
surface followed by connecting the resulting discrete intersection points to form all the
branches of the actual intersection [29]. This method has limitations in the sense that
there is a possibility of missing components of the intersection, and the uncertainty
in obtaining the correct topology of the intersection curves.

Subdivision Based Methods

They usually decompose the problem into simpler and similar problems which further
reduce to a plane-plane intersection [29]. This is usually followed by a connection
phase of the individual solutions to form the complete solution. Other subdivision
based schemes include the projected polyhedron method employed by Sherbrooke et
al. [39]. Subdivision methods on the other hand suffer from correct connectivity of
the solution branches, missing of small loops and the presence of extraneous loops,
and data proliferation.

14

Marching Methods

Marching methods involve generation of sequences of points of an intersection curve
branch by stepping from a given point on the intersection curve in a direction pre-
scribed by the local differential geometry [2, 3, 17, 48]. Marching methods for-
mulate the surface intersection as an initial value problem (IVP) in the domain
0 ≤ σ, t, u, v ≤ 1. However, such methods are by themselves incomplete in that
they require starting points (initial conditions) for every branch of the solution. In
this thesis, we focus on a marching method which is robust and efficient after locating
starting points and performing a topological configuration of the intersection curves.

1.3 Robust Solution Methods: A Brief Review

It is well known that the problem of surface-surface intersection reduces to solving
an initial value problem for ordinary differential equations (ODE) [29]. Conventional
algorithms for solving a system of ODEs for example, Runge-Kutta method, Adams-
Bashforth method or Taylor series method [32, 42], compute an estimate for an answer
and perhaps its error estimate. Refer to Chapter 4 for a detailed treatment of solution
schemes for IVPs and related issues. The user cannot tell how accurate the estimated
answer may be without extensive error analysis.

The Interval Projected Polyhedron (IPP) algorithm [11] uses subdivision tech-
niques coupled with robust interval arithmetic and exhaustively finds all intersection
components. However as mentioned in Section 1.2, the topology resolution of com-
puted intersection segments based on adjacency information is complicated. More-
over, the algorithm tends to be extremely time consuming for the case of tangential as
well as higher order intersections. There is also no guarantee that the isolated inter-
vals do contain a root, an inherent problem associated with any subdivision algorithm
[12].

Grandine and Klein [7] formulate the intersection problem as a differential alge-
braic equation and determine the topology of the intersection curves so that it can
be solved as a boundary value problem instead of an initial value problem. But the
tracing of intersection curve is based on approximate methods, which compromises
the robustness of the entire algorithm. Moreover the algorithm finds difficulty dealing
with tangential intersections.

1.4 Solution Method

We develop a robust intersection algorithm which uses a validated interval ODE
solving scheme for tracing the pre-image of the intersection given a robust evaluation
of starting points in every branch of the intersection.

Interval techniques take into account three sources of errors in the numerical
computation of solution to ODEs; propagation of error in initial data, truncation
error caused by truncating infinite sequences of arithmetic operations after a finite
number of steps and round-off errors inherent to computation in a floating point

15

environment [8]. When correctly used interval methods can compute bounds in which
the correct answer is guaranteed to be enclosed [4].

The focus of the thesis is to investigate a robust marching method which will
produce a continuous guaranteed bound on the error at each point using a validated
interval ODE solving scheme [23]. Thus the same ODE solver can be used uniformly
for both transversal and tangential intersections. An improvement for the special
case of self-intersection is also discussed. We also relate the phenomenon of straying
and looping to the criterion of a step size control based on the validation procedure
in the method. The method described in this thesis enables us to realize the state
of a gap-free boundary [34] using a marching scheme. We further develop tools to
control this model space error.

1.5 Assumptions

Two arbitrary surfaces can intersect in a very complicated fashion. There is no
limitation as to the general shape or nature of the surfaces which intersect. Given a
very complicated system of space curves, we can find out surfaces, whose intersection
results in the system of complicated space curves. But if we limit the class of surfaces,
then we are able to predict some characteristics of the intersection curves. Hence we
assume that the surfaces we use are:

1. Regular: The regularity of the surfaces requires the existence of a tangent plane
everywhere on the surface, and the absence of self-intersections. Moreover it
requires that the surfaces have neither essential nor artificial singularities [29].
The essential singularities arise from specific features of the surface geometry
while the artificial singularities arise from the way in which we parametrize the
surface [29].

2. Continuous & Rational Polynomial Parametric (RPP): Polynomial surfaces
have special properties as shown by Hu et al. [11] with respect to overlap of
surfaces over finite neighborhood. Hu et al. [11] describe some additional con-
straints on how RPP surfaces are limited in their behavior during tangential
intersection. Moreover the use of RPP surfaces ensures that they are C∞ con-
tinuous and rational [23]. This assumption is crucial for us to use the validated
ODE solver. The assumption of a continuous surface is also needed for us to
prove that the enclosures we obtain in the model space, contain the true curve
of intersection.

At this point we note that obtaining a starting point or the topological configura-
tion of an intersection curve is not the focus of the thesis. Hence we assume that we
have identified and evaluated at least one starting point of each of the intersection
curve segments and further a strict bound on the starting points. We also assume
that we have isolated all singular points, a process which belongs to the step for
obtaining the starting points. Thus our focus is on accurately tracing and finding a
validated error bound in 3D model space for our intersection curve, given the type of
intersection (eg:transversal or tangential) and a bound on the starting point.

16

1.6 Thesis Outline

The thesis is structured as follows: Chapter 2 briefly reviews interval arithmetic.
In Chapter 3 we obtain the governing interval ODEs for the various intersection
cases. Conventional ODE solvers and their limitations are discussed in Chapter 4
and in Chapter 5 we introduce the concept of a validated ODE solver [5, 26], its
application in tracing surface intersection and discuss its use in preventing straying
or looping and in resolving singularities. Chapter 6 describes automatic differentiation
[24] which deals with a robust numerical technique for obtaining the Taylor coefficients
and their derivatives. In Chapter 7 we develop a method to fulfill the condition of a
continuous gap free boundary in the model space [23] and further a control mechanism
to control this error bound. We perform various examples and tests using a prototype
implementation of the algorithm in Chapter 8. Chapter 9 concludes this thesis with
a review of the possible applications, issues and scope for future work. The notations
used in this thesis is tabulated in Appendix.

17

18

Chapter 2

Review of Interval Methods

When we use a computer to make calculations involving real numbers, we have to use
the finite set of floating-point numbers that the hardware makes available. In such a
situation there are two main choices for the approximation of a real number by the
floating-point number system. One choice is to represent a real number by using one
floating-point number close enough to this real number. The second choice is to use
two floating point numbers within which the original real number belongs. The latter
is called an interval, and interval analysis was introduced by Moore [22] to allow digital
computers working on floating point arithmetic to capture the errors automatically.
Whenever an operation on real numbers is specified, the corresponding operation on
their intervals is executed and a closed range which contains the resulting answer is
returned.

The use of interval arithmetic is spreading out, mainly as a tool for so-called vali-
dated computations which guarantee that the solution is accurate within the bounds.
It takes into account all possible sources of error from imprecise data to rounding
errors due to floating point operations during computer calculations. In addition nu-
merical techniques for ODEs based on interval arithmetic consider three sources of
errors: (1) propagation of error in initial data, (2) truncation error caused by trun-
cating infinite sequences of arithmetic operations after a finite number of steps and
(3) round-off errors inherent to computation in floating point arithmetic [8]. When
correctly used, interval methods can compute bounds in which the correct answer is
guaranteed to be enclosed [4].

It is a well defined arithmetic system consisting of basic rules of operations. It
was adopted into the area of CAD and CAGD a decade back. Interval geometries are
defined by interval points [13], interval polynomial spline curves [36, 45] and interval
spline surface patches [13, 45].

2.1 Definition

An interval number [a] or [a, a], is defined as the set of real numbers [22],

[a] ≡ [a, a] ≡ {x| a ≤ x ≤ a}, a, a, x ∈ R, a ≤ a, (2.1)

19

where real numbers a and ā refer to the lower and upper bounds, of the interval
respectively.

A degenerate interval of the form [a, a] is equivalent to the real number a. We
denote the set of real numbers by R and the set of interval numbers by IR.

The centered form of an interval [a] as used by Shen et al. [38] is given by,

[a] = m([a]) +
1

2
w([a])[I], (2.2)

where [I] = [−1, 1] and the operators m([a]) and w([a]) represent the midpoint and
width of the interval [a] respectively as defined by equation (2.3).

2.2 Basic Interval Operations

2.2.1 Arithmetic Operations

We define the following closed operations on two interval numbers [a] and [b],

[a] + [b] = [a + b, ā + b̄],

[a]− [b] = [a− b̄, ā− b],

[a][b] = [min{ab, āb̄, ab̄, āb}, max{ab, āb̄, ab̄, āb}],
[a]/[b] = [min{a/b, ā/b̄, a/b̄, ā/b}, max{a/b, ā/b̄, a/b̄, ā/b}], 0 /∈ [b].

2.2.2 Trigonometric Operations

For monotonically increasing functions (eg: exp a, ln a), we can obtain the interval
arithmetic evaluation as:

f([a]) = [f(a), f(a)].

For functions with a period, the lower bound and the upper bound are defined in a
piecewise fashion, and depend on the slope. For trigonometric functions such as sin x,
we have:

sin([a, a]) = [S, S], where,

S =

{
−1 if a ≤ (2πn− π

2
) ≤ a ∀ n = 1, 2, . . .

min(sin a, sin a), otherwise,

S =

{
1 if a ≤ (2πn + π

2
) ≤ a ∀ n = 1, 2, . . .

max(sin a, sin a), otherwise.

Similar definitions can be obtained for other trigonometric functions. A general

20

function is essentially subdivided into monotonic segments and we evaluate the bound
for each of these segments.

2.2.3 Other Operations

For an interval [a], we define width w([a]) midpoint m([a]) and magnitude |[a]| of [a]
as,

w([a]) = ā− a,

m([a]) =
ā + a

2
,

|[a]| = max(|ā|, |a|). (2.3)

Width and midpoint are defined component-wise for interval vectors and matrices.

2.3 Properties of Interval Operations

We have the inclusion of intervals,

[a] ⊆ [b] ⇔ a ≥ b and ā ≤ b̄.

The interval arithmetic operations are inclusion monotone. That is, for real in-
tervals [a], [a1], [b] and [b1], such that [a] ⊆ [a1] and [b] ⊆ [b1],

[a] ◦ [b] ⊆ [a1] ◦ [b1], ◦ ∈ {+,−,×,÷}.

Interval addition and multiplication are associative and commutative, but the
distributive law does not hold in general. That is, we can find three intervals [a], [b]
and [c] for which,

[a]([b] + [c]) 6= [a][b] + [a][c].

However, for any three intervals [a], [b] and [c], the sub-distributive law holds,

[a]([b] + [c]) ⊆ [a][b] + [a][c]

and this reduces to the distributive law, for the cases that [b][c] ≥ 0, if [a] is a
degenerate interval, or if [b] and [c] are symmetric. In particular, for some η ∈ R,
and intervals [b] and [c], we have

η([b] + [c]) = η[b] + η[c].

Using the basic interval arithmetic operations one can easily show that for any
intervals [a] and [b] and degenerate interval η

w([a]± [b]) = w([a]) + w([b]),

21

w(η[a]) = |η|w([a]).

Some other useful results are

|[a] + [b]| ≤ |[a]|+ |[b]|,
|[a][b]| = |[a]||[b]|,

w([a]± [b]) = w([a]) + w([b]),

w([a][b]) ≥ max(|[b]|w([a]), |[a]|w([b])),

w([a][b]) ≤ |[b]|w([a]) + |[a]|w([b]).

2.4 Interval-Valued Functions

2.4.1 Basic Interval Functions

A real continuous function on D ⊆ Rn is defined as,

f : Rn → R.

The range of f over an interval [s] ⊆ D is defined by,

R(f ; [s]) = {f(x)|x ∈ [s]}.

The evaluation of f on [s] ⊆ D in interval arithmetic, which we denote by f([s]), is
obtained by replacing each occurrence of a real variable with a corresponding interval,
by replacing the standard functions with enclosures of their ranges, and performing
interval arithmetic operations instead of the real operations [26]. It follows from the
inclusion monotone property of interval operations that the range of f , R(f ; [s]), is
always contained in the interval arithmetic evaluation f([s]) [26].

Moore [22] also proves the continuity of rational interval functions. We note that
f([s]) need not be unique. It depends on the arrangement of the interval expressions.
Thus, rearrangement of an interval expression may lead to tighter bounds. Moore
[22] shows that evaluation based on the centered form in (2.2) may provide a sharper
bound than the standard form (2.1) for a given expression. We will be using these
concepts when we obtain strict bounds on the intersection in the 3D model space.

2.4.2 Mean Value Theorem

If f is continuously differentiable on D, and [a] ⊆ D, then, for any y and b ∈ [a],
f(y) = f(b) + f ′(η)(y − b) for some η ∈ [a],

f(y) ∈ fm([a], b) ≡ f(b) + f ′([a])([a]− b).

This is the interval arithmetic form of the mean value theorem [22]. The mean value
form, fm([a], b), is extremely popular in interval methods as it is analogous to the
centered form, and hence gives tighter enclosures for the range of f [22].

22

Beyond the use of the centered form, the modified affine arithmetic [40] can be
employed for generation of tighter bounds of functions.

2.5 Interval Vectors and Matrices

The above definitions for interval numbers can be extended to vectors and matrices,
too. By an interval vector we mean a vector with interval components and by an
interval matrix we mean a matrix with interval components [24]. The arithmetic op-
erations involving interval vectors and matrices are defined by the standard formulae,
except that interval numbers replace the real numbers and real arithmetic is replaced
by interval arithmetic in the associated computations. Following the standard nota-
tions, vectors and matrices are denoted by bold type throughout the thesis. Interval
vectors and interval matrices are denoted by bold type enclosed in a square bracket.

The corresponding vector or matrix equations also hold when [a] and [b] are inter-
val vectors. If A is an n× n real matrix and [a] is an n dimensional interval vector,
then

w(A[a]) = |A|w([a]),

where |A| is obtained by taking absolute values on each component of A.
Inclusion in the case of interval vectors and matrices are defined component-wise

by,

[A] ⊆ [B] ⇔ [aij] ⊆ [bij] ∀ i, j ∈ I.

The maximum norms of an interval vector [a] and an interval matrix [A] are
respectively given by,

||[a]|| =
max

1 ≤ i ≤ n (|[ai]|)

||[A]|| =
max

1 ≤ i ≤ n (
n∑

j=1

|[aij]|)

The equivalent vector form of the mean value theorem is hence,

f(y) ∈ f([a],b) ≡ f(b) + J(f([a],b))([a]− b),

where J(f([a],b)) represents the Jacobian matrix of the vector f .

2.6 Rounded Interval Arithmetic

Interval arithmetic based on floating point numbers does not guarantee conservative
bound during computation [29]. Rounded interval arithmetic [1] ensures that the
computed interval always contains the exact interval as shown below.

[a] + [b] = [a + b− εl, ā + b̄ + εu],

23

[a]− [b] = [a− b̄− εl, ā− b + εu],

[a][b] = [min{ab, āb̄, ab̄, āb} − εl, max{ab, āb̄, ab̄, āb}+ εu],

[a]/[b] = [min{a/b, ā/b̄, a/b̄, ā/b} − εl, max{a/b, ā/b̄, a/b̄, ā/b}+ εu], 0 /∈ [b],

where εl and εu are the units-in-last place denoted by ulpl and ulpu for each separate
floating point number resulting from the floating point operations. For simplicity of
the discussion we safely assume that unless specifically indicated we use exact interval
arithmetic in this thesis.

24

Chapter 3

Tracing a Surface-Surface
Intersection

A given intersection curve represents a continuous trajectory in the parameter space
of each of the surfaces. An intersection curve segment in the model space as shown
in the Figure 3-1 has a counter part in the parametric space of each of the surfaces.

Figure 3-1: A given intersection can have many components as depicted in this figure
which was modified from [7].

As shown in the Figure 3-1, the given intersection can have many components,
even for surfaces which are relatively easy to represent. Some of these components
may be open segments, or closed loops, and these segments can come quite close to
each other. It is thus a challenge to:

• Identify each of the many segments.

• Obtain a starting point on each of the segments.

• Trace the intersection exactly or within strict error bounds.

In this chapter we formulate the surface to surface intersection (SSI) as an initial
value problem (IVP). An IVP is defined if we are given the differential equations
governing the problem and further the corresponding initial conditions. For the case
of intersection of two surfaces the governing differential equations are a system of

25

ODEs. Hence this chapter will deal with obtaining the ODEs which govern the
intersection. Depending on the type of intersection namely transversal or tangential
we need to obtain separate ODEs. We further formulate these ODEs in interval
arithmetic to obtain an interval ODE system.

3.1 Evaluation of Starting Points for Intersection

Though the focus of the thesis is not on obtaining the starting point in each intersec-
tion curve segment, we roughly describe how we plan to identify and further obtain
the starting points which correspond to initial conditions. Thus we assume that we
have identified different components of the intersection and have obtained at least
one starting point on each segment.

3.1.1 Transversal Intersection

For identifying all connected components of the intersection a set of special points
on the intersection curve can be defined. Such a set typically includes border points,
turning points, singular points and collinear normal points of the intersection. These
provide at least one point on any connected intersection segment or closed loops and
identify all singularities [28].

Border points are points on the intersection at which at least one of the parametric
variables σ, t, u, v takes a value equal to the border of the σ − t or u − v parametric
domain. Computing the border points involves solving a curve-surface intersection
such as an equation of type, [P](σ, 0) = [Q](u, v). This system is solved robustly
using the interval projected polyhedron algorithm (IPP) [29].

Turning point and singular point computation involves the first partial derivatives.
Turning points essentially involve solving a system of three nonlinear polynomial
equations of three variables, and computing singularities reduces to solving an over
constrained system of three nonlinear polynomial equations of two variables. For the
solution we use IPP algorithm.

Closed loops are usually a special case of transversal intersection, but can be
more complicated. The difficulty is to recognize the presence of the closed loop, and
once the presence is identified, we need a starting point for tracing the intersection
curve. Collinear normal points are a subset of parallel normal points first used by
Sinha et al. [41] in surface intersection loop detection methods. Sederberg et al. [35]
recognized the importance of collinear normal points in detecting the existence of
closed intersection loops in intersection problems of two distinct parametric surface
patches. These are points on the two parametric surfaces at which the normal vectors
are collinear. The collinear normal points satisfy the following equations [35].

([Ps]× [Pt]) · [Qu] ⊂ [ZERO],

([Ps]× [Pt]) · [Qv] ⊂ [ZERO],

([P]− [Q]) · [Ps] ⊂ [ZERO],

([P]− [Q]) · [Pt] ⊂ [ZERO], (3.1)

26

where [ZERO] denotes a sufficiently small interval containing zero. The system
of four nonlinear equations (3.1) in four unknowns σ, t, u and v, should be solved
robustly and then supplied as the starting points for the tracing algorithm.

An alternate way to detect closed intersection loops is to use topological methods.
Bounding pyramids can be used to ensure the nonexistence of closed loops in surface to
surface intersection [29]. Robust evaluation in this context thus reduces to solving the
above system of equations (3.1) using algorithms such as interval projected polyhedron
algorithm.

3.1.2 Tangential Intersection and Multiplicity

Obtaining at least one starting point in each intersection curve segment for a tangen-
tial intersection is not an easy task. This is because of a variety of complex shapes
the intersection curve can follow. But if we assume rational polynomial surfaces, then
we can use a theorem by Hu et al. [11] for simplification.

Theorem 1 If a tangential contact curve of two polynomial surfaces does not contain
a loop then they must start from a border point and end at another border point.

This implies that if two surfaces are polynomials then there are two cases.

Case 1: The intersection can start at a border and end at another border point.

Case 2: The intersection contains at least one loop.

This theorem says that if the tangential intersection curve contains a loop, then
inside the loop, there must be a collinear normal point which is not an intersection
point of those two surfaces [11]. We at this point note that this theorem can be
applied only to ideal mathematical surfaces. Application of this theorem however in
the context of floating point arithmetic requires more study.

3.2 Interval ODEs for Surface Intersection

The intersection of two interval parametric surfaces [P](σ, t) and [Q](u, v) can be
described as an interval vector equation given by,

[P](σ, t) = [Q](u, v). (3.2)

We can reformulate equation (3.2) as a system of ordinary differential equations(ODE)
which are arc length parametrized. Our approach is to use a marching scheme to find
out the curve of intersection by solving this system of interval ODEs obtained by Hu
et al. [11],

σ′ =
dσ

ds
=

Det([c], [Pt], [N
P])

[NP] · [NP]
, t′ =

dt

ds
=

Det([Pσ], [c], [NP])
[NP] · [NP]

,

u′ =
du

ds
=

Det([c], [Qv], [N
Q])

[NQ] · [NQ]
, v′ =

dv

ds
=

Det([Qu], [c], [NQ])
[NQ] · [NQ]

, (3.3)

27

where Det denotes the determinant and,

[NP] = [Pσ]× [Pt], [NQ] = [Qu]× [Qv],

are the normal vectors of [P] and [Q] respectively. [c] is the marching direction s is
the arc length parameter.

Equations (3.3) are true for any surface-surface intersection involving parametri-
cally defined surfaces, provided we correctly represent the marching direction (tangent
to the intersection curve), and the surfaces and their derivatives. Based on the inter-
section type the marching direction has to be computed differently.

3.2.1 Transversal Intersection

For a transversal intersection, the direction of marching [c], is perpendicular to the
normal vectors of both surfaces (refer Figure 3-2). This direction can be obtained as
follows [11]:

[c] = ± [NP]× [NQ]

|[NP]× [NQ]|
. (3.4)

Figure 3-2: This figure illustrates transversal intersection of two surfaces.

28

Self-Intersection

Differential equations for tracing self-intersection curves are formulated such that the
curve of self-intersection is arc length parametrized. The marching direction coincides
with the tangential direction of the self-intersection curve [c] of the surface which is
perpendicular to the two normal vectors [NP](s, t) and [NP](u, v) where (s, t) 6= (u, v).
The marching direction can hence be written as,

[c] =
[NP](s, t)× [NP](u, v)

|[NP](s, t)× [NP](u, v)|
. (3.5)

Robust computation of the curve of self-intersection is usually based on IPP [29]. It
is very inefficient to solve surface intersection problems with IPP, as the key difficulty
here being the removal of the trivial solutions from the real solutions (s, t) = (u, v).
The advantage of the marching scheme we propose is that we do not have to remove
the trivial solutions and that it fits into our concept of a uniform approach, where
we use the same set of differential equations with appropriate changes for the type of
intersection.

3.2.2 Tangential Intersection

Obtaining the marching direction for tangential intersection is based on Ye and
Maekawa [49] and they use the higher derivatives of the surfaces involved to compute
it. Note that we cannot use equation (3.4) to get the marching direction because
normals to both surfaces are parallel.

The unit tangent vector [c] must lie on the common tangent plane of [P](σ, t)
and [Q](u, v). The tangent plane can be defined using the linear combination of the
partial derivatives ([Pσ], [Pt], [Qu] and [Qv]) of each of the surfaces [P](σ, t) and
[Q](u, v), i.e.

[c] = [Pσ]σ′ + [Pt]t
′ = [Qu]u

′ + [Qv]v
′. (3.6)

Using the concept of a curve on a surface, and using the fact that the normals of
the surfaces are the same denoted by [N], we can show that the normal curvatures of
both surfaces are equal, which can be rewritten in terms of the second fundamental
form coefficients of both surfaces ([LP], [MP], [NP] and [LQ], [MQ], [NQ]) as,

[LP](σ′)2 + 2[MP]σ′t′ + [NP](t′)2 = [LQ](u′)2 + 2[MQ]u′v′ + [NQ](v′)2. (3.7)

This is a quadratic equation in (σ′, t′, u′, v′). By taking the cross product of both
sides of equation (3.6) with [Qu] and [Qv], and projecting the resulting equations onto
the common surface normal vector [N], u′ and v′ can be represented as the following
linear combination of σ′ and t′:

u′ = [a11]σ
′ + [a12]t

′, (3.8)

29

v′ = [a21]σ
′ + [a22]t

′, (3.9)

where we obtain [a11], [a12], [a21] and [a22] as follows:

[a11] =
([Pσ]× [Qv]) · [N]

([Qu]× [Qv]) · [N]
=

Det([Pσ], [Qv], [N])√
[EQ][GQ]− ([FQ])2

,

[a12] =
([Pt]× [Qv]) · [N]

([Qu]× [Qv]) · [N]
=

Det([Pt], [Qv], [N])√
[EQ][GQ]− ([FQ])2

,

[a21] =
([Qu]× [Pσ]) · [N]

([Qu]× [Qv]) · [N]
=

Det([Qu], [Pσ], [N])√
[EQ][GQ]− ([FQ])2

,

[a22] =
([Qu]× [Pt]) · [N]

([Qu]× [Qv]) · [N]
=

Det([Qu], [Pt], [N])√
[EQ][GQ]− ([FQ])2

.

Here ([EQ], [GQ], [FQ]) are the first fundamental form coefficients of the surface [Q].

Substituting (3.8) and (3.9) into (3.7), then we obtain a quadratic equation of the
form,

[b11](σ
′)2 + 2[b12](σ

′)(t′) + [b22](t
′)2 = 0, (3.10)

where,

[b11] = [a11]
2[LQ] + 2[a11][a21][M

Q] + [a21]
2[NQ]− [LP],

[b12] = [a11][a12][L
Q] + ([a11][a22] + [a21][a12])[M

Q] + [a21][a22][N
Q]− [MP],

[b22] = [a12]
2[LQ] + 2[a12][a22][M

Q] + [a22]
2[NQ]− [NP].

There are four distinct cases to the solution of (3.10) depending upon the discriminant
([d] = [b12]

2 − [b11][b22]).

• (d̄ < 0): The surfaces have an isolated tangential contact point.

• (d > 0): We have the phenomenon of branching, i.e. [c] is not uniquely defined.

• (0 ∈ [d] and 0 ∈ [b11], [b12], [b22]): The intersection of surfaces [P] and [Q] cannot
be evaluated by this method or they have a contact of at least second order (i.e.,
curvature continuous).

• (0 ∈ [d] and 0 /∈ [b11]
2 +[b12]

2 +[b22]
2): The marching direction vector is defined.

Thus, [P] and [Q] are said to intersect tangentially at the neighborhood.

The marching direction is obtained, depending on [b11], [b12] and [b22], as follows.

If 0 /∈ [b11] , σ′

t′
= [ν] = − [b12]

[b11]
, the marching direction is given by,

[c] =
[ν][Pσ] + [Pt]

|[ν][Pσ] + [Pt]|
. (3.11)

30

If 0 ∈ [b11] and 0 /∈ [b22],
t′

σ′ = [µ] = − [b12]
[b22]

, then the marching direction is given
by,

[c] =
[Pσ] + [µ][Pt]

|[Pσ] + [µ][Pt]|
. (3.12)

31

32

Chapter 4

Nonlinear ODE Solvers for
Marching

4.1 Problem Statement

Tracing the intersection of two RPP surfaces using a marching method essentially
reduces to solving a system of ordinary differential equations (ODEs) (3.3). Given
initial conditions, which correspond to a starting point, we can in principle integrate
the system of ODEs to obtain a series of points in the parameter space of each of the
surfaces which represent an approximation to the intersection curve segment.

The system of ordinary differential equations (3.3) with the initial condition rep-
resents an initial-value problem (IVP), which can be written in vector form as,

y′(s) = f(y(s)), y(s0) = y0,

where,

y′(s) =
[

σ′ t′ u′ v′
]T

and y0 =
[

σ0 t0 u0 v0

]T
.

The system of ODEs with starting point is a regular, autonomous IVP. Our use
of rational polynomial parametric surfaces which are C∞ continuous makes sure that
f([y(s)]) is well behaved and is at least Ck continuous, where k is defined in Chapter
5. The initial conditions for the ODEs are obtained by solving a system of nonlinear
polynomial equations if the surfaces are RPP. This is usually done numerically and
has an associated error.

4.2 Overview of Existing Methods

Any numerical scheme, yielding a solution for a physical system represented by an
IVP should first check for the existence and then the uniqueness of the solution before
returning an approximation, or a bound for it [16]. The similar idea of existence
and uniqueness is applied while solving a system of linear equations having many

33

unknowns. This, however, is not a common practice in the conventional solution
schemes for IVPs.

A typical solution procedure is to use an approximate, point based algorithm
[32] like Runge-Kutta method, Taylor series method or Adams-Bashforth technique
for solving the ODEs corresponding to the surface-surface intersection problem men-
tioned in [28, 29] at discrete values of the arc length parameter s.

4.2.1 Runge-Kutta Method

The scheme of Runge Kutta method [16] is as follows, we define the following inter-
mediate variables for the jth step

k1 = hjf(s,yj),

k2 = hjf(s +
hj

2
,yj +

k1

2
),

k3 = hjf(s +
hj

2
,yj +

k2

2
),

k4 = hjf(s + hj,yj + k3),

y(sj+1) = y(sj) + (
k1 + 2k2 + 2k3 + k4

6
),

sj+1 = sj + hj.

This method is easy to implement on a computer and is accurate up to 4th order,
namely the error per step is on the order of h5.

4.2.2 Adams-Bashforth Method

Adams-Bashforth method is a predictor-corrector method. Hence it is done in two
main steps.

Step I : The predictor step

• Fit a cubic interpolating polynomial to the function f(s,y) through the
points yj,yj−1,yj−2 and yj−3. We can see that 4 points are needed to fit
a 3rd order polynomial.

• Integrate this simple function over the interval yj to yj+1, giving

y∗j+1 = yj +
hj

24
(55f(yj)− 59f(yj−1) + 37f(yj−2)− 9f(yj−3)). (4.1)

Step II : The corrector step

• Fit a cubic polynomial f(s,y) through the points yj+1,yj,yj−1, and yj−2.

34

• Integrate the resultant polynomial giving,

yj+1 = yj +
hj

24
(9f∗(yj+1) + 19f(yj)− 5f(yj−1) + f(yj−2)). (4.2)

where f∗(yj+1) = f evaluated at y∗j+1.

Algorithm

• Use RK method to determine y3,y2 and y1. y0 is known.

• Calculate y∗j+1 using (4.1).

• Evaluate f∗(yj+1) and calculate yj+1 using equation (4.2).

• Increment the parameter sj+1 = sj + hj.

The Adams-Bashforth method is also of 4th order and hence error is of order
h5. This method is faster than the 4th order RK method since only two new func-
tional evaluations are needed in each step. This method is however not self starting.
Therefore RK method is usually used to initiate this multi-step method [32].

4.2.3 Taylor Series Method

Taylor’s series [32, 16] in a single variable s is given by,

yj+1 = yj + hjf(yj) +
h2

j

2!
f ′(yj) +

A Taylor’s formula is written as,

yj+1 = yj + hjf(yj) +
h2

j

2!
f ′(yj) + . . . +

hk
j

k!
fk(yj) + Rk

j ,

where the remainder term (error term) Rk
j is given by,

Rk
j =

hk+1
j

(k + 1)!
fk+1(y∗j) for some y∗j = y(s∗) such that s∗ ∈ [sj, sj+1].

The usual practice is to truncate the Taylor’s formula after k terms to obtain a very
good approximation to the solution. Thus we obtain the Taylor’s method of order
k + 1.

4.3 Uniqueness and Existence Theorems

Solution of an IVP for a nonlinear system of ODEs can have 3 different cases.

1. No solution.

2. Exactly one solution.

35

3. More than one solution.

These lead to the following fundamental questions.

Existence: Under what conditions does an initial value problem have at least one
solution.

Uniqueness: Under what conditions does that problem have a unique solution, only
one solution.

The theorems which state the conditions are called the existence theorem and unique-
ness theorem respectively. Uniqueness is of importance, for instance, if we attempt to
predict the future behavior of a physical system governed by an initial value problem.
Our model may be complicated, so that we have to apply a numerical method for
obtaining an approximate solution. But before doing so, we should make sure that
the model will yield a unique solution.

In general for a system of ODEs,

y′(s) = f(s,y(s)), y(s0) = y0,

we have the following theorems which give conditions on the existence and uniqueness
of the solution. We at this point note that existence and uniqueness are defined in
the neighborhood of a point under consideration.

4.3.1 Existence Theorem

If f(s,y(s)) is defined and continuous at (s0,y(s0)), then there exists solution for the
system of ODEs for a neighborhood close to (s0,y(s0)).

4.3.2 Uniqueness Theorem

We define the Jacobian as J = {Jij} =
{

∂fi

∂yj

}
. For a unique solution at (s0,y(s0)) the

Jacobian J should exist and should be continuous at (s0,y(s0)).

4.4 Conventional Solution Methods and Issues

The ODE solvers discussed in the previous section and other conventional solvers
suffer from some very serious deficiencies. These are discussed in this section.

4.4.1 Inherent Errors

Truncation Errors

Truncation errors are caused by truncating infinite sequences of arithmetic operations
after a finite number of steps. A typical example is truncating an infinite Taylor series
after finite number of terms.

36

Rounding Errors

This pathology is caused due to computation in a floating point environment. Com-
putation using floating point arithmetic is performed based on fixed grids. A given
number which may be rational or irrational is rounded to the closest number on this
grid thus introducing a small but nonzero error. This approximation over a number
of operations can lead to a significant error.

Errors in Initial Data

Obtaining the starting points in general for a surface intersection problem involves
solving a system of nonlinear equations numerically. This essentially results in a non
zero error due to the previous inconsistencies of truncation and rounding. A small
error in the initial condition for nonlinear differential equations can lead to a chaotic
behavior.

Moreover in many cases a solid model is obtained after reverse engineering using
some scanning devices. The output from these devices is a point cloud which may
not have a unique representation corresponding to any surface. In such a case we
may have an interval b-spline surfaces approximation of the point cloud [45]. Thus
there is an inherent error in representing the surfaces themselves. An approximation
of the surface hence could introduce errors in the intersection of the surfaces.

4.4.2 Straying or Looping

The conventional solution methods discussed in Section 4.2 are usually robust and
reliable for most applications, but it is easy to find examples for which they return
inaccurate results [27], especially in the presence of closely spaced features as shown
in Figure 4-1. This is because the algorithms to control the step size are based on
controlling just the error alone. A step size control which also verifies the existence
and uniqueness before predicting the step size can prevent the solution from straying
from one branch to another within that step. Looping is a result of straying from one
branch to the other and back, thus going into an infinite loop.

Figure 4-1: Phenomenon of straying or looping.

37

4.5 Interval Nonlinear ODE Solvers

Robust tracing of surface to surface intersection is one of the important problems that
is addressed by Hu et al. [11]. The differential equations (3.3) represent a system of
autonomous initial-value problem (IVP), written in vector form:

y′(s) = f([y(s)]), y(s0) = y0,

where,

f([y(s)]) =


σ′

t′

u′

v′

 , y0 =


[σ0]
[t0]
[u0]
[v0]

 .

It is not easy to evolve an interval version of the existing algorithms for example,
the Runge-Kutta method for solving a system of ODEs. Suppose we convert this
approximate method to an interval method and we are concerned about the accuracy
of the solutions. The resulting interval answers are useless for the following reasons
[46].

1. They enclose the Runge-Kutta approximation to the solution, not the solution
itself.

2. The results are very wide to be of any practical use and grow exponentially.

In order to enclose the solution, we must extend the algorithm to include an
inclusion of the truncation error term. Thus naive interval versions of point algorithms
do not guarantee the inclusion of the solution.

Developing a good interval algorithm [19] often involves computing a point ap-
proximation, followed by computing an interval inclusion near the approximation.

4.5.1 Advantages of an Interval ODE Solver

1. Interval Representation of Surfaces

Surfaces can be represented as interval surfaces which are specifically useful for
the cases of robust reverse engineering, where the uncertainty in the surfaces
is represented by means of interval surfaces. The same is true if we want to
accommodate for the perturbations in the surfaces themselves. Exact surfaces
can be represented as degenerate interval surfaces. Interval ODE solvers can
accomodate these perturbations and return bounds which are truly conservative.

2. Accommodation of Errors due to Rounding

Use of rounded interval arithmetic ensures that the bounds obtained are con-
servative. The true result is bounded within the returned interval.

38

3. Inclusion of the Errors in Initial Condition

The initial condition which corresponds to a starting point is usually obtained
as a solution of a system of nonlinear polynomial equations. There are a lot of
accuracy issues when we try to solve these equations. Application of any ap-
proximate scheme for solving this system will result in an initial condition quite
close to the actual solution but may not be represented exactly. Application
of an algorithm for solving a system of nonlinear polynomials based on inter-
val arithmetic like Interval Projected Polyhedron or Interval Newton guarantees
that all the starting points are correctly obtained within strict error bounds.
Thus the uncertainty in the starting point can be expressed as an interval and
hence provided as the interval initial conditions to the interval ODE solver.

39

40

Chapter 5

Validated ODE Solver in Tracing
Surface-Surface Intersections

5.1 Overview of the Method

Standard numerical methods for solving IVPs for ODEs as described in Chapter 4
attempt to compute an approximate solution that satisfies a user-specified tolerance
at discrete points. In this chapter we briefly explain and apply a validated interval
solution scheme for correctly tracing the surface-surface intersection in the parametric
space of the surfaces. A more detailed treatment is given by Nedialkov [24]. The
methods discussed in Section 4.2 are usually robust and reliable for most applications,
but it is easy to find examples for which they return inaccurate results, especially
when two solutions are close to each other within the tolerance for error, causing
straying or looping [27]. This is because the algorithms to control the step size are
based on controlling just the error alone [23]. A step size control which also verifies
the existence and uniqueness before predicting the step size can prevent the solution
from straying from one branch to another within that step [23, 30, 31]. Also refer to
Sections 5.5 and 8.4 for a detailed review on straying and looping.

A validated interval scheme for ODEs not only produces a guaranteed error bound
on the true solution, but also verifies uniqueness of the solution for the ODE system
within that bound. Each step in a validated interval solution scheme for solving IVPs
for ODEs can guarantee:

1. The existence of the solution: i.e. if solution exists in that step within the
enclosure.

2. The uniqueness of the solution: i.e. if we have a unique solution in that step
within the enclosure.

The uniqueness of the solution for a given parametrization of the surface, can elim-
inate looping or straying, which is an inherent problem (refer Section 8.4) in most
other solvers [23].

The validated solution scheme for solving IVPs for ODEs can be traced back to
Moore [22], Krückeberg [18], Eijgenraam [5] and Löhner [20]. One efficient way is

41

to find a bound for the Taylor’s formula for the successive step, even enclosing the
truncation error term. Please refer to Appendix A.1 for a comprehensive list of all
the notations used in this chapter.

Let us assume that we have a vector interval ODE system of the form,

dy

ds
= f([y(s)]), [y(s0)] = [y0]. (5.1)

Our goal at this point is to compute boxes in the parameter space, which enclose
the pre-image of a given intersection curve segment at every point. For every step,
we have an initial interval [yj], obtained from the previous step. This is illustrated
in Figure 5-1-1. We aim at computing the enclosure [ỹj] of the family of solutions
y(s; s0, [y0]) passing through [y0] for each step hj such that,

y(s; sj, [yj]) ≡
[

σ t u v
]T
⊆

[
[σ̃] [t̃] [ũ] [ṽ]

]T
≡ [ỹj], ∀ s ∈ [sj, sj+1],

where y(s; sj, [yj]) represents the family of curves passing through [yj] satisfying
equation (3.3). We call such a bound [ỹj], a priori enclosure, and try to obtain this

bound on the parameters σ, t, u, v for the jth step hj = (sj+1 − sj).
The validated scheme for solving ODEs is usually done in two phases [22, 26]. In

the phase I algorithm, we find out an enclosure [yj] and a corresponding step size hj

for unique solution. In the second phase, called phase II algorithm, we obtain the
initial interval for the subsequent step [yj+1], thus proceeding the integration without
considerable increase in the width of the bounds. The integration can be terminated
when we have an inclusion of the endpoints.

5.2 Phase I Algorithm

This phase in a validated solving scheme for ODEs involves:

• Choosing an a priori bound and a step size based on validation criterion.

• Checking the existence and uniqueness of the solution of IVP within the a priori
enclosure for the above step size.

Thus the goal is to compute enclosures [ỹj] on the family of the solutions y(s; s0, [y0])
for the IVP corresponding to the intersection under consideration,

y(s; sj, [yj]) ⊆ [ỹj], ∀ s ∈ [sj, sj+1],

where y(s; sj, [yj]) represents the family of curves passing through [yj] satisfying
equation (3.3) and s is the independent variable which in our case is the arc length
parameter. We call such a bound [ỹj], an a priori enclosure, and try to obtain this

bound for the jth step hj = (sj+1 − sj). For validating the solution for a pair of step
size and an a priori enclosure, we can use various methods like the constant enclosure
method [5], the polynomial enclosure method [21] or the Taylor series method [4]. The

42

Figure 5-1: Steps involved in validated scheme for solving ODEs depicted for the case
involving a single dependent variable.

43

Taylor series method is preferred to a constant step size method since it can allow for
longer step sizes [24] and can be written as follows:

[ỹj(s)] ⊇ [yj] +
k−1∑
i=1

[yj]i(s− sj)
i + [ỹj]k(s− sj)

k, (5.2)

where k is the order of the Taylor series used and [yj]i is the ith Taylor coefficient
evaluated at [yj]. We numerically solve for the corrected step size hj, given an initial
guess for an a priori enclosure as shown by Nedialkov [24]. At this point we have
made an assumption that f([y(s)]) is well behaved and is Ck continuous.

5.3 Phase II Algorithm

Phase II of a validated solution scheme for ODEs involves:

• Propagation of the solution.

• Reducing the phenomenon of wrapping.

Using the a priori enclosure [ỹj] from phase I algorithm, phase II algorithm com-
putes a tighter enclosure [yj+1] at sj+1,

y(sj+1; sj, [yj]) ⊆ [yj+1],

such that, [yj+1] ⊆ [ỹj] at sj+1.

This phase is important, as it will help in proceeding the integration scheme. i.e.,
we get the initial interval [yj+1] for the successive step. The key difficulty we face in
phase II algorithm is the wrapping effect. Löhner [19] defines wrapping as undesirable
overestimation of a solution set of an iteration or recurrence which occurs if this
solution set is replaced by a superset of some simpler structure and this superset is
then used to compute the enclosures for the next step which may eventually lead to
an exponential growth of overestimation. By containing wrapping we prevent the
exponential growth in the width of the interval solution at sj+1.

5.3.1 Interval Taylor Series Method

Moore’s method [22] computes [yj+1] using an interval version of the Taylor’s formula,

[yj+1] = [yj] +
k−1∑
i=1

[yj]ih
i
j + [ỹj]kh

k
j ,

= [yj] +
k−1∑
i=1

f [i]([yj])h
i
j + f [k]([ỹj])h

k
j , (5.3)

where, [yj]i ≡ f [i]([yj]) is also another notation for the ith Taylor coefficient. The
disadvantage of using equation (5.3) directly is that the widths of [yj], always increase

44

with j, even if the width of the true interval solution contracts as shown in Figure
5-1-3. Much smaller bounds can be achieved if we use the mean-value theorem to f [i]

[26]. i.e.,

f [i]([yj]) = f [i](ŷj) + J(f [i]; [yj], ŷj)([yj]− ŷj),

and rewriting equation (5.3) to obtain,

[yj+1] = ŷj +
k−1∑
i=1

f [i](ŷj) + f [k](y; sj , sj+1)hk
j + {I +

k−1∑
i=1

J(f [i]; [yj], ŷj)hi
j}([yj]− ŷj). (5.4)

We normally choose ŷj = m([yj]), the mid point of [yj] and I is the identity matrix.
The robust generation of Taylor series coefficients and their Jacobian’s are done

with a technique called automatic differentiation [22, 43], a detailed treatment of
which can be found in Chapter 6.

Controlling Wrapping

To limit wrapping researchers have proposed many methods starting with a local
coordinate transformation by Moore [22] enclosing the solution at each step as a
linear transformation of the interval vector, and constraining the error to convex
polytopes by Stewart [44]. The most promising one is a QR factorization method
developed by Löhner [20], which is also a solution to a linear transformation of an
interval vector.

Let, A0 = I, ŷ0 = m([y0]), [r0] = [y0] − ŷ0 and let us write, [zj+1] = hk
j f

[k]([ỹj]).
Also let:

ŷj+1 = ŷj +
k−1∑
i=1

hi
jf

[i](ŷj) + m([zj+1]),

and,

[Sj] = I +
k−1∑
i=1

hi
jJ(f[i]; [yj]),

where, j ≥ 0, and I is the identity matrix.
Then equation (5.4) can be rewritten as,

[yj+1] = ŷj +
k−1∑
i=1

hi
jf

[i](ŷj) + [zj+1] + ([Sj]Aj)[rj].

The initial condition for the next step is chosen to be the unwrapped region, and a
measure of its width written as,

[rj+1] = A−1
j+1([Sj]Aj)[rj] + A−1

j+1([zj+1]−m([zj+1])), (5.5)

where Aj+1 ∈ Rn×n is a point matrix which is nonsingular for j = 0, 1 . . . and yet to

45

be determined.

The reduction in wrapping depends on the choice of Aj+1. Löhner chooses Aj+1

as shown below. Let Âj+1 = m([Sj]Aj), and we factorize Âj+1 = Qj+1Rj+1, where
Qj+1 is orthogonal and Rj+1 is upper triangular. We now assign, Aj+1 = Qj+1, and
substitute in equation (5.5).

One simple way of explaining the success of the QR factorization method in re-
ducing wrapping is that we enclose the solution on each step, in a moving coordinate
system that matches the solution set [14]. The output obtained from the validated
ODE solver is a set of boxes in the parameter space which are continuous, and discrete
intervals for parameters σ, t, u, v at specific sj’s.

5.3.2 Interval Hermite Obreschkoff Method

An alternative to the well established Taylor series method used in phase II algorithm
is a relatively new method proposed by Nedialkov [14, 24], which is based on the
Hermite Obreschkoff scheme.

The following formula is the basis for the Interval Hermite Obreschkoff method.

q∑
i=0

(−1)icq,p
i hi

jf
[i]([yj+1]) =

p∑
i=0

cp,q
i hi

jf
[i]([yj]) + (−1)q q!p!

(p + q)!
hp+q+1

j

f [p+q+1]([ỹj])
(p + q + 1)!︸ ︷︷ ︸

Error term

, (5.6)

where cq,p
i = cq,p

i−1
q−i+1

q+p−i+1
and cq,p

0 = 1. For an IVP for ODE we know [yj] at each step,

and we need [yj+1]. From the equation (5.6) we can see that the LHS is a polynomial
in [yj+1], and we can evaluate RHS, a polynomial in [yj]. Obtaining [yj+1] involves
solving the nonlinear system of equations, once the error term is known [24].

Phase II algorithm for obtaining strict bounds [yj+1], with IHO uses a predictor-
corrector method. In the predictor phase we compute an enclosure of the solution at
sj+1, and in the corrector phase we improve the enclosure by enclosing the solution
of (5.6) using a Newton like step.

1. Computing the coefficients cq,p
i .

2. Predicting an enclosure [y(0)
j+1] at sj+1. This is essentially a part of the Löhner

method [24].

3. Correcting the enclosure [y(0)
j+1] to compute an improved enclosure [yj+1].

A much more detailed description and derivation of the IHO method is provided by
Nedialkov [24]. Nedialkov explains why an IHO method might out-perform an ITS
method. It is shown in [24] that the IHO method is more stable and produces smaller
enclosures than an ITS method with the same step-size and order. We might use
either ITS or IHO methods for phase II in the validated ODE solving scheme.

46

5.4 Formulation Based on Validated ODE Solver

We solve the ODEs given by the equation (3.3) using a validated ODE solver given
initial conditions. Our use of rational polynomial parametric surfaces which are C∞

continuous makes sure that f([y(s)]) is well behaved and is at least Ck continuous.
Phase I algorithm verifies the existence and uniqueness of the intersection curve seg-
ment, and a successful validation results in a step size hj and a corresponding a priori
enclosure [ỹj], which in the context of surface intersection is,

[ỹj] ≡
[

[σ̃] [t̃] [ũ] [ṽ]
]T

.

Phase II algorithm now finds a tight estimate of the bound on the parameter for
a specific sj+1,

[yj+1] ≡
[

[σj+1] [tj+1] [uj+1] [vj+1]
]T

.

This tighter bound acts as the initial condition for the next step, and hence helps
in marching along the intersection curve, without significant increase of the error in
the evaluation of the intersection curve segment. The intersection curve is obtained
as a series of connected a priori enclosures (boxes) in the parameter space, which
enclose the exact curve of intersection in the parameter space as shown in Figure 5-2
[23].

Figure 5-2: The series of a priori enclosures in parametric spaces which enclose the
true intersection curve segement.

47

5.5 Resolving Singularities and Preventing Stray-

ing or Looping

Any numerical scheme, yielding a solution for a physical system represented by an IVP
should first check for the existence and the uniqueness of the solution before returning
an approximation, or a bound for it [16]. This however, is not a common practice in
the conventional solution schemes for IVPs. A typical solution procedure is to use
an approximate, point based algorithm [32] like Runge-Kutta method, Taylor series
method or Adams-Bashforth technique for solving ODEs as mentioned in [29, 28].
These methods are usually robust and reliable for most applications, but it is easy
to find examples for which they return inaccurate results [30, 31], especially in the
neighborhood of a singularity or in the presence of closely spaced features as shown in
Figure 4-1 when they are employed for surface to surface intersection problem. Also
refer to Section 8.4 where we have performed examples clearly depicting straying
and looping. Such abnormalities happen because the algorithms to control the step
size are based on controlling just the error alone. On the other hand, a validated
ODE solver verifies the existence and uniqueness of the solution for the ODE system
within the a priori bound before determining the step size. We employ this idea to
successfully resolve the cases involving singularities in phase space where the criterion
of existence and uniqueness is not satisfied, and the cases of near singularity, where
solutions from different branches exist quite close together, thereby tracing the correct
solution.

If the solution exists and is unique for a given step size hj and an a priori enclosure
[ỹj], the criterion (5.2) based on Taylor series holds [24]. Without loss of generality,
we consider the case of k = 1, namely, the constant enclosure method [24]:

[ỹj(s)] ⊇ [yj] + f([ỹj])hj. (5.7)

Let us assume that the surfaces [P](σ, t) and [Q](u, v) intersect transversally in
such a way that they have two distinct branches and that these branches lie close to
each other in a given region in the parameter space. For such regions the denominator
of equation (3.4) |[NP]× [NQ]| gives a value close to 0 and in the event of both curve
segments intersecting each other, it contains 0. The evaluation of f([ỹj]) based on the
equation (3.3) blows up, returning a smaller and smaller step size and correspondingly
smaller [ỹj] to satisfy the criterion (5.7). In the event of 0 ∈ |[NP]×[NQ]|, the criterion
is never satisfied, and this condition is reported as a singularity [23].

This validated step size strategy can hence not only prevent straying or looping
but also successfully resolve the singularities of intersection curve segments. Examples
that fully demonstrates this capability of the validated ODE solver is performed in
Section 8.4.

48

5.6 Complexity Analysis

As documented by Nedialkov [24] the most expensive part of the interval Taylor series
method is in generating the high-order Jacobians and matrix-matrix multiplications.
Further there might be significant memory overheads especially when implemented
using operator overloading involving many memory allocations and reallocations, and
also in reading and storing Taylor coefficients and their Jacobians.

If n is the number of equations, we can assume that the cost of evaluating ∂f [i]

∂y
is

roughly n times the cost of evaluating f [i] [25]. Thus for generating k−1 Jacobians in
an interval Taylor series method one require cfnNk2+O(nNk) arithmetic operations,
where cf is the ratio of multiplications and divisions in N arithmetic operations for
the evaluation of f [25]. In a similar way if we let p = q and k = p + q + 1. We need
to generate p = (k− 1)/2 terms for the forward solution and q = p = (k− 1)/2 terms

for the backward one. The corresponding work is then,
cf nNk2

2
+ O(nNk).

Löhner’s method with QR factorization technique requires computing an enclosure
of the inverse of a point matrix, which in fact is a floating-point approximation of an
orthogonal matrix [25]. Based on the assumption that N ≈ n2 [25], the work done
per step for ITS method is given by,

cfn
3k2 + O(n3k).

Similarly the work done per step for IHO is given by,

cfn
3k2

2
+ O(n3k).

49

50

Chapter 6

Automatic Differentiation

6.1 Introduction

A method of divided difference has been widely used as a tool to replace symbolic
manipulation for numerical derivative computation. However, using divided differ-
ence we introduce truncation errors which affect further computations and hence the
scheme is no more robust.

Automatic differentiation (AD) is an alternative to the above methods. AD uses
the chain rule to compute the derivatives of composite functions. AD evaluates a
function and its derivatives using the same code and common temporary values. If the
code is optimized the derivatives are optimized as well. The resulting differentiation
is accurate up to round-off errors. If we calculate using interval arithmetic, we obtain
enclosures of the true derivatives. It is quite easy to implement in computer languages
allowing operator overloading. Stauning [24] gives an introduction to this method.

Let us assume that we have a rational function(one in only rational operations
like +, -, *, /, sin, exp, etc.). We can decompose the expression for a general function
f(x), x = (x1, . . . , xm), into a list of equations representing the function,

τi(x) = gi(x) = xi i = 1 . . . m,

τi(x) = gi(τ1(x) . . . τi−1(x)) i = (m + 1) . . . l.

All functions τi(x) and gi(x) are scalar functions and only one elementary opera-
tion occurs in each of the functions gi(x). We call such a list of functions a code list.
Elementary functions have an arity of 0, 1 and 2, corresponding to a constant(eg: u),
unary(eg: sin(u)) or a binary (eg: u+v) operation.

Assume that f : Rm → Rn is a rational function given by an expression which is
decomposable into a code-list given by the functions gi, and assume that the functions
are differentiable and we can obtain their derivatives, then by chain rule for composite
functions we can obtain,

∂τi

∂τj

= δij +
i−1∑
k=j

∂gi

∂τk

∂τk

∂τj

,

51

δij =

[
1 i = j
0 i 6= j

]
.

Let us now define the matrices,

Dg =


0 0 0 · · ·

(∂g2

∂τ1
) 0 0 0

(∂g3

∂τ1
) (∂g3

∂τ2
) 0 0

...
...

...
. . .

 .

and the matrix Dτ is defined as,

Dτ =


0 0 0 · · ·

(∂τ2
∂τ1

) 0 0 0

(∂τ3
∂τ1

) (∂τ3
∂τ2

) 0 0
...

...
...

. . .

 .

We formulate this as a matrix equation,

Dτ = I + DgDτ,

(I −Dg)Dτ = I.

We know that (I −Dg) is not singular, hence,

(I −Dg)Dτ = Dτ(I −Dg) = I,

Dτ = (I −Dg)−1, (6.1)

or

(I −Dg)T DτT = I,

DτT = ((I −Dg)T)−1. (6.2)

The matrix Dg is usually very sparse and this is utilized in solving the systems.

6.2 Forward Mode Automatic Differentiation

From equation (6.1) we solve for the ith column to get all the derivatives with respect
to τi. To find all the derivatives with respect to all arguments of f , we solve for
the first m columns of Dτ . This method is called the Forward mode automatic
differentiation(FAD) [24].

6.3 Backward Mode Automatic Differentiation

The equation (6.2) can be solved using backward substitution. If we solve the equation
with respect to the ith column in DτT , we obtain derivatives of τi with respect to all

52

gi(u, v) ∂gi

∂u
(u)

+u 1
−u −1

exp(u) exp(u)
log(u) 1

u√
(u) 1

2gi(u)

sin(u) cos(u)
cos(u) −sin(u)
tan(u) 1 + g2

i (u)
asin(u) 1√

1+g2
i (u)

acos(u) −1√
1−g2

i (u)

atan(u) 1
1+g2

i (u)

Table 6.1: Common Unary Operations

gi(u, v) ∂gi

∂u
(u, v) ∂gi

∂v
(u, v)

u + v 1 1
u− v 1 −1
u.v v u

u
v

1
v

−gi(u,v)
v

uv vuv−1 gi(u, v)ln(u)

Table 6.2: Common Binary Operations

arguments of f(τj for 1 ≤ j ≤ m). This method is called Backward mode automatic
differentiation(BAD). The reason why the BAD is famous is that we are capable of
computing all partial derivatives of a scalar function f : C1(Rm,Rn), in the equation
(6.2 just by solving with respect to one column of DτT).

Thus the rule of thumb is,

• Use FAD for obtaining the Jacobian if m ≤ n.

• Use BAD for obtaining the Jacobian if m > n.

In the tables 6.1 and 6.2, we summarize the most commonly used operations and
standard functions and their derivatives.

6.4 Automatic Generation of Taylor Coefficients

We will try to give a brief introduction for generating the Taylor coefficients recur-
sively. We denote the ith Taylor coefficient of a function y(w) evaluated at some point

53

wj by

(yj)i =
1

i!

di

dwi
y(wj).

Now consider the autonomous ODE system,

y′(w) = f(y), y(wj) = yj.

We introduce the sequence of functions,

f [0](y) = y,

f [i](y) =
1

i
(
∂f [i−1]

∂y
f)(y).

Thus we can write,

(yj)0 = f [0](yj) = yj,

(yj)i = f [i](yj) =
1

i
(
∂f [i−1]

∂y
f)(yj),

(yj)i = f [i](yj) =
1

i
(f(yj))i−1, for i ≥ 1,

where (f(yj))i−1 is the (i − 1)st coefficient of f evaluated at yj. Thus we have a
method to recursively evaluate (yj)i, for i ≥ 1.

Now for the interval version of the evaluation of the Taylor coefficients, let

y(wj) = yj ∈ [yj]

Thus we need to have a procedure to compute the point Taylor coefficients of y(w) and
perform the computations in interval arithmetic with [yj] instead of yj. We denote
the ith interval Taylor coefficient of y(w) at wj by,

[yj]i = f [i]([yj]).

A similar concept can be extended to vector functions where we do the operations
component-wise. We can further use the same concept in generating Jacobians of the
Taylor series coefficients.

6.5 Complexity Analysis

As documented by Nedialkov [24] the most expensive part of the interval Taylor series
method is in generating the high-order Jacobians and matrix-matrix multiplications.

If n is the number of equations, we can assume that the cost of evaluating ∂f [i]

∂y
is

roughly n times the cost of evaluating f [i] [25]. Thus for generating k−1 Jacobians in
an interval Taylor series method one requires cfnNk2+O(nNk) arithmetic operations,

54

where cf is the ratio of multiplications and divisions in N arithmetic operations for
the evaluation of f [25].

55

56

Chapter 7

Error Bounds in Model Space

The significance of the a priori enclosure in interval analysis has been limited as a
way to enclose the truncation error term, in the Taylor’s formula for obtaining each
successive step, thus providing a method for obtaining a bound for the solution to
the ODE system at sj+1. We realize that the a priori enclosure [ỹj] actually bounds
the solution y(s; sj, [yj]) over the entire step hj. This series of a priori enclosures
obtained in the parameter space is used to obtain a series of boxes (enclosures) in
model space which enclose the true intersection curve in the model space. In this
chapter we will deal with obtaining these bounds, answer the question as to why the
mapping process ensures a guaranteed model space error bound. We further obtain
a way to reduce the error in the model space (model space error bound). We also
explain a method to monotonically control the size of the series of boxes obtained by
the validated ODE solver.

7.1 Mapping into Model Space

We obtain [ỹj], ∀ j, i.e. a series of a priori enclosures in the parametric spaces of
the surfaces as shown in the Figure 5-2. This bound in parameter space is continuous
because the intersection curve segment is a continuous trajectory in the parametric
space. For each of the parameters σ − t and u − v corresponding to each surface,
the pre-image of the curve of intersection is enclosed in the union of the boxes corre-
sponding to a priori enclosures [23]. Also refer to Figure 7-1.

The series of a priori enclosures in the σ − t and u− v parametric space of each
surface is mapped to the model space. We develop the following Theorem 2 to prove
that the union of the bounds in the model space guarantees to contain the true
intersection curve segment.

Theorem 2 Let [σ(s)] and [t(s)] be mappings defined by,

[σ(s)], [t(s)] : IR → IR2,

such that they are continuous in s ∈ [s0, send]. Suppose [P](σ(s), t(s)) is a continuous

57

rational interval function defined by,

[P](σ, t) : IR2 → IR3.

Then the mapping [P](s) = [P](σ(s), t(s)) : IR → IR3 is continuous in IR3 for
s ∈ [s0, send].

The proof directly follows from the continuity of rational interval functions proved by
Moore [22]. Majority of mapping in CAD practice including polynomials is continuous
and rational, and hence we realize the goal of a continuous gap-free bound on the curve
of intersection in the model space, given continuous bounds on its pre-image.

Thus mapping using RPP patches ensures guaranteed error bounds. At this point
we have two series of boxes in the model space each of which enclose the true curve
of intersection in the model space.

7.2 Intersection in Model Space and Reduction of

Model Space Error Bound

The union of the boxes obtained in model space by mapping the enclosures of the
pre-image of the curve of intersection bounds the true curve of intersection. The
series of boxes obtained from each of the parametric spaces σ − t and u − v contain
the true intersection curve segment. We may further prove using Theorem 3 that the
true intersection curve segment actually lies in the region obtained by the intersection
of the two separate bounds.

Theorem 3 Let [cP(s)] and [cQ(s)] be curves of intersection in the model space ob-
tained by mapping the pre-images of the bounds to the intersection curve from each of
the surface patches. Also let us assume that cf (s) is the actual curve of intersection
of the two surfaces. Then cf (s) lies in the region in the model space obtained by the
intersection of [cP(s)] and [cQ(s)].

Proof. From the definition of interval arithmetic we know,

cf (s) ∈ [cP(s)],

cf (s) ∈ [cQ(s)].

Hence we say,

cf (s) ∈ [cP(s)], and cf (s) ∈ [cQ(s)].

From elementary set theory,

(cf (s) ∈ [cP(s)]) ∩ (cf (s) ∈ [cQ(s)]),

⇒ cf (s) ∈ ([cP(s)]) ∩ [cQ(s)]).

58

Figure 7-1: Mapping of the pre-image of the intersection curve segment from the
parameter space to the model space. Note that the boxes obtained in the parameter
space of each of the surface is continuous, gap free and ordered.

59

Performing intersection in model space may reduce the error bounds. The reduc-
tion in error bound usually depends on the relative orientation of the surfaces close
to intersection as well as the relative sizes of the model space bounds obtained from
each of the surfaces. Thus if the bounds from the surfaces are relatively of the same
size, then the reduction is significant for a transversal intersection case compared to
a tangential intersection case.

7.3 Monotonic Control of Error Bounds

The continuous error bound which we obtain is essentially the a priori enclosures in
the parametric space of the surfaces which are further mapped to the model space.
The error control based just on a validated interval arithmetic scheme is applicable
only to the error at certain definite sj’s. What we require is to develop a method such
that given a tolerance in the model space we can limit the size of the a priori enclosures
obtained by the validated ODE solvers. This essentially requires the following steps.

1. The model space tolerance is transformed into a conservative tolerance in the
parametric spaces as shown by the Figure 7-2. For this we propose two methods.

Figure 7-2: Depicts how we want to obtain tolerance in parametric space from toler-
ance in model space.

(a) A strictly conservative method in the true spirit of interval arithmetic and,

(b) An approximate method, which is adapted from a previous work on interval
solids by Shen et al. [38, 37].

2. A control mechanism to control the a priori enclosure size obtained using a
validated ODE solver within the above tolerance as depicted in Figure 7.3.

60

Figure 7-3: The flow chart representing control mechanism.

61

7.3.1 Conservative Relation

For our analysis we consider a bi-cubic RPP surface namely a bicubic Bézier surface.
Similar expressions can be evaluated for higher order surfaces. Consider an interval bi-
cubic Bézier surface [P](σ, t) such that 0 ≤ σ, t ≤ 1. Suppose we find the uncertainty
of any one component (without loss of generality we can assume the x-component
be P (σ, t)). We are to get a bound for w([σ]) or w([t]) such that, w([P]([σ], [t])) ≤
g(w([σ]), w([t])).

For a bi-cubic Bézier patch we can write:

P (σ, t) =
[

(1− σ)3 3σ(1− σ)2 3σ2(1− σ) σ3
] 

b11 b12 b13 b14

b21 b21 b23 b24

b31 b31 b33 b34

b41 b41 b43 b44




(1− t)3

3t(1− t)2

3t2(1− t)
t3

 ,

where bij’s are the control points of the x-component. For the simplicity of analysis
we assume that the control points are degenerate intervals (real numbers). We expand
the above relation as,

P (σ, t) = (α1 + α2 + α3 + α4) =
[

β1 β2 β3 β4

] 
(1− t)3

3t(1− t)2

3t2(1− t)
t3

 ,

where,


α1

α2

α3

α4

 =


(1− t)3β1

3t(1− t)2β2

3t2(1− t)β3

t3β4

 and,


β1

β2

β3

β4

 =


b11(1− σ)3 + 3b21σ(1− σ)2 + 3b31σ

2(1− σ) + b41σ
3

b12(1− σ)3 + 3b22σ(1− σ)2 + 3b32σ
2(1− σ) + b42σ

3

b13(1− σ)3 + 3b23σ(1− σ)2 + 3b33σ
2(1− σ) + b43σ

3

b14(1− σ)3 + 3b24σ(1− σ)2 + 3b34σ
2(1− σ) + b44σ

3

 .

Thus P (σ, t) = α1 + α2 + α3 + α4.

We are interested in finding the maximum width w([P (σ, t)]) within which the
evaluated width would lie. From interval arithmetic we have the formula,

w(a + b) = w(a) + w(b),

where a and b are any two intervals. Applying this formula we obtain,

w([P (σ, t)]) = w(α1) + w(α2) + w(α3) + w(α4). (7.1)

The RHS represents the thickness of the interval surface. Further using the interval

62

inequalities,

w(a.b) ≤ ‖a‖w(b) + ‖b‖w(a), and

‖abc‖ = ‖a‖ ‖b‖ ‖c‖ .

We can evaluate the widths of αis as:

w(α1) = w((1− t)3β1) ≤ w((1− t)3) ‖β1‖+ w(β1)
∥∥∥(1− t)3

∥∥∥ ,

w(α2) = w(3t(1− t)2β2) ≤ w(3t(1− t)2) ‖β2‖+ w(β2)
∥∥∥(3t(1− t)2

∥∥∥ ,

w(α3) = w(3t2(1− t)β3) ≤ w(3t2(1− t)) ‖β3‖+ w(β3)
∥∥∥3t2(1− t)

∥∥∥ ,

w(α4) = w(t3β4) ≤ w(t3) ‖β4‖+ w(β4)
∥∥∥t3∥∥∥ .

We can also assume that 0 ≤ σ, t ≤ 1. After further simplification we can obtain the
inequalities 1:

‖(1− t)‖ ≤ 1,∥∥∥(1− t)3
∥∥∥ ≤ 1,∥∥∥t3∥∥∥ ≤ 1,∥∥∥3t(1− t)2
∥∥∥ ≤ 4

9
,∥∥∥(1− t)3

∥∥∥ ≤ 4

9
,

w(1− t) = w(1) + w(t) = w(t),

w((1− t)3) ≤ 12w(t),

w(t3) ≤ 3w(t),

w(3t(1− t)2) ≤ 24w(t),

w(3t2(1− t)) ≤ 15w(t).

Based on the assumption that the surfaces are represented by degenerate intervals
i.e. w(bij) = 0, we can write

w(β1) ≤ w(σ) (12 ‖b11‖+ 24 ‖b21‖+ 15 ‖b31‖+ 3 ‖b41‖) ,

w(β2) ≤ w(σ) (12 ‖b12‖+ 24 ‖b22‖+ 15 ‖b32‖+ 3 ‖b42‖) ,

w(β3) ≤ w(σ) (12 ‖b13‖+ 24 ‖b23‖+ 15 ‖b33‖+ 3 ‖b43‖) ,

w(β4) ≤ w(σ) (12 ‖b14‖+ 24 ‖b24‖+ 15 ‖b34‖+ 3 ‖b44‖) . (7.2)

1The maximum of the functions over an interval is obtained from differential calculus.

63

To obtain ‖βi‖s we use the triangular inequality,

‖a + b‖ ≤ ‖a‖+ ‖b‖ .

We obtain ‖βi‖s as:

‖β1‖ ≤ ‖b11‖+
4

9
‖b21‖+

4

9
‖b31‖+ ‖b41‖ ,

‖β2‖ ≤ ‖b12‖+
4

9
‖b22‖+

4

9
‖b32‖+ ‖b42‖ ,

‖β3‖ ≤ ‖b13‖+
4

9
‖b23‖+

4

9
‖b33‖+ ‖b43‖ ,

‖β4‖ ≤ ‖b14‖+
4

9
‖b24‖+

4

9
‖b34‖+ ‖b44‖ .

If we assume that ‖bij‖ ≤ Rmax, i.e. the size of the boxes in which the surfaces are
enclosed or the maximum dimension of the control points(convex hull), we can write,

‖β1‖ = ‖β2‖ = ‖β3‖ = ‖β4‖ ≤
26

9
Rmax.

Substituting into equation (7.2) we obtain,

w(β1) ≤ w(σ).54Rmax

w(β2) ≤ w(σ).54Rmax

w(β3) ≤ w(σ).54Rmax

w(β4) ≤ w(σ).54Rmax

Applying the above relations to equation (7.1) we finally obtain the relationship,

w([P (σ, t)]) ≤ 156.Rmax.(w(σ) + w(t)). (7.3)

The above equation (7.3) means that if we are given a tolerance in model space i.e.
tolMS, we force that:

w([P (σ, t)]) ≤ 156.Rmax.(w(σ) + w(t)) ≤ tolMS.

Thus if we assume that we require same tolerance (εPScons) in the σ and t domain we
can write,

εPScons ≤
tolMS

312Rmax

. (7.4)

We note the following points:

1. Evaluation of width depends on the form in which the equation is evaluated.

2. This formula might overestimate the width, but it is a conservative estimate in
the sense that we obtain a tolerance in the parameter space, which will result

64

in a conservative tolerance in the model space..

3. The tolerance in parametric space depends on the convex hull of the surface.

7.3.2 Approximate Relation

This is yet another method for estimating a parameter space bound which would
result in a model space bound close to a given tolerance. It is based on a relation
obtained by Shen et al. [38, 37]. Let us assume an interval Bézier surface of degrees dσ

and dt, with each control point having a constant width h0 for each of its components.
Just as in the conservative relation in Section 7.3.1 we obtain only one component,
say Rx is the average of the absolute value of the x-coordinates of the Ris. Similar
formula for y and z components can be obtained by replacing Rx with Ry and Rz

respectively. We obtain the following estimate:

εPSapprox ≈
tolMS − h0

4(dσ + dt)(h0 + Rmax)
, (7.5)

where,

Rmax = norm(Rx, Ry, Rz),

tolMS = allowed tolerance for error in the model space.

We further notice the following properties.

• The coordinates of control points affect the obtained parametric space tolerance.

• The size of control points also affects the tolerance needed.

• This relation can account for surfaces of any order.

Thus we are in a position to obtain a tolerance in the parameter space εPSapprox

which corresponds to a given tolerance in the model space.

7.3.3 Controlling A Priori Enclosure in a Validated ODE
Solver

The control mechanism is implemented in a validated ODE solver. The first step is
to obtain the parametric space tolerance εPS from the control points of the surfaces
using either of equation (7.4) or (7.5). This tolerance in parametric space for each
surface is compared to the width of the a priori enclosure obtained from Algorithm
I of the validated ODE solver.

w([ỹj]) =
[

w([σ̃j]) w([t̃j]) w([ũj]) w([ṽj])
]T
≤

[
εPSP

εPSP
εPSQ

εPSQ

]T
,

65

Figure 7-4: Mechanism to control the size of the a priori enclosure in a validated
ODE solver.

where εP
PS and εQ

PS are the tolerance in the parametric space of surfaces P and Q,
respectively.

If the width of [ỹj] is larger than the tolerance, we use this tolerance as the width
of the new a priori enclosure and find the corresponding new step size h∗j for which
the validity criterion is satisfied. This condition is depicted in the Figure 7-4. If the
width of [ỹj] is smaller than the tolerance, we have no problems at all. For further
verification we might map the obtained enclosure right away to model space and check
if the width of the boxes in the model space is less than the given tolerance.

7.3.4 Comparison of Two Methods

• The conservative approach complements the spirit of interval methods used
throughout our work.

• There is an over estimation in the conservative method due to problems inherent
with interval arithmetic.

Examples

Equations (7.4) and (7.5) are used to obtain tolerances in the parametric space. We
tabulate the results in this section. We can observe that the parametric space bounds

66

obtained by the conservative relation are smaller than the parametric space bounds
obtained by the approximate relation by almost an order of magnitude.

Example 1: [Q3](u, v) of Chapter 8

Test Tolerance in εPScons εPSapprox

No. Model Space
1 10−2 1.42× 10−6 1.85× 10−5

2 10−4 1.42× 10−8 1.85× 10−7

3 10−6 1.42× 10−10 1.85× 10−9

4 10−8 1.42× 10−12 1.85× 10−11

Table 7.1: The tolerance in parametric space of surface [Q3](u, v) obtained from the
given tolerance in model space.

Example 2: [P1](σ, t) of Chapter 8

Test Tolerance in εPScons εPSapprox

No. Model Space
1 10−2 2× 10−6 2× 10−5

2 10−4 2× 10−8 2× 10−7

3 10−6 2× 10−10 2× 10−9

4 10−8 2× 10−12 2× 10−11

Table 7.2: The tolerance in parametric space of surface [P1](σ, t) obtained from the
given tolerance in model space.

Example 3: [P3](σ, t) of Chapter 8

67

Test Tolerance in εPScons εPSapprox

No. Model Space
1 10−2 1× 10−6 1.5× 10−5

2 10−4 1× 10−8 1.5× 10−7

3 10−6 1× 10−10 1.5× 10−9

4 10−8 1× 10−12 1.5× 10−11

Table 7.3: The tolerance in parametric space of surface [P3](σ, t) obtained from the
given tolerance in model space.

7.4 Complexity Analysis

If na is the number of steps we need in tracing, then the number of a priori enclosure
boxes in the parameter space is also na.

Mapping The mapping involves 3 equations in each of the two surfaces, and we have
an order m for the surfaces. Then the complexity is 6m per box. If we have na

boxes to be mapped, the order of complexity is,

O(m · na).

Intersection If the number of boxes that are to be mapped is na, for each box in a
given surface we have to check if it intersects with every other box in the other
surface. Thus,

O(n2
a).

68

Chapter 8

Examples

An experimental implementation was developed using standard libraries, component
packages [33, 6, 47] and Interval Library developed at Design Laboratory, MIT. Var-
ious examples depicting the different cases of intersections were performed and the
results were tabulated. All calculations were performed on a single PC running at 1.4
GHz. with 512MB. of RAM under a Linux environment.

The quality of the results obtained (strict bound on error) is comparable only to
the IPP solver developed at MIT. Any other method can obtain only an approximation
and further an estimate of the error. This estimate of the error is not a bound but
rather only an estimate. Please refer to [30, 31] and [23] for further explanations.

8.1 Transversal Intersection of Surfaces

We tested the validated ODE solver for a variety of intersection cases involving
transversal intersection. As shown by the examples we obtain validated error bounds
in model space.

8.1.1 Intersection of two Bicubic Bézier Surfaces

Figure 8-1 illustrates the intersection of two interval bicubic Bézier surfaces [P1](σ, t)
and [Q1](u, v). The interval control points of the surfaces are represented by degen-
erate interval points and are listed below. The solution is obtained by the validated
ODE solver and mapped into model space. In Table 8.1 we tabulate the variation
of the maximum relative model space error with the number of steps and the corre-
sponding VNODE tolerance. The maximum relative model space error is defined as
the maximum width of the model space error obtained as a box in model space per
unit arc length of the intersection curve segment.

Control points for

[P1](σ, t) =


([0], [0], [5]) ([0], [4], [5]) ([0], [6], [5]) ([0], [10], [5])
([4], [0], [5]) ([4], [4], [8]) ([4], [6], [8]) ([4], [10], [5])
([6], [0], [5]) ([6], [4], [8]) ([6], [6], [8]) ([6], [10], [5])
([10], [0], [5]) ([10], [4], [5]) ([10], [6], [5]) ([10], [10], [5])


69

Control points for

[Q1](u, v) =


([0], [5], [10]) ([0], [5], [6]) ([0], [5], [4]) ([0], [5], [0])
([4], [5], [10]) ([4], [8], [6]) ([4], [8], [4]) ([4], [5], [0])
([6], [5], [10]) ([6], [8], [6]) ([6], [8], [4]) ([6], [5], [0])
([10], [5], [10]) ([10], [5], [6]) ([10], [5], [4]) ([10], [5], [0])



Test Number VNODE Maximum relative
No. of steps tolerance model space error
1 488 10−12 0.00350
2 646 10−15 0.00234
3 1030 10−20 0.00165
4 1736 10−25 0.00084
5 3009 10−30 0.00043
6 5302 10−35 0.00028

Table 8.1: Variation of the model space error with the number of steps for a bicubic
Bézier intersection.

8.1.2 Intersection of two Biquadratic Bézier Surfaces

Transversal intersection of two tensor product Bézier patches [P2](σ, t) and [Q2](u, v)
is depicted in Figure 8-2. Like the previous example we solve the IVP for ODEs using
a validated ODE solver and subsequently obtain the model space error bounds. Figure
8-2 shows two cases where we use different VNODE tolerances. We can see that with
the application of a smaller tolerance we can obtain smaller bounds for the error.
This shows that the 3D model space error bound converges to the true intersection
for small values of the error.

Control points for

[P2](σ, t) =

 ([0], [−50], [5]) ([0], [0], [100]) ([0], [50], [0])
([100], [−25], [0]) ([100], [0], [0]) ([100], [25], [0])
([200], [−75], [0]) ([200], [0], [100]) ([200], [75], [0])


Control points for

[Q2](u, v) =

 ([0], [−50], [5]) ([0], [0], [50]) ([0], [50], [0])
([100], [−100], [0]) ([100], [0], [300]) ([100], [100], [0])
([200], [−75], [0]) ([200], [0], [50]) ([200], [75], [0])


In Table 8.2, we find the effect of changing the width of the starting point for various
VNODE tolerances, the number of steps required, the maximum relative model space
error and the VNODE global error.

70

Figure 8-1: Transversal intersection of two bicubic Bézier surfaces corresponding to
a maximum relative model space error of 0.00350.

Figure 8-2: Transversal intersection of two tensor product Bézier surface patches.
This figure depicts convergence of error bounds.

71

Test Time Number Width of Maximum relative VNODE
No. taken (s) of steps starting point model space error Global Error
1 495 10116 10−6 0.29 1.0107× 10−4

2 493 10045 10−7 0.29 1× 10−6

3 493 10038 10−8 0.29 9.9989× 10−8

4 494 10037 10−9 0.29 1.00× 10−8

5 491 10037 10−10 0.29 1.0234× 10−9

Table 8.2: The effect of changing the width of the starting point for the number of
steps required, the maximum relative model space error and the VNODE global error
for a VNODE tolerance of 10−50.

8.1.3 Intersection with Singularity (Example: 1)

Figure 8-3 shows an example constructed in such a way that there is a singular
point in the surface intersection curve segment. The surfaces are [P3](σ, t) a cubic-
quadratic surface and [Q3](u, v) a bicubic surface. Tracing the surface intersection in
this example would involve separately tracing the four intersection curve segments,
given appropriate starting points.

Control points for

[P3](σ, t) =


([−10], [−30], [3]) ([0], [−30], [−3]) ([10], [−30], [3])
([−10], [−10], [3]) ([0], [−10], [−3]) ([10], [−10], [3])
([−10], [10], [3]) ([0], [10], [−3]) ([10], [10], [3])
([−10], [30], [3]) ([0], [30], [−3]) ([10], [15], [3])



Control points for [Q3](u, v) =
([20], [−10], [3]) ([10], [−10], [3]) ([−10], [−10], [3]) ([−20], [−10], [3])

([20], [−10], [−1]) ([10], [−10], [−1]) ([−10], [−10], [−1]) ([−20], [−10], [−1])
([20], [10], [−1]) ([10], [10], [−1]) ([−10], [10], [−1]) ([−20], [10], [−1])
([20], [10], [3]) ([10], [10], [3]) ([−10], [10], [3]) ([−20], [10], [3])



The four starting points are listed below.[
[σ0] [t0] [u0] [v0]

]T
=

[
[0.666, 0.667] [0.000, 0.000] [1.000, 1.000] [0.750, 0.750]

]T
,[

[σ0] [t0] [u0] [v0]
]T

=
[

[0.333, 0.334] [0.000, 0.000] [1.000, 1.000] [0.750, 0.750]
]T

,[
[σ0] [t0] [u0] [v0]

]T
=

[
[0.333, 0.334] [1.000, 1.000] [0.000, 0.000] [0.250, 0.250]

]T
,[

[σ0] [t0] [u0] [v0]
]T

=
[

[0.666, 0.667] [1.000, 1.000] [1.000, 1.000] [0.250, 0.250]
]T

.

A detailed description of the various cases which involve perturbation from this
aligned position is described in detail in the Section 8.4.

72

Figure 8-3: An example of transversal intersection with a singular point involving
tracing four separate intersection curve segments.

8.1.4 Intersection with Singularity (Example: 2)

The surfaces involved are a hyperbolic surface [P4](σ, t) and [Q4](u, v) a plane. Refer
Figure 8-4. The plane is arranged such that it touches the hyperbolic point of the
surface [P4](σ, t). That is when the normals to the surfaces are perfectly aligned there
is a singular point in the surface intersection curve segment. Tracing the intersection
now involves separately tracing the four intersection curve segments, given appropri-
ate starting points. The control points of the hyperbolic surface [P4](σ, t) are given
below.

Control points for

[P4](σ, t) =

 ([−50], [0], [0]) ([0], [0], [100]) ([50], [0], [0])
([−50], [100], [0]) ([0], [100], [0]) ([50], [100], [0])
([−50], [200], [0]) ([0], [200], [100]) ([50], [200], [0])


The four starting points are listed below.

[
[σ0] [t0] [u0] [v0]

]T
=

[
[0.85355339, 0.85355340] [0.000000, 0.000000] [0.85355339, 0.85355340] [0.000000, 0.000000]

]T
,[

[σ0] [t0] [u0] [v0]
]T

=
[

[0.146446609, 0.14644661] [1.000000, 1.000000] [0.146446609, 0.14644661] [1.000000, 1.000000]
]T

,[
[σ0] [t0] [u0] [v0]

]T
=

[
[0.146446609, 0.14644661] [0.000000, 0.000000] [0.146446609, 0.14644661] [0.000000, 0.000000]

]T
,[

[σ0] [t0] [u0] [v0]
]T

=
[

[0.85355339, 0.85355340] [1.000000, 1.000000] [0.85355339, 0.85355340] [1.000000, 1.000000]
]T

.

We tabulate (refer to table 8.3)the number of steps needed and the time taken to
trace one of the four branches for varying VNODE tolerance.

73

Figure 8-4: Transversal intersection of a hyperbolic surface and a plane involving
tracing four separate intersection curve segments.

Test Number VNODE Time
No. of steps tolerance taken (s)
1 224 10−15 9.89
2 355 10−20 15.6
3 582 10−25 25.6
4 974 10−30 42.7
5 1662 10−35 72.8
6 2882 10−40 126

Table 8.3: The number of steps needed, the time taken for various VNODE tolerances
to trace one of the four branches of the intersection of a hyperbolic surface and a plane.

74

8.1.5 Torus-Cylinder Intersection (Trigonometric Functions)

The surfaces, [P5] a torus and [Q5] a cylinder are defined by trigonometric functions.
We trace one of the four loops of the curves of intersection. We can apply our proposed
algorithm. The continuity of the mapped boxes is ensured by rational continuous
functions like sine or cosine. Figure 8-5 shows a torus and a cylinder intersecting.
The maximum relative model space error is 0.0187.

[P5](σ, t) =

 cos(2πσ) · [10 + 5cos(2πt)]
sin(2πσ) · [10 + 5cos(2πt)]

5 · sin(2πt)


[Q5](u, v) =

 2cos(2πu)
40v − 20
2sin(2πu)


We vary the error bound with respect to the number of steps by using various

VNODE tolerances. The results are tabulated in Table 8.4. Another test was done
where we study the effect of variation of the width of the starting point on the width
of the error bound. The result is shown as a graph Figure 8-6, from which we notice
that the VNODE global error bound is strongly dependent on the width of the initial
point.

Test Time Number VNODE Maximum relative
No. taken (s) of steps tolerance model space error
1 11.7 80 10−12 0.0187
2 15 108 10−15 0.0135
3 24.1 188 10−20 0.0076
4 41.1 338 10−25 0.0041
5 136 1166 10−35 0.00115
6 490 4254 10−45 0.00031
7 1843 16089 10−55 0.00008

Table 8.4: Table comparing maximum relative model space error bound with the
time taken, number of steps required and the VNODE tolerance for an intersection
involving a torus and a cylinder.

8.2 Tangential Intersection of Surfaces

8.2.1 Planar Intersection Curve

Figure 8-7 shows the tangential intersection of two interval Bézier surfaces [P6](σ, t)
and [Q6](u, v). The surfaces are intersecting with each other tangentially. Degenerate
intervals represent the control points of the surfaces. The pre-image of the curve of

75

Figure 8-5: Transversal intersection of a Torus and a Cylinder.

76

Figure 8-6: Dependence of error in parametric space on the width of starting point
for a transversal intersection involving a Torus and a Cylinder.

intersection is obtained using the validated ODE solver and mapped into model space.
In Table 8.5 we have tabulated the number of steps and the corresponding maximum
relative model space error.

Control points for [P6](σ, t) =


([0], [0], [0]) ([5], [0], [10]) ([10], [0], [0])
([5], [5], [0]) ([10], [5], [10]) ([15], [5], [0])
([5], [10], [0]) ([10], [10], [10]) ([15], [10], [0])
([0], [15], [0]) ([5], [15], [10]) ([10], [15], [0])



Control points for [Q6](u, v) =


([0], [0], [10]) ([5], [0], [0]) ([10], [0], [10])
([5], [5], [10]) ([10], [5], [0]) ([15], [5], [10])
([5], [10], [10]) ([10], [10], [0]) ([15], [10], [10])
([0], [15], [10]) ([5], [15], [0]) ([10], [15], [10])



8.2.2 Non-Planar Intersection Curve

Figure 8-8 represents the intersection of two tensor product Bézier patches [P7](σ, t)
and [Q7](u, v). The patches are positioned in such a way that they are tangential
to each other and their curve of intersection is a 3D curve. The control points are
represented as degenerate intervals and are provided as input to a validated ODE
solver. The enclosure containing the curve of intersection is mapped from the param-
eter space to the 3D model space and we obtain rigorous bounds in the 3D model
space, which guarantee to contain the true curve of intersection with a maximum
relative model space error of 0.002.

77

Figure 8-7: Tangential intersection of two cubic-quadratic Bézier patches for a maxi-
mum relative model space error = 0.0050. Note that the control points of the surfaces
are chosen such that the curve of intersection lies on a plane.

Test Number Maximum relative
No. of steps model space error
1 530 0.005
2 806 0.003
3 1261 0.0015
4 2022 0.001
5 3305 0.0006
6 5496 0.0004

Table 8.5: Variation of the model space error with the number of steps for the tan-
gential intersection of two surfaces. The intersection curve lies on a plane.

78

Figure 8-8: Tangential intersection of tensor product Bézier surface patches. Control
points of surfaces are chosen such that the curves of intersection do not lie on a plane.

Control points for

[P7](σ, t) =


([−150], [10], [0]) ([0], [−10], [0]) ([150], [10], [0])
([−10], [40], [50]) ([20], [0], [50]) ([50], [40], [50])
([−10], [40], [110]) ([20], [0], [110]) ([50], [40], [110])
([−55], [−5], [200]) ([−25], [−45], [200]) ([5], [−5], [200])



Control points for

[Q7](u, v) =


([−50], [−50], [0]) ([0], [50], [0]) ([50], [−50], [0])
([−30], [−30], [50]) ([20], [70], [50]) ([70], [−30], [50])
([−30], [−30], [110]) ([20], [70], [110]) ([70], [−30], [110])
([−75], [−75], [200]) ([−25], [25], [200]) ([25], [−75], [200])



In Table 8.6 we have tabulated the number of steps, time taken, VNODE toler-
ances and the corresponding maximum relative model space error.

We however note that the strict distinction of a transversal and tangential inter-
section is blurred when we are talking about interval surfaces and interval methods
for resolving the intersections. This is partly due to the inherent trouble with the
floating point arithmetic scheme we use in computers. The input data is in some way
or the other perturbed and hence the intersection which initially was tangential is no
longer exactly tangential, but could be transversal or even result in no intersection.

79

Test Time Number VNODE Maximum relative
No. taken (s) of steps tolerance model space error
1 249 858 10−18 0.66
2 293 1011 10−20 0.459
3 450 1556 10−25 0.249
4 712 2459 10−30 0.135

Table 8.6: Variation of the model space error with the number of steps for the tan-
gential intersection of two surfaces. The intersection curve does not lie on a plane.

8.3 Self-Intersection of Surfaces

A validated ODE solver can tremendously increase the efficiency in solving self-
intersection problems compared to the IPP solver. This is because a validated ODE
solver does not suffer from the difficulty arising from the removal of the trivial solu-
tions from the real solutions.

8.3.1 Self-Intersection of a Bicubic Bézier Patch

A test is performed with a bicubic Bézier surface [P8](σ, t) which has self-intersections.
The control points of the surface are degenerate intervals given below. Figure 8-9
depicts the surface with the bounds on the intersection curve. We also study the
number of steps required for a given VNODE tolerance of 10−25 vs. the variation
of the order of the Taylor’s series used in the expansion in VNODE. From this we
can conclude that it is always better to use a high order Taylor’s series as this would
result in lesser number of steps and hence the time taken. A previous correspondence
from Prof. Nedialkov indicates that for nonlinear systems there is an improvement in
the performance of the validated interval schemes till an optimal order for the Taylor
series after which the performance again falls. Such a trend is expected here too.

Control points for

[P8](σ, t) =


([0], [0], [20]) ([0], [5], [20]) ([0], [10], [20]) ([0], [15], [20])
([20], [0], [0]) ([25], [5], [5]) ([25], [10], [5]) ([25], [15], [5])

([−10], [0], [0]) ([−10], [5], [0]) ([−10], [10], [0]) ([−10], [15], [0])
([10], [0], [20]) ([25], [5], [20]) ([25], [10], [20]) ([25], [15], [20])



8.4 Resolving Straying and Looping

The validated ODE solver is applied in the context of resolving straying or looping
during tracing the intersection curve segment. A detailed discussion of the theory is
given in Section 5.5.

80

Test No. Order of Taylor Number of VNODE Time
Series Steps tolerance taken (s)

1 10 3291 10−25 116
2 15 1469 10−25 74.4
3 17 1031 10−25 65
4 19 789 10−25 60.4

Table 8.7: Number of steps required for tracing the curve of intersection of the surface
for different orders of the Taylor series. Note that the VNODE tolerance is kept
constant at 1× 10−25.

Figure 8-9: Self-intersection of a bicubic Bézier patch.

81

8.4.1 Example 1 Depicting Resolving Straying and Looping

Figure 8-16 shows an example constructed very similar to the one used in Hu et al.
[13]. When the two interval Bézier surfaces of Section 8.1.3, [P3](σ, t) and [Q3](u, v)
intersect, then there is a singularity in the intersection curve (curve is connected).

Application of a conventional ODE system solver, such as the Runge-Kutta or
Adams-Bashforth methods, for solving the IVP corresponding to the intersection
would involve the following pathologies:

1. Specifying a starting point which is approximate would mean that the curve
traced would not have the singularity or bifurcation. The B-rep model generated
would lose topological information and the result may further cause failure in
CAD model processing.

2. Straying or looping near the singular region, which are essentially related to the
uncertainty of the solver in taking a specific step.

Ideally given a starting point [σ0, t0, u0, v0]
T = [1

3
, 0, 0, 3

4
]T , we expect a solver to

notify us as it approaches a region close to the singularity. The use of the recom-
mended solvers in Matlab such as ode45 (an implementation of Runge-Kutta method)
and ode113 (implementation of Adam’s method) would result in an abnormal behav-
ior as shown in Figures 8-10 and 8-11. We show in Figure 8-12 the behavior of a
validated ODE solver which does not march across the singularity. Thus the inter-
section is traced by separately tracing all the four intersection curve segments.

Now consider the case when one of the surfaces in Figure 8-3 is perturbed by a
small amount in z-direction such that the intersection curves have different topological
configuration. The intersection is now just two separate curve segments, even though
they lie very close to each other near the previously singular region.

Conventional methods show poor behavior near the region where two intersection
curves are very close to each other. This is shown by Figures 8-13 and 8-14 obtained
using the Adams-Bashforth and Runge-Kutta methods respectively. Note the incon-
sistency in topology of the intersection curves obtained from conventional methods.
The validated ODE solver uses an adaptive step size strategy, easily resolves this case,
and behaves well locally close to the near-singular region as shown by Figure 8-15.

Usual floating point representations can cause an intersection curve in examples
8.4.1 and 8.4.2 to become two separate curves which have conflicting topological struc-
ture from the real curve. These violations are manifested as gaps or as inappropriate
intersections. This example illustrates that, a validated ODE solver should be able
to resolve the singularity of the intersection curve and report to the user. We have
performed experiments where we perturb one of the surfaces ([Q3](u, v)) in the z-
direction (direction of the common normal at the singular point on the intersection)
so that the curve of intersection is free of singularity. A positive perturbation in
z-direction will lead to the branching of the curve in a sense different from a neg-
ative perturbation in the z-direction. The validated ODE solver traces the correct
curve and provides us with error bounds even through regions where the conventional
method fails. Table 8.8 compares the number of steps needed to resolve a possible

82

Figure 8-10: Integration using ode45 in Matlab. Looping is seen at the region close
to the singularity in the σ, t parameter space.

Figure 8-11: Integration using ode113 in Matlab. Straying and looping is seen at the
region close to the singularity in the σ, t parameter space.

83

Figure 8-12: Integration using a validated ODE solver, not crossing the singular region
in σ, t parameter space.

Figure 8-13: Result from ode113 in Matlab in the σ, t parameter space. This experi-
ment is done for the case of a small perturbation of one of the surface [Q3](u, v).

84

Figure 8-14: Result from ode45 in Matlab in the σ, t parameter space. This experiment
is done for the case of a small perturbation of one of the surface [Q3](u, v).

Figure 8-15: Result from a validated ODE solver in the σ, t parameter space for a
case involving a small perturbation of one of the surface [Q3](u, v).

85

candidate for looping or straying vs. perturbation of the Bézier patches. Note that
when the perturbations are small we need more steps for resolving.

Perturbation of [Q3] in Steps required
z-direction by validatedTest No.

in model space ODE solver
1 +0.03 845
2 +0.0003 989
3 +0.000003 1139

singularity
4 0.0

reported
5 -0.000003 1303
6 -0.0003 1153
7 -0.03 1007

Table 8.8: Resolving singularities of the curve of intersection for the intersection
of a bi-cubic surface and a cubic-quadratic surface. Table shows the perturbations
along the common normal and the corresponding number of steps needed to trace the
intersection.

8.4.2 Example 2 Depicting Resolving Straying and Looping

The intersection of two interval Bézier surfaces [P4](σ, t) and [Q4](u, v) in Section
8.1.4 is also tested for checking our claim of resolving straying and looping. We
perturb one of the surfaces, the plane [Q4](u, v) along the common normal near the
hyperbolic point such that the intersection curve has a completely different behavior
if the direction of the perturbation (z-direction) changes. A positive perturbation
in z-direction will lead to the branching of the curve in a sense different from a
negative perturbation in the z-direction. Table 8.9 compares the number of steps
needed to resolve a possible candidate for looping or straying vs. perturbation of the
Bézier patches. Note that when the perturbations are small we need more steps for
resolving.

8.5 A Difficult Case

The example shown in Figure 8-18 involves the case of two surfaces [P9](σ, t) and
[Q9](u, v) designed such that the intersection is tangential along an iso-parametric
line. Also there is a transversal intersection of the two surfaces and hence the two
intersection curves intersect. Thus for obtaining the intersection of the intersection
curves the integration using the equations for tangential intersection fails even using
a validated ODE solver.

The control points of the surfaces are given below.

86

Figure 8-16: Example depicting how validated ODE solver prevents straying and loop-
ing. Figure (a) shows the surface [Q3](u, v) perturbed along the positive z-direction,
the intersection curve segment is correctly traced by the validated ODE solver. Fig-
ure (b) in a similar way illustrates how the validated ODE solver successfully trace
the correct intersection curve segment when the perturbation is in the negative z-
direction.

87

Figure 8-17: Resolving straying and looping of curve of intersection for the intersection
of a hyperbolic surface [P4](u, v) and a plane [Q4](u, v). Figure (a) shows the plane
([Q4](u, v)) perturbed along the positive z-direction, the intersection curve segment is
correctly traced by the validated ODE solver. Figure (b) in a similar way illustrates
how the validated ODE solver successfully trace the correct intersection curve segment
when the perturbation is in the negative z-direction.

88

Perturbation of [Q4] in Steps required
z-direction by validated TimeTest No.

in model space ODE solver taken(s)
1 +0.1 426 14.1
2 +0.001 585 19.3
3 +0.00001 748 24.4
4 +0.0000001 913 29.9

singularity
5 0.0

reported
-

6 -0.0000001 826 27.0
7 -0.00001 660 21.9
8 -0.001 495 16.2
9 -0.1 331 11.1

Table 8.9: Resolving singularities of the curve of intersection for the intersection of
a hyperbolic surface and a plane. We tabulate the perturbations along the common
normal (z-axis) and the steps needed to trace the intersection. A constant VNODE
tolerance of 1× 10−20 was used.

Figure 8-18: Figure shows an intersection where the intersection becomes difficult to
solve as the governing differential equation fail.

89

Control points for

[P7](σ, t) =


([−150], [10], [0]) ([0], [−10], [0]) ([150], [10], [0])
([−10], [5], [50]) ([20], [0], [50]) ([50], [5], [50])

([−10], [−5], [110]) ([20], [0], [110]) ([50], [−5], [110])
([−55], [−75], [200]) ([−25], [25], [200]) ([5], [−75], [200])


Control points for

[Q7](u, v) =


([−50], [−50], [0]) ([0], [50], [0]) ([50], [−50], [0])
([−30], [0], [50]) ([20], [5], [50]) ([70], [0], [50])
([−30], [0], [110]) ([20], [−5], [110]) ([70], [0], [110])

([−75], [−5], [200]) ([−25], [−45], [200]) ([25], [−5], [200])



90

Chapter 9

Conclusions

9.1 Conclusions

Investigating the effects of floating point arithmetic on the implementation of in-
tersection algorithms has been an important area for basic research during the last
decade [29]. Methods to enhance the precision of intersection computation, to moni-
tor numerical error contamination and alternate means of performing arithmetic, not
relying on imprecise floating point computation alone, have been previously explored
in some detail. A different direction of research involves the use of non-conventional
interval methods like a validated ODE solver discussed in this thesis, which considers
errors arising from computation as well as initial conditions. It provides a guaranteed
bound which encloses the exact solution, and fits well with the concept of robust
interval solid modeling [13, 34]. Parts of this thesis is also discussed in greater detail
in the papers [23, 30].

Given two RPP surfaces, and a tolerance on the error in the model space, we are
now in a position to obtain strict bounds on the entire curve of intersection. This
problem of obtaining strict (validated) bounds on the intersection is subdivided into
simply stated problems of:

1. Obtaining a corresponding tolerance in the parameter space.

2. Solving an IVP for ODEs using a validated interval ODE solving scheme to
obtain a series of bounds in the parameter space of each of the surface which
encloses the pre-image of the true solution within the given tolerance in the
parameter space.

3. Mapping the enclosures in parameter space to the model space to obtain vali-
dated error bounds for the intersection in the 3D model space.

In this thesis we propose two algorithms for obtaining error thresholds in parameter
space given the error thresholds in the model space. We apply validated interval
ODE solving schemes (IHO and ITS) to obtain bounds on the entire intersection in
parameter space. Further, theorems are proved which would enable us to obtain strict

91

error bounds in the 3D model space. Again we show the use of a validated interval
scheme in resolving the phenomenon of straying and looping.

One feasible way for obtaining the validated representation for solids in the context
of floating point arithmetic is to use an interval boundary representation developed by
[13, 34]. A key requirement of the interval boundary representation scheme is to have a
continuous gap-free bound on the intersection of two surfaces. We fulfill this condition
of a continuous gap-free boundary with a numerically verified upper bound for the
intersection curve error. The theorems we state in this thesis help us to map this error
bound in parameter space to 3D model space bound conservatively. This definite
upper bound for error is crucial in defining well formed boundary representation of
complex 3D solids using interval boundary representation developed at MIT [13, 34].

With the application of a validated ODE solver, we are at a position to clearly
distinguish between the questions of incidence and non-incidence in a point test, which
would eventually lead to consistent representations with given bounds for the error.
This enables us to realize a gap-free boundary. Using tools developed in Chapter 7, we
can monotonically control the error bounds in model space. Further as a by-product
of developing a gap-free bound for error, we are able to obtain very accurate error
bounds at discrete points on the intersection curve.

As mentioned before we are able to resolve straying or looping in the parameter
space by the application of a validated ODE solver which adapts its own step-size
to verify the existence and uniqueness of the solution obtained. This comes from
the fact that the uniqueness criterion is not satisfied at the point where there is a
self-intersection or singularity in the pre-image of the intersection curve.

Next, we summarize the results from the various numerical experiments. We also
note that increased accuracy will lead to smaller step sizes and hence more number
of steps which in turn increases computation time. There is considerable reduction in
model space error after we perform the intersection of the model space error bounds
especially for the cases of transversal intersection. Various tests we have performed
have shown that the accuracy of finding the starting points is of prime importance
in the quality of the results. The use of higher order Taylor series is found to have
a positive influence on the performance of the ITS method. Of the two validated
interval schemes we have discussed, the IHO method is found to be faster than the
ITS method.

It was noticed that by following Horner’s rule while we input the expression for
[f(y(s))] we are not only able to reduce the computation time but also reduce the
resulting intervals’ widths. Further the large amount of data we have obtained could
be reduced by the use of an approximation scheme proposed by Tuohy et al. [45].

Some limitations of the validated interval scheme are discussed below. This algo-
rithm is costlier compared to a conventional scheme, but the quality of the solution
(the guarantee of the true solution lying within the estimated bounds) far outweighs
the cost factor. Also unfortunate is the inherent problem of very small but non-zero
increase in the width of the interval solutions due to rounding.

92

9.2 Recommendations for Future Research

Future work on the topic of interval solid modeling could be on how to reduce the
width of the a priori enclosures, in the parametric spaces by using higher order
enclosure methods proposed by Nedialkov et al [24].

Another important direction for future research would be to obtain starting points
on each branch of the intersection and further to obtain a strict bound on the start-
ing point in each of the parametric spaces. The use of the IPP algorithm in this
context is noteworthy, but such an algorithm tends to have problems in the presence
of multiple roots. An algorithm which allows for the robust evaluation of multiple
zeros of polynomials is another important requirement. This would be valuable for
computing starting points for tracing intersection curves [15].

Extension of current intersection methods applied on rational B-spline surfaces
to more general and complex surfaces requires further study. Such surfaces include
offset, generalized cylinder, blending and medial surfaces, and surfaces arising from
the solution of partial differential equations or via recursion techniques.

Application of this algorithm from an industrial perspective also requires more
thought. Yet another interesting topic for future research is to apply the validated
interval solution scheme to a variety of problems in computational geometry which
reduces to solving IVP for ODEs.

Much research remains to be done in bringing such methods to the CAD practice,
generalizing the arithmetic to go beyond rational and algebraic numbers (eg. in-
volving transcendental numbers of trigonometric form), and to explore more efficient
alternatives that are generally applicable in low and high degree problems alike.

93

94

Appendix A

Tables

95

Notation Meaning
The initial interval vector,

[y(s0)] = [y0] or the starting interval vector.
hj = sj+1 − sj The jth step size.

The interval vector containing
the family of solutions[yj]

to the IVP at sj.
The interval containing the
family of solutions

[yj+1] to the IVP at sj+1.
The ideal family of curves
passing through [y0]

satisfying the ODE systemy(s; s0, [y0])

for s ∈ [s0, send].
The ideal family of curves
passing through [yj]

satisfying the ODE systemy(s; sj, [yj])

for s ∈ [sj, sj+1].
The a priori enclosure
The which bounds the family[ỹj]
of solutions for the step hj.
A point vector such that

ŷj ŷj ∈ [yj] at sj.
The ith Taylor series
coefficient of f([y(s)])[yj]i = f [i]([yj])
evaluated at sj.

The ith Taylor series
coefficient of ff [i](ŷj)
evaluated at ŷj.
The kth Taylor series
coefficient of f evaluated[ỹj]k = f [k]([ỹj])

for some y(s) at some s= f [k](y; sj, sj+1)

such that s ∈ [sj, sj+1].

J(f [i]; [yj], ŷj) The Jacobian matrix of f [i].

Table A.1: Interval Notations.

96

Bibliography

[1] S. L. Abrams, W. Cho, C.-Y. Hu, T. Maekawa, N. M. Patrikalakis, E. C. Sher-
brooke, and X. Ye. Efficient and reliable methods for rounded-interval arithmetic.
Computer-Aided Design, 30(8):657–665, July 1998.

[2] C. L. Bajaj, C. M. Hoffmann, J. E. Hopcroft, and R. E. Lynch. Tracing surface
intersections. Computer Aided Geometric Design, 5(4):285–307, November 1988.

[3] R. E. Barnhill and S. N. Kersey. A marching method for parametric surface /
surface intersection. Computer Aided Geometric Design, 7(1-4):257–280, June
1990.

[4] G. F. Corliss and R. Rihm. Validating an a priori enclosure using high-order
Taylor series. In G. Alefeld, A. Frommer, and B. Lang, editors, Scientific Com-
puting and Validated Numerics: Proceedings of the International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics - SCAN
’95, pages 228–238. Akademie Verlag, Berlin, 1996.

[5] P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arith-
metic. Mathematical Centre Tracts No. 144., Stichting Mathematisch Centrum,
Amsterdam, 1981.

[6] FADBAD/TADIFF, A C++ package for automatic differentiation.
http://www.imm.dtu.dk/fadbad.html/.

[7] T. A. Grandine and F. W. Klein. A new approach to the surface intersection
problem. Computer Aided Geometric Design, 14(2):111–134, 1997.

[8] E. Hansen, editor. Topics in Interval Analysis. Oxford University Press, 1969.

[9] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1989.

[10] C. M. Hoffmann. Robustness in geometric computations. Journal of Computing
and Information Science in Engineering, 1(2):105–204, June 2001.

[11] C. Y. Hu, T. Maekawa, N. M. Patrikalakis, and X. Ye. Robust interval algo-
rithm for surface intersections. Computer-Aided Design, 29(9):617–627, Septem-
ber 1997.

97

[12] C. Y. Hu, T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis. Robust
interval algorithm for curve intersections. Computer-Aided Design, 28(6/7):495–
506, June/July 1996.

[13] C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust interval solid modeling: Part
I, Representations. Computer-Aided Design, 28(10):807–817, October 1996.

[14] K. R. Jackson and N. S. Nedialkov. Some recent advances in validated methods
for IVPs for ODEs. Applied Numerical Mathematics, 42(1-3):269–284, August
2002.

[15] K. H. Ko, T. Sakkalis, and N. M. Patrikalakis. Nonlinear polynomial systems:
Multiple roots and their multiplicities. In F. Giannini and A. Pasko, editors,
Shape Modeling International Conference, SMI 2004, Genoa, Italy, June 2004.
IEEE Computer Society Press, Los Alamitos, CA.

[16] E. Kreyszig. Advanced Engineering Mathematics. Wiley Eastern Edition, New
Age International Limited, 1994.

[17] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and differential-
equation methods for surface intersections. Computer-Aided Design, 24(1):41–55,
January 1992.

[18] F. Kruckeberg. Ordinary differential equations. Topics in Interval Analysis,
pages 91–97, 1969.

[19] U. Kulisch, R. J. Lohner, and A. Facius. Prespectives on Enclosure Methods.
Springer, New York, 2001.

[20] R. J. Lohner. Computation of guaranteed enclosures for the solutions of ordinary
initial and boundary value problems. In J.R. Cash and I. Gladwell, editors,
Computational Ordinary Differential Equations, pages 425–435. Clarendon Press,
Oxford, 1992.

[21] R. J. Lohner. Step size and order control in the verified solution of IVP with
ODEs. In SciCADE’95 International Conference on Scientific Computation and
Differential Equations, Stanford, CA, 1995.

[22] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[23] H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, and N. M. Patrikalakis.
Tracing surface intersections with a validated ode system solver. In G. Elber
and G. Taubin, editors, Proceedings of the Ninth EG/ACM Symposium on Solid
Modeling and Applications, Genoa, Italy, 2004. Eurographics Press.

[24] N. S. Nedialkov. Computing the Rigorous Bounds on the Solution of an Initial
Value Problem for an Ordinary Differential Equation. PhD thesis, University of
Toronto, Toronto, Canada, 1999.

98

[25] N. S. Nedialkov and K. R. Jackson. An Interval Hermite-Obreschkoff Method for
Computing Rigorous Bounds on the Solution of an Initial Value Problem for an
Ordinary Differential Equation. Kluwer, Dordrecht, The Netherlands, 1999.

[26] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial
value problems for ordinary differential equations. Applied Mathematics and
Computation, 105(1):21–68, 1999.

[27] N. M. Patrikalakis. Surface-to-surface intersections. IEEE Computer Graphics
and Applications, 13(1):89–95, January 1993.

[28] N. M. Patrikalakis and T. Maekawa. Intersection problems. In G. Farin,
J. Hoschek, and M. S. Kim, editors, Handbook of Computer Aided Geometric
Design, Chapter 25, pages 623–650. Elsevier, Amsterdam, July 2002.

[29] N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided
Design and Manufacturing. Springer-Verlag, Heidelberg, 2002.

[30] N. M. Patrikalakis, T. Maekawa, K. H. Ko, and H Mukundan. Surface to surface
intersection. In L. Piegl, editor, International CAD Conference and Exhibition,
CAD’04, Thailand, May 2004.

[31] N. M. Patrikalakis, T. Maekawa, K. H. Ko, and H Mukundan. Surface to surface
intersection. Computer–Aided Design and Applications, 1(1-4):449–458, 2004.

[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1988.

[33] PROFIL/BIAS, Interval Arithmetic Subroutines. http://www.ti3.tu-
harburg.de/Software/PROFILEnglisch.html.

[34] T. Sakkalis, G. Shen, and N. M. Patrikalakis. Topological and geometric prop-
erties of interval solid models. Graphical Models, 63(3):163–175, 2001.

[35] T. W. Sederberg, H. N. Christiansen, and S. Katz. Improved test for closed loops
in surface intersections. Computer-Aided Design, 21(8):505–508, October 1989.

[36] G. Shen and N. M. Patrikalakis. Numerical and geometric properties of interval
B-splines. International Journal of Shape Modeling, 4(1 and 2):35–62, March
and June 1998.

[37] G. Shen, T. Sakkalis, and N. M. Patrikalakis. Boundary representation model
rectification. Graphical Models, 63(3):177–195. Also in: Proceedings of the Sixth
ACM Solid Modeling Symposium. D. Anderson and K. Lee, editors. Ann Arbor,
Michigan, June 2001. NY: ACM, 2001.

[38] G. Shen, T. Sakkalis, and N. M. Patrikalakis. Interval methods for B-Rep model
verification and rectification. In Proceedings of the ASME 26th Design Automa-
tion Conference, pages 140 and CD–ROM, Baltimore, MD, September 2000.

99

[39] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of non-
linear polynomial systems. Computer Aided Geometric Design, 10(5):379–405,
October 1993.

[40] H. Shou, H. Lin, R. Martin, and G. Wang. Modified affine arithmetic is more
accurate than centered interval arithmetic or affine arithmetic. In Wilson M.
Martin R., editor, IMA Conference on the Mathematics of Surfaces 2003, pages
355–365. Springer, September 2003.

[41] P. Sinha, E. Klassen, and K. K. Wang. Exploiting topological and geometric
properties for selective subdivision. In SCG ’85: Proceedings of the first annual
symposium on Computational geometry, pages 39–45. ACM Press, 1985.

[42] M. R. Spiegel. Theory and Problems of Advanced Mathematics for Engineers
and Scientists. McGraw-Hill Book Company, Singapore, 1983.

[43] O. Stauning. Automatic Validation of Numerical Solutions. PhD thesis, Technical
University of Denmark, Lyngby, Denmark, 1997.

[44] N. F. Stewart. A heuristic to reduce the wrapping effect in the numerical solution
of x′ = f(t, x). BIT, 11(1):329–337, 1971.

[45] S. T. Tuohy, T. Maekawa, G. Shen, and N. M. Patrikalakis. Approximation of
measured data with interval B-splines. Computer-Aided Design, 29(11):791–799,
November 1997.

[46] C. Ullrich. Computer arithmetic and self-validating numerical methods. Aca-
demic Press, Inc., 1990.

[47] VNODE, Validated Nonlinear Ordinary Differential Equations solver.
www.cas.mcmaster.ca/nedialk/Software/VNODE/VNODE.shtml.

[48] S.-T. Wu and L. N. Andrade. Marching along a regular surface/surface inter-
section with circular steps. Computer Aided Geometric Design, 16(4):249–268,
May 1999.

[49] X. Ye and T. Maekawa. Differential geometry of intersection curves of two sur-
faces. Computer Aided Geometric Design, 16(8):767–788, September 1999.

100

