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Kevin David Dorfman

Submitted to the Department of Chemical Engineering
on 23 July 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis constitutes the development and application of a theory for the lumped pa-
rameter, convective-diffusive-reactive transport of individual, non-interacting Brownian
solute particles (“macromolecules”) moving within spatially periodic, solvent-filled net-
works — the latter representing models of chip-based microfluidic devices, as well as
porous media. The use of a lumped parameter transport model and network geometri-
cal description affords the development of a discrete calculation scheme for computing
the relevant network-scale (macrotransport) parameters, namely the mean velocity vec-
tor Ū

∗
, dispersivity dyadic D̄∗ and, if necessary, the mean volumetric solute depletion

rate K̄∗. The ease with which these discrete calculations can be performed for com-
plex networks renders feasible parametric studies of potential microfluidic chip designs,
particularly those pertinent to biomolecular separation schemes.

To demonstrate the computational and conceptual advantages of this discrete scheme,
we consider: (i) a pair of straightforward examples, dispersion analysis of (non-reactive)
pressure-driven flow in spatially periodic serpentine microchannels and reactive transport
in an elementary geometric model of a porous medium; and (ii) a pair of case studies
based upon the microfluidic separation techniques of vector chromatography and entropic
trapping. The straightforward examples furnish explicit proof that the present theory
produces realistic results within the context of a simple computational scheme, at least
when compared with the prevailing continuous generalized Taylor-Aris dispersion theory.
In the case study on vector chromatography, we identify those factors which break the
symmetry of the chip-scale particle mobility tensor, most importantly the hydrodynamic
wall effects between the particles and the obstacle surfaces. In the entropic trapping
case study, analytical expressions derived for the solute dispersivity, number of theoret-
ical plates, and separation resolution are shown to furnish results that accord, at least
qualitatively, with experimental trends and data reported in the literature.

Thesis Supervisor: Howard Brenner
Title: Willard H. Dow Professor of Chemical Engineering
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Dedicated in loving memory to Herman Zeenberg.

We have a habit in writing articles published in scientific journals to make

the work as finished as possible, to cover up all the tracks, to not worry

about the blind alleys or describe how you had the wrong idea first, and so

on. So there isn’t any place to publish, in a dignified manner, what you

actually did in order to get to do the work.

— Richard Feynman, Nobel Lecture, 1966.
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Foreword

Portions of this thesis have appeared (or will appear) in print in various journals.
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microchannels appearing in Chapter 8, was published in Physical Review E (Dorfman &

Brenner 2002a). The application of this theory to vector chromatography, the subject of
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of the entropic trapping modeling in Chapter 10 appeared in Biomedical Microdevices
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remainder of Chapters 1, 3 and 4, all of Chapter 6, and the second example in Chapter 8,
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Math (Dorfman & Brenner 2002d) at the time of this writing.
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Chapter 1

Introduction

The engineering design and analysis of spatially periodic microfluidic separation devices

requires characterizing the functional dependence of chip-scale (L-scale) mean solute

transit rates across the device upon the prescribed interstitial-scale (l-scale; l ¿ L) pa-

rameters quantifying the repetitive unit cell configuration and local transport properties

of the several distinct (macromolecular) solutes to be separated as these molecules tra-

verse the fluid-filled interstitial space. As is often the case in such modeling schemes, a

rigorous, pointwise (“continuous”) description of the l-scale transport within the network

tends to be exceedingly difficult (if at all possible), owing in large measure to incomplete

knowledge of the detailed mechanisms quantifying the transport of flexible polymeric or

biological molecules within constraining geometries. Consequently, the rigor implicit in

any continuous model for predicting the L-scale solute transport across the chip as a

whole, such as is embodied in classical generalized Taylor-Aris dispersion theory (Bren-

ner & Edwards 1993), is often negated by the need to invoke coarse, ad hoc assumptions

regarding the physical nature of the local solute transport processes, such as employing

a (scalar) mean electrophoretic solute mobility in lieu of the exact pointwise mobility

dyadic. This thesis aims to incorporate, a priori, all of our ignorance of the detailed

phenomenology underlying these local issues into a discrete network theory, rendering the

latter analytically and computationally tractable when compared with the more rigorous

19



continuous descriptions (Brenner & Edwards 1993) of such spatially periodic networks.

The analysis which follows is focused primarily upon a theory for modeling microflu-

idic chromatographic separation devices embossed on chips, with a subsequent extension

of the latter (purely) convective-diffusive network scheme to account for the depletion

of physicochemically reactive solutes within the network, either via chemical reaction

or by irreversible adsorption onto the walls of the medium. In the context of chro-

matographic separations, micropatterned media find ready application as vector chro-

matographic separation devices (Dorfman & Brenner 2001), wherein the distinct species

undergo simultaneous directional and temporal separation. By “directional” is meant

that, on the L-scale, different species move in different directions in response to the an-

imating force. In contrast, “temporal” separation refers to the fact that even if the

several species move, on average, in the same direction, they generally do so at different

speeds, thereby effecting their separation in time, such as occurs in conventional scalar

(or unidirectional) chromatography. Experiments performed by Chou et al. (1999, 2000)

on these micropatterned devices demonstrated the efficient separation of variable-length

DNA strands.

Previous attempts to model such directional separation phenomena include our appli-

cation of rigorous continuous Taylor-Aris dispersion theory (Dorfman & Brenner 2001),

as well as more intuitive models developed independently by Duke & Austin (1998) and

Ertas (1998). In addition to being directly applicable to the phenomenon of vector

chromatography, the generic theory to be developed herein lends itself to applications

involving other classes of microfluidic separation devices, such as magneto-sensitive ar-

rays (Doyle et al. 2002) and entropic trapping devices (Han & Craighead 2000), as well

as furnishing an elementary model for transport in porous media. Applications of the

present theory to specific examples will be discussed in Part II of this thesis.

In the context of reactive networks, the integration of microscale reaction protocols

with downstream microfluidic chromatographic separation techniques has spearheaded

the development of miniaturized total analysis systems (µ-TAS) (Jakeway et al. 2000,
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Krishnan et al. 2001, Kutter 2000) directed towards low-volume (point-of-use) chemical

processes and biological assays in microchip environments. Constructing such devices

with precision microfabrication techniques enables the creation of highly reproducible

periodic microscale structures of any mode of arrangement, whose unit cell configurations

can be designed for optimal performance. Concurrently, the relatively new field of

“microreaction engineering” (Jensen 2001) has employed these fabrication techniques to

produce increasingly complex microscale reactor architectures. Apart from these explicit

µ-TAS and microreaction engineering applications, the generic paradigm to be developed

is expected to be of broader interest in applications lying outside of these fields, such as

the reactive solute transport in porous media which occurs in groundwater contamination.

To the extent that Taylor-Aris dispersion theory (Brenner & Edwards 1993) provides

an adequate description of the global aspects of the solute transport processes occurring

within the network, only three parameters are required to quantify the average L- or

chip-scale solute transport rates: (i) the mean solute depletion rate K̄∗, representing the

exponential decay of the total solute concentration field or, equivalently, the decay of the

individual solute survival probability density; (ii) the mean solute velocity vector Ū∗, rep-

resenting the coefficient of the asymptotic L-scale linear temporal growth in time of the

mean vector displacement of the solute particle from the point of its initial introduction

into the network; and (iii) the solute dispersivity dyadic D̄∗, comparably representing

the corresponding growth in time of the solute’s mean-squared dyadic deviation from

its current mean position. In the context of chromatographic separations, as embodied

by the representative data depicted in Fig. 1-1, the latter parameters serve to charac-

terize the separation in the following manner: The vector velocity difference Ū∗
1− Ū∗

2

between two distinct solute “molecules” or species 1 and 2, introduced simultaneously,

quantifies the relative separation occurring between them as they traverse the network.

Similarly, the respective particle dispersivities, say, D̄∗
1 and D̄∗

2, serve to characterize

the extent of band-broadening of these solutes, arising from the stochastic nature of the

solute transport processes occurring within the network. Computing these global param-
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Figure 1-1: Representative data for the chromatographic separation of two distinct
macromolecular species, 1 and 2. The relative band peaks and widths are character-
ized by the species mean velocities, Ū∗

i , and dispersivities, D̄∗
i , respectively.
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eters from knowledge of the detailed microscale (unit cell) parameters characterizing the

device necessitates creating theoretical tools sufficient to do justice to the technological

advances implicit therein, while at the same time being sufficiently simple to render the

computations tractable. This is the goal of Part I of this thesis.

1.1 Review of Network Models

Network models, albeit typically devoid of rigorous Taylor-Aris foundations, have been

applied previously to a vast array of practical problems, including transport in porous

media (Adler & Brenner 1984a,b,c, Aviles & Levan 1991, de Arcangelis et al. 1986, Fatt

1956, Koplik 1982, Koplik et al. 1988, Saffman 1959, Sahimi 1992, Sahimi & Jue 1989)

and fractal models thereof (Adler 1985a,b,c), deep-bed filtration (Imdakm & Sahimi 1991,

Rege & Fogler 1988), soil science (Berkowitz & Ewing 1998, Bruderer & Bernabe 2001),

and various chromatographic separation schemes (Andrade et al. 1992, McGreavy et al.

1990, Meyers & Liapis 1998). Early work in these fields is reviewed by van Brakel (1975).

To date, the majority of these network analyses have focused primarily upon dispersion

in random porous media (Aviles & Levan 1991, Bruderer & Bernabe 2001, de Arcangelis

et al. 1986, Koplik 1982, Koplik et al. 1988, Sahimi 1992, Sahimi et al. 1983, Sahimi &

Jue 1989, Sorbie & Clifford 1991), or upon the inherent disorder prevailing in packed

bed chromatographic separation devices (Andrade et al. 1992, McGreavy et al. 1990,

Meyers & Liapis 1998), with much attention focused upon the solute dispersivity in such

networks near the percolation threshold (Bruderer & Bernabe 2001, Imdakm & Sahimi

1991, Koplik et al. 1988, Sahimi 1992, Zhang & Seaton 1994). Moreover, network models

(Adler & Brenner 1984a,b,c, Adler 1985a,b,c, Aviles & Levan 1991, Bruderer & Bernabe

2001, de Arcangelis et al. 1986, Fatt 1956, Imdakm & Sahimi 1991, Koplik 1982, Koplik

et al. 1988, Meyers & Liapis 1998, Saffman 1959, Sahimi et al. 1983, Sorbie & Clifford

1991) have heretofore dealt mostly with unidirectional, pressure-driven, “piggy-back” so-

lute transport through the network. In such circumstances, the mean particle motion has
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invariably been regarded as being colinear with the Darcy-scale (L-scale) solvent pressure

gradient, a phenomenon which is not generally true of vector chromatographic separa-

tions (when the externally applied field is viewed as analogous to a Darcy-scale pressure

gradient). For reactive media, various homogenization procedures, again devoid of our

rigorous Taylor-Aris network formalism, have previously been invoked to study catalysis

(Andrade et al. 1997, Hollewand & Gladden 1992, Park & Kim 1984, Ryan et al. 1980,

Sahimi et al. 1990, Wakad & Nardse 1974, Zhang & Seaton 1994), reduced kinetic models

(Li & Rabitz 1991), transport in chemical reactors and porous media (Alvarado et al.

1997, Balakotaiah & Dommeti 1999, Dungan et al. 1990, Edwards et al. 1993, Ginn 2001,

Hollewand & Gladden 1992, Mauri 1991, Mehta et al. 1988, Pal 1999, Sahimi et al. 1990),

and irreversible adsorption phenomena (Aviles & Levan 1991, Leitzelement et al. 1984,

Rege & Fogler 1988, Sahimi et al. 1990, Suchomel et al. 1998). One particularly inter-

esting use of the notion of homogenization involves extracting macroscopically observ-

able reaction rates from molecular-scale models of coupled reaction-diffusion phenomena

(Cukier 1983a,b, Kruger 1990a,b, Mattern & Felderhof 1987, Muthukumar 1982).

In contrast will all but two (Adler & Brenner 1984b, Adler 1985b) of the preceding

network analyses, we here apply a rigorous Taylor-Aris-like “method-of-moments” L-

scale scheme to the lumped-parameter, l-scale transport processes occurring within the

spatially periodic network1 — ultimately deriving a generic paradigm for calculating the

physically relevant macroscopic parameters, namely K̄∗, Ū∗ and D̄∗, from knowledge of

the prescribed l-scale data. Building upon the discrete framework of Adler & Brenner

(1984b), the present contribution relaxes their assumption of perfect mixing at the in-

tersections of the individual channels, in addition to incorporating molecular diffusion

within the channels and chemical reactions into the analysis. With the exceptions (Adler

& Brenner 1984b, Adler 1985b) cited above, our discretization contrasts with existing

1Such a regular, spatially periodic network theory may be employed in the modeling of “random”
media by sampling numerous realizations of the randomly configured contents of unit cells, in the spirit
of tube radii distributions employed elsewhere in capillary models of porous media [see, for example,
(Koplik 1982)].
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generalized Taylor-Aris dispersion theory analyses (Brenner & Edwards 1993), which are

predicated upon a precise, pointwise, continuous description of the l-scale transport phe-

nomena occurring in spatially periodic media. Accordingly, the generalized Taylor-Aris

dispersion paradigm developed herein represents a complete discretization of the com-

parable classical continuous paradigm (Brenner 1980) — the present graph-theoretical

framework being motivated by the creation of classes of perfectly periodic chromato-

graphic devices (Chou et al. 1999, 2000, Doyle et al. 2002, Han & Craighead 2000).

Moreover, the concomitant analytical difficulties posed by the geometric complexities of

such microfluidic devices (Dorfman & Brenner 2001) motivates the subsequent use of ex-

perimentally measurable, albeit averaged, discrete l-scale transport parameters in place

of classical continuous l-scale transport data.

All network models, including ours, proceed in a similar fashion, initially requiring

three l-scale data inputs pertaining to: (i) the l-scale description of the entraining solvent

flow field, such as that determined by an electrical resistance analog (Adler & Brenner

1984a, Adler 1985a,c, Koplik 1982) for fluid motion animated by a Darcy-scale pressure

gradient; (ii) the l-scale solute transport parameters, namely the mean, interstitial-level

particle velocity vector and diffusivity (dispersivity) dyadic prevailing within the individ-

ual channels of the network, as well as the local reaction rate; and (iii) the selection of a

so-called “mixing” rule characterizing the choice of solute intersectional exiting protocol

from the channel junctions wherein the l-scale channel contents coalesce.

1.2 Interstitial Transport Phenomena

Disagreement exists in the network modeling literature concerning delineation of the l-

scale (effective) intrachannel transport processes, with existing models employing either

molecular properties (Bruderer & Bernabe 2001, de Arcangelis et al. 1986, Zhang &

Seaton 1994) or effective Taylor-Aris dispersion properties (Andrade et al. 1992, Koplik

et al. 1988, McGreavy et al. 1990, Sahimi 1992, Sahimi & Jue 1989, Sorbie & Clifford
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1991). As such, it behooves us to amplify, during the course of the subsequent analysis,

the relationship existing between the effective intrachannel solute velocity and diffusivity

(dispersivity) and the comparable pointwise particle velocity vector and molecular dif-

fusivity dyadic appearing in the continuous scheme. The latter pair of microtransport

parameters, U(r) and D(r), are, in principle, exactly expressible functionally in terms of

the continuous l-scale local particle position vector r within the repetitive unit cell. In

contrast, because of their coarser discrete l-scale nature, the effective channel transport

parameters, U(j) and D(j), cannot be known exactly owing to the uncertainty existing

in the instantaneous local position r of the particle within channel j arising from the

stochastic nature of the molecular diffusive transport processes. For example, the trans-

port of an entrained (point-size) particle by a parabolic Poiseuille flow field may take

place entirely along the channel center, resulting thereby in a mean channel velocity sig-

nificantly greater than that for a particle moving proximate to the channel walls. Such

effects become more pronounced in the context of finite-size particles, wherein hydrody-

namic wall effects induced by the finite size of the particles relative to the channel width

(Happel & Brenner 1983) must be incorporated into the analysis.2 This is especially

true in the case of force-driven particle animation or electroosmotic flow (Russel et al.

1989), where wall effects constitute the only mechanism enabling particle vector separa-

tion. The possibility that a particle will statistically sample the entire cross-sectional

area of a given channel before exiting that channel, as required for Taylor-Aris theory to

be applicable, necessarily decreases monotonically with the channel’s longitudinal dimen-

sion — increasing thereby the likelihood of the particle spending a statistically inordinate

time resident on a given streamline, or too long in a region of unchanging mobility in

the finite-size particle case. Even more tenuous than in the preceding case of modeling

the solute velocity in a channel is the issue of properly defining the channel dispersivity,

2In the case of pressure-driven flow, the finite size of the particles results in a sterically excluded
particle region, comprised of the slow-moving fluid streamline region near the wall, rendering the area-
averaged mean velocity of the particle greater than that of the entraining fluid (Brenner & Gaydos 1977,
Dimarzio & Guttman 1970). The latter phenomenon constitutes the dominant, first-order separation
mechanism underlying (unidirectional) hydrodynamic chromatography.
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given that the presence of convection gives rise to a Taylor contribution to that effective

diffusivity (Taylor 1953), which formula, however, is strictly valid only for relatively long

tubes, or, more precisely, for large aspect ratio channels.

A comprehensive study (Meyers & Liapis 1998) incorporating various effective trans-

port models, both theoretical and semi-empirical, found the ensuing L-scale macrotrans-

port parameters to be only weakly dependent upon the choice of transport model, but

strongly dependent upon the connectivity of the network. In spite of this potentially

weak dependence in certain circumstances, it nevertheless behooves us to formulate ratio-

nal definitions for the effective channel transport parameters, especially in the asymptotic

limit (cf. §5.3.1).

No differences exist in the specification of the mean velocity U(j) and dispersivity

D(j) in the presence of chemical reactions. Rather, it proves necessary to further specify

a mean solute depletion rate, k, quantifying the uniform rate of chemical reaction (or

irreversible adsorption) occuring at different points within the network. The specification

of the reaction rates on the network scale is considerably less equivocal than was the case

for the transport rates, whereby their discussion is deferred to a later point in this thesis

(see §4.2).

1.3 Intersection “Mixing” Rule

Numerous models also exist for quantifying the solute “mixing” processes occurring at

the channel junctions. Unlike the mean intrachannel transport parameters, the mixing

rule, serving to quantify the probability of the particle exiting the intersection through a

specified channel among those available, is less equivocal, being governed by the physics

of the device. Most widely used is the “perfect mixing” hypothesis (Adler & Brenner

1984b, Andrade et al. 1992, Aviles & Levan 1991, de Arcangelis et al. 1986, Koplik et al.

1988, McGreavy et al. 1990, Meyers & Liapis 1998, Sahimi & Jue 1989, Sorbie & Clifford

1991, Zhang & Seaton 1994), wherein no bias is assumed to exist regarding the choice
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of intersectional egress channel, owing either to purely convective solute transport (a

mixing-tank model) in the absence of molecular diffusion, or extremely vigorous molecular

diffusion — in probabilistic terms, effectively a Markov process (Sahimi et al. 1983). At

large Peclet numbers (convection dominated solute transport), the choice of intersection

solute egress channel is typically assumed to be simply proportional to the flow rate

prevailing within that channel (Imdakm & Sahimi 1991, Rege & Fogler 1988, Sahimi et

al. 1983, Sorbie & Clifford 1991). At smaller Peclet numbers, where the transport process

is diffusion dominated, Sorbie & Clifford (1991) invoked steric arguments to assert that

the choice of intersection egress channel is proportional to that channel’s cross-sectional

area, while for very small intersections Bruderer & Bernabe (2001) assumed that no

stream-wise molecular diffusion occurs.

Each of the preceding mixing rules represent approximations, albeit pragmatically

useful ones, of the exact solute transport processes occurring at the channel intersec-

tions. A more precise determination of egress channel probabilities may be obtained

from the exact solution of the prevailing continuous convective-diffusive transport prob-

lem, including proper accountings of the detailed fluid flow field and particle dynamics,

e.g. hydrodynamic wall effects. The latter scheme has been employed elsewhere by Yan

et al. (1991) for the analysis of blood hematocrit flow through microvasculature, as well

as by Lee & Koplik (1999) for the Stokesian dynamics of fluid-particle-bed interactions

in model porous media.

No doubt exists that a continuous description of the vertex transport processes, when

compared with any of the proposed ad hoc probabilistic vertex mixing schemes, would

furnish more physically accurate results within this discrete theory. However, given the

computational resources required to more precisely quantify the detailed intersectional

transport processes, it is only incrementally more difficult to solve the original, classi-

cal continuous Taylor-Aris dispersion problem (Brenner & Edwards 1993) itself! Con-

sequently, practical applications of our discrete Taylor-Aris dispersion theory suggest

choosing an appropriate vertex mixing rule in order to approximate the true physical
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processes prevailing therein — rather than attempting to solve the exactly-formulated

microscale problem posed at the channel intersections.

1.4 Homogenization Techniques

Having established a particular physical model for the unit-cell-level transport processes,

a detailed picture of the global particle transport process is generated from such models

typically by: (i) a Monte Carlo scenario (Bruderer & Bernabe 2001, Meyers & Liapis

1998, Sahimi 1992, Sahimi et al. 1983, Sorbie & Clifford 1991) whereby single particle (or

“plume”) transport through the network is statistically simulated numerous times; (ii) a

Laplace transform technique (Andrade et al. 1992, de Arcangelis et al. 1986, Koplik et al.

1988, McGreavy et al. 1990, Sahimi 1992, Sahimi & Jue 1989) wherein a unidirectional,

unsteady convection-diffusion equation is solved for the continuous solute concentration

distribution prevailing in each discrete channel or pore within the entire network; or (iii)

more involved schemes. The last category of methods is most prevalent in the analysis

of (nonlinear) reactive networks, and includes computational techniques such as unidi-

rectional capillary transport models (Alvarado et al. 1997, Andrade et al. 1997, Zhang

& Seaton 1994), pore-effectiveness factors (Hollewand & Gladden 1992), or other algo-

rithms for simulating particle transport (Rege & Fogler 1988). Alternatively, analytical

techniques, such as effective-medium theories (Cukier 1983a,b, Kruger 1990a,b, Mattern

& Felderhof 1987, Muthukumar 1982), multiple-scales analyses (Mauri 1991), volume-

averaging (Ryan et al. 1980), center-manifold theory (Balakotaiah & Dommeti 1999),

effective stream-tube ensembles (Ginn 2001), and general lumping analyses (Li & Rab-

itz 1991), have been invoked to homogenize the unsteady convection-diffusion-reaction

transport equation governing the solute transport through the interstices of the periodic

array. These latter techniques are well adapted to characterize disordered (“random”)

porous media or nonlinear chemical reaction rates (or both), along with the concomitant

degree of mathematical and computational complexity accompanying such schemes. In-
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deed, variations of these schemes have been employed to analyze transport in randomly

connected reactive networks (Alvarado et al. 1997, Andrade et al. 1997, Aviles & Levan

1991, Hollewand & Gladden 1992, Leitzelement et al. 1984, Sahimi et al. 1990, Zhang &

Seaton 1994), in particular near to the percolation limit (Andrade et al. 1997, Sahimi et

al. 1990, Wakad & Nardse 1974, Zhang & Seaton 1994). Continuity of the concentra-

tions at all channel intersections in the network, together with an (arbitrary) choice of

initial solute injection point within the network as a whole, jointly with conditions at the

(finite) boundaries (if any) of the network, provide sufficient conditions in such models

for uniquely specifying the overall solute transport problem. The macroscale transport

parameters are then calculated, either from moments of the simulation statistics or from

the convective-diffusive solute concentration profile (cf. §2.3 and §4.4).

Proponents (de Arcangelis et al. 1986, Koplik et al. 1988, Sahimi 1992, Sahimi &

Jue 1989) of the Laplace transform technique argue that their scheme constitutes an

“exact” method for ascertaining these macrotransport parameters, having presumably

solved for the complete unsteady microscale concentration field extant within each pore

of the network following solute injection. As discussed in §1.2, some degree of arbi-

trariness invariably exists as to the applicability of Taylor-Aris l-scale dispersivity ar-

guments for calculating the effective particle velocity and diffusivity prevailing over the

length of a single channel, which parameters are strictly valid only in an L-scale asymp-

totic sense (Brenner & Edwards 1993, Koplik et al. 1988).3 For asymptotically long

times, our discrete Taylor-Aris dispersion theory, to be derived, represents a much more

compact computational scheme for calculating the L-scale parameters Ū∗ and D̄∗ when

compared with such Laplace transform techniques, since its use does not necessitate

initially obtaining the exhaustively-detailed time-dependent solution of the underlying

unsteady convection-diffusion equations for each pore of the network prerequisite to cal-

3Despite the ubiquitious use (Andrade et al. 1992, Koplik et al. 1988, McGreavy et al. 1990, Sahimi
1992, Sahimi & Jue 1989, Sorbie & Clifford 1991) of such parameters in graphical network models, the
work of Koplik et al. (1988) represents the only contribution that we were able to identify commenting
on the validity of employing individual l-scale Taylor-Aris parameters within the context of network
models.
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culating these parameters. Moreover, our scheme provides, inter alia, rigorous criteria

governing use of the single channel, l-scale Taylor-Aris parameters entering into the sub-

sequent L-scale calculation of K̄∗, Ū∗ and D̄∗. Indeed, the ability to quantitatively

obtain the macroscopic L-scale transport properties of a solute molecule traversing the

medium, without the preliminary necessity for solving for the entire exact, time- and

initial condition-dependent solute concentration field, constitutes the raison d’être un-

derlying macrotransport theory (Brenner & Edwards 1993).

1.5 Outline of the Thesis

This thesis consists of two parts: (i) the theoretical development of a generalized Taylor-

Aris paradigm for spatially periodic networks presented in Chapters 1-7; and (ii) the

application of the paradigm to microfluidic separation devices and model porous media

contained in Chapters 8-10. The first part continues in Chapter 2 with an overview of

continuous macrotransport theory for spatially periodic media. This chapter is intended

for readers who are unfamiliar with the latter theory, serving as a general reference for

theoretical concepts which will be invoked in subsequent chapters. Experienced readers

may skip immediately to Chapter 3, where we begin the new theoretical developments

in this thesis with a discussion on the formal discretization of continuum descriptions of

periodic media into graphical network models, including the proper adaptation of this

discretization procedure for reactive networks. This discussion culminates in a set of three

graphs and the specification of the relevant transport parameters governing solute trans-

port processes on the graph. We continue in Chapter 4 with the derivation of detailed

conservation equations (master equations) for non-reactive and reactive transport on the

graphs constructed in Chapter 3. In Chapter 5, a generalized Taylor-Aris dispersion

“method of moments” scheme is developed and applied to homogenize the non-reactive

master equation derived in the preceding chapter. The homogenization procedure fur-

nishes a pair of matrix equations for computing the node-based macrotransport “fields”
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P∞
0 (i) and B(i), whose edge-based summations ultimately furnish the network-scale so-

lute velocity vector Ū∗ and dispersivity dyadic D̄∗. It is demonstrated that significant

model reductions are possible for a class of so-called “simple networks,” the latter pos-

sessing immediate applicability to the case studies comprising much of the second part of

this thesis. Chapter 6 presents a similar homogenization scheme for the reactive master

equation. In contrast with the non-reactive transport theory of Chapter 5, the reactive

network homogenization scheme furnishes a pair of adjoint matrix eigenvalue problems

for computing the node-based macrotransport fields P∞
0 (i) and A(i) (ultimately required

to calculate the mean solute velocity Ū∗ by an edge-based summation), jointly with the

network-scale, effective first-order irreversible reaction rate constant K̄∗. The dispersion

calculation for reactive networks is similar to their non-reactive counterparts, requiring

the solution of a matrix equation for the node-based macrotransport field B(i), which

is ultimately used to determine the Taylor-Aris solute dispersivity D̄∗ by an edge-base

summation.

With a complete theory in hand, Part II of this thesis focuses upon its application to

several model problems. We will show that the present theory agrees well with intuition,

existing theoretical results and available experimental data (both qualitative and quanti-

tative), thereby lending concrete weight to the abstract Taylor-Aris dispersion arguments

invoked for the theoretical development. Chapter 8 considers a pair of straightforward

examples, both of which demonstrate the computational simplicity of the network scheme

over and above the existing continuous calculation scheme (Brenner & Edwards 1993).

The first example, representing an application of the non-reactive theory, involves com-

puting the mean velocity and dispersion of point-size solutes in microfluidic serpentine

chromatography channels. We demonstrate that the results computed from the present

theory compare favorably with those derived from both continuous generalized Taylor-

Aris dispersion theory and porous media theory. The second example, representing an

application of the reactive theory, considers a simple model of a reactive porous media.

It is shown that the highly non-linear network-scale results computed from the present
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theory accord well with intuition.

Whereas the examples discussed in Chapter 8 serve to illustrate the computational

simplicity of the theory, the case studies considered in Chapters 9 and 10 correspond to

recently developed microfluidic protocols for the separation of DNA. Importantly, the

networks employed for these separation processes constitute “simple networks,” whereby

minimal mathematical manipulations are required to apply our discrete Taylor-Aris dis-

persion analysis. In Chapter 9, we consider the vector chromatography of finite sized

particles, accounting for the reduced particle mobility from wall effects. A generic design

equation is derived for computing the mean direction of a Brownian body as a function of

the device geometry, applied force and the size of the particle. In Chapter 10, microflu-

idic entropic trapping devices are modeled, again invoking the simple network theory.

The qualitative and quantitative theoretical results compare favorably with the available

experimental data. We conclude in Chapter 11 with some closing remarks.

33



Chapter 2

Review of Macrotransport Theory

This chapter constitutes a self-contained review of generalized Taylor-Aris dispersion

theory (macrotransport theory) for spatially periodic systems. Much of what follows

is based upon Chapters 4 and 8 of the monograph by Brenner & Edwards (1993), with

some supplemental information culled from a trio of foundational papers on the subject

(Brenner 1980, Brenner & Adler 1982, Dungan et al. 1990) (These references will not

be cited explicitly hereafter.) For those readers unfamiliar with macrotransport theory,

this review aims to provide sufficient background for understanding the discrete macro-

transport theory developed in this thesis; only those elements of classical macrotransport

theory which pertain directly to the discrete theory will be presented here. Readers in-

terested in an elementary overview of the statistical foundations of the theory are referred

to Chapter 8 of the thesis by Ganesan (1999), as well as the review paper by Brenner

(1991). Experienced readers may proceed directly to the new material beginning in

Chapter 3.

The elements of macrotransport theory pertinent to this thesis entail the computa-

tion of a trio of averaged “macrotransport parameters” governing the asymptotic linear

transport of Brownian solute particles in unbounded spatially periodic media: (i) the

mean volumetric solute depletion rate, K̄∗; (ii) the mean solute velocity vector, Ū∗;

and (iii) the solute dispersivity dyadic, D̄∗. The conceptual framework for calculating
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these macrotransport parameters is predicated upon the use of a conditional probability

density function, which quantifies the likelihood of locating the (center of the) Brow-

nian particle at the (continuous) position R at time t during its stochastic trajectory

through the medium. Consequently, macrotransport analyses of this type are valid for

both a single Brownian particle and a non-interacting collection of particles (which may

be viewed as a continuum solute field). The solute (particle) conditional probability

density field is governed by an unsteady, three-dimensional partial differential equation,

which may be solved, at least in principle, subject to appropriate attenuation conditions

at the external boundaries of the infinitely extended medium, as well as appropriate

conditions at internal boundaries. With this exhaustively detailed solution in hand, it

is possible to then calculate the macrotransport parameters from asymptotic moments

of the conditional probability density. In contrast, macrotransport theory employs a

rigorous method of moments scheme for computing these parameters without first as-

certaining the exact solution, thereby representing a significant computational savings.

Moreover, macrotransport theory furnishes a simple conceptual framework for interpret-

ing asymptotic transport processes in heterogeneous media, especially when compared

with extracting such information from the overwhelming amount of data embodied in

the exact solution.

We proceed here with a brief introduction to geometrical descriptions of externally un-

bounded spatially periodic media, as well as the conditional probability density function

which quantifies the likelihood of locating the Brownian particle at a given point in space

during its convective-diffusive-reactive transport through such media. Assuming that the

equation governing the probability density can be solved, at least in principle, Lagrangian

interpretations are set forth for calculating the macrotransport parameters. An alter-

native “method-of-moments” calculation scheme is then developed for both non-reactive

and reactive transport, culminating in a “macrotransport equation,” which furnishes an

Eulerian interpretation to the macrotransport parameters.
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2.1 Geometrical Description

Attention is restricted here to infinitely-extended, spatially periodic media. By spatially

periodic is meant that there exists a primitive parallelepipedal (or curvilinear, if neces-

sary) unit-cell, which, when repeated indefinitely in all spatially dimensions, reproduces

the entire unbounded medium. When the medium contains two phases (i.e. a model

porous medium consisting of a stationary solid phase and flowing liquid phase), it is

typically assumed that the fluid constitutes a continuous phase, where every point in the

fluid is accessible from every other point therein, and that the solid comprises a discon-

tinuous phase. By convention, the boundaries of the unit cell are assumed to lie entirely

in the continuous phase, although the geometric (and computational) scheme may be

altered to take advantage of computational savings which might accrue from placing the

boundaries of the unit cell in both phases (Dorfman & Brenner 2001). The geometry

of the unit cell is characterized by a trio of basic lattice vectors, l1, l2 and l3, whose

magnitudes are subject to the restriction that their scalar triple product |l1 · l2 × l3| is

equal to the total superficial volume of the unit cell, τ0. Translating the unit cell through

any of these basic lattice vectors reproduces an adjacent cell. The choice of unit cell

is not unique, since, for example, a new unit cell could be constructed which contains

two (or more) of the original unit cells. Regardless of the particular choice of unit cell,

translation of any one of the infinitely many possible unit cell choices through its re-

spective base lattice vectors will furnish exactly the same unbounded medium as would

be constructed from the translation of an alternate choice of unit cell through its base

lattice vectors. Consequently, the ultimate results for K̄∗, Ū∗ and D̄∗ (and any other

macroscopic, averaged property) must prove to be independent of the arbitrary choice of

unit cell.

The spatial location of cell n [n ≡ (n1, n2, n3) , (−∞ < ni < ∞)] is quantified by its

discrete position vector, Rn, which is defined as pointing from an origin situated at a fixed

point (the locator point) of cell n = (0, 0, 0) to the locator point of cell n = (n1, n2, n3).

The unit cell centroid is typically chosen as the locator point, although any arbitrary
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point in the unit cell may be selected as the locator point.1 Explicitly, the discrete

position vector possesses the form

Rn = n1l1 + n2l2 + n3l3. (2.1)

Averaged transport properties must prove to be independent of the arbitrary choices of

both the locator point and the origin. The exact, continuous location vector of any

point in the medium, R, may be decomposed, using the discrete position vector, into a

discrete|continuous sum,

R = Rn + r, (2.2)

where r ∈τ0 {n} represents the “local” position vector, pointing from the locator point

of cell n to a given point in the interior of cell n.

By way of example, consider the model porous medium depicted in Fig. 2-1. The

medium consists of a two-dimensional, rectangular array of stationary, deformed ellip-

soidal bed particles, twelve of which are depicted in the figure. The shaded region

denotes one possible choice of unit cell, where each cell contains a single particle in its

upper left-hand corner. Clearly, many other unit cells could be chosen, say, with the

centroid of the unit cell coincident with the centroid of the particle, or with the unit cell

containing multiple particles. The unit cell is characterized by a pair of basic lattice

vectors, lx and ly, which correspond to the continuous x- and y-dimensions of the unit

cell in a rectangular (x, y) Cartesian coordinate system. The superficial volume (area)

of the unit cell is the scalar product of these lattice vectors, τ0 = |lx × ly| = lxly. The

discrete (integer) location of the unit cell is given by the index notation n = (i, j), with

the origin n = (0, 0) coincident the x-y location (0, 0). The cell locator point is chosen

to be the centroid of the unit cell, whereupon the local, intracellular position vector r

points from the centroid of the cell to the continuous position R−Rn.

1By chosing the locator point in the unit cell, we have enforced the restriction that the locator points
in adjacent cells be displaced by the same base lattice vector that quantifies the relative displacements
of these adjacent cells; that is, the locator points are spatially periodic.
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Figure 2-1: Schematic of an infinitely extended model spatially periodic porous medium.
A representative unit cell is depicted by the shaded region, with twelve unit cells shown
en toto. The cell is characterized geometrically by the basic lattice vectors lx and ly,
together with its discrete cell location (i, j) in the array. A quartet of discrete unit
vectors Rn are depicted, each pointing from the origin to their respective cell locator
points.

2.2 Conditional Probability Density

Consider the conditional probability density Pr ≡ Pr (R,t |R0) of locating the (generally

reactive) Brownian particle at the continuous position R at time t, given its introduction

into the medium at the location R0 at time t = 0.2 Using the discrete|continuous

decomposition (2.2) of the position vector, the probability density possesses the alternate

functional form Pr(Rn, r, t |Rn0
, r0), with Rn0 ≡ n10l1 + n20l2 + n30l3 the location of

2For the time being, we employ the notation Pr (R,t |R0) for both reactive and non-reactive solute
transport. In §2.4.2, we will introduce a change of variables Pr → P (R,t |R0), where P (R,t |R0) is
an effective non-reactive probability density. The latter transformation is trivial for purely convective-
diffusive solute transport, for which reactions are absent, i.e. P = Pr.
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the unit cell n0 in which the solute was introduced initially at the local position r0 at

time t = 0. Inasmuch as the choice of origin is arbitrary, the conditional probability

(and subsequent macrotransport results) can only depend upon the displacement vector

from the origin, Rn −Rn0 , rather than being functionally dependent upon Rn and Rn0

separately. Consequently, without any loss of generality, we are free to set Rn0 = 0,

which is equivalent in its consequences to repositioning the arbitrarily placed origin at

0 to a new origin at Rn0 .
3 With the latter choice, the conditional probability density

adopts its canonical form

Pr ≡ Pr (Rn, r,t | r0) . (2.3)

The convective-diffusive-reactive transport of the conditional probability density at

each point R in the medium is governed by the unsteady partial differential equation

∂Pr

∂t
+∇ · Jr+k(r)Pr = δ(Rn)δ (r− r0) δ(t), (2.4)

with δ the Dirac delta function. The reactive probability flux density, Jr, is assumed to

possess the constitutive form

Jr= U(r)Pr −D(r) · ∇Pr, (2.5)

where U (r) and D(r) are the (local) solute velocity vector and diffusivity dyadic, re-

spectively. The solute velocity vector includes contributions to deterministic solute

convection arising from “piggy-back” transport in an entraining fluid flow, as well as

from the action of any externally applied forces. The parameter k (r) (k ≥ 0) quantifies

a position-dependent, first-order, irreversible reaction rate occurring within the medium,

with k = 0 corresponding to non-reactive transport. The parameters U(r), D(r) and

3In what follows, we choose to set R0 = r0, which corresponds to Rn0 = 0. This leads to notational
differences between the present review and the classical reference (Brenner & Edwards 1993). In the
latter, the initial position Rn0 is retained throughout the derivation.
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k (r) are restricted to be spatially periodic functions,

U (r) = U (r + lk) , (2.6)

D(r) = D(r + lk), (2.7)

k (r) = k (r + lk) , (k = 1, 2, 3) . (2.8)

Consequently, these microtransport parameters only depend upon the local position vec-

tor r, rather than upon the global position vector R. Whereas the geometric periodicity

of the medium typically defines the overall spatial periodicity of the microtransport pro-

cesses, in some circumstances it is the spatial periodicity of the microtransport parameters

which serve to determine the overall spatial periodicity, such as is the case for transport

in spatially periodic potential fields (Nitsche & Brenner 1988).

It is assumed that the probability density decays sufficiently fast with distance from

the point of introduction into the system such as to be attenuated completely at infinity,

Pr → 0 as |R−R0|→ ∞. (2.9)

So that subsequent integrals converge, it is necessary to require further that all moments

of the probability density and flux density decay faster than algebraically,

|R−R0|m (Pr,Jr) → 0 as |R−R0|→ ∞, (m = 0, 1, 2, . . .) . (2.10)

Integrating eq. (2.4) over all space, namely R∞, together with use of the attenuation

condition (2.10), reveals that the conditional probability density P satisfies the following

conservation conditions:

∫

R∞
Pr d3R =





0, t < 0,

1, t = 0,

≤ 1, t > 0,

(2.11)
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with the inequality Pr ≤ 1 reducing to the equality Pr = 1 for purely convective-diffusive

transport, where k(r) = 0.

Whereas the aforementioned conditional probability density suffices to completely

characterize the exactly-posed microtransport processes, it sometimes proves convenient

to consider instead an intracellular conditional probability density.4 With the decom-

position of the physical space into discrete unit cells, the infinite integral (2.11) may be

instead expressed in terms of the intracellular probability density,

∫

R∞
Pr d3R ≡

∑
n

∫

τ0{n}
Pr d3r, (2.12)

with
∑
n

≡
∞∑

n1=−∞

∞∑
n2=−∞

∞∑
n3=−∞

(2.13)

and R∞ =
∑

n τ0{n}. Within a given unit cell, the governing equation (2.4) adopts the

form
∂Pr

∂t
+∇ · Jr+k(r)Pr = δn,n0δ(r− r0)δ(t), (2.14)

with δn,n0 = δn,0 a Kronecker delta function. The intracellular conditional probability

density must satisfy continuity of probability density and flux density across the faces of

the unit cells, which requires that Pr and ∇Pr satisfy the relations5

Pr(Rn − lk, r + lk) = Pr(Rn, r), (2.15)

∇Pr(Rn − lk, r + lk) = ∇Pr(Rn, r) (k = 1, 2, 3) . (2.16)

In general, the complete specification of the microscale transport problem also requires

4The notation Pr (Rn, r, t | r0) is employed for both the original conditional probability density, which
is defined throughout all space, as well as the intracellular probability density. Aside from conceptual
differences, both probability density fields satisfy essentially identical governing equations, boundary
conditions and continuity conditions. It will be clear from context whether we are referring to the
original or the intracellular probability density function.

5The non-intracellular conditional probability density also obeys the continuity relationships (2.15)-
(2.16) across the faces of the unit cell.
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stating boundary conditions at the intracellular phase interfaces, if any. Such conditions

typically involve continuity of flux density (or no penetration), partitioning of Pr across

the interface, an so forth. However, these boundary conditions exist on a length scale

which is smaller than that which will be resolved by the discrete network model. Conse-

quently, further discussion of these boundary conditions will be suppressed. The reader

is referred to the monograph of Brenner & Edwards (1993) for the details on intracellu-

lar boundary conditions and their impact upon the method of moments macrotransport

scheme.

2.3 Lagrangian Definitions of the Macrotransport Pa-

rameters

In principle, given sufficient computational resources, the governing equation (2.4) may

be solved exactly, subject to the attenuation condition (2.9). In the present section, we

outline a procedure for computing the macrotransport parameters K̄∗, Ū∗ and D̄∗ from

this exact solution, based upon their Lagrangian definitions. Subsequently, we use this

information to show how these parameters may be calculated without knowledge of this

hypothetical exact solution.

In the presence of depletion reactions, the total probability density of the system

diminishes towards zero from its initial value for times t > 0. Consequently, it proves

convenient in what follows to define the survival probability density of the Brownian

particle,

M0r (t | r0)
def.
=

∑
n

∫

τ0{n}
Pr (Rn, r,t | r0) d3r, (2.17)

which corresponds to the total amount of solute present in the system at time t. Clearly,

in the absence of chemical reactions, M0r = 1 for all times t ≥ 0. Moreover, the conser-
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vation condition (2.11) now adopts the simplified form,

1

M0r (t | r0)

∫

R∞
Pr (Rn, r,t | r0) d3R =





0, t < 0,

1, t ≥ 0.
(2.18)

When chemical reactions are present within the medium, it is expected (and can be

shown) that the total conditional probability density will decay exponentially in time,

at least at long-times. The mean reaction rate, K̄∗, is chosen so as to quantify the

exponential decay of the survival probability density,

K̄∗ def.
= − lim

t→∞
d

dt
ln (M0r) . (2.19)

In the absence of chemical reactions, M0r = 1, consistent with the intuitive result K̄∗ = 0

for this case.

The mean velocity vector, Ū∗, which quantifies the asymptotic, linear growth of the

mean displacement, ∆R, of the Brownian particle in time, is computed by evaluating

the asymptotic limit,

Ū∗ def.
= lim

t→∞
d

dt
∆R, (2.20)

where the overbar (∆R) indicates an ensemble-average over the solute probability density

[cf. eq. (2.24)]. Explicitly, the long-time condition t → ∞ requires that the time t be

long compared with the diffusion time scale for solute movement across a unit cell,

t À l2

|D| , (2.21)

where l is a characteristic linear dimension of the unit cell, i.e. l = max (|lk|), and |D| is

some suitable norm of the diffusivity dyadic. An additional long-time requirement [cf.

eq. (2.74)] must also be satisfied for the case of reactive transport.

The dispersivity dyadic, D̄∗, which quantifies the linear growth of the mean-squared

deviation about the mean position,
(
∆R−∆R

)2
, is computed from the Einstein-like
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relationship

D̄∗ def.
=

1

2
lim
t→∞

d

dt

(
∆R−∆R

)2
. (2.22)

The preceding definitions for computing Ū∗ and D̄∗ are Lagrangian in nature, and reflect

only the contribution of the solute probability density which is still present in the medium

at time t. So that depleted solute probability density does not contribute to Ū∗ and D̄∗,

it is necessary to define the ensemble average, ζ̄, of any tensor-valued property ζ as

ζ̄
def.
=

1

M0r

∫

R∞
ζPr (Rn, r,t | r0) d3R, (2.23)

which may alternatively be expressed in terms of the intracellular probability density,

ζ̄
def.
=

1

M0r

∑
n

∫

τ0{n}
ζPr (Rn, r,t | r0) d3r. (2.24)

Although, for reactive transport, Pr → 0 as t → ∞, the ratio (2.24) formed with M0r

tends to a finite limit as t →∞.

Upon using the ensemble average definition (2.24), the mean displacement of the

particle’s position, R, from its initial position, R0, adopts the functional form

∆R =
1

M0r

∑
n

∫

τ0{n}
(R−R0) Pr (Rn, r,t | r0) d3r. (2.25)

However, computation of the macroscopic transport properties Ū∗ and D̄∗ does not

necessitate considering the particle position on a microscopic scale as fine as R. Rather,

it suffices to consider coarse-grained (unit-cell scale) macrotransport parameters defined

on a macroscopic (Darcy) scale, the latter scale possessing a coarseness equivalent to

the discrete position vector, Rn. Consequently, the average position (2.25) may be

computed, based upon a coarse-scale (unit-cell) location, with the initial coarse-grained

position R0 = 0,

∆R =
1

M0r

∑
n

Rn

∫

τ0{n}
Pr (Rn, r,t | r0) d3r. (2.26)
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For sufficiently long times (and unbounded media), it is expected that differences between

the average positions computed from eqs. (2.25) and (2.26) will be exponentially small.

Again adopting a coarse-grained approach, the mean-squared displacement adopts the

form
(
∆R−∆R

)2
=

1

M0r

∑
n

(
Rn − R̄

)2
∫

τ0{n}
Pr (Rn, r,t | r0) d3r, (2.27)

which, with use of eqs. (2.18) and (2.26), may be restated as the symmetric difference,

(
∆R−∆R

)2
=

1

M0r

∑
n

RnRn

∫

τ0{n}
Pr (Rn, r,t | r0) d3r−∆R∆R. (2.28)

Upon introducing the mth-order moments of the probability density

Mmr (t | r0)
def.
=

∑
n

Rm
n

∫

τ0{n}
Pr (Rn, r,t | r0) d3r (m = 0, 1, 2, . . .) , (2.29)

in which Rm
n ≡ RnRn · · ·Rn (m-times), the canonical forms of Ū∗ and D̄∗ adopt the

respective forms

Ū∗ = lim
t→∞

d

dt

(
M1r

M0r

)
, (2.30)

D̄∗ =
1

2
lim
t→∞

[
M2r

M0r

− M1rM1r

M2
0r

]
. (2.31)

With knowledge of the exhaustively detailed, pointwise conditional probability den-

sity Pr (Rn, r,t | r0), the macrotransport parameters K̄∗, Ū∗ and D̄∗ may be calculated

from eqs. (2.19), (2.29), (2.30) and (2.31) for a given choice of r0. The computational

resources requisite for effecting such a calculation are overwhelming, and only furnish,

at least in principle, values of the macrotransport parameters corresponding to a par-

ticular intracell location, r0.
6 In contrast, macrotransport theory furnishes a rigorous

6Subsequent analysis will show that the macrotransport parameters are in fact independent of r0 in
the long-time limit, although a fictitious initial condition (dependent upon r0) must be employed in the
reactive case. Without the conceptual framework of macrotransport theory, however, there exists no
rational methodology for ascertaining the independence from r0 or the fictitious initial condition from
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physico-mathematical scheme for making such a calculation for any value of r0, without

first requiring knowledge of the exact solution.

2.4 Method of Moments

Details of macrotransport theory for non-reactive and reactive microtransport processes

are outlined in the present section. To summarize, computation of the various moments

Mmr from eq. (2.29) requires performing unit-cell quadratures of the intracellular prob-

ability densities, Pr, over the unit cell volumes τ0{n}, followed by a weighted infinite

summation over n. The elegance of macrotransport theory lies in reversing the order

of these operations: by first forming the moments of the governing equation, one arrives

at so-called “local moments,” which are governed by differential equations and bound-

ary conditions which only depend upon the local position vector r. Upon constructing

asymptotic solutions to these local moment equations and summing over n, the asymp-

totic properties of the total moments (2.29) are ascertained without ever computing the

exact solution Pr.

2.4.1 Non-Reactive Transport

Moment Scheme

We begin here with an overview of the calculation scheme for non-reactive transport,

wherein k(r) = 0. Define the mth-local moment of the conditional probability density

as the m-adic,

Pm (r, t | r0)
def.
=

∑
n

(Rn)m Pr (Rn, r, t | r0) . (2.32)

the exactly posed microtransport problem.
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Multiplying the governing equation (2.4) by Rm
n , with k(r) =0, and summing over n

furnishes the local moment equation

∂Pm

∂t
+∇ · Jm = δm,0δ (r− r0) δ (t) , (2.33)

where δm,0 is a Kronecker delta function, and Jm is the moment flux density,

Jm = UPm −D · ∇Pm. (2.34)

Multiplying the boundary conditions (2.15)-(2.16) by Rm
n (m = 0, 1, 2), followed by some

algebraic manipulations, furnishes the following “jump” conditions of the unit cell faces:7

‖P0‖ = 0, ‖∇P0‖ = 0, (2.35)

‖P1‖ = −‖rP0‖ , ‖∇P1‖ = −‖∇ (rP0)‖ , (2.36)

‖P2‖ = −‖P1P1/P0‖ , ‖∇P2‖ = −‖∇ (P1P1/P0)‖ , (2.37)

where the “jump” operator, for an arbitrary tensor valued function ζ, possesses the

functional form

‖ζ‖ def.
= ζ(r + lk)− ζ (r) (k = 1, 2, 3) . (2.38)

To complete the moment scheme, define the mth-total moment of the conditional

probability density as the m-adic,

Mm (t | r0)
def.
=

∫

τ0

Pm (r, t | r0) d3r. (2.39)

Integrating eq. (2.33) over the unit cell volume and applying the divergence theorem

7The gradient operator commutes with the jump operator whenever the boundaries of the unit cell
lie wholly within the continuous phase (Iosilevskii & Brenner 1995), such as would be the case in Fig.
2-1. For some circumstances, however, it proves computationally convenient to situate the boundaries
of the unit cell at the interface between the continuous and discontinuous phases (Dorfman & Brenner
2001), whereupon the boundary conditions and jump conditions must be altered appropriately.
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furnishes the following ordinary differential equation governing the Mm:

dMm

dt
= −

∮

∂τ0

ds · Jm + δm,0δ (t) . (2.40)

Consequently, determination of the macrotransport parameters requires constructing

asymptotic solutions for the lower order Pm from eq. (2.33), computing the flux den-

sity Jm from eq. (2.34), and then solving for the growth of the total moments from eq.

(2.40). The moments Mm (2.39) are indistinguishable from the moments Mmr (2.29),

since for the non-reactive case the survival probability density M0r = 1.

Asymptotic Moments

Setting m = 0 in eq. (2.33) reveals that the asymptotic probability density possesses the

form

P0 (r, t | r0) ≈ P∞
0 (r)+ exp, (2.41)

where P∞
0 (r) is an unconditional probability density (being independent of the initial

position r0), and “exp” denotes terms which are exponentially small in time. This

asymptotic solution obeys the steady state conservation equation,

∇ · J∞0 = 0, (2.42)

with J∞0 the unconditional flux density,

J∞0 = UP∞
0 −D · ∇P∞

0 . (2.43)

Substitution of the asymptotic solution (2.41) into the boundary conditions (2.35) reveals

that P∞
0 satisfies the jump conditions

‖P∞
0 ‖ = 0 and ‖∇P∞

0 ‖ = 0. (2.44)
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Since the delta function input no longer appears in the asymptotic equation set, it is

necessary to impose the normalization condition,

∫

τ0

P∞
0 d3r = 1. (2.45)

With use of the asymptotic solution (2.41) and the moment flux density (2.34), com-

parison of the first-total moment (2.40) with eq. (2.30) furnishes the asymptotic result

dM1

dt
≈ Ū∗ + exp, (2.46)

with the mean velocity vector to be computed from the unit-cell quadrature,

Ū∗ =

∫

τ0

J∞0 d3r. (2.47)

In conjunction with the definition of the total moments (2.39), the solution (2.46)

suggests (subject to a posteriori verification) a trial solution for the first local moment

of the form

P1 ≈ P∞
0 (r)

[
Ū∗t + B (r)

]
+ exp, (2.48)

where B (r) is a time-independent field to be determined. Integrating P1 over the unit

cell domain, using the normalization condition (2.45), furnishes the first total moment,

M1 ≈ Ū∗t + B̄+ exp, (2.49)

wherein

B̄ =

∫

τ0

P∞
0 B d3r. (2.50)

Substitution of (2.48) into the boundary conditions (2.36) furnishes the following bound-

ary conditions imposed upon B:

‖B‖ = −‖r‖ and ‖∇B‖ = 0. (2.51)
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Form the governing equation for the first local moment from eq. (2.33) by setting m = 1,

and substitute into the resulting expression the trial solution (2.48). This eventually

furnishes the differential equation governing the B-field,

∇ · (P∞
0 D · ∇B)− J∞0 · ∇B = P∞

0 Ū∗. (2.52)

The latter differential equation is exact, and specifies the B-field only to within an arbi-

trary, additive vector constant, whose value proves irrelevant in the eventual computation

of the dispersivity dyadic. Moreover, the derivation of a solvable, time-independent dif-

ferential equation and boundary conditions for B constitutes a posteriori verification of

the trial solution (2.48).

Substitution of the trial solution (2.48) into the total moment equation (2.40) (with

m = 2), followed by significant manipulations, ultimately furnishes the following differ-

ential equation governing M2:

dM2

dt
≈ 2Ū∗Ū∗t +

∮

τ0

ds· [P∞
0 D · ∇ (BB)− J∞0 BB] + exp . (2.53)

Introduction of eqs. (2.49) and (2.53) into eq. (2.31) furnishes the following unit-cell

quadrature for computing the solute dispersivity dyadic:

D̄∗ =

∫

τ0

P∞
0 (∇B)† · sym (D) · ∇B d3r, (2.54)

where † is the transpose operator and, for any dyadic ζ, the symmetry operator is defined

as

sym (ζ)
def.
=

1

2

(
ζ+ζ†

)
. (2.55)
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2.4.2 Reactive Transport

Moment Scheme

The essential difference between the preceding “non-reactive” moment scheme and the

present “reactive” moment scheme arises from non-conservation of the reactive solute

probability density for times t > 0, owing to solute depletion reactions. This leads to a

“non-conservation” statement for Pr,

∑
n

∫

τ0{n}
Prd

3r < 1 for t > 0. (2.56)

In order to invoke a moment scheme analogous to that employed in the previous subsec-

tion for conserved (non-reactive) transport, define the “non-reactive” conditional proba-

bility density,

P (Rn, r, t | r0)
def.
=

exp
(
K̄t

)

A (r0)
Pr (Rn, r, t | r0) , (2.57)

with the constant K̄ and the fictitious initial condition A(r0) to be specified later. Sub-

stituting the change of variables (2.57) into the governing equation (2.4) for Pr furnishes

the following differential equation governing the field P :

∂P

∂t
+∇ · J =

[
K̄ − k (r)

]
P +

1

A (r0)
δ(Rn)δ (r− r0) δ(t), (2.58)

with J the non-reactive flux density,

J =
exp

(
K̄t

)

A (r0)
Jr. (2.59)

The attenuation conditions (2.10) and unit cell boundary conditions (2.35)-(2.37) are

unaltered by this change of variables.
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Define the mth-local moment and the (unweighted) total moment,

Pm (r, t | r0)
def.
=

∑
n

(Rn)m P (Rn, r, t | r0) , (2.60)

M′
m (t | r0)

def.
=

∫

τ0

Pm (r, t | r0) d3r. (2.61)

In addition, define the mth-weighted total moment,

Mm (t | r0)
def.
=

∫

τ0

A (r)Pm (r, t | r0) d3r. (2.62)

The unweighted total moments are intrinsically related to the reactive total moments

(2.29),

Mmr (t | r0) = A (r0) exp
(−K̄t

)
M′

m (t | r0) . (2.63)

The latter definitions permit the following solution scheme: (i) determine the parameter

K̄ and the field A (r) so that M0 is conserved for all times; (ii) compute the asymptotic

properties of the weighted total moments, Mm, by a scheme analogous to that employed

for non-reactive transport; (iii) show that the weighted total moments, Mm, differ from

their unweighted counterparts, M′
m, by exponentially small terms at long times; and

(iv) compute the macrotransport parameters from the reactive moments Mmr. In the

interest of brevity, the manipulations required to prove (iii) are suppressed here, since

such calculations are performed in detail for the discrete theory in Chapter 6.

The differential equation governing the local moments Pm may be derived in a manner

similar to its non-reactive counterpart, ultimately furnishing the expression

∂Pm

∂t
+∇ · Jm −

[
K̄ − k

]
Pm =

1

A (r0)
δm,0δ (r− r0) δ(t), (2.64)

with the flux density moments defined by eq. (2.34). To derive the equation governing
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M0, set m = 0 in eq. (2.64), multiply by A (r), and integrate by parts over τ0 to obtain8

dM0

dt
=

∫

τ0

P0

[
U · ∇A +∇ · (D†·∇A

)
+

(
K̄ − k

)
A

]
d3r

−
∮

∂τ0

ds· (J0A− P0D
†·∇A

)
+ δ(t). (2.65)

In order for M0 to be conserved for all times t ≥ 0, the field A (r) is to be chosen as the

solution of the eigenvalue problem,

U · ∇A +∇ · (D†·∇A
)

+
(
K̄ − k

)
A = 0, (2.66)

subject to the boundary conditions9

‖A‖ = 0 and ‖∇A‖ = 0. (2.67)

Proper normalization of the A-field, as well as the physically relevant eigenvalue, K̄0,

and eigensolution, A0, will be specified later. Integration of eq. (2.65), with eq. (2.66),

reveals that the zeroth-weighted moment is indeed conserved for all times t ≥ 0,

M0 =





0, t < 0,

1, t ≥ 0.
(2.68)

Multiplying eq. (2.64) by A (r) and integrating over τ0, together with use of (2.66),

furnishes the following differential equation governing the total weighted moments:

dMm

dt
=

∮

∂τ0

ds· [AJm + D† · (∇A)Pm

]
+ δm,0δ (t) . (2.69)

8There are several typographical errors in Chapter 8 of the monograph by Brenner & Edwards (1993),
including the following equation. The foundational paper of Dungan et al. (1990) should be considered
the definitive reference for reactive macrotransport processes in spatially periodic media.

9The jump conditions (2.67) enforce a spatial periodicity of A and ∇A, whereupon the contribution
of the surface integral appearing in eq. (2.65) to M0 vanishes in light of the fact that J0, P0 and D are
themselves spatially periodic functions.
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Asymptotic Moments

As was the case for non-reactive transport, the zeroth local moment of non-reactive

probability density asymptotically approaches the unconditional value P∞
0 (r) ,

P0 (r, t | r0) ≈ P∞
0 (r) + exp . (2.70)

Substituting this solution into eq. (2.64) furnishes the following eigenvalue problem for

P∞
0 :

∇ · J∞0 − (
K̄ − k

)
P∞

0 = 0, (2.71)

with the flux density given by (2.43) and the jump conditions specified by eq. (2.44). The

eigenvalue problems (2.66) and (2.71) serve only to define the P∞
0 and A fields to within

arbitrary, constant multipliers. To fix these multipliers, we enforce the normalization

conditions,

∫

τ0

P∞
0 d3r = 1, (2.72)

∫

τ0

AP∞
0 d3r = 1. (2.73)

Denote the smallest eigenvalue of eq. (2.71) by K̄0 and the second smallest eigen-

value by K̄1. The long-time asymptotic description of the transport processes requires

satisfying the long-time restriction,

t À 1

K̄0

− 1

K̄1

, (2.74)

which must be satisfied in conjunction with eq. (2.21). In this limit, the smallest eigen-

value, K̄0, corresponds to the slowest decaying mode of the exact solution, whereupon we

identify K̄0 as being the reaction rate appearing in eq. (2.19), K̄0 = K̄∗. Moreover, the

physically relevant unconditional probability density field P∞
0 is the eigensolution corre-

sponding to K̄ = K̄∗. Equations (2.66) and (2.71) are adjoint, whence K̄∗ is recognized
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as the physically relevant eigenvalue of (2.66), K̄0 = K̄∗, and the physically relevant field

A0 is the eigensolution A corresponding to K̄0 = K̄∗.

From this point onward, the reactive moment scheme follows a procedure identical to

its non-reactive counterpart. Equation (2.46) may again be derived for the first weighted

total moment M1, wherein

Ū∗ =

∫

τ0

AJ∞0 + P∞
0 D† · ∇Ad3r. (2.75)

Upon assuming a trial solution of the form of eq. (2.48), a first moment M1 equivalent

to (2.49) is recovered, wherein

B̄ =

∫

τ0

AP∞
0 Bd3r. (2.76)

Substitution of the trial solution into eq. (2.64) furnishes the same differential equation

(2.52) and boundary conditions (2.51). With the trial solution confirmed, eq. (2.69)

furnishes the second moment,

1

2

dM2

dt
≈ Ū∗Ū∗t + sym

(
Ū∗B̄

)
+

∫

τ0

AP∞
0 (∇B)† · sym (D) · ∇B d3r. (2.77)

Use of the definition (2.31) ultimately yields the following expression for the dispersivity

dyadic:

D̄∗ =

∫

τ0

AP∞
0 (∇B)† · sym (D) · ∇B d3r. (2.78)

2.5 The Macrotransport Equation

In addition to their Lagrangian interpretations, the macrotransport parameters possess

Eulerian interpretations as coefficients appearing in an averaged “macrotransport equa-

tion” governing the long-time solute transport processes. To this extent, define a coarse-

grained discrete conditional probability density, based upon the non-reactive probability
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density,

P̄ (Rn, t | r0)
def.
=

1

τ0

∫

τ0

A (r) P (Rn, r,t | r0) d3r, (2.79)

whose total moments adopt the form

Mm (t | r0)
def.
= τ0

∑
n

(Rn)m P̄ (Rn, t | r0) . (2.80)

For sufficiently long-times, the latter total moments become independent of r0, where-

upon our prior asymptotic analyses furnish the values of these first few moments, M0, M1

and M2. Alternatively, one can define a coarse-grained continuous probability density,

P̄ ≡ P̄
(
R̄, t

)
, (2.81)

where R̄ represents a continuous coarse-grained position vector defined on the scale of

Rn. The moments of the latter probability density are given by the quadrature10

Mm (t) =

∫

R∞
R̄mP̄

(
R̄, t

)
d3R̄. (2.82)

The coarse-grained probability density P̄ is thereby governed by the (non-reactive) macro-

transport equation,
∂P̄

∂t
+ Ū∗·∇P̄ − D̄∗:∇∇P̄ = δ(R̄)δ (t) . (2.83)

For non-reactive transport, the latter equation is valid without alteration since the prob-

ability densities Pr and P are indistinguishable. For reactive transport, the change of

variables (2.57) is invoked to derive the reactive macrotransport equation,

∂P̄r

∂t
+ Ū∗·∇P̄r − D̄∗:∇∇P̄r+K̄∗P̄r = A (r0) δ(R̄)δ (t) . (2.84)

10It would appear that one would need to retain the initial condition R0 = r0 when computing the
total moments, i.e. R̄m should be replaced by

(
R̄−R0

)m, in order to reflect the dependence of the total
moments upon the initial local position r0, in spite of the fact that Rn0 = 0. However, the position r0

cannot be resolved on the scale of the coarse-grained position vector R̄, whereupon Mm (t | r0) ≈ Mm(t).
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The interpretation of the fictitious initial condition A (r0) now becomes apparent as

furnishing a correction to the true initial condition δ(R̄)δ (t) in order to reflect short-

time transients which arise from the initial placement of the particle, and which persist

for long-times.
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Chapter 3

Graphical Modeling

3.1 Geometrical Description

The devices encompassed by our analysis consist of strongly connected, spatially peri-

odic networks of intersecting channels embedded within a three-dimensional space, as

depicted in Figs. 3-1 and 3-2 for a non-reactive and reactive medium, respectively.1 By

“strongly connected” is meant that each fluid point in the medium is accessible to a so-

lute molecule from every other point in the medium. Transport through networks that

are not strongly connected may be characterized within the framework of the present

scheme by considering the individual Taylor-Aris dispersion processes occurring within

each of the separately strongly connected networks which, together, collectively comprise

the composite medium (Adler & Brenner 1984b) as a whole. The spatial periodicity

of the network is reflected in the existence of a primitive (parallelepipedal or, if need

be, curvilinear) unit cell repeated indefinitely in all directions. The use of infinitely-

extended networks eliminates the need to explicitly account for “end effects.” As real

networks are finite in extent, the present analysis is strictly asymptotically valid only for

circumstances where the number, N , of unit cells comprising the real system is large, i.e.

1While the microfluidic devices of interest constitute two-dimensional networks, the theory developed
herein is valid for a network of any dimensionality. Three dimensions are chosen strictly for the sake of
definiteness.
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l1

a b
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Figure 3-1: Schematic of a spatially periodic medium, with solute particle animation
effected by the application of an externally-applied vector force, F. The repetitive unit
cell is enclosed in the dashed box, with the subsequent discretization of the continuous
unit cell regions indicated by the trio of shaded regions labeled a, b, and c. Lattice vectors
l1 and l2 are indicated.
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Figure 3-2: Spatially periodic, unidirectional reactive network consisting of two contin-
uous, infinitely-extended, non-reactive cylindrical ducts, periodically connected by thin,
cylindrical tubes containing a reactive catalyst packing. The periodicity of the network
is reflected by the presence of the unit cell, indicated by the highlighted box, with base
lattice vector lx. The white portion of the unit cell indicates the inacessible volume occu-
pied by the blocks separating adjacent reactive domains. The unit cell is subdivided into
the three discrete volumetric domains, a, b and c, so as to facilitate subsequent graphical
analysis of the network.
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N À 1. The entire composite medium may be imagined as constructed by translating

this primitive unit cell (together with its contents) parallel to itself through a trio of

basic lattice vectors (l1, l2, l3) satisfying the requirement that their scalar triple product,

|l1 · l2 × l3|, is equal to the superficial volume, τ0, of the cell (Adler & Brenner 1984a).

The position of a given cell, say, the Ith cell, within the three-dimensional space can

be identified by specifying the discrete L-scale position vector, RI, of, say, the centroid

of the cell relative to an origin, RI0= 0, at the centroid of the zeroth cell:

RI = I1l1 + I2l2 + I3l3, (3.1)

with (I1, I2, I3) a triplet of positive or negative integers, including zero. The location

of the Ith cell can also be identified by this triplet of integers I ≡ (I1, I2, I3), itself

regarded as a vector I. The exact continuous l ⊕ L-scale position vector R, specifying

the location of a point within the three-dimensional space, may be represented by the

mixed discrete|continuous vector pair (RI, r) ≡ R, where the l-scale continuous vector r

is the local position vector of a point within any unit cell with respect to that particular

cell’s centroid. This corresponds to the standard decomposition employed in classical

generalized Taylor dispersion theory for spatially periodic media (Brenner 1980, Brenner

& Edwards 1993), in the sense that the subsequently defined l⊕L-scale continuous fields

(velocity field, solute concentration field, etc.) are regarded as being exactly defined at

each and every fluid point R of the R ≡ (RI, r)-space encompassing the entire interstitial

fluid region (at each instant in time). This detailed description quantifies the exact, or

“continuous,” case, in contrast with the subsequent graph-theoretical network treatment

(the “discrete” case), where fields will be defined only at the discrete points in the

subsequently defined l⊕ L-scale discrete I ≡ (I,i)-space, where i = (1, 2, . . . n) identifies

one of the n channel intersectional subvolume elements within a unit cell.
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3.2 The Basic Graph

Significant computational advantages accrue to converting the classical (Brenner 1980,

Brenner & Edwards 1993) continuous R-space decomposition of the spatially periodic

medium into a discrete I-space graphical representation. The internal configuration of

each cell consists of a finite number of intersecting channels, some of which are wholly

contained within the unit cell (such as the channel connecting a to b in the x-direction

of Fig. 3-1), others being intersected by the unit cell boundaries (such as the channel

connecting b to a in the x-direction of Fig. 3-1). The finite basic graph (Adler &

Brenner 1984a), Γb, is then constructed from the coordination of the channels and their

intersections, with the mb channels in the unit cell comprising the edge set, j ∈ EΓb,

whereas the nb intersections of the latter edges comprise the vertex set, i ∈ V Γb. By

virtue of the periodicity of the network, there exists within the unit cell two equivalent

(homologous) channels intersected by the unit cell boundary, say, one edge with initial

vertex at i in cell I with terminal vertex at i′ in cell I′, and a second edge with initial

vertex at i in cell I′′ and terminal vertex at i′ in cell I. By convention, we retain only

those edges which are directed into the unit cell (with the direction specified forthwith),

assigning them the “macroscopic” jump vector2

R(j)
def.
= RI −RI′ . (3.2)

The edge set is characterized completely by each edge’s respective orientation and

geometry. The orientation of the edge set, which provides an unambiguous definition

of the incidence matrix [cf. eq. (3.7)], as well as classifying the basic graph as a directed

graph (Bollobas 1979), is chosen such that the scalar convective transport coefficient c(j)

is non-negative [cf. eq. (4.7)].3 The latter criterion is satisfied by considering the mean

2The notation I′ is invoked to generically denote a cell adjacent to I. For networks with multiple
adjacent cells, possessing a number of edges entering cell I, the respective cells would be referred to
notationally as I′, I′′, etc.

3Since the macrotransport parameters K̄∗, Ū∗ and D̄∗ are invariant to choice of coordinate system
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l-scale convective velocity
〈
UC

〉
j
in edge j imparted to the particle by the entraining fluid

flow in the channel, together with the mean l-scale particle velocity
〈
UF

〉
j

= 〈M〉j ·F
imparted by the action of an externally-applied force F acting on the particle in edge

j. Here, 〈M〉j denotes the mean l-scale solute mobility dyadic in channel j. As

in classical macrotransport theory (Brenner & Edwards 1993), the mean l-scale particle

velocity, 〈U〉j =
〈
UC

〉
j
+

〈
UF

〉
j
, within the edge must be unidirectional, either proceeding

spatially from the region represented by vertex i to i′, or vice versa. Consequently, the

edge is directed such that the edge unit vector e(j), defined so as to point from the initial

to the terminal vertex, is colinear with the mean velocity vector 〈U〉j in that edge.

While many problems of interest involve channels of uniform cross-sectional configu-

ration, the generic formulation presented herein is not similarly restricted. Regardless

of channel tortuosity, it is possible to unequivocally define both a channel volume, ve(j),

and channel length, l(j), the latter being equal to the distance between the adjacent

intersections corresponding to the initial and terminal vertices of edge j. For subsequent

calculations requiring a flux per unit area, we define the effective cross-sectional area

A(j) of a channel as the ratio of its volume to length:

A(j)
def.
=

ve(j)

l(j)
. (3.3)

So as to render explicit the preceding discretization scheme, Fig. 3-3 depicts the

basic graph derived from the continuous medium depicted in Fig. 3-1, with homologous

vertices (i.e. identical vertices present on the basic graph in an adjacent unit cell) denoted

by affixing a prime, e.g. a and a′. Similarily, Fig. 3-4 is the basic graph corresponding to

the reactive medium in Fig. 3-2. In the latter, we employ the alternate notation (I, i) to

denote the nodes of the graph, as opposed to the single node affix-notation in Fig. 3-3.

The spatially periodic structure of the composite medium is reflected in the global

or abstract representation of the physical medium (Brenner & Edwards 1993), any edge orientation will
suffice. However, the microscale convection-diffusion equations [cf. eqs. (4.6) and (4.10)] are valid only
for c(j) ≥ 0, a convention which does not arise in the continuous theory (Brenner & Edwards 1993).
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Figure 3-3: Basic graph for the spatially periodic medium of Fig. 3-1, with the unit cell
enclosed within the box. The five different types of channels appearing in Fig. 3-1 are
indicated by edge numbers 1 to 5. Homologous vertices existing outside the unit cell are
denoted with a prime affix. Edges exiting the unit cell (and their associated homologous
vertices), not otherwise included in the basic graph, are indicated by the dashed lines.
A representative edge orientation vector, e(1), as well as the macroscopic jump vectors,
are depicted. Macroscopic jump vectors for edges wholly contained within the unit cell
are zero, i.e. R(1) = R(3) = 0.
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2

1

3

4

R(1)=lx

Unit cell I

(I', a) (I, a)

(I, b)

(I', c) (I, c)

Figure 3-4: Basic graph constructed from the continuous description of Fig. 3-2. Vertices
i = {a, b, c} on the basic graph correspond to the volume elements depicted in Fig. 3-2.
The edges j = {1, 2, 3, 4} connecting adjacent vertices represent intrachannel transport
pathways situated between the individual volume elements i, within each edge, in which
the solute is transported at the convective rate c(j) and diffusive rate d(j). The macro-
scopic jump vector R(j = {1, 4}) = lx corresponds to a “Darcy-scale” displacement
vector drawn between the adjacent cells I′ and I. Homologous vertices whose edges exit
the unit cell, which would correspond to (I′′, a) and (I′′, b), are omitted here.
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graph (Adler & Brenner 1984a), Γg, which is defined by basic vertices {vi = 1 ≤ i ≤ nb}
together with the transformation

L = {Λ + vi; 1 ≤ i ≤ nb} , (3.4)

where Λ is the simple lattice corresponding to the base vectors (l1, l2, l3) and L is the

derived lattice. Analogous to the continuous l ⊕ L-scale R-space description (3.1), the

discrete l⊕ L-scale I-space global graph Γg is formed by translation through the simple

lattice.

3.3 The Local Graph

Although the union of the basic graph Γb and the transformation of eq. (3.4) constitutes

a complete geometrical discretization of the continuous spatially periodic network, use

of the basic graph proves cumbersome in applications, owing to superfluous information

implicitly embedded in the homologous vertices. Combining homologous vertices and

contracting the additional edges between them furnishes the local graph (Adler & Brenner

1984a), Γl, which will be utilized for all subsequent asymptotic calculations.

Upon contraction, the local graph contains n ≤ nb vertices and m ≤ mb directed edges.

Edges connecting homologous vertices, say, i and i′, result in a loop, rendering the local

graph non-simple. In exchange for this non-simplicity, the local graph is independent of

the particular configuration invoked for the basic unit cell (Adler & Brenner 1984a), as

well as requiring minimal computational effort in the subsequent dispersion calculation.4

For each of the n vertices i on the local graph, assign to the set j ∈ Ω+(i) the subset

of those edges j with terminal vertex i, and to the set of edges j ∈ Ω−(i) the subset

of those edges j with initial vertex i. From the basic graph of Fig. 3-3, the latter

4Further reductions in computational effort may be effected by specifying certain equation-specific
rules for excluding loops from some of the ensuing summations. We eschew such reductions in what
follows since they result in overly burdensome notation, obscuring thereby the inherent simplicity of the
scheme itself.

66



homologous contraction process furnishes the local graph of Fig. 3-5, where, for example,

Ω+(c) = {j = 3, 5} and Ω−(c) = {j = 4, 5}, with the loop obviously a member of both

sets. Likewise, Fig. 3-6 is the local graph for the reactive basic graph in Fig. 3-4.

The unit cell volume is subdivided in a discrete manner on the local graph to its

vertices so as to facilitate exposition of the subsequent “exactly”-posed description of the

solute transport process [cf. eq. (4.6)].5 For the case where no chemical reactions are

present, the volume, v(i), of a vertex on the local graph is then defined as being equal to

the volume, vi(i), of its channel intersection plus half the volume of all channels incident

to that intersection:

v(i)
def.
= vi(i) +

1

2

∑

j∈Ω+(i)

ve(j) +
1

2

∑

j∈Ω−(i)

ve(j). (3.5)

This definition is relaxed in the reactive case, since we will require there that the reaction

rate, k(i), be uniform within a given subvolume element. Regardless of the choice of

discretization of the unit cell volume, the total volume of the vertices in the unit cell

must be equal to the total superficial unit cell volume,

∑
i∈Γl

v(i) = τ0. (3.6)

In addition to assigning the physical volume to a given vertex, we assign the parti-

cle’s local continuous position r to the discrete location of vertex i situated, say, at the

centroid of the subvolume element v(i), whenever the particle resides within the subvol-

ume v(i). Consequently, the continuous R-space particle location vector pair (RI, r)

5Assigning the volume to the vertices, despite the fact that a large portion of the unit cell’s interstitial
fluid volume may reside within the channels (edges) of the networks of real devices (Chou et al. 1999),
lies counter to the rationale for assigning the volume to the vertices in a previous network model of
this type by Adler & Brenner (1984b). There, it was assumed that the capillary tubes comprising the
network linkages were thin, hence occupying little volume, whereas their intersections occupied large
mixing volumes. Although not the case in present circumstances, the assignation of volume during the
course of graphically coarse-graining the network geometry is at its very nature ad hoc. Therefore, the
present scheme does not suffer rationally by prohibiting (by convention) the edges from possessing any
volume.

67



a b

c 5

3 4

2

1

Figure 3-5: Local graph constructed from the basic graph of Fig. 3-3 by combining all
homologous vertices and contracting the edges between them. The connectivity between
c-type vertices results in a loop in the local graph, rendering it non-simple. The local
(x, y) coordinate system is no longer necessary, having been embedded in the macroscopic
jump vectors R(j) and the orientations of the edges.
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Figure 3-6: Local graph constructed by contracting homologous vertices in the basic
graph of Fig. 3-4.

finds its discrete, coarse-grained I-space counterpart in the discrete pair (I, i), the latter

corresponding to the particle being in the subvolume element represented by node i in

the unit cell located at discrete position I.

3.4 Pertinent Elements of Graph Theory

In graph-theoretical terms (Bollobas 1979) the local graph is a finite directed graph,

composed of the m member edge set j ∈ EΓl and the n member vertex set i ∈ V Γl,

thereby permitting the introduction of the n×m incidence matrix Dij:
6

Dij
def.
=





1 if vertex i is the terminal vertex of edge j,

−1 if vertex i is the initial vertex of edge j,

0 otherwise.

(3.7)

The rank of the incidence matrix is n−1, owing to the connectivity of the graph. It will

also prove convenient to decompose the incidence matrix into its positive and negative

6The incidence matrix here is opposite in sign from its traditional graph-theoretical definition (Bol-
lobas 1979).
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components,

Dij = Π
(+)
ij − Π

(−)
ij , (3.8)

where the nonzero entries in Π
(+)
ij are the positive elements of Dij, and the nonzero entries

in Π
(−)
ij are the absolute values of the negative elements of Dij.

In what follows, matrix equations for the non-reactive, node-based macrotransport

“fields” will be formulated in the cocycle space. Briefly, the cocycle space is constructed

by partitioning the vertex space into two connected subgraphs: V Γ = V1Γ ∪ V2Γ. A

cocycle H consists of those edges (cuts) with one vertex in subgraph V1 and a second

vertex in subgraph V2. The vector ξH(ej) associated with cocycle H may be defined as

being positive for, say, edges terminating in V1 (Berge 1973):

ξH(ej)
def.
=





1 if ej ∈ H and its terminal vertex is in V1,

−1 if ej ∈ H and its initial vertex is in V1,

0 otherwise.

(3.9)

The n− 1 cocycles forming the basis of the cocycle space may then be collected into the

m× (n− 1) cocycle matrix K. An alternative, more convenient method for constructing

K involves removing the row of the incidence matrix D that corresponds to the vertex not

appearing as a cut set in the fundamental basis of the cocycle space, and then transposing

the result. The latter technique, which preserves the structure of the incidence matrix,

will be employed in what follows. The cocycle matrix, being of rank n− 1, furnishes an

alternative, formal method to that of the incidence matrix for incorporating the graph

connectivity.
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Chapter 4

Microscale Transport Phenomena

The present chapter furnishes the conservation equations governing the phenomenolog-

ical, lumped-parameter description of the solute transport processes occurring at each

node of the global graph. We refer to this node-based conservation equation as con-

stituting an “exactly”-posed network problem, in the sense that no finer-scale model is

contemplated of the unsteady-state transport process undergone by the Brownian so-

lute particle, except, perhaps, for estimating the effective edge transport coefficients in

certain limiting circumstances. The subsequent conservation equations represent the

discrete counterparts of the continuous l ⊕ L-scale convection-diffusion equation [cf. eq.

(4.9)] and convection-diffusion-reaction equation (Brenner & Edwards 1993), the latter

of which serve as the starting points for the method-of-moments homogenization scheme

in classical generalized Taylor-Aris dispersion analyses of macrotransport phenomena.
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4.1 Conditional Probability Density on the Global

Graph

4.1.1 Non-Reactive Transport

Consider the conditional probability density P (I, i, t | I0, i0, t0) of the Brownian particle

being located in cell I within the unit cell subvolume element represented by vertex i at

time t, given its initial introduction at time t0 into the network in cell I0 at the vertex i0.
1

Given this impulsive introduction of the particle, and choosing t0 = 0 without any loss of

generality, conservation of probability density requires that P satisfy the normalization

condition
∑
Γg

v(i)P (I, i, t | I0, i0) =





0, t ≤ 0,

1, t > 0,
(4.1)

reflecting the fact that the probability is unity of the particle being located somewhere

within the infinitely-extended network at any time following its initial introduction.

Since the spatially periodic network is assumed to be generated by translational dis-

placements of the base lattice vectors, or equivalently of the simple lattice (3.4), it is

assumed that the attenuation of P with distance from the point of introduction of the

particle into the network is sufficiently rapid to insure that P → 0 as |I− I0| → ∞.

Indeed, in order that the summations involved in forming the local moments of P [cf.

eq. (5.1)] converge, as in the continuous case (Brenner & Edwards 1993), it is further

assumed that all moments of the probability density decay faster than algebraically with

distance, such that

|(RI −RI0)
m|P → 0 as |I− I0| → ∞ (m = 0, 1, 2, . . .) , (4.2)

where, generically, for any vector V, the polyadic Vm = VV · · ·V (m-times) is an m-

1The cell index, I, and its position vector counterpart, RI, will be alternately employed in the
following, as necessary.
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adic.

Of course, real systems are of bounded extent. Consequently, the analysis pursued

herein is expected to be valid in the limit where the number, N , of unit cells in the

actual device is large: N À 1. The latter condition is equivalent to that employed

previously in the continuous modeling of micropatterned devices (Dorfman & Brenner

2001), where the infinite system analysis was expected to be valid in the limit l/L ¿ 1,

with l a characteristic dimension of the unit cell and L the characteristic size of the finite

macroscopic system as a whole.

As is true for both continuous (Brenner & Edwards 1993) and discrete (Adler &

Brenner 1984b) unbounded models of spatially periodic systems, P is dependent only

upon the global displacement I− I0 (or, equivalently, RI −RI0) of the particle from its

initial position, rather than separately upon both its current and initial positions, I and

I0, respectively. This fact is equivalent in its consequences to translating the arbitrarily-

positioned origin, situated at R = 0, to a new origin, situated at the point R = RI0 . As

such, we can arbitrarily choose I0 = 0 and RI0 = 0 (so that I and RI are now measured

relative to an origin located within the unit cell into which the particle was originally

introduced into the system). Consequently, P possesses the canonical functional form

P ≡ P (I, i, t | i0). (4.3)

4.1.2 Reactive Transport

Consider the conditional reactive-probability density, Pr (I,i, t | i0) ≥ 0, that the solute

“molecule” (particle) being tracked is instantaneously present in cell I and situated at

vertex i at time t, given that the particle was initially introduced into cell I0 = 0 and

vertex i0 at time t = 0.2 This probability density necessarily obeys the normalized

2We being the reactive discussion with the canonical form Pr (I,i, t | i0), equivalent to its non-
reactive counterpart (4.3). The rationale involved in reducing the full reactive probability density
Pr (I,i, t | I0, i0, t0) to its canonical form is identical in the reactive case to that given above for the
non-reactive probability density.
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“conservation” equation

∑
i∈Γg

Pr (I,i, t | i0) =





0, t < 0,

1, t = 0,

< 1, t > 0.

(4.4)

The last inequality arises from the attenuation of the total amount of solute present in

the system at time t > 0 caused by its disappearance via chemical reaction or irreversible

adsorption. Indeed, after sufficient time has elapsed, the amount of solute remaining

in the system, and hence its probability density, would be expected to be completely

depleted [corresponding to Pr (I,i, t | i0) = 0, ∀ (I, i)], a fact which will be subsequently

confirmed.

As was the case for the non-reactive probability density, the reactive probability

density is also required to attenuate faster than algebraically at infinity,

|(RI −RI0)
m|Pr → 0 as |I− I0| → ∞ (m = 0, 1, 2, . . .) . (4.5)

4.2 Lumped-Parameter Microscale Transport

A particle navigating the network is assumed to translate through the edges via convec-

tion (either “piggy-back” convection entrained in a flowing fluid or by the action of an

externally imposed force field, such as an electric field, or both), as well as by Brownian

motion. In constructing the basic graph, the direction of the mean convective transport

occurring within the channel, which must of necessity be unidirectional, was embedded

in the edge unit vector e(j). Consequently, transport within the edge is fully charac-

terized by the edge velocity vector, U(j)e(j), together with the edge diffusivity dyadic,

D(j)e(j)e(j).

For circumstances in which net solvent motion arises from a Darcy-scale (macroscopic)

pressure gradient, the graph-theoretical techniques of Adler & Brenner (1984a) may be

74



applied directly to the present graphical framework. Alternatively, the network resistance

models of Koplik (1982) and Adler (1985a,c) may be adopted. Such techniques furnish

a coarse-grained approach for calculating the mean fluid velocity prevailing in each of

the edges, without requiring detailed knowledge of the finer-scale, r-dependent velocity

field existing therein. Although the mean solvent velocity may thereby be determined

unambiguously, establishing the mean solute particle velocity U(j) and diffusivity D(j)

is considerably more equivocal, as addressed in §1.2. Within the context of an “exact”

microscale description of the solute transport process [cf. eq. (4.6)], the edge transport

parameters must then be classified as stochastic variables.3 It is important, nevertheless,

to recognize that despite its stochastic nature, the edge transport process will be rendered

amenable to rational analysis in the asymptotic Taylor-Aris dispersion limit in Chapters

5 and 6. Consequently, we will proceed in our “exact” analysis using the equivocal,

stochastic quantities U(j) and D(j), reserving their unambiguous, asymptotic definitions

for a later stage of the analysis (cf. §5.3.1).

The stochastic nature of our “exactly”-posed network problem is augmented by the

mixing processes occurring in those regions situated at the channel intersections.4 Since

multiple edges j are typically associated with a single node i,5 the preference for the solute

to choose a particular edge j upon exiting node i is assumed to be governed quantitatively

by a mixing parameter K(j) which furnishes the probability of egress channel (edge) j for

the particle as it exits intersection i [and consequently exits the unit cell subvolume v(i)

3The edge transport parameters are known exactly only for the specific case of infinitesimally small
particles translating exclusively under the influence of an externally applied force in an isothermal fluid,
since the mobility and the animating force are then each independent of position r within the channel.

4The mixing rule is the only vertex transport process accounted for within this discrete model. There
exists no fundamental inconsistency between the continuous model, which implicitly includes convective-
diffusive solute mixing processes at the channel intersections, and the present discrete model, since all
sensible Lagrangian displacements within the system in the latter model are assigned to the vertex-to-
vertex displacement processes occurring within the edges of the graph. Consequently, any “transport”
occurring internally within the vertex results in no net Lagrangian motion on the macroscale, aside from
selecting a new edge.

5A node possessing a single incident edge corresponds to a “dead-end” bond in the network model.
The strong connectivity of the network requires that at least one node in the unit cell possess multiple
incident edges.
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via edge j]. So as to formulate a generic scheme, applicable to all such network problems,

one may envision a set of stochastic vertex-edge probability variables, 0 ≤ K(i, j) ≤ 1,

characterizing the probability of the particle entering or exiting the channel represented

by edge j from the channel intersection represented by vertex i.6 However, such a set

of variables overspecifies the problem, since the graphical network discretization of the

real medium entailed assigning all of the physical volume to the nodes. Consequently,

the constraint of zero accumulation of probability density within the volume-less edges is

enforced by redefining the mixed vertex-edge parameter K as an edge-based parameter,

K(i, j) ≡ K(j). For definiteness, we choose the value of K(j) to correspond to the

probability of the particle entering the edge at its initial vertex (i.e., the probability of

exiting the vertex in edge j), thereby providing internal consistency with the various

mixing-rule schemes enumerated in Chapter 1.

The edge probability parameter K(j) possesses an alternate interpretation as a proba-

bilistic “check-valve” for the vertex. The extreme value K(j) = 0 corresponds to an edge

that is inaccessible to the Brownian particle — say, a conduit of circular cross-section

whose radius is less than that of the particle (the latter assumed rigid and spherical).

Conversely, the extreme value K(j) = 1 corresponds to a channel into whom solute en-

try proceeds without bias. It follows that the special value K(j) = 1 for all edges j

reproduces the earlier perfect mixing model of Adler & Brenner (1984b).

For reactive networks, it also proves necessary to specify the reaction rate constant,

k(i) (k ≥ 0 ∀i), quantifying the rate of solute depletion when the solute is extant in the

subvolume element represented by node i on the graph. Inasmuch as the reaction rate is

assumed to be uniform within each subvolume element (but inhomogeneous with respect

to different elements), the periodic network may be envisioned as composed of a strongly

connected network of homogeneous, continuous stirred-tank flow reactors (CSTFR’s).

6The factor K(i, j) represents the probability of the particle being located within edge j, whereas
1 − K(i, j) is the probability of the particle remaining within vertex i. This should not be confused
with the probability of the particle exiting in one of the k edges (j1, j2, . . . , jk) incident to vertex i.
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4.3 Nodal Conservation Equation

4.3.1 Non-Reactive Transport

Given the preceding identifications of the local transport processes occurring within the

edges and vertices, the following “exact” discrete l⊕L-scale conservation equation governs

the conditional probability density that the particle instantaneously, at time t, resides

on the global graph at the location (I, i):

v(i)
dP (I,i)

dt
= δI,0δi,i0δ(t) +

∑

j∈Ω+(i)
j={i′,i}

c(j)P (I′, i′) + d(j) [P (I′,i′)− P (I,i)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P (I,i) + d(j) [P (I,i)− P (I′,i′)] , (4.6)

with δI,0 and δi,i0 Kronecker delta functions, and δ(t) the Dirac delta function. For

notational simplicity, the explicit dependence of P upon both the time t and the initial

vertex location i0 has been suppressed in its argument. The summation index j ∈ Ω+(i)

(j = {i′, i}) serves to indicate those edges which enter vertex i from vertex i′. Likewise,

j ∈ Ω−(i) (j = {i, i′}) indicates edges exiting vertex i and proceeding to vertex i′. The

non-negative edged-based parameters c(j) and d(j) appearing above correspond to the

respective magnitudes of the convective and diffusive “volumetric flow rates” prevailing

in edge j:7

c(j)
def.
= K(j)U(j)A(j), d(j)

def.
=

K(j)D(j)A(j)

l(j)
. (4.7)

The equality,
∑

j∈Ω+(i)
j={i′,i}

c(j) =
∑

j∈Ω−(i)
j={i,i′}

c(j), (4.8)

7In contrast to the molecular diffusivity, the volumetric diffusive transport rate d(j) may be zero if
an edge is inaccessible to the particle, corresponding to K(j) = 0.
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while always true for a solute molecule entrained in a flowing fluid with perfect mixing at

intersection i (Adler & Brenner 1984a), does not necessarily obtain for imperfect mixing

or purely force-driven motion. In the former case, the solute mixing bias embodied in

the parameter K(j) may negate the equality (4.8); in the latter case, even for perfect

mixing and infinitesimally small particles, wherein both K and the (scalar) mobility M

are invariant to choice of edge j, the “volumetric flow rate” is not necessarily conserved

at an intersection i, say, at which an expansion in channel size occurs, such that A(j)

then differs between the two colinear edges incident to vertex i.

The preceding exact discrete l ⊕ L-scale vertex conservation equation, akin to the

master equations (van Kampen 1981) prevalent in statistical physics, is considerably

more ad hoc in nature than is its continuous counterpart [cf. eq. (4.9)], thereby warranting

further elaboration of the interpretation ascribed to eq. (4.6). The LHS represents the

accumulation of probability density within the nodal volume given by eq. (3.5). The first

term on the RHS represents the unit impulse addition at time t0 = 0 of solute into unit

cell I0 = 0 within the volume assigned to vertex i0. The remaining terms respectively

account for the mechanisms whereby the particle enters and exits the volume assigned to

vertex (I, i). Explicitly, convection through the edges transports the particle from the

vertex (I′, i′) to the vertex (I,i), or, equivalently, removes the particle from vertex (I,i).

Terms involving differences, P (I′,i′)−P (I,i), in conditional probability densities between

connected vertices account for an assumed Fickian-type diffusional process occurring

as a consequence of a presumed linear probability gradient existing between the two

vertices, the diffusion length scale having been explicitly incorporated a priori into the

edge transport parameter d(j).

The intractability of the stochastic difference equation (4.6) for the graphical net-

work points up a striking contrast between the present discrete formulation and its con-

tinuous analog (Brenner & Edwards 1993). The comparable exact continuous l ⊕ L-

scale conservation counterpart of eq. (4.6), governing the conditional probability density
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P (R, t |R0) ≡ P (RI, r,t | r0), possesses the form (Brenner & Edwards 1993):

∂P

∂t
+∇ · [U (r) P −D(r) · ∇P ] = δ (RI) δ (r− r0) δ(t), (4.9)

where U(r) and D(r) are, respectively, the exactly defined continuous l-scale particle

velocity vector and molecular diffusivity dyadic. This latter equation possesses a well-

defined mathematical and physical structure, and may be solved, at least in principle,

subject to requiring an appropriate spatial rate of attenuation of P with increasing dis-

tance from the cell RI0 = 0 at which the particle was initially introduced. In contrast,

the graph-theoretical framework proposed herein possesses no exactly solvable discrete

l⊕L-scale formulation, except for circumstances wherein the respective mean edge trans-

port and mixing rules are well defined, i.e. deterministic.

4.3.2 Reactive Transport

For the case of a reactive solute traversing the network, the reactive probability density,

with the explicit time dependence suppressed, is governed by the following l ⊕ L-scale

convection-diffusion-reaction master equation at each node i on the global graph Γg:

v(i)
dPr(I,i, t | i0)

dt
= δI,0δi,i0δ(t)− k(i)v(i)Pr (I, i, t | i0) +

+
∑

j∈Ω+(i)
j={i′,i}

c(j)Pr(I
′,i′, t | i0) + d(j)


 Pr(I

′,i′, t | i0)−
−Pr(I,i, t | i0)


−

−
∑

j∈Ω−
j={i,i′}

c(j)Pr(I,i, t | i0) + d(j)


 Pr(I,i, t | i0)−
−Pr(I

′,i′, t | i0)


 , (4.10)

with δI,0 and δi,i0 Kronecker delta functions, δ (t) the Dirac delta function, and with

j = {a, b} again denoting an edge whose initial vertex is a and whose terminal vertex

is b. The dependence of Pr upon the initial condition i0 is explicitly retained in eq.

(4.10). The rationale for retaining i0 in the argument of Pr, especially when compared
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to its suppression in the non-reactive case, will be discussed in Chapter 6. Proper

interpretations of all but one of the terms appearing in eq. (4.10) are as discussed in

the context of eq. (4.6). The new term, k(i)v(i)Pr (I, i, t | i0), accounts for the CSTFR

model of solute depletion, with Pr identified with the volumetric solute concentration

(i.e. solute mass per unit volume).

4.4 Discrete Lagrangian Definitions of the Macro-

transport Parameters

In spite of the stochastic nature of eqs. (4.6) and (4.10), their solutions at every node of the

global graph furnish, in principle, the complete set of probability densities P (I, i, t | i0)
and Pr (I,i, t | i0) there. With l the characteristic unit cell linear dimension and Dm

the characteristic Brownian particle molecular diffusivity, the asymptotic definitions of

the macrotransport parameters K̄∗, Ū∗ and D̄∗ become valid in the long-time limit,

t À l2/Dm (Brenner & Edwards 1993).8 The proper Langrangian interpretations of

these parameters (Brenner & Edwards 1993), which differ in the respective reactive and

non-reactive cases, are discussed below.

The non-reactive case, being more straightforward, is the subject of our initial dis-

course. With RI ≡ RI + ri the location of the centroid of vertex i in unit cell I within

which the particle is instantaneously located at time t, the solution of eq. (4.6) for P

permits calculation of the mean particle velocity vector Ū∗ as the average displacement

of a non-reactive Brownian particle with respect to its initial position RI0 ≡ 0 + ri0

(Brenner & Edwards 1993):

〈RI − ri0〉 = 〈RI〉−ri0 ≈ Ū∗t, (4.11)

with angular brackets defined below in eq. (4.13). Similarly, calculation of the disper-

8An additional asymptotic requirement will be imposed in the reactive network case [cf. eq. (6.24)].
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sivity dyadic D̄∗ follows from knowledge of the mean-squared vector displacement of the

Brownian particle from its mean position 〈RI〉 at time t (Brenner & Edwards 1993):

〈[RI − 〈RI〉] [RI − 〈RI〉]〉 ≈ 2D̄∗t. (4.12)

The average values appearing in these expressions represent summations over the global

graph:

〈RI〉 =
∑
Γg

(RI + ri) P (I, i, t | i0). (4.13)

Since the decay of the transient solution of eq. (4.6) is exponential in time (Brenner &

Edwards 1993), the average values defined above become asymptotically independent of

i0 (and, equivalently, ri0). This tendency of the particle to lose “memory” of the position

i0 of its initial local (vertex) introduction into the network proves fundamental in the

asymptotic theory to follow (cf. §5.3.1).

The proper Lagrangian interpretations of the mean transport rates for reactive solutes

are altered when compared to their non-reactive counterparts, since the total probability

density eventually decays to zero by virtue of the chemical depletion reactions occuring

within the network. Indeed, if one were to naively replace P (I,i, t | i0) with Pr (I,i, t | i0)
in eq. (4.13), Ū∗ and D̄∗ would vanish at long times by eqs. (4.11)-(4.12)! Instead

of focusing upon the true reactive solute probability density, Pr, it proves necessary to

consider instead the survival probability density (Brenner & Edwards 1993, Shapiro &

Brenner 1986),9

M0r(t | i0) def.
=

∑
Γg

v(i)Pr(I, i, t | i0), (4.14)

which represents the global conditional probability density that the initial input of solute

is still present somewhere within the network (the global graph) at time t. Summing eq.

9We use the notation M0r, in accordance with Brenner & Edwards (1993), to denote the zeroth-
order global moment of the reactive probability density. This should not be confused with other global
moments for the reactive networks which will be defined later [cf. eqs. (6.9)-(6.10)].
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(4.10) over Γg furnishes the differential equation governing M0r,

dM0r

dt
= δ (t)−

∑
Γg

k(i)v(i)Pr(I, i, t | i0), (4.15)

where we have made use of the attenuation condition (4.5), as well as the strong connec-

tivity of the graph [cf. eqs. (6.13)- (6.14)]. The structure of eq. (4.15), when combined

with the restriction k(i) ≥ 0 ∀ i, dictates that the survival probability density M0r de-

crease monotonically for all times t after the introduction of the solute into the network

at time t = 0. In order for our macrotransport theory be an accurate asymptotic repre-

sentation of the long-time averaged solute transport processes, the proper Langrangian

definitions of K̄∗, Ū∗ and D̄∗ must reflect the fact that the solute is being depleted for

all times. In accordance with Shapiro & Brenner (1986), these parameters possess the

asymptotic forms

Mor ≈ exp
(−K̄∗t

)
, (4.16)

〈RI〉r−ri0 ≈ Ū∗t, (4.17)

〈[RI − 〈RI〉r] [RI − 〈RI〉r]〉r ≈ 2D̄∗t, (4.18)

where the “reactive” average values of the reactive probability density are normalized by

the global survival probability density,

〈RI〉r = (M0r)
−1

∑
Γg

(RI + ri) Pr(I, i, t | i0). (4.19)

In essence, the normalization factor M0r negates the contribution of the depleted solute

to the overall transport rates, thereby rendering the parameters Ū∗ and D̄∗ accurate

asymptotic representations of the mean transport rates of those solutes which are still

present in the network at time t. Inasmuch as the survival probability density for the

non-reactive case is unity by eq. (4.1) (ie. Mro = 1), the definitions (4.16)-(4.18) reduce
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to their non-reactive counterparts, (4.11) and (4.12), where we would also have K̄∗ = 0.
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Chapter 5

Method of Moments: Non-Reactive

Transport

Calculation of the macrotransport parameters Ū∗ and D̄∗ from the present network

model derives via a Taylor-Aris-like moment-matching scheme for the asymptotic global

moments of the probability density, as detailed in §5.3. As a prelude to this, we invoke the

generic scheme employed by Adler & Brenner (1984b) to calculate these moments prior

to effecting their asymptotic expansions, including appropriate modifications allowing for

the incorporation of molecular diffusion effects into the analysis. Consideration of the

reactive master equation (4.10) is deferred to Chapter 6.
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5.1 Local Moments

Define the mth-local moment (m = 0, 1, 2, . . .) of the conditional probability density as

the m-adic,1

Pm(i, t | i0) def.
=

∑
I

(RI)
m P (I, i, t | i0) , (5.1)

the indicated summation being defined as the triple sum over all unit cell indices:

∑
I

def.
=

∞∑
I1=−∞

∞∑
I2=−∞

∞∑
I3=−∞

. (5.2)

The differential equation governing Pm is formed by multiplying the node conserva-

tion equation (4.6) by the quantity (RI)
m ≡ RIRI · · ·RI (m-times), and subsequently

performing the triple summation (5.2), thereby furnishing the following ordinary differ-

ential equation for Pm(i, t | i0):

v(i)
dPm(i, t | i0)

dt
= δi,i0δm,0δ(t) +

∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]

[∑
I

(RI)
m P (I′, i′, t | i0)

]
−

−
∑

j∈Ω+(i)
j={i′,i}

d(j)Pm(i, t | i0)−
∑

j∈Ω−(i)
j={i,i′}

[c(j) + d(j)]Pm(i, t | i0)+

+
∑

j∈Ω−(i)
j={i,i′}

d(j)

[∑
I

(RI)
m P (I′, i′, t | i0)

]
, (5.3)

where δm,0 is a Kronecker delta function. Whereas the ordinary differential equation

governing the evolution of P itself on the global graph requires detailed information

regarding the behavior of P throughout the entire infinite network, the solution of the

governing equations for Pm is contained wholly within the local graph Γl.

1In what follows, infinite summations effected over discrete variables constitute counterparts of infinite
R-space quadratures effected over continuous variables employed in generalized Taylor-Aris dispersion
analyses of continuous systems (Brenner & Edwards 1993). Similarily, the subsequent mathematical
manipulations of the resulting sums in (5.1) constitute discrete counterparts of “integration by parts”
in quadratures of continuous variables.
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Evaluation of sums involving terms of the type (RI)
m P (I′, i′, t | i0) appearing in eq.

(5.3) may be effected by adding and subtracting RI′ , as follows (Adler & Brenner 1984b):

RI = (RI −RI′) + RI′ = R(j) + RI′ , (5.4)

whereupon the first few moments are found to obey the following sequence of recurrence

relations:

v(i)
dP0 (i, t | i0)

dt
= δi,i0δ(t) +

∑

j∈Ω+(i)
j={i′,i}

c(j)P0 (i′, t | i0) + d(j) [P0 (i′, t | i0)− P0 (i, t | i0)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P0 (i, t | i0) + d(j) [P0 (i, t | i0)− P0 (i′, t | i0)] , (5.5)

v(i)
dP1 (i, t | i0)

dt
=

∑

j∈Ω+(i)
j={i′,i}

c(j) [R(j)P0 (i′, t | i0) + P1 (i′, t | i0)]−
∑

j∈Ω−(i)
j={i,i′}

c(j)P1 (i, t | i0) +

+
∑

j∈Ω+(i)
j={i′,i}

d(j) [R(j)P0 (i′, t | i0) + P1 (i′, t | i0)−P1 (i, t | i0)]−

−
∑

j∈Ω−(i)
j={i,i′}

d(j) [P1 (i, t | i0)−P1 (i′, t | i0) + R(j)P0 (i′, t | i0)] , (5.6)
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v(i)
dP2 (i, t | i0)

dt
=

∑

j∈Ω+(i)
j={i′,i}

c(j)


 R(j)R(j)P0 (i′, t | i0) + R(j)P1 (i′, t | i0) +

+P1 (i′, t | i0)R(j) + P2 (i′, t | i0)


−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P2 (i, t | i0) +

+
∑

j∈Ω+(i)
j={i′,i}

d(j)


 R(j)R(j)P0 (i′, t | i0) + R(j)P1 (i′, t | i0) +

+P1 (i′, t | i0)R(j) + P2 (i′, t | i0)−P2 (i, t | i0)


−

−
∑

j∈Ω−(i)
j={i,i′}

d(j)


 P2 (i, t | i0)−R(j)R(j)P0 (i′, t | i0) +

+R(j)P1 (i′, t | i0) + P1 (i′, t | i0)R(j)−P2 (i′, t | i0)


 .

(5.7)

The appearance of the macroscopic jump vector in the summations over j ∈ Ω−(i) in

eqs. (5.6)-(5.7) necessitates using −R(j), rather than R(j), owing to the fact that the

macroscopic jump vector was previously defined in eq. (3.2) for edges entering the unit

cell, whereas that in j ∈ Ω−(i) involves edges exiting the unit cell. It is trivial to show

that the macroscopic jump vector for an edge exiting the unit cell is equal in magnitude

and opposite in direction to that for a homologous edge entering the unit cell; hence, the

change in algebraic sign. The latter issue, solely a by-product of incorporating molecular

diffusion into our model, did not arise in the prior, exclusively convective, solute transport

model of Adler & Brenner (1984b).

With the continued presence of the unit impulse, appearing in the differential equation

for the zeroth-order moment (5.5), the conservation principle embodied in eq. (4.1) for

the global graph adopts the form

∑
i∈V Γl

v(i)P0 (i, t | i0) = 1 (t > 0) , (5.8)

reflecting the unitary probability that the particle is located for all times after its in-

troduction into the network within some unit cell subvolume element. In contrast,
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higher-order local moments are not similarly “conserved,” but rather grow in time.

5.2 Global Moments

Define the mth-global-moment (m = 0, 1, 2, . . .) as the m-adic,

Mm(t | i0) def.
=

∑
i∈V Γl

v(i)Pm (i, t | i0) . (5.9)

In performing summations over the local graph, it is useful to note that for a given nodal

quantity φ(i) and edge quantity ε(j), the strong connectivity of the graph furnishes the

identity:
∑

j∈EΓl

j∈Ω+

ε(j)φ(i′) =
∑

j∈EΓl

j∈Ω−

ε(j)φ(i). (5.10)

In expressing the latter, we have made use of the compact summation notation,

∑
j∈EΓl

j∈Ω+

def.
=

∑
i∈V Γl

∑

j∈Ω+(i)
j={i′,i}

,
∑

j∈EΓl

j∈Ω−

def.
=

∑
i∈V Γl

∑

j∈Ω−(i)
j={i,i′}

. (5.11)

To arrive at the differential equations governing the global moments, differentiate eq.

(5.9) with respect to time and substitute the resulting expression into the appropriate

local moment from eqs. (5.5)-(5.7), using the identity (5.10). For the zeroth-order

moment, this procedure yields
dM0

dt
= δ(t). (5.12)

The latter relation expresses the conservation of total probability principle (4.1), which

is directly verified by integrating eq. (5.12) to obtain

M0 =





0, t ≤ 0,

1, t > 0,
(5.13)
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independently of i0.

As regards higher-order moments, the first- and second-order global moments obey

the respective equations:

dM1(t | i0)
dt

=
∑

j∈EΓl

j∈Ω+

[c(j) + d(j)]R(j)P0 (i′, t | i0)−
∑

j∈EΓl

j∈Ω−

d(j)R(j)P0 (i′, t | i0) , (5.14)

dM2(t | i0)
dt

=
∑

j∈EΓl

j∈Ω+

[c(j) + d(j)]


 R(j)R(j)P0 (i′, t | i0) + R(j)P1 (i′, t | i0) +

+P1 (i′, t | i0)R(j)


 +

+
∑

j∈EΓl

j∈Ω−

d(j)


 R(j)R(j)P0 (i′, t | i0)−R(j)P1 (i′, t | i0)−
−P1 (i′, t | i0)R(j)


 . (5.15)

5.3 Asymptotic, Long-Time Limits

5.3.1 Zeroth-Order Moments

Asymptotic integration of the zeroth-order local moment equation (5.5) furnishes the

long-time solution

P0 (i, t | i0) ≈ P∞
0 (i) + exp. (5.16)

Here and hereafter, the generic symbol “exp” denotes terms that are exponentially at-

tenuated in time as t →∞. As was true of the continuous paradigm counterpart P∞
0 (r)

to eq. (5.16) (Brenner & Edwards 1993), the time-independent probability density P∞
0 (i)

is unconditional, whereby the probability of locating the Brownian particle at vertex i

becomes independent of the initial local vertex i0 of its introduction into the network.

Substitution of eq. (5.16) into both eq. (5.5) and eq. (5.8) furnishes the following steady-
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state conservation equation for P∞
0 (i):

∑

j∈Ω+(i)
j={i′,i}

c(j)P∞
0 (i′) + d(j) [P∞

0 (i′)− P∞
0 (i)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P∞
0 (i) + d(j) [P∞

0 (i)− P∞
0 (i′)] = 0, (5.17)

supplemented by the requisite normalization condition,

∑
i∈V Γl

v(i)P∞
0 (i) = 1. (5.18)

The latter pair of equations governing P∞
0 (i) constitute the discrete analogs of the

comparable continuous conservation equation and normalization condition governing the

continuous intracellular field P∞
0 (r) arising in classical continuous macrotransport theory

(Brenner & Edwards 1993). Moreover, in the presence of vanishing molecular diffusiv-

ity and conserved convective transport (4.8), the probability density tends towards the

asymptotic value P∞
0 (i) = τ−1

0 for all i, in accord with the results of Adler & Brenner

(1984b) for that case.

Edge Transport Properties in the Long-Time Limit

The equivocal nature of the edge transport properties, which hindered a deterministic

solution of the discrete “exact” l ⊕ L-scale governing equation (4.6), vanishes in the

long-time Taylor-Aris dispersion limit, t À l2/Dm. Explicitly, satisfaction of the lat-

ter inequality assures that the Brownian particle has had the opportunity to sample all

locations i within the unit cell numerous times, effectively achieving an equilibrium dis-

tribution P∞
0 (i) with respect to its local position. Since the characteristic transverse

linear dimension H of a channel is assumed to be less than the length l of the unit cell

(often H ¿ l), the Brownian particle will, concomitantly, have had the opportunity

to sample all channel locations within each subvolume element v(i) of the cell numer-
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ous times. Consequently, achieving the asymptotic long-time limit necessitates that

t À H2/Dm, whereby the edge velocity U(j) and diffusivity D(j) represent mean l-scale

solute transport properties, arising from numerous samplings of the individual channels

within a cell. The latter parameters may be obtained either: (i) experimentally, using

a single long channel so as to satisfy the inequality t À H2/Dm (where t = l/U is the

nominal holdup time of the particle traversing the channel of length l with mean velocity

U) before the particle exits the experimental channel; or (ii) via classical macrotransport

theory (Brenner & Edwards 1993), in circumstances where hydrodynamic fluid-particle

data exists.

As a further consequence of attaining this asymptotic limit, the exit channel parame-

ter K(j) constitutes the equilibrium distribution of edge choices. For diffusion dominated

transport processes it is our contention that the hindered-diffusion partition coefficient

(Deen 1987) governs the probability of the particle choosing differing intersectional egress

channels, inasmuch as the partition coefficient is an equilibrium property. This coeffi-

cient may be derived rigorously, enabling systematic incorporation of a vast array of

effects, including steric and electrostatic hindrances (Deen 1987).

This ability to furnish formal definitions for the requisite transport parameters in a

rigorous, well-defined, and experimentally realizable long-time limit renders the present

discrete generalized Taylor-Aris dispersion scheme markedly less equivocal than previous

network models (Andrade et al. 1992, Bruderer & Bernabe 2001, de Arcangelis et al. 1986,

Koplik et al. 1988, McGreavy et al. 1990, Meyers & Liapis 1998, Sahimi 1992, Sahimi

& Jue 1989, Sorbie & Clifford 1991, Zhang & Seaton 1994) of periodically configured

systems.

Solution for P∞
0 (i) in the Cocycle Space

In order to facilitate a formal matrix solution for the probability density, define the n×1

vector P whose rows are the probability densities P∞
0 (i) . In addition, define the following
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pair of m×m diagonal matrices containing the effective edge transport parameters:2

c = c(j)δi,j, d = d(j)δi,j, (5.19)

where δi,j is the Kronecker delta function. These definitions permit the conservation

equation (5.17) to be represented in the compact matrix form

D·
[
(c + d) · (Π(−)

)† − d· (Π(+)
)†] ·P = 0, (5.20)

with † the transposition operator. Clearly, eq. (5.20) is satisfied by the trivial solution

P = 0 for the n vector elements P∞
0 (i), since the incidence matrix D is of rank n − 1.

Indeed, this rank-deficient property of the incidence matrix necessitates retaining the

probability density normalization condition (4.1) in the asymptotic limit. To incorporate

this normalization condition into the formal solution, define the (n− 1) × n coefficient

matrix A,

A def.
= K†·

[
(c + d) · (Π(−)

)† − d· (Π(+)
)†]

, (5.21)

as well as the 1× n vector of the nodal volumes,

v
def.
= v(i). (5.22)

These permit the linearly independent, rank n matrix equation for the probability density

to be expressed in the partitioned matrix form,


 A

v


 ·P =


 0

1


 . (5.23)

2The matrices c and d in the present scheme correspond to transition matrices in classical statistical
physics (van Kampen 1981).
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5.3.2 First-Order Moments

Mean Velocity Vector Ū∗

As in classical generalized Taylor-Aris dispersion theory (Brenner & Edwards 1993), the

mean particle velocity vector may be calculated from the following asymptotic expression

derived from eqs. (4.11), (4.13), (5.1) and (5.9):

Ū∗ = lim
t→∞

dM1

dt
. (5.24)

Substitution of (5.14) into the latter, together with use of eqs. (5.10) and (5.16), enables

Ū∗ to be calculated from knowledge of P∞
0 (i) via the following generic paradigmatic

relation:

Ū∗ =
∑

j∈EΓl

j∈Ω+

c(j)R(j)P∞
0 (i′) + d(j)R(j) [P∞

0 (i′)− P∞
0 (i)] . (5.25)

Upon setting d(j) = 0 ∀j and P∞
0 (i′) = τ−1

0 , the latter agrees with the expression

previously derived elsewhere by Adler & Brenner (1984b) for the case of purely convective

solute transport.

Derivation of the B-Equation

Assume, subject to a posteriori verification, an asymptotic trial solution of the form

P1 (i, t | i0) ≈ P∞
0 (i)

[
Ū∗t + B(i)

]
+ exp, (5.26)

with B(i) a time- and i0-independent vector to be determined. Introduce eqs. (5.16) and

(5.26) into eq. (5.6), subsequently canceling time-dependent terms with eq. (5.17), so as

to arrive at the following difference equation governing the vector B(i) at each node on
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the local graph:

∑

j∈Ω+(i)
j={i′,i}

c(j)P∞
0 (i′)B (i′) + d(j) [P∞

0 (i′)B (i′)− P∞
0 (i)B(i)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P∞
0 (i)B (i) + d(j) [P∞

0 (i)B(i)− P∞
0 (i′)B(i′)] = v(i)P∞

0 (i)Ū∗ − α(i),

(5.27)

with α(i) the node-based vector

α(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R(j)P∞
0 (i′)−

∑

j∈Ω−(i)
j={i,i′}

d(j)R(j)P∞
0 (i′) . (5.28)

It is readily confirmed from eqs. (5.17) and (5.27), as was true for both continuous

(Brenner & Edwards 1993) and non-diffusive discrete (Adler & Brenner 1984b) gener-

alized Taylor-Aris modeling, that the B vector is uniquely defined only to within an

arbitrary additive constant vector. Moreover, as in those earlier cases, the forcing func-

tion appearing on the RHS of eq. (5.27) represents the difference between the mean and

“local” vertex velocities. This velocity disparity furnishes the physical mechanism un-

derlying the origin of dispersion within the network. The time- and i0-independence of

the equation governing B(i) observed in eq. (5.27) furnishes a posteriori verification of

the assumed trial solution (5.26) for P1. This “transport equation” for the B-field plays

a fundamental role in subsequent dispersion calculations. Its solution within the cocycle

space is discussed forthwith.

Substitution of eq. (5.26) into eq. (5.9) (with m = 1), together with use of eq. (5.18),

furnishes the following asymptotic form for M1:

M1(t) ≈ Ū∗t + B̄ + exp, (5.29)
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wherein B̄ is the time-independent constant vector

B̄ =
∑

i∈V Γl

v(i)P∞
0 (i)B(i). (5.30)

Solution of the B-Equation in the Cocycle Space

Since each of the n different B-vectors may be determined only to within a single ar-

bitrary, additive constant, say, B (i∗), the n − 1 dimensional cocycle space furnishes a

systematic method for identifying the basis node i∗ as that not appearing in the basis set

of the cocycle space.3 Adapting the method of Adler & Brenner (1984b) to the problem

at hand, define the following pair of m× 3 matrices:

β−(j) = P∞
0 (i)

[
B†(i)−B†(i∗)

] [
j ∈ Ω−(i)

]
, (5.31)

β+(j) = P∞
0 (i)

[
B†(i)−B†(i∗)

] [
j ∈ Ω+(i)

]
, (5.32)

as well as the (n− 1)× 3 matrix,

α∗(i) =
[
v(i)P∞

0 (i)Ū∗ − α(i)
]†

(i 6= i0) . (5.33)

With use of the preceding matrix definitions, eq. (5.27) may be recast into the compact

matrix form,

K†· [(c + d) · β−−d · β+
]

= α∗. (5.34)

Eventual computation of the dispersivity [cf. eq. (5.47)] necessitates use of the edge-

based vector,

b(j)
def.
= B(i)−B(i′) (j = {i′, i}) , (5.35)

where the edge is oriented with its initial vertex at i′. Define an m× 3 matrix, B, whose

3Any arbitrary scheme may be invoked for specifying the value of an arbitrary reference node i∗. Our
choice of the cocycle space is made solely for consistency with the graph theoretical techniques (Bollobas
1979) outlined in §3.4. Indeed, use of the cocycle space will prove unnecessary in the reactive case.
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rows are the vectors b†(j), the matrix B being computed from the relationships (Adler

& Brenner 1984b):

β−(j) = B− · B, β+(j) = B+ · B, (5.36)

where B− and B+ are m×m matrices involving the probability density P∞
0 (i). Conse-

quently, eq. (5.34) may be rewritten as

K†· [(c + d)·B−−d·B+
] · B = α∗. (5.37)

Although the (n− 1) ×m coefficient matrix K†· [(c + d)·B−−d·B+] is not square, it is

always possible to augment the coefficient matrix with additional rows containing the

null sum of b(j) vectors along a cycle of the graph (Berge 1973), with concomitant rows

of zeros in the solution vector α∗.

5.3.3 Second-Order Moments

Substitute the asymptotic solutions (5.16) and (5.26) into eq. (5.15), making use of eq.

(5.25), so as to arrive at the following asymptotic expression for the second-order global

moment:

dM2(t)

dt
≈ 2Ū∗Ū∗t +

∑
j∈EΓl

j∈Ω+

[c(j) + d(j)] P∞
0 (i′) [R(j)R(j) + R(j)B (i′) + B (i′)R(j)] +

+
∑

j∈EΓl

j∈Ω−

d(j)P∞
0 (i′) [R(j)R(j)−R(j)B (i′)−B (i′)R(j)] + exp. (5.38)

The dispersivity dyadic may be computed from the following expression (Brenner &

Edwards 1993), derived from eqs. (4.12), (4.13), (5.1) and (5.9):

D̄∗ =
1

2
lim
t→∞

d

dt
(M2 −M1M1) . (5.39)
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The RHS of the latter may be evaluated by use of eqs. (5.25), (5.29), (5.30) and (5.38),

together with use of the definition of the b(j) vector (5.35) and eq. (5.10), to eventually

furnish the formula

D̄∗ = sym
∑

j∈EΓl

j∈Ω+

{c(j)P∞
0 (i′) + d(j) [P∞

0 (i′) + P∞
0 (i)]}




1
2
R(j)R(j)−
−R(j)b (j)




+ sym(E), (5.40)

with E the tensor

E =
∑

i∈V Γl

[
α(i)B(i)− v(i)P∞

0 (i) Ū∗B(i)
]
. (5.41)

Notationally, the symmetry operator for a generic matrix XY is defined by the expression

sym(XY)
def.
=

1

2
(XY + YX) . (5.42)

Evaluation of D̄∗ via eq. (5.40) requires knowledge of B(i) [as well as of P∞
0 (i)].

Additional computational simplifications of eq. (5.40) are readily effected. Similar

to Adler & Brenner (1984b), we identify the terms appearing in the summation (5.41)

for E as being the negative of the RHS of eq. (5.27) multiplied by B(i). Consequently,

the expression for E may be reformulated upon multiplying eq. (5.27) by B(i), summing

over i ∈ V Γl, and using eqs. (5.10) and (5.35), so as to eventually obtain

E =
∑

j∈EΓl

j∈Ω+

d(j)P∞
0 (i)B(i)b(j)− [c(j) + d(j)] P∞

0 (i′)B (i′)b(j). (5.43)

To effect further simplifications, multiply eq. (5.17) by B(i)B(i), and sum over i ∈ V Γl,

using eq. (5.10), to obtain

∑
j∈EΓl

j∈Ω+

{[c(j) + d(j)] P∞
0 (i′)− d(j)P∞

0 (i)} [B(i)B(i)−B(i′)B(i′)] = 0. (5.44)
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Writing twice the symmetric part of E using eq. (5.43), and adding eq. (5.44), finally

yields

2 sym(E) =
∑

j∈EΓl

j∈Ω+

{c(j)P∞
0 (i′) + d(j) [P∞

0 (i′) + P∞
0 (i)]}b (j)b(j). (5.45)

To arrive at a canonical form for ultimately calculating the dispersivity dyadic, define

the edge-based vector,

b̃(j)
def.
= R(j)− b(j), (5.46)

and substitute eq. (5.45) into eq. (5.40), thereby obtaining

D̄∗ =
1

2

∑
j∈EΓl

j∈Ω+

{c(j)P∞
0 (i′) + d(j) [P∞

0 (i′) + P∞
0 (i)]} b̃(j)b̃(j). (5.47)

The preceding generic dispersivity formula properly reduces to the prior result of Adler &

Brenner (1984b) upon setting d(j) = 0 ∀j and P∞
0 (i) = τ−1

0 . Equation (5.47) represents

the fundamental paradigm whereby D̄∗ can be calculated from the prescribed discrete

l-scale data.

5.4 The “Simple” Network

The final section of this chapter illustrates the usefulness of the present discrete theory

in computing mean solute transport rates for a “simple” network. By “simple” is meant

that only one intersection (albeit, perhaps, of multiple channels) is present within the

repetitive unit cell. Figure 5-1 depicts such a network, wherein the apparent complexity

of the medium serves to underscore potential difficulties that would be encountered in the

application of continuous Taylor-Aris dispersion theory. Numerous microfluidic devices

exist whose geometries are adequately captured by this simple network model, including

both micropatterned vector chromatography chips (Chou et al. 1999, 2000) and entropic
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trapping devices (Han & Craighead 2000).4 Explicitly, the vector chromatography chips

produced by Austin and coworkers (Chou et al. 1999, 2000) are comprised of a rectangular

array of solid (rounded) rectangular obstacles, with solute transport occurring within

the solvent-filled interstices between obstacles. In effect, our analysis of such devices

in Chapter 9 is equipollent with the present simple network theory, in which the unit

cell consists of but a single intersection connecting a narrow channel, oriented in the

y-direction, to a wider channel, oriented orthogonally in the x-direction.

Significant reductions in the computational scheme are immediately effected in the

“simple” network limit. Since the unit cell is comprised of but a single intersection, the

unconditional probability density assumes the form P∞
0 = τ−1

0 , wherein τ0 is the total

volume of the channels and intersections contained within the boundaries of the unit cell.

Moreover, calculation of the dispersivity is vastly simplified by noting that b = 0, owing

to the fact that every edge on the local graph is a loop. Armed with the latter data, the

canonical expressions (5.25) and (5.47) reduce simply to the respective forms

Ū∗ = τ−1
0

∑
j∈EΓl

j∈Ω+

c(j)R(j), (5.48)

D̄∗ =
1

2τ0

∑
j∈EΓl

j∈Ω+

[c(j) + 2d(j)]R(j)R(j). (5.49)

The latter pair of formulae render transparent several fundamental properties of the

simple network. The I-space uniformity of the network reduces the mean velocity

vector to a sum of purely convective contributions. In the network-level description

of the periodic geometry, diffusive contributions to the mean velocity arise from nodal

differences in probability density, rather than any finer-scale R-space gradients — the

former vanishing within the single node simple network. Rather, the diffusional transport

processes occurring in the network description are manifested in the dispersivity dyadic.

4The use of the simple network theory for the analysis of these specific devices is deferred to Chapters
9 and 10.
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Figure 5-1: Schematic of a simple network in which the repetitive unit cell, denoted by
the dashed lines, consists of a number of channels exiting and entering a single intersec-
tion. Such networks result in major simplifications of the discrete Taylor-Aris dispersion
analysis scheme.
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As is readily identified via eq. (5.49), dispersion within the simple network arises from two

fundamental sources: (i) a contribution d(j)R(j)R(j), representing dispersive processes

occurring within the channels; and (ii) a contribution c(j)R(j)R(j), representing the

mechanical dispersion caused by the random residence times spent by a particle within the

channel intersection domain before exiting the latter and entering an abutting channel.

These simple network results furnish significant insights into the mean solute trans-

port and dispersion rates arising in such media. As such, they will prove useful in

subsequent applications of our theory to the generalized Taylor-Aris dispersion phenom-

ena occurring on chip-based microfluidic devices, whose details will be discussed in Part

II.
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Chapter 6

Method of Moments: Reactive

Transport

6.1 Local Moments

In order to ultimately arrive at the desired paradigm for computing the macrotransport

parameters K̄∗, Ū∗ and D̄∗, the generalized moment scheme proposed by Dungan et al.

(1990) will be adapted in a graphical manner similar to Chapter 5 to homogenize the

master equation (4.10) governing reactive solute transport on the graph. In this context,

define the “non-reactive” solute probability density,1

P (I, i, t | i0) def.
=

exp
(
K̄t

)

A(i0)
Pr (I,i, t | i0) , (6.1)

where the time- and position-independent reaction velocity constant K̄ (defined globally

on the network scale) and vertex field A (i) (defined locally on the unit-cell scale) will

be determined later. The master equation governing P is derived by substituting the

1We use the notation P (I, i, t | i0) to indicate that this change of variables will permit a moment
scheme similar to that employed in the previous chapter.
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definition (6.1) into eq. (4.10) to obtain

v(i)
dP (I,i, t | i0)

dt
=

δI,0δi,i0δ(t)

A(i0)
+

[
K̄ − k(i)

]
v(i)P (I, i, t | i0) +

+
∑

j∈Ω+(i)
j={i′,i}

c(j)P (I′,i′, t | i0) + d(j)


 P (I′,i′, t | i0)−
−P (I,i, t | i0)


−

−
∑

j∈Ω−
j={i,i′}

c(j)P (I,i, t | i0) + d(j)


 P (I,i, t | i0)−
−P (I′,i′, t | i0)


 . (6.2)

Define the non-reactive local moment as the m-adic,

Pm(i, t | i0) def.
=

∑
I

Rm
I P (I, i, t | i0) . (6.3)

The equation governing the local moments Pm(i) (with time and the initial condition

suppressed therein for notational simplicity) is obtained upon multiplying eq. (6.2) by

Rm
I and summing over I, thereby obtaining

v(i)
dPm(i)

dt
=

δm,0δi,i0δ(t)

A(i0)
+ L [Pm (i)] + Γm(i). (6.4)

In the latter, the vertex operator L operating on an arbitrary vertex field ψ(i) is defined

as

L [ψ(i)]
def.
=

∑

j∈Ω+(i)
j={i′,i}

c(j)ψ (i′) + d(j) [ψ(i′)− ψ(i)]−

−
∑

j∈Ω−
j={i,i′}

c(j)ψ(i) + d(j) [ψ(i)− ψ(i′)] +
[
K̄ − k(i)

]
v(i)ψ(i). (6.5)
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The first few m-adics Γm(i) appearing in eq. (6.4) possess the respective forms

Γ0(i) = 0, (6.6)

Γ1(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R (j) P0(i
′)−

∑

j∈Ω−
j={i,i′}

d(j)R(j)P0(i
′), (6.7)

Γ2(i) = 2 sym





∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]

[
1

2
R (j)R (j) P0(i

′) + R (j)P1(i
′)
]

+

+
∑

j∈Ω−
j={i,i′}

d(j)

[
1

2
R (j)R (j) P0(i

′)−R (j)P1(i
′)
]





, (6.8)

where the symmetry operator was defined previously by eq. (5.42).

6.2 Global Moments

Define the respective unweighted and weighted non-reactive global moments,

M′
m (t | i0) def.

=
∑
i∈Γl

v(i)Pm(i, t | i0), (6.9)

Mm (t | i0) def.
=

∑
i∈Γl

v(i)A(i)Pm(i, t | i0). (6.10)

In the latter, the node-based field A(i) [cf. eq. (6.1)] arises from the necessity for in-

troducing into macrotransport theory a fictitious initial condition (Dungan et al. 1990),

whose significance and defining equation will be established shortly. It is possible to

choose the constant K̄ appearing in the definition (6.1) such that M ′
0 is conserved for

sufficiently long-times (Shapiro & Brenner 1987). However, transients arising from the

initial placement, i0, of the particle (within cell I0 = 0) persist for long times, longer than

the time required for the asymptotic theory of Taylor & Aris to constitute an accurate

global representation of the transport phenomena. This residual transient thereby im-

pacts nontrivially upon the network-scale transport processes (Batycky et al. 1996). To
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properly correct for such transients, as was done in the original derivation of Dungan et

al. (1990), we will derive a difference equation for the fictitious initial condition A(i) (in

place of the literal initial condition). This scheme insures that M0 too is conserved for

all times, thereby allowing a conventional Taylor-Aris moment analysis (Dungan et al.

1990), involving the use of weighted moments. It will be shown that the rates of change

of the weighted and unweighted moments differ only by exponentially small temporal

terms, at least for sufficiently long times. As a consequence, the distinction between the

two types of global moments, M′
m and Mm, defined above proves irrelevant in the final

macrotransport results.

The differential equation governing M0 is derived by forming the product of A(i) and

eq. (6.4) [with m = 0 and eq. (6.6)], and summing over i ∈ Γl to obtain

dM0

dt
= δ(t) +

∑
i∈Γl

[
K̄ − k(i)

]
v(i)A(i)P0(i)+

+
∑

j∈EΓl

j∈Ω+

c(j)A(i)P0(i
′) + d(j)A(i) [P0 (i′)− P0(i)]−

−
∑

j∈EΓl

j∈Ω−

c(j)A(i)P0(i) + d(j)A(i) [P0(i)− P0 (i′)] . (6.11)

Here and hereafter, the following compact summation notation will again be employed:

∑
j∈EΓl

j∈Ω+

def.
=

∑
i∈V Γl

∑

j∈Ω+(i)
j={i′,i}

,
∑

j∈EΓl

j∈Ω−

def.
=

∑
i∈V Γl

∑

j∈Ω−(i)
j={i,i′}

. (6.12)

The strong connectivity of the graph furnishes the pair of identities,

∑
j∈EΓl

j∈Ω+

ε(j)φ(i′) =
∑

j∈EΓl

j∈Ω−

ε(j)φ(i), (6.13)

∑
j∈EΓl

j∈Ω+

ε(j)φ1(i
′)φ2 (i) =

∑
j∈EΓl

j∈Ω−

ε(j)φ1(i)φ2 (i′) , (6.14)
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where φk(i) and ε(j) are, respectively, node- and edge-based quantities. With use of these

identities, eq. (6.11) may be reformulated as

dM0

dt
= δ(t) +

∑
j∈EΓl

j∈Ω+

P0(i)d(j) [A(i′)− A(i)] +
∑
i∈Γl

[
K̄ − k(i)

]
v(i)A(i)P0(i)+

+
∑

j∈EΓl

j∈Ω−

P0(i) [c(j) + d(j)] [A(i′)− A(i)] . (6.15)

In order that M0 be conserved for all times, the summations appearing on the right-hand

side of eq. (6.15) must vanish; explicitly,

∑

j∈Ω+(i)
j={i′,i}

d(j) [A(i′)− A(i)] +
∑

j∈Ω−(i)
j={i,i′}

[c(j) + d(j)] [A(i′)− A(i)] +

+
[
K̄ − k(i)

]
v(i)A(i) = 0. (6.16)

Equation (6.16), governing A(i), may be restated in compact form as

{
k− v−1 · [D · d−Π(−) · c] ·D†} ·A =K̄A, (6.17)

where A is an n× 1 row vector whose elements are the fictitious initial nodal conditions

embodied in A(i) (i = 1, 2, . . . , n). The convection and diffusion matrices, c and d, were

defined previously in eq. (5.19). The volume matrix, v,2 and reaction matrix, k, are

defined as

v
def.
= v(i)δi,j, k

def.
= k(i)δi,j. (6.18)

Equation (6.17) constitutes an eigenvalue problem for simultaneously computing the

eigenvalues K̄ and eigenvectors A(i). The scheme for identifying the one, physically rel-

evant eigenvalue K̄, as well as the required normalization of the corresponding physically

2It will be clear from context whether the symbol v refers to the volume matrix (6.18) or the volume
vector (5.22).
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relevant eigenvector A, will be specified in the following section.

With use of eq. (6.16), temporal integration of (6.15) demonstrates that

M0 =





0, t < 0,

1, t ≥ 0,
(6.19)

whereupon M0 is indeed seen to be conserved for all times (independently of i0). A

generic equation governing the weighted global moments may also be derived with use

of eq. (6.16). To do so, multiply (6.4) by A(i), sum over i ∈ Γl, and use eqs. (6.13) and

(6.14), thereby obtaining the expression

dMm

dt
= δm,0δ(t) +

∑
i∈Γl

A(i)Γm(i). (6.20)

6.3 Asymptotic, Long-Time Limits

The following section furnishes the asymptotic, long-time limits of the first few local and

global moments of the non-reactive probability density. By “long-time” is meant that

the residence time, tR, of the solute in the network is long compared with the diffusion

time scale; that is tR À l2/Dm, where l denotes a characteristic linear dimension of

the unit cell [typically the magnitude of a macroscopic jump vector, |R(j)|] and Dm is

the molecular diffusivity of the solute (Brenner & Edwards 1993). A further criterion

imposed upon the definition of long-time behavior will be established later [cf. eq. (6.24)].

6.3.1 Zeroth-Order Moments

For sufficiently long times, the zeroth-order local moment (6.3) assumes the asymptotic

form

P0(i, t | i0) ≈ P∞
0 (i) + exp, (6.21)
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for all i0, where “exp” denotes temporal terms that are exponentially small for sufficiently

long times. The asymptotic probability density, P∞
0 (i), is independent of time as well as

of the initial local position, i0. The validity of eq. (6.21) has been established by Shapiro

& Brenner (1986, 1988) via the use of eigenfunction expansions.

Substitute eq. (6.21) into eq. (6.4), set m = 0, and use eq. (6.6) to obtain the difference

equation governing P∞
0 (i), namely

L [P∞
0 (i)] = 0. (6.22)

The latter may be recast into the compact matrix form,3

{
k− v−1 ·D·

[
(c + d) · (Π(−)

)† − d· (Π(+)
)†]} ·P =K̄P, (6.23)

where P is the n× 1 row vector composed of the asymptotic probability densities, P∞
0 (i)

(i = 1, 2, . . . , n). Similar to eq. (6.17), eq. (6.23) constitutes an eigenvalue problem

posed for P∞
0 (i) and K̄. The eigenvalue with the smallest real part (corresponding to

the slowest decaying mode of the full solution) is identified as the effective reaction rate

K̄∗ (Dungan et al. 1990, Shapiro & Brenner 1986, 1988).4 For all physical circumstances,

the eigenvalue possessing the smallest real part is pure real (Shapiro & Brenner 1986,

1988). Moreover, the solution of this eigenvalue problem furnishes a second criterion

quantifying what is meant by the phrase “long-time behavior.” Upon denoting the

second smallest eigenvalue of eq. (6.23) as K̄1, we require the residence time to satisfy

the inequality

tR À
(
K̄∗)−1 − K̄−1

1 , (6.24)

3The cocycle space is not invoked for computing the vector P in the reactive case since the eigenvalue
problem (6.23) is specified completely.

4By way of example, Batycky et al. (1996) illustrate the dominance of the slowest decaying mode by
comparing the (asymptotic) macrotransport solution for a non-adiabatic unsteady heat transfer process
with its exact trigonometric function expansion. Moreover, their analysis clearly illustrates the necessity
for incorporating the notion of a fictitious initial condition into effective-medium models, such as in the
present macrotransport model.
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whereupon the effective transport process is dominated by the eigenvalue with the small-

est real part, K̄∗.

As shown below, the eigenvalue problems posed for P∞
0 (i) (6.22) and A (i) (6.16) are

adjoint. Thus, let K̄P and K̄A, respectively, be eigenvalues of eqs. (6.22) and (6.16).

Upon multiplying eq. (6.16) by P∞
0 (i), eq. (6.22) by A (i), and summing both results over

i ∈ Γl, we see that K̄P = K̄A. Consequently, the appropriate fictitious initial condition

A(i) is the eigenvector of eq. (6.16) corresponding to the eigenvalue K̄ = K̄∗.

The eigenvalue problems governing P∞
0 (i) and A(i) only specify each of these two

fields (eigenvectors) to within arbitrary, constant multipliers. These multipliers may

be uniquely determined by applying the normalization conditions (Dungan et al. 1990),

namely

∑
i∈Γl

v(i)P∞
0 (i) = 1, (6.25)

∑
i∈Γl

v(i)A(i)P∞
0 (i) = 1. (6.26)

To verify that the weighted and unweighted zeroth-order global moments are indistin-

guishable at long times, substitute the asymptotic solution (6.21) into eq. (6.9), together

with the normalization condition (6.25). This demonstrates that our choice of K̄ and

A(i0) conserves M ′
0 for long times, at least to within exponentially small terms; explicitly,

M ′
0 ≈ 1 + exp, (6.27)

for all i0. Moreover, the ability to formulate consistent results for M0, eq. (6.19), and M ′
0,

eq. (6.27), verifies the change in variables (6.1), thereby confirming our prior assertion

that the solute is eventually depleted completely at each and every node, and hence

throughout the network as a whole.
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6.3.2 First-Order Moments

Mean Velocity Vector Ū∗

The mean velocity of the reactive tracer through the network is determined from knowl-

edge of the asymptotic limit of the rate of growth of the first global moment via the

generic expression (Dungan et al. 1990),

Ū∗ = lim
t→∞

dM1

dt
. (6.28)

Substitute eq. (6.7) into eq. (6.20), set m = 1, and use eqs. (6.14) and (6.21) to obtain

Ū∗=
∑

j∈EΓl

j∈Ω+

c(j)R (j) A(i)P∞
0 (i′) + d(j)R (j) [A(i)P∞

0 (i′)− A(i′)P∞
0 (i)] . (6.29)

Derivation of the B-equation

Subject to a posteriori verification, assume the following trial solution for the first-order

local moment:

P1(i) ≈ P∞
0 (i)

[
Ū∗t + B(i)

]
+ exp, (6.30)

where B (i) is a node-based field to be determined. Substitution of eq. (6.30) into eq.

(6.10), together with the choice m = 1, furnishes the weighted first-order global moment,

M1 ≈ Ū∗t +
∑
i∈Γl

v(i)A(i)P∞
0 (i)B(i) + exp. (6.31)

The difference equation governing B(i) is derived by substituting the trial solution

(6.30) into eq. (6.4), setting m = 1, and using eq. (6.7). Elimination of time-dependent

terms via eq. (6.22), and reactive terms via the product of B (i) with eq. (6.22), eventually
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yields

∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)] P∞
0 (i′) [B(i′)−B(i)]−

−
∑

j∈Ω−(i)
j={i,i′}

d(j)P∞
0 (i′) [B(i)−B(i′)] = v(i)P∞

0 (i)Ū∗−α(i), (6.32)

with α(i) the node-based vector,

α(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R (j) P∞
0 (i′)−

∑

j∈Ω−(i)
j={i,i′}

d(j)R(j)P∞
0 (i′). (6.33)

Equation (6.32) defines the B field only to within an arbitrary additive constant vector

(Brenner & Edwards 1993), whose value ultimately proves irrelevant when computing the

dispersivity [cf. eq. (6.52)]. Consequently, the resulting degree of freedom may be utilized

so as to conveniently allow an arbitrary reference node, say i∗, to be chosen such that

B (i∗) = 0. With the latter specification, the (n− 1) equations generated by (6.32) for

i 6= i∗ suffice to determine the remaining vectors B (i).5

Subsequent calculations [cf. eq. (6.52)] necessitate introducing the edge-based vector

field,

b(j)
def.
= B(i)−B(i′),

{
j ∈ Ω+(i)

}
, (6.34)

defined such that edge j has its initial vertex at i′ and its terminal vertex at i. The m

vectors, b(j), may be computed from the solution of the (n− 1) equations generated by

eq. (6.32), together with the m definitions from eq. (6.34). Alternatively, a difference

5In the non-reactive network theory of Chapter 5, the cocycle space was invoked to provide a formal
mechanism for choosing the reference node i∗. While this technique remains valid for the present reactive
case, subsequent simplifications of the B-equations will render the utility of such a formalism moot.
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equation may be derived for b (j) by substituting eq. (6.34) into eq. (6.32), so as to obtain

∑

j∈Ω−(i)
j={i,i′}

d(j)P∞
0 (i′)b(j)−

∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)] P∞
0 (i′)b(j) = v(i)P∞

0 (i)Ū∗−α(i). (6.35)

However, the n equations contained in eq. (6.35) generally prove insufficient to solve for

all m vectors b(j), since, for all but the most trivial networks, m > n. Consequently,

it is necessary to augment the (non-square) coefficient matrix by noting that the sum of

the b vectors vanishes along any cycle of the graph,

∑

j∈cycle

b(j) = 0. (6.36)

Superposition of the n equations provided by eq. (6.35), together with the (m− n)

independent cycles chosen from eq. (6.36), completely specifies the b vectors.

To reformulate the B-equations in matrix form, define the pair of n×m conditioned

connectivity matrices,

Π̃
(+)
ij

def.
=





P∞
0 (i′) if edge j is directed from i′ to i,

0 otherwise;
(6.37)

Π̃
(−)
ij

def.
=





P∞
0 (i′) if edge j is directed from i to i′,

0 otherwise.
(6.38)

With use of the latter, the (non-square) equation set (6.35) governing b adopts the form

[
Π̃(−) · d− Π̃(+) · (c + d)

]
· b = v ·P · Ū∗ −

[
Π̃(+) · (c + d)− Π̃(−) · d

]
·R. (6.39)

Conversion between b and B is accomplished via the transformation

b = D† ·B, (6.40)
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whereupon eq. (6.32) adopts the matrix form,

[
Π̃(−) · d− Π̃(+) · (c + d)

]
·D† ·B = v ·P · Ū∗−

[
Π̃(+) · (c + d)− Π̃(−) · d

]
·R. (6.41)

The time-independence of eqs. (6.32) and (6.35) confirms, a posteriori, the assumed

trial solution (6.30) for P1 as well as the resulting expression (6.31) for M1. Conse-

quently, the unweighted first-order global moment may be computed from eq. (6.9) (with

m = 1) together with eqs. (6.25) and (6.30), yielding

M′
1 ≈ Ū∗t + B̄ + exp, (6.42)

where the time- and position-independent vector B̄ is of the form

B̄ =
∑
i∈Γl

v(i)P∞
0 (i)B(i). (6.43)

Differentiation of eqs. (6.31) and (6.42) with respect to time reveals that the temporal

rates of change of M1 and M′
1 differ only by exponentially small terms at long times.

6.3.3 Second-Order Moments

The difference equation governing the weighted second-order global moment, M2, is

derived from eq. (6.20) with m = 2. Making use of eqs. (6.8), (6.14), (6.21), (6.29) and

(6.30), thereby obtains

dM2

dt
≈ 2Ū∗Ū∗t + 2 sym





∑
j∈EΓl

j∈Ω+

[c(j) + d(j)] A(i)P∞
0 (i′)




1
2
R(j)R(j)+

+R(j)B(i′)








+

+ 2 sym





∑
j∈EΓl

j∈Ω+



d(j)A(i′)P∞

0 (i)




1
2
R(j)R(j)−
−R(j)B(i)












+ exp. (6.44)
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Subject to a posteriori verification, assume a trial solution for the second-order local

moment, P2, of the form6

P2(i) ≈ P∞
0 (i)

{
Ū∗Ū∗t2 + 2 sym

[
Ū∗B(i)

]
t + 2D̄∗t + H(i)

}
+ exp, (6.45)

with the constant dyadic D̄∗ and dyadic field H(i) to be determined forthwith.

To compute D̄∗, form the weighted second-order global moment from eqs. (6.10), with

order m = 2, and (6.45), and differentiate the resulting expression with respect to time,

so as to obtain

dM2

dt
≈ 2Ū∗Ū∗t + 2D̄∗ + 2 sym

∑
i∈Γl

v(i)P∞
0 (i)A(i)Ū∗B(i) + exp. (6.46)

The summation appearing in eq. (6.46) may be simplified by forming the product of eq.

(6.32) with A(i)B(i), and subsequently summing the result over i ∈ Γl, thereby yielding

2 sym

[∑
i∈Γl

v(i)P∞
0 (i)A(i)Ū∗B(i)

]
= 2 sym

[∑
i∈Γl

α(i)A(i)B(i)

]
+ 2 sym (E) , (6.47)

where E is the constant dyadic

E =
∑

j∈EΓl

j∈Ω+

[c(j) + d(j)] P∞
0 (i′)A(i)B(i) [B (i′)−B(i)]−

−
∑

j∈EΓl

j∈Ω−

d(j)P∞
0 (i′)A(i)B(i) [B(i)−B(i′)] . (6.48)

The dyadic E may itself be simplified upon multiplying eq. (6.22) by A(i)B(i)B(i) and

eq. (6.16) by P∞
0 (i)B(i)B(i), summing both results over i ∈ Γl with use of the identity

6It is necessary to consider the local moment P2 in the reactive case (Shapiro & Brenner 1988) in
order to show that the different global moments M2 and M

′
2 only differ by exponentially small terms at

long times. We did not consider P2 in the non-reactive case since, by definition, M2 = M
′
2.
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(6.14), and forming their difference, so as to obtain the expression

∑
j∈EΓl

j∈Ω+

{[c(j) + d(j)] A(i)P∞
0 (i′)− d(j)A(i′)P∞

0 (i)} [B(i)B(i)−B(i′)B(i′)] = 0. (6.49)

Upon adding the null result (6.49) to eq. (6.48), and using the definition (6.34), the

symmetric portion of E is found to possess the form

2 sym (E) = −
∑

j∈EΓl

j∈Ω+

{[c(j) + d(j)] A(i)P∞
0 (i′) + d(j)A(i′)P∞

0 (i)}b(j)b(j). (6.50)

Equation (6.47) may be further simplified by using eq. (6.33) jointly with the identity

(6.14) to show that

∑
i∈Γl

α(i)A(i)B(i) =
∑

j∈EΓl

j∈Ω+





[c(j) + d(j)]R(j)A(i)P∞
0 (i′)B(i)−

−d(j)R(j)A(i′)P∞
0 (i)B(i′)



 . (6.51)

Upon comparing eq. (6.44) with our trial solution (6.46), and making use of eqs.

(6.47), (6.50) and (6.51), as well as the identity (6.14), there results the expression

D̄∗=
1

2

∑
j∈EΓl

j∈Ω+

{c(j)A(i)P∞
0 (i′) + d(j) [A(i)P∞

0 (i′) + A(i′)P∞
0 (i)]} b̃(j)b̃(j), (6.52)

where the vector b̃(j) is defined as it was in the non-reactive case,

b̃(j)
def.
= R(j)−b(j). (6.53)

Moreover, we see that D̄∗ represents the solute dispersivity dyadic, inasmuch as D̄∗ may

also calculated from its definition (Dungan et al. 1990), namely

D̄∗ =
1

2
lim
t→∞

d

dt
(M2 −M1M1) . (6.54)
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The latter is seen to accord with the result (6.52) upon use of eqs. (6.31) and (6.46).

Equation (6.52) enforces an equality between the trial solution (6.46) and its derived

formula (6.44). Consequently, a posteriori verification of the trial solution (6.45) is

completed by deriving a solvable difference equation for H (i) (Shapiro & Brenner 1988).

To do so, substitute the trial solution (6.45) into eq. (6.4), with m = 2, and use eq. (6.8).

Removing the time-dependent terms via eqs. (6.22) and (6.32), and subsequently sub-

stituting for the reaction term upon multiplying eq. (6.22) by H(i), ultimately furnishes

the governing equation for H (i), namely

∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)] P∞
0 (i′) [H(i′)−H(i)]−

∑

j∈Ω−(i)
j={i,i′}

d(j)P∞
0 (i′) [H(i)−H(i′)] = β(i),

(6.55)

with β(i) the symmetric forcing function

β(i) = 2 sym





v(i)P∞
0 (i)

[
Ū∗B(i) + D̄∗]−

−
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)] P∞
0 (i)

[
1

2
R(j)R(j) + R(j)B(i′)

]
−

−
∑

j∈Ω−(i)
j={i,i′}

d(j)P∞
0 (i′)

[
1

2
R(j)R(j)−R(j)B(i′)

]





. (6.56)

Inasmuch as the structure of eq. (6.55) is identical to that of eq. (6.32), eq. (6.55) will

possess a solution if eq. (6.32) itself possesses a solution. As was the case in the original

development (Shapiro & Brenner 1987) of this moment technique, computing H proves

unnecessary. Indeed, we have already derived formulas for all the relevant macrotrans-

port parameters without prior knowledge of H. Rather, the demonstrated existence of

the latter time-independent, solvable equation (6.55) simply completes the a posteriori

verification of eq. (6.45).

The latter verification permits computing M′
2 by substituting eq. (6.45) into eq. (6.9),
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choosing m = 2, and invoking eqs. (6.25) and (6.43). Thereby, one obtains

M′
2 ≈ Ū∗Ū∗t2 + 2 sym

(
B̄Ū

∗)
t + 2D̄∗t +

∑
i∈Γl

v(i)P∞
0 (i)H(i) + exp. (6.57)

Differentiation of the latter with respect to time, followed by subsequent comparison of

the resulting expression with eq. (6.46), reveals that the time rates of change of M2 and

M′
2 differ only by exponentially small terms at long times.
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Chapter 7

Recapitulation

This chapter presents a concise summary of the discrete macrotransport theory developed

in Part I of this thesis. The particular forms of the governing equations and summations

are chosen for their pedagogical value. Alternative forms of the equations, including their

reformulation in compact matrix notation, may be found in the context of the derivations

of the previous two chapters.

7.1 Non-Reactive Transport

Mean Solute Velocity Vector [eq. (5.25)]:

Ū∗ =
∑

j∈EΓl

j∈Ω+

c(j)R(j)P∞
0 (i′) + d(j)R(j) [P∞

0 (i′)− P∞
0 (i)] . (7.1)

Dispersivity Dyadic [eq. (5.47)]:

D̄∗ =
1

2

∑
j∈EΓl

j∈Ω+

{c(j)P∞
0 (i′) + d(j) [P∞

0 (i′) + P∞
0 (i)]} b̃(j)b̃(j). (7.2)
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P∞
0 (i)-Field [eqs. (5.17)-(5.18)]:

∑

j∈Ω+(i)
j={i′,i}

c(j)P∞
0 (i′) + d(j) [P∞

0 (i′)− P∞
0 (i)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P∞
0 (i) + d(j) [P∞

0 (i)− P∞
0 (i′)] = 0, (7.3)

∑
i∈V Γl

v(i)P∞
0 (i) = 1. (7.4)

B(i)-Field [eqs. (5.27), (5.28), (5.35) and (5.46)]:

∑

j∈Ω+(i)
j={i′,i}

c(j)P∞
0 (i′)B (i′) + d(j) [P∞

0 (i′)B (i′)− P∞
0 (i)B(i)]−

−
∑

j∈Ω−(i)
j={i,i′}

c(j)P∞
0 (i)B (i) + d(j) [P∞

0 (i)B(i)− P∞
0 (i′)B(i′)] = v(i)P∞

0 (i)Ū∗ − α(i),

(7.5)

α(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R(j)P∞
0 (i′)−

∑

j∈Ω−(i)
j={i,i′}

d(j)R(j)P∞
0 (i′) , (7.6)

B(i∗) = 0, (7.7)

b(j)
def.
= B(i)−B(i′) (j = {i′, i}) , (7.8)

b̃(j) = R(j)− b(j). (7.9)
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7.2 Reactive Transport

Mean Solute Velocity Vector [eq. (6.29)]:

Ū∗=
∑

j∈EΓl

j∈Ω+

c(j)R (j) A(i)P∞
0 (i′) + d(j)R (j) [A(i)P∞

0 (i′)− A(i′)P∞
0 (i)] . (7.10)

Dispersivity Dyadic [eq. (6.52)]:

D̄∗=
1

2

∑
j∈EΓl

j∈Ω+

{c(j)A(i)P∞
0 (i′) + d(j) [A(i)P∞

0 (i′) + A(i′)P∞
0 (i)]} b̃(j)b̃(j). (7.11)

Mean Reaction Rate

K̄∗ = min
{
Re

(
K̄

)}
. (7.12)

Characteristic Eigenvalue Problem for P∞
0 (i) and K̄ [eqs. (6.22) and (6.25)]:

∑

j∈Ω+(i)
j={i′,i}

c(j)P∞
0 (i′) + d(j) [P∞

0 (i′)− P∞
0 (i)]−

−
∑

j∈Ω−
j={i,i′}

c(j)P∞
0 (i) + d(j) [P∞

0 (i)− P∞
0 (i′)]

+
[
K̄ − k(i)

]
v(i)P∞

0 (i) = 0, (7.13)

∑
i∈Γl

v(i)P∞
0 (i) = 1. (7.14)

Adjoint Eigenvalue Problem for A(i) [eqs. (6.16) and (6.26)]:

∑

j∈Ω+(i)
j={i′,i}

d(j) [A(i′)− A(i)] +
∑

j∈Ω−(i)
j={i,i′}

[c(j) + d(j)] [A(i′)− A(i)] +

+
[
K̄ − k(i)

]
v(i)A(i) = 0, (7.15)
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∑
i∈Γl

v(i)A(i)P∞
0 (i) = 1. (7.16)

B(i)-Field [eqs. (6.35), (6.36) and (6.53)]:

∑

j∈Ω−(i)
j={i,i′}

d(j)P∞
0 (i′)b(j)−

∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)] P∞
0 (i′)b(j) = v(i)P∞

0 (i)Ū∗−α(i), (7.17)

∑

j∈cycle

b(j) = 0, (7.18)

b̃(j) = R(j)− b(j). (7.19)
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Part II

Applications
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Chapter 8

Illustrative Examples

8.1 Introduction

Up to the present juncture, this thesis has focused upon the development of a generic dis-

crete theory for the Taylor-Aris dispersion analysis of microfluidic networks and model

porous media, culminating in Chapter 7 with a pair of computational paradigms for

computing the mean transport rates for non-reactive and reactive solute transport, re-

spectively. The formulae derived in these chapters possess generic applicability, being

limited only by the assumptions which are inherent in the construction of a graphi-

cal network model and the lumped-parameter model invoked to approximate the true

microscale transport phenomena. The latter assumptions were discussed in detail in

Chapters 1 and 3.

In the second part of this thesis, we apply the general results of our theoretical

development to several specific examples. The goal of the present chapter is to illustrate

the calculational mechanics of the scheme within the context of (i) a simple microfluidic

device, the serpentine microchannel; and (ii) a model reactive porous medium. Both

calculations are performed in exhaustive detail in the following two sections, and the

results are shown to compare favorably with intuition, as well as existing theories for

macroscopic transport phenomena in such media.
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The computational simplicity of the scheme, as illustrated by the following examples,

motivates the application of our scheme to case studies involving experimentally realized

microfluidic separation processes, these being the subjects of Chapter 9 and 10. The first

of these chapters elucidates the fundamental separation mechanisms which give rise to

vector chromatography in microlithographic arrays. The ultimate result for the mean

angle pursued by the Brownian particle, which accounts for both the asymmetry of the

array and the finite size of the particle, represents a substantial improvement over existing

ad hoc models for these separations (Duke & Austin 1998, Ertas 1998). In the second

practical example, we apply our network theory to the analysis of entropic trapping

devices (Han & Craighead 1999, 2000, 2002, Han et al. 1999). Satisfactory agreement

with existing experimental results is obtained, even when employing the simplest possible

network model of these devices.

Both the vector chromatography chips and entropic trapping devices are modeled

using the simple network theory developed in §5.4. The analytical simplicity of the

simple network, especially when compared to equivalent continuous generalized Taylor-

Aris dispersion models of this type investigated previously by Dorfman & Brenner (2001),

points up an important advantage of the present discrete theory. Indeed, the calculations

which comprise the second part of this thesis make evident the fact that this discrete

scheme, albeit less accurate than the detailed, pointwise continuous theory, is more readily

applicable to engineering analyses of complex media. Further a posteriori motivations

for applying the discrete theory are discussed in Chapter 11.

8.2 Dispersion in Serpentine Microchannels

By way of presenting an “elementary,” independently confirmable, illustrative exam-

ple, the present section furnishes an explicit network theory calculation of the mean

velocity and dispersivity accompanying pressure-driven flow occurring in a serpentine

microchannel, as depicted in Fig. 8-1. Such devices, currently proposed for compact
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a

b c

d

l1

l2

H

l1 = iXlX

x,X

y

Figure 8-1: Rectangular serpentine channel comprised of infinitely extended parallel
plates of constant channel width H (and area A, A/H2 À 1). Channels oriented locally
in the x- and y- direction are respectively of lengths l1 and l2. The unit cell of length lX
in the X-direction is indicated by the dashed box, with the periodicity and net particle
transport processes occuring solely in the direction of the unit vector iX. Alternating
shaded/unshaded regions correspond to the nodes in the local graph of Fig. 8-2.

chromatographic separations on microchips (Culbertson et al. 1998), have been analyzed

elsewhere by Rush et al. (2002) within the framework of classical continuous Taylor-Aris

dispersion theory for spatially periodic systems. The latter study will prove useful for

verifying our discrete results in some limiting cases via comparison with the equivalent

continuous results.

The network is chosen to consist of a rectangular collocation of channels possessing

constant cross-sectional width H (and area A, A/H2 À 1), arranged with period lX

in the global X-direction (−∞ < X < ∞). Channels oriented locally within the unit

cell in the x- and y-directions possess lengths l1 and l2, respectively, with all channel

intersections possessing equal volume. The total volume τ0 of the unit cell accessible to

the particle is written as the product of the channel area A and a characteristic linear

(arc length) dimension ls, τ0 = Als.

Particle transport is animated by imposing a uniform macroscopic axial pressure
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a b c d
1 2 3

4

Figure 8-2: Local graph for the serpentine channel. The convective transport coefficient
for all edges is equal to the volumetric fluid flow rate, c = Q. Edges 1 and 3 are oriented
in the y-direction with diffusive transport coefficient dy = DA/l2, whereas edges 2 and 4
are oriented in the x-direction with diffusive transport coefficient dx = DA/l1.

gradient upon the interstitial fluid, giving rise to a mean solvent (and hence entrained

solute particle) velocity v̄ within the individual channels. The dispersed particles, en-

trained in the solvent flow, are assumed to be point-size in comparison with the channel

cross-sectional width, whereupon no hydrodynamic wall effects arise in the subsequent

calculations. Consequently, the molecular diffusivity of the particles in the channels

is taken to be the constant scalar value Dm. Since the net particle (and fluid) trans-

port is necessarily unidirectional, taking place in the X-direction, scalar notation will

be employed in what follows, with the tacit understanding that all vectors and dyadics

appearing within the general theory are directed entirely along the X-axis.

Figure 8-2 depicts the local graph derived from the “continuous” portrayal in Fig.

8-1. Each node consists of one-half the volume of both an x- and y-directed channel,

together with an intersection, so that the nodal volumes are all equal: v(i) = τ0/4 for all

i. The geometry of the serpentine configuration is captured by the following incidence
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matrix, cocycle matrix and macroscopic jump vector for the local graph:

D =




−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1




, K =




−1 1 0

0 −1 1

0 0 −1

1 0 0




, R =




0

0

0

lX




. (8.1)

The mean velocity v̄ in the channels specifies the edge convection parameter, c(j) =

Q ≡ v̄A for all j, and edge diffusivities, d(1) = d(3) = dy and d(2) = d(4) = dx, wherein,

dx =
DA

l1
, dy =

DA

l2
, (8.2)

with D the channel-scale Taylor-Aris dispersivity prevailing within the pair of channel

types. For a bounded, parallel-plate configuration of effectively infinite aspect ratio

(A/H2 À 1), the channel-scale dispersivity possesses the form (Pagitsas et al. 1986)1

D = Dm +
1

210

(v̄H)2

Dm

f

(
A

H2

)
, (8.3)

with f(A/H2) = 7.951 in the large aspect ratio limit.

The governing matrix equation for the P∞
0 (i) appearing in eq. (5.23) is of the form




−ϕ dy 0 Q + dx

Q + dy −ϕ dx 0

0 Q + dx −ϕ dy

τ0/4 τ0/4 τ0/4 τ0/4



·




P∞
0 (a)

P∞
0 (b)

P∞
0 (c)

P∞
0 (d)




=




0

0

0

1




, (8.4)

1An explicit form for the l-scale (interstitial-scale) dispersivity D is presented here for completeness.
The L-scale dispersivity D̄∗ will ultimately prove expressible as the ratio D̄∗/D, irrespective of the exact
functional form, namely (8.3), adopted for D to characterize the l-scale channel dispersion process. This
is an important charactersitic of this discrete theory; namely, the fine scale processes embodied in eq.
(8.3) are not explicitly resolved by our calculation scheme. Rather, our calculations serve to furnish the
additional contribution of the network connectivity to the fine-scale dispersion processes.
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with ϕ the parameter

ϕ = Q + dx + dy. (8.5)

Clearly, eq. (8.4) possesses the solution P∞
0 (i) = τ−1

0 for all i. Substitution into eq. (5.25)

furnishes the L-scale mean velocity through the serial sequence of serpentine channels:

Ū∗ = τX v̄, (8.6)

where the dimensionless parameter τX = lX/ls represents the “tortuosity” ls of the chan-

nel projected onto the X-axis, the direction of net solute (and solvent) transport. The

mean velocity Ū∗ given by eq. (8.6) is identical to that obtained alternatively via contin-

uous Taylor dispersion theory by Rush et al. (2002), as well as from intuitive arguments

based upon the nominal holdup time of the solvent (and hence of the particle) as the

fluid traverses a serpentine unit cell.

The structure of the cocycle matrix (8.1) identifies B(i∗) = B(d). Consequently, eq.

(5.34) possesses the explicit form:




−ϕ dy 0

Q + dy −ϕ dx

0 Q + dx −ϕ


 ·




B(a)−B(d)

B(b)−B(d)

B(c)−B(d)


 =




−3
4
QlX − dxlX

1
4
QlX

1
4
QlX


 , (8.7)

whose solution, in terms of the β− vector, is:

β−(j) =
lX
4V




4Dl2 + 3v̄l1l2 + 2Dl1
D (l1 + l2) + v̄l1l2

2

l2 (v̄l1 + 2D)

D (l1 + l2) + v̄l1l2

0




. (8.8)
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Conversion to B via eq. (5.35) is accomplished by means of the transformation matrix,

B− = (P∞
0 )−1




−1 1 0 0

0 −1 1 0

0 0 −1 0

1 0 0 0




. (8.9)

After transforming to b̃ via eq. (5.46), application of eq. (5.47) furnishes the dispersivity,

D̄∗

D
=

τ 2
X

8

[
4 + 2τ1τ2PeT + τ1τ2Pe2

T

τ1 + τ2 + τ1τ2PeT

]
, (8.10)

wherein appear the following dimensionless parameters:

PeT
def.
=

v̄ls
D

, (8.11)

τ1 = l1/ls, and τ2 = l2/ls. The latter pair represent the channel contributions to the

tortuosity. The parameter PeT has been referred to elsewhere as the Taylor- (Sorbie &

Clifford 1991) or macroscale- (Koplik et al. 1988) Peclet number.

The limiting behavior displayed by eq. (8.10) in the respective cases PeT ¿ 1 and PeT

À 1 accords with results obtained previously via classical continuous theories. Thus,

Rush et al. (2002) examined the dispersion occurring in (intersection-free) serpentine

microchannels in the limit of two-dimensional parabolic Poiseuille flow everywhere within

the network, corresponding here to the limits l1 → lX/2, l2 → (ls−lX)/2, and PeT → 0.

The vanishingly small Peclet number in this limit implies a diffusion dominated process,

where the ensuing rapid diffusive mixing renders the graph-theoretical description of the

transport process essentially indistinguishable from the exact continuous description. In

this limit,

D̄∗ = τ 2
XD, (8.12)

in accord with the prior conclusions of Rush et al. (2002), as well as with existing formulas

129



for the effective molecular diffusivity occurring in tortuous porous media in the strict

non-convective limit, v̄ → 0 (van Brakel 1975).

In the opposite, infinite Taylor-Peclet number limit, PeT →∞, eq. (8.10) reduces to

D̄∗

Dm

=

(
τX ls
8H

)
Pe =

(
lX
8H

)
Pe, (8.13)

with Pe the Peclet number, now based upon the molecular diffusivity,

Pe
def.
=

v̄H

Dm

. (8.14)

The dispersivity/molecular diffusivity ratio appearing in eq. (8.13) scales linearly with

Peclet number, with the proportionality coefficient functionally dependent upon the ex-

plicit array configuration. This conclusion accords with prevailing theories for convection-

or hydrodynamically-dominated dispersion (“mechanical dispersion”) occurring in tortu-

ous porous media (Bear 1972, Koch & Brady 1985).

8.3 Reactive Transport in a Model Porous Medium

8.3.1 Kinematics

In this second detailed example, the general paradigm developed in Chapter 6 is applied to

the model porous medium network depicted in Fig. 8-3. This medium may be envisioned

as being composed of a pair of infinitely-extended parallel rows of wells, where the wells

are connected via thin capillary tubes in the manner indicated in the figure. The

centroids of the wells are separated by a distance l. When solute is present in well a,

it is assumed to be depleted by a chemical reaction at the uniform rate k (k > 0). The

capillaries connecting these wells possess respective cross-sectional areas A and lengths

λl (λ < 1). Transport occurs within all channels by molecular diffusion, quantified by

the diffusion coefficient Dm. Application of the externally applied force F gives rise to
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3

2
1

Reactive volume
element, k(i) = k

Non-reactive
volume element,

k(i) = 0

F
x

y

Unit cell

b' b

a

Figure 8-3: Basic graph of a model reactive porous medium. The unit cell, indicated by
the dashed box, consists of two nodes, labeled a and b, connected by edges j = {1, 2, 3}.
A reactive solute molecule possessing molecular diffusivity Dm is assumed not to react
when present in subvolume element v(b), owing, say, to the absence of a catalyst there,
and to be consumed at the rate k (k > 0) when present in subvolume element v(a),
owing, say, to the presence of a catalyst. Application of an externally applied force of
magnitude F in the x-direction gives rise to deterministic solute transport exclusively
through edge 3.
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solute transport in the x-direction. The solute is assumed to be point-size, whereupon

no contribution arises from capillary-scale Taylor-Aris dispersion owing to the absence of

a solvent velocity field.

The periodic unit cell, indicated by the dashed box, consists of the pair of nodes,

i = {a, b}, characterized by the parameters

v = τ 0


 φa 0

0 φb


 , k =


 k 0

0 0


 , (8.15)

where τ0 = v(a) + v(b) is the (accessible) volume of the unit cell, and φa and φb are the

volume fractions of nodes a and b, respectively. The nodes are connected by a trio of

edges, j = {1, 2, 3}, whose edge transport rates (5.19) and macroscopic jump vector are

respectively given by

c =
DmFA

kT




0 0 0

0 0 0

0 0 1


 , d =

DmA

λl




1 0 0

0 1 0

0 0 1


 , R =l




x̂

0

x̂


 , (8.16)

with kT the Boltzmann factor.

In what follows, it is useful to define the dimensionless parameters

φe
def.
=

Al

λτ0

, Da
def.
=

kl2

Dm

, Pe
def.
=

Fl

kT
, (8.17)

which respectively correspond to the volume fraction of the edges, and the microscale

Damkohler and Peclet numbers.
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8.3.2 Macrotransport Solution

With the geometrical and phenomenological microscale transport data now specified, the

eigenvalue problem (6.23) may be rendered in dimensionless form as


 2φe

φa
+ Da −2φe

φa

−2φe

φ̇b
2φe

φ̇b


 ·


 P∞

0 (a)

P∞
0 (b)


 =

K̄l2

Dm


 P∞

0 (a)

P∞
0 (b)


 . (8.18)

Upon defining the macroscopic Damkohler number as

Da
def.
=

K̄∗l2

Dm

, (8.19)

the solution of the eigenvalue problem (8.18) reveals that2

Da =
φe

φaφb

+
Da

2
−

[(
φe

φb

−Da

)2

+
φe

φa

Da +
φ2

e

φ2
aφb

(1 + φa)

] 1
2

. (8.20)

From inspection, we see that Da vanishes with Da; likewise, Da approaches infinity

linearly as Da approaches infinity. Figure 8-4 displays numerical values of Da (as a

function of Da) for several different values of φa. Da is seen to increase with Da (the

apparent asymptotes appearing at Da ≈ 10 being artifacts of the semi-log plot). Owing

to the fact that molecular diffusion is the sole mechanism for transporting solute into the

reactive well, the overall reaction rate is much slower than that prevailing in well a. By

increasing the volume of the reactive well, thereby increasing the solute residence time

therein, Da will increase monotonically, all other things being equal.

With use of eq. (6.25), the normalized (dimensionless) eigenvectors corresponding to

2The larger eigenvalue, corresponding to the more rapidly decaying transient, is similar to eq. (8.20)
with a positive square root term. As was to be expected, the smallest eigenvalue is pure real.
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Figure 8-4: Plot of the macroscale Damkohler number, Da, as a function of the microscale
Damkohler number, Da, for several values of the volume fraction of the reactive well, φa,
and for the specified geometric attributes shown in the inset.
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the smallest eigenvalue (8.20) are, respectively,

P∞
0 (a)τ0 =

φa − γ

φa (1− γ)
, (8.21)

P∞
0 (b)τ0 = (1− γ)−1 , (8.22)

where γ denotes the following combination of dimensionless parameters:

γ ≡ φaφb

2φe

Da. (8.23)

Substitution of eq. (8.20) into eq. (6.17), together with explicitly incorporating the

normalization condition (6.26) in the first row (in lieu of the equation corresponding to

i = a), furnishes the following matrix equation for the A(i):


 φaP

∞
0 (a)τ0 φbP

∞
0 (b)τ0

2φe φbDa− 2φe


 ·


 A(a)

A(b)


 =


 0

1


 . (8.24)

Solution of eq. (8.24) yields the respective fictitious initial conditions,

A(a) = β (1− γ) (φa − γ) , (8.25)

A(b) = φaβ (1− γ) , (8.26)

where β is the following combination of dimensionless parameters:

β−1 ≡ φa − 2φaγ + γ2. (8.27)

It is readily verified that the solutions (8.25)-(8.26) satisfy eq. (6.16) for i = a. Moreover,

A(a) = A(b) = 1 in the non-reactive limit, Da→ 0, as would be expected.

Armed with knowledge of A(i) and P∞
0 (i) the mean velocity may be calculated from
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the summation (6.29), yielding

Ū∗ = x̂DmA
{
PeA(b)P∞

0 (b) + λ−1 [A(a)P∞
0 (b)− A(b)P∞

0 (a)]
}

. (8.28)

The latter result may be simplified and rendered dimensionless via use of eqs. (8.21)-

(8.22) and (8.25)-(8.26), yielding

Ū∗ = x̂

(
DmF

kT

)
Û∗, (8.29)

in which Û∗ is the dimensionless scalar coefficient (i.e. speed)

Û∗ = λβφaφe. (8.30)

The latter result reduces to Û∗ = λφe in the non-reactive Da→ 0 limit, in accord with

the mean velocity which would be computed directly from non-reactive network theory

of Chapter 5. The dimensionless mean velocity is plotted for non-zero values of Da in

Fig. 8-5. Since the solute is able to sample the tortuous diffusion path through well

a, the (dimensionless) speed Û∗ is less than unity. The mean velocity increases with

increasing reaction rate, since the solute entering well a is then depleted at a greater rate,

thereby reducing its contribution to the overall transport rate. Similarly, increasing the

residence time in well a causes Û∗ to increase. In the limit of infinite reaction rate,

one would expect that no solute entering well a could contribute to the overall solute

velocity, thereby leading to the value Û∗ = 1. This contrasts with a naive limit of eq.

(8.30), which would seem to imply that Û∗ = 0. The latter incorrect limit derives from

the singularity of the eigenvalue problem (8.18) at Da→ ∞. While not essential to

this illustrative example, the proper limiting behavior could be analyzed by rescaling the

problem, i.e. solving for the ratio K̄∗/k.

The existence of numerous candidates [eqs. (6.32), (6.35), (6.39) and (6.41)] for com-

puting the B-field makes the choice of its solution protocol flexible. Upon noting that
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Figure 8-5: Plot of the dimensionless mean solute velocity, Û∗, as a function of the
microscale Damkohler number, Da, for several values of the volume fraction of the reactive
well, φa, and for the specified geometric attributes shown in the inset.
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the edge subsets j = {1, 2} and j = {3} are independent cycles on the local graph, it

follows from eq. (6.36) that

b(1) = −b(2), (8.31)

b(3) = 0. (8.32)

Use of eq. (6.35) with i = a furnishes the algebraic equation,

φeP
∞
0 (b)τ0

b(2)

l
− φeP

∞
0 (b)τ0

b (1)

l
= φaP

∞
0 (a)τ0PeŪ∗

(
kT

DmF

)
− x̂φeP

∞
0 (b)τ0. (8.33)

Together with eqs. (8.21)-(8.22), (8.30) and (8.31), this furnishes the solution

b(1)

l
=

x̂

2
[1− Peλβφa (φa − γ)] . (8.34)

It is readily verified that eqs. (8.31), (8.32) and (8.34) satisfy eq. (6.35) with i = b.

From eq. (6.53), b̃(j) = x̂b̃(j)l, wherein the dimensionless scalar coefficients b̃(j)

possess the respective functional forms,

b̃(1) = 1/2 [1 + Peλβφa (φa − γ)] , (8.35)

b̃(2) = 1/2 [1− Peλβφa (φa − γ)] , (8.36)

b̃(3) = 1. (8.37)

The dispersivity is calculated from (6.52) as

D̄∗ = x̂x̂
DAl

2λ





[A(a)P∞
0 (b) + A(b)P∞

0 (a)]
[
b̃2 (1) + b̃2 (2)

]
+

+ (λPe + 2) A(b)P∞
0 (b)b̃2(3)



 , (8.38)

which, with use of eqs. (8.21)-(8.22), (8.25)-(8.26) and (8.35)-(8.37), ultimately furnishes

the dispersivity dyadic,

D̄∗ = x̂x̂DmD̂∗, (8.39)

139



with D̂∗ the dimensionless scalar dispersivity,

D̂∗ =
φeβ

2

[
3φa − γ + φaλPe + (φaλβ)2 (φa − γ)3 Pe2

]
. (8.40)

In the non-reactive limit,

lim
Da→0

D̂∗ =
φe

2

[
3 + λPe + (λφa)

2 Pe2
]
, (8.41)

which is identical to the dispersivity which would be calculated directly from the non-

reactive theory of Chapter 5.

Figure 8-6 portrays the dispersivity D̂∗ as a function of Da for several different values

of Pe. As is typically the case (Brenner & Edwards 1993), the dispersivity increases with

increasing Peclet number, all other things being equal. For circumstances wherein Da

< 1, the dispersivity gradually increases from its non-reactive value, eq. (8.41). Indeed,

normalizing eq. (8.40) for D̂∗ with the non-reactive value (8.41) collapses the data for Da

< 1 onto a relatively thin band. At Da = 1, the dispersion either levels off or undergoes

a precipitous drop. As Da → ∞, the only contributions to D̂∗ would be expected to

arise from molecular diffusion in the non-reactive channels and mechanical dispersion

resulting from the mixing process in well b. As was the case with the mean velocity, the

singular nature of this limit prevents recovery of the proper limiting behavior directly

from eq. (8.40).
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Chapter 9

Separation Mechanisms Underlying

Vector Chromatography in

Microlithographic Arrays

9.1 Introduction

The use of microfabricated arrays for the chromatographic separation of Brownian par-

ticles, such as biomolecules, proffers great promise as a practical laboratory technique

(Duke et al. 1997). Such devices typically consist of a spatially periodic, two-dimensional

pattern of asymmetrically arranged obstacles embossed on a chip. Particle separation

occurs within the solvent-filled channels and their intersections. For charged particles,

the separation is effected by applying a time-independent electric field oriented at an an-

gle relative to the lattice axes defining the periodic array (Chou et al. 1999, 2000, Duke &

Austin 1998, Ertas 1998). On average, different size particles pursue chip-scale (L-scale)

linear trajectories at different angles relative to the pattern. Simultaneously introducing

such particles at the same point results their exit at distinctly different locations along

the chip’s periphery. In this Chapter, we demonstrate that this separation arises primar-

ily from the interplay between the particle’s Brownian motion and hydrodynamic wall
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effects (Brenner & Gaydos 1977) connected with the finite size of the particles relative

to the interstitial (l-scale) spacing between adjacent obstacles.

In a prior contribution (Dorfman & Brenner 2001) we classified this type of separation

scheme as “vector” chromatography to highlight the crucial importance of the mean L-

scale direction of the particle trajectory. Conventional “scalar” (or “unidirectional”)

chromatography, in contrast, relies solely upon the different L-scale mean particle speeds

achieved through the sorting device. In the latter case, all particles move on average in

the same direction, parallel to the animating force.

Our analysis focuses upon solute transport in the long-time limit t À l2/ |D|, with

l a characteristic linear dimension of the repetitive unit cell and |D| a suitable norm

of the particle’s l-scale molecular diffusivity tensor (Dorfman & Brenner 2001). In

chips containing many obstacles (Chou et al. 1999, 2000), this asymptotic limit is easily

achieved relative to the nominal holdup time, tR = L/
∣∣Ū∗∣∣, of the particle as it traverses

the entire chip, with L a characteristic linear chip size and
∣∣Ū∗∣∣ the chip-scale particle

speed.

The proportionality between the applied force F and a given particle’s mean chip-scale

vector velocity Ū∗ is expressed by the relation (Dorfman & Brenner 2001)

Ū∗ = M̄∗ · F. (9.1)

The proportionality coefficient M̄∗ is the chromatographic mobility dyadic of that parti-

cle, a position- and time-independent constant tensor. For a spherical particles of radius

a [a/l = O(1)], M̄∗ is a composite phenomenological property of the particle and the

chip, being functionally dependent upon (i) the particle radius; (ii) the solvent viscosity;

(iii) the chip’s lattice axes; (iv) the configuration and orientation of the unit cell (rela-

tive to the lattice axes); and (v) the magnitude and orientation of the force F relative

to the lattice. Additional factors would arise for more complex, nonspherical and/or

deformable molecules, such as the spring law in a bead-spring polymer model (Bird et

al. 1987).
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A directional separation is achieved when Ū∗ is not colinear with F, i.e. when M̄∗

is anisotropic. To separate different types of particles, this anisotropy must arise from

size- (or charge-) dependent interactions between the Brownian particle and the obstacle

surfaces. The extent of vector separation is quantified by the relative discrimination

angles, (θUF )i

def.
= cos−1

(
ˆ̄U
∗
i · F̂

)
, of different species i (i = 1, 2, . . . N). Here, the caret

denotes a unit vector, e.g. Ū∗
i =

ˆ̄U
∗
i

∣∣Ū∗
i

∣∣. In contrast, scalar chromatography is quantified

by the different magnitudes,
∣∣Ū∗

i

∣∣, of the respective species velocities.

Prevailing theories (Duke & Austin 1998, Ertas 1998) for vector separations are re-

stricted to point-size particles. They postulate a separation mechanism based solely

upon the following conception: The particle trajectory through a unit cell possesses a

bifurcation point which is caused by the asymmetry of the cell geometry and the par-

ticle’s molecular diffusivity. The separation is then quantitatively rationalized by a

particle-specific probability distribution function (PDF) for particle i “choosing” a par-

ticular directional bifurcation branch upon exiting a cell and entering the next cell. The

PDF is different for different sized particles as a consequence of their different molecular

diffusivities. Initial announcements of this separation phenomenon by Duke & Austin

(1998) used the name “rectified Brownian motion” to highlight the dependence of the

PDF upon such diffusive effects. However, the assumption of point-size particles lies

counter to the later experiments of Chou et al. (1999, 2000) originally demonstrating such

vector separations. In fact, the particles occupied a significant fraction of the interstitial

space between adjacent obstacles.

To properly account for hydrodynamic effects, consider the l-scale, interstitial mobility

dyadic M(x) of a finite-size particle, where x refers to the center of the particle. This

mobility is both anisotropic and strongly dependent upon the instantaneous particle

position x due to wall effects (Brenner & Gaydos 1977) — even for spherical particles.

In what follows, we will show that such wall-induced effects upon the particle’s mobility

play a crucial role in determining M̄∗ and θUF , even to the extent of permitting vector

separations when the choice of bifurcation branch is totally random!
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9.2 Network Model

By way of illustration, as in Fig. 9-1, consider rectangular obstacles arranged symmetri-

cally in a rectangular array. Here the lattice axes, characterized by unit vectors X̂ and

Ŷ, coincide with the obstacle axes (x, y). The charged particle moves through the array

under the influence of an external force F, which is oriented at an angle θFX relative

to the X-axis. Whereas the present analysis explicitly considers spherical particles and

rectangular arrays, our eventual conclusions transcend these restrictions. In particular,

the spherical particle assumption may be relaxed by employing a microscale mobility

dyadic M(x) valid for more complex molecules (Bird et al. 1987).

In general, the chromatographic mobility of a solute particle in a fluid of viscosity

η may be expressed as M̄∗/6πηa = X̂X̂M̄∗
X + ŶŶM̄∗

Y . (The Stokes law scaling is

arbitrary.) Here, for a given particle, the (dimensionless) scalar components M̄∗
X and M̄∗

Y

depend functionally upon the dimensionless groups characterizing the transport process

— explicitly, M̄∗
J = M̄∗

J (a/Wj, Fjlj/kT, WjUj/ |D| , etc.), with Uj [j = (x, y)] the Taylor-

Aris l-scale average particle speed through a j-directed channel.1 Vector separation

ensues whenever the distinctive particle properties appearing in the arguments of these

two mobility components result in the inequality M̄∗
X 6= M̄∗

Y for a given particle i.

To compute M̄∗, we employ the network theory for generalized Taylor-Aris disper-

sion phenomena, whose details were discussed in the previous chapters. The micropat-

terned device is represented as a spatially periodic, interconnected network of channels

together with their intersections. Classical Taylor-Aris particle velocities and dispersiv-

ities (Brenner & Edwards 1993) are used to quantify the convective-diffusive transport

processes occurring in these channels. When the particle is present within an intersec-

tion, the choice of the particle’s intersection egress channel is assumed to be furnished by

a particle-size dependent “mixing rule” which simulates the physical transport processes

occurring within that intersection. Although in contrast with prior models (Duke &

1Majuscule indices refer to L-scale directions (X, Y ) and miniscule indices to l-scale directions (x, y).
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U*=M*·F
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Wx
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y,Y

F

θFX

Wy

θUX

U(x)=M(x)·F

Channel

Brownian
sphere

θUF

Uy

Ux

Intersection

Figure 9-1: Spatially periodic microscale rectangular lattice (lx 6= ly) of rectangular
obstacles (shown shaded) spaced at interstitial channel widths Wx 6= Wy. The position-
independent external force F is orientated at an angle θFX with respect to the x-lattice
vector of the array. With its center situated at a point x ≡ (x, y) within a channel, the
sphere moves instantaneously with velocity U(x) = M(x) · F. The mean l-scale Taylor-
Aris particle velocity components through a channel within a single cell are denoted
respectively by Ux and Uy. On the chip-scale the particle moves, on average, across the
chip with its (L-scale) velocity vector Ū∗ = M̄∗ · F. This vector is oriented at an angle
θUX relative to the x ≡ X-axis. The disparity in angular direction between Ū∗ and F
gives rise to the chip-scale discrimination angle θUF . Notationally, x = (x, y) are l-scale
coordinates (0 < x < lx, 0 < y < ly), whereas (X,Y ) are L-scale coordinates.
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Austin 1998, Ertas 1998), this fact is not essential to the vector separation phenomenon

because of our incorporation of hydrodynamic wall effects. We will focus only upon

the task of establishing the direction of the particle trajectory, although the general the-

ory permits a complete Taylor-Aris dispersion analysis, including the chip-scale particle

velocity Ū∗.

The network depicted in Fig. 9-1 is a so-called “simple network” (see §5.4) consisting

of a single intersection joining together x- and y-directed channels at their mouths. The

particle’s probability density is trivial — the particle must be located within the single

nodal area contained within the unit cell boundaries. Consequently, computing Ū∗

simply necessitates defining: (i) the particle’s probability density “flow rate” Qj within

x- and y-directed channels; and (ii) the probability ratio K of the particle choosing x-

and y-directed channels at the intersections.

For a given particle, the probability flow rate through channel j is given by Qj =

µjFjWj, with µj the particle’s l-scale mean mobility in channel j, Fj the component of

the external force along the direction of the channel, and Wj the channel width. When

lj À Wj, µj possesses its classical Taylor-Aris dispersion value in the channel (Brenner &

Edwards 1993), which includes a Boltzmann bias arising from the action of the transverse

force:

µj =

∫ Wj

0
dxk Mjj(xk) exp (Fkxk/kT )∫ Wj

0
dxk exp (Fkxk/kT )

(j, k = x, y; j 6= k) , (9.2)

where Mjj is the component of M(x) in the j direction and kT is the Boltzmann factor.

For spherical particles and planar channel geometries, the pointwise mobility dyadic

M(x), including wall effects, is available from rigorous hydrodynamic theory (Happel &

Brenner 1983, Kim & Karrila 1991). For more complex molecules, it remains possible to

make this calculation using approximate hydrodynamic theory (Jendrejack et al. 2000).

When the chip geometry and/or the molecular shape exceed computational resources, µj

may be determined from experiments performed using a single channel of large aspect

ratio, lj À Wj. Equation (9.2) is a generic result, rendering later conclusions based

upon µj [cf. eq. (9.3)] independent of our spherical particle assumption.
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Quantifying K depends upon the particle Peclet number, Pe, representing the ratio

of convective to diffusive transport rates within the intersection. Perfect mixing (Adler

& Brenner 1984b) is assumed for diffusion dominated transport, Pe ¿ 1, so that all

intersectional egress channels are equally probable. This corresponds to randomizing

the choice of bifurcation branch in existing point-size theories (Duke & Austin 1998,

Ertas 1998). For convection dominated transport, Pe À 1, the choice of intersectional

egress channel is assumed to be proportional to the channel’s flow rate Qj (Sahimi et al.

1983). Any value of Pe can be encompassed by defining the partition coefficient, K =

Prob(y)/Prob(x), with Prob(j) the probability of the particle entering channel j upon

exiting the intersection. Consequently, K = 1 and K = Qy/Qx in the respective low

and high Peclet number limits.

The preceding analysis, when brought to fruition in accordance with §5.4, enables the

particle’s chip-scale velocity components Ū∗
X and Ū∗

Y to be explicitly calculated. The

angle θUX formed by Ū∗ and the X-axis is given by

tan θUX
def.
=

Ū∗
Y

Ū∗
X

= µK
Wyly
Wxlx

Fy

Fx

, (9.3)

with µ ≡ µy/µx. The discrimination angle is then computed by

θUF = θUX − tan−1(Fy/Fx). (9.4)

This analysis also furnishes the components M̄∗
X and M̄∗

Y of M̄∗, since Ū∗
X and Ū∗

Y are

related to Fx and Fy by eq. (9.3).

9.3 Discussion

Several generic geometric conclusions are apparent from eqs. (9.3)-(9.4). First, when F

is applied along a symmetry axis of the array (the X- or Y -direction), the discrimination

angle θUF = 0 and is independent of the particle properties. Second, for point-sized par-
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ticles and perfect mixing (µ = K = 1), θUF is characterized exclusively by the symmetry

group of the “composite” l⊕L-scale array geometry. Explicitly, the spatial arrangement

of the obstacles determines the L-scale lattice symmetry, whereas the obstacle’s shape

determines the l-scale point-group symmetry class. The symmetry of the composite

l ⊕ L-array consists of common symmetry elements, if any, between the respective lat-

tice and obstacle point-group rotational symmetries. These symmetries need not be

the same; for example, regular pentagonal-shaped objects in a rectangular array possess

no common symmetry elements (except for a center of symmetry), irrespective of the

orientation of the obstacles relative to the lattice.

To clarify the preceding comments, we examine the array depicted in Fig. 9-1. When

Wx = Wy and lx = ly, the array consists of square obstacles in a square lattice, with

coincident rotational symmetry axes. The four-fold l ⊕ L composite symmetry2 of this

array makes M̄∗ isotropic and θUF = 0, irrespective of the orientation of F relative to

the lattice axes. In contrast, an array with Wx 6= Wy or lx 6= ly represents either square

objects in a rectangular array or rectangular objects in a square array. These lattices

only possess two-fold rotational symmetry. Second-rank tensors associated with two-fold

symmetry are anisotropic (Billings 1969), so particle motion is no longer colinear with the

force. However, vector separation requires that the physical attributes of the particles

cause the anisotropy. If the anisotropy is attributable only to the array symmetry, then

all particles will move on average in the same direction, albeit in a direction no longer

colinear with the force.

Thus, vector separation is possible only when the parameters µ and K appearing in

eq. (9.3) differ between particles. Existing theories (Duke & Austin 1998, Ertas 1998)

consider the case where K (but not µ) is a function of the particle properties. When

wall effects are substantial, the simplest method for altering µ is to construct an array

with different gap widths, namely Wx 6= Wy. Variable gap widths have a nonlinear

2Were the point-group symmetry rotation axes of the square obstacles not aligned with those of the
square lattice, the only common symmetry element would be a center of symmetry. Consequently, the
array would no longer be isotropic with respect to second rank tensors.
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effect upon the channel particle mobilities µj via eq. (9.2), as well as imparting two-

fold symmetry to the array. Alternatively, even for four-fold symmetric arrays, the

presence of a strong transverse force, Fj À Fk, in one of the channels biases µj as a

consequence of the Boltzmann factor in eq. (9.2). In either case, the chromatographic

mobility M̄∗ no longer possesses the four-fold point-group symmetry characterizing the

array geometry. This symmetry-breaking feature underlies the fundamental mechanism

of vector chromatography.

Consider the explicit example of a square lattice, lx = ly, with rectangular obstacles

separated by distances Wx = 2Wy. The relative widths impart a wall-effect-induced

preference for particle motion in the x-direction, as well as imposing the inequality µ ≤ 1.

Figure 9-2 depicts the angle θUX as a function of µ, for the limiting cases of both perfect

mixing and convection-dominated transport at the intersection. For point-size particles

(µ = 1), we see that the two-fold symmetry of the array results in θUX 6= θFX . For

finite-size particles, vector chromatography is possible even for the case where K = 1,

where the bifurcation branch is totally random. The range of available angles θUX is

small when applying the force at the angle θFX = 30◦. This makes a vector separation

difficult. In contrast, applying the force at an angle θFX = 60◦ — “against” the preferred

direction — makes for an easier vector separation. This increased efficiency accords with

the experimental results of Chou et al. (1999, 2000), where the greater component of the

force coincided with the narrower channel.
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Chapter 10

Modeling DNA Electrophoresis in

Microfluidic Entropic Trapping

Devices

10.1 Introduction

The ongoing development of microfluidic techniques (Jakeway et al. 2000, Kutter 2000,

Slater et al. 1998) for DNA electrophoresis is motivated by the need for rapid, repro-

ducible, laboratory-scale separations. Within barely several minutes of operation, these

novel experimental protocols often furnish separation resolutions comparable with those

achieved only after several hours of conventional slab gel electrophoresis (Han & Craig-

head 2000). Moreover, the microfabrication techniques (Jakeway et al. 2000) available for

constructing such devices allow for the creation of perfectly periodic device microstruc-

tures, eliminating thereby the configurational randomness inherent in electrophoretic

gels. The maturation of such microfluidic separation devices requires rationalizing, and

thereby predicting, attainable separation qualities in terms of device configuration and

measurable experimental parameters — a task accomplished here for microfluidic entropic

trapping devices (Han & Craighead 1999, 2000, 2002, Han et al. 1999).
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The entropic trapping (Arvanitidou & Hoagland 1991, Liu et al. 1999, Muthukumar

& Baumgartner 1989a,b, Nixon & Slater 1996, Rousseau et al. 1997, Slater & Wu 1995,

Smisek & Hoagland 1990) of flexible linear macromolecules (polymers), in this case DNA,

constitutes a form of hindered solute transport in porous media. Explicitly, when under-

going reptation in a pore whose effective radius is less than that of the radius of gyration

of the macromolecule, the polymer chain adopts an elongated, entropically unfavorable

conformation. Conversely, the polymer coils up into an entropically favorable confor-

mation when present in a void (trap) whose characteristic linear dimension exceeds that

of the polymer’s radius of gyration. When the porous medium consists of both voids

and narrow pores, polymers of differing lengths — owing to a chain-length dependent

transitional energy barrier for exiting a void — spend disproportionate amounts of time

dwelling therein; hence the name, “entropic trapping.”

Han & Craighead (Han & Craighead 1999, 2000, 2002, Han et al. 1999) exploited the

chain-length dependence of entropic trapping to effect the electrophoretic separation of

different length strands of DNA. Such strands would otherwise be convected at identical

rates owing to their size-independent (Volkmuth et al. 1994) electrophoretic mobilities,

µ0. The microdevice developed by Han & Craighead (2000) consisted of a unidirectional,

rectangular chromatography channel possessing a square wave depth, with the deeply

etched traps (650 nm deep) separated at uniform intervals by narrow constrictions (90

nm deep). DNA motion across the chip was animated by applying an external electric

field.

When both long and short strands of DNA were injected simultaneously into the de-

vice, Han et al. (1999) observed that the long strands eluted from the column first. This

surprising behavior was rationalized by Han et al. (1999) by arguing that the polymer

must escape the trap via the formation of a “beachhead,” the latter envisioned as consist-

ing of several monomer units extending into the narrow constriction. While the complex

nature of this proposed escape mechanism renders it difficult to effect a “first-principles”

calculation of the time necessary to form a beachhead, a semi-empirical phenomenologi-
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cal model of the phenomenon [cf. eq. (10.25)] was proposed and verified experimentally

by Han et al. (1999) within a limited region of the parameter space.

Our analysis furnishes a coarse-grained theoretical model of the workings of their

device, based upon the generalized Taylor-Aris dispersion (macrotransport) scheme de-

veloped in Chapter 5. This general network modeling scheme embodies a rigorous physi-

comathematical paradigm for computing the two macrotransport parameters quantify-

ing external-force animated chip-scale solute transport in periodically arrayed structures,

namely the mean solute velocity Ū∗ and dispersivity D̄∗. This calculation utilizes knowl-

edge of the lumped-parameter interstitial transport processes, together with a graphical

decomposition of the device connectivity into node-to-node (trap-to-trap) displacements.

Attention is restricted to “simple” networks (see §5.4) comprised of a repetitive sequence

of equispaced, identical traps. Mean solute transport rates for more complex networks

(such as those consisting of several differently-sized traps, albeit still arranged period-

ically) can readily be calculated within the general Taylor-Aris dispersion framework

developed in Part I of this thesis.

Despite the extensive attention (Arvanitidou & Hoagland 1991, Liu et al. 1999,

Muthukumar & Baumgartner 1989a,b, Nixon & Slater 1996, Rousseau et al. 1997, Slater

& Wu 1995, Smisek & Hoagland 1990) focused upon modeling the microscale phenomenon

of entropic trapping, quantitative characterization of the functional dependence of the

average trap residence time upon the trap geometry, thermodynamics and DNA trans-

port properties remains incomplete. One particular impediment towards developing a

rational microscale theory resides in the difficulty of experimentally measuring single

trapping events within controlled environments (Han et al. 1999). While our primary

motivation here lies in attempting to rationalize the chromatographic results of Han &

Craighead (2000) and some later observations (Han & Craighead 2002) on separation

resolution, our theoretical analysis may be expected to assist in developing a more com-

plete microscale model of the trapping phenomena, inasmuch as the device geometry is

well defined (Han & Craighead 1999) and our analysis entails the use of easily measured,
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average transport properties.

The next section presents a macrotransport analysis of the network description of Han

& Craighead’s device. It is supposed therein that the mean time spent in a trap presently

cannot be calculated a priori. In lieu of such information we detail an alternative closure

scheme, leading ultimately to the calculation of a trio of chromatographic parameters,

namely the solute dispersivity D̄∗, number of theoretical plates n, and the separation

resolution Rs. Section 10.3 compares our theoretical predictions with observed exper-

imental trends and available data. We conclude in Section 10.4 with suggestions for

extending the scope of the present analysis.

10.2 Macrotransport Analysis

Figure 10-1 depicts the graphical decomposition of a representative entropic trapping

device. Holdup in each trap, separated from its nearest neighbor by a distance l, is

represented by the trap-independent average retention time, τ . No assumptions are

made concerning the functional dependence of τ upon the parameters to be enumer-

ated forthwith,1 although the first two moments of τ over the distribution of residence

times are required to be finite (Weiss 1994) in order to satisfy fundamental convergence

assumptions implicit in the underlying theory [as embodied in eq. (4.2)]. Application

of an externally applied electric field, with field strength E in the narrow constrictions

connecting the traps, causes an individual DNA molecule therein to move with a “con-

vective (or deterministic) velocity” c = µ0E, where µ0 is the electrophoretic mobility

of DNA through the unbounded solvent.2 Diffusive transport in the connecting passages

between traps is parameterized by the probabilistic “diffusion velocity” d = D/l, with D

1As a consequence of its phenomenological nature, this model does not predict the observed disap-
pearance of entropic trapping at high field strengths (Han & Craighead 2000, Rousseau et al. 1997), a
singular limit in the underlying theory.

2Variations in the field strength between the narrow and deep regions of the chip occur on a length
scale finer than this coarse-scale model. Consequently, we only concern ourselves with the total potential
drop embodied by E, rather than any fine-scale field variations.
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Figure 10-1: Graphical network representation of a spatially periodic entropic trapping
device. The traps, represented here by circles, are separated by a distance l in the X-
direction. Application of an electric field E along the X-direction gives rise to a velocity
µ0E of the DNA within the channels connecting the traps. Diffusive transport in these
channels is quantified by the interstitial-scale diffusivity D, together with a concomitant
“diffusive velocity,” D/l. This convective-diffusive solute transport through the device is
hindered by the entropic traps, each of which retains a DNA molecule, on average, for
a period of time τ . The spatial periodicity of the device is reflected by the presence of
a primitive unit cell, denoted above by the contents of the dashed box. The composite
device consists of a large number, N , of such cells, whereby the total length available for
the separation is L = Nl (L À l).

the DNA’s molecular diffusivity,3 estimated via the Zimm model (Ertas 1998, Volkmuth

et al. 1994). Within the context of macrotransport theory for spatially periodic net-

works in Chapter 5, a single trap-to-trap displacement of a DNA molecule corresponds

to the macroscopic “jump” of R = l. The composite device is assumed to consist of N

(N À 1) trap/channel unit-cell pairs, giving rise to a total chip length L = Nl. Because

the underlying theory of Chapter 5 is based upon an infinitely-extended medium, the

subsequent analysis is strictly valid only in the limit N À 1.

By invoking a graphical representation of the relevant transport phenomena, the

detailed quantification of the convective-diffusive transport processes occurring within

a trap is effectively supplanted by introducing an average retention time, τ . As such,

τ accounts for both the nominal convection time required to cross the trap and the

3In accordance with the notation of previous chapters, we have here that Dm = D.
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time required to form the trap-exiting beachhead. Moreover, the length l refers to

the distance between, say, the centroids of adjacent traps, rather than to the physical

length of a connecting channel, the latter being strictly less than the length l. A more

detailed network model might have been considered, wherein the periodic network would

now consist of three, rather than two, regions: (i) the thin connecting channel; (ii) the

“convective” portion of the trap; and (iii) the “beachhead” portion of the trap. Such

a model would also reflect differences in electric field strength between the constrictions

and the traps. However, given the difficulty in clearly distinguishing between the time

required to form a beachhead and the total time spent in the trap, it is more consistent in

light of the limited data available to proceed with the original, less detailed, two-region

model.

To apply our Taylor-Aris network theory to the problem at hand, the “probabilistic”

volume, V ,4 per unit area of the unit cell must be specified. As will be subsequently

demonstrated, this probabilistic volume V is not necessarily equal to the physical volume

per unit area, namely l. In this context, the nominal holdup time, tu, within a unit cell is

assumed to consist of the trapping time, τ , and the convection time required to negotiate

the distance, l, between traps:

tu = τ +
l

µ0E
. (10.1)

In the absence of the entropic traps, convection occurs at the constant velocity µ0E,

equipollent to the distance (volume per unit area) V = (µ0E) tu. Consequently,

V = l + τµ0E, (10.2)

which accounts for both the physical volume of the unit cell and the additional, proba-

bilistic volume arising from the trap’s residence time.5

4The symbol V is employed here, in lieu of the notation τ0, to avoid confusion with the trapping time
τ .

5When the entropic trapping effect vanishes, corresponding to the fact that τ → 0, the probabilistic
volume, V , becomes equal to the physical volume (per unit area), l.
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Closed-form expressions for Ū∗ and D̄∗ were derived in §5.4 for single node (“simple”)

networks, such as that depicted in Fig. 10-1, leading to the values

Ū∗ =
R

V
c, (10.3)

D̄∗ =
R2

2V
(c + 2d) . (10.4)

Substitution of the functional forms of c and R into eq. (10.3), together with use of eq.

(10.2), furnishes the mean solute speed,

Ū∗ =

(
1

1 + ε

)
µ0E, (10.5)

with ε the ratio of trapping-to-convection time scales:

ε
def.
=

τµ0E

l
. (10.6)

Equation (10.5) renders transparent a method for measuring ε (and thereby τ), a scheme

which was rationalized intuitively in the pioneering studies of this class of devices (Han

& Craighead 1999, Han et al. 1999). Explicitly, with holdup time tR in a chip of length

L, the mean solute velocity possesses the Lagrangian interpretation

Ū∗ =
L

tR
, (10.7)

whence comparison of the above with eq. (10.5) reveals that

ε =
µ0EtR

L
− 1. (10.8)

Inasmuch as subsequent calculations prove to be functionally dependent upon knowledge

of the parameter ε, eq. (10.8) represents the closure of our theoretical scheme, enabling

τ to be computed from measurable parameters.

157



From eqs. (10.2), (10.4) and (10.6), the solute dispersivity adopts the form

D̄∗ = D

(
1

1 + ε

)(
1 +

Pe

2

)
, (10.9)

with the Peclet number, Pe, defined as6

Pe
def.
=

µ0El

D
. (10.10)

While the electrophoretic mobility µ0 is typically independent of DNA chain-length (Volk-

muth et al. 1994), the Peclet number is not, since D is size-dependent when approximated

by the Zimm model (Ertas 1998, Volkmuth et al. 1994).

In the context of formulating a macroscopic model for the rational design of their

entropic trapping device, Han & Craighead (2002) assert that the standard deviation of

the band width as the solute band exits the device,

σ =
√

2D̄∗tR, (10.11)

may be computed by the approximate relationship,7

σ ∝
√

Nτ. (10.12)

To compare this claim with the more rigorous results of the present model, we compute

the total retention time, tR, by eq. (10.7), whence, with use of eq. (10.9), the standard

deviation adopts the form

σ = L

√
2

(
1 +

1

Pe

)
. (10.13)

Clearly, our result for the standard deviation is functionally dependent upon the total

6The microscale Peclet number, Pe, is indistinguishable from the Taylor-Peclet number, PeT , defined
by eq. (8.11) since the channel scale dispersion is assumed to be equal to the molecular diffusivity.

7It is presumed that there also exists a dimensional coefficient which renders σ in units of length.
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size of the device, as embodied in L, as well as the ratio of convective and diffusive trans-

port, as embodied in Pe. This contrasts sharply with the ad hoc dispersion relationship

proposed by Han & Craighead (2002), which only depends upon the trapping time. One

would certainly expect that molecular diffusion in the narrow channels would contribute

to the band spreading, although the large values of the Peclet number (cf. Table 10.2)

make this contribution small, whereupon

σ ≈ L
√

2 (Pe À 1). (10.14)

Nevertheless, our result (10.13) more accurately reflects the relative contributions of the

microscale physics to the macroscopic quanitity σ than does the estimate (10.12).

The theoretical plate height, Hp, is defined by the expression (Giddings 1991)

Hp
def.
=

2D̄∗

Ū∗ . (10.15)

Substitution of eqs. (10.5) and (10.9) into eq. (10.15) furnishes the nondimensional plate

height per trap:
Hp

l
= 1 +

2

Pe
. (10.16)

With a chip length L embodying N traps, the number, n, of theoretical plates parame-

terizing the chip is thereby given by the expression

n =
L

Hp

=
N

1 + 2Pe−1 . (10.17)

Though n exhibits no explicit dependence upon τ (or ε), an implicit dependence must

exist owing to the inseparable relationship (Han & Craighead 2000, Rousseau et al. 1997)

existing between the entropic trapping phenomenon and the electric field strength E, the

latter embodied in Pe. In many practical instances the Peclet number is large (cf. Table

10.2), i.e. Pe À 1, whereupon the number of theoretical plates approaches the number

159



of traps:

n ≈ N (Pe À 1) . (10.18)

The separation resolution, Rs, at time t between solute molecules 1 and 2, injected

simultaneously into the device at time t = 0, is defined as (Giddings 1991)8

Rs
def.
=

|X2 −X1|
2(σ1 + σ2)

, (10.19)

where, for the ith species band, Xi and σi represent the respective peak position of the

band and standard deviation therefrom. Inasmuch as Xi = Ū∗
i t and σi =

√
2D̄∗t, the

resolution at time t possesses the form

Rs =

∣∣Ū∗
2 − Ū∗

1

∣∣
2
√

2
(√

D̄∗
1 +

√
D̄∗

2

)t1/2. (10.20)

Of particular interest is the resolution achieved as the first band, say species 2, exits

the device. Consequently, with t = L/Ū∗
2 , substitution of eqs. (10.5) and (10.9) into

(10.20), together with use of some algebraic manipulations and eq. (10.17), permits the

resolution to be expressed as

Rs =
1

2

{
ε1 − ε2

n
−1/2
2 (1 + ε1) + n

−1/2
1 [(1 + ε1) (1 + ε2)]

1/2

}
, (10.21)

where, for species i, εi and ni refer respectively to the trapping-to-convection time ratio

and the number of theoretical plates. In the large Peclet number limit, n1 = n2 = N to

8Equation (10.19) represents the most general form of the resolution, rather than the simplified form
frequently employed (Giddings 1991), namely Rs = (n/16)1/2 ∆Ū∗/

〈
Ū∗〉, where ∆Ū∗ is the velocity

difference between the two species and
〈
Ū∗〉 is the average velocity. A simplified form of Rs in the large

Pe limit is derived subsequently [cf. eq. (10.21)] without invoking the ad hoc assumptions necessary to
arrive at the usual form for Rs.
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Figure 10-2: Plot of the resolution factor, f (ε1, ε2/ε1), as a function of the ratio, ε2/ε1,
of the trapping times of the two species being separated, and for several values of the
trapping-to-convection ratio, ε1, of the slower-eluting species.

a satisfactory approximation, whence9

Rs =
N1/2

2
f

(
ε1,

ε2

ε1

)
, (10.22)

with f the resolution factor:

f

(
ε1,

ε2

ε1

)
=

ε1

(
1− ε2

ε1

)

(1 + ε1) +

{
(1 + ε1)

[
1 + ε1

(
ε2

ε1

)]}1/2
. (10.23)

9While the parameter ε1 represents the trapping-to-convection time ratio for species 1, the combi-
nation ε2/ε1 is simply the trapping time ratio between species 2 and 1, since it was assumed that the
convection time is species-independent.
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Figure 10-2 displays f as a function of the ratio ε2/ε1 (0 ≤ ε2/ε1 ≤ 1) for several

different values of ε1. Irrespective of the magnitude of ε1, the resolution factor reduces

trivially to f = 0 (Rs = 0) when ε1 = ε2, since both solute peaks exit the device at the

same time. The resolution increases with increasing ε1 for all values of ε2/ε1, suggesting

an opportunity for device optimization. However, the value of f saturates rapidly,

yielding only incremental increases in Rs as ε1 becomes large, especially as ε2/ε1 → 1.

Using their approximation for σ (10.12) and an elementary model for the trapping

time [cf. eq. (10.25)], Han & Craighead (2002) postulated that the separation resolution

would adopt the form

Rs =
N1/2

2

(
∆Nbp

Nbp

)
, (10.24)

where ∆Nbp is the length difference between the two species being separated and Nbp

is some characteristic number of base pairs (whereupon the ratio ∆Nbp/Nbp represents

the fractional length difference). With the latter result, it would be expected that the

resolution should only depend upon the total number of traps, being independent of the

geometry of these traps and the magnitude of the applied electric field! In contrast,

our result for the function f (10.23) possesses an implicit dependence upon the device

geometry and the electric field, inasmuch as the trapping times τi, and thus εi, depend

upon the latter design parameters. Indeed, the resolution should vanish at high fields

since the trapping effect vanishes there (Rousseau et al. 1997), i.e. εi = 0 ∀i implies that

Rs = 0. Our model captures this limiting behavior, since the factor f = 0 identically for

the case ε1 = ε2. In contrast, the model of Han & Craighead (2002) does not capture

this limiting behavior, or, for that matter, any other structural factors which might

contribute to Rs. Moreover, the experimental data (Han & Craighead 2002) indicate

a clear dependence upon the field strength E, lending further credence to our discrete

Taylor-Aris model of the overall chromatographic phenomenon.
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10.3 Comparison with Experimental Results

Below, we compare our macrotransport predictions with the available experimental re-

sults of Han & Craighead (2000) for the entropic trapping separation of T2 (164 kbp) and

T7 (37.9 kbp) DNA. Table 10.1 summarizes physicochemical data for these two DNA

strands. 10 The entropic trapping device employed in these experiments possessed a chip

length L = 7 mm and trap-to-trap distance l = 4 µm, corresponding to N = 1750 traps

in series. Successful entropic trapping separations were demonstrated at electric field

strengths E = 21.0 and 24.5 V/cm. Pertinent experimental results (Han & Craighead

2000) for these values of E are recast into our formalism in Table 10.2.

The relative importance of molecular diffusion and random trapping times upon D̄∗ is

captured in the present model by the Peclet number. Explicitly, variations in τ dominate

the dispersion when PeÀ 1, whereas molecular diffusion dominates when Pe¿ 1. Table

10.2 shows the relevant Peclet numbers characterizing the experimental systems studied

to be large, thereby implicitly confirming the conjecture of Han & Craighead (2000) that

variations in trapping times constitute the primary dispersion mechanism.

To render transparent the dependence of the dispersivity upon the field strength E

(and thereby the trapping time τ), it is necessary to employ a microscale model for τ .

In this context, consider the following simple model proposed by Han et al. (1999):

τ = τ ∗ exp
[ α

EkT

]
, (10.25)

where τ ∗ and α are species-specific constants, and kT is the Boltzmann factor. For the

class of separations of interest, the functional form of eq. (10.25) agrees with the available

experimental data of Han et al. (1999). In light of the fact that Pe À 1 and ε À 1, the

10The number of persistence lengths may be different for DNA stained with intercalator dyes. For ex-
ample, lambda phage DNA (48.5 kbp) stained with YOYO-1 has approximately 400 persistence lengths.
Nevertheless, the results presented herein are relatively insensitive to this parameter.
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Table 10.1: Physicochemical properties and transport parameters for T2 and T7 DNA.
References: [1] Han & Craighead 2000, [2] Lehninger et al. 1993, [3] Volkmuth et al.
1994, [4] Ertas 1998.

T2 T7 Ref.
Number of base pairs (kbp) 164 37.9 [1]
Number of persistence lengths 469 108 [2]
Zimm diffusion coefficient, D (µm2s−1) 0.370 0.769 [3,4]
Electrophoretic mobility, µ0 (µm s−1cmV−1) 5.1 5.1 [3]

Table 10.2: Experimental parameters for the entropic separation of T2 and T7 DNA.
Reference: [1] Han & Craighead 2000.

T2 T7 Ref.
Electric field, E (V/cm) 21.0 24.5 21.0 24.5 [1]
Peclet number, Pe 1160 1360 560 650 Eq. (10.10)
Retention time, tR (s) 1375 950 1700 1100 [1]
Trapping-to-convection time ratio, ε 20 16 25 19 Eq. (10.8)

dispersivity may be approximated as

D̄∗ ≈ D
Pe

2ε
. (10.26)

With use of eqs. (10.6), (10.10) and (10.25), eq. (10.26) becomes

D̄∗ ≈ l2

2τ ∗
exp

(
− α

EkT

)
, (10.27)

whence the dispersivity increases with increasing field strength.

For such large Peclet number transport, eq. (10.18) reveals that each trap approx-

imates a single theoretical plate.11 The latter conclusion agrees, as regards order-of-

magnitude, with the reported experimental values of Han & Craighead (2000), with n

varying between 103 and 104 for N = 1750. However, the present model fails to pre-

dict a reported (Han & Craighead 2000) dependence of n upon E and τ in the large Pe

limit. This functional dependence might arise from the detailed local transport proper-

11For the smallest Peclet number experimentally encountered, namely Pe = 560, the relative error
between the exact result (10.17) and the approximation (10.18) is only 0.35%.
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Figure 10-3: Plot of the resolution, Rs, for a device with N = 1750 traps as a function
of the ratio, ε2/ε1, of trapping times between the two species being separated, and for
two values of the trapping-to-convection time ratio, ε1, of the slower-eluting species. The
values of ε2/ε1 observed experimentally at field strengths of 21.0 and 24.5 V/cm are
indicated by the vertical lines.

ties of DNA, including position-dependent effects owing to the molecule’s proximity to

the bounding walls, such effects arising on a length scale far smaller than the class of

phenomena addressed in our model. On the other hand, the observed variations in n

might simply reflect statistical variations occurring between replicate experiments, which

might be expected when considering the nanometer scales involved in these experiments.

Moreover, practical experimental constraints required sample loading over a single period

of the device (Han & Craighead 2000), whereas our theoretical model is based upon a

unit pulse input [cf. eq. (4.6)].

Upon decreasing the electric field strength, Han & Craighead (2000) observed that
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the separation resolution increased. Substituting the relevant parameters appearing

in Table 10.2 into eq. (10.21), and identifying T2 DNA as species 2, yields theoretical

resolutions of Rs = 2.10 at E = 21.0 V/cm and Rs = 1.48 at E = 24.5 V/cm. Aside

from capturing the aforementioned resolution trend, qualitative agreement is found with

reported experimental values of Rs = 1.95 and Rs = 0.89 at E = 21.0 and 24.5 V/cm,

respectively. However, our theoretical results are especially sensitive to the ratio ε2/ε1,

the latter having been estimated here from a published fluorescence intensity plot (Han &

Craighead 2000). Explicitly, consider the plot in Fig. 10-3 of Rs as a function of ε2/ε1.

The two curves depicted, corresponding to ε1 = 15 and 30, bound the experimental

values, ε1 = 19 and 25, for T7 DNA. Precise measurement of the magnitude of ε1 is

unnecessary, given the negligible effect upon Rs of doubling ε1 in this parameter range;

rather, it is the precise determination of the ε2/ε1 ratio which proves crucial, since the

experimental values, ε2/ε1 = 0.80 and 0.86, approach the zero resolution limit, ε2/ε1 → 1.

Consequently, our quantitative agreement for Rs is tenuous at best, since it is formed

from the product of an unequivocal large number, N1/2/2 À 1, with a more equivocal

small number, f(ε1, ε2/ε1 → 1) ¿ 1. The validity (or lack thereof) of our predictions for

Rs may be assessed more clearly as further experimental data become available pertinent

to this novel separation process which allow values for ε1 and ε2 to be established under

various operating conditions.

In rationalizing the increased resolution observed at the lower field strengths, Han &

Craighead (2000) point out that the increased velocity difference,
∣∣Ū∗

2 − Ū∗
1

∣∣, more than

offsets an apparent increase in band broadening (10.11) at the elution time, tR. The

latter observation of increased band broadening, in conjunction with our macrotransport

analysis, establishes a theoretical upper bound on the empirical parameter α appearing

in eq. (10.25). Consider a pair of experiments performed in identical devices with

identical DNA strands, but with different electric field strengths, E1 and E2 (E1 > E2),

and correspondingly different holdup times, tR,1 and tR,2 (tR,2 > tR,1). Assuming τ ∗ to
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be independent of E, this yields the expression

σ1

σ2

=

√
exp

[
α

kT

(
1

E2

− 1

E1

)](
tR,1

tR,2

)
. (10.28)

In conjunction with the requisite inequality σ1 < σ2, it follows that the empirical param-

eter α is bounded from above by the expression

α <

[
kT ln

(
tR,2

tR,1

)](
1

E2

− 1

E1

)−1

. (10.29)

With the retention times appearing in Table 10.2, the preceding relation furnishes the

inequality α < 1.40 eV(V/cm) for T2 DNA and α < 1.65 eV(V/cm) for T7 DNA at

T = 298 K. If one accepts the premise (Han & Craighead 2002) that the parameter α is

DNA-length independent, then our analysis furnishes the inequality α < 1.40 eV(V/cm).

10.4 Concluding Remarks

Apart from the chromatographic separation applications outlined above, the analysis

presented herein is potentially useful in studying the fundamental mechanism of entropic

trapping. Our macrotransport analysis embodies average transport rates, which prevail

only after the macromolecule has had the opportunity to thoroughly sample numerous

traps. Consequently, statistical issues arising from single trapping experiments become

irrelevant. Although eq. (10.8) provides the most straightforward, long-time metric for

experimental validation of proposed microscale models of entropic trapping, our expres-

sions for the functional dependencies of D̄∗, n and Rs upon the pertinent experimental

parameters provide a trio of internal consistency checks for such models. For example,

the separation resolution (10.21) requires knowledge of the respective trapping times of

two different length polymer chains, thereby providing a criterion for establishing the

correctness of the scaling proposed by a microscale model within the context of a single

experiment. Moreover, our theoretical upper bound on the magnitude of the empiri-
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cal parameter α constitutes a further contribution of our coarse-grained model to the

development of a rational microscale theory of entropic trapping.

The model of entropic trapping phenomena pursued here considers only the sim-

plest possible network configuration for correlating the experiments of Han & Craighead

(2000). A somewhat more general one-dimensional network model, based upon a distri-

bution of trapping times, rather than a single average time, could potentially furnish even

more accurate agreement with experiments, while retaining the analytical simplicity of a

lumped-parameter model. Explicitly, consider a unit cell comprised of j traps, each trap

being characterized by its own specific trapping time, τj, with such times being chosen at

random from a distribution about a mean value τ . Presumably more accurate values for

Ū∗ and D̄∗ would arise upon averaging the values Ū∗
k and D̄∗

k computed from k different

unit cell configurations. At present, no rational basis exists for specifying a complete

probability distribution for these times τj, thereby motivating our more elementary use

of a single average value, τ . Results for ad hoc trapping time distributions, using ap-

propriate parameters fitted from data, could be employed in this extended model, and

subsequently compared with experimental results to furnish insights into the validity of

such distributions.

Our model bears a peripheral relation to the so-called molecular dynamic (or kinetic)

theory of chromatography (Giddings & Eyring 1955). That theory assumes the poly-

mer molecule to exist in either an entangled (immobile) or untangled (mobile) state at

each instant of time, with first-order kinetics governing state-to-state transitions. Ex-

periments and simple analysis (Weiss et al. 1996, Yarmola et al. 1997) suggest that the

non-Markovian nature of this transition process leads to anomalous diffusion in gels,

although more recent work (Boguna et al. 2000) formally demonstrates that the prob-

ability density for such two-state models still tends asymptotically towards Gaussian

behavior after the elapse of sufficient time. While the method-of-moments homoge-

nization scheme employed in this thesis permits anomalous diffusion under well-defined

circumstances (Bryden & Brenner 1996, Stone & Brenner 1999), an explanation of such
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circumstances lies outside the scope of the present study. However, our global trans-

port model is unlikely to exhibit such anomalous behavior under any homogenization

scheme, since: (i) the vertex transport process is Markovian (Sahimi et al. 1983); (ii)

the transition between states occurs at distinct points in space; and (iii) the first two

moments of τ are bounded. Indeed, the network dispersion model considered herein

could be extended to a two-dimensional, random network of traps and channels, thereby

furnishing an elementary (non-kinetic) model for gel electrophoresis.
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Chapter 11

Conclusion

While the generic discrete theory developed in this thesis is predicated upon the same

rigorous method-of-moments homogenization scheme as was employed in continuous gen-

eralized Taylor-Aris dispersion theory when applied to spatially periodic media (Brenner

1980, Brenner & Edwards 1993), our analysis has demonstrated the greater tractability of

discrete network theory over its continuous counterpart (Brenner & Edwards 1993) (the

former approach being, albeit, more approximate). In the continuous theory, both the ar-

ray geometry and interstitial transport physics are presumed to be known exactly, thereby

rendering the computed macrotransport parameters Ū∗ and D̄∗ physically accurate and

mathematically rigorous, at least in an asymptotic sense. Such rigor comes, however, at

the expense of requiring the solution of two steady-state convection-diffusion(-reaction)

partial differential equations for the continuous macrotransport fields P∞
0 (r) and B(r)

at all interstitial unit cell points r (Brenner & Edwards 1993), as well as demanding pre-

cise and explicit knowledge of the phenomenological coefficients quantifying the l-scale

interstitial transport processes. With the exception of but a few limiting cases, such

phenomenological data are generally unavailable in the literature; even when such data

are available, or calculable in principle for simple bodies such as rigid spheres, an accu-

rate quantification of the interstitial transport physics is often nonexistent for deformable

bodies (e.g. freely-draining DNA or polymer molecules). Moreover, the structure of the
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governing equations renders such equations insoluble in closed-form for all but the most

trivial of array geometries — even the simple networks analyzed in Chapter 9 and 10.

Furthermore, the continuous theory’s requisite unit cell quadratures cannot generally be

effected in closed form (Dorfman & Brenner 2001), even for those rare circumstances for

which closed-form solutions exist for the macrotransport fields P∞
0 (r) and B(r) them-

selves appearing in the integrands of the requisite integrals.

The comments of the preceding paragraph point out that the resources required to

extract useful macroscale information from the continuous microscale theory diminish the

utility of such an approach, owing not only to the unavailability of pertinent transport

data, but equally to the computational effort required and concomitant errors introduced

via numerical discretization of the local-scale transport parameters. Indeed, in the latter

context, similarities existing between finite-difference methods for solving partial differen-

tial equations and network models have been recognized for at least 30 years (Kirkpatrick

1973), inasmuch as the desired degree of accuracy inherent in any finite-difference scheme

necessitates a lumped parameter approach on the scale of the discretization. Of course,

the tractability of the discrete scheme presented here arises as a consequence of the a

priori homogenization of the exact local-scale transport into the lumped-parameter edge

transport coefficients U(j), D(j), and K(j). While asymptotic definitions exist for the

latter parameters under certain limiting circumstances, one cannot hope to rigorously

retain the full extent of the true local-scale transport description — in particular the

complex geometry of even a well-defined, spatially periodic model porous medium. Nev-

ertheless, the counterbalance existing between comparable approximations necessary for

either a continuous or discrete model render the latter attractive for the characterization

of macromolecular transport in microfluidic devices.
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Appendix A

Nomenclature

A.1 Scalars

A.1.1 Roman

A(i) fictitious initial condition (discrete)

A(r) fictitious initial condition (continuous)

A(j) characteristic edge cross-sectional area

a, b, c subvolume element labels

c(j) edge convective flow rate

d(j) edge diffusive flow rate

dx serpentine channel x-direction diffusive flow rate

dy serpentine channel y-direction diffusive flow rate

D(j) edge diffusivity/dispersivity

Dm solute molecular diffusivity

D̄∗ solute dispersivity

D̂∗ normalized solute dispersivity

Da Damkohler number
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Da macroscopic Damkohler number

E magnitude of the applied electric field

exp exponentially small terms

f resolution factor

F magnitude of the applied force

H channel cross-section height

Hp theoretical plate height

i node (vertex) index

i∗ reference node

i0 initial node

I discrete location

j edge index

k(i) discrete local reaction rate

K(j) edge mixing rule

K̄0 smallest eigenvalue

K̄1 second smallest eigenvalue

K̄A eigenvalue of the A(i) equations

K̄P eigenvalue of the P∞
0 (i) equations

K̄∗ mean (network-scale) solute depletion rate

kT Boltzmann factor

l characteristic local length scale

l(j) edge length

ls channel arclength

lX serpentine jump distance

L characteristic global length scale

m number of edges
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mb number of edges in the basic graph

M0r solute survival probability density

M̄∗
j mean mobility in channel j

n number of nodes (the number of theoretical plates in

Chapter 10)

nb number of nodes in the basic graph

N total number of unit cells

Nbp number of base pairs

∆Nbp difference in number of base pairs

P non-reactive probability density

P̄ coarse-grained probability density

Pr reactive probability density

P∞
0 (i) asymptotic zero-order local moment of the probability

density (discrete)

P∞
0 (r) asymptotic zero-order local moment of the probability

density (continuous)

Pe Peclet number

PeT Taylor-Peclet number

Q solvent volumetric flow rate

Rs separation resolution

t time

tR total device residence time

tu unit cell residence time

U(j) edge velocity

Ū∗ mean solute velocity

Û∗ normalized mean solute velocity
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v(i) node volume

ve(j) edge volume

v̄ average velocity

V probabilistic volume

W channel width

Xi position of band i

A.1.2 Greek

α empirical trapping time parameter

β reactive porous medium parameter

γ reactive porous medium parameter

δ(t) Dirac delta function

δi,j Kronecker delta function

ε ratio of trapping time-scale to convection time-scale

ε(j) generic edge parameter

η solvent viscosity

θFX angle between the applied force and the X-axis

θUF angle between the mean velocity and applied force

θUX angle between the mean velocity and the X-axis

λ fractional length of the edges

µ ratio of electrophoretic mobilities

µj electrophoretic mobility in edge j

µ0 freely draining electrophoretic mobility

σ standard deviation of solute band

σi standard deviation of solute band i

187



τ trapping time

τ0 unit cell volume

∂τ0 unit cell surface area

τX serpentine tortuosity

τ ∗ empirical trapping time parameter

φ(i) generic vertex paramter

φa volume fraction of well a

φb volume fraction of well b

φe volume fraction of the edges

ϕ serpentine total flow rate

ψ(i) vertex field

A.2 Vectors

A.2.1 Roman

A fictitious initial conditions

b(j) difference in B across an edge (unit-cell)

b̃(j) difference in B across an edge (macroscopic)

B(i) B field (discrete)

B(r) B field (continuous)

B̄ total weighted B

e(j) edge unit vector

F applied force

ix unit vector

I discrete position

I0 initial discrete position
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J non-reactive flux density

Jr reactive flux density

J∞0 asymptotic flux density

lk basic lattice vector

P asymptotic zeroth-order probability densities

r continuous position vector

ri0 initial continuous position vector

R global continuous position vector

RI discrete position vector

RI0 initial discrete position vector

RI0 initial global-discrete position vector

R(j) macroscopic jump vector

U(j) edge velocity vector

U(r) solute velocity vector (continuous)

Ū∗ mean solute velocity vector

ˆ̄U∗ average velocity unit vector

< UC >j average edge convective solute velocity

< UF >j average edge force-driven solute velocity

v node volume vector

V arbitrary vector

x position vector

x̂ unit vector

X̂ unit vector

ŷ unit vector

Ŷ unit vector
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A.2.2 Greek

α(i) forcing function

ξH(ej) cocycle vector

A.3 Tensors and Matrices

A.3.1 Roman

A coefficient matrix for P

B matrix of b(j)

B+ transition matrix

B− transition matrix

c convective volumetric flow rate matrix

d diffusive volumetric flow rate matrix

D̄∗ solute dispersivity dyadic

D incidence matrix

D(r) solute diffusivity dyadic (continuous)

D(j) solute diffusivity dyadic (discrete)

Dij incidence matrix

E a dyadic

Jm moment flux density

k reaction matrix

K(Kij) cocycle matrix

H a dyadic
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< M >j average mobility dyadic in edge j

M̄∗ chromatographic mobility dyadic

Mm mth global moment (weighted)

M
′
m mth global moment (unweighted)

Mmr reactive total moments

Pm mth local moment

v volume matrix

A.3.2 Greek

α∗ cocycle attenuated forcing function

β+ difference in B vectors

β− difference in B vectors

β(i) forcing function on H

Γm forcing function for Pm

Π
(+)
ij entering incidence matrix

Π̃
(+)
ij conditioned entering incidence matrix

Π
(−)
ij exiting incidence matrix

Π̃
(−)
ij conditioned exiting incidence matrix

ζ arbitrary tensor valued function
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A.4 Graphs, Sets and Spaces

E edge space

H cocycle space

I l ⊕ L discrete global space

L derived lattice

R l ⊕ L continuous global space

R∞ domain of the continuous space

V vertex space

Γb basic graph

Γg global graph

Γl local graph

Λ simple lattice

Ω+(i) set of entering edges incident to i

Ω−(i) set of exiting edges incident to i

A.5 Operators

L discrete convection-diffusion-reaction operator [eq. (6.5)]

min minimum

Re real part

sym symmetry operator [eq. (5.42)]

† transpose operator

ζ̄ ensemble average operator

‖ζ‖ jump operator
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