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Abstract 

 
For a deregulated electricity industry, we consider a general electricity market structure 
with both long-term bilateral agreements and short-term spot market such that the system 
users can hedge the volatility of the real-time market. From a Transmission Service 
Provider’s point of view, optimal transmission resource allocation between these two 
markets poses a very interesting decision making problem for a defined performance 
criteria under uncertainties. In this thesis, the decision-making is posed as a stochastic 
dynamic programming problem, and through simulations the strength of this method is 
demonstrated. This resource allocation problem is first posed as a centrally coordinated 
dynamic programming problem, computed by one entity at a system-wide level. This 
problem is shown to be, under certain assumptions, solvable in a deterministic setup. 
However, implementation for a large transmission system requires the algorithm to 
handle stochastic inputs and stochastic cost functions. It is observed that the curse of 
dimensionality makes this centralized optimization infeasible. Thesis offers certain 
remedies to the computational issues, but motivates a partially distributed setup and 
related optimization functions for a better decision making in large networks where the 
intelligent system users drive the use of network resources. Formulations are introduced 
to reflect mathematical and policy constraints that are crucial to distributed network 
operations in power systems.  
 
Thesis Supervisor: Dr. Marija D. Ilic 
Title: Senior Research Scientist 
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Chapter 1 
 

Introduction 
 

This thesis aims to develop decision-making tools for the partic ipants of the newly evolving 

electricity transmission market where demand and supply determine the value of the 

transmission service. Traditionally, transmission system has been treated as a passive, static 

pipe-like system for transmission of energy. However, with deregulation transmission system 

is now treated as an individual entity. It can no longer be assumed passive and static. It is not 

passive because it is a scarce resource and responds to usage levels. It is dynamic because it 

has usage-based and reliability-based uncertainties. These realized concepts show why 

transmission is a service, which bundles the right to use capacity with reliability of service 

delivery.  

Transmission capacity is a scarce resource whose pricing and allocation pose a very 

challenging problem. Not only is the problem itself very intriguing, but determining a 

solution or a solution set, is also very interesting especially when various versions of market 

setup are considered. This thesis will focus on two setups that form the basis for two 

qualitatively different ways of transmission service and pricing in the evolving energy 

markets: One, where there is a central decision maker and one where distributed decision 

making by the smart system users is allowed.  Even though the setups are very different, the 

decision makers in both cases are faced with the same basic question of allocation of 

transmission capacity. Briefly, the goals are to: 

• In a coordinated setup: From a Transmission Service Provider (TSP) point of view, 

find the optimal capacity allocation between selling long term forward contracts for 

delivery prices ex ante and selling delivery  rights in the spot market priced ex post 

depending on the real time congestion levels determined by the real time demand, 

supply and system-related reliability constraints.  

• In a distributed setup: From a system user point of view, a generator or a consumer, 

find the optimal combination of buying rights to transmit power through long term 
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contracts or by buying transmission service in the real time market price determined 

by other users’ demand and system reliability.  

 

The challenge of finding the right combination of long term forward contracts and the 

real time spot market for transmission service is parallel to the challenge observed, in the 

forward and spot energy markets. We assume existence of an electricity daily spot market as 

well as the longer-term bilateral contracts between suppliers and consumers. The scope is 

limited to bilateral contracts and does not include multi-lateral ones nor any arbitrage 

activities by intermediary trading bodies. In order for the supply/demand transactions at the 

energy level to be implemented, arrangements must also be made for their delivery from the 

supplier to the consumer at the transmission leve l.  Although the two mechanisms seem 

similar, transmission service allocation is more complex due to high number of interactions 

as well as due to strict technical constraints of the network. And while much progress has 

been made in the energy trading, transmission service allocation is not as well studied and 

requires much work on the formulation side to lay the foundations for development of 

practical algorithmic tools.  

 In this thesis, the goal is to design the tools at a formulation level. Transmission 

service and its pricing to the electricity market participants are posed as a stochastic 

optimization problem. The uncertainties of the system stem from both market activities of 

other users and from the uncertain equipment status. The theory of dynamic programming is 

utilized extensively to structure the stochastic optimization functions.  

  

1.1 Problem Statement 
 

The goal is to detail the optimal allocation of transmission line capacities to maximize the 

objective function of the decision maker within system constraints. Since the two setups 

described above have different decision makers, there are two sub problems to define under 

the problem statement: 

 

1.1.1 Centrally Coordinated Operation 

The centrally coordinated operation can be represented as shown in Figure 1.1 where boxes 

define functions, and arrows define inputs. The system users submit service requests from 
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which the decision maker chooses those that maximize his revenue and those that can be 

implemented without stability problems, and this forms the U function. S maps those chosen 

injections to line flows. 

 

 

 

 

 

 

Figure 1.1: Decision Flow in the Coordinated Model. 

 

From S(U(X)), the system revenue, RevenueSystem(f1(S(U(X)))) can be derived and it 

can also be seen that U has ensured that resulting line flows are within limits as well as that it 

tends to maximizing revenue. All components of the formula are dynamic with changing 

values requiring use of expected values in the above formulation. Unlike this approach, the 

majority of the literature for electric power transmission provision assumes a type of 

centralization but treats the problem as a deterministic, non-linear static optimization, as does 

the optimal power flow analysis [37]. 

 

1.1.2.  Partially Distributed Operation 

Below is the representation of the distributed decision-making. The price signal for using the 

transmission from a supervisor is communicated to the system users, so system user at each  

node i uses this data and expectation of the other users actions to make his decision xi = 

f2(P,xj) , for all nodes j. 

 

 

 

 

 

 

 

Figure 1.2: Decision Flow in the Distributed Model. 
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As it can be seen, that there is no central control that ensures the results of S(X) to be 

within system limits, which is the main challenge in the distributed model. The responsibility 

of making sure that system constraints are met is left to the price signal whose calculation is 

crucial. Distributed control of the transmission syste m is a rarely studied problem due to its 

complexity and high level of uncertainties. Allocation of network resources in a distributed 

manner between real time and forward market is a very new approach that is presented in this 

thesis. 

 

1.2 Thesis Summary and Contribution 
 

Currently, there is no tool deployed in decision making for bilateral agreements along with 

spot market trades. This is due to the fact that the volume of bilateral agreements is still not a 

major part of the electricity market. However, we believe that the use of such long-term 

contracts, both physical and financial will increase in the future under the deregulated 

regime. This evolution requires better planning and scheduling to which the dynamic 

programming algorithm is a solution. Besides developing decision-making tools for optimal 

allocation, we also intend to contribute, through this thesis, models and frameworks for both 

central coordination and distributed control of the transmission network. In addition, what 

distinguishes the problem formulation in this thesis from many other existing references is 

the consideration of system uncertainties in these models. 

 Chapter 2 provides the background for the overall setup and technical tools as well as 

the framework that the thesis presents. Chapter 3 formulates the basic problem of resource 

allocation in a centrally coordinated setup, where transmission service provider (TSP) is the 

decision maker. This chapter points out the computational issues faced by the implementation 

of the formulations and offers some approximation approaches. Chapter 4 again builds the 

decision-making problem for a central body, but this time factors in the physical, reliability-

related, uncertainties of the system. This new version requires some background on electric 

power system reliability and risk in transmission networks, which is included in Chapter 4. 

Both Chapter 3 and Chapter 4 define the problem of resource allocation fully, but assert that 

in a market environment distributed decision-making might be as effective and also could 

alleviate the computational issues. Chapter 5 explores and formulates the distributed decision 

making problem. Chapter 6 demonstrates the strength of the proposed methods through 
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simulations and Chapter 7 concludes the thesis. Appendix A has the source code for the 

simulations.  
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Chapter 2  
 
 
Transmission System Design and Tools 
 

This chapter provides the definitions and setups proposed for the transmission capacity 

market. It presents a set of current tools that are used to operate the market and points out the 

need for new tools. The chapter also provides background to the technical tools that are used 

in the thesis, namely dynamic programming and optimal power flow analysis. 

 

2.1 Overview of Electricity Markets 

 

The optimization suggested under both the coordinated and the distributed schemes is 

proposed in a market setup in which the TSP offers long-term bilateral contracts at a 

premium to enable the load and the supply to hedge against the volatility of the spot prices 

[35]. As mentioned before, the roles of the intermediary traders and secondary markets are 

excluded for this analysis and that leaves only three players to analyze, the supply, the load 

and the TSP. Two types of transactions will be available to the market players: 

1.Long Term Bilateral Contracts: These are contracts between a supply-load pair that 

designate the obligation of supply to produce a certain amount of power at a negotiated price 

for a defined time period in the future. These energy contracts are matched with transmission 

right contracts to deliver the chosen quantity. The failure to provide this service will incur a 

penalty to the TSP. For this study, the agreements can be established only between nodes that 

are physically connected with a single line, and agreements between three or more parties are 

not permitted. And the price of any contract, in this thesis, refers to the injection price the 

users are willing to pay the TSP for the access to transmission service. 

2.Real Time Spot Market: This is the traditional regulated spot market where demand 

meets supply and market clears at a spot price determined by demand and supply curves. The 

price depends on the cost functions as well as on the demand elasticity functions of the loads. 

The spot transmission service market matches the energy spot market to provide the capacity. 

Like in any market environment, the level of demand, which is stochastic, determines the 

demand for the price of the transmission service. 
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The load and supply can choose which type of transactions they would like to 

participate in between the deterministic risk-free bilateral agreements at a premium and the 

risky spot market at the market clearing price. In other words, the generators generally 

produce for both the spot market and the bilateral agreements, similarly the loads buy their 

electricity through both types of setups. They do this in a fashion to maximize their 

individual welfare functions. Under the coordinated setup, the TSP also makes decisions to 

determine whether to allocate its resources, line capacity, to the bilateral agreements requests 

or to the spot market participants again to maximize its revenues.  

 

2.2 Time Frames and Event Characteristics 

 

The decisions of the players belong to either one of the time frames, season-ahead or the near 

real-time. Season-ahead decisions are made using forecasts of market behavior that also 

include the uncertainties of the physical system. They are either concerned with provision of 

a service or with the risk hedging for the future. Season-ahead decisions by the transmission 

system owner dictate how its lines will be allocated between the forward market and the spot 

market  as well as which long term contracts to choose among all requests. The system users 

make a set of similar decisions. The loads decide from whom to obtain their power and how 

much they are willing to pay for it. The generators decide to whom they should sell their 

power to, at what price and for how long. Both users also determine their priorities for the 

transmission service in light of the uncertainties. In this thesis, season ahead planning is 

considered long term; whereas, long-term decision-making has been traditionally thought of 

as investment level decision making for long horizon projects. The incentive for investment 

or recovery of investment in transmission system is not studied in this thesis. Moreover, since 

the long-term in the thesis is about three months, a season, discounting of the costs and 

revenues are ignored. 

Near real-time decisions are modifications made to long-term decisions as more 

current information becomes available in addition to the spot market. With more information, 

load and supply may decide to call off a bilateral agreement or establish one, similarly the 

TSP can decide to curtail an agreement it had accepted before or respond near real-time to 

near real-time decisions made by the other players. Most of the actions taken by the TSP in 

the short run will be to deal with congestion appearing in the system, and calculating profit 
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through congestion charges and ensuring reliable service. For example, if a load believes that 

spot prices will be high in the next period, it may choose to strike a bilateral agreement and 

the supply side might find this acceptable, as it will itself hedge against the risk of elastic 

load. In another setting, the TSP can decide to curtail a bilateral agreement with the 

expectation of making higher profits in the spot market even after paying a penalty.  

The motivation for the players to operate in these two different dimensions is a result 

of the volatility of the spot market. It is an attempt to avoid congestion ahead of time or be at 

least prepared for it. Not only does the existence of two options make it harder for the users 

to plan cleverly, but it also makes any system optimization hard. Including these two 

different time frames in the same optimization function, each having different characteristic, 

is very challenging. As there are different times frames to consider, looking at it more 

closely, it can be seen that spot market and long term bilateral market inputs have very 

dissimilar characteristics in the way they evolve in time. The bilateral agreements can be 

treated as asynchronous discrete events that start and end at certain times; whereas, the spot 

market is a continually evolving continuous time input. These two market inputs come 

together in terms of continuous flows in real time, but in analysis they present a hybrid 

system model that lends way to a discrete event dynamic system (DEDS) formulation. In this 

context, the control for discrete inputs to the system is determined by the current state of both 

continuous and the discrete elements [12]. Looking at these more closely: 

 

Time Driven Spot Market:  

 topology physical  theof state  theis  
 at time agreements bilateral of control  theis  

generation system  total theis 

demand system  total theis 
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Total System Control: 
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While the above expressions define a complex problem, when looked into the 

function f3, it is observed that the available computational tools to calculate system revenue 

of the real time flows, cannot handle a hybrid market definition. Rather total system dispatch 

control uses a discretized version of the continually-evolving real time spot market. (This 

refers to the optimal power flow analysis that uses a snapshot of the system to determine 

optimal operational dispatch, thus highest profits. Please see later Section 2.3.2.) Moreover, 

function f1 is also hard to use due to the non-linearity it exhibits with the distribution factors. 

This is the main motivation behind abandoning a DEDS formulation of a hybrid system. We 

prefer to use discrete models for all inputs and the system to make use of the optimal power 

flow analysis for revenue calculations of the spot market.  Our model treats the bilateral 

agreements the same as the hybrid model, but instead of a continuous treatment of the spot 

market, it takes snapshots of the spot market at fixed time intervals and combines it with the 

bilateral discrete inputs to develop a dynamic programming approach.  

 

2.3 Reliability and Uncertainties 

 

There are two kinds of reliability that are considered in the thesis. One is the reliability issues 

arising from physical uncertainties, second is the reliability issues related to the usage of the 

system determined by system inputs, which can be at normal operating conditions or lead to 

network congestion. 

 

 



 17

2.3.1 Physical System Uncertainty 

 

In both the centrally coordinated and the distributed modes of operation, TSP needs to model 

its system accurately to insure system reliability and incorporate risk of its system into his 

objective functions. In the coordinated scheme, as the decision maker, TSP, has to know the 

uncertainties inherent to the system, i.e. equipment outages, in order to make sound long-

term decisions. Similarly, in the partially distributed set-up TSP is responsible for sending the 

right price signals, which have the incorporated information about the system conditions. 

Uncertainties inherent in the grid are numerous, but this thesis will focus on line outages as a 

subset of equipment uncertainties only. Methods developed in this sub-case can be extended 

to substation, generation outages and their likes. We consider the line outage problem to be 

the most complex because the effect of any outage event effects the system topology, i.e. it 

determines how well the system can absorb and cover up for that outage. A line outage could 

be viewed as a high impact, low probability uncertain event and cannot be ignored as TSP 

develops his decision tools for serving electricity market participants, studied in Chapter 4. In 

[19] it is shown how due to a line outage, the topology of a transmission network can change 

so drastically that some isolated parts of the network can be formed where some generations 

units can exert market power and become monopolies even in a competitive energy 

environment. This is a perfect example why transmission reliability is a big issue. Chapter 4 

will go into detail about line outages and their incorporation into the decision-making 

process. 

The concept of reliability is a big topic in itself and a revisit to the current reliability 

tools is necessary due to the unbundling of the reliability services in the industry. The 

currently practiced (N-1) reliability test requires that the grid be used under normal 

conditions (prior to any equipment outages) somewhat conservatively; the reliability test 

requires sufficient generation and transmission reserve capacity in a stand-by mode in order 

to supply the consumer in an uninterrupted way in case any single equipment outage takes 

place. The regulated industry approach to reliability treated transmission system and 

generation systems as a single unit and collected the work under bulk system reliability 

analysis. Under the vertically integrated utility, this makes sense because then, if one line of 

the transmission system owned by utility A were to fail, then utility A would re-dispatch its 

own generator units in the area to make sure that all the loads were served. Since this was 
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possible, they used a conservative method to run their system: the (N-1) security criteria. This 

method suggests that the maximum operation be bounded by the limits imposed on the 

system derived from cases where there is loss of a major component of the bulk system, 

mainly lines and generators.  [20] ana lyzes some of these issues in depth. Chapter 4 suggests 

a less conservative reliability analysis. 

 

2.3.2 Market Input Uncertainty 

 

Market uncertainties can be grouped in two classes: 

1) Spot Market Uncertainties 

2) Bilateral Agreement Uncertainties 

Spot market uncertainties capture the volatility of the real-time operations. Changing 

demand and changing supply result in a rapidly varying behavior. Figure 2.1 shows the load 

diagram for a week in May in New England [33]. 

Figure 2.1: Load diagram for a week in May, New England 

 

And Figure 2.2 shows a plot of average 24-hour load patterns for each month in New 

England [33]. 
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Figure 2.2: Average monthly patterns of daily load, New England 

 

Bilateral uncertainties refer to the possible quantity, price and duration parameters 

that any BA can take. In addition, the unknown arrival time of the agreements is another 

element of uncertainty. 

  

2.4 Technical Background 
 

A brief background is appropriate to introduce two tools used in the thesis. Dynamic 

Programming is a decision making tool. The optimal power flow analysis is an optimal 

dispatch tool used by the transmission operators.  

 

2.4.1 Dynamic Programming and Curse of Dimensionality 

 

The formulations of the resource allocation problems studied in the thesis are posed as 

dynamic programming problems. Dynamic Programming (DP) is a very effective way to 

pose problems that feature discrete-time dynamic systems with additive cost over multi 
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stages. These problems involve decision making at each stage whose outcome depends on 

other parameters of the future stages. Therefore, the desirability of any current decision is 

calculated by their current cost and expected future costs. It is important to state the notation 

of the DP formulations beforehand. k  designates the discrete time index taking values 

between 0 and N. x is used to describe the state of interest, u the control or decision variable, 

belonging to an admissible space, that evolves x into future states. w is the random noise that 

introduces uncertainty. Function g calculates the per stage cost, g(x,u,w). The optimization 

function can now be represented as [3]: 

 

 

The strength of the formulation comes from the principle of optimality where optimal 

solutions to tail sub-problems can all together define the overall optimal solution: 

 

This is the objective function form that is used in this thesis for network allocation 

formulations and the algorithms for their simulations. While the expression looks compact, it 

is usually hard to find a closed form representation of J which leads to enumeration based 

methods. Computational effort can get very expensive with bigger control space and longer 

time periods, higher k , hindering the desirability of DP. Such cases are classified under the 

Curse of Dimensionality, which will be referred to in the thesis to motivate approximation 

methods.  

 Please note that the dynamic programming formulations, in this thesis, are defined in 

discrete time. One can think of the whole time horizon as a season and each time increment 

can be a day. If there are T days in a season the optimization will go from k=1  to k=T. The 

definitions belong to a system with NG generators and NL load, demand, nodes. 
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2.4.2 Optimal Power Flow  

 

The use of Optimal Power Flow (OPF) has increased with deregulation where the solution of 

this static optimization reveals the locational-based marginal prices of electricity (LBMP) 

which are considered to be optimal prices under perfect market assumptions. This solution 

also is called the economic dispatch. The idea is to aggregate all the demand and supply bids 

for resources at a single node in the system to determine the market-clearing price for that 

node using generation cost functions. This price then in return determines the injections and 

withdrawals that optimize system operation and maximize social welfare. These are also 

called the spot market prices and quantities. Let NL be the load nodes and NG the supply 

nodes, given the demand at each load node 
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2) Line Capacity Limits max
ijij PP ≤  

Any time the thesis refers to the calculations of spot prices, spot injection, the above 

optimization is used. For large systems of many nodes, this optimization can also get very 

costly [36]. Given these tools, the specific problem formulations of interest in this thesis can 

be derived. 
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Chapter 3 
 

Coordinated System Operation with Static Topology 

 

This chapter formulates an approach to a centrally coordinated transmission allocation. 

Depending on design, the formulations differ as a function of uncertainties considered. Figure 

3.1 shows the tree of uncertainties. This chapter develops the tools under the static topology 

assumption. Computational issues and some solutions to the above cases are discussed. 

 

 

3. 1 Coordinated Decision Making by the TSP 
 

This centralized scheme is a direct extension of the TSP’s role as a transmission provider in a 

regulated industry. The new component is the operation of bilateral agreements that allows 

the TSP to collect a profit other than charging the spot market users for transmission service. 

Bilateral and spot markets both influence the quantity of power flow on the lines, which have 

a certain carrying capacity. The higher the congestion on one line, the higher the price due to 

high demand for the line flow usage. Even though it may seem that the TSP would like to use 

as much of its lines as possible, thus accept any incoming bilateral and spot market requests, 
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a different scheduling system is shown to yield higher revenue. Bilateral agreements that are 

accepted in one period of time, e.g. a day, might impact the line congestion levels of the next. 

While maximizing revenue for  one period, they may decrease it for the next compared to the 

case where the agreement had not been accepted. Or, an agreement may take up capacity that 

would be more profitable to sell later to another party. This is analogous to the problem of 

asset allocation among investments.  

In short, we are looking at a finite horizon, multi stage decision-making problem 

under uncertainties for the TSP. The goal is to a build a tool and a framework where the 

system revenue is maximized, season-ahead, by the TSP who chooses the optimal 

combination of the incoming bilateral agreements, implements them in addition to the spot 

market in consideration of limited transmission resources. Using dynamic programming 

tools, this near real time resource allocation problem can be solved effectively. 

Figure 3.2 shows the procedure under the coordinated scheme. At time t = -p with 

reference to the beginning of the season at time t = 0, system users decide on the parameters 

of the bilateral agreements they would like to participate in. These parameters are quantity, 

price to be paid as access fee to transmission network, the start and end time of the contract. 

Under this setup, the resource allocation optimizations carried out by the system users while 

determining the agreements they would like to arrange, is not discussed in detail. For 

centrally coordinated operation, this simplification is acceptable since TSP has the final word 

in deciding which agreements get implemented. Sections on priority pricing and 

decentralized models attempt to detail user decision-making processes in Chapter 5.  

 

Under the assumption of static physical system topology, once the supply and 

demand units make their own allocation decisions season ahead, two variations of centrally 

coordinated operation can be designed: 

 

   

k = 0   k =  - p   k = T   

Users decide on  
BA parameters   

TSP makes  
decision   

 
 Figure 3.2: Time line of events 
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Case 1: Users communicate their contract information to TSP between t=-p  and t=0. 

This is depicted by Deterministic user requests branch in Figure 3.1. (Section 3.2) 

Case 2: Users do not communicate any information. This is depicted by Stochastic 

user requests branch in Figure 3.1. (Section 3.3) 

 

Under both cases, rejection of an agreement prior to its start does not incur any 

compensation payments to the TSP; whereas, curtailment in real time requires compensation. 

To compensate, TSP agrees to provide the service demanded by the load from the spot 

market at the load bus. 

 

3.2 Deterministic User Requests 
 

Users inform the TSP of the agreements they would like to buy transmission service for. TSP 

can then go ahead and use this information combined with forecasted spot load to determine 

the optimal decision-control path. In a system of NG generators and NL loads, TSP objective 

function is as follows: 

 

uij [k]:  The control decision of accept of rejecting BAs injecting at bus i and withdrawing 

at bus j at time t = k. 

Z [k] :  The vector of bilateral agreements whose elements are  

 Zij[k] = [ QZ
ij[k], PZ

ij[k], trZ
ij[k] ] which are the BAs communicated to the TSP and 

begin at t = k. 

X [k] :  The vector of BAs, which have been accepted by TSP prior to k , and TSP has the 

responsibility of delivering this service whose elements are:  

 Xij[k] = [ QX
ij[k], PX

ij[k], trX
ij[k] ]. 

PWs [k] :  The column vector of probable spot prices for all buses in the system PWs
i[k]. 

PWs
i[k] is a row vector of b possible spot price values with probabilities ?: 

  PWs
i[k] = [ (PWs

i,b[k], ?i,b[k]) ] for all b. 

QWs [k] :  The vector of probable spot demands for all buses in the system QWs
ij[k], injected 

from bus i to bus j at t = k  in the spot market. QWs
ij[k] is a row vector of c possible 

values with probabilities f : 

 QWs
ij[k] = [ (QWs

ij,c[k], f ij,c[k])] for all c. 
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Ws[k] :  Vectors that capture the randomness in PWs [k] and QWs [k]. 

 

The performance to be maximized is the revenue collected by the system. The 

revenue has two flows: One from the execution of the agreements, and the other from the 

spot market at that time period. These two elements need to be related since the transmission 

capacity used up by the bilateral agreements has an influence on the spot prices and therefore 

the revenue. Optimal power flow calculation is used to calculate the spot market revenue 

taking into consideration the line capacities altered by acceptance of the bilateral agreement. 

The seasonal revenue is maximized over the decision space U. The decision space contains 

the decisions TSP makes as to whether to accept or reject BAs. The first line in the 

expression defines the revenue collected from the agreements that are accepted at time t = k . 

The second line defines the revenue collected from agreements already being implemented 

and last line defines the expected revenue collected from the spot market as a product of 

nodal price differences between the injection and the withdrawal bus and the expected 

quantity carried between them: 

 

 

 Given the above cost function, the detailed dynamic programming algorithm is as 

follows (3.2): 
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 The above expression does not explicitly show the optimal power flow analysis that 

determines the spot prices and quantities for the purpose of compactly expressing the 

algorithm. (Note: This particular definition partially violates the elements of the disturbance 

matrix to be independent from one another since it is well studied that spot market behavior 

of consecutive time periods are related. This will be corrected in Section 3.4.4 under the 

discussion for state augmentation.) 
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The uncertainty in the spot market requires the decision to be done over the 

expectation space for the spot market parameters. (The physical system uncertainties were 

not included in the formulation, which is relaxed in Chapter 4.) Effectively under this 

version, TSP solves an optimization function over the decision space to develop a simplified 

tree similar to one shown in Figure 3.3 for a 2-Bus system. 

 The tree structure in Figure 3.3 shows how the size of the dynamic programming tree 

grows exponentially with the number of nodes in a system and linearly with the number of 

time periods. Not only are there a high number of nodes, but also while building the DP tree, 

each revenue calculation at each node requires probabilistic optimal power flow analysis, 

which involves iterations of the non-linear OPF optimization for all probable values. This 

introduces high level of complexity to which solutions such as ordinal optimization, 

approximate dynamic programming and perturbation analysis are being considered as a 

remedy.  For practical purposes, assume that the black nodes in Figure 3.3 are the expected 

revenues over Ws. Once the dynamic programming tree is completed, the algorithm does the 

backward walk from the leaves of the tree to the root to determine the possible maximum 

accumulated revenue, and chooses the associated optimal decision vector. It is important to 

expand the tree in Figure 3.3 to really show the branching without the aggregation of 
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expected values at each node. The detailed dynamic programming tree depicting the 

uncertainties in the spot market for a 2-Bus system is shown in Figure 3.4. This is for a 

situation where there are 3 possible load levels each with probability PLi and 2 possible 

supply levels PSj. The triangle  states depict the state changes due to different controls, and the 

circle states depict the probabilistic states due to the uncertainty in the state parameters. To 

attach more meaning, the triangle states would describe the ‘accept’ or ‘reject’ decisions of 

the bilateral agreements whereas the circles would be different spot revenues for a given 

control branch. Note the timing of these branching, control branches evolve the state from 

time t to t+1 , but the state uncertainty branches do not involve a decis ion but rather can be 

thought of as happening in the same time period.   

 

 

 

Please note that both trees are constructed by the same amount of computation. For 

the 1st tree, probabilistic OPF simply samples the probability distributions and runs OPF for 

each sample and brings the results together at the end to form a result distribution; thus the 
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expected values can be readily calculated. The second tree, instead, runs OPF for all possible 

values without creating distributions. The thesis will refer to the second tree with individual 

trajectories for the purpose of pictorially describing the computational issues.  

At this point of the discussion, it should be emphasized once again that OPF is a 

simulation-based tool. (It simulates static optimization of the system without considering any 

temporal components.) It lacks control and learning mechanisms. But among all the 

drawbacks, the most significant disadvantage is that it is based on simulation rather than 

working with closed-form functions or distributions. This is because the optimization of OPF 

is nonlinear. When OPF uses the load and supply curves it does not use them on a functional 

basis but rather samples them. The answers are represented similarly where the resulting 

sample points are interpolated to form the resulting flow distributions most of the time after a 

series of refining linearizations. However, it is accurate to add that this method works well 

since rarely any load or supply curve can be represented as an explicit function with a 

distribution. Therefore extending the OPF to a probabilistic version leads to similar issues. 

Even if the probabilistic load and supply could be expressed in a compact distribution form, 

OPF would still sample this distribution and make simulations to get the resulting flows. 

 This section only considered the spot market uncertainty, assuming that the players 

would communicate their forward contract requests ahead of time. However, it is more 

realistic to assume that the system users will communicate the information about the 

agreements to the TSP at the time they would like to start it any arbitrary point in the season 

rather than the beginning of the season. This motivates the development of the model for 

stochastic inputs. 

 

3.3 Stochastic User Requests 
 

Relaxing the deterministic assumption, TSP now also needs to handle the random disturbance 

of bilateral agreements. The coordinator TSP still has the control to accept or reject the 

agreements as they come in, but season-ahead, TSP now tries to accurately forecast the  

disturbance for two purposes: 

1.To achieve season-ahead planning so that TSP knows how to behave in response to 

requests for service overall. 
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2. Each day can be treated as the 1st day of a season that allows the TSP to make decisions 

about an agreement by looking at its impact on the system for a season-long window of 

time. 

  

Before introducing some solutions and extension to the above formulations, it is 

important to visit the assumption behind TSP’s generation of possible bilateral agreements. 

For this case when TSP needs to develop its own forecast for the BA arrival process, he can 

use two methods:  

1) Historical Cost Methods:  TSP can refer to the past values for the bilateral agreements 

it served, or 

2) Monte Carlo Projections: TSP can refer to tools that have been developed to study 

bilateral contracts and how the transmission company needs to do static tests to ensure that 

the operational security is not jeopardized. [13] presents a method of creating sample, 

random bilateral agreements vectors using Monte Carlo methods to evaluate the bounds of 

safe operation. [14] offers a mechanism to evaluate the impact of bilateral agreements on the 

system through sensitivity analysis. Monte Carlo simulations are used to create bilateral 

agreements. Linear programming and sensitivity analysis tools are used to measure if any 

agreement or set of agreements poses a threat to system security. Moreover, the transmission 

service provider can use these very tools not only to test situations but also to develop bounds 

and constraints as well as general rules for the operation of the bilateral contracts. This is  

very valuable for the TSP however, it is crucial to see that the mentioned approaches treat the 

bilateral agreements as being separate from the spot market and overlook their impact on real 

time flows with changing spot market characteristics which dynamic programming with 

stochastic spot market disturbance considers. That is why, this thesis motivates stochastic 

dynamic programming and gradual temporal learning from a tool, which couples real time 

and forward markets which can be developed by the below formulations: 

Because TSP has control over the agreements, the disturbance from this input is treated 

differently than the spot market disturbance, Ws[k]. And the stochasticity in the BA requests 

is considered in the control function. In addition to the notation defined in Section 3.2, let 
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Y[k] : The expected incoming bilateral agreements at time t = k, Y[k] is a column vector 

of all  Y ij[k]. 

 Y ij[k] is a row vector of all n possible bilateral agreements from ij at k  with their 

associated probabilities ?: 

 Y ij[k] = [ (Y ij,n[k],?ij,n[k]) ] such that  

 (Y ij,n[k], ?ij,n[k]) = ( [ QY
ij,n[k], PY

ij,n[k], trY
ij,n[k] ], ?ij,n[k]). 

 

The optimization of the TSP now becomes an expectation both over random Ws and 

and over controllable Y: 

  

 With this updated cost function, the detailed DP algorithm becomes (3.4): 
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As seen above, DP formulation was able to capture all market uncertainties in the 

system. Control parameters partially handled the stochasticity in the bilateral market; and the 
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random system disturbance described the spot market uncertainty. As more uncertainty is 

included in the model, the size of the decision space becomes combinatorial which requires 

approximate solutions for a feasible implementation. This is the problem of curse of 

dimensionality. 

 

3.4 Possible Approaches to the Curse of Dimensionality Problem 
 

In general, there are two main obstacles in the application of DP. First is the size of the 

solution space, and the second is the complexity of the objective function J. 

As seen from the above formulations and the growth order of the DP trees, 

determining the solution to the original DP problem leads to a computationally intractable 

problem classified as being NP-hard. An NP-hard algorithm is defined as a problem requiring 

the enumeration of some nontrivial parts of feasible solutions, which cannot be accomplished 

in polynomial time [18]. Thus, new approaches are needed to solve our optimization problem 

which becomes NP-hard even in finite horizon. Not only does the problem involve many 

computations increasing in time, but also this is a stochastic dynamic programming or 

stochastic shortest path, problem where controller does not deterministically define the next 

state with probability 1. Under the stochastic case, [4] probability of transition from state i to 

j with control u is given by a probability expression defined by the control and the previous 

state only; pij(u) = P(xk+1 = j | xk = i , uk = u ). Using this probability, one can also update the 

cost function being used to g(i,u,j) such that cost is now also based on the next state. This is 

the essence of stochastic dynamic programming and developing Markov decision models. In 

TSP’s formulation, the transitions between states depend on Y as well as Ws in the current 

definition. Since control aims to maximize revenue with respect to these uncertain 

disturbances, well-defined transition probabilities might be hard to obtain. In cases where 

clear patterns of probability of state transitions cannot be obtained, simulation based methods 

are used both building on the original well-defined cost functions and the approximate 

ones.[4]   

This section first introduces Markov decision processes that from the basics for 

explaining approximation methods. Next simulation-based tools such as rollout algorithms 

are visited introducing different heuristics that replace the original control and cost functions 

and aim to reduce computation. Lastly, the basic issue of the complexity of the objective 
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function itself is discussed offering approximate methods , neuro-dynamic programming 

(NDP), to calculate J. 

  

3.4.1 Application of Markov Decision Processes 

 

Consider the case where the spot market is included in the formulation but is assumed to be 

constant. (This is a pretty valid assumption when operations over fixed periods like seasons 

are considered.) In this case, the control decision varies only with the arrival of the BAs and 

their parameter in a static physical system.  

This setup lends itself very well to exploiting theories developed for Markov decision 

processes in stochastic DP problems. Markov decision problems rely on obtaining the 

following information [4]: 

( ) . controlgiven   state  state from going ofy Probabilit,, ujijuip =  

  

In the problem of TSP’s decision making, assuming WS is known and slowly varying, 

( )]1[,],[ +kXukXp  can be treated as having two components that influence the probability.  

Recall the state evolution expression: 
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The first part of the evolution of updating the current system commitment is 

deterministic; however, the second part with the control depends of the incoming agreements. 

Therefore ( )]1[,],[ +kXukXp  can be associated with the probability on getting a certain 

incoming request vectors Y[k] and Y[k+1] and feeding them to the controller u[k]: 

( ) ])1[],[],[],[(]1[,],[ +=+ kYkYkukXkXukXp η . We assume that probabilities of Y[k] 

can be well defined using historic data and exploiting auction theory where depending on a 
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certain u[k], the decision maker can attach probabilities to Y[k+1] he expects to get from the 

system users. (Probability of bidding higher, probability of asking for less quantity, etc.) 

So given such a strong structure to the problem, optimal policies, both stationary and non-

stationary can be determined using transition probabilities. Stationary policy is an admissible 

policy where the control policy is of the form { }L,, µµπ =  unlike the non-stationary 

policy { }L,, 10 µµπ =  where the policy depends on time. Objective functions can be re-

expressed using transition probabilities and taking expected values of the possible future 

trajectories. Here is the basic DP algorithm: 
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These two definitions are important because they define the two qualitatively different 

ways to approach approximate dynamic programming: 

1) Value Iteration: Tries to find the optimal value for cost-to-go function J at all k. 

2) Policy Iteration:  Tries to find the optimal policy µ. Rollout algorithms that are 

explained in the section are single step versions of policy iteration.  

 
3.4.2 Rollout Algorithms 

 

Rollout algorithms aim to overcome the computational problems of stochastic control 

problems with combinatorial decision spaces [6]. The goal is to use certain heuristics to 

approximate the optimal dynamic programming solution. This section introduces concepts in 

rollout algorit hms and apply them to our centralized TSP decision-making problem under 

uncertainty of the market parameters. From the basic definition of DP,  

 

( ) 1,,1,0      ,,1 −==+ Tkwuxfx kkkk K  



 36

for a T-stage problem. ku  is the control determined by the base policy 

{ }110 ,,, −= Tµµµπ L  where ( )kkk xu µ= . With the base policy, cost-to-go function 

starting at k is  

 

Under base policy, the cost-to-go function satisfies the basic DP algorithm: 

 

But when it is hard to determine the base policy π , rollout algorithm is used to determine the 

rollout policy π  based on π .  Determining the elements of { }110 ,,, −= Tµµµπ L  from the 

below expression, yields the one-step look-ahead policy:  

 

In cases when kJ  is not in closed form or is hard to calculate, the one step look-

ahead policy should be used with the best approximation available to ensure accuracy. To 

find π , one needs all Q-factors under different policies [8]: 

For any time k, all the Q-factors for all possible values of ( )wuxf ,,  need to be 

determined. Applying the one-step look ahead policy to TSP’s optimization problem:  

However, it is observed that we have two different unknowns Y and Ws. Thus, two Q-

factors should be defined in two-dimensional state space, namely  
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From this expression and using the probabilistic values for all the pairs, the optimal 

rollout policy can be determined by minimizing the expected value of the Q-factor over 

decision space u: 

 

Once these structuring definitions are formed, rollout algorithms look for heuristics to 

produce different p trajectories for different policies. Here are a few heuristics for TSP’s 

problem:  

 

1) Certainty Equivalence: Fixes the disturbances Y and Ws  to Y` and Ws`  and run the  

 

2) Scenario Based Solutions: Relaxes the certainty equivalence method by creating a 

certain number of pair of Y and Ws to fix the number of trajectories simulated. 

 

[ ] { }
[ ] { }V,1,v   ,,  :  for  sequences V Create

M,1,m   ,,  :for  sequences M Create

1

1,,

LL

LL

=∀=

=∀=

−

−

v
T

v
k

v

m
Ts

m
ks

m
S

yyY

wwW

Y

WS
 

The result is a trajectory set of (MxV) elements each of which should be weighted by 

its probability of occurrence to get the approximate kJ
~

. The weighting function here 

is another optimization function where the error between the original and the 

approximated problem should be minimized by calibrating the weights. Moreover, 

with time, weights can be adjusted through learning algorithms. More will be 

discusses on learning in Section 3.4.4. 

 

3) Pick the highest revenue BAs: Be selective in the Y space and fix Y to simplify the 

DP uncertainty from spot market. 

4) Pick the shortest duration BAs: Be selective in the Y space. 

5) Use expected values for the inputs at the expense of not being accurate. 

 

To determine the best heuristic to use, all these methods should be compared to the  

( ) ( )UX,X WY, S
kuk Q̂minarg=µ                                 (3.12) 

    ( ) ( )( ){ }  ',,~',, min arg 1 wuxfJwuxg kuk ++= εµ         (3.13) 
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original solution in test cases. 

 

3.4.3 Conservative Dynamic Programming 

 

Another approach to simplifying the curse of dimensionality, introduced by Asuman 

Özdaglar Köksal1,  is simplifying the multi stage problem to a single stage problem. This is a 

conservative DP heuristic, where a new cost function to the decision maker is introduced. 

The idea is to allocate the resources for the current period without looking ahead in time but 

with a virtual internal cost function such that the cost of allocation of resource increases with 

the allocation amount. The motivation is to allocate some resources at the current period and 

leave some free for use in the next period blindly. (This is a perfect situation for learning 

algorithms to be applied, to determine the optimal allocation for the future periods based on 

expectations.) 

 For the TSP, a cost function is introduced to capture the opportunities forgone in the 

future by making the current decision: 

functioncost  quadratic a a ,][  ][

k. at time resource ofamount h  using ofCost   ][

0 ,capacities linefor  metric aggregateAn   

2

max

hkk,ht
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Given this internal cost, the per stage optimization can be augmented to: 
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1 Work in Progress. Asuman Koksal is working with Prof. Bertsekas at LIDS, MIT. 
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 Using such a method, the TSP can develop a database of historic data to 

characterize system users, and cyclic requests to make this virtual cost function to be very 

clever. Learning algorithms are also very useful to perfect the cost function.  

 

3.4.4 Neuro-Dynamic Programming 

 

Neuro-dynamic programming seeks sub optimal solutions to the original dynamic 

programming algorithm in situations where either the objective function is not well defined 

or is very complex. In these cases, )( kk xJ  is approximated by a scoring function ),(
~

kkk rxJ  

where r represents a set of parameters, weights, that approximates the original function. 

Given this approximation the policy can be written as [7]: 

 

( ) ( )( ) ( )( )[ ]11 ),,,(
~

,,maxarg~
+++= kkkkkkkkukk rwxxfJwxxgx µµµ ε      (3.15) 

 

The success of the neuro-dynamic programming is determined by how well it 

approximates the original function, and how simple the parameter vector is. If the 

original function is known, r can be engineered to minimize the least squares error. If it is 

not known, then learning algorithms can be used to determine the parameter vector with 

time. The function fitting is what gives this practice the name neuro-dynamic 

programming, as the fitting of the sample trajectories to function parameters require 

feature extraction by neural networks.[5] Feature extraction method captures the main 

elements that describe the majority of the state evolution and the cost function without 

incorporating all the details of  the main function.  

In any sort of neuro-dynamic programming, temporal difference learning can be 

used to make adjustments to the approximation functions. The learning algorithm uses 

the difference between the actual J and the approximated J
~

and tries to decrease it. 

( ) ( ) ( )kkkkkkkkkkk rxJrxJxwuxgd ,
~

,
~

,,, 111 −+= +++                            (3.16) 

In TSP’s coordinated optimization function, the main obstacle is running the 

optimal power flow analysis for each revenue calculation. Thus, neuro-dynamic 

programming can be utilized to simplify this calculation. A possible approach is to model 
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the spot market input as varying around an average and use the parameter set to model 

the real-time variances. 

 

3.4.5 State Augmentation 

 

The above formulations of DP partially violate a basic assumption that the values of Ws for 

all time are independent [3]. The methods should be corrected to exploit the correlations 

between the spot market parameters, Ws, namely the nodal spot prices and aggregate spot 

demand among buses. The elements of vector Ws are derived from optimal power flow 

analysis, which takes in individual demands, and supply bids of system users, determines 

optimal dispatch to produce the values used in revenue calculations, price and quantity of 

spot. Thus, one should look at the correlations among the supply and demand bids to try and 

model the correlations among the elements of Ws. Once the underlying processes that evolve 

the spot market is determined, state augmentation can be used to enlarge the state space. The 

enlarged state space captures all the information known to the control function at time k . 

Previously, the formulation captured information about only the bilateral agreements in the 

system state definition; however, using certain models, state space can be extended to include 

information about the spot market at time t=k. The goal is to reduce the elements of Ws to the 

point where it can be treated it as noise.  

 Many studies have been done to model the spot market parameters for forecasting 

purposes. The following is a compact summary of the mathematical model underlying the 

Bid-based Stochastic Model [33]: 

Spot Price Model: 

Hourly price: hh baL
h eP +=  

Daily 24-hour vector of prices: dda
d e bLP +=  

Load Model: 
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where, 
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b
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where πd is Markov process. Such models can be used to develop state augmentation 

models where the Ws disturbance becomes just the error in the estimation.  

 Another application of state augmentation is altering non-stationary DP problems into 

stationary ones by mapping non-stationary states and cost function values to stationary ones 

[5]. This is particularly useful to develop in order to utilize large set of DP related tools 

developed for stationary problems. Since the TSP optimization problem is non-stationary, 

with changing bilateral agreements, even after the state augmentation of the spot market, the 

above method might be used.  
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Chapter 4 
 

Coordinated  System  Operation  with  Dynamic  Topology 

 

The formulations presented in the above section do not include uncertainties about the 

operation and the availability of the physical system, hence they were classified under static 

setup. However, relaxing that assumption shown in Figure 4.1, this section considers a 

dynamic physical system. It presents the probabilistic concepts behind physical system 

reliability. Besides the source of the risk, the chapter also discusses the approaches to who 

absorbs the risk in transmission service.  

 

4.1 TSP Objective Function 
 

Physical system dynamics are considered to be the equipment outages in the transmission 

system. For simplicity, line outages are considered to be the only form of equipment outa ges 

causing reliability issues.  These outages are low probability events with high impact on the 

operation of the system deviating it from normal conditions. Even if the isolation of nodes 

might not be an issue, the transmission provider suffers from congestion when one of the 

lines fails but the connected node still needs to be served. This may also increase congestion 

on other lines resulting in higher demand per line thus higher service prices. A worse case is 

when the line reaches its transmission limit and the nodes are not delivered the power they 
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need. This has severe implications on the reliability of the system. That is why it is crucial for 

the TSP to model these events, plan and commit accordingly.  Figure 4.2 shows a timeline for 

seasonal operation and shows the arrival of a line outage that disturbs the planned system 

operation. 

Figure 4.2: Description of Possible Events 

 

Imagine the case in which the line which fails was the one on which a bilateral 

agreement was being implemented such that the re-dispatch of the generation units also leads 

to congestion. In this situation, the agreement be curtailed and the service provider will incur 

a penalty, compensating the bilateral agreement owner. This compensation charge may be 

high, making that agreement unprofitable even with a small probability of outage. It maybe 

very well be the case that profit collected from the successful part adjusted by the 

compensation cost might be negative in which case, not implementing the agreement would 

be more profita ble to the TSP. (For a BA curtailed, it is assumed the power is obtained from 

the withdrawal node in the spot market, hence the assumption of infinite generation.) This is 

why it is crucial for the TSP to model these outages in order to determine if it should accept 

an the agreement or not. Under such circumstances, with the physical uncertainties, the TSP 

objective function becomes (4.1): 
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While the formulation captures the uncertainties that TSP is interested in, it is 

observed that the nature of the  uncertainties is quite different. The bilateral agreements are 

event driven and can be modeled by arrival processes with certain distributions for quantity, 

price and time. However, the spot market is time driven where there is a continually evolving 

input with small variations similar to small signal noise. Thirdly, the physical system 

uncertainties are modeled as low probability events with large mean times to fail and are one-

time occurrences. While the first two inputs can be modeled by probability density 

distributions without closed forms evolving with time, for the physical uncertainties we have 

a different model where the only information available is the steady state probabilities of 

operation. As a result of the formulation above, the DP tree gets even bigger. Figure 3.4 is 

now extended to capture the physical uncertainties in Figure 4.3. 
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4.3 Detailed DP Tree With System Uncertainties. 

 While the computational remedies proposed in Chapter 3 can again be used, the 

thesis suggests that another approach should be developed due to the significant 

differences in the characteristics of the physical and market uncertainties. The next 

section aims to describe the physical uncertainties for finite horizon operations in more 

detail. 

 

4.2 Reliability Analysis for Large Transmission Systems 
 

From a Transmission Service Provider point of view, reliability concept is usually visited 

during the planning stage of a transmission system. Probabilistic tools are utilized to 

determine the lines, connections that have the highest probability to get congested, and the 

transmission owner focuses on these areas for future investments in order to make sure the 

system is stable and achieve a stable operational network [15]. This is far from being a 
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simple task. The probabilistic analysis that goes into robust network planning usually forces 

the limits of NP-hard problems. However, those decision-making problems are concerned 

with investment level time scales, where as the focus in this thesis is on operational time 

scales, which are significantly shorter, when large grid enhancements are considered [27]. 

Only recently has the subject of transmission reliability gotten attention by the 

utilities in an area other than long term planning. As a single entity, transmission ow ners now 

have the incentive to develop new reliability tools for current operations in an environment 

where reliability of the service provided to the customer is de-bundled as well. This means 

that unlike before, either the transmission provider or the system user needs to account for the 

risk in the system, charge for it or hedge against it. While doing this, one also has to leave the 

traditional bulk system reliability picture and work with a stand-alone transmission system. It 

is also important to note that, in the bulk system approach the focus on what the delivery of 

power to the distribution utility or the consumer itself. Thus the indices of reliability were 

developed from a consumer focus point of view: Annual Load Interrupted, Annual 

Unsupplied Energy, Delivery Point Interruption Severity, Load Shedding Severity [9]. 

However, it is important to see that TSP is not only responsible to the consumer but under the 

new market setup, he is also responsible to the generation units as well.  

Towards operational tools, one recent work is done by Ontario Hydro, which started 

to use assessment techniques to learn more about the strength of their transmission system 

[17]. Available Transmission Capacity (ATC) is the most commonly used valuation 

technique that is determined by parameters like: generation dispatch, system load and its 

distribution, static topology and capacity limit of the transmission lines [17]. A utility would 

use the information gathered from the ATC of its lines to decide whether to sell firm or 

interruptible contracts in order to better utilize its assets, maximize revenue and minimize 

penalty incurred from interrupting firm contracts [25]. For large systems, determination of 

these parameters can be computationally expensive as it also poses a dynamic programming 

question under uncertainties. The study of firm vs. interruptible contracts is parallel to TSP’s 

central decision for accepting or rejecting bilateral agreements, where bilateral agreements 

would be the firm contracts. Under the distributed setup developed in Chapter 5, that physical 

reliability needs to be factored into calculations for the price signal that the centralized 

operator send to the users. This signal is an aggregation of all the information about the 

system, which the system users then utilize to make decisions to maximize their utility. 
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  Besides ATC methods for transmission, deregulation also lead to studies of 

performance based rates for distribution systems [11]. (Even though, the thesis does not focus 

on the distribution systems, it is important to look at developments there to see synergies.) 

Performance based rates is one application of probabilistic risk analysis for the physical 

components of the power system. Monte Carlo simulations are used to create a sample space 

of component failures each modeled as a Poisson process with known arrival rates. These 

simulations enable the utility to calculate system average interruption frequency index and 

system average interruption duration index to calculate ahead of time the expected level of 

penalties that will be faced due to interrupted service. These indices can be used for both 

short term operational planning, pricing, and also for long term investment planning. 

Combined with probabilistic risk assessment, financial impact of the physical system can also 

be determined in a probabilistic fashion. [11] shows a simulation for an average distribution 

system and also fits a lognormal distribution to the system reliability probabilities. This is  

very relevant work related to the reliability question the thesis would like to address, 

however, the drawback of using Monte Carlo simulations is the assumption of equal 

probability for all cases regardless of the failure characteristics of the components. 

Another application of probabilistic reliability analysis is to study the loss of load 

probability (LOLP). These studies usually focus on probabilistic load and supply analysis, 

but still use static topology. LOLP calculation can show the probability of when demand at a 

location can exceed the supply at that location plus the inflows. [38] It is observed that this 

probability would be much different if the failure of a tie line is factored into the study. As 

these examples show a new tendency to use system reliability information more cleverly, 

here are a few ideas where the transmission system provider draws its motivation to factor 

reliability into its tools: 

 

Reliability-Related Risk Management 

Users may choose to buy financial contracts for long term risk management, they 

need to determine how much they would buy and what they are willing to pay depending on 

the risk they are facing and their risk-aversity. Trading entities might provide risk-hedging 

contracts for the users, but they also need similar information to price these contracts 

cleverly. 
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Clever Decision Making for Resource Allocation 

This is the main subject handled in this thesis from both a service provider and 

system user perspective: TSP needs to use reliability information to commit to agreements, 

and the users need to same information to guarantee service for themselves and bid a 

reasonable price. 

 

While the traditional approach to the above issues have been very conservative to 

bypass such questions, more liberal use of the system backed by risk management can prove 

to be much more optimal and efficient. Once the users manage their own risk, decentralized 

control also becomes more optimal as will be explained in Chapter 5. 

 

4.2.1 Narrow Definition of Transmission Reliability 

 

Even though the motivation behind building a smart reliability model is straight forward, the 

methods to actually materialize such a tool is not so obvious since the power grid is a large 

network of interconnections and components for which a simple system status model does 

not suffice. The range of situations that jeopardize acceptable levels of reliability needs to be 

narrowed down, in order to determine the probability of such events.  

First of all, let us focus on the elements of the physical system. The physical 

components that make up the syste m range from transformer, to transmission lines, to 

breakers, and to generators. Since the focus of the thesis has been on the operations of the 

TSP, the transmission system is handled in isolation assuming that generation utility handles 

its own reliability issues. For a TSP, main focus would then be on transmission lines of high 

capacity and substations. Although both sets of elements can be treated similarly, 

transmission lines span a big interconnected network. Therefore, the thesis only refers to line 

outages and leaves the study of substations as a mere extension. Similarly, scheduled 

maintenance of components that interrupt services is not included since it can be treated as a 

deterministic event.  

Although, it looks as if the above classification is an adequate narrowing down, the 

analysis of the transmission lines alone is very complex due to the redundancy in the system. 

If three lines are connecting two particular nodes, when two fail, the nodes are still connected 

by the last congested line in operation. This points out the need to study any transmission 
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system individually since topology matters. However, the states of operation can be defined 

in a broader sense: Let the operation space be defined by three states: Normal, Alert and 

Emergency. Normal operation is when all the lines are in operating state and full capacity of 

the system is in place. Emergency is the opposite end of the spectrum where critical lines or 

critical capacity has been lost to dictate that the transmission system is not operation at all. 

The states in between define the Alert operating condition, which are the states of interest in 

this thesis. Emergency condition requires a totally different treatment to restore operation; 

whereas, alert operation calls for a new dispatch to supply the loads. While, the cutoff 

between Emergency and Alert is the condition defined above, namely when re-dispatch of 

generation is not enough to relieve the congestion; it is easier to define the cut off in more 

strict terms for computational purposes. Two practical definitions can be used: 

1) Number of lines: Let N be the number of lines such that if N or more lines go out    

      of service, the system enters the emergency state.   

2) Capacity Lost: Let C be the amount of capacity such that if more than C MW of  

      capacity is lost, the system enters the emergency state. 

 

Before calculating the probability distribution for these two cases for any system, 

more assumptions need to be made for calculation purposes: 

Assumption 1: Common Mode outage events such as weather, storms, natural 

catastrophes and cascaded dependent failures of components are not included. Please see [10] 

for extended study on common mode failures. 

Assumption 2: All line failures are independent with known failure rates, such that 

each line operation can be modeled as a Markov chain with two discrete states and transition 

rates shown in Figure 4.4.  From here, it can be seen that the steady state probability of being 

in the operating state is µn/(µn+?n) and the probability of being in the non-operating state is 

?n/(µn+?n). Since it was assumed that all lines are independent, these values can be used to 

determine the probability of having any combination of lines out at the same time. These 

combinations are referred as topologies. 
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Figure 4.4: Markov Chain For Status Of a Line 

 

For any single line, the failure and repair rates may change with age, for instance the 

hazard function of a component maybe a bathtub function. This is important for the reliability 

analysis tool to correct; however, when concerned with a time period of a season, three 

months compared to the lifetime of the component, it is safe to assume that the failure rate is 

constant.  

However, even after the assumptions it is seen that for a large network, there are still 

a large number of cases of outages, which need to be considered while doing system 

reliability analysis with changing topologies. Moreover, not only are the cases so many, but 

the probabilities of these events are very small. We are faced with low probability high 

impact cases.  Even determining the expected capacity of the system would require the 

consideration of all these low probability events, which sums up to a high number of 

calculations. There is some work being done to handle this computational issue. [30], for 

instance, tackles the problem differently: The multi-line outage cases, their probabilities as 

well as their impact on the remaining system flows are derived from single line outage cases 

and the flow sensitivities. The authors show the accuracy and the computational superiority 

of this approach on an N-bus M-line system.   

Even when the computational problem of determining probabilities is taken care of, 

the problem remains. The goal is to find the expected flows on lines, expectation taken over 

the probability distribution of topologies calculated above. The nonlinear optimization tool, 

optimal power flow analysis which determines the line flows, is computational very 

expensive to run for so many low probability events. While the probabilistic reliability 

analysis with the above assumptions fulfills many of the promises that traditional methods 

were lacking, it is far from being extremely applicable to practical tools. Mainly because, the 

probabilistic analysis uses steady state probabilities of lines being in operational or non-

operational states. In other words, this is equivalent to simulating the life of a particular line 

for time period 0 to T, as T approaches infinity. But the tools we are interested in for seasonal 

reliability risk analysis are not concerned with the system until infinity but rather focus on 
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shorter periods like a season, three months. Seasonal risk management or reliability based 

insurance mechanisms of interest require the assessment of the reliability of the system for 

only a limited period of time. While the accurate way of doing these calculations call for 

using steady state probabilities, a main question comes up: Is it worth adding so much 

complexity and computational burden? If the choice is to ignore reliability concerns, then the 

tools will work with static topologies like traditional methods in inefficient manner. If the 

choice is to add the necessary probabilistic analysis, another method needs to be devised for 

practicalit y purposes.  

This thesis suggests that if the status of the system is known at the beginning of the 

season, and if it is assumed that memoryless property holds, i.e. if ?t between observation 

points are small compared to the rate of transitions between states then it can be said that 

only one event happens in ?t, and non-overlapping time periods are independent; then 

instead of considering all possible states defined under the alert condition, simple markov 

chain can be made as follows:  
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Figure 4.5: State Space For A 3-Line System Physical Reliability. 

 

Assuming a season is short enough compared to the useful life time of transmission 

lines, the number of states to be considered can be limited to the immediate neighbors of the 

current state, neighbors that are only one event away, see figure 4.5 for a 3-line system. The 

only gain we have under this was of thinking, is we have limited the number of states to be 

considered to the number of lines. If we start with all lines operating, then the DP formulation 

will consider all cases where a single line is out. If we start with a state with one line down, 

we will do the same and also include the case where the repair rate is known and that way we 



 52

can model probabilistic state changes as well as a deterministic change at the end of the 

repair period. (This approximates to random arrival of packets to a server of equal service 

length.)  

As seen from the above definitions, the TSP bears the risk of system reliability which 

itself is hard to quantify for finite time horizons without being conservative. Next section 

describes priority-pricing scheme, which makes the users reveal their preference of service 

reliability for risk sharing.  

 

4.3 Priority Pricing in Centralized Setup 
 

As seen from the centralized TSP objective function under stochastic system conditions, but 

paying the users some compensation, TSP effectively absorbs all the risk that is in the 

system. While this ensures reliable operation, it burdens the TSP heavily causing it to become 

more conservative in its decisions, namely accepting fewer agreements.  Thus, it is 

interesting to look for methods where TSP reduces or shares its risk.  

Priority pricing scheme for bilateral agreements is a service that can be offered by the 

TSP that gives any party the leve l of priority servicing they asked for should the system face 

any congestion. This is a very effective way for TSP to learn better the preferences of the 

system users rather than assuming that they all share the same utility function. (Under the 

conditions where there are many small system users, with randomly different utility 

functions, law of large numbers can be used to model the user behavior.) 

TSP prepares a menu of different priority services and the injection price for each of 

these options. Not only does this allow the TSP to make clever decision at times of 

congestion, but once requests come in TSP gains extra information about the utility, 

elasticity, of the users and can use this information for congestion relief. This is yet one other 

area where dynamic programming can be applied to optimally allocating resources season 

ahead as well as for real time supply-demand balancing and congestion management. (Note 

that this contract is done between the user and the transmission system owner only for the 

transmission service, not the energy.) 

The most elaborated version of this approach can be found in [16]. Oren and Deng 

propose a zonal approach as follows. The system is exhaustively broken into zones. Inter-

zonal operations: There is one single ex ante transmission access fee, per MWh, and one 
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fixed priority table of fees that all the zone members receive. The transmission access fee 

charged to the users can also be thought of as insurance premium, different for every 

different level of priority, that entitles the user to service. Intra-zonal operations: This is more 

like spot market operation where the intra-zonal transactions are charged an ex post fee 

depending on the observed congestion. For purposes of looking at the priority schemes, only 

the intra-zonal part of the model is studied. 

Under congestion, and when the TSP needs to curtail a system user’s agreement, TSP 

is entitled to pay the customer a compensation which is equal to the spot price minus 

deductible, that is predetermined in the priority menu. Under this scenario, the TSP objective 

is to minimize the compensation paid. Please note that, this leads to agreements with low 

compensation charges, high deductibles to have a higher probability of curtailment. 

Therefore system users on congestion pr one segments may choose to buy more insurance at 

low deductibles. (If all the users reveal their preferences truly by choosing the deductible, as 

their marginal cost, and if each bus in the system is considered a different zone, the result 

approximates the economic dispatch.) 

This proposed scheme is a 3-stage process. First, assuming the physical topology 

stays the same, TSP prepares the menu of priority levels and their charges based on historical 

data about the probability of spot prices for the coming period. For every level of priority c (c 

also is the minimum price the users are willing to inject power), the users need to pay a 

premium Xi(c) in zone i. Second, the users evaluate these prices and run their individual 

optimization function:  Let v be the true MW cost of production, pi(c,s) be the probability of 

getting access to the transmission system when spot price, Si , is higher than c, Oi(c) be the set 

of all times Si>c, and G(s) is the CDF of spot spice distributions. Given the definitions, user 

optimization function is: 
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 (4.2) 

As seen from the above, the TSP pays penalty when the user is at dispatchable region 

with its priority level higher than spot price, but does not get access right with (1-pi(c,s)). 

And the penalty then is the difference between the spot price, s, and strike price and priority 
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level, c. Again note that if users chose priority strike price same as their MW cost v, we get 

the following optimization, which becomes the economic dispatch problem.   

[ ] 




 −−= ∫

=
)()()0,max(maxarg)(* cXsdGvsvc i

vc
i        (4.3) 

(The conjecture here is that, if the users have close to perfect information about the 

expected system condition and use v equal to marginal cost, then the decision they make will 

be equivalent to a centrally made decision.) 

The last stage is when TSP collects all the preferences from the users and runs its 

own optimization both to minimize the compensation it pays and to ensure meeting 

operational limits as spot prices are revealed with high accuracy. While this is very similar to 

the stochastic centralized optimization discussed in this chapter, addition of priority levels is 

the extra information that creates the difference. But the priority pricing schemes developed 

so far assume static system conditions and do the analysis in equilibrium, which is not 

sufficient to show that such methods are fully applicable to a dynamic transmission system. 

  

4.4 Extension of Priority Pricing to Distributed Decision Making 
 

Priority pricing setup where the users are treated as demand elastic, through their different 

priority requests, lends itself very well to a partially distributed method where each user can 

setup an individual pr ofit maximization given a menu of priority service prices and 

associated insurance payments without re-communicating the information to a central body. 

In other words, priority pricing for transmission method approaches decentralization from a 

different perspective where the smart end users define the maximum price they would pay for 

the service, which automatically ranks their preference for reliable service with respect to the 

other users. This is analogous to work done in communication networks field where the idea 

is: Optimum is when users' choice of charges equals what the network allocates for them. 

Frank Kelly's work [23,24] aims to solve the problems about pricing and rate control in 

broadband networks based on three main assumptions: 

 

1) The traffic  is elastic and the end nodes respond to congestion immediately. 

2) The users have different preferences for service, namely different utility functions. 

3) System topology is static. 
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In his work Kelly explores the idea of fair min-max pricing, and smart market players 

in a dynamic network. He decomposes the system optimization into the user and the network 

optimization function. Relating to the case of TSP that would be the optimization by the 

transmission service provider and the end nodes respectively. Overall system optimization 

function maximizes social welfare, subject to physical constraints. (The concept of max-min 

fairness means that the flow of a user cannot be increased without decreasing another one. 

And any resource allocation is fair.) The solution can be uniquely found when the utility 

functions are concave and differentiable. Given the system welfare function:  

Lagrangian solution vector x solves the system optimization and the implied charges per user 

can be determined. The individual user optimization function maximizes the difference 

between utility and the charge of the service.  

 

Conversely, the network optimization function maximizes the total system revenue, sum of 

all charges collected from the users.  

Kelly’s work suggests: For a certain ?, the solution x  to USER optimization will also solve 

the NETWORK optimization yielding the answer to the SYSTEM optimization without 

solving it explicitly.  

While the above approach focuses on customers getting service equivalent to how 

much they paid, it does not focus primarily on dealing with congestion or using dynamic 

pricing to regulate the usage of the system. This is based on the assumption that if there are 

many small users of the network with random demand elasticity’s and usage levels, optimal 

operation can be achieved faced with congestion similar to priority pricing, and the topology 

is considered to be static. Bringing together distributed network operation with congestion-

dependent pricing, successful distributed model can be develope d for networks where many 
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users share a common resource. [29] Interest in this area mainly focuses on data networks, 

like today's Internet. And these concepts can be extended to the electricity networks. The goal 

is to maximize service provider's revenue, and the concept becomes similar to yield 

management of airlines. (Operation of large networks with high fixed costs with low 

marginal costs per user.) However, there are technical aspects that make it hard to apply yield 

management to electricity networks. Where a decision to increase the usage of a particular 

line or generation unit can have significant impacts on other users in networks, allocation 

decisions need to be. For the operation of the Internet network, some methods of congestion-

based pricing have already been put forth [28]: 

 

1) By Clark: Very distributed method. Users are charged ahead of time based on their 

expectation for amount of service regardless of how much of the resource they actually end 

up using. This model works well for large networks with many small users where law of 

large numbers model overall system operation to be not changing. 

2) By Mackie Mason and Varian: A centralized approach. Smart market users bid 

their marginal prices and ones above the cutoff get served. 

3) By Gibbens and Kelly: Distributed approach. Packet based pricing charge 

increases with usage, which treats all the packets and routes in the network the same, which 

does not apply well to the transmission system where congestion patterns are different for 

different lines.  

 4) By Kelly: Partially distributed method where network service charge increases 

with the amount of traffic, which we believe to be the most robust method for distributed 

operation of the transmission grid where a signal for the network charge is provided. Chapter 

5 explores this approach. 

  

4.5  Near Real Time Feedback 
 

Even though this is a coordinated setup, both the TSP and the system users react to the 

evolution of the market over time. What happens if the system users learn in this auction 

environment for transmission resource allocation and how could TSP use this information? In 

the framework of auction behavior, gradual changes are induced on the system parameters by 

the decision control. Scenario#1: If the TSP does not accept a bilateral agreement request, he 



 57

needs to update his expectation for the spot market that very period and next ones to include 

the rejected demand being served in the spot market. This is a case where depending on the 

control, more information can be learned for the coming periods. Also due to the nature of 

the problem where a central body is making decisions for allocation, the study of auction 

theory based on Markov decision processes can be used to update real time expectations.  

Scenario#2: Should the TSP not accept incoming bilateral requests at time t = k, depending 

on the user preferences, TSP can expect with probability pij(u) that the system user will 

resubmit a bid at t = k+1  with a  higher price to increase his chances of being served. Under 

both scenarios, it is seen that if TSP can attach probabilities to the outcomes of certain 

control, he can win another dimension of decision making to maximize his revenue. He can 

also adjust these probabilities as he learns at each process.  

As TSP changes his expectations for the future time period parameters, he may find 

himself in situations where real time curtailment becomes more profitable despite the penalty 

of disrupted service. The below formulation takes into consideration curtailment through a 

control function F.  This is not to say that two different mechanisms u and F control the 

system, but designating them separately makes the formulation clear. The detailed DP 

algorithm now looks like (4.4): 
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Chapter 5 

 
Partially Distributed Decision Making 
 

In this chapter, we present the framework behind a distributed solution to optimal 

transmission capacity allocation. First approach is the determination of price signals by a 

system supervisor that drives the individual decision making processes of all the users. The 

second approach eliminates the central supervisor but allows information exchange between 

small groups of system users in a localized manner to make decisions. 

 

5.1 Motivation  
 

The distributed approach is the complement of the coordinated approach, which had put the 

intelligence in a central controller, the TSP. In the distributed version of the transmission 

allocation problem, the intelligence of the network is shared among the end users all of whom 

are expected to make optimal decisions for their utility function in a decentralized manner. 

The intuition behind distributed decision-making comes from the observation that any global 

objective function that is separable can be decomposed into n single -variable sub-problems 

solved by n users. This applies well to a deregulated environment in which system users are 

natural decision makers. In a distributed manner, each party can abide by its commitment to 

inject its generation output or withdraw its needed power though agreements and contracts. 

However, who will make sure that the global optimization function or the aggregate user 

optimizations will adhere to the transmission limits at the system level? [13] uses a Monte 

Carlo simulation to create random agreement vectors and studies the security of the system in 

a situation where all agreements are implemented as it would be under a distributed scheme. 

In other words, the analysis calculates the probability of such a random set of agreements to 

fall within the acceptable operational bounds of the transmission system in terms of its line 

capacities. The results show that not all agreements are simultaneously feasible and, if forced, 

will lead to system congestion. From these tests, it is seen that a completely distributed 

operation is very hard to accomplish in such a critical network where room for mistake is 

small. Therefore, the thesis suggests the assistance of network information provided by a 

supervisor, hence this is a partially distributed model. In [2], an assessment of possible 
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distributed approached are proposed, a price signal based model, a model that suggests the 

use of technical information as a feedback from the system and a model where multiple 

iterations are proposed to converge at a sub-optimal decision. Among which, for this thesis 

the price signal model is studied.  

We believe that with the right kind of market signaling from a central supervisor the 

problem of simultaneous feasibility can be solved achieving at least a sub-optimal operation 

of the transmission network. This is the sub-optimal of the optimal that is defined as the 

decision that would be made by a controller in a centralized manner. Many kinds of 

distributed methods are being developed to handle complex data and communication 

networks where some protocols are build into the system to inform the users about the 

technical status of the network. Consider the Transport Control Protocol congestion 

management where users all exercise additive increase until congestion is signaled by the 

network or the other end users at which point users start exercising multiplicative decrease. 

Such mechanisms also effectively make large networks more extensible and efficient in 

decision-making. This technical signal is the enabler of distributed operations. Another way 

to reach optimal operation is through iterative methods rather then requiring ‘perfect’ 

decision right away, the users can start operations at a hardly optimal, almost at an infeasible 

point. From where, the users then would correct their decision towards the optimal control 

path through iterative exchanges of information and internal learning algorithms. Even 

though there are differences between data and power networks, discussed in the conclusion, 

this does not hinder forming synergies between the tools that can be built for both systems. 

This chapter visits the signaling by a supervisor option to enable distributed control in 

power transmission networks where individual objective functions all need to satisfy the 

global transmission constraint as well as reaching some sort of optimal allocation of 

transmission resource. Determination of the price signal under static and dynamic topologies 

is formulated as well as the end user decision-making problems. Lastly, possibilities for a 

totally distributed operation scheme and learning mechanisms are discussed. 

To repeat, the main motivation behind considering distributed control is the current 

deregulation of the power markets enabling a system optimum to be defined by intelligent 

system users. A second motivation behind discussions for a distributed design is the 

computational issues faced under the coordinated methods as explained in Chapters 3 and 4. 

It is seen that even for a small system both for the deterministic and stochastic cases under 

the centralized approach lead to highly complex and computational problems. This section 
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presents unrefined formulations at the high complexity level; however, approximate solutions 

can be exploited to reduce the computational burden. 

 

5.2 Procedure 
 

Seasonal operation in the distributed setup has three main procedural steps shown in the time 

line Figure 5.1: 

 

 

   

k = 0   k =  - p   k = T   

TSP prepares  
the menu   

Users make  
decisions   

Outage?  
 

Figure 0.1: Time Line of Distributed Operations 

 
§ Step 1: Central supervisor determines the season-ahead price and communicates 

them to the users. 

§ Step 2: Users use the price signal information to determine their parameters of the 

contracts they would like to participate in by maximizing their individual season 

objective functions. 

§ Step 3: In case of a system failure where the operations move to alert operating 

condition, the TSP or the central supervisor takes control and practices central 

dispatch until the system resumes stable operations. 

 

Unlike the coordinated system, in the partially distributed model, TSP’s optimization 

does not just to maximize revenue but it also aims to ensure system stability and security both 

with and without a system outage. In the case of a system outage, this design puts the burden 

on the TSP to absorb the risk. In the absence of any physical uncertainties in the system, TSP 

is still responsible to ensure simultaneous feasibility of operations. For both cases, the 

challenge is one of finding the right price signals. TSP can use a couple of approaches to 
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generate the price signal for a partially distributed system in the absence of the DP tool 

proposed in Section 5.3:  

Option 1: TSP can use historical prices that it charged the end nodes under the 

centralized scheme, before deregulation, with an injection pattern matching the forecasted 

one for the coming season. Historic values will provide different price signals for all nodes. 

TSP can start using these values as a starting vector and can alter these values with time 

depending on the feedback received from the congestion levels. However, due to that 

increasing use of bilateral agreements under the distributed market system or any other 

change induced on the market behavior, the flow patterns might differ significantly from the 

past values. 

Option 2: TSP can use trial and error to determine the right prices that will keep the 

system stable. These prices can either be the same for all nodes or customized for each node. 

There are two possible outcomes: 1) If the transmission price is underestimated, congestion 

will occur which can lead to loss of load.  2) If the transmission charge is overestimated that 

can lead to underutilization of the transmission system, an inefficiency deregulation 

definitely wants to avoid.  

While these two approaches seem easy to implement, they have significant drawbacks as 

they lack incorporating system dynamics or long-term decision-making. Therefore, TSP 

needs a more systematic way to develop the price signals. Please note that under the 

following formulations, the end users have been assumed to be risk neutral where the utility 

of the users have been simplified to expected monetary value of their actions. This is just a 

simplification, and using convex utility functions may result in well-defined answers. Please 

also note that users are demand elastic, which is the force that prevents TSP from being too 

conservative by charging high prices.  

 

5.3 Distributed Operation Under Static Topology 
 

This section poses the price signal determination problem followed by how the system users, 

generators and loads, interpret the signal. It is assumed that the topology is static without any 

system outages. 
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5.3.1 Determination of Price Signals 

 

Determining price signals for partially distributed setup ahead of time can be solved by 

concepts of congestion-dependent pricing in network theory. In congestion dependent 

pricing, price for required service is designed such that it regulates the elastic demand by 

decreasing it to a level that the system can technically handle. The charge depends on system 

congestion, characteristics of the requests and the user preferences. This subject has been 

visited many times in communication networks under call-admission schemes where the 

users dynamically share a scarce resource [28]. One of the main differences between 

modeling a communication system and the transmission system is the set of assumptions one 

can make. For instance, in data networks the arrival of admission requests are usually 

modeled as Poisson processes with exponential service times. However, in transmission, one 

cannot use generalized definitions for requests for service, but rather must use historical data 

that can be a reasonable forecast to future requests. This leads to enumeration of cases rather 

than functional closed form solutions to represent the system. In our problem, the goal is to 

design TSP’s pre-season decision making for price signals that applies to injections from 

bilateral agreements. In other words the signal is the charge for contracts.  

Let ( )⋅ijλ  be the user’s static demand response function to a cost given for injection at 

node i  and withdrawal at node j . In short, ( )⋅ijλ  determines their maximum demand given a 

charge for the service: ( )][][ ,, kPkQ rBA
ijij

rBA
ij λ=  where r  is the length of the BA contract that 

starts at k . (It will soon become clear why different price signals need to be defined for the 

same injection-withdrawal node, and starting at the same time period with different request 

lengths.)  The response function ( )⋅ijλ  is assumed to be static for a whole season, which can 

be, relaxed in future refinements.  ( )⋅ijλ  also captures the utility of the system user such that 

a threshold value for price drives the demand to 0. Given this definition, the cost 

optimization, or revenue maximization, function of the TSP per stage over all possible price 

signals { }rBA
ijP , is as follows (5.1): 
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 The revenue streams of the distributed model are the same as the ones of the 

coordinated scheme described in Chapter 4. The first line refers to the agreements that are 

starting at time k and the revenue collected from their first period. The second line is the 

revenue collected from the agreements that were implemented before k with continuing 

service commitments each with their own time remaining component rBA
ijtr , . Therefore the 

revenue of these agreements needs to be computed using the price determined at the strike of 

the agreement at (k – (r – tr)). And lastly, the third stream of revenue comes from the spot 

market. The dynamic programming formulation for price signals using the above cost 

function becomes (5.2):   
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While this formulation states a very strong solution, in real operations, it is unlikely 

that the coordinator, or the price signal setter, will explicitly know the ? function of all the 

users. However, learning algorithms can be exploited by the TSP to learn the preferences of 

the users overtime and fine-tune the ?’s by temporal learning. Once the price signals for 

different nodes, different time periods and different commitment lengths are determined, the 

TSP relays this information to the system users. The next sections describe the procedures. 

 

5.3.2 System User Optimizations 

 

Given the price signals by the central body, the system users proceed to make their own 

decisions for the coming season. The generators maximize their revenue for its production, 

where as, the system loads try and minimize their cost of using the electricity transmitted 

over the transmission grid. The generators are assumed to pay for the transmission access fee 

in this design. This is not a strict condition, and can be relaxed.  
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Generators  
 
Each generator itself produces a resource that needs to be allocated smartly. The generator 

first makes a decision to produce or not to produce. This the unit commitment problem in 

power generation and is beyond the scope of this thesis, please refer to [1]. Once the 

generator decides to commit to produce, he then has four choices as to where he would like to 

sell his product to maximize his revenue given some information about the season and his 

own expectations developed from historical performance. The main goal is to hedge against 

price uncertainties but also make use of the surging spot prices under possible congestion. 

This is the goal for a risk-averse generation unit; however, it should be noted that the unit 

optimization function is flexible to capture any level of risk-aversity. Vector α  describes 

generator’s dynamic allocation between choices of where to sell for the finite horizon 

optimization. To make the best decision in a distributed setup, the generator will have to 

know the topology of the system, the distribution matrix, other players, and their demand and 

supply functions. However, we believe that if each user just optimized their own functions 

with certain approximations without considering the reaction of the rest of the system, 

decentralized control can lead to some sub-optimal operation. We also believe that this 

method of internal optimization can be adjusted to include local information, for instance just 

information about the immediate neighbor nodes, to yield even better results getting closer to 

economic dispatch which is explored in Chapter 3 and 4. Below is the season-ahead 

optimization, planning, of the generation unit Gi (5.3):  
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As seen in the formulation, the optimization treats the charge to the customer as a 

given and only works with the allocation vector. This is not the only way to treat this 

problem; however, it is used to simplify the formulation. If the optimization function had 

given control to the price charged to the customer, then we would have a problem of price 

negotiation, which heavily relies on the preferences, and risk functions of the system users. 

Then the negotiation method would also call for a certain number of decision-making 

iterations between the users, which is not modeled here. But how does the charge for the 
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customer determined after all? This is a function of the preferences of the generator in terms 

of risk.  

 

Loads 

 

The scenario is similar to the generator case for each individual load; they have their 

optimization functions as well. They would like to maximize their utility, which will be 

defined as minimizing cost for a desired level of service. In the case of the load, the elasticity 

of demand is captured in the ß vector (5.4): 
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From the requirements of demand equaling supply, more constraints can be written 

for the overall system operation: Match the desires to participate in bilateral agreements 

assuming that there is only one load and generator at each bus (5.5): 

 

Once the end users determine their optimal operation factors, they can then go and 

look for units to engage in bilateral contracts. Each unit will run iterations of its optimization 

function with different bids and requests from the other parties. Extra trades can be added to 

balance flows and engage third parties. This creates multilateral agreements as well as pure 

trading agencies, since adding more nodes to the system is very complicated, this thesis does 

not explore financial market layers that can be implemented on the proposed methods. Please 

see [34]. Even though these formulations capture the essence of the problem, the challenge of 

the distributed approach is the formation of price signals that will keep the system stable in 

the presence of uncertainties involving the physical system. 

 

5.4 Distributed Operation Under Dynamic Topology 

 
This formulation is iteration to the static topology model presented above with added 

complexity of the physical system uncertainties. It is hard to determine the financial burden 

TSP will take on in case of a physical system failure handled by a short-term switch to 

central operation However, it is not very unrealistic to assume that TSP might want to factor 

the uncertainties into his price signal as a fixed premium. Let s  be the charge for ‘insurance’. 

Then the cost function becomes (5.6): 
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where s can be determined as follows:  
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Please note that a more realistic version would be to make s  usage based. As shown below 

(5.7): 
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However, the complexity of the problem increases beyond the scope of this thesis. As 

suggested under this model, once a system outage occurs, the distributed operation is 

abandoned until the end of the season and the TSP becomes the coordinator. The first thing 

the TSP needs to handle in such a situation is ensuring a new dispatch within the constraints. 

[22] suggest an effective way of going from a pre-outage to a post-outage dispatch using 

linear programming that can simplify the calculations of the above problem. 

 

5.5 Distributed Operation With Local Information 

 

In the above formulations for distributed operation, we have treated each user as a stand-

alone users receiving information only from the supervisor; however, any user’s decisions 

influence all the users in the system. Thus, we would like to extend the definitions to include 

some local information collected by the system users from their neighbors. The conjecture is 

that, with more information distributed operations will be more effective and will get closer 

to coordinated system operation. Another drive to look at local information is the 

transmission system designs proposed by [21], the method of cluster-based congestion 

management. The idea in congestion cluster pricing is identifying the lines with highest 

likelihood to get congested given a likely pattern of loads and supplies. Then the system is 

separated into clusters arranged so that the tie lines between the clusters are the very lines 

identified above. The power of this grouping is to simplify the system such that the operator 
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only monitors the tie lines and allows the clusters to arrange their operations internally. 

While clusters in this method are static over a certain period of time and exhausts the whole 

transmission system, the concept relates very well to distributed modeling. Any node can 

declare a cluster around itself as his range of interest and direct influence. This will 

effectively be the range of line flows he mainly influences. (This is an approximation since in 

an interconnected network, any injection to the system influences all line flows to a certain 

amount.) Note that each node defines its own cluster, and clusters of different nodes overlap. 

The center of this virtual cluster will be called the ‘base’, and the other nodes in base’s 

interest region will be referred as the ‘neighbors’. Each node ns a system is the base of its 

cluster. Please see Figure 5.2 for a simple representation of a few nodes and their clusters. 

 

 

 

Base Cluster Boundary 

Base 

Base 

 

Figure 5.2: Base and Neighbors in a Cluster 

 

Below is a first iteration at modeling the distributed decision making within a cluster (5.8): 
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This is the decision making going on at the base only, the complexity comes from the 

fact that all neighbors that make up the cluster are simultaneously doing the same 

calculations and altering their decisions. In this case if the nodes exchange information ex 

ante about their utilities, demands and related parameters, this solution may converge to a sub 

optimal level from where learning algorithms can be used to perfect the decision making. 

Moreover, this method welcomes the stochastic components of the system parameters. [31] 

studies decentralized decision making in a large team with local information, where the 

authors prove that stochastic strategies decentralize more gracefully, where in our problem 

strategy is a combination of changing demand, supply and physical system parameters.  

In addition to learning, near real time feedback from the system can also be used for 

open loop control of the distributed system. 

 

5.6 Bounds on Optimality 

 

The long-term objective is to analyze how the distributed and the coordinated approach 

and establish conditions where the two may give a similar solution. These conditions are 

important for the following reasons. The coordinated approach is a computationally 

complex method where the system is analyzed with its dynamic behavior and 

uncertainties. It leads to an optimal solution depending on the objective function, 

maximum social welfare or revenue maximization. However, the dynamic programming 

poses many computational obstacles that get even more burdensome with the addition of 
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system uncertainties such as equipment and line outages. However, the distributed 

approach is much simpler where each user does an internal optimization. The complexity 

of the system is done away with except for the partial complexity faced by the TSP to 

provide the price signals. Even though this method is much simpler and extendable, there 

is a chance that it may lead the system to instability unless some kind of an information 

exchange system is established. That is why, the goal is to define conditions that will 

allow simpler methods, such as the distributed approach with or without the local 

information exchange, but reach the same level of optimization and operational reliability 

as robust solutions like the centralized approach. It is often implied that the two 

approaches result in the same decision, which is true only at equilibrium.  

Reliability-related risk management is also qualitatively different under these two 

methods, as well as the impact of this risk management on individual players. The two 

formulations have different implications on who will be the risk manager and will need to 

absorb the damages from a hazardous situation. In the coordinated approach, it is 

relatively straightforward to assign the transmission provider as the reliability gatekeeper, 

and TSP charges for reliability bundled in his service. But this becomes a challenge in the 

distributed setup where the end users are not necessarily aware of reliability issues facing 

the grid. While the price signals should include such information for planning ahead, is 

that enough to recover operation once system fails in a decentralized system?  This 

deviation from equilibrium conditions is very crucial to handle. (It should also be noted 

that the concept of reliability in the deregulated industry is different that the conservative 

tools used before since now the TSP has incentive to optimally use its lines’ capacity and 

extract the highest level of utility.) 

  

 In short, the thesis supports the distributed network control given the right 

mechanism of information flow is established such that the decision makers reach at clever 

decision that maximize overall welfare through maximizing individual welfare functions 

without pushing the system into instability. 



  
 ~ ~ G1 G2 

L1 L2  

 

Chapter 6 

Simulations and Results    
 
This chapter shows the implementation of some of the dynamic decision making tools on a 

simple 2-Bus system. The setup and the assumptions are presented followed by cases and 

simulated trajectories.  

 

6.1 Basic 2-Bus Example and The Assumptions 
 

The concepts introduced in the formulation of the coordinated decision-making are 

formalized in a 2-Bus example to enable the initial problem formulation to be simple and 

tractable. Figure 6.1 shows the simple setup. The generating units are G1 and G2 with 

generation cost functions C1(QG1) and C2(QG2); the loa ds are L1 and L2. The two buses are 

connected with a single line of capacity K operated by the TSP. This section poses the season 

ahead decision-making problem where the season is analyzed at discrete time periods. The 

arrival of bilateral requests and the ending times for implemented requests can only happen at 

these discrete time periods. Similarly, the continuously changing spot market is sampled at 

discrete times.  

 

Figure 6.1: Sample Two Bus System 

 

The proposed dynamic programming (DP) models call for some design 

considerations that will allow the simulations to be computationally more feasible. The 

design considerations and assumptions are below: 

 

Unit Abstraction Using the information from the generation and supply sides, the TSP can 

determine its own estimates of what part of a unit is participating in the bilateral market and 

what part in the spot market.  It can then use these estimates as a way to create the following 
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setup for ease of computation. TSP then can treat a single generation unit as two, one that 

only operated in the bilateral market and one that operates in the spot market. These two can 

be kept separate until the TSP decides to curtail a bilateral agreement at which point it would 

have to account for that demand to transfer to the spot market. This is just an abstraction and 

does not have any indications. The new system users also shown in Figure 6.2 will be: 

     a. The generators that will only inject power for a bilateral agreement (PB1 and PB2) and 

loads (LB1 and LB2) those play a role only in a bilateral agreement. These generators and loads 

and their associated parameters are not included in the spot market considerations. In other 

words, the value of load for each bus under the spot market value does not include the power 

supplie d by the bilateral agreement. We assume the generator always has enough power for 

the agreement. 

     b. Users in the spot market where Bus1 and Bus2 are associated with some aggregate load 

and generation bid curves that are dispatched only in the real time market. (Generators PS1 

and PS2 and loads LS1 and LS2.) 

 

 

 

 

 

Figure 6.2: Modified Two-Bus Setup for calculations. 

 

Number of Agreements In a system, node pairs that are connected by a single line are eligible 

to being pairs that can implement a bilateral agreement. So the numbers of lines indicate how 

many agreements can be made. The actual possible number of agreements is twice the 

number of lines since the lines are bi-directional.  So in our system of 2 buses, we can have 2 

bilateral agreements: inject from PB1 to LB2 or from PB2 to load LB1 . (In a large system, a 

worst-case scenario is when all buses are connected.) 

 

Single Agreement Limit Although the number of pairs of buses is fixed in a system, if 

multiple agreements can be established between the same pair and the same direction for a 

single time period, then the number of cases that would have to be analyzed in order to find 

the optimal solution would be very big and would grow exponentially due to the 

combinatorial characteristics. In addition, building a tool which can handle variable number 
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of cases is even harder, therefore, a simplifying assumption is made: At any time, between a 

pair, in one direction, only one agreement can be implemented or can be operating. In other 

words, if there is a bilateral agreement in place from bus1 to bus2, no new ones can be made. 

If there are no agreements, then one can be accepted given it leads to optimal resource 

allocation. A second issues arises here. What if multiple requests for the same pair and same 

direction come at once? This also would lead to variability and indefinite computation size in 

the system. Therefore, this is avoided by limiting the number of incoming requests per time, 

per node-pair per direction to one request. As the tool is made more efficient and rigorous, 

this can be relaxed.  

 

Input Data Assumptions Even though the formulations above stressed very carefully the 

stochasticity of the market inputs to the optimization function, the simulation program does 

not resort to random number ge nerators or the Monte Carlo analysis to develop possible 

trajectories but rather works with a data input whose content should be derived from 

historical data. (The examples below provide the information about BAs, spot market, and 

system topology.) 

 

Implementation Code The source code is included in Appendix A. Files hybrid.m, 

new2.m and new3.m determine the admissible control space given the current system state 

and the incoming bilateral requests at any time k. For each control new4.m  runs the optimal 

power flow analysis to determine the spot revenue that is associated with that time and 

control. hybrid.m file builds the DP tree and new5.m  prunes it by determining the best 

decision path and the cumulative revenue that is obtained from that decision. Lastly data.m  

shows a sample input file. 

 

6.2 Simulated Cases 
 

Since the simulation example is a 2-Bus system rather than a real transmission network, 

rather than exact solutions, the simulations aim to show, case by case, the strength of the 

dynamic programming tool, the importance of coupling the forward contracts with the spot 

market, and how crucial it is to include the uncertainties of the system. The simulation is 

build for a coordinated decision making setup with static topology. In the next section, for the 
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50 MW 

comparative cases, simulations on the right and the left column of the pages are compared. 

For each case, the inputs are listed: the line capacity, the generation cost functions and the 

first graph shows the spot market demand at the two nodes. The results will be shown in the 

following graphs, which depict all the incoming agreements for the bilateral contracts from 

bus 1 to bus 2 and from bus 2 to bus 1. The dark lined ones (red in the original thesis) in the 

set are the agreements that are accepted and the plain ones (blue in the original thesis) are 

rejected. 

 

6.2.1 Dynamic vs. Static Decision Making 

 

This case compares the DP solution to a static decision heuristic, which accepts all incoming 

requests as long as it does not violate the single agreement limit.  

INPUTS: 
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OUTPUT: 
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Revenue collected under the dynamic method is 1188 vs. 1059 collected under the 

static method. It is seen that for multi stage decision making with various length 

commitments, the decision is more optimal when DP is used. 

 

6.2.2 Different Spot Market Conditions  

 

The following cases show how with different expected spot market parameters, the decision 

maker will choose different decision paths, allocations. 

For all cases: 
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C1(QG1) = 1.4 per MW  C2(QG2) = 1.8 per MW 
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CASE 3       CASE 4 
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Even though the goal here is to show the different spot market conditions lead to 

different decision paths, it is curious to see if there are any patterns at least within the cases 

that have been simulated. Since the spot market demand values map to line flows through a 

transformation, and counter flows on a line decrease congestion by canceling each other, it Is 

not accurate to form a relationship between the spot demand and how much resources are 

allocated to the bilateral agreements, which can roughly be related to revenue collected from 
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the agreements. Nonetheless, the above conditions suggest that higher spot demand leads t 

lower allocation to bilateral and thus less revenue comes from the agreements. Below is a 

table that shows the related values for the above cases. 

 

 Case 1 Case 2 Case 3 Case 4 

Spot Demand at Bus 1 (MW) 660 650 670 680 

Spot Demand at Bus 2 (MW) 660 750 745 705 

Total Spot Demand  (MW) 1320 1400 1415 1385 

Revenue from agreements ($) 1322 1196 916 1031 

 

 

6.2.3 System Uncertainties   

These cases aim to show how the decision path changes with changing system parameters. 

This is important to capture in the simulations to show how probabilistic analysis would lead 

to different decisions. 
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Different Generator Cost Functions  

C1(QG1) = 1.8 per MW     C1(QG1) = 1 per MW 

C2(QG2) = 1.3 per MW    C2(QG2) = 2 per MW 
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Chapter 7 
 
Conclusion 
 
 

We have identified two different approaches to Transmission Service Provision in the 

restructuring market. One is a centrally coordinated approach where the decision-making 

depends on a complex optimization under stochastic inputs. The other one bypasses the 

intelligence in the center provided by the TSP and puts the decision making on the end users. 

TSP faces a major challenge under both schemes to anticipate system reliability levels and in 

the distributed scheme translates it into price signals.  

 

7.1 Preliminary Conclusions 
 

This thesis structures a very important problem in the evolving deregulated power industry, 

namely the determination of the value of transmission and optimal allocation of the 

transmission capacity. 2000-2001 California Energy crises showed many of the missing 

pieces in the reengineered industry, one of which was the lack of decision-making tools in the 

transmission market. While complicated decisions we being made for the commodity, 

electricity, itself, same level of agreements for its transmission were not made becoming the 

bottleneck in the system operation.  

 Chapter 2 established the background information to develop the models for resource 

allocation. Dynamic Programming tool was introduced in this chapter that was extensively 

used for all the formulations. Chapter 3 formulated the problem from a centrally coordinated 

point of view, the TSP’s point of view. This first formulation assumed that the physical 

uncertainties were not present and therefore assumed a static setup. This was the simplest 

formulation offered in the thesis; however, even at that level, the complexity and the 

computationa l intensity of the problem promoted the discussions around markov decision 

models, rollout algorithms, conservative dynamic programming and neuro-dynamic 

programming.  
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 Given the static topology model, the thesis highly encouraged extending it to a 

dynamic  model where system uncertainties in the transmission network are too crucial to 

ignore. Chapter 4 developed optimal transmission capacity allocation from a centrally 

coordinated point of view including the possibility of line outages. This introduced the 

compensation charge to the TSP for the load that was not served after an uncertainty, which 

once again encourages the coordinator to plan ahead carefully. This chapter also gives 

background to the concept of reliability in transmission systems and stumbles upon the issue 

for rare event approximation of outages with vast impacts on the system operation. At this 

point, the formulation in Chapter 4 captured all the uncertainties in the transmission system, 

which enabled discussions around materializing the risk in the system from the operator’s 

side. Chapter 4 continues to introduce methods for risk sharing between the central 

coordinator and the system users, which leads the discussion to a distributed network control 

approach to transmission system operations. 

 Chapter 5 developed both mathematical formulations for the implementation of 

distributed control for the transmission networks. Chapter 5 concludes that a signal is 

required from a network supervisor to ensure stable and reliable operation of the network, 

which the thesis chooses to be a price signal. Chapter 5 shows the creation of the price signal 

as a dynamic programming problem, and also models the end user decisions once they 

receive the price signal. This chapter falls short in describing the conditions under which the 

coordinated and the distributed models meet. This is important to establish for a few reasons, 

a distributed model that is as successful as a coordinated model at finding the optimal 

dispatch is more favorable both from a control and a computational point of view.  

 Chapter 6 revisits the formulations of Chapter 3 through simulations to show the 

strength of the dynamic programming approach to blind decision making approaches as well 

showing how including the uncertainties of the system has an impact on the decisions made. 

Overall, we believe this thesis outlines a very crucial problem in power systems and brings 

viable approaches. These approached are complete in capturing the important aspects; 

however, they have disadvantages of being computationally expensive when it comes to 

implementation.  
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7.2 Future Research 

 

Since tools for transmission service are just developing, there is lot of room left for new ideas 

and research. In light of the work done in this thesis, there are two very interesting areas that 

branch off.  The first one is implementing the tools mentioned in Chapter 3, 4 and 5 for real 

time systems deploying some of the strategies explored in the thesis such as neuro-dynamic 

programming with temporal learning. 

 

Another very interesting area to explore is comparing the transmission network to 

other large networks such as communication networks. These networks are inherently 

different in the way they deliver their services, real time delivery vs. best-effort delivery,  

routing vs. Kirchoff's laws. They are also different in system components such as lack of  

feasible storage in power networks compared to buffer mechanism  in communication 

networks. The idea is not to make one look like the other but look for synergies in the tools 

developed for network management, congestion management and like tools. Work on 

distributed network operation was developed by the help of some ideas from congestion 

dependent pricing in data networks; however, much more can be learned from the exte nsive 

research that has evolved around data networks, and we believe that it would make 

challenging and intriguing new areas of research.  
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Appendix A 

Source Code 
 
Below is the simulation code used to develop the data for Chapter 6. This code is build for a 
2-Bus system with a third slack bus. 
 
 
%HYBRID.M 
 
function[tempbesttree]  = hybrid(time,BA, Spot, Gen ,cap) 
 
     % Top Level function, takes in the data and builds  
     % the Dynamic Programming tree. 
 
t0 = clock; %to measure how long the simulation takes 
clc 
global T n Fcap 
 
T = time; %number of time periods 
n = 2 ;   %number of buses excluding the slack bus. 
 
global mainW S_all bno Ncost 
mainW = BA; 
 
%the requests coming in for each bus 
%total number of requests should be the product of 
%number of bus pairs (bno as below)  and number of periods. 
 
 
buslist = linspace(1, n, n); 
buspairs = []; 
temp = []; 
 
for i = 1:n 
   for j = i+1:n 
   temp = [temp; buslist(i),buslist(j)]; 
   end 
end 
 
buspairs = [ temp ; fliplr(temp) ]; 
%number of bilateral agreements. 
[bno, foo] =   size(buspairs); 
clear foo; 
 
xstart = zeros(bno, 3);  
% we start with no agreements at none of the buses. 
 
S_all = Spot; %accounts for changing spot demand. 
 
Ncost = Gen; 
Fcap = cap; %line MW between node 1 and 2.  
Scap = 80; %line MW between node 2 and 3: slack bus  
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Fimp = 0.0999; %line impedence 1-2 
Simp = 0.0001; %line impedence 2-3 
n1cost = Ncost(1,1); 
n2cost = Ncost(2,1); %generation costs 
 
global otrans onodes ogen_nodes oload_nodes ogen_cost ospot 
 
% prepares the raw data for optimal power flow analysis. 
 
otrans = [ 1 2 1 1 Fimp 0 Fcap 0 0 0 0 0 0 0 0 0 0 ; ... 
    2 3 3 1 Simp 0 Scap 0 0 0 0 0 0 0 0 0 0 ]; 
 
onodes = [  1 1 1 2 ; ... 
            2 2 1 2; ... 
     3 3 1 3]; 
 
ogen_nodes = [ ... 
[1, 1, 0, 0, 9999.0, -9999.0, 1, 0, 100, 0, 0, 0, 0, 1, 1, 100, 9999, 
0];... 
[2, 1, 0, 0, 9999.0, -9999.0, 1, 0, 100, 0, 0, 0, 0, 1, 1, 100, 9999, 
0];... 
[3, 1, 0, 0, 9999.0, -9999.0, 1, 0, 100, 0, 0, 0, 0, 1, 1, 100, 9999, 
0] ]; 
 
[hey, joe] = size(S_all); 
 
oload_nodes  = [ 1 1 1 1 1 S_all(1,:) ;... 
                 2 1 1 1 1 S_all(2,:) ;... 
   3 1 1 1 1 zeros(1,joe)  ]; 
clear joe hey 
 
ogen_cost = [ 1 0 0 n1cost ;... 
              2 0 0 n2cost ; ... 
              3 0 0 (20000*(n1cost+n2cost))]; 
 
[wa, foo] = size(mainW); 
 
for i = 1:wa 
 if mainW(i,3) > 0 &  mainW(i,1) == 0 
    mainW(i,:) = zeros(1,3); 
 elseif mainW(i,3) > 0 &  mainW(i,2) == 0 
    mainW(i,:) = zeros(1,3); 
 elseif mainW(i,1) > 0 & mainW(i,2) == 0; 
    mainW(i,:) = zeros(1,3); 
 end 
end 
 
%this makes sure that there is no misreported requests. 
%such as those for 0 MW and 0 time period but for 2 dollars. 
 
global baseU 
baseU = [ 0 1 1 0 ; 0 0 0 0 ; 0 0 0 0 ; 0 0 1 1 ]; 
%this is the decision space corresponding to: 
 
 %Reject 12, Reject 21 
 %Accept 12, Reject 21 
 %Accept 12, Accept 21 
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 %Reject 12, Accept 21 
 
clear treenode 
treenode(1) = struct('name','1','time',1,'parent','0','branches',[],... 
       'revenue',0,'state', xstart); 
 
% this builds a tree structure to capture the information 
% at the nodes of the DP tree. 
 
total = length(treenode); 
prevcreated = 1; 
 
%iterate through each T 
global t 
 
for t = 2:T 
  [treenode,prevcreated] = new2(treenode, mainW, S_all, t, 
prevcreated); 
  prevcreated; 
end 
 
treenode.name; 
treenode.time; 
treenode.parent; 
treenode.branches; 
treenode.revenue; 
treenode.state; 
 
 
new5;  
 
% if the spot makret is taken to be zero 
% revenue is soley from the BAs. 
 
if (sum(sum(Spot,2))==0) 
     hey = str2num(hey2); 
     dec = [] ; 
     remove = floor(hey/(10^(T-1))); 
     hey = hey - (remove*10^(T-1)); % get rid of the '1' 
      
     for p = 1:(T-1)   
      k = T-1-p   ; 
      remove = floor(hey/(10^k)); 
      dec = [ dec ;  remove]; 
      hey = hey - (remove*10^k); 
     end 
 
     dec ; 
 
zerospotrev = 0; 
 
     for a = 1:(T-1) 
        get = dec(a,:);  
        q = baseU(:,get)  ; 
        y = reshape(q,bno,bno); 
        agr = pickw(a+1,T,mainW,bno); 
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        revagr = [ agr(1,1)*agr(1,2)*agr(1,3) ; 
agr(2,1)*agr(2,2)*agr(2,3) ]; 
        hrev = y*revagr; 
        zerospotrev = sum(hrev) +  zerospotrev; 
     end 
 
else 
end 
 
zerospotrev  
 
wow = etime(clock,t0) 
 
 
 
% NEW2.M 
 
function[treenode,prevcreated] = new2(treenode, mainW, S_all, t, 
prevcreated) 
 
 
global T bno n Fcap n1cost n2cost 
global otrans onodes ogen_nodes ogen_cost ospot baseU 
 
startingtotal = length(treenode); 
clear S w 
global S w 
 
w = pickw(t,T,mainW,bno); 
S = picks(t,T,S_all); 
 
for q = 1:prevcreated, 
 
    index = startingtotal - prevcreated + q; 
    X = treenode(index).state; 
    qparent = treenode(index).name; 
    U = []; 
    br = []; 
 
% determines the admissable decison space  
% given the current state 
 
    if ( X(1,1)>0 ) & ( X(2,1)>0 ) 
        U= [baseU(:,1)]; 
        br = ['1']; 
    elseif ( X(1,1)>0 ) & ( X(2,1)==0 ) 
        U = [baseU(:,1) baseU(:,4)]; 
        br = [ '1' ;'4' ]; 
 
    elseif ( X(1,1)==0 ) & ( X(2,1)==0 ) 
        U = baseU; 
        br = ['1' ;'2'; '3'; '4'] ; 
 
    elseif ( X(1,1)==0 ) & ( X(2,1)>0 ) 
        U = [baseU(:,1) baseU(:,2)]; 
        br = [ '1' ; '2' ]; 
    end 
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    [k,l] = size(X); 
    wow = k*l; 
    [foo, possible] = size(U); 
    growingsize = length(treenode); 
 
    if possible > 0 
       for i = 1:possible 
           thistime = U(:,i); 
           bran = br(i,:); 
 
           u = reshape(thistime,bno,bno) ; 
           order = growingsize+i; 
           newname = strcat(qparent,bran); 
           treenode(order).name = newname; 
           treenode(order).time = t; 
           treenode(order).parent = qparent; 
           treenode(order).branches = u; 
         [totalrev, newX, u] = new3(S_all,S,Fcap,X,w,u,wow,t); 
 
% builds a  tree node for each possible decision u 
 
           treenode(order).revenue = totalrev; 
           treenode(order).state = newX; 
        end 
    end 
     
end 
 
prevcreated = length(treenode) - startingtotal; 
treenode; 
 
% NEW3.M 
 
function [totalrev, newX, u] = new3(S_all,S,Fcap,X,w,u,wow,t) 
 
% determines the revenue for each decision 
 
global T bno n mainW baseU 
global otrans onodes ogen_nodes oload_nodes ogen_cost ospot 
 
q12 = X(1,1); 
p12 = X(1,2); 
td12 = X(1,3); 
q21 = X(2,1); 
p21 = X(2,2); 
td21 = X(2,3); 
  
Xtemp = X; 
 
for i = 1:2 
    if X(i,1) > 0; 
     Xtemp(i,3) = X(i,3) - 1; 
    else 
     Xtemp(i,3) = 0; 
    end 
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end 
 
%accept matrix. 
 
A = []; 
A = u*w; 
 
wq12 = A(1,1); 
wp12 = A(1,2); 
wtd12 = A(1,3); 
wq21 = A(2,1); 
wp21 = A(2,2); 
wtd21 = A(2,3); 
 
Atemp = A; 
 
for i = 1:2 
    if A(i,1) > 0; 
       Atemp(i,3) = A(i,3) -1;  
    else 
       Atemp(i,3) = 0; 
    end 
end 
 
%new X from bilaterals only 
 
newrevb = q12*p12 + q21*p21 + wq12*wp12 + wq21*wp21; 
 
%these are new flow bounds and we have to make sure 
%that spot market operates between these. 
 
fupper = Fcap +(- q12 -wq12 + q21 + wq21); 
flower = -Fcap + (- q12 -wq12 + q21 + wq21) ; 
 
%new x[k+1] 
 
newX = []; 
newX = Xtemp + Atemp; 
 
[newa , newb] = size(newX); 
 
for i = 1:2 
    if newX(i,3) <= 0 
       newX(i,:) = zeros(1,newb); 
    else 
    end 
end 
 
for i = 1:2 
    if newX(i,1) == 0 
       newX(i,:) = zeros(1,newb); 
    else 
    end 
end 
 
%if there is no spot market 
%and if the line limits are not met 
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%report zero revenue  
 
if (S(1,1)==0) & (S(2,1)==0) 
     if (fupper < Fcap) & (flower > -Fcap) 
         totalrev = newrev; 
     else  
         totalrev = 0; 
     end  
else 
 
  global day period lineout season_days 
 
  day = 1; 
  period = 1; 
  lineout = 0; 
  season_days = 2; 
 
%optimal power flow program called 
 
  [spotrev] = new4( T,t, day, period, lineout, season_days, fupper, 
flower); 
  totalrev = spotrev + newrevb; 
end 
 
 
% PICKW.M 
 
function [f] = pickw(t,T,mainW,bno) 
 
newt = t-1; 
 
%pick from mainW the W for time period t. 
 
if newt> T 
   disp('no, no!') 
   f = []; 
else 
   f = [ mainW(bno*newt-1,:); mainW(bno*newt,:)]; 
end 
 
% PICKS.M 
 
function [f] = picks(t,T,S_all) 
 
newt = t-1; 
 
%pick from Spot data for time period t. 
 
if newt> T 
   disp('no, no!') 
   f = []; 
else 
   f = S_all(:,newt); 
end 
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% NEW4.M 
 
 
function [spotrev, lineflows, congest_freq, constrained_lines ,... 
spotprice, x0 ] = new4(T,t, day, period, lineout,season_days, fupper, 
flower) 
 
% determines optimal dispatch 
 
warning off 
 
%global T 
global bno n Fcap S_all baseU 
global otrans onodes ogen_nodes oload_nodes ogen_cost ospot 
global mc lds busno  congest_freq  
global constrained_lines num_constrained total_cost num_fval 
 
OPF = 1;  % OPF = 1 -> inelastic load,   OPF = 2 -> elastic load 
 
% MVA base 
Sbase = 100; 
 
 
[busno, colno] = size(onodes); 
[gens, colno] = size(ogen_nodes); 
[loads, loadcolno] = size(oload_nodes); 
[lineno, colno] = size(otrans); 
[gcd_no, colno]=size(ogen_cost); 
 
nodes = onodes; 
gen_nodes = ogen_nodes; 
load_nodes = oload_nodes; 
trans = otrans; 
gen_cost = ogen_cost; 
 
congest_freq = zeros(lineno-1,4); 
congest_freq(1:lineno-1,1:3) = otrans(1:lineno-1,1:3); 
constrained_lines = zeros(1,5); 
 
num_constrained = 0; 
num_fval = 0; 
total_cost = zeros(1,4); 
 
nodes = sortrows(nodes,4); 
 
a = zeros(busno,lineno); 
i = 0;  
j = 0; 
 
for count = 1:lineno, 
 for count2 = 1:busno, 
       if trans(count,1) == nodes(count2,1), 
        i = count2;       end 
 
      if trans(count,2) == nodes(count2,1), 
       j = count2; 
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      end 
  end 
  if trans(count,15) > 0.5, 
   a(i,count) =  1/trans(count,15);   
   a(j,count) = -1; 
 else 
   a(i,count) =  1;   
   a(j,count) = -1; 
   lmax(count,1) = i; lmax(count,2) = j; 
  end 
end 
 
X = trans(1:lineno,5); 
c = trans(1:lineno,6); 
b = ones(lineno,1) ./(-1*X); 
Y = (a * diag(b) * transpose(a)) - ... 
     0.5 * diag(diag((a * diag(c) * transpose(a)))); 
invY = inv(Y(1:busno-1, 1:busno-1)); 
m=0; 
 
for (l=1:busno) 
     for (k=1:gens) 
         if(gen_nodes(k,1)==nodes(l,1)) 
             m=m+1; 
             gennodes(m,:)=gen_nodes(k,:); 
         end; 
     end; 
end; 
 
gen_nodes=gennodes; 
clear gennodes; 
 
lds = busno - gens; 
[foo,boo] = size(gen_nodes); 
 
up_limit(:,1) = gen_nodes(:,17)/Sbase; 
low_limit(:,1) = gen_nodes(:,18)/Sbase; 
 
mc = [nodes(:,1), zeros(busno,3)]; 
mc(1:busno,3)=0; 
 
for (k=1:gcd_no) 
     for (l=1:busno) 
        if (gen_cost(k,1)==nodes(l,1)) 
           mc(l,2:4) = gen_cost(k,2:4);  
      end; 
     end; 
end; 
 
options=optimset('MaxIter', 999, 'TolX', 1e-10, 'Display', 'off',... 
'DiffMaxChange', 1e-8, 'TolFun', 1e-10, 'TolCon', 1e-10); 
 
Apos=diag(b)*transpose(a)*[invY(1:busno-1,lds+1:busno-1),zeros(busno-
1,1);... 
          zeros(1,gens-1),0]; 
Aneg=-diag(b)*transpose(a)*[invY(1:busno-1,lds+1:busno-1),zeros(busno-
1,1);... 
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    zeros(1,gens-1),0]; 
A = [Apos;Aneg]; 
 
%distribution matrix 
 
m=0; 
for (l=1:busno) 
     for (k=1:loads) 
         if(load_nodes(k,1)==nodes(l,1)) 
             m=m+1; 
             loadnodes(m,:)=load_nodes(k,:); 
         end; 
     end; 
end; 
 
load_nodes=loadnodes; 
clear loadnodes; 
 
S = picks(t,T,S_all); 
Pload = [ S ; 0]; 
 
fupper = fupper; 
flower = flower; 
 
%these are in MW. and they arenot symmettic. 
 
Bpos = fupper+diag(b)*transpose(a)*[invY,zeros(busno-1,1);... 
zeros(1,busno-1),0]*Pload; 
Bneg = -flower-diag(b)*transpose(a)*[invY,zeros(busno-1,1);... 
zeros(1,busno-1),0]*Pload; 
B = [Bpos;Bneg]; 
 
Aeq=ones(1,gens); 
Beq=sum(Pload); 
x0 = zeros(gens,1); 
 
[x0, fval, exitflag, output, lambda] = fmincon('fun_constant', ... 
x0, A, B, Aeq, Beq, low_limit, up_limit, 'fun3', options); 
 
if exitflag ~= 1 
   disp('HANDS UP') 
break 
else 
end 
 
[x0, fval, exitflag, output, lambda] = fmincon('fun', x0, A, B, ... 
Aeq, Beq, low_limit, up_limit, 'fun3', options); 
 
if exitflag ~= 1 
  disp('HANDS UP') 
 break 
else 
end 
 
Bij = diag(b)*transpose(a)*[invY,zeros(busno-1,1);zeros(1,busno-
1),0]*Pload; 
%power flow 
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Qij = Apos*x0 - Bij; 
 
lineflows = trans(:,1:2); 
lineflows = [lineflows,Qij]; 
 
num_const=0; 
 
for (i = 1:lineno) 
 
  if (lambda.ineqlin(i) > 0) 
      num_constrained = num_constrained+1; 
      constrained_lines(num_constrained,1) = trans(i,1);       
      constrained_lines(num_constrained,2) = trans(i,2); 
      constrained_lines(num_constrained,3) = day; 
      constrained_lines(num_constrained,4) = period;  
      constrained_lines(num_constrained,5) = lineout; 
      k = 1; 
      while ((congest_freq(k,3)~=trans(i,3)) & (k<lineno-1)) 
         k = (k+1); 
      end; 
      if (k < lineno) 
         congest_freq(k,4) = congest_freq(k,4) + 1; 
      end; 
   end; 
end; 
 
for (i = 1:lineno) 
   if (lambda.ineqlin(lineno+i) > 0) 
      num_constrained = num_constrained+1; 
      constrained_lines(num_constrained,1) = trans(i,1);   
      constrained_lines(num_constrained,2) = trans(i,2); 
      constrained_lines(num_constrained,3) = day; 
      constrained_lines(num_constrained,4) = period;  
      constrained_lines(num_constrained,5) = lineout; 
      %m = m+1; 
      k = 1; 
      while ((congest_freq(k,3)~=trans(i,3)) & (k<lineno-1)) 
         k = (k+1); 
      end; 
      if (k < lineno) 
         congest_freq(k,4) = congest_freq(k,4) + 1; 
      end; 
   end; 
end; 
 
 
num_fval = num_fval+1; 
total_cost(num_fval,1) = day; 
total_cost(num_fval,2) = period; 
total_cost(num_fval,3) = lineout; 
total_cost(num_fval,4) = fval; 
 
hmatrix = diag(b) * transpose(a) * [invY,zeros(busno-
1,1);zeros(1,busno-1),0]; 
Hmatrix = [hmatrix;(-1. * hmatrix)]; 
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spotprice = zeros(busno,1); 
for k=1:busno 
   spotprice(k,1) = lambda.eqlin - transpose(lambda.ineqlin) * 
Hmatrix(:,k); 
end; 
 
spotrevall = x0 .*spotprice; 
spotrev = sum(spotrevall); 
fval; 
 
% FUN.M 
% the non linear optimization functions 
 
function F = fun(x) 
 
global mc lds busno 
 
mc1 = mc(lds+1:busno-1,4); 
mc1 = [mc1;0]; 
mc2 = mc(busno,4); 
mc2 = [zeros(busno-1-lds,1);mc2]; 
 
%mc1 = mc(lds+1:busno,4); 
 
F = sum(((0.5.*mc1).*x).*x) + sum(mc2.*x); 
 
%F = sum((0.5.*mc1).*(x.*x)); 
 
return; 
 
% FUN3.M 
 
function [F,G]= fun3(x) 
 
F =0; 
G =0; 
 
return; 
 
% FUN_CONSTANT.M 
 
function F = fun_constant(x) 
 
global mc lds busno 
 
F = sum(mc(lds+1:busno,4).*x); 
return; 
 
% NEW5.M 
 
%this file will help move down the tree. inputs are just the treenode. 
%save original treenode 
otreenode = treenode; 
 
clear treel; 
treel = length(otreenode); 
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%get all the nodes at time T. the last nodes. 
 
clear startnode  
startnode = treenode(treel); 
 
sl = 0; 
 
for iter = 1:treel 
    if eq(treenode(iter).time, T)    
       startnode(sl+1) =  treenode(iter); 
       sl = length(startnode); 
    else 
    end 
end 
 
%truncate for next periods 
 
treenode = treenode(1:treel-sl); 
 
clear tempbesttree 
tempbesttree = 
struct('name','','time',0,'revenue',0,'cumrev',0,'parent',... 
        '','best',''); 
 
sl = length(startnode); 
 
for i = 1:sl 
    tempbesttree(i).name = startnode(i).name; 
    tempbesttree(i).time = T; 
    tempbesttree(i).rev = startnode(i).revenue; 
    tempbesttree(i).cumrev = startnode(i).revenue; 
    tempbesttree(i).parent = startnode(i).parent; 
    tempbesttree(i).best = tempbesttree(i).name; 
end 
 
 
%this is the end of temp data creation 
 
clear tempbest 
 
tempbest(1) = tempbesttree(1); 
tl = length(tempbest); 
 
 
for i = 2:sl 
   if strcmp(tempbesttree(i).parent,tempbest(tl).parent) &... 
      gt(tempbesttree(i).rev, tempbest(tl).rev) 
           tempbest(tl) = tempbesttree(i); 
   elseif strcmp(tempbesttree(i).parent,tempbest(tl).parent)&... 
          gt(tempbest(tl).rev,tempbesttree(i).rev) 
           tempbest = tempbest; 
   else 
           tempbest(tl+1) = tempbesttree(i); 
           tl = length(tempbest); 
   end 
end 
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tl; 
 
besttree = tempbest; 
prevcreated = length(besttree); 
 
 
%************************ 
%do  the rest of the time 
%************************ 
 
 
for t = 1:T-1 
      move = T-t; 
      treel = length(treenode); 
       
      %for eachtime we will start that fresh 
      clear tempbest 
      clear tempbesttree 
      clear startnode 
      startnode = treenode(treel); 
      sl  = 0; 
 
      %get the nodes that we are interested in. 
 
      for iter = 1:treel 
       
           if eq(treenode(iter).time, move) 
              startnode(sl+1) =  treenode(iter); 
              sl = length(startnode); 
           else 
           end 
      end 
 
      %for next periods 
      treenode = treenode(1:treel-sl); 
      treel = length(treenode); 
      %get the info that we are intesrted in. 
      tempbesttree = 
struct('name','','time',0,'revenue',0,'cumrev',0,... 
     'parent','','best',''); 
      sl = length(startnode); 
      for i = 1:sl 
       tempbesttree(i).name = startnode(i).name; 
       tempbesttree(i).time = move; 
       tempbesttree(i).rev = startnode(i).revenue; 
       tempbesttree(i).cumrev = startnode(i).revenue; 
       tempbesttree(i).parent = startnode(i).parent; 
      end 
 
      %iterathe thru the nodes and get cumulative revenues: 
       lbt = length(besttree); 
   
      for i = 1:sl 
         for k = 1:prevcreated 
         look = lbt-k+1; 
            if strcmp(tempbesttree(i).name, besttree(look).parent) 
                  tempbesttree(i).cumrev = tempbesttree(i).rev + ... 



 102

                                           besttree(look).cumrev; 
                  tempbesttree(i).best = besttree(look).best;break; 
           tempbesttree(i).cumrev = tempbesttree(i).rev;  
            end 
         end 
      end 
 
 
     tempbest(1) = tempbesttree(1); 
     tl = length(tempbest); 
 
 
 
 
    for i = 2:sl 
 
       if strcmp(tempbesttree(i).parent,tempbest(tl).parent) &... 
          gt(tempbesttree(i).cumrev, tempbest(tl).cumrev) 
                 tempbest(tl) = tempbesttree(i);  
       elseif strcmp(tempbesttree(i).parent,tempbest(tl).parent)&... 
              gt(tempbest(tl).cumrev,tempbesttree(i).cumrev) 
                 tempbest = tempbest; 
       else 
                 tempbest(tl+1) = tempbesttree(i); 
       tl = length(tempbest); 
       end 
    end 
     
    bestl = length(besttree); 
 
    for r = 1:tl 
         besttree(bestl+r) = tempbest(r); 
    end 
    prevcreated = tl; 
 
 
end 
 
global hey1 hey2 
 
hey1 = besttree(bestl).cumrev 
hey2  = besttree(bestl).best 
 
 
%sample input data file DATA.M 
 
time = 8 
cap =  60 
 
 
 
BA =  [... 
 
31 2 2  ; 21 3 1 ;  ... 
32 3 5  ; 22 4 2 ;  ... 
43 2 1  ; 33 3 1 ;  ... 
24 3 2  ; 54 1 1 ;  ... 
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55 1 2  ; 35 3 3 ;  ... 
27 2 3  ; 25 4 4 ;  ... 
30 2 1  ; 15 3 2 ; ... 
24 3 1  ; 0 0 0 ... 
 
]               
 
Spot =  [ ... 
 
 75 95 70 95 85 90 85 85 90 ;... 
 85 90 95 80 90 75 95 95 95 ... 
 
] 
 
Gen = [ ... 
 
1 ;... 
2 ... 
 
] 
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