A Robust Multi-Server Chat Application for Dynamic Distributed Networks
by

Michael C. Hamler
B.S. Computer Science and Engineering
Massachusetts Institute of Technology, 2004

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MA
September 3, 2004 Ssggﬁlé%m&w

The author hereby grants to M.I.T. permission to reproduce and JUL 18 2005
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

| IRRARIFS

mr———d

Author

Department of Electrical Engineerin§—5nd_Computér'SEIéHEg
- September 3, 2004

Certified by

\ \Y Clifford J. Weinsfein
Group Leader, Information Systems Technology Group, MIT Lincoln Laboratory
Thesis Supervisor

Certified by

CoT Roger I. Khazan
Staff Member, Information Systems Technology Group, MIT/LiﬁdoiE,;gbUrﬁf6ry
o -7 7 _Thesis/Sdpervisor

quea

Accepted by

- Arthur C. Smith
Chairman, Department Committee on Graduate Theses

This work is sponsored by the United States Air Force under Air Force
contract F19628-00-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily
endorsed by the United States Government.

BARKER

A Robust Multi-Server Chat Application for Dynamic Distributed Networks

by

Michael C. Hamler

Submitted to the
Department of Electrical Engineering and Computer Science

September 3, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis presents the design and implementation of a robust chat application for
dynamic distributed networks. The application uses a decentralized client-server
communication model and a reliable communication service to make it robust. The
application turned out to be a critical support tool for the MIT Lincoln Laboratory teams
participating at the Joint Expeditionary Force Experiment, 2004. The thesis also describes
an implementation of several tools for monitoring and analyzing performance of the
application.

Thesis Supervisor: Clifford J. Weinstein
Title: Group Leader, Information Systems Technology Group, MIT Lincoln Laboratory

Thesis Supervisor: Roger 1. Khazan
Title: Staff Member, Information Systems Technology Group, MIT Lincoln Laboratory

19

Dedicated to
Mom, Dad and my Brother Dion
For Always Believing in Me

Acknowledgements

I need to thank Roger Khazan and Cliff Weinstein for their support throughout this last
year. Roger, you’ve been a great teacher, colleague and friend. Thanks for helping me get
through this. I’d also like to thank Steve Goulet for his insight and his detailed knowledge
of operating systems, both Windows and Unix.

Thank you, to all my friends and family for supporting me all these years and cheering
me up when things didn’t look so good. I guess we’ve finally made it.

Special thanks to Flora Lee, for putting up with me and supporting me while I wrote this
thesis.

Table of Contents

I INErOAUCHION Lo e 10
1.1 Background and Motivation...........c.coociiiiiiiiiiiii e 11
1.2 TheSIS OVEIVIEW L..oiiiiiiiiiiieiieie et 14
1.3 GOALS .. et e s 14

1.3.1 Decoupled Communication Service and Chat Application...................... 15
1.3.2 EXtensibilityccouiiiiiieiiice e 15
1.33 Reliability of DEIVEry ..c.ccvoeiiiiiee e 15
1.3.4 SIEE AWAIENESS .. e cetireveiieeieeeiricceee e ee e et e e e eeea e e e e e s enneeeeanreeeeesmeeeeennes 16
1.3.5 CoNNECtION AWATEIIESS «.oevuveeeeerceiteeerieeeeeeeerretireereeeeeeeaesseneeneeeeesesaannnnes 16
1.4 Thesis ContribULIONScoiiiiiiiit ittt 16

2 Related WOrK....coooiiieie e 17
2.1 Internet Relay Chat (JRC)ooimiie e 17
2.2 JADDET i e 18

3 ENVIFOMIMIENToiiiiiieiteeieeiee ettt ettt et st e sene et e eebeeneee e 18
3.1 JEFX 04 Intra-site COmMMUNICALIONSeceeiouiiririiiiietiiiiieesaeieee e ie e e 19
3.2 JEFX 04 Inter-site COMMUNICATIONS....covvveriiriiirinriirieiiee i eeinee e ens 20

I 1 ¥4 o B U PRSPPI 21
4.1 ATChItecture OVEIVIEWcceiiiiiiiiiiieciiee ittt 21
4.2 Message Flow Through the Application...........ccoooieiiiiiiiiiinee, 22
4.3 Client-Server Login Protocolooviiivviiniiiiiiiiiieeerce e 24

43.1 CHENt ACLIONS ...oiviiiiiiii ittt 24
43.2 SETVET ACTIONS .c..itiiiitiiiresieeerteieireesrbaessbteeasbteeebereenaneesbteesereesnaeeaaannes 25
4.4 Client-Server DISCONMNECTSc.viiiiiriutiieerreeireeie e eie et 26
441 CHENt RESPONSE...uviiiiiiciii i 26
4472 Server RESPOMSE ..ccoiviiiiiiiiiii e 27
4.5 Server-Server DISCONNECtS ..ottt 27
4.5.1 Short-Term DISCONNECES.....c..eiiiiiriiiiriiiieciiee e 28
4.5.2 Long-Term DISCONNECESooooiiiiiiiiiiiiiiie e 28
4.6 Multicast v8. BroadCastccoiiiiiiiiiiiie e 29

5

IMPIemMEntation........oooiiiii e ee e 29
5.1 CRAESEIVET ...ttt et 30
5.1.1 CompPOonent OVEIVIEW.....vviivreriirieirreeeiinieeireeeeertessintessereeseeseseineeesneees 31
5.1.2 Accepting ClIENES ..ovvveveeiiiiiieee et 31
5.1.3 Handling Messages from Clientsccooiiiiiiiiii, 32
5.1.4 Handling Messages from the Network.........cccooceevviiiiniiiniiini 34
5.2 CRAEMESSAZES .. eeintteeeiie ettt et e e et e et e e e et e e beee e e e e enaneeee s s e 34
5.2.1 ChAtMESSAZE .. eeee e eirreee et e e e e e e e s eribanae e e e e e sen e reemneenes 35
5.2.2 Message SpecialiZationc..eiiiiiiiiiiiiiiiiieie e 37
5.3 ChatCHENt. c.eieii ittt ettt 37
5.3.1 Component OVEIVIEWccuuiiireeiiiiiereeeririeesentteeeseeiereesreneeeeeeesaennnereees 38
53.2 ChHENELISIENETS 1ottt e e e et rie s e e e e e s 39
533 Handling MeESSagEesceciviiieeieeeiiee et eee e esrre e e e neeseneeas 39
54 CHENEGUIL ...t ettt st e e 40
54.1 ChatManager........ccviviiiiiie et 41
542 ChatROOMooii e 43
543 USETPANE]. .o e 45
5.5 CRAtBOT ..ottt 46
5.5.1 SCIIPEBOL .t 47
552 ReSPONSEBOL ... 47
553 BotDiISPlay .o 49
5.6 DataloZeI....uieiiiiiieiiiie e e e e e 51
5.6.1 RawWDataloZEercocoiiiiiiiiiiiiitiieee et 51
5.6.2 ANalysiSLOZEET ..o 52
5.6.3 MUIILO@EET ..ot 54
5.7 MOMIIOT ottt ettt et et 54
5.7.1 MONIEOTACTIVEVIEWET ...ttt et e e 55
5.7.2 MONItOTLOGVIEWET ... 57
S8 DEDUG oo 59
5.8.1 Debug LevVelS ..ooooiiiiiiiii e 60
5.8.2 TIMICSEATIIPS Lottt ettt e e e e e ettt e e eeeae e e e e 60

6 Testing and Evaluationcocooiiiiiiiiii e 60

6.1 Test-bed ArChItECtUIS. . uiivi it 61
6.2 Monitor RESUILSoooiiiiiii e 62
6.3 JEFX 2004 ReSUILS......ooiiiiiiiie et 62
6.3.1 FLEHt Data ...oooviieiriiiie et 63
6.3.2 Crew Feedbacki..........ooiiciiiiiiii e 64

T FUUIE WOTK oot e e e 65
7.1 Security and Authenticationoooiiiiiiiiiiiiiiicie e 65
7.2 Alternative APpliCAtIONSc.eviviiiirieiiiieeeiie e 66
7.3 Chat Bot IMProvementsoooviiiiiiiiieiiiiiieceeee e e ee e eeeeeenes 66

B GLOSSATY et e e e e e 68
O REIEIEINCES .ttt e 69

List of Figures

Figure 1: The MC2C ENVIFONIMENTceiiiuiiiiiiiieiiiiiie et erinireeeeaeireees s naeee s esinnae e eans 13
Figure 3: MC2C Environment Model ..ot 19
Figure 4: Intra-site COMMUNICATIONScoviitiiiiiiiiiiiie e ee e 20
Figure 5: High Level Overview of the Chat Application Architecture............cccccooeien 22
Figure 6: Message Flow through the Chat Applicationccocoiii 23
Figure 7: State Diagram for Site Connectionsccccvviviiiiiiiiiiiniiiieeniee e 28
Figure 8: An Overview of the ChatServer Architecture..........cccoooeiiviiiiiiiiiiiienienncns 30
Figure 9: The Basic Structure of a ChatMessage.............occcooviiiiiiiiiiiiii 35
Figure 10: An Overview of the ChatClient Architectureccoooiiiiiiiinn, 38
Figure 11: ChatManager Interfaceoocco i 41
Figure 12: LoginDialogcooveiviviiiiiiiiciciti e 42
Figure 13: ConnectorDisplay.......ccciiviiiiiiiiic e 42
Figure 14: ChatRoom Interface..........c..cooiiiiiiiii 44
Figure 15: The UserPanel Displayccocovviiiiiiiiiiiiiiiicec e 45
Figure 16: ScriptBot OULPUL «....ooviiiiiiiiaiie et 47
Figure 17: The BotDisplay Interface.........ocoovviiiiiii 50
Figure 18: MonitorACtIVEVIEWETcooiiiiiiiiiiiiiiiiii e 56
Figure 19: MonitorLogViewer. .ANL File. Hash Colors........cc.covinviiiiiiniiii 57
Figure 20: MonitorLogViewer. .ANL File. Lexicographic Colors............ccoccniiiinninn 58
Figure 21: MonitorLogViewer. .DAT File. Hash Colors............coocciiiii 59
Figure 22: Test-Bed Archit@Cture............ocoiiiiiiiiiiiiii e 61
Figure 23: JEFX 04 Flight Data.cooooiiiiiiiiiiiice e 63

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

Inter-Site Link Information..........cooveeeeieiiiiii e 20
ChatServer Component DeSCIIPLIONScooueeviiiiiiiiieeiiiiire e eeeceivccineeee s 31
ChatMessage Field DesCcriptions.c..coovevvenieriiiiiieiiienniicie s 35
ChatClient Component DeSCTIPLIONS.c.eeiriiiiiiiiiiiiiie e 38
RawDatalogger Data Types. ...ccooviiiiiiiiieiii e 52
AnalysisLogger Data TYPES. ..cc.oooiiiiiiiiiiiiic i 53
MOnitor Plot DeSCIIPLIONS. «..eeeiriieirreees e eeeeee e et e e e et eeeeesiiaieessbneeseas 55

1 Introduction

This thesis presents the design and implementation of a robust chat application for
dynamic distributed networks. Such networks are often comprised of a dynamic set of
nodes, which have varying connectivity to other nodes and are possibly mobile. Because
of this dynamism, network partitions and topological changes are very common as nodes
join or leave the network and links fail and recover. Traditional chat applications
typically assume highly reliable network connections in order to function properly. If
deployed in a dynamic distributed network, traditional chat applications may fail
ungracefully, causing great delays in communication and significantly restricting their
usefulness. For example, this situation happened during the Joint Expeditionary Force
Experiment in the summer of 2002 [1].

Our chat application provides a robust tool for collaborative textual chat. We
describe an application as robust when it is able to tolerate unreliable network conditions,
such as those presented by a dynamic distributed network. Our chat application uses a
decentralized client-server communication model and a reliable communication service
to make it robust. Client-server systems allow multiple clients to connect to a single
server, which coordinates communication between those clients. A decentralized system
allows multiple servers to work together to form a flexible network of connected
components.

In a dynamic distributed network we refer to a subnet of reliably connected
computers as a site. Our application capitalizes on these reliable subnets by placing a chat
server and multiple chat clients in each subnet. This way, every chat client can always
reliably connect to a chat server within its subnet, even if the larger network environment
is experiencing link failures or even network partitions. When sites are connected to each
other, the clients within those sites can communicate as if they were all connected to the
same site. When sites are disconnected from each other, the clients within each site can
still communicate with each other. The specific type of a dynamic distributed network
that motivated this thesis 1s comprised of a relatively small number of reliable subnets,

inter-connected with each other by unreliable links. Although this network contains only

10

a small number of reliable subnets, the set of nodes in each subnet may be large and
dynamic.

In addition to being robust, our application provides useful user terface features,
such as site awareness and connection awareness, which provide the user with
information about the topology and connectivity of their subnet. This information allows
users to act effectively and adjust to the variable availability of other users.

To test our theories on robust collaboration we implemented a prototype of our
chat application in Java. This made the application easily portable, which is an important
feature for applications in large network environments where multiple different operating
systems may be present. We also implemented several support tools that allow us to

easily monitor and analyze the behavior of our application.

1.1 BACKGROUND AND MOTIVATION

Collaborative applications, such as textual chat and shared whiteboards, have
recently been recognized as valuable tools for supporting military operations [1].
Unfortunately, traditional applications for collaboration are not designed for the dynamic
environments in which military operations are executed. Partially motivated by poor
performance of traditional chat applications in the Joint Expeditionary Force Experiment
(JEFX) 2002 [1], the MIT Lincoln Laboratory Information Systems Technology Group
developed a research program to meet the need for robust collaborative applications. The
chat application presented in this thesis was developed as part of this program.

Our chat application runs on top of the Robust Collaborative Multicast service
(RCM) developed at MIT Lincoln Laboratory. RCM i1s a communication service
designed to “support collaborative applications operating in dynamic, mission-critical
environments” [2]. Collaborative applications often require a highly reliable and low-
latency communication service to ensure participants can communicate effectively with
each other. At the same time, another desirable feature is that participants see a globally
consistent ordering on messages. RCM implements reliable communication between sites
and globally orders messages according to a certain property, called Intermittent Global

Order (IGO). RCM is designed to be a generic communication service. It has a simple

interface that allows client applications to send and receive messages and receive
connection status updates from the service.

Our chat application handles intra-site client-server communications and the
server-server interactions necessary to operate a textual chat application. To perform
reliable inter-site communication, the chat servers use RCM. The chat application takes
full advantage of the connection status information that RCM provides and presents this
information to the user in a simple and intuitive way.

The primary motivation for developing our chat application was to demonstrate a
prototype system capable of supporting robust collaboration in an airborne command and
control environment, such as the environment of the Multi-Sensor Command and Control
Constellation (MC2C). The MC2C environment is a network-centric control structure
designed to promote the easy flow of information in the battlefield [1]. As Figure 1
shows, the MC2C environment is a type of a dynamic distributed network consisting of
multiple mobile air and ground sites.

In addition, the prototype was meant to be a test application for the RCM service
and a platform for experimenting with new ideas related to the user interface, such as site
awareness and connection awareness (these are discussed further in sections 1.3.4 &

1.3.5, respectively).

CAOQOC

Figure 1: The MC2C Environment. There are multiple sites, each with multiple chat clients. Two of
the main components of the MC2C environment are the Combined Air Operations Center (CAOC)
and the Multi-mission Command and Control Aircraft (MC2A).

The original goals of this project were limited to demonstrating robust collaboration
concepts and implementing a prototype robust chat application; the goals did not include
any deployment plans. However, the project coincided with a greater effort by the MIT
Lincoln Laboratory to develop various prototype MC2C technologies and demonstrate
them at the Joint Expeditionary Force Experiment (JEFX) 04. Roughly a month before
JEFX 04, we had an opportunity to show our chat application to one of the teams
involved in this effort; the team found it to be a much better alternative to the
communication tool that they were using at the time and started using it. Then, when
JEFX 04 started, the other MIT Lincoln Laboratory team switched to using our chat

application as well. The application operated robustly despite frequent problems in the

underlying airborne network and turned out to be a critical support tool for the MIT

Lincoln Laboratory teams at JEFX 04 [3][4][5][6].

1.2 THESIS OVERVIEW

This thesis paper is arranged into seven chapters, plus a glossary and a list of
references, which appear at the end of the document. Chapter 1 is the introductory
chapter and discusses the background and motivation for the robust chat application
project. It also gives a brief overview of the paper and highlights the tangible results of
the thesis. Chapter 2 describes related work in the field of collaborative textual chat. It
discusses previous attempts at robust chat and several mainstream applications for
collaborative chat. Chapter 3 describes the intra-site and inter-site network conditions of
the JEFX environment, in which our chat application prototype was deployed. Chapter 4
explains the architecture of the robust chat application and describes several important
protocols. Chapter 5 describes the implementation details of important chat application
components. It also discusses the implementation of several valuable test and analysis
tools, including the chat bots, data loggers, and monitor tools. Chapter 6 discusses the
evaluation of the robust chat application, including results and feedback from the JEFX
04 flights. The test-bed architecture and test-schemes are described. The data gathered
using the test tools and is also discussed. Chapter 7 describes possible avenues of future
work related to this thesis. Several improvements for the robust chat application and test

tools are suggested, in addition to some new robust collaboration projects.

1.3 GOALS

The following sections outline the goals we strove for while designing the Robust
Chat Application. The first three goals are design related and cover the modularity,
extensibility and reliability of the application. The remaining goals are interface related
and cover the two primary characteristics that set the Robust Chat Application apart from

other chat applications.

1.3.1 Decoupled Communication Service and Chat Application

In designing our application we wanted to separate the inter-site communication
details as much as possible from the intra-site applications that would be using it.
Therefore, RCM was designed by the project team to provide robust communication
among sites [2]. The chat application uses a very simple interface to connect to RCM,
which manages the inter-site connections and communication. To function properly, the
chat application needs only minimal information about the status of the inter-site
connections. This modularity will allow future modifications to RCM and the chat

application to happen independently.

1.3.2 Extensibility

Extensibility describes how easy it is to extend or modify an application. In
developing this application we wanted to plan for future development, so we designed
and implemented our application to be modular, polymorphic and otherwise flexible.
Modularity allows us to exchange different parts of the application without rewriting
other parts, while polymorphism allows parts of the application to behave differently
based on their input. An example of the polymorphism in our application is evident in the
way it handles messages. Although all messages are transmitted using the same
processes, the handling of individual message types is specialized. These design
considerations will make future additions and modifications easier to implement. Section

7.2 discusses possible future applications that would benefit from this extensibility.

1.3.3 Reliability of Delivery

In a military environment all information exchanged by users, should be treated as
critical to mission success. It is therefore unacceptable to not account for all the messages
sent over the network. In designing our application, we want to guarantee that every
message sent between two connected sites will arrive and that the messages will be in
order. If for any reason there is a gap in the message sequence, possibly from a long-term
disconnect, the application will notify clients of the missing messages and will attempt to

deliver them later if they ever arrive.

Messages sent from clients to servers are also reliably delivered. Although clients
and servers are generally connected over a reliable network, client-server disconnects
may still occur. If the client had unsent messages at the time of disconnect it will attempt

resend them when it reconnects to the server.

1.3.4 Site Awareness

Site Awareness describes application features, which allow users to quickly
determine at which sites other users are located. This means all users from a particular
site are identified as being at that site. For the purpose of tactical communications this
presents clear advantages. Users on a site aware system are immediately aware of the
difference between inter-site communication problems and intra-site communication
problems. If users become disconnected because their entire site is experiencing
communication difficulties, this will be apparent since all the users from that site will be

affected in the same way.

1.3.5 Connection Awareness

Connection Awareness is knowledge of the state of the underlying network.
Although the chat application does not handle the network connections between sites, it 1s
aware of their status at all times and will make this information available to the user. By
making connection awareness an explicit feature of the chat application we give the user
an advance warning about the state of the network. Traditional chat applications expect
the network to be very reliable, which make connection awareness unnecessary.
Therefore, when these applications are placed in a dynamic network environment they
lack the capability to provide the user with valuable status information about the

connectivity of the network.

1.4 THESIS CONTRIBUTIONS

The contributions of this thesis can be summarized as follows:

e Designed, implemented, and tested a robust chat application prototype for

dynamic distributed networks

16

e Designed and implemented support tools and scripts to help analyze and test
robust chat application and RCM

e Provided the robust chat application prototype and technical support for MIT
Lincoln Laboratory research teams involved in the JEFX 2004 etfort

2 Related Work

In this chapter we evaluate existing chat applications.

2.1 INTERNET RELAY CHAT (IRC)

Internet Relay Chat, commonly referred to as IRC, is one of the oldest chat
applications available. Created in 1988, IRC is designed as a distributed multi-server
system, where clients communicate through the servers. This means, clients never
directly connect to one another to communicate. To chat with other users, a user must
join a channel, which is the IRC equivalent of a chat room. Just as in a chat room, any
message sent to an IRC channel is relayed to every user in that channel [8].

The strength of the IRC system lies in its availability. The IRC protocol is free, so
there are many client and server implementations available for public use, which have
been tested and improved through years of peer review. This also means the system is
more extensible than most, since IRC defines a group of protocols rather than a strict
implementation.

IRC servers can handle network disconnects elegantly, removing channel
members who have been disconnected and eventually reconnecting once the network
heals itself. This capability was deemed necessary, since IRC uses the Internet to
communicate. As the Internet continually evolves, network paths between servers change
or become congested, causing temporary disconnects between IRC servers [8].

The main drawback to IRC is that every server needs to know about every other
server and user in order to operate correctly [8]. This means in a dynamic distributed
network, where the configuration of the network is constantly changing, IRC servers may

have difficulty adapting.

17

2.2 JABBER

Jabber is an XML-based instant messaging platform originally developed by
Jeremie Miller in 1998. Jabber is a decentralized client-server based system, much like
IRC. Clients generally communicate with servers in order to send messages to other
clients. Although clients can exchange information directly, these exchanges must be
brokered by a server. Like most chat applications, Jabber allows users to create and join
multiple chat rooms [9].

The addressing structure in Jabber uses the same format as email. A username is
of the format nickname(@server.com, where nickname is the identifier for a particular
user and server.com is the jabber server that user is connected to. Unlike many chat
applications, jabber allows multiple users to use the same nickname at the same time. In
order to distinguish between such users, the system adds a string, called a resource, to the
end of the username. The resource is designed to make each username unique [9].

When a Jabber client sends a message to another Jabber client, the Jabber server
will decompose the username of the destination user to determine that users server
address. The Jabber server will use the server component of the username to query a DNS
server for the other server’s IP address. The server will then send the message to the other
server, which is responsible for passing the message to the appropriate user, based on the
nickname and resource information in the message [9].

The Jabber server’s reliance on DNS servers for IP information means they
require more overhead than many other chat applications. In the MC2C environment,
DNS servers would be of little use, since the changing topology would cause cached

DNS entries to frequently be invalid.

3 Environment

In this chapter, we describe the general characteristics of the MC2C environment
and the JEFX 04 environment, in which we tested our prototype application. In general,
the MC2C environment consists of between two and ten sites. A site may be a ground
location or an airplane and may contain up to a hundred clients. We assume the intra-site
network is reliable and high bandwidth; ofien this will take the form of an Ethicruct. The

inter-site links are unreliable and exhibit varying bandwidth capabilities.

18

Figure 2: MC2C Environment Model.

Figure 2 shows a model of the MC2C environment. At a high level, the MC2C
environment can be modeled as clusters of well-connected nodes (the sites) separated by
a network with unreliable performance. The following sections describe the network

configuration for JEFX 04.

3.1 JEFX 04 INTRA-SITE COMMUNICATIONS

The trailer and airplane subnets are divided into red (classified) and black
(unclassified) subnets. Each subnet is composed of a router, an Ethernet switch, and
several personal computers (PCs). The red and black subnets are separated by encryption
devices, which are certified to encrypt classified information for transmission over
unclassified networks. The trailer Ethernet switches contain 48 10/100 Mbps ports, which
the PCs and routers connect to. Routers act as the ingress and egress points for the
subnets they are in. Figure 3 depicts the general intra-site network configuration for JEFX
04 [10].

Intra-site Network

Figure 3: Intra-site Communications.

3.2 JEFX 04 INTER-SITE COMMUNICATIONS

There are four inter-site links available for JEFX 04: TCDL, Connexion by
Boeing (CBB), Inmarsat, and Iridium. Information on each of these links is listed in
Table 1. During missions, special routing software monitors the links and chooses the
best ones available. The TCDL link is the preferred link, because of its high bandwidth
and low latency, followed by CBB and then Inmarsat. The fourth link, Iridium, is
reserved for high priority traffic and network management, so applications will generally
not be able to use it. During the test flights, the chat application was run in various
network modes. Sometimes the application was dedicated to a single link, while at other

times it was set up to use all available links [10].

Link i Beyond Bandwidth
Name Type of Link Line-Of-Sight? (Kbps) Delay(ms)
Point-To-Point; 10,700
TCDL | Air-Ground or Air-Air | \° Full Duplex 2
Geostationary-Earth- 50-60 to trailer
CBB | Orbit (GEO) Satellite | Y 300+ to plane | 20
Inmarsat | GEO Satellite Yes 128 1800
L1 Low-Earth-Orbit
Iridium (LEO) Satellite Yes 2.4 2000-5000+

Table 1: Inter-Site Link Information

In Table 1, the links are listed in order of preference. This is primarily a result of
their latency and bandwidth capabilities. At around 10 Mbps and with a 3-5 ms latency,
the TCDL link is by far the fastest connection available. However, this high speed 1s a
tradeoff for availability. The TCDL connection is a Line-of-Sight (LOS) link, which
means that it implements a direct point-to-point connection between the two ends of the
link. The directness of the connection is what allows TCDL to be fast, but it also means
that objects placed between the two end points can interrupt the link. During the JEFX 04
flights, the airplane would fly in a circular pattern, which meant it would perform big
turns from time to time. Turning would cause the wings to momentarily block the TCDL
connection, subsequently causing the connection to go down [10].

Like the TCDL link, satellites tradeoff speed for availability. However, unlike the
TCDL link, the satellite connections accept long message latencies and low bandwidths
in exchange for better availability. Since satellite communications are indirect, there is a
much smaller chance of the signal being blocked and therefore their availability is higher

[10].

4 Design

This chapter discusses several key protocols of the chat application and other

important design issues.

4.1 ARCHITECTURE OVERVIEW

A high-level overview of the chat application architecture is pictured in Figure 4.
At the highest level, the chat application consists of a set of sites connected by unreliable
links. Each site consists of a single chat server and multiple chat clients. The two
components of a chat server are the RCM Server object and the ChatServer object. The
RCM Server handles inter-site communications and provides the ChatServer with status
information about inter-site connections. The ChatServer handles intra-site
communication and handles chat-related operations. When the ChatServer needs to send
messages to other sites it uses the RCM Server. Converscly, if the RCM Server receives a

message from another site, it passcs the message to the ChatServer.

Figure 4: High Level Overview of the Chat Application Architecture.

The chat client is composed of the ChatClient object and the ClientGUI. The
ChatClient manages the network connection to the ChatServer. The ClientGUI is an
assembly of graphical objects that display the Graphical User Interface (GUI) for chat
application users. When a user performs an action on the GUI, the GUI converts that
action into a message and passes the message to the ChatClient for transmission to the
chat server. When the ChatClient object receives a message from the chat server it passes

the message to the ClientGUI.

4.2 MESSAGE FLOW THROUGH THE APPLICATION

This section describes the flow of a text message through the chat application.
Figure 5 illustrates the flow of a message in a three-site topology. For this example, we
assume that each site contains two clients, each with a different user logged in. The users
are named A through F. We will also assume that users 4 and D are in the same chat
room, while the other users are not. User D is sending a text message to the chat room

using the chat application.

1 When D enters a message into the input window of his graphical chat room interface,
that input is caught by his ClientGUI.

2 D’s ClientGUI takes his input and packages it into a chat message for his ChatClient.

3 D’s ChatClient sends the message to C and D ’s ChatServer

(S0
(R}

4 Cand D’s ChatServer passes the message to their RCM Server for transmission to
other sites

5 Cand D’s RCM Server sends the message to 4 and B’s RCM Server and itself, but
not E and F’s RCM Server.

6 A and B’s RCM Server passes the message to their ChatServer. C and D’s RCM
Server passes the message to their ChatServer.

7 A and B’s ChatServer sends the message to just A’s ChatClient. C and D'’s
ChatServer sends the message to just D’s ChatClient.

8 A’s ChatClient passes the message to his ClientGUI. D’s ChatClient passes the
message to his ClientGUI.

9 A’s ClientGUI displays D’s message to the chat room. D’s ClientGUI displays his

message to the chat room.

! ﬁhatSewer '

RCM Server

Figure 5: Message Flow through the Chat Application.

In step 5, C and D’s RCM Server sends the message to itself to simplify the
ordering process. By treating message from itself the same way it treats messages from
other sites the RCM Server can order all messages the same way.

Steps 5 and 7 illustrate one of the key advantages of using the multicast protocol
(described in section 4.6): It minimizes network traffic. In step 5, C and D’s RCM Server
does not send the message to £ and F’s RCM Server, since neither £ nor F' is a member
of the chat room for which the message is intended. This makes reliable communications
easier, as we no longer have to guarantee deliver to sites that do not actually need the
message. In step 7, the same principle is at work. Users B and C are not members of the

chat room, so the ChatServers only send the message to 4 and D.

4.3 CLIENT-SERVER LOGIN PROTOCOL

The login protocol describes the steps taken by a chat client and chat server when
the chat client attempts to log in. In designing this protocol we assume that the client and

server have agreed a priori on which port the server will listen for clients.

4.3.1 Client Actions

Before attempting to log in we assume the client has obtained the username and
password for the user attempting to log in. The client must also know the IP address of

the server the user wishes to log in to. The client then performs the following actions:

Attempt to connect to server
After connect succeeds
Send <u, p> to server, where u = username, p = password
Wait for <r> from the server, where r = Rejected or Accepted
If (r == Accepted)
Add 0OldQueue to end of OutQueue
Login succeeded
Else

W 010U W

Login failed

If any one of the above steps fails or the client disconnects from the server, the
login process is considered a failure. OutQueue represents the list of messages that have

yet to be sent to the server, while OldQueue represents any stored messages that have not

been sent from a previous connection. OldQueue will only contain messages if the client
is disconnected before it can log off from the server (see Section 4.4.1).

In the current implementation the wait in line 4 is indefinite, which could cause
the client to become unresponsive. However, in practice this is not the case, since the
client and server are on a reliable network. If the server crashes after accepting a

connection, the client will receive an exception and close the connection.

4.3.2 Server Actions

Servers listen for client connections on a predefined port. When a server receives

a connection attempt on this port it takes the following actions:

1 Listen for connections on a predefined port

2 Accept connection

3 Start Timeout timer

4 Wait for <u, p> from the client, where u=username, p=password

5 If (Timeout timer reaches 0 before <u, p> arrives)

6 Send <r> to client, where r = Rejected

7 Close connection

8 Login failed

9 Else

10 If (<u, p» are a valid login/password combination)

11 Add Client to list of logged in clients

12 Send <r> to client, where r = Accepted

13 Login succeeded

14 Else

15 Send <r> to client, where r = Rejected

16 Close connection

17 Login failed

As in the case of the client, if any of the steps fails the login process is considered

a failure.

The purpose of the Timeout timer is to prevent the server from overloading on
login attempts. If every login attempt were allowed to stay open indefinitely it would lead
to “ghost” logins. These are login threads for which the client has disconnected for some
reason, but the login thread has not noticed the disconnect and therefore continues to wait
for a message from the client. These threads constitute wasted resources for the chat
server. The Timeout timer prevents “ghost” logins by allowing all login threads to only

live for a finite amount of time.

2
tn

Unlike the chat client, the chat server does not store unsent messages during a
client-server disconnect, so no old messages are sent to the client after a successful login.

Section 4.4.2 discusses how the server deals client-server disconnects in detail.

4 4 CLIENT-SERVER DISCONNECTS

The disconnect protocol describes the steps taken by a chat client and chat server
when the connection between them is severed. These disconnects are generally much less
frequent than disconnects between sites; nevertheless, they may still occur even in highly
reliable networks. Therefore, a robust system must be designed to be able to handle such

problems.

4.4.1 Client Response

A client-server disconnect will cause the link between the client and server to
close unexpectedly, which will generate an error in the client if it subsequently or
concurrently attempts a read or write operation. Thus, the client will generally notice a
disconnect either while trying to send a message to the server or while receiving a

message from the server. In either case the response is the same:

Stop any sends/receives that have not completed
01dQueue = unsent messages from OutQueue

Clear OutQueue

Formally disconnect from the server

Atempt to login to Server

Ul W

As before, OutQueue represents the list of messages that have yet to be sent to the
server and OldQueue represents any stored messages that have not been sent from a
previous connection. In the event of a disconnect, OldQueue is used to store the unsent
messages from OutQueue and OutQueue is subsequently emptied. This prevents unsent
messages from getting lost when a disconnect occurs. The messages in OldQueue are
placed in OutQueue again after the client successfully reconnects (see section 4.3.1).

We chose to store messages from OutQueue in OldQueue to simplify the login
process. During the login process, the client needs to send messages to the server,
however, none of the old messages may be sent until the login process 1s complete. Also,

if the login process fails and some login messages remain in the OutQueue, these

26

messages should not be resent after the next successful login. Storing the messages that
should be resent separately prevents them from mixing with the login messages.

In line 4, “formally disconnecting” refers to any cleanup actions the client must
take in preparation for a reconnection attempt. In effect, the client must return to the state
it would be in after a normal disconnect. After this cleanup has taken place, the client can

once again attempt to log in to the server and resume operating normally.

4.4.2 Server Response

On the server side, any error while sending or receiving messages from a client is
treated as a disconnect and handled the same way a client logging off would be. The
channel to the client is closed and the client is removed from the group of logged in
clients. This zero-tolerance approach to etrors allows the client and server to recover as
quickly as possible from any error. As soon as the client has been logged off, it can

reconnect to the server and resume normal communications.

4.5 SERVER-SERVER DISCONNECTS

This section describes the protocol that the servers use to handle server-server
disconnects, which are anticipated to occur relatively frequently in the MC2C
environment. Figure 6 depicts the three possible states for inter-site links, from the chat
application point of view. When two sites are well connected the link is in the connected
state. When the RCM Server notices the link isn’t behaving correctly, the link moves to
the suspected state. At this stage the RCM Server attempts to reestablish a link to the
other site. The disconnected state indicates that the RCM Server was unable to reestablish

a working link and the two sites are no longer in communication with each other.

Connect

e T

o Link Stahbilizes

//

Connected Suspected Disconnected

Notice Link Anomaly Suspected Link Times Out

Figure 6: State Diagram for Site Connections.

4.5.1 Short-Term Disconnects

When an inter-site link disconnects for a period of time short enough for RCM to
bridge it, it is called a short-term disconnect. The exact length of these disconnects is
configurable and depends on the systems running the chat servers. During a short-term
disconnect, RCM notifies the chat server of a suspected link outage. The chat server
forwards this information to all of its clients, which in turn inform the chat application
users of the suspected link. The site that the link connects to is, however, still considered
connected and the system will still attempt to deliver messages to that site. If messages
cannot successfully complete transmission RCM buffers them for retransmission later. If
the suspected link returns to a connected state, the system guarantees that all the
messages that were sent to the site while the link was suspected will be delivered.

If the suspected link remains unresponsive beyond the specified short-term time

limit period, the link is reclassified as disconnected, making it a long-term disconnect.

4.5.2 Long-Term Disconnects

An unbridgeable link disruption is called a long-term disconnect. During a long-
term disconnect the disconnected site is no longer considered connected, as opposecd to
during a short-term disconnect. In order to simplify the design all disconnected sites are
treated as unknown sites: RCM no longer guarantees message delivery and the server

does not maintain the client lists for disconnected sites.

28

4.6 MULTICAST VS. BROADCAST

In designing our application we had to decide between using multicast and
broadcast transmissions. With broadcast each message is sent to all connected sites,
regardless of whether those sites host the recipients of the message. With multicast, each
message is only sent to the sites that host the recipients of the message.

Broadcasting is the simpler approach to implement and offers some benefits,
which multicast does not. Broadcast is easy to implement since every message IS
automatically sent to everyone. Broadcasting messages also allows the system to use
message stability algorithms, which improve the reliability of the system.

Multicast messaging involves sending messages to only those nodes that need to
see the message. The greatest advantage of multicast messaging in the MC2C
environment is the security aspect. Multicast messaging is inherently more secure than
broadcast messaging because multicast messaging has access control built in. If a system
broadcasts messages, it must trust that only the intended recipients will view the
messages. In a multicast environment, nodes that should not have access to a message are
not given the opportunity to view the message.

In addition, multicasting uses unreliable links more effectively than broadcasting.
By only sending messages over links when necessary, bandwidth is never wasted by
sending large messages that will just be thrown away.

We decided to implement multicast messaging in our chat application prototype
because of the benefits to security and efficiency were deemed more valuable than the

simplicity offered by the broadcast design.

5 Implementation

The chat prototype is written in Java™ (version 1.4). The following sections
describe the implementation of several key components of the application: the chat
server, chat messages, chat client and the graphical user interface (GUI) for the client. In
addition, we will also cover the implementation of important test software, such as the

chat bots, data loggers, monitors and the debug class.

5.1 CHATSERVER

The ChatServer object implements the abstract concept we refer to as a chat
server. The ChatServer consists of five permanent threads and a variable number of short-
lived LoginThreads. There are three main flows of control through the ChatServer, all of
which are pictured in Figure 7. The first corresponds to the process of accepting new
clients and the other two represent the two flows of messages through the application:
Clients-to-RCM and RCM-to-Clients. We will first describe each of the components in

more detail and then discuss the control flows, which govern their behavior.

4 N\

Chat Server

Establis h Connection

Unknown

ClientAcceptor

Create Login Thread
for new Connection
Unsuccessful Login

LoginThread

Clients

s ful Logi
uccessful Login Pass Message on for

authentication,
validation and network

\

Logged In Gend Chat Message ClientMessage Eanemiex 10D ClientProcessor
Clients Reader
S —
\ ~
Receive Chat N Send Message to
etworkMessage
Message RobustChat
J ﬂmwmkpmcesso Reader Commznil:;tion Senver

\ / /
Receive Message from
RobustChat
Communication Senser

Communication Server

Figure 7: An Overview of the ChatServer Architecture. In the figure above, components belonging to
the ChatServer are within the large rectangular area. RCM handles ChatServer-to-ChatServer
communications, while the ChatServer handles ChatClient-to-ChatServer communications directly.

5.1.1 Component Overview

This section describes the major components of a ChatServer object. While a chat
server may be comprised of many threads, the ChatServer object itself is merely a
container to hold those threads and mediate their interactions with each other. Table 2

briefly describes each type of thread.

Component Name Description

ClientAcceptor Accepts comnection requests on the client port. Creates
LoginThreads for successful connections.

LoginThread Handles the login process for a single connection. Creates
Clients for ClientMessageReader after successful login.

ClientMessageReader Receives messages from all chat clients. Passes messages to
ClientProcessor.

ClientProcessor Makes sure chat clients have permissions needed to send

messages. Passes messages to RCM.

NetworkMessageReader | Receives messages from all chat servers. Passes messages to
NetworkProcessor.

NetworkProcessor Handles chat room and chat server related messages.
Forwards client-related messages to chat clients.

Table 2: ChatServer Component Descriptions

5.1.2 Accepting Clients

The process of logging in a new client is pictured at the top of Figure 7. When an
unknown client tries to connect to the ChatServer, the ClientAcceptor accepts the new
connection and creates a new LoginThread to handle the remainder of the login process.
During the login process the LoginThread receives all the messages the client sends, but
does not forward any of them. This prevents the server from accidentally sending out a
message from a client that is not logged in. The login process has two possible outcomes:
e If the LoginThread receives a valid LoginMessage before the login timeout expires,
the login will be considered successful and the LoginThread will add its client to the
list of logged in clients. After the LoginThread adds the new client, the
ClientMessageReader receives any subsequent messages the client sends.

e In case an invalid LoginMessage is received or the timeout expires the LoginThread

severs the connection to its client. The server does not save any information about

connections that result in failed logins, so those clients are effectively returned to the
pool of unknown clients.

In either situation, the LoginThread will terminate upon completion of the login

process. At any time there may be multiple LoginThreads in a ChatServer, each

corresponding to a different client attempting to log in.

5.1.3 Handling Messages from Clients

Handling messages from clients is pictured in the middle of Figure 7. When a
client sends a message to the chat server, the ClientMessageReader receives it. The
ClientMessageReader is the only thread that reads messages from logged-in clients. It
accomplishes its task by using SocketChannels and Selectors from the Java™ New
Input/Output (NIO) package. The objects work together to allow asynchronous
communication. SocketChannels can perform non-blocking read and write operations and
Selectors can “select” the SocketChannels that are ready to perform operations. In order
to be selected a SocketChannel must first be registered with a Selector. During the
registration process, the SocketChannel must specify which operations it wants to register
for.

When a client has successfully logged in the ClientMessageReader registers the
clients SocketChannel with the ClientMessageReader’s Selector. The
ClientMessageReader registers the SocketChannels of logged-in clients for read
operations, which means that the selector will only choose channels that have messages
that need to be read. While it waits for messages from clients to arrive, the
ClientMessageReader performs a blocking select operation on its Selector. This causes
the ClientMessageReader to block until one or more of the logged-in clients send
messages. Once messages are available, the ClientMessageReader reads all the messages
from the list of channels the Selector returns and then passes those messages on to the
ClientProcessor.

The alternatives to reading client messages this way are to poll the logged in
clients or to use multiple threads. Reading messages by polling involves cycling through
the list of channels and checking whether each channel has a message available for

reading. This process is very wasteful. since most of the channels polled will not have

messages available for reading, but the ClientMessageReader would have to continually
poll the channels to avoid missing a message. Spawning one thread to handle each client
connection would simplify the process of reading messages from clients, however, it
could also cause an explosion in the number of threads in a chat server. In the current
implementation LoginThreads are the only type of thread that may occur more than once
in a chat server. This simplifies the login process and since the login process is very short
the number of LoginThreads is always low. However, the same is not true for the
message reading process, which last as long as a client is logged in. Dedicating one
thread to reading messages from a single client could easily triple or quadruple the
number of threads in a chat server in a very short period of time. The overhead required
to manage so many threads would slow the server down and make it unscalable.
Performing reads with one thread (the ClientMessageReader) is clearly more efficient
than either alternative.

The ClientProcessor checks client permissions before sending the message to the
network. Checking client permissions refers to the process of making sure the client that
originated a message has the correct permissions it needs to send that type of message. If,
for example, a client who is not a member of a particular chat room attempts to send a
message to that room, the ClientProcessor would reject the message based on that
information. The chat server attempts to reject unauthorized messages, before sending
them to the network, to minimize the cost of transmitting and ordering messages that will
ultimately be rejected.

After checking the clients’ permissions, the ClientProcessor sends messages to
RCM for transmission to all relevant chat servers. These are chat servers that need to
receive the message in question. There are certain messages sent by the system, which
must be sent to all connected chat servers. In that case every server needs to see the
message. However, this is not necessarily the case for messages sent by users to chat
rooms. For example, text messages for a chat room are only sent to those sites that have a
client who is a member of that room. This reduces the site-to-site communications, which

are the weakest link in the MC2C environment.

Lo
12

5.1.4 Handling Messages from the Network

Handling messages from the network is pictured at the bottom of Figure 7. When
the chat server receives a message from RCM, the NetworkMessageReader is the
receiving thread. After receiving a message the NetworkMessageReader will make sure
the message’s sequence number is correct, which indicates whether the message is
correctly ordered compared to other messages from the same site. After checking the
NetworkMessageReader is done it passes the message on to the NetworkProcessor.

The NetworkProcessor handles most chat room and client related tasks in the chat
server. Although some tasks, such as adding a new client or closing a disconnected client,
may be started by other threads the process is always completed by the
NetworkProcessor. The reason the NetworkProcessor handles many of these tasks is to
avoid race situations between servers. Messages sent through RCM are guaranteed to
have an absolute ordering. This means even if two different servers produce conflicting
requests at exactly the same time, the system will order them such that it is clear to both
servers which of the two requests should be honored and which should be rejected.

Since the NetworkProcessor completes many of the tasks in the chat server it also
sends the most messages to chat clients. The NetworkProcessor originates messages
notifying clients of new users, disconnected users, new rooms, and closed rooms. If the
NetworkProcessor does not recognize a message type it simply forwards it to the chat
clients. The NetworkProcessor behaves this way because it makes the system more
extensible. If the NetworkProcessor does not recognize a message it assumes the client
application added a new message, which it should know how to handle. For a detailed

discussion of this mechanism see section 5.2.2.

5.2 CHATMESSAGES

In our system the abstraction of a chat message (some information that one user
wishes to share with other users) is embodied by the ChatMessage object. The following

sections describe the structure and purpose of these messages.

Timestamps

8 bytes each ~48 bytes ~48 hytes ~112 bytes 0 — 1000+ bytes
First First Last Last

Chat Room Source User Source Site Content

Read Write Read Write

Figure 8: The Basic Structure of a ChatMessage

5.2.1 ChatMessage

Figure 8 shows the basic structure of a ChatMessage. Any message sent by the
chat application is derived from the ChatMessage object. This uniformity greatly
increases the flexibility of the entire system, since any object derived from ChatMessage
can be sent through the system. This flexibility is explored in more detail in section 5.2.2.
The fields for a ChatMessage are described in Table 3.

Field Description

First Read System time when the message was first deserialized

First Write System time when the message was first serialized

Last Read System time when the message was most recently deserialized
Last Write System time when the message was most recently serialized

Name of this message’s destination chat room. The originator of the

Ch m . ; :
at Roo message (either a chat client or chat server) must set this field

Name of the user who sent this message. If the message originated
Source User from a client, this field must be set. It is null for any message
originating from a server

Site information for the server that sent this message. The first site

Source Site . . o .
to send this message over an inter-site link must set this field

Content The content of this message. Must be set when creating the message

Table 3: ChatMessage Field Descriptions.

The first four fields in a ChatMessage are timestamps that are set during the
transmission process. The client-server connections used to send ChatMessages are
implemented using SocketChannel objects from the Java™ NIO package. The process of
writing a message to a SocketChannel serializes the ChatMessage object. Serializing an
object breaks it into its component data types, so it can be easily stored or transmitted.
The first time this happens, the ChatMessage’s Write timestamps are updated to reflect

the time at which the object was serialized. Subsequent writes only cause the Last Write

(e
L

field to update. Conversely, the process of reading a message from a SocketChannel
deserializes the ChatMessage object. This reassembles the component data types into a
whole ChatMessage. When a message is first read from a SocketChannel it updates both
of the Read timestamps to match the time at which the message is read. Subsequent reads
only cause the Last Read field to update. None of the timestamps are used to order chat
messages, however, they provide a useful tool for analyzing the message flow through
the chat application.

The next three fields in a ChatMessage provide the application with information
used to process the message. The ChatRoom field holds the name of the destination chat
room for a ChatMessage. The ChatServer and ChatClient objects use this field to route
the ChatMessage to the correct servers and clients. The Source User field holds the name
of the user sending the message, if the message originated from a chat client. If the
message originated from a chat server the Source User field will be null. Although many
of the message types sent by clients require a Source User for the chat server to process
them correctly (such as Login and Logoff messages), none of the messages sent by the
server have this requirement. When a chat server receives a chat message from another
server, the server can process the message based on the message type alone. The Source
Site field holds the name and address of the server that sent this message. Chat servers
use this information to identify the source of server-server communications. This field
also allows the server to distinguish between messages from users with the same name
who are connected to different servers.

The final ChatMessage field is the Content field. As the name implies, the
Content field holds the cargo of a ChatMessage. A message can hold any serializable
Java object. This is another feature, which makes ChatMessages very flexible.

In the current implementation the size of an average message is several hundred
bytes. This is a very manageable size for local networks, however, for certain types of
inter-site connections the message sizes can cause significant slowdown or cven prevent

transmission. We discuss the ramifications of message size further in chapters 6 and 7.

5.2.2 Message Specialization

There are 14 types of messages in the current implementation of the chat
application. The majority of these messages are server-to-client messages which, inform
the clients of status changes, and server-to-server messages, which negotiate new
connections and status changes with other servers. The fact that all these messages are
derived from the ChatMessage object means that they can all use the same
communication infrastructure designed to handle ChatMessages. This simplifies the task
of handling different types of messages.

Another benefit of this common derivation is the possibility of extending the
application with new message types, should this become necessary. The application can
successfully transmit any new message type as long as that type is derived from the
ChatMessage object. The UserWritingMessage is a good example of the application’s
capabilities. In essence the UserWritingMessage is nothing more than a ChatMessage
where the content is a Boolean value specifying whether the originating user is currently
writing or not. What makes this message type a good example is that the ChatServer and
ChatClient objects know nothing about it. As long as all the ChatMessage fields are set
correctly the message will arrive at all the correct destination clients, who are tasked with
knowing what to do with the message. To see what the UserWritingMessage is used for,

see section 5.4.3.

5.3 CHATCLIENT

This section describes the components and processes that govern the behavior of
the ChatClient.

/ Chat Client \

Sead ChatMeszag
Message

Client Listeners

Fomward Chat Me ssage
DClktLsRET

Sender

Process Message
Message Reader

Recs e Message Tom
Chatse mer

(Chat Server

J/

Sead Meszag D Clat
Semer

Figure 9: An Overview of the ChatClient Architecture. In the figure above, components belonging to
the ChatClient are within the large rectangular area.

5.3.1 Component Overview

Table 4 describes the components of the ChatClient object.

Component Name Description

Reads messages from the chat server and places them on the
MessageReader .

inQueue

Takes messages from the outQueue and sends them to the chat
MessageSender

server

Takes messages from the inQueue and processes them. This
ChatClient usually entails forwarding a message to a specific

ClientListener
ClientListener Implements the interface that allows objects to use the

ChatClient to send ChatMessages to the chat server

Table 4: ChatClient Component Descriptions.

[S)
o0

5.3.2 ClientListeners

ClientListeners control the actions of the ChatClient. The ChatClient manages
network communications with the ChatServer, allowing the ClientListeners to function
without detailed knowledge of the network environment they are operating in. In order to
function properly the ClientListeners need only register with the ChatClient, by calling
the ChatClient’s addListener() method, and implement the four ClientListener methods:
onMessageReceived(), getChatRoom(), onConnect(), and onDisconnect().

When a ClientListener registers with a ChatClient, the ChatClient will call
getChatRoom() to determine the name of the chat room the ClientListener is interested in
listening to. The onConnect() and onDisconnect() methods are callback methods to notify
the listener of a disconnect between the ChatClient and the ChatServer. The
onMessageReceived() method is a callback method the ChatClient will invoke when it
receives a message for the chat room the ClientListener is registered for.

A ClientListener can be thought of as the inteface to a particular chat room.
Although the current implementation of the chat application only allows textual chat
rooms to exist, the ClientListener interface is flexible enough, such that any application
that can send information in chunks can use the system. We discuss a few of the possible

applications in Chapter 7.

5.3.3 Handling Messages

When a ClientListener is interested in sending a message to the chat room it is
registered for it will invoke the sendMessageQ method on the ChatClient. This places the
ClientListener’s message on the outQueue, where' the MessageSender will eventually
remove it from the queue and send it on to the ChatServer.

In the opposite direction, when a message arrives at the ChatClient, the
MessageReader will place the new message on the inQueue for processing. When the
ChatClient thread processes a message it searches for a ClientListener that has registered
an interested in the message’s destination chat room. If the ChatClient finds an
appropriate ClientListener 1t invokes that ClientListener’s onMessageReceived() method

with the message as an argument.

5.4 CLEENTGUI

The ClientGUI package provides the user with an interface for the chat
application. The three major components of the graphical interface are the ChatManager,
ChatRoom and UserPanel objects. The ChatManager controls the login process for clients
and displays the status of the chat application. The ChatRoom provides a simple
graphical interface for textual chat. Finally, the UserPanel displays status information for
sites and users, which enables features such as site awareness and connection awareness.

The following sections describe each object in greater detail.

40

5.4.1 ChatManager

The ChatManager (Figure 10) is the control panel for the robust chat application.
When a user first starts the chat application the ChatManager will appear and both the
Room Panel and the User Panel will be blank. The ChatManager title will simple say
“Chat Manager.”

ChatManager Title

Open Chat Rooms
Room Panel

User Panel

Connected Sites
. Connected Users

Figure 10: ChatManager Interface

The “Options” menu allows the user to configure the appearance of the
ChatManager and to create new chat rooms. By default the ChatManager always shows
both the Room Panel and the User Panel. By deselecting “Show Rooms” or “Show
Users” the user can remove either the Room Panel or the User Panel, respectively.
Removing one of the panels can make viewing a long list of rooms or users easier.
Selecting “Start new Chat Room” from the “Options” menu will instruct the

ChatManager to request that the ChatServer create a new chat room. This option is only

41

available if the user is already logged in. If the ChatServer successfully creates the new
chat room the Room Panel will update to include the new room and a ChatRoom window

will appear for the requested room.

Figure 11: LoginDialog. Prompts the user for their username and password.

In the “Login Menu” the user may choose to “Log in” or “Log off.” Logging in is
only possible when not logged in and conversely logging off is only possible when
logged in. Choosing the “Log in” menu item will cause a LoginDialog (Figure 11) to pop
up, prompting the user for their username and password. After the user enters their
information and clicks “OK” the ChatManager opens a ConnectorDisplay (Figure 12) to
complete the log in. The ConnectorDisplay repeatedly calls the ChatClient’s login()
method until either the login completes successfully or the “Time Left” runs out. It also
displays how many connection attempts have been made, so the user knows that
application hasn’t crashed. Selecting “Log off” will disconnect the client from the

ChatServer and clear the Room Panel and User Panel.

Figure 12: ConnectorDisplay. Attempts to connect to the ChatServer until the Time Left runs out.

Successfully connecting causes the ChatServer to send a list of available chat
rooms and connected users to the ChatClient. The list of available chat rooms will appear
in the Room Panel, while the list of connected users will appear in the User Panel.
Section 5.4.3 describes the User Panel in more detail. A successful log in will also cause
the ChatManager’s title to change from “Chat Manager” to “SiteID: Username,” where
SiteID is the name of the ChatServer that the client is connected to and Username is the
name of the user who just logged in. Double clicking on a chat room in the Room Panel
will cause the ChatManager to request that the ChatServer let the currently logged in user
join the specified chat room. Successfully joining the requested chat room will cause a

ChatRoom window to appear for the requested room.

5.4.2 ChatRoom

The ChatRoom GUI allows a user to communicate textually with other users who
are in the same chat room. The ChatRoom interface is designed to be simple, yet
informative. The title of the ChatRoom window is in the format “SitelD: Username:
Roomname,” where SiteID is the name of the ChatServer the client is connected to,
Username is the name of the user currently logged in, and Roomname is the name of the
chat room this ChatRoom interface is connected to. The top left window in the
ChatRoom interface is the OutputWindow where messages are displayed. To the right of
the Output Window is the UserPanel, which displays the current chat room membership
by site and username. For more information on the UserPanel, see section 5.4.3. Below
both of these windows is the Send button and immediately below the Send button is the
Input Window, where the user can enter input to send to all the users in the chat room.
The Edit menu at the top left of the ChatRoom interface has a few of the basic text editor
functions, which allow the user to cut, copy, paste, or select all the text from the various

windows in the interface (cutting and pasting are only allowed in the Input Window).

432

ChatR oom Title

19:53:26) ™ New Client(s) from AlphaSite: Roger
19:53:26) ™™ New Client(s) fram AlphaSile: Wike —
Status Message s s bt
. {19:54:56) ™ New Clieni(s) from BelaSite Chris ™ :
| (19:54:07) Chris: Hey Everyone @ chris
L {19:55:09) Roger: Hey Chris

User Message User Panel

Output Window

Input Window

’i
| |
|

Figure 13: ChatRoom Interface

The Output Window displays text messages sent to this chat room. Every
displayed message has a timestamp associated with it. The timestamp allows the user to
gauge when the message was created. Although this can be helpful in determining the
general flow of the conversation it doesn’t necessarily help determine the ordering of
messages, since the timestamps are set by the originating computer, which may not have
the same clock value as the user’s local computer.

There are two types of outputs in the Output Window: status messages and user
messages. As Figure 13 shows, status messages are displayed in a bright red color to
draw attention and distinguish them from user messages, which are displayed in the
default black color. As their name implies, status messages are notifications to the user
about changes in the status of the chat room, whereas user messages are text messages
sent from other users.

There are currently four different status messages that the ChatRoom interface

can display. Two are status messages to notify the usct of another user joining or leaving

44

the chat room. The other two notify the user that the ChatClient this ChatRoom is
connected to has disconnected or reconnected to the ChatServer.

User messages are the result of user input. If a user enters text into the Input
Window and subsequently clicks the Send button or presses enter, the text from the Input
Window will be sent to all other users currently connected to the same chat room. When
a ChatRoom receives a text message from a user it outputs the message in the format
“(Timestamp) Username: text” The Timestamp is system time on the originating
computer, at which the message was created. Username is the name of the user who sent

the message and fext is whatever the user input and sent from his Input Window.

5.4.3 UserPanel

Figure 14 depicts a typical UserPanel. The UserPanel displays membership
information for the Frame it resides in. If the UserPanel is in a ChatManager, it displays
the membership information for the sites the user is connected. If the UserPanel is in a

ChatRoom interface, it displays the membership information for the chat room.

Connected Sites | AlphaSite

/User 1s Writing
@ AlphaBot1
@ AlphaBot2(...

BetaSite \
@ BetaBott \&
@ BetaBot2 : Connected Users

o

Figure 14: The UserPanel Display.

The ordering of users in the UserPanel is lexicographical by site and then
lexicographical by the users within each site. This ordering scheme ensures that, when
the same users connect from the same sites, the UserPanel displays them in the same way
every time, regardless of the order in which the sites or users connected.

When residing in a ChatRoom interface, the UserPanel does more than just
display the chat room membership information: It also displays user writing status.
During the initial deployment of the chat application, users commented that it would be

nice to have an indicator in the application that would let users know when other users

45

were in the process of entering a message. As a result we added the UserWritingMessage:
When a user starts entering text into the Input window of a ChatRoom interface, the
ChatClient generates a UserWritingMessage, which is sent to all the members of that chat
room. The user is considered to be writing if there is text in the Input Window. By
removing all the text in the input window, either by sending the input or deleting it, the
user is no longer considered to be writing, which generates another UserWritingMessage.
When a ChatRoom interface receives a UserWritingMessage that indicates a user is
writing, it places three ellipses in parenthesis next to the user’s name. If it then receives
another UserWritingMessage indicating that the user is no longer writing, it removes the
ellipses and parenthesis from the users name. Adding the UserWritingMessage to the
application took minimal effort to implement because of the flexibility inherent in the
chat application architecture (see section 5.2.2).

If the ChatServer notifies the client that a certain site is suspected of being
disconnected, the UserPanel will signal this state to the user by shading that site and all
its users red. If the suspected site becomes well connected again, the UserPanel will
restore the site and its users’ original colors. Otherwise, the site will eventually be
considered disconnected and the UserPanel will remove the site and its users from the

display.

5.5 CHATBOT

This section describes the ChatBot package. The package consists of the two chat
bots written to help test the chat application and the BotDisplay, which outputs the
actions of the chat bots. The bots test the chat application by sending messages to each
other in a pattern that is meant to mimic rapid conversation between humans. In essence,
the chat bots are small programs that use our chat application to communicate, just as
users would.

In addition to being fully independent (capable of operating and testing the
application without human intervention) the chat bots are also able to interact with
humans. The bots can be configured to either ignore human user messages or respond to

them the same way they respond to messages from other chat bots.

46

5.5.1 ScriptBot

The idea for the ScriptBot was born of the desire to have a bot that could emulate
human conversation. In order to come as close as possible to achieving this goal, we
designed a chat bot that could read in a scripted dialog and send it to a specific chat room.
The ScriptBot is capable of sending messages of varying lengths and at varying intervals,

making it very adept at mimicking human response times (see Figure 15).

i Ea

23 9y = New Client(s) from AlphaSite: Scriptbot ™
! (23:32:44) Scripthot: Hello
23:32:49) Scripthot: | am a ScriptBot!

| {23:32:54) Scripthot: | can say lots of things

| (23:32:55) Scriptbot: Very

: (23:32:56) Scriptbot: Quickly
| (23:33:01) Scriptbot: Or...
Eg (23:33:04) Scripthot: Pretty
| (23:33:06) Scripthot: S

' (23:33:08) Scriptbot: L

(23:33:10) Scriptbot: O

(23:33:12) Scriptbot: W
| (23:33:14) Scriptbot: L
i {23:33:16) Scriptbot: ¥

(23:33:18) Scriptbot: |

' (23:33:23) Scripthot: This Script has varying delayvalues for each line

ore next message set

Figure 15: ScriptBot OQutput.

5.5.2 ResponseBot

The ResponseBot is a bot that alters its conversational speed depending on how

many users it is talking to. It has the ability to send response messages in reply to

47

messages originating from other users. When a ResponseBot receives a message from
another user it will send a response message with probability p. If no response is sent the
bot will take no action regarding the received message. To keep the ResponseBot’s
responses at a reasonable rate, p is initially set by taking the reciprocal of the number of
users in the bot’s chat room. After p is initially set, the ResponseBot will adjust 1t over
time to achieve a desired response rate based on its bored timeout value.

The bored timeout value, t, is an input parameter that specifies how long it takes
the bot to become “bored.” If a ResponseBot does not send a message to the chat room
before the timeout runs out it becomes bored and sends a boredom message to the chat
room (see Figure 16). It then increases the value of p and resets the timeout. Alternately,
if the bot sends a response message to the chat room before the timeout runs out, it
decreases the value of p and resets the timeout. The rate of increase or decrease when
adjusting p is governed by the adjustment rate, r. To adjust the value of p we either
multiply it by r, in case p is decreasing, or divide by r, in case p is increasing.

Another parameter that controls the ResponseBot’s actions is called the write
delay, d, and it determines the maximum time the bot will wait before sending a message.
For example, if d is 5000 milliseconds, the bot will wait between 0 and 5000 milliseconds
before sending any messages. The actual wait time 1s chosen from a uniform distribution
of the possible values, which means the average delay will actually be 2500 milliseconds,
or 2.5 seconds. The purpose of the write delay is to make the bot’s responses slower and
more randomly timed, just as human conversation would be.

To better understand the behavior of the ResponseBot we will work through a
theoretical example. Assume that r = 0.9, d = 5000 ms, and t = 10000 ms. If the
ResponseBot joins a chat room that initially has 10 members (including the bot) it will set
p = 1/10 = 0.1. Each message the bot receives now has a 0.1 probability of producing a
response message. If none of the messages the bot receives produces a response before it
becomes bored (after 10 seconds), the bot will send a boredom message to the chat room
and adjust p, such that p=p /r = 0.1 /09 = 1/9 = 0.111. Now that the response
probability is higher, the next message produces a response. The bot chooses a delay

between 0 and d to make the response seem more natural and then sends the response

message to the chat room. It then adjust the value of p, such thatp=p *r=1/9 * 0.9 =
0.1.

The initial value for p is not the equilibrium response rate for the ResponseBot,
which is dependent on the rate of conversation in the chat room and the value of t. In
equilibrium, p will be stable, so we can assume that the bot will send one boredom
message for every response message it sends. Another way of stating this is to say that in
equilibrium (probability of a reply, p) = (probability of becoming bored). If we assume
that the rate of messages from other users is u, we can determine the equilibrium value of
p. A message rate of u implies an average of u*t messages will reach the bot before it
becomes bored. The probability of becoming bored is equal to the probability that the bot
does not send a response to any of the messages it receives before it becomes bored.
Thus, (probability of becoming bored) = (1-p)™™. Out equation now becomes:
p=(1- p)®™. We can simplify this equation further, to p + p"") = 1. At a message rate,

u = 1/1000ms, and a bored timeout, t = 10000ms, the equation becomes p + p"'% = 1

which is solved by the vaiue p = 0.164917. This is equilibrium at which the ResponseBot
will eventually settle if the conversation rate remains constant. Note, that since the
equilibrium rate depends on the rate of conversation, it is continuously changing and

impossible to set a priori without full knowledge of how the conversation will develop.

5.5.3 BotDisplay

The BotDisplay allows a user to monitor the actions of a chat bot. Figure 16
shows typical output from a group of ResponseBots. The BotDisplay is very similar to
the ChatRoom interface, except it is purely a display object. It does not allow input from
the user in any of the windows and the “Edit” menu and Send button have been removed.
The title of a BotDisplay is formatted slightly differently from the title of a ChatRoom
interface. The BotDisplay is in the format ChatBot: Botname: Roomname, where
Botname is the name of the chat bot and Roomname is the name of the chat room the bot
is currently in. The Sitename has bcen replaced by the word “ChatBot” to make it

immediately recognizable that the window belongs to a chat bot.

49

BotDisplay Title

@ AlphaBot
-4 MphaBes2(.)

8 BetaSite

~ 4 BetaBoll

@ SalaBoll

: {(19:47:16) AlphaBot2: 26 Response %o 24 from BetaBolt
| (19:46:22) BetaBot2: 100 Response o 25 from AlphaBiot?
(10:47:19) AlphaBot2: 27 Got Bored
19:47:22) AiphaBot1: 41 Response w0 27 from Alphatiotd
1:46:28) BetaBot1: 25: Response 10 25 from AlphaBotz

Response Messages

| {19:47:28) AlphaBotZ 28; Got Boved

| (19:46:37) BetaBot2: 12 Respons2 10 25 from BelaBott
| (19:48:40) BetaBot1: 26 Responss 10 42 froen AlplaBott
| (19:46:44) BetaBot1: 27 Got Bored

Boredom Messages

| (19:47:44) AlphoBotZ: 30 Rasponse 3o 27 from BetaBott
| (19:46:53) BetaBot2: 24 Got Bored
| {(19:47:49) AlphaBot1: 45 Respense 0 30 from AphaBol2

L (19:47:52) AlphaBot1: 46: Response 0 24 from BetaBotz i
 (19:45:50) DetaBot2: 25 Respons= 1o 43 o AlphaBatt il
{19:16:58) BetaBot1: 26 Respons2 10 44 T AlphaBott

31: Response lo 46 fom AlphaBot

Count Down

Figure 16: The BotDisplay Interface.

There is one addition to the BotDisplay, which is not present in normal ChatRoom
interfaces. In the bottom of Figure 16 there is a count down message that indicates how
long before this chat bot sends its next message. This count down can be very useful if a
ResponseBot is set to respond very slowly or a ScriptBot has high delay values in its
script.

Implementing the BotDisplay took little effort because it uses the same graphical
components as the ChatRoom interface. This makes the BotDisplay easy to understand
for users who know how the ChatRoom interface works and allows the BotDisplay to
inherit improvements to the ChatRoom interface. The BotDisplay was actually developed
before the UserWritingMessage was added to the application (see section 5.4.3),
however, since the BotDisplay uses the same UserPanel as the ChatRoom interface, it

automatically inherited the new functionality.

5.6 DATALOGGER

A DataLogger is an object, which implements the DataLogger interface. As its
name implies, the DataLogger package is designed to record information about the chat
server. Specifically, a DataLogger is supposed to collect useful runtime information
about chat servers to help analyze behavioral patterns and problems. A DataLogger acts
as an add-on to the chat server and requires that the server pass it the information it
needs. To simplify the logging process and make them more modular, all DataLoggers
take in the same four types of information. The four information types are physical
connectivity status, logical connectivity status, sent messages and received messages,
which are input by the chat server. This means exchanging DataLoggers may only require
changing the type of the logger.

Although every DataLogger must take the same inputs, they are not required to
output the same information. We chose to implement three different DataLoggers that
demonstrate this class’s flexibility. The RawDataLogger takes the input information and
simply outputs the information into a formatted text file. The AnalysisDataLogger uses
the inputs to calculate interesting information about the application. Finally, the
MultiLogger wraps the abilities of the previous two DataLoggers into a single class.

The following three sections describe the three types of Datalogger in more

detail.

5.6.1 RawDatal ogger

The RawDataLogger records basic information about a chat server’s activities.
The input data is formatted in a standard way and then output to a log file with the .DAT

extension. Every line produced by the RawDataLogger has the following format:

{timestamp}DELIM{thisServer}DELIM{otherServer}DELIM{dataType}DELIM {other}

The {timestamp} indicates the time at which this data is collected. DELIM is a
placeholder for the delimiter in the log files. This delimiter is configurable, but defaults to
a single tab character in the current implementation. {thisserver) is the name of the

server that data is being collected from. {otherServer) is the name of the other server

for which this data is relevant. In case the information is for a received message,
{otherServer} will hold the name of the sender. If the information is for a sent
message, {otherserver} will hold the name of the destination server. {dataType}
indicates the kind of information a line is holding. Finally, {other) represents a list of
one or more additional values that may be relevant for the given {dataType) value.

The four {dataType} values and the additional information that accompanies

them i1s listed in Table 5:

{dataType} {other}

S

(send) {segNum}

R {segNum}DELIM{clientSend}DELIM{serverSend}DELIM
(receive) {serverReceive}

P

{physical status) {status}

L

(logical status) {status}

Table 5: RawDataLogger Data Types.

{seqNum} is the sequence number of this message from the originator’s perspective.
If {segnum} is N then the originating server sent N-1 messages before this one.
{clientSend} is the timestamp for when the originating server first sent the message.
{serverSend} and {serverReceive} are timestamps indicating when RCM sent and
received the message, respectively. If the (dataType} is P, then the {status} will be an
integer representing either a connected or disconnected state. 1f the {dataType} is L, the
{status} may also be an integer representing the suspected state, in addition to the

connected and disconnected states.

5.6.2 AnalysisLogger

The AnalysisLogger collects and logs analytically determined information about
the chat server in a .ANL file. It takes in the same information as the RawDataLogger,
but it produces four new {dataType} values: PU, LU, FE, and D. Every line produced by
the AnalysisLogger has the same format as output from the RawDataLogger (see section
5.6.1). Table 6 lists the six {dataType} values the AnalysisLogger outputs and the

associated qother values:

A
19

{dataType} {other}

l:(>physical status) {status}

L(logical status) {status}

E()ghys_ Up %) {%up}

I(Jgogica]_ Up %) {%up}

TIEIFO Error) {lastIndex}DELIM{receivedIndex}
]?Data Rate) {msgs/sec}

Table 6: AnalysisLogger Data Types.

The {status} values are the same for the AnalysisLogger and RawDatalLogger (see
section 5.6.1).

When {dataType} is PU, {%up} represents the percentage of time the two servers
({thisServer} and {otherServer}) have been physically connected. Stated mathematically,
{%up} = 100% * (how long the physical status has been “connected”) / (how long the
AnalysisLogger has been running).

When {dataType} is LU, {%up} represents the percentage of time the two servers
have been logically connected. Short-term disconnects are considered logically
connected. Stated mathematically, {%up} = 100% * [(how long the logical status has
been “connected”) + (how long the logical status has been “suspected” during short-term
disconnects)] / (how long the AnalysisLogger has been running).

When {dataType} is FE, the AnalysisLogger has detected an error in the message
sequence numbers, which indicates a possible gap in the messages. {lastindex} indicates
the sequence number for the start of the gap and {receivedIndex} indicates the sequence
number for the end of the gap.

When {dataType} is D, {msgs/sec} holds the rate at which the chat server is
receiving messages. The AnalysisLogger is configured to sample the data rate at a
specified frequency. To calculate the rate, the AnalysisLogger counts the number of
messages received between samples and divides by the amount of time that has passed

between samples.

53

5.6.3 MultiLogger

The MultiLogger is a wrapper object. This means it does not add any new
functionality of its own, but it makes certain tasks easier. In this case, the MultiLogger
makes using the RawDataLogger and AnalysisLogger simpler. The MultiLogger object
acts as a container for a RawDataLogger, an AnalysisLogger and a MonitorActiveViewer
(see section 5.7.1). The MultiLogger implements the DataLogger interface, so it takes the
same input values as the RawDatalogger and AnalysisLogger. However, instead of
processing the values itself, the MultiLogger simply passes them to the RawDatalogger
and AnalysisLogger it contains. These two loggers can, in turn, be independently
activated or inactivated, which allows the MultiLogger to function as either a
RawDatal.ogger (AnalysisLogger inactivated) or an AnalysisLogger (RawDatal.ogger
inactivated) or both (both activated) or neither (both inactivated).

The MultiLogger can also activate a MonitorActiveViewer, which converts the
output from one of the loggers into a graphical monitor of the server status. The
MonitorActiveViewer will use the log with the most data as its source, so if an
AnalysisLogger is running, the .ANL file is used. Otherwise, if the RawDatal.ogger is the
only logger running, the MonitorActiveViewer will use the .DAT file. If neither logger is
running the MulitLogger will not start a MonitorActiveViewer, since there is no data

source for it.

5.7 MONITOR

Monitors graphically display the network activity associated with a single
ChatServer. Their primary value is as an analytic tool, to allow the server administrator to
easily monitor a server’s behavior and pinpoint problems.

We used the JFreeChart package to implement the graphical interface for our
Monitors. JFreeChart is a free Java class library for generating charts available for free
under the GNU Lesser General Public License (LGPL).

There are two types of Monitors: MonitorActiveViewer and MonitorLogViewer.
The MonitorActiveViewer is a real-time monitoring tool that displays information about
a chat server during execution. The Monitorl.ogViewer is a log-viewing tool that can

visualize the chat server log. Both types of monitors may display up to six plots at one

54

time (Figure 17). The different plots are described in Table 7. Every plot may contain

multiple lines, with each line representing a different site. The lines are color coded, so it

is easy to identify information from the same site on different plots. The horizontal axis

that is shared by all the plots indicates the time at which data points were obtained. The

two monitor types are described in further detail below.

Physical The underlying link availability (as presented by the operating

Connectivity system. A value of 0 indicates no link availability, while a value of 1
indicates a working link.

Logical The link availability from the chat application’s perspective. A value

Connectivity of 0 indicates a disconnected link, a value of 0.5 indicates a suspected

link, and a value of 1 indicates a working link.

Physical Percent
Available

The value at any point on this line is the percentage of time the
underlying link has been available, up to that point in time.

Logical Percent

Available

The value at any point on this line is the percentage of time the
logical link has been connected, up to that point in time. The logical
link is considered connected any time the link is connected or the link
is suspected but returns to being connected without becoming
disconnected.

FIFO
Correctness

A spike on this line indicates an error in the message sequence
numbers received by the server. Sequence numbers are expected to
increase by 1 for every message received. When this is not the case it
is generally the result of lost messages or a server that has restarted.
The size and direction of the spike generally indicate the type of
error. When a few messages are lost it results in a small positive
spike, indicating that the sequence number received is slightly larger
than the sequence number expected. A server restart will reset the
sequence numbers for that server, resulting in a large negative spike.

Message Data

Rate

Lines on this plot indicate the number of messages per second the
server is receiving.

Table 7: Monitor Plot Descriptions.

5.7.1 MonitorActiveViewer

The MonitorActiveViewer displays information about an active ChatServer. The

MonitorActiveViewer obtains its data points from the output file of a running

DataLogger. The display of a MonitorActiveViewer is a moving window of fixed size. In

Figure 17, the size of the moving window is 60 seconds. Unlike a MonitorLogViewer,

the MonitorActiveViewer will always display all 6 plots.

S5

£ Active Server Monitor

& Active Server Monitor
&
0(59 :
\(J 0 l
& @s‘-
& &
& 1 Y,
(Jé:?? G
‘S@‘\é"\
9 6‘3- 100
Qog? o 50
@ ,§_° 0
o 100 A
& g‘
d(\ @ 50
Q@
g & o]
é‘? & B
v &
(4]
o ®
& &7
P E M=
gp‘? 0 [g, W~
Q@ : i 134820 194630 104640 1948'50 19:47:.00 1947'10
Time (min:sec)
M All Sit: W BetaSite M AlphaSit
E tes etasite |J a L-EJ

Figure 17: MonitorActiveViewer.

The colors in the MonitorActiveViewer are what we call the Hash Color for each
site. We obtain the Hash Color of a site by taking the hash code of the Java™ String
object that represents the site’s name and converting that integer value into a color. In
Java™, integers are 4-byte values, so we convert them into colors by taking the 3 lowest-
order bytes and assigning them to be the red, green, and blue values of the Hash Color,
respectively. Hash codes for Java™ Strings are designed to have low collision likelihood,
so the probability that two Hash Colors will be the same is also low. Another advantage
of using Hash Colors is that they don’t require any ordering of the sites. Other coloring
schemes that could easily be implemented include coloring based on the order the sites
join, or coloring based on the alphabetic ordering of the site names. However, coloring
based on the order the sites join would result in a different coloring scheme on every
execution of the MonitorActiveViewer and coloring based on alphabetic order could
require color changes at runtime, which may confuse the user Hash Colors guarantee a

unitorm coloring scheme across any number ot executions and with any number of sites.

56

5.7.2 MonitorLogViewer

The MonitorLogViewer displays log files produced by a DataLogger after a run
has completed (see section 5.6). At the top of the graph, the MonitorLogViewer indicates
the name of the file being displayed (See Figure 18). Unlike the MonitorActiveViewer,
the time scale in the MonitorLogViewer adjusts to fit the entire data set. This allows users
to view in the entire data set before focusing closer on a particular area. The user can

magnify an area of the graph by clicking and dragging the mouse of the desired area.

% Datalog.mikes-computer.04_07_31-19_57_21.anl

DataLog.mikes-computer.04_07_31-19_57_21.anl

ST e I g e i
,\\Aﬁ' 15
ésa" 10 1
_\cP 05 |
& 00
&
& 05
15 S = "
Qe.a) 1.0 o P
A
& 00 |
i 05 -

2 25

@%‘? "50 0

Q ﬁ?’ 100
X 75 \/_.

& 50

%‘Z‘-” 25

& 0
N ry 4 3 N

l

PR oy nll I

0 200000 200030

20:01:00 a

Al Sites M BetaSite IR AlphaSi

Figure 18: MonitorLogViewer. View of a .ANL log file, produced by the AnalysisLogger object. The
coloring scheme is based on Hash Colors. This graph is based on the same information as Figure 19.

The user can select the coloring scheme to use for the plots at startup. The user
can select hash colors or lexicographical colors. The reason for the choice is that,
although it is unlikely for two sites to have the exact same color when using hash colors,

it is fairly common that two sites will have names that arc similar cnough to producce hash

colors that very closely resemble each other (at JEFX 04, the two chat servers were
named “logba™ and “logbt.” The resulting hash colors were two very similar shades of
green). Figure 18 displays a data set by using hash colors, while Figure 19 displays the

same data set using lexicographical coloring.

% Datolog.mikes-computer.04_07_31-19_57_21.anl

.. J mms .

200030 200100 - 200

M Al Sites B BetaSite M AlphaSite

Figure 19: MonitorLogViewer. View of a .ANL log file, produced by the AnalysisLogger object. The
coloring scheme is based on lexicographic ordering. This graph is based on the same information as
Figure 18.

The MonitorLogViewer is also capable of customizing its display to the data set it
must visualize. Figure 20 is the image the MonitorLogViewer created for a
RawDataLogger log file. The only information in the log file that the MonitorLogViewer
can visualize is the physical and logical connectivity information. The other data that the
MonitorLogViewer is capable of displaying is only produced by the AnalysisDatalogger

and is therefore not present in the RawDataLogger log. Instead of showing empty plots

for unavailable data types, the MonitorLogViewer maximizes the sizes of the available

plots, thereby effectively using the empty space that would otherwise be wasted.

Datolog.mikes computer.04_07_31-19_57_21.dat

Datal.og.mikes-computer.04_07_31-19_57_21.dat

150 — AR B AL A b ol i T e T B e,

125

Figure 20: MonitorLogViewer. View of a .DAT file, produced by the RawDataLogger object. The
coloring scheme is based on Hash Colors.

5.8 DEBUG

While writing and debugging code, developers will often place commands in their
applications, which are purely intended to help remove errors from the code later on.
These commands are said to produce debugging information. In the process of
implementing the robust chat application we designed a standard method for outputting
debug information. The following sections describe the features of this debugging

system.

5.8.1 Debug Levels

During program execution there are several phases when a developer may be
interested in information about how the system is operating. Some of these phases
include system startup, shutdown, errors, status changes, and normal operation. In order
to expedite debugging efforts, it can be helpful to focus on only those debug messages,
which occur during the same phase as the error being tracked down. To prevent
information overload while debugging the chat application, we implemented the concept
of debug levels. Debug levels allow developers to choose which kind of debug
information they would like to see. Debug information that is not tagged at the same level
as the requested information is not output at runtime reducing the amount of output the

developer must study to find the error and the size of the output log files.

5.8.2 Timestamps

All the system output from the chat application is timestamped to help pinpoint
when errors occurred. Since the chat application functions as a distributed system, with
components on many different computers working together, it can be very helpful to have
a way to cross-reference information on one computer with information on other
computers. Discovering bugs in distributed systems is a notoriously difficult task, which
makes timestamping all the more valuable.

Timestamping is most effective when all the computers in the distributed system
have synchronized clocks. In a test environment this i1s a feasible condition, so for
debugging purposes the timestamps work very well in our test environment. In a real-
world environment synchronizing the system clocks is generally not possible, but even in
this situation the timestamps provide a rough guide, often narrowing the search for an

error from hundreds of lines of output to just several dozen lines.

6 Testing and Evaluation

The following sections describe the tests and test environment we used to evaluate
our chat application. First we discuss the setup of the test-bed. Then we discuss the

results for several of the chat application components.

60

6.1 TEST-BED ARCHITECTURE

Many of our tests were conducted using a test-bed constructed by the project
team,; the test-bed is described in Prasad Ramanan’s M.Eng. Thesis [11]. The basic layout
of the test-bed is pictured in Figure 21. The test-bed consists of four computers running
the Microsoft® Windows™ 2000 operating system, and a router running the Linux
operating system. Each of the four Windows computers functions as a site for test
purposes and runs one chat server. The four sites are named Commonwealth, Kingdom,
Metropol, and Republic, while the router is named Ghetto. Data sent between chat servers
is routed through Ghetto, which uses software to control the link availability between any

pair of chat servers. The availability can be set independently for both directions on a
link.

/ﬁst-Bed \
Ghetto

il

Router

Laboratory LAN

Figure 21: Test-Bed Architecture.

61

For tests focusing on inter-site connectivity chat clients are run on the same
computer that is running their chat server. For tests focusing on intra-site connectivity
chat clients are run on computers that are not running the chat server they are connected

to.

6.2 MONITOR RESULTS

As we hoped, the monitor proved to be a useful analysis tool. We used it to view
the output of DatalLoggers and identified several behavioral problems. The Monitors also
provided effective “summaries” of large data sets, by compressing many hours of
collected data into a single graph.

The only drawback when using Monitors was the processor usage. The free graph
rendering software package we use to implement the Monitor displays is not efficient at
quickly rendering data. This causes the Monitors to use more processor time when either
the data set size or the display size (i.e. the size of the picture being rendered) increase.

For exceptionally large data sets this results in noticeable slowdown of the application.

6.3 JEFX 2004 RESULTS

The results we gathered from the JEFX 04 flights were generally very
encouraging. The system experienced very few behavioral problems and almost no
errors. We collected application data from nine flights, which ranged in duration from

one hour to over five hours.

62

+ Datalop.loght.04_07_24-14_47 _01.anl

Datalog.logbt.04_07_24-14_47_01.anl

i pr we—— .

Figure 22: JEFX 04 Flight Data.

6.3.1 Flight Data

Figure 22 displays some of the data collected during a JEFX 04 flight. The chat
server that this data was collected from operated from right after the flight commenced, at
2:47pm, to right before the flight ended, at 8:26pm. The log indicates that the chat server
was operational for over 5.5 hours (exactly 5 hr, 39min, 6sec, 797ms) without any major
errors that could cause the server to crash. There were 12 long-term disconnects, of which
only 4 were longer than 2 minutes. There were a total of 306 disconnects, which means
the chat application successfully bridged 294 short-term disconnects. The average data
rate for the run was around 0.72 messages per second, while the peak data rate reached 12
messages per second at one point. The chat application was available 89.74% of the time
during the flight. The average availability of the network links, represented by the

physical conncctivity, is unfortunately inaccurate.

63

The operating system’s ping command was used to gather information about the
physical connectivity of the network. This approach worked well in the test-bed
environment; however, it failed on the flights. We later determined that this method
failed because the link latencies were much higher than expected. The timeout value for
the ping command had been set based on the expected latencies, so the higher than
expected latencies caused the ping command to timeout even during periods when the
server was connected well. This had no effect on the functionality of the chat server, but
it invalidated the physical connectivity data gathered using the ping command. Figure 22
indicates that the network links were connected 12.76% of the time, which is far below
the actual value. Using the assumption that the links must be available for the application
to have a logical connectivity value of 1, we determined the network link must have been
connected at least 3 hours and 31 minutes during the flight. This is translates into a link
availability of approximately 62.40%. The chat application was available 89.74% of the
time, which means it outperformed the link availability by 27.34%.

6.3.2 Crew Feedback

The response from the JEFX crews that used the chat application was very
positive. Several crewmembers commented that they appreciated the simple interface and
overall robustness [3][4]. They appreciated that the system was easy to install and was
robust enough to stay operational when other communications means broke down.
Leonid Veytser, a crewmember who used the chat application on multiple occasions,
commented that the application allowed them to “to keep communications between air
and ground not just for [his team] but for other people that needed communications and
there were no other means at the time” [4].

Senior Staff member, David Kettner, mentioned that the chat application was used
to maintain situation awareness and coordinate activities between the ground team and
airborne team members. He also used the tool to communicate with the airborne JEFX
Test Director “from time-to-time.” In his words: “The tool was used a lot” [5].

After one of the first flights with the chat application Senior Staff member,

Stephen McGarry, noted that he was “very impressed with the performance of the [robust

64

chat application] ... We were [using] it almost exclusively for the 5.5 hour mission where
the [airplane] was almost always beyond [line] of sight” [6].

Some of the crewmembers noted that our prototype system would have benefited
from some optimizations, such as decreasing the size of chat messages. Smaller messages
would have allowed the system to function using just low-bandwidth links, such as
Iridium [3][4]. These suggestions will be addressed in future versions of the chat
application; however, our current prototype chat application was designed as a basic
foundation for a robust chat application. As such, we implemented the prototype with a
focus on robustness and basic functionality, deferring some time-consuming

optimizations for later.

7 Future Work

While working on the chat application we identified several areas that suggest

new and continued directions for improvement.

7.1 SECURITY AND AUTHENTICATION

As we have already mentioned, communicating information is essential in the
MC2C environment. However, protecting this important information is arguably just as
essential. Our current prototype chat application 1s robust enough to guarantee that errors
introduced by the MC2C environment alone will not cause the application to fail. The
system is also intended to be deployed in a network environment that provides basic
security for transmissions: all communications are encrypted and the physical network
components are secure. This does not mean that the system is immune to failing, though.
Malicious users are a common source of system failures for non-secure systems. For our
system to be thoroughly robust it must guard against such attacks by authenticating users
and securing communications between system components (client to server and server to
server). Authenticating users allows us to match usernames with real individuals. This
removes any possible anonymity those individuals had and makes them accountable for
their actions while using the chat application. Only in this way can we be sure that

information has not been tampered with and users actually are who they say there are.

65

Security and Authentication are also fundamentally necessary to enabling access control

capabilities.

7.2 ALTERNATIVE APPLICATIONS

As we mentioned before, one of our primary goals was to develop a highly
extensible system. To capitalize on this extensibility, it makes sense to develop new
applications that can easily use the system. Two ideas for such applications are a shared
whiteboard and a distributed file transfer system.

A shared whiteboard allows users in different locations to collaborate by sending
visual messages instead of textual ones. The idea is that several users would be able to
draw on a shared “whiteboard” area and everyone would see the same resulting picture.
There are already several commercial applications that support this kind of functionality,
but building such an application on the foundation of the robust chat application would
automatically make it robust enough for use in the MC2C environment.

A distributed file transfer system allows users to share information in any format
they choose, by sending files instead of text or images. The file transfer system would
allow users to send a file to multiple users at the same time instead of performing
multiple point-to-point transfers. Large files could be split into smaller pieces, with each
piece being sent as a message. The transfer system could weather short-term disconnects,
since the robust chat application guarantees reliable message delivery; something that
traditional file-sharing applications are not designed to do. The result of using the robust
chat application as the foundation for a simple file transfer system would be a robust

distributed file transfer system.

7.3 CHAT BOT IMPROVEMENTS

While the chat bots already have the capability of responding to messages they
receive, the implementation is still fairly rudimentary. In order to test the system more
realistically it would make sense to improve the algorithm used to determine responses.
Instead of making a probabilistic decision, it may be helpful to have bots output pre-
scripted conversations, complete with questions and answers. The bots would then be

expected to only send answers after they receive the proper questions. Bots that send

66

questions could also become impatient and send new requests for information if the
answer doesn’t arrive in time. This approach would mimic natural conversation better
than the current system does and could lead to new discoveries about the properties of the

chat application.

67

8 Glossary

Chat Client

Chat Message
Chat Room
Chat Server

User

Client application that communicates with the chat server (not to be
confused with the ChatClient object, which is an implementation of a
chat client)

Message sent by the chat application

Abstract “room” that users may collaborate in

Server for the chat application (not to be confused with the ChatServer
object, which is an implementation of a chat server)

Human user of the chat application

68

9 References

[1] S.T. Dougherty, JEFX 2002 ends with positive results, in Air Force Link. August 9,
2002.

[2] R.Khazan, S. Lewandowski, C. Weinstein, et al. Robust Collaborative Multicast
Service for Airborne Command and Control Environment. Military
Communications Conference (MILCOM), Monterey, CA, October 31-November 3,
2004.

[3] J. Cooley, Flight Crew, MIT Lincoln Laboratory, Lexington, Mass., personal
communication, July 28, 2004.

[4] L. Veytser, Flight Crew, MIT Lincoln Laboratory, Lexington, Mass., personal
communication, July 28, 2004.

[5] D. Kettner, Senior Staff, MIT Lincoln Laboratory, Lexington, Mass., personal
communication, August 5, 2004.

[6] S.McGarry, Senior Staff, MIT Lincoln Laboratory, Lexington, Mass., personal
communication, July 23, 2004.

[7] R.Khazan, Robust Chat for Network-Centric Air Operations. MIT Lincoln
Laboratory. Division 6 Seminar. May, 2004.

[8] C.Kalt, Internet Relay Chat: Architecture, ftp://fip.irc.org/irc/docs/rfc2810.txt.
April, 2000.

[9] Unknown, Jabber User Guide, http://www jabber.org/user/userguide/index.html.
August, 2004.

[10] J. Cooley, Flight Crew, MIT Lincoln Laboratory, Lexington, Mass., personal
communication, August 6, 2004.

[11] P. Ramanan. Robust Chat for Airborne Command and Control. MIT Masters of
Engineering thesis. August 2003.

69

