
SloanSpace-DSpace File Transfer Component

by

Genevieve T. Cuevas

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

December 16, 2004) o C IC

Copyright 2004 Genevieve T. Cuevas. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.
MASSACHUETTS IN E

OF TECHNtjL'OGY

LJUL 1 8 2005

LIBRARIES

/ Department of ElecAgfdt Engineering and Computer Science
December 16, 2004

Certified by___
Hrold Abelson

Thesis Supervisor

Accepted by
K Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

Author

SloanSpace-DSpace File Transfer Component

by

Genevieve T. Cuevas

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

December 16, 2004

Thesis Supervisor: Harold Abelson

Abstract

This thesis demonstrates how to use Web services to integrate course management
systems with digital repositories. We present a component that provides interoperation
between SloanSpace, a course management system, and DSpace, a digital repository,
both developed at MIT. In particular, a file transfer component was created that enables
SloanSpace users to search and retrieve DSpace documents while in SloanSpace, and
submit SloanSpace documents into DSpace. DSpace's web services provided the means
for interaction between the systems. The architecture of the component was designed to
handle not only the metadata mappings between SloanSpace and DSpace metadata, but
mappings between file metadata of SloanSpace and other systems as well. Two'scenarios
were then created to test the effectiveness of the component. The test results demonstrate
the ability of the component to decrease the amount of time spent in performing file
transfers between the two systems. Most importantly, however, the component
demonstrates more generally interoperation with digital repositories. It not only
integrates SloanSpace with DSpace, but also allows for a more a general integration with
any other system.

2

Acknowledgements

I would like to thank Hal Abelson for teaching me how to write a thesis. I could not ask

for a better advisor. I would like to thank Al Essa, for helping me construct my thesis. I

would like to thank Andrew Grumet for guiding me in the development of my system. I

would like to thank MacKenzie Smith and Richard Rodgers for providing the DSpace

web services. Lastly, I would like to thank my family. None of this would have been

possible without the love and support.

Table of Contents

I Introduction... 7

2 Background ... 8

2.1 SloanSpace.. 8

2.2 D Space .. 10

2.3 Scenario 1: Populating a SloanSpace File Storage Area via DSpace 12

2.4 Scenario 2: Subm itting a SloanSpace file to D Space 17

2.5 W hat is the m otivation behind this system ? 18

2.6 Challenges... 19

2.7 Related W ork .. 20

3 System Overview .. 22

3.1 System Functions .. 23

3.1.1 Search/Retrieve.. 23

3.1.2 Subm it... 29

3.2 D ata M odel... 35

3.2.1 Exploring the D ata M odel Requirem ents .. 35

3.2.2 G eneralizing the D ata M odel.. 37

3.3 System Im plem entation D etails .. 39

3.3.1 Search Interface ... 39

3.3.2 Retrieve Interface.. 41

3.3.3 Subm it Interface.. 43

4 Integrating the File Transfer Component with Other Systems 44

4.1 Filling in the Tables Using the Add Schema Interface.................................. 45

4.2 Providing the Code for the Submit and Retrieve Interfaces 51

4.3 Im plem enting the Search Service Contract.. 52

5 System Testing and Analysis .. 52

5.1 Testing the File Transfer Com ponent .. 52

5.2 Results of the Tests .. 53

5.3 D iscussion of the Test Results .. 54

4

6 Future W ork .. 55

6.1 System D eploym ent .. 55

6.2 Integration with Other System s .. 56

References ... 57

A D atabase Tables .. 58

B Critical Source Code ... 61

B. I dspace-get.tcl .. 61

B.2 dspace-subm it.tcl .. 70

B.3 m eta-view .adp, ... 73

BA m eta-view .tcl ... 74

B.5 schem a-add.adp ... 77

B.6 schem a-add-2.tcl ... 77

B.7 schem a-add-fields.adp .. 78

B.8 schem a-add-fields.tcl .. 80

B.9 schem a-add-fields-2.tcl ... 81

B.10 schem a-add-fields-cont.adp .. 82

B.1 1 schem a-add-fields-cont.tcl .. 83

B. 12 schem a- add-fields-cont-2.tcl ... 84

B. 13 search-url.adp, .. 85

B. 14 search-url.tcl .. 86

B.15 search-url-results.adp .. 87

B. 16 search-url-results.tcl .. 89

B. 17 dspace-search-procs.tcl ... 90

B. 18 google-search-procs.tcl ... 92

C Instructions for Integration W ith Other System s .. 95

C. I Filling in the database tables via the A dd Schem a Interface 95

C.2 Adding the code for the subm it interface .. 97

C.3 A dding the search service contract im plem entation ... 99

CA A dding the code for the retrieve interface .. 101

D Installing the system into LRN .. 103

5

List of Figures

Figure 2-1: SloanSpace screenshot ... 9

Figure 2-2: D Space hom e page.. 13

Figure 2-3: D Space search results.. 14

Figure 2-4: D Space search result ... 15

Figure 2-5: SloanSpace file storage area .. 16

Figure 2-6: SloanSpace file upload... 16

Figure 2-7: D Space subm ission page... 18

Figure 3-1: System overview .. 22

Figure 3-2: Prof. Sm ith's File Storage... 24

Figure 3-3: Search query page ... 25

Figure 3-4: Search results page.. 26

6

1 Introduction

The number of systems developed to promote the use of technology in learning has risen

dramatically as information technology resources have become more readily available.

Many higher learning institutions and universities have directed much effort to the

creation of course management systems, online courses, and other technologically

enhanced learning tools. At the same time, the number of digital repositories being

developed has also seen a similar growth rate. Many institutions and communities have

created their own digital repositories. Journals, theses, books, software, and other

published works now reside in the digital repositories provided by the institution, and

members of the institution now have easy access to these digital resources.

It would be expected that the growth and abundance these systems would lead to efforts

directed towards the interoperability between the systems. Education and learning tools

equipped with direct access to digital repositories would result in more powerful and

comprehensive systems. Digital repositories would also see an increase in usage if it can

be accessed through other systems. However, a comparatively small amount of time and

resources have been spent in making these integrations happen.

The system developed in this thesis provides one such integration. This work provides a

component that enables interoperation between two systems developed at MIT -

SloanSpace, a course management system, and DSpace, a digital repository. The

component allows SloanSpace users to search and retrieve DSpace documents from

SloanSpace and submit SloanSpace documents into DSpace. Moreover, because

SloanSpace and DSpace follow different file metadata standards, the component contains

a mapping interface that transforms file metadata from one system into the file metadata

of the other system. Testing the component with two scenarios show that searching and

retrieving DSpace documents using the file transfer component cuts the time (i.e. the time

it takes using current system without the file transfer component) by 57%. Similarly,

7

submitting SloanSpace files into DSpace using the file transfer component cuts the time

by 44%.

2 Background

2.1 SloanSpace

SloanSpace [1] is an online management system for courses and learning communities

that enables information to be shared within each class or community. Each community

or course in SloanSpace has a community area web page that stores and displays

community content. Access to this community area is given only to community

members. Furthermore, different types of access can be given to the members. These

access types determine what types of actions members can perform in the respective

community area.

Currently, all MIT Sloan School classes use SloanSpace to store and display class

content. A typical class area in SloanSpace contains such content as class documents, a

class calendar and syllabus, class news, and a class forum. Professors, teaching

assistants, and administrators for that class are given a professor-type access to the class

community area, which allows them to add and modify the displayed content. Students

are typically given a student-type access, which restricts them from viewing or modifying

certain content in the class area.

SloanSpace is also being used by various online communities at MIT. Examples of such

communities are student groups and research groups. Through SloanSpace, members of

the groups can communicate with each other online via the community forums.

SloanSpace also enables them to share their files securely.

Each community area has an associated file storage area page, which displays files and

related to that class or community as well as operations to the file. A link is also

available for each file, which, when clicked, will take the user to the respective file area.

8

The file area contains links to perform operations on the file, such as editing the file or

deleting the file. Operations on files and the file storage area can be restricted so as only

to prohibit certain members from performing certain actions. For instance, only members

of type professor or teaching assistant may modify or add files to the area. Either files or

URLs can be added to the file storage area. Directories may also be added to organize

the files.

SloanSpace is organized into packages. A package represents a single component or

service. For example, the file storage package is the package associated with the file

storage area in the community area in where users can add and manage community files.

The calendar package is the package associated with the calendar for the community.

Each package comprises of the user interface files for that component, the library files

containing processes, or operations, related to the component, and database files

containing database table definitions and functions for the component. Below is a

screenshot of main SloanSpace class page for the "Intro to CS" class.

GROUPS

FREQUENTLY ASKED QUESTIONS IFAQS)

Doti eI

Figure 2-1: SloanSpace screenshot

9

The calendar package is responsible for the calendar component shown in the screenshot.

Similarly, the forums package contains all the code files and user interface files that

handle the forums component. The file storage area is reachable by clicking the "File

Storage" tab in the top of the page. Again, this file storage area is handled by the file

storage package.

SloanSpace is an implementation of .LRN [3], an open-source course application suite for

online course management systems and learning communities. .LRN is based on the

OpenACS framework [4], a toolkit used for building online community-oriented web

applications. OpenACS, and SloanSpace, in turn, are implemented in Tcl.

2.2 DSpace

DSpace [2] is a digital repository that provides long-term storage for all types of digital

content developed at MIT. Examples of content stored currently in DSpace are papers,

theses, books, preprints, images, simulations, computer programs, and multimedia

publications.

Content in DSpace is organized by communities and collections. All items belong to a

specific collection, and all collections belong to a community. In addition, each item

contains two types of data - the metadata, which describes the item, and the item content,

stored as bitstreams. The item metadata is based on the Dublin Core metadata standard

[5].

Access to the content stored in DSpace can be done via the DSpace web interface.

Through this web user interface, users can browse or search for DSpace content. Users

can also submit content into DSpace via this interface. The submission process consists

of two tasks: the user must first enter the content description (or metadata) and then

upload the file into DSpace. Users must also specify which collection to store the item

in. Access to some of the collections and to the submission interface is restricted to

authorized users.

10

DSpace also provides a web service to enable communication with other systems.

Methods implemented in the web service include a search and browse function, an ingest

function, and a deposit function. The search/browse function, which allows users to

search and browse DSpace content, is based on SRW (Search/Retrieve Web Service).

Through SRW, a user may enter a search or browse query via a URL, and will be

returned an XML document containing results. For example, the URL query for a search

for "math" returning the 1st result is:

http://dspace-demo.mit.edu:8080/SRW/search/DSpace?query=math&maximumRecords

=1 &startRecord=l

When this URL is entered, the DSpace SRW service returns the XML document

containing the search result. Below is part of that XML document:

<?xml version="1.0" ?>

<?xml-stylesheet type="text/xsl"

href="/SRW/searchRetrieveResponse.xsl"?>

<searchRetrieveResponse xmlns="http://www.loc.gov/zing/srw/">

<version>1.1</version>

<numberOfRecords>1</numberOfRecords>

<resultSetId>fov7co</resultSetId>

<resultSetIdleTime>300</resultSetIdleTime>

<records>

<record>

<recordSchema>default</recordSchema>

<recordPacking/>

<recordData><srwdc:dc xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns: srwdc=" info: srw/schema/1/dc-v1. 1 ">

<dc:contributor.author>Carroll, Lewis</dc:contributor.author>

<dc:date.accessioned>2003-12-03T22:04:1OZ</dc:date.accessioned>

<dc:date.available>2003-12-03T22:04:10Z</dc:date.available>

<dc:date.issued>2002-12-03T21:26:17Z</dc:date.issued> . . .

II

DSpace also provides a two SOAP based web service that allows users to submit and

retrieve DSpace content. The ItemAccessService contains methods that allow users to

retrieve DSpace files. Similarly, the ItemIngestService contains methods that allow users

to deposit files into DSpace. For example, in order to retrieve a file from DSpace, the

user calls the retrieveltem and retrieveBitstream SOAP methods of the

ItemAccessService. The file id is given as an input to index the file. The retrieveltem

request retrieves the file metadata associated with the file, while the retrieveBitstream

request retrieves the file content encoded in a base64 string from DSpace.

2.3 Scenario 1: Populating a SloanSpace File Storage Area via DSpace

Say, for example, that Professor Smith, the professor for Physics 101, wants to populate

the course's SloanSpace file storage area. He feels that DSpace would be a good

repository to search for such files. Prof. Smith can accomplish this task with the current

system, but it would require him to interact explicitly with both SloanSpace and DSpace.

In the following chapter, we'll see how this need to explicitly deal with both systems can

be avoided.

Here is the current process Prof. Smith would go through in order to accomplish this task:

He first would first through DSpace via the DSpace web interface. The following

screenshot shows the DSpace web user interface:

12

[t ttps.#dspac.nit.adufndex sp

Gettng Started i) atest Headnes

Abiiut ttttice MIflbies

search O ~pace: DSpace at MIT > What can you
Go find in DSpace?L erc ---- welcome to MIT's digital repositoryl

+ Hems New community - Department of Political Science. MIT Research in pinis,form, including preprints,
e nes. technical reports,

working papers,
Browse -~conference papers,

Search images, and more,

Enter some text in the box below to search DSpace,
Title,

~ t physics Is this all of
By Date MIT's research?

Communities in DSpace No. Dspace is limited to
Sign on to: Select a community to browse itsdigital research products

Receve emai For items in print, go to
S C Barton: MIT Ubraries'updates Center for G:)bal Chan,,e SC En'C2 aao.Dpaei oncaral. . OSpace is young

My DSpace Cent r for Innovation in Prgduct Deveoment (C1IP) and growing rapidly.
Center for Technoloov. Poicy, and Ind strial Development (CTPID) Check back often.

C.omputer Scienr and Artif intctsl enc Lab (CSAIL)
Department of ocean Engineering

D-pr,:tment sf Pclitica! Science
Ablout aSoact

Hats-IpouHos Microftuids Laboratcry (HML)

LaboratorV for Informa ton and Decision Systems (LIDS
MIT Press
MAIT~ Wr.AeaC-enter

raton Pesea Center

Research Laboratory for Electrantcs (RLE)

an Scho of Manaoerit

Figure 2-2: DSpace home page

Once the search query "physics" is entered into the search textbox, as shown above, Prof.

Smith clicks on the "Go" button to fetch the search results. The following figure is the

screenshot of the page returned by DSpace, containing the search results for the query:

13

.....

Fe d w o Bookmaas lds Melp

b Gottnq Stated 8 Latest Hadires

I (0e t5p60 Mflies

Search OSpace: DSpace at MIT >

Advance seanrh Search Results

;.5 Ijome Search: mI ot DSpace
for (ph~ysics G.

Browse
communities Results 1-10 of 143.
& c.5ections

C?) Authors Item hits
By Date

Date of Issue Title Authors

Sign on to: 1963 Tisza, Lasz/o, 1907-
Receive email 1 Comporison between _ubspnic F!w n Skordos, Panayotis; Sussman, Gerald

updateicPat M-ePscaMar' surements of Ptue Pie Jay
s*ord s*" IMay-1994 ' 5Wong, Leon

Edit Pr its 1976 Finite-state cpensat rs fbh hi l yer Jonson, Timothy Lee.
Fehbach,Hei nn Ingard, X. Uno;

1969 In 1hoinor cfPf or h I d n

~Help Morse,_Philip McCord, 1903-
About DSpace 1-May- 1983 .ualtat a Prces Theor Forbus, Kenneth D.

1-Sep-1976 n Abelson, Harold; diSessa, Andy

1-Jul-1977 Actora ontlnu...F...na Hewitt, Carl; Baker, Henry
1-Dec-1984 HyQ-t-i Doyle, Richard].

27- Sep-2041 'ources of Non MtDctI Notse and TheirfuRbrPChaacterzatior Rafuse, Robert P

1D35n795 e

Figure 2-3: DSpace search results

Prof. Smith then would browse through these results and choose whichever ones he feels

is appropriate for the class. Once he has decided which files to add into the file storage

area, he would then click on the link for that result. For example, suppose Prof. Smith

decides that the first file listed above, "The conceptual structure of physics", is a good

candidate, he would then click on the file link to go to the page displaying the file

information. The following is a page that displays the file information:

14

I

httpif~co r~ eb~hde17211,114416

MIribies
About DSpace

Search DSpace: Dspace at MIT >
Research Laboratorr for Electronics (RLE) >

_ ar RLE Te hnical Reports >

Please use this identifier to cite or link to this itemr: http: //hdl handle. net /17121. 1/44116

Title: The conceptual structure of physics
Browse

Br Authors: Tisza, Laszlo, 1907-
& Collections Issue Date: 1963
Til6 Publisher: Massachusetts Institute of Technology, Research Laboratory of Electronics
Authors Series/Report no.: Technical report (Massachusetts Institute of Technology. Research Laboratory of

s) By Date Electronics) ; 409.

Description: Reprinted from the Review of modem physics, v. 35, no. 1, January, 1963. "February
Sign on to: 1, 1963"--Cover.

Receive email Includes bibliographical references.
updates URI: http://hdl.handle.net/1721.1/4416

;~My Mpoace
authorized Appears in Collections: RLE Technical Report'
Edit Profile

Files In This Item:
C:± Help utDsF les Size Formiit
i) About ouace

RLEF-TR-409-14259039.pdf S16Okb Adobe PDFVi/On

Show full item record

All items in DSpace are protected by copyright, with all rights reserved.

Figure 2-4: DSpace search result

Suppose Prof. Smith simply wanted to add the URL of the file. He would then simply

have to save the value for URI listed above, and then add this URL to the file storage

area. Suppose however that he wanted to add the actual file into the file storage area. He

would then need to save the file into his local computer, by either right clicking on the

"View/Open" link above and choosing the "Save" option, or click on the link and then

saving it into his computer from the menu bar. Once he saves it into his computer, he

then logs on to SloanSpace and goes to the file storage area for the class. Here is the file

storage area for Physics 101:

15

.LR N ~ Physics 101 John Smith
My Space HpIP Logout

Class onT Calen r Admin

DOCUMENTS

Class l
4
ae " wlw viari

dotLRN Horne I dotLRtl Proiect Central I Change Locale

Figure 2-5: SloanSpace file storage area

Finally, in order to upload the file into the file storage area, shown above, Prof. Smith

would then click on the "Upload a file" link, and from there, proceed with uploading the

file he saved in his computer from DSpace, into the file storage area. The "upload a file"

screen is shown below:

.LR NN Pheics 101 : File Storage : Physics 101's Files : Add File John SSph

.aa.A.

Version filename : Irowse
III Use the 'Browse...* button to locate your file, then click "Open'

Multiple files: El This is a ZIP file containing multiple files

Title:
(i) Leave title blank when uploading multiple interlinked documents

Description:

U ..loa

oe

Figure 2-6: SloanSpace file upload

16

I

Once Prof. Smith enters all the information and clicks on the Upload button, the file is

then added into the file storage area.

2.4 Scenario 2: Submitting a SloanSpace file to DSpace

Suppose that Jane, a member of the Dolphins Research Group, wanted to submit a group

research paper into DSpace. In order for all the members to be able to contribute to the

paper, the file was uploaded in the Dolphins Research Group SloanSpace file storage

area. Once the file was ready for submission, Jane and her group were ready to submit

the paper into DSpace. Here is the submission process Jane would currently go through

in order to accomplish this task:

First, Jane would download the file from the file storage area into her computer. She

would then go to the DSpace web submission interface, and enter all the metadata

information for the file. A screenshot of one of several pages for the DSpace web

submission interface is shown in the following figure:

17

Figure 2-7: DSpace submission page

There are 8 screens Jane would need to go through in order to complete the submission.

The "Describe" tab, highlighted in red in the screen above, shows where she is in the

submission process. The screens query Jane for the file metadata. Examples of metadata

are the title, the author, the type, and the language, as shown above.

2.5 What is the motivation behind this system?

The two scenarios described above shows content transfer between SloanSpace and

DSpace. However, imagine if there was some component that would simply enable users

to perform these content transfers without having to switch between both environments.

Even more so, the component would make use of the file information already stored in

the system, and use that information when performing the content transfer, instead of

18

having the user supply this information once again. This component is the system

developed in this thesis.

SloanSpace and DSpace are merely two of several systems at MIT developed to

incorporate technology into the learning environment. OpenCourseWare, which places

MIT course materials on the web for free, is another one of these systems. Efforts to

integrate OpenCourseWare with DSpace are also being made. The vision for the future is

that all of these different learning environments can interoperate with each other, thus

building a very comprehensive environment for the users. This system in this thesis is

the first of such integrations.

Most importantly, however, the system developed in this system demonstrates more

generally interoperation with digital repositories. Although more and more digital

repositories are being developed, a relatively small effort has been made to integrate

other systems with these repositories. The system developed in this thesis not only

integrates SloanSpace with DSpace, but also allows for a more a general integration with

any other system.

2.6 Challenges

The main problem to be solved in this thesis deals with the metadata handling. The files

from DSpace and SloanSpace have metadata associated with them, but the specific

metadata stored in the SloanSpace files and DSpace files is different. The metadata for

DSpace files is based on the Dublin Core metadata standard. The metadata standard

specifies elements for the metadata, such as the title, the author, the publication date, the

type, and the publisher, among others. The SloanSpace files also have data associated

with it, such as the title, the user who uploaded the file into SloanSpace, the date the file

was uploaded, the file size, and the file type. Since the metadata specifications for both

systems are different, the file metadata for files transferred from one system to the other

must be adjusted to map to the file metadata specifications for the other system. For

instance, a file coming in from DSpace contains Dublin Core metadata. In order to add

the file to SloanSpace, the file must contain SloanSpace specific metadata. Thus the

19

system must contain a mapping module that maps the DSpace metadata to the

SloanSpace data.

Another challenge in this thesis is developing a user interface that will make it easier for

users to transfer files between the two systems. Files being transferred already contain

metadata from the system they are coming from. Thus the file submission process to the

new system must be simpler than the current submission process for that system. For

instance, as shown in Scenario 2, in order to submit files into DSpace (via the DSpace

web interface), users enter file metadata through a series of screens. Since the Dublin

Core metadata standard contains a significant number of elements, the process can be

lengthy. In the file transfer interface developed in this thesis, submitting a file into

DSpace from SloanSpace should be a faster and simpler process since the file being

submitted already contains metadata from SloanSpace. In other words, a user should not

have to enter the DSpace metadata that maps directly to the SloanSpace metadata. Thus

the user interface must pre-populate DSpace metadata from the SloanSpace metadata

using information from the metadata mapping module.

Finally, the design of the system should be more general to include integration with other

repositories, and not specific solely for integration with DSpace. For example, the

metadata mapping module must also be able to map SloanSpace metadata with metadata

of any other system or repository.

2.7 Related Work

Awareness of the need for integration between systems and digital repositories has been

growing over the past few years. For example, an effort has been made by IMS and OKI

to develop standards of integration among education systems and repositories. The work

done by these two organizations focus mainly on developing the specifications for

interoperability between systems and repositories, whereas the system developed in this

thesis is an actual implementation of a system that provides this interoperability.

20

The IMS Digital Repositories Interoperability (DRI) Specification provides specifications

for digital repository interoperation of common repository functions. It specifies five

core interactions between systems and repositories. These five interactions include

search/expose, gather/expose, request/deliver, submit/store, and alert/expose [9]. The

search/expose interaction defines the process in which systems search metadata exposed

by content repositories. The gather/expose interaction defines the process in which

systems request metadata that is exposed by the repository. The request/deliver

interaction involves the process in which a system requests access to the learning object

exposed through the search operation. The submit/store interaction defines the process in

which a system submits content to the repository. This interaction refers to the IMS

Content Packaging Specification as a standard on how to package and export the content.

Lastly, the alert/expose specification defines the process in which repositories alert

systems on new or updated metadata or resources.

The Open Service Interface Definitions (OSIDs) developed by the Open Knowledge

Initiative (OKI) provides specifications for integration in an education technology

environment. These specifications describe how components of education technology

systems interact with one another. OSIDs provide a layer of abstraction between the

client application and the service application [10]. Implementation details of the service

application need not be known by the client application in order for the client to

interoperate with the service application. Similarly, details of the client application are

hidden from the service application. OSIDs simply specify what is needed from the

service and what is expected out of the client. Repository OSIDs are OSIDs developed

for interoperability between digital repositories and other components. With repository

OSIDs, clients don't need to know the implementation details of each particular

repository, and instead simply provide data the OSID specifies is expected out of the

client [11]. The repositories on the other hand would provide data that the OSIDs have

specified for them to provide to the client.

21

3 System Overview

The file transfer component described in this thesis integrates SloanSpace with DSpace,

as illustrated in the figure below.

SloanSpace / -- --

DSpace

Services

File retrieve, submit
Transfer SOAP

Component service
search er

SRW
SloanSpace Database

File Transfer A--------'

Storage

Figure 3-1: System overview

The component sits in Sloan Space, aod teretsit dsubm, directly through two of

DSpace's web services - the SOAP web service and SRW (Search/Retrieve Web

Service). Three types of operations can be performed by this component. The search

operation searches DSpace content through SRW. The retrieve operation gets files from

DSpace and places them in the proper SloanSpace area. The submit operation submits

files from SloanSpace to DSpace. Both the retrieve and submit operations are performed

via the DSpace SOAP web service.

The file transfer component contains a storage element, which consists of database tables

used to store both the metadata mappings and the specific file metadata. These database

22

tables are created in the SloanSpace database, and can therefore reference other tables in

the database.

This chapter first shows how the system functions. In particular, it shows the how the

system behaves in the two scenarios described in the previous chapter. Then it describes

the data model of the system, on which the database tables are based. Finally, it

describes the implementation details of the system.

3.1 System Functions

3.1.1 Search/Retrieve

The search and retrieve interface allows SloanSpace users to search and retrieve files

from DSpace, without leaving the SloanSpace environment.

Recall the first scenario described in the previous chapter, where Prof. Smith wants to

populate his Physics 101 SloanSpace file storage area. Although he was able to

accomplish his task, he had to leave the SloanSpace environment and go to DSpace to

search the files. Then he had to save the file in his own computer, after which he could

then finally upload the file to the SloanSpace file storage area.

The search and retrieve interface developed in the system in this thesis makes Prof.

Smith's job much easier and speeds up the process, by enabling Prof. Smith to search and

retrieve DSpace files, while never leaving the SloanSpace environment. Here now is the

process Prof. Smith would go through in the same scenario, but using the system in this

thesis:

He would first go to the file storage area. Here is the screenshot of the file storage area in

this system:

23

*Gettng Sarted L Lts ede

.LRN% Physics 101 John Smith

My Space He p Logout

DOCUMENTS

I Crato a nowfoldE t Upioad a f a Cr*Ate a URL Starch fof F11 I Si a c

Exams Oitems folder 1/22AD4 0348PM
I Hando t O items folder /22A34 31481PM

Lj Lecture Notes Oitems folder 11/,2C4 03 48 PM

-j P r.Ct s O dt ms folder 1122/04 03A4SPMV
-Z- Phy sics 101's Pubfic Files 0 itemns folder 11122)4 C[3 48 PM

dot N Hom I dot RN Project Central I-Chancit Locale S

Figure 3-2: Prof. Smith's File Storage

In this system, the file storage area now contains a "Search for Files" link, shown above.

To proceed with the DSpace file search, Prof. Smith would now click on this link. When

he clicks on the link, he is directed to the first page of the search interface, which is the

page in which Prof. Smith can enter the search query. As described in the previous

chapter, Prof. Smith then enters "physics" as the search query. Below is the search

interface page, with the query "physics" typed in the text box for the query:

24

Le dt ew go dokmriks oos telp _ _

$ Gettg Started $ Latest Headnes

.IRN ~ Phyics 101 File Storage Physics 101s Files Search DSpace John Smith

._ ___ _ - MV Space._. LOIL LU

C! ss cm, C.uadw FiS Stcrage Admin

Search:

Search in ODSpace 0 Google C DSpace-restricted Google

Cass Hom- Calrndo IIe Dorage Admin

dotLRN Hom . dotLRN Project Central I Change Locale

Done

Figure 3-3: Search query page

As shown in the page above, Prof. Smith also has an option of searching Google and a

restricted version of Google where it would only search through DSpace URLs, indicated

above by the "Google" and "DSpace-restricted Google" radio buttons respectively. An

example of search using these different domains will be shown later in this section.

Once Prof. Smith has entered the query into the text box, as shown above, he would now

click on the "Search" button to get the search results. Below is the search results page

returned for the query "physics":

25

DEdt K w 5o folkmarks lools Help

Gettig Started L .atest Heedbnes

. RN ~ Physis 101: File Storage: Physics 101's Files: Search Results John Smith

My Space Help Logout

Search: Physics

Search in 0 DSpace 0 Google 0 DSpace-restricted Google

Results 1 - 5 of 30 for physics: Search Help

The conceptual structure of physics
Reprinted from the Review of modern physics, v. 35, no. 1, January, 1963. "February 1, 1963"--Cover. Includes bibliographical references.
http://hdhandA.e/721.2/376 - lAdd URL I [Add F&il

Analysis of a Proposed First Generation Physical Map of the Human Genorne

ht,://hd.hPdS.aW/721.2/2753 - [Add URL1 I 1Add Fall

The Architect's Collaborator: Toward Intelligent Tools for Conceptual Design

he//hd.handlo.n/72.2/9 - IAdd URLI I [Add Flhl

organizing principles underlying the formation of arm trajectories

h://hLhandl./72I.d3432 - IAdd URLI I IAdd Filel

ADAM: A Decentralized Parallel Computer Architecture Featuring Fast Thread and Data Migration and a Uniforn Hardware Abstraction

hp//hd.h&PdJ.n,.t/172j./23291 - IAdd URLI I [Add File]

Figure 3-4: Search results page

Each result in the search results page for a DSpace search displays the result title, the

result description, and the URL of the document, as shown above. In addition, the result

contains two links displayed to the right of the URL - the "Add URL" and the "Add File"

link. If Prof. Smith wanted to add the URL of the file to the file storage area, he would

click on the "Add URL" link. If he instead wanted to add the file itself in the file storage

area, then he would click on the "Add File" link. Suppose Prof. Smith wanted to add the

first document, "The conceptual structure of physics" to the file storage area, he then

clicks on the "Add File" link for this result. After he clicks on this, he is then redirected

back to the file storage area, which now contains the added file. Here is a screenshot of

the newly updated file storage area:

26

E Ldk vew Jo apokmrks 10 _Us a*

htp :fe.it.edu:8003/dot mldassesiphyskcs/physicsi01/physkcsIO12 l-soraoe Mfolder Jd-3866

G, Settiarted J~ Latest Hleacks

.LRN* Phyis 101: File Storage Physics 101's Files John Smith

___+_________ ________ My Space Help Locg/ut

Upload a file I Create a URL I Search for Fdes I Browse DSpace Show files modified in the past 0 days as new.

Create a new folder I Modify permissions on this folder

D ass i et he0 items folder 1ce/22/04 03o 4ti PM

AIt ams tems folder 11/221/0 4 03: 413 PM

Ha ndouts 0 items foldr I /22/4 02:48 PM

co Lemnure NoteS 0 items folder 11/22/04 03:48 PM

l Progeths 0 items foldlr 11/22/04 3:48 PM
e Phystco ll fior i oes 0 items folder 11/22/04 03:48 PM

The ractu:l structur af Thusy for 135,403 bytes application/pdf 11/23/it 4 0:30 PM

enoad an a Fchi te mf ehe chntento of this folder

datLRN Home I dotLRN Prmiect Central I Change Locale

A design issue arose of whether or not to throw away the extra metadata. That is, the file

coming from DSpace contained other metadata values that SloanSpace does not need.

Although throwing away the extra metadata allows for simplicity and does not require the

addition of extra storage space, the metadata would be useful when the system is

extended to allow for integrations with other systems, since these other systems may use

the extra metadata. Thus for this system, extensibility was chosen over simplicity.

Using the system in this thesis, Prof. Smith then did not have to leave SloanSpace to

search DSpace. Furthermore, he did not have to first save the file into his local computer.

Most importantly, however, Prof. Smith did not need to enter all the file information, as

he did when using the current system. Recall that when using the current system, Prof.

Smith had to upload the file manually to SloanSpace, which required him to fill out the

SloanSpace file information. In particular, he had to fill out the title, description, and file

location. Using the file transfer component in this thesis, Prof. Smith did not need to fill

this out. Instead, the retrieve interface mapped the DSpace metadata values of the file to

27

the SloanSpace metadata values, and automatically filled out this information, thus

speeding up the file transfer process.

In addition to searching through the DSpace domain, users can also search through

Google. For instance, suppose Prof. Smith was not satisfied with the search results

returned by DSpace. He can then search through Google by the following process: He

first goes to the file storage area, as he did before, and clicks on the "Search for Files"

link. Now, instead of selecting the "DSpace" button in the search query page as he did in

the previous scenario, he now selects the "Google" button. This is shown below:

.LRNE Physics 101 : File Storage : Physics 101's Files : Search DSpace John Smith

Mv Space HeI Locout

CLass Home Catedar Fie Storage Admin

Search: physics

Search k nODSpace OGoogle ODSpace-restricted Google

Cas's Home Cakdar Fie storage A mn

dotLRN Home (dotLRN Project Central I Change Locale Vi

Figure 3-5: Google search

He then clicks on the "Search" button as he did before to get the search results. Here in

the following figure is the search results page for the "Google" search for "physics":

28

toe t NewW e oewns ias , rel

< J http:/)heice.rt.edu:8003/dotir/dassesiphycsiphysisaO1Olhyscs 1012/fle-storagefseardh

Frefox Heip]Frefiox Support W-gn FAQ

.LR Nf Physics 101 : File Storaoe : Physics 101's Files Search Results

CL-44S Noftw cal r RU- skwage dmin3

Search: sics
Search in O DSpace O Google 0 DSpace-restricted Google

Results 1 - 5 of 9980000 for physics:

John Smith

Mv Svace HelD L out

Search Help

PhysicsWeb - home
PhysicsWeb, The web site for physicists, PhysicsWodd, Institute of Physics, Electronic Publishing, online products and services...
PHYSICS 3Os. ...

http://Physcwb. ,om - FAdd URLI

physics central
with Physics Central, we communicate the excitement and importance of physics to everyone. We invite you to visit our site every

h:t/www.phymscacen&atlam - rAdd URnL

Physics 2000
http:Iwww.caerodo.*duphyskc'2l04f.zdx.pI - I A" URLl

Physics and Astronomy - Phystink.com

Physics, astronomy and science news, community, education and reference. Job board ... Latest Physics Astronomy Stories. An
artists ..
htp:I/www.phyx.iinkc*W - AAd UR LI

www.iop.org from The Institute of PhysIcs
... Institute of Physics Undergraduate Bursary Scheme Jun 16. banner.... Books, Education, Careers, Groups. Magazines,
Industry/Business, Physics Policy, Branches.
jhttp://ww#op.agiV - riAdd RL

Next

Done

Figure 3-6: Google search results

Note that the "Add File" link is not available for the Google page, since the results

returned are web sites instead of web documents returned in the DSpace search. Thus,

only the URL's of the results can be added to the file storage area.

3.1.2 Submit

Through the file transfer component, SloanSpace users would be able to submit files in

their file storage area to DSpace, while never leaving the SloanSpace environment.

29

Recall the second scenario described in the previous chapter, where Jane wanted to

submit a group research paper into DSpace. In order to do this using the current system,

Jane had to go to the DSpace submission web user interface, which, through a series of

screens, queried her for the file metadata.

The submit interface in the file transfer component developed in this thesis makes the

process in this scenario easier and faster by accomplishing two things. First, using the

file transfer component, Jane no longer has to leave the SloanSpace environment to

submit files into DSpace. And second, the submit interface pre-populates the entries for

the DSpace file metadata values by mapping the SloanSpace metadata values to the

corresponding DSpace metadata values. Thus Jane will no longer have to fill out values

for file metadata entries that SloanSpace already maintains. Here now is the process Jane

would go through for the second scenario described in the previous chapter, but this time

using the submit interface developed in this thesis:

First, Jane would go to the file area for the file that she wants to submit to DSpace. Here

is the file area for the file:

Researc Pae -~ Mla. irefo xe I
El. LEi yew io ~i1&0 I* _* dipel -------

- ~ ~~~ - | tp:/A-heka.mit.odu:8003/dotlrm/dubs/doOhnsresearchgrouphle-storage firil-a39168

_ 5tsplsecfrit hi p age

*LRN ~ Dolphins Pesearc.h Group File Storage Dolphins Research Group's Files : Dolphins Research Paper Jane Jacobs

My Space Help Logaut

" Title: Dolphins Research Paper (edit)
" Owner: Jane Jacobs

" Actions: show only live version I Upload a new version Copy I Move I Modify permissions on this file I Delete this file (including all versions) I
Upload to DSpace

Back to folder view

[Al Version of Dolphins Research Paper.

[version filename LAuthor [Si (btesdiType - - Mdfe[Version NoteslActions

Dolphins Research Paperdoc Jane Jacobs application/msword 11/23/04 02:55 PM: paper delete I administer permissions

dotiRN Homne I dotLRN Pro1ect Contra! I Change Locale

Dore

Figure 3-7: File area

30

-i .5

To proceed with the DSpace submission, Jane would click on the "Upload to DSpace"

link, shown above as one of the actions for the file. Clicking on this directs Jane to the

page that contains the form that queries for the file DSpace metadata values. Some of the

metadata values are filled out, depending if there exists a mapping from a SloanSpace file

metadata field to the respective DSpace field. Here are two screenshots of this page. The

first screenshot shows the top of the page. The second screenshot shows the page when

scrolled to the bottom.

I, Edt pew T oonarks tools Help

- _. e http:/f/eke.mit.edu:8o03/dodm:ck5sidophinr.s earcro/fkie-storagel ta-vew?%f id-39168schemid-a Q,

Cetig 5tae atsHeav

J D3rlipins Research Group File Storage Dolphins Research Group's Files Dolphins Research Paper Jane JacobsA T Upload to DSpace
My Space Help Loiout

Comunity Home caledur Flw Rte age People Adr-it.

Enter the author of the item.

Author Jane Jacobs

Enter the title of the item.

Title Dolphins Research Paper

Enter the alternative title of the item.

Other Title Addhoe

Enter the publisher of the item.

Publisher!_______________AdMr

Enter the publication date of the item.

Publication Date 2004-11-23

Enter the citation of the item.

Citation

Enter the language of the item.

Language English (United States)]

Enter the item type

Type Working Paper

Enter subject keywords for the item

Subject Keywords re

Enter the description of the item.

:Paper

Description

Figure 3 -: e d enrsly s chwowl

Figure 3-8: Metadata entry

31

ie tck yiew y o oesoark ooss I help

http:/jheke mit.edu: nsI3 ptr reseaagroupffe-stor m 6scheia

Getteng Started 1L .atest Headlines

Enter the language of the item.
Language English (United States)

Enter the item type

Type Working Paper

Enter subject keywords for the item

Subject Keywords Add More

Enter the description of the item.

paper

Description

Enter the abstract of the item.

Abstract

Enter the sponsors of the item.

Sponsorship::

Enter the item series name and report no.

Series Name and Report No. d

Enter the advisor of the item.

Advisor Add More

Save7 Cancel UploqdoSac

C omnit m CF er ar F . "torag, People Adrnir

dotLRN Home I dotLRN Proiect Central I Change Locale

-~e ---- -

Figure 3-9: Bottom of metadata entry

In the page above, all the fields and all their display information, including the field label,

the display text above the field input element, the input element (i.e. the text box, select

list, or text area associated with the field), and the "Add More" button (for fields that can

have multiple values) are all dynamically generated. Moreover, the author, title,

publication date, and description values were pre-populated. After Jane finishes filling

out the rest of the values, she then clicks on the "Upload to DSpace" button at the bottom

of page, which would finally submit the file to DSpace. Note that Jane also has an option

32

of saving the current metadata entries, and come back to the submission process later, on

canceling the process, by clicking the "Save" or "Cancel" buttons respectively.

After the submission is made, the submit interface returns a page the status of the

submission. That is, it shows whether or not the submission was successful. The success

of the submission depends on the values Jane submitted. For example, if the value for the

field is required for submission, but Jane has failed to fill it out, then she will be directed

back to the pre-populated entry page with a message for field that was unsuccessfully fill

out. Here is an example of that returned page, when Jane did not fill out the required title

field. Note the red error text, "Please enter a title", next to the title field:

0e gdt few ge gpedntth Tteh ____

- U E htpfake mLeuoJ /nt ubs wejewup eet &7seed1d-3_1 +an& 2 i+_-ZMti-E ___

_- - F-e- tnippnrt EpbiF&Q

LR 4 Dophins Research Grain, Fk Storaie Do thins Research GrOtp's Ries Dolphns Research Paper Upload to OSpace Jong Jacobs

t t tpace Helpteog e

Author (Jane Jacobs AddMore

Etrt th, title . the Ite
.le

itet the alteer t tile i, ith e

Other Title Ion.

Elter the p.u... er ... e te

Ete" th. pcbllcatin d.t. cf the nee.

Publication Date

Ette the cit.ti.n i .t,. e .

Citation

Entr the lencGuge f the it ,

Language Engftsh (United States) .

Eter thc itee , he

Type Long Paper .

Subject Keywords iAddtt re

tert- the de-iriPti- fi ite tem.

Description

Figure 3-10: Metadata entry error text

33

Finally, once all the field values are successfully entered, the interface submits the file to

DSpace. Here is the page returned to Jane indicating that the submission was successful:

se Edit 1ew 5o qokirls ols Hep

TS *htp Pe m t kedu:8003/dodmfdubs/dolphnresearchgrouipgdie-storageirreta-submitsucess?fle id-39168

SGetting Star ted lts edle

LR NI Dolphins Research Grou!n File Storage Dolphins Research Group's Files Dolphins Research Paper: Submit Jane Jacobs

My Space Help Logout

CoMN'rey Home Colondar Fib soirage People jimn

You have successfully submitted the file to DSpace.

Back To File View

Comitirey ome Ceiendw Flie sorag People Admi n

dotLRN Home I dotLRN Proiect Central I Change Locale

Figure 3-11: Successful submission

In order to indicate that the file has already been submitted to DSpace, a new icon is

associated with the file. The new icon is similar to the old file icon, except that it shows

a "D" beside it. Here is a screenshot of the updated file storage area:

Sj http:/hek.mt edu:8003dtn/dckubsdolp*sresearchgrouipjfe-storageldexfolderJd-39O43

* Gettig tarted R Latest Headles

My Space Help Logout

Communit Homo Crdar i or People Arn

Upload a fle I Create a URL I Search for Files I Browse DSpace Show files modified in the past rJ days as new.

Create a new folder I Modify permissions on this folder

_j D hn eerhGopsPbeFe 0 items folder 11/22/04 04:08 PM

' Dl Dolphins Research Paper new jjx AIE 20,992 bytes application/msword 11/23/04 02:55 PM'

Download an archive of the contents of this folder

Figure 3-12: Updated file storage area

The icon for the "Dolphins Research Paper" shows a "D" next to the file icon. In

addition, the submit interface won't allow the file to be submitted to DSpace. The

34

interface simply returns a page telling the user that the file has already been submitted to

DSpace.

Using the file transfer component, Jane no longer has to leave the SloanSpace

environment. More importantly, Jane doesn't need to fill in some of the metadata fields,

whose values can be mapped to SloanSpace file values, making the submission process

faster and easier.

3.2 Data Model

In order to explain the design choices for the data model, this section first takes a closer

look at the two scenarios and explores the types of data needed to be managed and stored

in order to perform the specific functionalities. Then, the section explains how this data

was modified to allow for generality. That is, the section describes how the data was

structured to not only contain information specific to DSpace, but also to contain

information for other remote systems that wish to integrate with SloanSpace as well.

3.2.1 Exploring the Data Model Requirements

Recall the second scenario where Jane wants to submit a paper into DSpace. In

particular, recall what happens once Jane clicks on the "Upload to DSpace" link in the

file area. Illustrated below is a summary of this process:

Jane clicks on
the "Upload"
link

0 0

Interface looks
up metadata
information

Storage
Element

Figure 3-13: Submit process summary

Pre-Populated
page is displayed

to Jane

Pre-Populated
Page

35

As seen in the illustration, the storage element contains the information needed to

generate the data in the pre-populated page. In particular, recall the two types of data

dynamically generated in the pre-populated page. The first is the metadata fields, and the

information associated with those fields. This information includes the display label and

text for the field, the input type, and flags indicating whether the field value is required

upon submission and whether or not the field can have multiple values. The second type

of data dynamically generated is the pre-populated values for the field, where the values

are the SloanSpace field values that map to the respective DSpace value. Thus the

storage element needed to store data containing the DSpace metadata fields and their

information, including the display information, the multiple and required flags, and the

SloanSpace - DSpace mapping information. In addition, once the file was submitted to

DSpace, the submit interface tagged the file so as to indicate that the file was already

submitted. In order to do this, the storage element then needed to store a record of the

files that were submitted to DSpace.

Now, recall the first scenario where Prof. Smith wants to search and retrieve files from

DSpace into the file storage area for his class. In particular, recall what happens once

Prof. Smith has clicked on the "Add File" link associated with a particular search result.

Illustrated below is a summary of this process:

Prof. Smith Retrie

o 0 clicks "Add looks'
File" link So

S
El

Updated File
Storage Area

The updated file storage area is displayed,
with the retrieved file newly added

ve Interface
up DSpace-
anSpace

torage
ement

Storage
Element

Interface adds the
file into the file-

storage component

-* SloanSpace File
Storage
Element

Retrieve Interface stores the extra
DSpace metadata values for the file

Figure 3-14: Retrieve process summary

36

The illustration above shows the need for the file transfer component's storage element to

additionally store two types of information. The first is the DSpace-SloanSpace

mapping, shown in the second step of the process. The second is the DSpace metadata

for the file being retrieved from DSpace, shown in the fourth step of the process.

In summary, the scenarios described above require the storage element to store the

following information. First, it needs to store the DSpace metadata fields and the

information associated with them. This information includes the display information, the

multiple and required flags, and the mapping information. Mapping information in both

directions, that is, SloanSpace field to DSpace field and DSpace field to SloanSpace field

needs to be stored since the submit interface uses the first type of mapping mentioned,

and the retrieve interface uses the second. Second, it needs to store a record of the files

being submitted to DSpace. And third, it needs to store the DSpace metadata information

for files retrieved from DSpace.

3.2.2 Generalizing the Data Model

The most important design decision for the data model was to structure the data in a way

that would easily allow other remote systems to integrate with SloanSpace. In order to

accomplish this task, the data stored needed to be generalized for any remote system, not

just DSpace, but still meet the data model requirements outlined in the previous section.

Thus, the data model requirements were modified as follows. First, instead of simply

storing the DSpace metadata fields and the information associated with them, the data

model was modified to now store any type of metadata field, from any system. This data

type is called metadatafields. However, since each field in metadatafields can now

belong to any system, the fields then needed to contain an extra property indicating which

metadata schema (or system) it belongs to. Second, instead of simply storing a record of

the files submitted to DSpace, the data model now stores records of files submitted to any

remote system. This data type is called metadatasubmissions. Like the

metadatafields data type, each record needed to contain an extra property indicating

which metadata schema (or system) the file was submitted to. Finally, instead of simply

37

storing the DSpace metadata information for files retrieved from DSpace, the modified

data model stores any remote system's metadata information for files retrieved from that

system. This data is called metadata_fieldvalues.

In addition, three other data types needed to be created to complete the generalized data

model. First, as described above, both the metadatafields and metadatasubmissions

contain an extra property that indicates which remote system the data belongs to. In

order to do this, an extra data type was created that stores all the remote systems

integrating with SloanSpace. This of course includes DSpace as one of its records. Let

us call this new data type, the metadataschemas. Second, the SloanSpace metadata

exists in several tables. For instance, the file title exists in one SloanSpace table, while

the file creator exists in another. Thus, the field mapping in the metadatafields can't

simply list the SloanSpace metadata field name. Instead, a new data type was created to

solve this problem, where each record contains the SloanSpace metadata field name and

the SloanSpace table and column that contains the value for that field. Let us call this

new data type, the ss metadatafields. Lastly, when other systems, along with DSpace,

are integrated with SloanSpace in the future, the metadata values of the retrieved files

coming from a remote system can be used in the pre-population step of the submission

process into another system. In order to be able to do this, a new data type was created

that stored mapping information between the fields of remote systems. This data type is

called metadata-mappings.

Thus, in summary, six data types (database tables) were created:

1. metadataschemas - stores information about the different metadata systems

integrated with SloanSpace.

2. metadatafields - stores the information about the metadata fields.

3. ssmetadata_fields - stores information about the SloanSpace file metadata. More

specifically, it gives the table and column locations of the metadata values.

4. metadatafieldvalues - stores the remote system metadata information for the

retrieved files

38

5. metadatasubmissions - stores the records of the file submissions to remote systems.

6. metadata-mappings - stores mapping information between the metadata of remote

systems.

SloanSpace, and in turn, the file transfer component, uses Oracle for its relational

database.

3.3 System Implementation Details

3.3.1 Search Interface

The main design decision made in developing the search user interface was to allow for

generality. That is, not only should the search interface enable users to search through

DSpace, but the design of the interface should also allow the search interfaces of other

remote systems to be easily built and integrated with the current search interface.

In the first scenario described in section 3.1, Prof. Smith has an option of searching

through both the DSpace and the Google domain. The search query page in which Prof.

Smith entered the query contained radio buttons indicating which domain to search

through. When Prof. Smith clicked on the search button, the interface then searched

through the proper domain, and returned the respective results. The only difference

between processes of searching DSpace and Google was in the step that fetches the

search results from the given domain, and the parsing of those results. The use of ACS

service contracts allowed for this task of developing a more generalized search interface.

ACS service contracts is a package available in OpenACS, and, in turn, is available in

SloanSpace. Service contracts provide a way to develop interfaces or contracts, which

can then be implemented by other packages. The contracts specify operations that

implementers are required to fill.

The search service contract contained a paged search operation, paged-search. This

operation takes as input a query string, a page number, and the number of results per

page. The output of this operation is the search results, indexed on the page number. The

39

number of search results returned is the number of results per page indicated in the input.

For instance, if the page number is 2 and the number of results per page is 5, then the

operation will return the 6 th through the 10 th search results. Each search result is an array

of three strings. The first value in the array is the string value for the title of the search

result document. The second value it the URL of the document. The third value is the

string containing the search result document description.

The DSpace search interface implements the search service contract, and therefore

contains a method that fulfills the contract requirements of the paged-search operation.

As the pagedsearch operation specifies, the DSpace paged-search operation takes as

input a query string, a page number, and the number of results per page. This method

then searches DSpace content via the DSpace SRW web service. The SRW web service

allows remote systems to search through DSpace, through its SRU (Search and Retrieve

URL service) service. Through SRU, remote systems can formulate search requests to

DSpace via a URL. The query URL consists of two parts, separated by a "?" symbol.

The first part specifies the SRW server location, and the second part specifies the query

string and other query options or elements, where each query option is separated by a

"&" symbol. Each search option contains the option tag followed by an "=" sign which

is followed by the option value. For example, using the first scenario in section 3.1, Prof.

Smith's query to search for content in DSpace containing the word "physics", starting

with the 3 rd search result, and returning a maximum of 5 results would be:

http://dspace-demo.mit.edu:8080/SRW/search/DSpace?query=phsyics&maximum

Records= 5&startRecord=3

The DSpace paged-search method makes the search request to DSpace by calling this

URL. The response returned by the SRW service is an XML document which contains

the search results and the Dublin Core metadata for the result. The method then parses

the XML document, using the XML parsing processes of the TCL Tdom package, in

order to obtain the Dublin Core metadata values for the result document's title,

description, and URL.

40

In order to further demonstrate the usability of the search service contract, a Google

search interface was also developed. The Google pagedsearch method implements the

paged-search operation of the service contract. This method searches Google content

through Google's SOAP-based web service. In particular, it calls the doGoogleSearch

SOAP request, and is returned a SOAP response, which is then parsed using the SOAP

methods of the TclSOAP package. The SOAP response returned by the Google web

service contains the title, the description, and the URL of the search results.

Thus, once Prof. Smith has clicked the "Search" button in the search query page, the

search interface calls the search service contract pagedsearch operation for specific

implementer, depending on which domain radio button was selected in the search query

page. Finally, the search results page displays the results of the paged-search operation.

3.3.2 Retrieve Interface

The "Create URL" method in SloanSpace simply takes in a title, description, and URL,

and adds that to the file storage area. Thus, once the "Add URL" is clicked, the retrieve

interface simply needs to call the "Create URL" method using the title, description, and

URL values returned in the search result.

The "Add File" interface on the other hand, can't simply take the values returned in the

search result, since it actually needs to fetch the contents of the file and the extra file

metadata. In order to this, the interface makes the SOAP requests to the DSpace

ItemAccessService SOAP-based web service. The ItemAccessService contains the

SOAP requests "retrieveltem" and "retrieveBitstream". The "retrieveltem" request asks

the service to return the Dublin Core metadata for the file, encoded in XML. The

"retrieveBitstream" request, on the other hand, asks the service to return the bitstream

content of the file. In order to know which file contents to return, both methods require

the SOAP service client to supply the file id, which is the file URL returned by the SRW

service.

41

Using the "retrieveltem" and "retrieveBitstream" SOAP requests, the "Add File"

component then works as follows:

process add-file (file_id)

1. titlefields = lookup metadata fields in metadata fields table

that SloanSpace title field maps to

2. descfields = lookup metadata fields in metadata fields table

that SloanSpace description field maps to

3. Initialize titlefieldsvalue, descfieldsvalue

4. xmldoc = retrieveItem(fileid)

5. namevalue-array = xml-parse(xml-doc)

a. xml-parse also sets titlefieldsvalue and

descfieldsvalue

6. bitstream = retrieveBitstream(fileid)

7. temp = createfile(bitstream)

8. upload-file(titlefieldsvalue,desc_fields-value,temp.loc)

9. add values in namevaluearray to metadatafieldvalues table

The first step of the process looks in the "metadata fields" table for the Dublin Core

metadata elements to which the SloanSpace title field maps to, and stores this list of

elements in an array. The second step does the same for the SloanSpace description field.

The third step initializes the variables titlefieldsvalue and descfieldsvalue, which

will contain the values that map to the SloanSpace title field and the SloanSpace

description field, respectively. Once these arrays are set and the variables are initialized,

step 4 then calls the "retrieveltem" SOAP request, which returns an XML file. Step 5

parses this XML file to get all of the file's Dublin Core metadata element name and value

pairs. During the XML parsing, if the metadata element being read is in the titlefields or

descfields arrays, then the value of this element is concatenated to the current

titlefieldsvalue or descfieldsvalue, respectively. Thus, after step 5, the

namevalue-array contains all the file's Dublin Core metadata name-value pairs, while

titlefieldsvalue contains the value for the file's SloanSpace title and descfieldsvalue

contains the value for the file's SloanSpace description. Step 6 then calls the

"retrieveBitstream" request, which fetches the bitstream content of the file. Step 7 saves

42

this bitstream content into a temporary file. Step 8 then calls the same file upload process

used when a SloanSpace user manually uploads a file into the file storage area, which

takes in the SloanSpace file title, the SloanSpace file description, and the file location.

Step 8 calls this process using titlefieldsvalue, descfieldsvalue, and the temporary

file location as the input. Finally, step 9 adds the file metadata values from the

namevalue-array into the "metadata field values" table.

3.3.3 Submit Interface

The most important process of the submit interface is dynamic generation of the pre-

population page, reached when a user clicks on the "Upload to DSpace" link the file area,

as shown in the second scenario in section 3.1. Recall from the second scenario, the

generated pre-populated page when Jane clicked on the "Upload to DSpace" link. A

portion of the screenshot for this page can be seen below:

* LRN ' DiphinsResearchGroil : File Storage : Dolphins Research Group's Files: Dolphins ResearchARNT" Paper : Upload to DSpace
My SPace Help Logout

Cc'-mnity Home cakedaf F4e stmrage Pe4p0e Admmn

Enter the author of the item.

Author FJane Jacobs dd More

Enter the title of the item.

Title Dolphins Research Paper

Enter the alternative title of the item.

Other Title dMore

Enter the publisher of the item,

Publisher Add More

Enter the publication date of the Item.

Publication Date 2R4-1 1-23

Enter the citation of the item.

Citation

Enter the language of th. item.

Done

The dynamic generation for this page works as follows: First, the submit interface looks

up the metadatafields table for all the fields and their corresponding field information.

For each field, the submit interface then generates an entry for the field, containing the

43

field label, the display text, an input element, and an optional "Add More" button,

depending if the field's multiple flag is true. Finally, the submit interface looks up the

SloanSpace - DSpace mapping of the field. If a mapping exists, then the interface looks

up the ssmetadatafields table for the SloanSpace table and column name containing

the SloanSpace mapped value for this field. It then calls the appropriate database query

to fetch this value, and pre-populates the field input element with this value. As shown

above, the author, title, and publication date are already pre-populated by the submit

interface.

Once the metadata values have been filled and the user has clicked on the "Upload to

DSpace" button, the submit interface generates the SOAP request to the DSpace

ItemlngestService SOAP-based web service. Three ItemIngestService SOAP requests

must be called in a particular order to submit the file into DSpace. The first SOAP

request is "depositltem", which deposits the file metadata, encoded in XML. Thus before

this SOAP request is made, the interface first encodes the metadata into XML. After

"depositltem" is called, the interface must then make the "depositBitstream" SOAP

request. This submits the file contents to DSpace, encoded as a base64 string. Finally,

the interface calls "depositComplete" which finalizes the file submission process.

If the "depositComplete" request returns true, indicating the success of the DSpace file

submission, the interface adds the file to the "metadata submissions" table, and then

redirects the user to a page displaying a message indicating the success of the file

submission.

4 Integrating the File Transfer Component with Other

Systems

The process for integrating another system with the file transfer component consists of

several steps. First, the file transfer component's database tables need to be filled with

the metadata information of the system being integrated. Then, the code that

communicates with the web service, both to submit and retrieve files from the system

44

remotely, must be provided. Lastly, a search service contract implementation that

searches through the system's domain must be implemented.

To demonstrate the process of integrating a system with the file transfer component, this

chapter will show the steps taken to integrate a sample repository called "JJ Digital

Repository".

4.1 Filling in the Tables Using the Add Schema Interface

The first step in making the integrating involves filling in the file transfer component's

database tables with the metadata information and metadata mappings of the system

being integrated. In order to simplify this process, an "Add Schema" user interface was

developed. This interface queries the user for the metadata information of the system

being integrated then adds the information to the database.

For instance, suppose Jane Jacobs now wanted integrate the "JJ Digital Repository" with

SloanSpace. Say that the metadata for the files in her system contain three fields each -

author, description, and language, where the language can only be either English or

Spanish. Furthermore, say that author was a required field, and that it could contain

multiple values. In other words, the file can have multiple authors. The process would

then proceed as follows:

First, Jane goes to the main "Add Schema" page, and enters the schema name and the

number of metadata fields of the schema. This page is shown in the following

screenshot:

45

l tk)L*ee go *Dd--aks Tools Help _

2 ht/tp:)etak.nt.edu:8O3/dotirne-slagescema-add

a ipreftx $prt UPlug- FAQ

.LRN~S JaneJacobs

My Space Help Logout

My Space My Calendar My Files Control Panel

Add Schema

Schema Name: JDlgital Repository

Number of Fields: 3

Add Schema Add Schema Help

My Space My Calendar My Files Control Panel

dotLRN Horne I dotRN Proect Central I Chance Locals

Do"e

Figure 4-1: Adding a schema

Then, Jane clicks on the "Add Schema" button to proceed to the field addition page.

Here, Jane fills out the appropriate field information. The field information consists of

the field name, the SloanSpace mapping, the mapping type, the required field flag, the

multiple values flag, the display name, and the display type, as shown in the following

screenshot:

46

le Edt aew go okmarks Tools Help

6A http:jA ekme.mt.edu:S003/dotirnie-storageschema-add elds?schema id21num fields-3

* foHel Q Firefox Stpct 3Plkg-n FAQ ____________

.LRN" Jan -Jacob-
My Space Help Logout

My Space My Calendar My Files Conro Panel

Add Fields

Field 1 Name: author

SloanSpace Mapping: A Mapping Type: BothWays

Required: ves Has Multiple Values? Yes

Display Name: r
Display Type: 4&Text Field OText Area OSelect List # of Optons ___

Field 2 Name: ecrIpion
StoanSpace Mapping: De sciption Mapping Type: [Boih Ways

Required:EN Has Multiple Values? No

Display Name: Descnpbon

Display Type: O Text Field 0Text Area O Select List: # of Options:=

Field 3 Name: language

SloanSpace Mapping: [N0ne Mapping Type: Both Ways

Required: [Ho -as Multiple Values? No

Display Name: Language

Display Type: O Text Field 0 Text Area 0 Select List: * of Options
2

Submitand Contnue Add Schema Help

My Space My Calendar My Files Contro Panel

dotLRN Home I dotLN Project Ckntral I Chlange Loca

Figure 4-2: Adding field information

Once Jane, has filled out the field information, she then clicks on the "Submit and

Continue" button. Clicking on this button will then direct Jane to the next page, which

queries her for the field display information which is used in the submit interface's pre-

populated metadata field query page. Here in the following screenshot is this field

display information query page, with the appropriate information filled out:

47

lane
Figure 4-3: Adding field display information

Finally, Jane clicks on the "Submit" button to finish the process. The following

screenshot shows the page that indicates the success of the submission:

48

le Ebt vew Go &oaoarks TodI &tIp

- - 0*fjm/f~e/fne -a i-t ds-c -2- htp:/hese tedu. so3dtm sage/schema-ad esOat sca-1nmopss-2

Firefoxw ep Frefoxsuport MPkg-eiFAQ

.LRN Jane Jacobs

My Space Help Logout

My SpAe My Calendr My Fres Conrie Panel

Add Fields (cont.)

Field Name: author
Display Text: Enter author here.

Error Text: Please enter author.

Text Field Size: 70

Field Name: description

Display Text: Enter description here.

Error Text: Please enter description

Text Area Rows: Columns: 5]

Field Name: language

Display Text: Peseselectalanguage.

Error Text: You mustselec alanguage.

Option Text: English Value: eng

Option Text: Spanish Value: spa

Add Schema Help(Subit

My Space My Calendar My Fies Convral Panel

dotLRN ome I dotmRN Protect Central I Change Locate

Fe Edit iew Go Ioolmarks ots tHelp

Shttp:jjhekeit. duJ 03/dom -ogescma-add-eds-done

FwefoxHelp i Frefox Support 3Plug-tnFAQ

.LRNc JaneJacobs
My Space Help Logout

Uy Space My Calendar My Files Control Panel

You have succesfully submitted the schema.

Back to File Storaoe

My Space vy Calendar My Files Contol Panet

dotLRN Home I dotLAN Project Centrai Change Locale

Figure 4-4: Add schema success

This process creates the data necessary for the integration. Through this process, the

submit interface can now dynamically generate the metadata entry page, using the fields

in this schema. To demonstrate this, here is a demo page that will generate the metadata

entry page for a file.

F4e Ed& View go Bookmarks Tools tUep1 'dhttpfAieke lftt edu:.l oOndusioiOwsesearchoe-Lp/irage/Sieaa4,lsad?f~e d=39168 J
Fire fox Help JF-1refox Support I NFA

.LR NI m Dolphins Research Group Jane Jacobs

___ _______________________ ___ _____________ my Space Help Logout

Comenity lte Calendar Fie Storage Prope Admin

Upload File to Schema: JJDiital R osito Upload to Schema
DSpace

conit me j DS2ce-MODS e ic

dotLRN Home I dotLRN rogcit Centrae I Chance Locae

Done

Figure 4-5: View new schema metadata

This page, created simply for the purpose of demonstrating the "Add Schema"

functionality, allows a user to choose which system to upload the file to. To show that

49

the "Add Schema" worked for the JJ Digital Repository Jane created, the JJ Digital

Repository option is selected. Once the "Upload to Schema" button it now clicked, the

dynamically generated metadata entry page for a JJ Digital Repository file submission is

displayed. Here below is a screenshot of that page:

Ek fAIt !ew Go *ookarks lpoas telp

htp/eeteu8003idotidubs/dolphnseseardiwoup/Se ct-,ra4;e/neta-iw;. ied -396aem

Firefox He Firefox Sutport PW-o FAQ

.LRN DolpHis Rsearch Gr up File Storaqe Dolphins Research Groups Files Dolphins Research Paper Jane Jacobs
:Upload to DSpace

My Space Help Logmut

C4xommrty Homw Caendar f storage Peop;* Acdn

Enter author here.

Author Jane Jacobs Add More

Enter description here.

paper

Description

Please select a language.

Language English

Save | Cc0 Upload toJJ Digital R

Commmity Hoe cuendar Fie storage PeeAdn
H~m" Calendar Flei mePepl

dotLRN. Home I dotLRN Proiect Centre! I Chane Locale

Figure 4-6: New schema metadata page

Note that the author field was pre-populated with the SloanSpace author field, which Jane

indicated during the "Add Schema" process. In addition, note that the author entry input

is a text box, while the description input is a text area, and the language entry input is a

select list. Furthermore, the author entry contains an "Add More" button since this field

was specified to allow multiple values.

50

4.2 Providing the Code for the Submit and Retrieve Interfaces

Once Jane has added the metadata schema and fields to the database, she must now

provide the code that communicates with the "JJ Digital Repository" web service. This

code makes the necessary calls to the web service in order to submit the file into the

repository. For example, say that the web service contains the SOAP method

"submitToJJ" that takes in the base64 encoded content and the values for the metadata

field. Jane would then need to create a file with the code that does the following:

* create SOAP request for "submitToJJ"

* encode the file content into base64

* call the SOAP request with the base 64 content and the metadata values

Then, Jane would need to specify, in meta-submit.tcl (which can be found in the

appendix), to redirect to this file when the "Upload" button is clicked and the schema id

equals the schema id for the "JJ Digital Repository" schema.

Similarly, Jane would need to add the code that retrieves a file from the repository, via

the web service. For instance, say that the web service contains two SOAP methods

"retrieveMetadataFromJJ" and "retrieveContentFromJJ", that both take in a file id. The

"retrieveMetadataFromJJ" method returns the file metadata and the

"retrieveContentFromJJ" returns the base 64 encoded file content. Jane would then need

to create a file with the code that does the following:

* create SOAP request for "retrieveContentFromJJ"

* call the SOAP request for "retrieveContentFromJJ" with the file id

* save the content into a temporary file

* create SOAP request for "retrieveMetadataFromJJ"

* call the SOAP request for "retrieveMetadataFromJJ" with the file id

e add the temporary file into the file storage area, and use the title and description fields

returned by the "retrieveMetadataFromJJ" method

51

* add the metadata values returned by the "retrieveMetadataFromJJ" method into the

metadatafieldvalues table

4.3 Implementing the Search Service Contract

The last component needed to complete the integration is the implementation of the

search service contract. Like both the DSpace and Google implementations, Jane needs

to create a "JJ Digital Repository" implementation that contains a paged-search operation

that takes in a query string, a page number, and the number of results per page. The

operation then searches "JJ Digital Repository" content via the repository's web service.

Finally, it returns the parses then returns the search results, returned by the web service.

5 System Testing and Analysis

This section describes the tests run to measure the effectiveness of the file transfer

component, and discusses the results of the tests.

5.1 Testing the File Transfer Component

To show the effectiveness of the search and retrieve interface, a test was conducted using

the first scenario. The test comprised of running the task in the first scenario, first

without using the file transfer component, and then using the file transfer component.

Recall that the task consisted of searching for the word "physics" in DSpace, and then

adding the search result entitled "The Conceptual Structure of Physics" into the file

storage area. The times it took to accomplish the task both without the file transfer

component with the file transfer component were recorded and compared.

To show the effectiveness of the submit interface, a similar test was conducted, this time

using the second scenario. Recall that the task of the second scenario consisted of

submitting a file that was already in SloanSpace into DSpace. Like the first test for the

search and retrieve interface, this test comprised of running the task in the second

scenario first without using the file transfer component, and then using the file transfer

52

component. The times it took to accomplish the task without the file transfer component

and with the file transfer component were recorded and compared.

Note that the file transfer component tests were done on a development version of

SloanSpace, and not the actual deployed version of SloanSpace. Furthermore, the tests

were run against a development DSpace web service.

5.2 Results of the Tests

Below are summary of results obtained from three users: (Note that the time is recorded

in minutes).

Here first are the results from the search and retrieve test:

Search and Retrieve Test

Time w/o Time w/ (Time w/ component) /

component component (Time w/o component)

3:16 1:25 .434

4:07 1:34 .381

2:15 1:03 .467

Table 5-1: Results for the search and retrieve test

Here now are the results from the submit test.

Submit Test

Time w/o Time w/ (Time w/ component) /

component component (Time w/o component)

4:50 2:43 .562

3:58 2:25 .609

4:40 2:26 .521

Table 5-2: Results of the submit test

53

The results for the search and retrieve test, shown in Table 1, show that using the file

transfer component speeds up the task in the first scenario significantly. On average,

ratio of the time to accomplish the task with the component to the time to accomplish the

task without the component is .427:1. Thus, using the file transfer component cuts the

time to accomplish the task without the component by 57%, which is a little more than

half.

The results for the submit test, shown in Table 2, also show a significant decrease in time

spent performing the task in the second scenario when using the current system without

the file transfer component vs. using the file transfer component. On average, the ratio of

the time to accomplish the task with the component to the time to accomplish the task

without the component is .564:1. Thus, using the file transfer component cuts the time to

accomplish the task without the component by 44%, which is a little less than half.

5.3 Discussion of the Test Results

The test results show that the search and retrieve interface significantly cuts down the

time to search DSpace, and to place the search results into the respective file storage area.

Several factors contribute to this improvement. First, the user performing the search need

not leave the SloanSpace environment. So time is no longer spent switching between the

two environments. Second, with the file transfer component, the user no longer has to

save the file into the local computer. And third, the user no longer has to fill in the

information for the uploaded file. Recall that when uploading a file into SloanSpace, the

user has to fill out the title, description, and file location (in the local computer). When

using the file transfer component, this information is filled in automatically. Thus a

significant amount of time is saved.

The results also show that the submit interface significantly cuts down the time to submit

a file into DSpace, if the file was already uploaded into SloanSpace. This is again due to

several factors. First, as in the search and retrieve interface, the user performing the

54

submission need not leave the SloanSpace environment. And second, the file transfer

component pre-populates the metadata so that users no longer have to fill in data that

SloanSpace already keeps track of.

More importantly however, the results show the usefulness of interoperability between

SloanSpace and DSpace, and more generally, the interoperability between systems and

repositories. This project shows integrating SloanSpace with DSpace allows for faster

file transfers between the two systems by using the data already stored by the systems,

cutting down time to accomplish the tasks approximately by half.

6 Future Work

6.1 System Deployment

The file transfer component currently runs on a development version of SloanSpace, and

communicates with a development version of the DSpace web services. The hope for the

future is for this component to actually be deployed and used in the deployed version of

SloanSpace.

However, in order for the file transfer component to be deployed, two major issues need

to first be addressed. The first issue deals with authentication. Currently, users who wish

to submit files into DSpace must be registered DSpace users. With the file transfer

component however, any SloanSpace user can submit files into DSpace. DSpace has no

way to authenticate the users who are submitting files to their system if the users submit

files through the SloanSpace file transfer component. In order then for the system to be

deployed and used, a component must be developed that allows DSpace to authenticate

and authorize the user before performing any file transfer operations.

The second issue deals with which DSpace collection the files go to when submitted via

the file transfer component. Currently, in DSpace, when a user wishes to submit a file, he

first specifies which DSpace collection he wants to add the file in. The file transfer

55

component currently submits all files into a demo collection. An example solution to this

problem would be for DSpace to create a collection specifically for files coming in from

SloanSpace. Using this, the file transfer component would then only need the

identification for this collection. Although this simplifies the process, it is not very

flexible and not very organized, since papers from SloanSpace can be very varied, as they

can come from different SloanSpace communities. Another potential solution to this

problem would be for the file transfer component to provide the users with a list of

DSpace collections, and have the user choose the collection he wishes to add the file to.

The problem with this is that certain collections can be restricted, and so there must also

be a way to know which collections can be accessed.

6.2 Integration with Other Systems

Future work can also be directed towards integrating more systems with SloanSpace.

The architecture of the file transfer component allows this to be done easily, as shown in

chapter 4. For example, a useful integration would be to integrate OpenCourseWare with

DSpace. OpenCourseWare is a system that places MIT course materials on the web for

free. The course materials are not the materials of the current semester, but the material

of a past semester. Thus, in order to construct an OpenCourseWare page, it would

simplify the process if material from SloanSpace could be transferred easily into

OpenCourseWare. Integration could also be made with other digital repositories. This

would enable users to search through more domains.

56

References

[1] SloanSpace. http://sloanspace.mit.edu

[2] DSpace. http://dspace.mit.edu

[3] .LRN. http://www.dotlm.org

[4] OpenACS. http://www.openacs.org

[5] DublinCore. http://www.dublincore.org

[6] OpenCourseWare. http://ocw.mit.edu

[7] IMS Global Learning Consortium. http://imsglobal.org

[8] OKI - Open Knowledge Initiative. http://www.okiproject.org

[9] K. Riley and M. McKell. "IMS Digital Repositories Interoperability - Core Functions

Information Model." 13 January 2003. 8 December 2004.

http://www.imsglobal.org/digitalrepositories/drivlpO/imsdri infov1pO.html#1263439

[10] "About the Open Knowledge Initiative." 26 July 2004. 8 December 2004.

http://www.okiproject.org/documents/About%200KI.pdf

[11] "Managing Complexity and Surviving Technology Change".

Massachusetts Institute of Technology. 2004. 8 December 2004.

http://www.okiproject.org/documents/OKIManagingComplexity rel 1 0.pdf

[12] TclSOAP. http://tclsoap.sourceforge.net

[13] TDom. http://www.tdom.org

57

A Database Tables
- The table contains the metadata schemas used by the system.
- Each row in the table contains the schema name and the table
- name of the schema table. (The schema table is the table containing

- information for that specific schema. For every schema added, a

- new schema table is created.)

create table metadataschemas (
schemaid int

con
pri

schema-name var

eger
straint metadata schemastablename-pk
mary key,
char(100)
astraint metadata-schemasnamenn
null

create sequence seqgschemaid start with 1 increment by 1;

create or replace trigger trg-schema_insert
before insert on metadataschemas
for each row

begin
if :new.schema id is null then
select seq-schemaid.nextval into :new.schemaid from dual;
end if;

end;

-- This table will contain the SloanSpace metadata. Each row contains
-- the SS metadata name, the original SloanSpace table or view,
-- and the column that the field is mapped to.

create table sloanspace-filemetadata (
fieldname varchar(50)

constraint ssfilename-pk
primary key,

mappingtable-orview varchar(50),
--table or view name of column to which this field is

mapped to
mapping-col-name varchar(50)

--column name

-- This table contains the fields and the field information for the Dublin

-- Core metadata schema. It is specific to the Dublic Core schema. Each

-- row contains the field id, the field name, the SloanSpace metadata field
-- that the Dublin Core field is mapped to, and the mapping certainty value,
-- which specifies how certain the mapping is between the two fields.

create table metadata-fields
fieldid

fieldname

pretty-name

schemaid

mapping-ss-field

integer
constraint metadata-fieldsfield_id-pk
primary key,
varchar(50)
constraint metadatafieldsnamenn
not null,
varchar(100)
constraint metadata-fields-prettynamenn
not null,
integer
constraint metadata fieldsschemafk
references metadata schemas
constraint metadata fieldsschemann
not null,
varchar(50)
constraint metadata-fields-mapping-fk
references sloanspace-filemetadata,
--table or view name of column to which this field is

58

map-type

display-text
display type

display-attributes

display-elements

errortext

required

multiple

--mapped to
integer
constraint metadatafieldmap-typeck
check (map-type in (1,0,-i)),
--map type = 1 if from field to ss, 0
-- if both to and from, and -l if from ss to field
varchar(200),
varchar(30),
-- type of input display, e.g. text, textarea, select,
-- radio, etc.
-- displaytype will be inside <display-type> and
-- </display-type>
varchar(200),
-- attributes of the display, ex. for textarea rows=3
-- cols=50, etc.
-- ex. <display-type display-attributes></display-type>
varchar2 (4000),
-- elements of display (for select lists)
-- ex. <display-type
-- display-attributes>display-elements</displaytype>
varchar(500),
-- text displayed field is required, but left empty
char(1)
default 'f'
constraint metadatafields-requirednn
not null
constraint metadata-fields-requiredck
check (required in 't','f')),
-- indicates whether or not the field is required upon
-- submission
char(1)
default 'f'
constraint metadatafields-multiplenn
not null
constraint metadatafields-multipleck
check (multiple in ('t','f'))

create sequence seq-fieldid start with 1 increment by 1;

create or replace trigger trg-field-insert
before insert on metadatafields
for each row

begin
if :new.fieldid is null then
select seq-fieldid.nextval into :new.fieldid from dual;
end if;

end;

create table metadatafieldvalues
fileid integer

constraint metadata valuesfileid-nn
not null,

fieldid integer
constraint metadatavaluesfieldidnn
not null,

fieldvalue varchar2(4000),
schemaid integer

constraint metadata values schema nn
not null

--map type = 1 if from field_1 to field 2, 0 if both to and from, and
to field 1
create table metadataschema-mappings

fieldid_1 integer
constraint metadata-mappings-fl-nn
not null,

schemaid_1 integer
constraint metadata-mappings-sl-nn

-1 if from field 2

59

not null,
integer
constraint metadata-mappings-f2_nn
not null,
integer
constraint metadata-mapings-s2_nn
not null,
integer
constraint metadata-mappings-ck
check (maptype in (1,0,-l))

create table metadatasubmissions (
fileid integer

constraint
references
constraint
not null,

schema-id integer
constraint
references
constraint
not null

metadata-subm fileidfk
critems
metadata-subm fileidnn

metadatasubm schemafk
metadataschemas
metadatasubm schemann

-- VIEWS --

create
as

or replace view metadatafileview

select i.itemid as fileid,
i.name,
r.title as file-name,
r.publish-date,
r.description,
r.content,
r.contentjlength,
r.mime-type

from cr_items i, cr-revisions r
where i.liverevision = r.revision-id;

create
as

or replace view metadata_user_view

select o.object_id as filejid,
p.first-names II ' ' I1 p.last_name as fullname

from acs-objects o, persons p
where o.creationuser = p.person_id;

- DATA --

-- insert the sloanspace file metadata

insert into sloanspacefile_metadata values ('author','metadatauserview','fullname');
insert into sloanspace filemetadata values ('title','metadatafile view','name');
insert into sloanspace_filemetadata values
('publishdate','metadata file-view','publishdate');
insert into sloanspacefilemetadata values
('description', 'metadata_fileview', 'description');

60

fieldid_2

schemaid_2

maptype

B Critical Source Code

B.1 dspace-get.tcl
adpage-contract {

Add File From DSpace

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 1 Apr 2004

folder_id:integer,notnull
schemaid:integer,notnull
{itemID:trim none)
{title:trim ""}
{description:trim ""}

} -validate {
valid-folder -requires {folderjid:integer} {

if ![fs_folder_p $folderid] {
adcomplain "[file-storage.ltThe-specified-parent_]"

}

set oldtitle $title
set olddesc $description
set title ""
set description

set context [fscontextbarlist -final "Add File From DSpace" $folderid]

#get the dspace-export file
#base this on file title or filename (however dspace web service is formatted)
#set content [util-httpget http://web.mit.edu/gtcuevas/Public/export.txt]

DSPACE WEB SERVICE CALL
::SOAP::create GetFile \

-uri "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService" \
-proxy "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService "\

-name "retrieveItem" \
-action "" \
-params { epersonID string itemID string }

set personid rrodgers@mit.edu
set itemid http://hdl.handle.net/123456789/23
if [catch {set contentencoded [GetFile $personid $itemid]} errmsg] {

adreturn-complaint 1 "Error getting the file from DSpace"
ad-scriptabort

}
set content [::base64::decode $content_encoded]

#get the field name of the fields that map to ss title and description
set titles \

[db_list gettitles \
"select fieldname from metadatafields where mapping-ss-field='title' and

schema-id=$schemaid and (map-type=l or map-type=0)"]
set descriptions \

[dblist get-desc \
"select fieldname from metadatafields where mapping-ss-field='description' and

schema-id=$schema-id and (map-type=l or map-type=0)"

4parse export file
if { [catch (dom parse $content doc} errMsg] }

return

61

set root [$doc documentElement]

set modsfield
set modsvalue
set file_loc "
set filemd [list]

foreach child [$root childNodes]
set childName [$child nodeName]
lappend filecontent $childName
if [string equal $childName fileSec] {

foreach fileSecChild [$child childNodes]
if [string equal [$fileSecChild nodeName] fileGrp]

foreach fileGrpChild [$fileSecChild childNodes]
if [string equal [$fileGrpChild nodeName] file]

set parsedfileloc [$fileGrpChild getAttribute OWNERID noval]
if { ![string equal $parsed-filejloc noval] }

if { ![string equal $parsedfileloc ""}
set fileloc "$parsed-fileloc"

elseif [string equal $childName dmdSec]
foreach dmdChild [$child childNodes]

set dmdChildName [$dmdChild nodeName]
if [string equal $dmdChildName mdWrap]

foreach mdChild [$dmdChild childNodes]
set mdChildName [$rndChild nodeName]
if [string equal $mdChildName xmlData]

foreach field [$mdChild childNodes]
set mods-field
set mods value
set fieldName [$field nodeName]
lappend md-content $fieldName
if j [llength [$field childNodes]] 11 11

set field-child [$field firstChild]
parse the mods fields
if [string equal $fieldName mods:abstract]

if [string equal [$fieldchild nodeType] TEXT-NODE]f
set mods-field description-abstract
set mods-value [$field text]

elseif [string equal $fieldName mods: accessCandit ion]{
if I [$field hasAttrihute xlink:simpleLink] == 11{

if [string equal [$field-child nodeType] TEXT-NODE]

set mods-field rights-uri
set mods-Value [$field text]

elseif I [string equal [$field getAttribute type
naval] "useAndRepraducatian"] II

if [string equal [$field-child nodeType] TEXT-NODE]

set mods-field rights
set mods-value [$field text]

}

Ielseif [string equal $fieldName mods:classification]
set attr-val [$field getAttribute authority naval]
if [string equal [$field-child nodeType] TEXT-NODE]

if [string equal $attrval ddc
set mddsdhield subject[ddc
set modsdValue [$field text]

ifelseif [string equal $attrval cc]
set msdstfield subject_1cc

set todssvalue [$field text]
) elseif [string equal $attrval lcsh]

62

set mods-field subjectlcsh
set mods_value [$field text]

} elseif [string equal $attrval mesh]
set mods-field subjectmesh
set mods-value [$field text]

elseif [string equal $attrval local]
set modsfield subject-other
set mods-value [$field text]

elseif [string equal $attrval noval] {
set modsfield subject-classification
set mods-value [$field text]

elseif [string equal $fieldName mods:extension]
if [string equal [$fieldchild nodeType] ELEMENTNODE]

if [string equal [$field-child getAttribute encoding

naval] iso8601]I
if { [llength [$field-child childNodes]] == 11 {

set element-child [$field-child firstChild]
if [string equal [$element-child nodeType]

TEXTNODE]
set element_name [$field-child nodeName]
if [string equal $elementname

mods:dateAccessioned]
set modsfield dateaccessioned
set mods-value [$fieldchild text]

} elseif [string equal $elementname

mods:dateAvailable] {
set mods-field dateavailable
set modsvalue [$fieldchild text]

elseif [string equal $elementname
mods:dateSubmitted]

set modsfield datesubmitted
set modsvalue [$fieldchild text]

elseif [string equal $fieldName mods:genre]
if [string equal [$fieldchild nodeType] TEXT_NODE]

set modsfield type
set mods-value [$field text]

elseif [string equal $fieldName mods:identifier] {
set attr-val [$field getAttribute type noval]
if [string equal [$fieldchild nodeType] TEXTNODE]

if [string equal $attr-val govdoc] {
set mods-field identifier-govdoc
set mods-value [$field text]

elseif [string equal $attr_val isbn]
set mods-field identifierisbn
set mods-value [$field text]

elseif [string equal $attrval ismn]
set modsfield identifierismn
set mods-value [$field text]

elseif [string equal $attr-val issn]
set mods-field identifierissn
set mods-value [$field text]

elseif [string equal $attrval local]
set mods-field identifierlocal
set mods-value [$field text]

elseif [string equal $attrval sici]
set mods-field identifiersici
set mods-value [$field text]

} elseif [string equal $attrval uri] {
set mods-field identifieruri
set mods value [$field text]

} elseif [string equal $attr_val noval]
set mods-field identifier

63

set mods-value [$field text]

} elseif [string equal $fieldName mods:language]
if [string equal [$fieldchild nodeType] ELEMENTNODE]

if [string equal [$field-child nodeName]
mods:languageTerm] {

set element-attr [$field-child getAttribute
authority noval]

if { [llength [$fieldchild childNodes]] == 11 {
if [string equal [[$field-child firstChild]

nodeType] TEXTNODE]
if [string equal $element-attr rfc3066]

set modsfield language-iso
set modsvalue [$field-child text]

elseif [string equal $elementattr
noval]

set modsfield language
set mods-value [$field-child text]

elseif [string equal $fieldName mods:name]
if [string equal [$fieldchild nodeType] ELEMENT-NODE]

if [string equal [$field-child nodeName]
mods:namePart]

if { [llength [$field-child childNodes]] l}
if [string equal [[$field-child firstChild]

nodeType] TEXTNODE] {
set mods-field contributor
set mods-value [$field-child text]

elseif [string equal $fieldName mods:note]
if [string equal [$field_child nodeType] TEXTNODE]

if { [$field hasAttribute xlink:simpleLink] == 1} {
set mods-field descriptionuri
set mods-value [$field text]

else {
set attr-val [$field getAttribute type noval]
if [string equal $attr-val provenance] f

set modsfield description-provenance
set mods-value [$field text]

} elseif [string equal $attr-val sponsorship]
set modsfield description-sponsorship
set mods-value [$field text]

elseif [string equal $attr-val "statement of
responsibility"]

set mods-field
description statementofresponsibility

set mods-value [$field text]
} elseif [string equal $attr-val noval] {

set modsfield description
set mods-value [$field text]

} elseif [string equal $fieldName mods:originInfo]
if [string equal [$field-child nodeType] ELEMENT-NODE]

if I [llength [$field-child childNodes]] == 11 j
if [string equal [[$fieldchild firstChild]

nodeType] TEXTNODE] {

654

encoding noval]

mods:copyrightDate]

mods:dateCreated]

mods:dateIssued]

mods:dateother] {

mods:publisher] {

nodeType] TEXT-NODE]

mods:form] {

mods:internetMediaType]

host]

mods:part]

1) {

ELEMENTNODE]

nodeName] mods:text]

identifier-citation

set attr-val [$field-child getAttribute

set element-name [$field-child nodeName]
if [string equal $attrval iso8601]

if [string equal $element-name

set modsfield datecopyright
set mods_value [$fieldchild text]

elseif [string equal $elementname

set modsfield date-created
set modsvalue [$fieldchild text]

elseif [string equal $element-name

set modsfield dateissued
set mods_value [$fieldchild text]

elseif [string equal $element-name

set modsfield date
set modsvalue [$field-child text]

elseif [string equal $attr-val noval]
if [string equal $elementname

set modsfield publisher
set mods_value [$fieldchild text]

}
elseif [string equal $fieldName mods:physicalDescription]

if [string equal [$fieldchild nodeType] ELEMENT-NODE]

if { [llength [$field-child childNodes]] == 1) {
if [string equal [[$fieldchild firstChild]

set element-name [$field-child nodeName]
if [string equal $elementname mods:extent]

set mods-field format-extent
set modsvalue [$field-child text]

elseif [string equal $elementname

set mods-field format
set mods_value [$field-child text]

elseif [string equal $elementname

set modsfield formatmimetype
set mods_value [$field-child text]

elseif [string equal $fieldName mods:relatedItem] {
if [string equal [$field-child nodeType] ELEMENT-NODE]

if [string equal [$field getAttribute type noval]

if [string equal [$field-child nodeName]

if { [llength [$field-child childNodes]] ==

set textnode [$field-child firstChild]
if [string equal ($text-node nodeType]

if [string equal [$text_node

set modsfield

65

}

set mods-value [$text_node text]

} elseif [string equal [$field getAttribute type
noval] noval] {

if [string equal [$fieldchild nodeName]
mods:title]

set modsfield relation
set mods-value [$field-child text]

elseif [string equal [$field-child nodeName]
mods:location]

if { [llength ($fieldchild childNodes]] ==

1} {
set url-ele [$fieldchild firstChild]
if [string equal [$url-ele nodeName]

mods:url]
set mods-field relationuri
set mods_value [$url-ele text]

elseif string equal [$fieldchild nodeType]
TEXTNODE]

set attr-val [$field getAttribute type noval]
if [string equal $attr-val constituent]

set mods-field relation-haspart
set mods value [$field text]

elseif [string equal $attr-val otherVersion]
set mods-field relationversion
set modsvalue [$field text]

elseif [string equal $attr-val original]
set modsfield relationisbasedon
set modsvalue [$field text]

elseif [string equal $attr-val otherFormat]
set mods-field relation isformatof
set modsvalue [$field text]

} elseif [string equal $attryval host]
set mods-field relation-ispartof
set modsvalue [$field text]

elseif (string equal $attr-val series]
set modsfield relation-ispartofseries
set mods_value [$field text]

elseif [string equal $attr-val isReferencedBy] {
set mods-field relationisreferencedby
set modsvalue [$field text]

elseif [string equal $attr-val succeeding]
set mods-field relation-isreplacedby
set modsvalue [$field text]

} elseif [string equal $attr-val replaces]
set mods-field relation-replaces
set mods_value [$field text]

elseif [string equal $attr-val requires]
set modsfield relation-requires
set mods_value [$field text]

elseif [string equal $attrval original]
if I [$field hasAttribute xlink:simpleLink] ==

1} {
set modsfield source-uri
set mods-value [$field text]

else {
set modsfield source
set mods-value [$field text]

} elseif [string equal $fieldName mods:subject] I
if [string equal [$field_child nodeType] ELEMENTNODE]

66

if { [llength [$field-child childNodes]] == 1 } {

if [string equal [[$field_child firstChild]
nodeType] TEXTNODE]

set element-name [$fieldchild nodeName]
if [string equal $elementname

mods:geographic] {
set mods-field coveragespatial
set mods-value [$field-child text]

elseif [string equal $elementname
mods:temporal]

set mods field coverage-temporal
set modsvalue [$fieldchild text]

elseif [string equal $element-name
mods:topic]

set modsfield subject
set modsvalue [$field-child text]

elseif [string equal $fieldName mods:tableOfContents]
if [string equal [$fieldchild nodeType] TEXTNODE] {

set modsfield type
set mods-value [$field text]

elseif [string equal $fieldName mods:titleInfo]
if [string equal [$field_child nodeType] TEXTNODE] {

set attr-val [$field getAttribute type noval]
if [string equal $attr-val alternative] {

set modsfield titlealternative
set modsvalue [$field text]

elseif [string equal $attrval noval] {
set mods-field title
set mods-value [$field text]

elseif { [llength [$field childNodes]] == 21 {
if [string equal $fieldName mods:name] {

set role-ele [$field firstChild]
set namePart-ele [$field lastChild]
if [string equal [$roleele nodeName] mods:role {

if [string equal [$namePartele nodeName]
mods:namePart]

if { (llength [$role-ele childNodes]] == 1{
set roleTermele [$role ele firstChild]
if [string equal [$roleTermele nodeName]

mods:roleTerm] {
if [string equal [$roleTermele

getAttribute type noval] text] {
set role_term [$roleTermele text]
if [string equal $roleterm advisor]

set mods-field
contributor-advisor

set mods-value [$namePart-ele
text]

elseif [string equal $role-term
author]

set modsfield contributorauthor
set mods-value [$namePartele

text]
} elseif [string equal $role-term

editor]
set mods-field contributoreditor
set mods-value [$namePartele

text]

} elseif [string equal $role-term
illustrator] {

set modsfield
contributor-illustrator

67

set mods-value [$namePart ele

text]
} elseif [string equal $role-term

other]
set mods-field contributorother
set mods-value [$namePart-ele

text]

if ! [string equal $mods-value"]
lappend filenmd [list $rnods-field $mods-value]
if { [search -exact $titles $mods-field] !=-1l}

append title "$mods-value

if {[lsearch -exact $descriptions $mods-field) -11f
append description "$mods-value

DSPACE WEB SERVICE CALL

..SOAP::create GetContent \
-uri "http: //dspace- 14. mit. edu: 80 80/axi s/ services/ ItemAcces sServi ce"
-proxy "http: //dspace-14. mit. edu: 8 080/axi s/services/ ItemAccessService "

-name "retrieveBitstream"\
-action "
-params I epersonlD string bitstreamID string

set bitstream -content [GetContent $personid $file-loc]
set tempfilejloc [acs Troot-dir)/packages/ file-storage/www/dspace-temp/tempf ile
set out [open $tempfilejloc w]
fconfigure $out -translation binary
puts -nonewline $out [::base64::decode $bitstream-content]
close $out

add the file into sloanspace

Check for write permission on this folder
ad-require-permission $folderjid write

Get the user
set user-id [ad conn user-id]

Get the ip
set creation-ip [ad-conn peeraddr]

Get file mime-type
set mime-type [cr-filename-tojo-ime-type -create $filejloc]

Get the filename part of the upload file
if f ! regexp f [^//\\]+$I $filejloc filename]

#no match
set filename $file-lbc

4~Get the title
if I [emptystringp $title]

set title $filename

68

#db calls
dbtransaction

set file_id [dbexec-plsql new_lob_file [}]
set versionid [db-exec-plsql newversion {}]
dbdml lobcontent {} -blobfiles [list $tempfileloc]
Unfortunately, we can only calculate the file size after the lob is uploaded
dbdml lobsize {}

if { [string is false [permission::permission-p -party-id $userid -objectid
$folderid -privilege admin]] I I

permission::grant -party-id $userjid -object-id $file-id -privilege admin

add metadata to metadatafieldvalues
delete any old records for files (so this new record will replace them)
dbdml delete old-values \

"delete from metadatafieldvalues where file-id = $file id and schemaid =
$schemaid"

#set insertrecord

#add record
foreach datarecord $file-md

set datafield [lindex $data-record 0]
set datavalue [lindex $data_record 1]
query get-fieldid datafieldid onevalue \

"select fieldid from metadata fields where schemaid=$schema id and
field name='$data-field'"

substitute single quotes ' for two single quotes (so i can insert in oracle)

regsub -all "'" $data-value "''" datavaluefororacle
dbdml insertrecord \

"insert into metadatafieldvalues values
($file-id, $data_fieldid, '$data-value-fororacle' , $schemaid)"

}

dbdml insertmd submission \
"insert into metadata submissions values ($fileid,1)"

} onerror I
ad-return-complaint 1 "We got an error here. The file probably already exists."
ad-scriptabort

adreturnredirect "dspace-getsuccess?file-id=$filejid"

69

B.2 dspace-submit.tcl
ad-pagecontract {

Try meta

} {
schemaid:integer
file-id:integer

}

set url-query [ad-conn query]

##
check if submit type = addmore

set addmore_start [string first addmore $urlquery]
if { $addmorestart > -1 } {

set query-length [string length $url-query]
set substring [string range $url-query $addmorestart [expr $querylength - 1]]
set addmore-end [string first = $substring]
set addmore-string [string range $substring 8 [expr $addmore-end - 1]]

append urlquery "&multiple-$addmore-string"
ad-returnredirect "meta-view?$url-query"
ad-scriptabort

check if submit type = cancel

set submittype [ns-queryget submittype]

if [string equal $submit-type Cancel] {
adreturnredirect "file?fileid=$file-id"
adscriptabort

check to see if file was already submitted

if { [dbOorlrow get-val "select * from metadatasubmissions where fileid=$fileid and
schema id=$schema-id"] == 11 {

adreturnredirect "dspace-submitted?schemajid=$schemaid&fileid=$file-id"
ad-scriptabort

}

set has-required 0

###check for empty fields

db-foreach get-required "select * from metadata-fields where schemaid=$schema-id"
#get empty fields
if [string equal $required t) I

if [empty-string-p [ns-queryget $field_id]]
append url-query "&empty-reqgfield=$fieldjid"
set has-required 1

upload to dspace

set mylist [list]

70

set xml-file "<dublin_core>\n"

#process fields
if { $has-required == 1 }

ad-returnredirect "meta-view?$url-query"
ad-scriptabort

else {
dbdml deleteoldvalues

delete from metadatafieldvalues where filejid = :fileid and schema id =

:schemaid

}
dbforeach get-fields "select * from metadatajfields where schema-id=$schemaid"

#set field name tag for xml file
regsub -all "-" $field-name " " splitfname

set elt [lindex $split-fname 0]
set qual "none"
if { [llength $split-fname] > 1 } I

set qual [lindex $splitfname 11

}

#get value
if [ns-queryexists $fieldjid]

if { ![empty-string-p [nsqueryget $fieldid]]}
set value [nsqueryget $fieldid]
lappend mylist "$fieldid = $value"

#add value to database
dbdml insert-value {

insert into metadata fieldvalues values (:file-id, :fieldjid, :value,
:schema_id)

#insert value into xml file
append xmlfile "<dcvalue element=\"$elt\"

qualifier=\"$qual\">$value</dcvalue>\n"

get multiple values
if [ns-queryexists multiple-$field_id]

set multjlist [ns-querygetall multiple-$fieldjid]
foreach mult $multlist {

if { ![string equal $mult ""]
dbdml insertmult-val

insert into metadata fieldvalues values (:file_id, :fieldid,
:mult, :schema_id)

append xmlfile "<dcvalue element=\"$elt\"
qualifier=\"$qual\">$mult</dcvalue>\n"

#append end tag to xml file
append xml-file "</dublincore>"

#either save or submit
if [string equal $submit-type Save]

adreturnredirect "dspace-submitsaved?filejid=$file-id"
ad-scriptabort

} else {

ADD OTHER SUBMIT CALLS HERE

if { $schema-id != 11 {

adreturnredirect "file?file id=$file id"

71

#turn xml file into base64binary string
set xmlfilebase64 [::base64::encode $xml file]

set file-name [db-string get-fn "select filename from metadatafileview where
file-id = $file-id"]

#get the file content and save as an base64 encoded string
set tempfile "/web/gen/www/temp"
set blobfile [db-blobget-file "get-content" \

"select content from metadatafileview where fileid = $file-id" \
-file $tempfilel

set open-file [open $tempfile rl
fconfigure $open-file -encoding binary
set purefile [read $openfile]
close $open-file
set encoded-string [::base64::encode $purefile]

DSPACE WEB SERVICE CALL

Create SOAP Requests
::SOAP::create DepositItem \

-uri "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-name "depositItem" \
-action "" \
-params { epersonID string collectionID string docBytes base64Binary

::SOAP::create DepositBitstream \
-uri "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-name "depositBitstream" \
-action "" \
-params { ticket string fileName string bitstream base64Binary

::SOAP::create DepositComplete \
-uri "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService" \
-name "depositComplete" \
-action "" \
-params { ticket string

Call SOAP Methods
set personid rrodgers@mit.edu
set collectionid http://hdl.handle.net/123456789/2
if [catch {set ticket [DepositItem $personid $collectionid $xmlfilebase64]} errmsg]

adreturn-complaint 1 "Error depositing metadata into DSpace"
ad-script-abort

}
if [catch {set depositBitstream [DepositBitstream $ticket $filename

$encoded-string]} errmsg] {
adreturn-complaint 1 "Error depositing file bitstrean into DSpace"
adscript-abort

if [catch { set depositComplete [DepositComplete $ticket] I errmsg] {
adreturn-complaint 1 "Error depositing file bitstrean into DSpace"
adscript-abort

}

dbdml insert-submission {
insert into metadatasubmissions values (:file_id, :schema-id)

adreturnredirect "dspace-submitsuccess?file id=$fileid"
ad-scriptabort

72

B.3 meta-view.adp
<master>
<property name="title">Upload to DSpace</property>
<property name="context">@context;noquote@</property>
<form method=get action="@submitfile-name@">
<input type=hidden name=schemaid value=@schema-id@>
<input type=hidden name=file id value=@fileid@>
<table>
<multiple name=ds>
<tr height=40 valign=bottom><td></td><td>

<if @ds.display-text@ not nil>
<small>@ds.display-text@</small>

</if>
</td>
</tr>
<tr><td align="right">@ds.prettyname@</td>
<td>

<if @ds.display-type@ eq "text" and @ds.value@ eq "">

<input type=text @ds.displayattributes@ name=@ds.fieldid@>
</if>
<if @ds.display-type@ eq "text" and @ds.value@ not eq "">

<input type=text @ds.displayattributes@ name=@ds.fieldid@
value="@ds.value@">

</if>
<if @ds.display-type@ eq "textarea" and @ds.value@ eq "">

<textarea @ds.display-attributes@ name=@ds.fieldid@></textarea>
</if>
<if @ds.display-type@ eq "textarea" and @ds.value@ not eq "">

<textarea @ds.display-attributes@ name=@ds.field-id@>@ds.value@</textarea>
</if>
<if @ds.display-type@ eq "select">

<select @ds.display-attributes@
name=@ds.fieldid@>@ds.display-elements;noquote@</select>

</if>
<if @ds.multiple@ eq "t">

<input type=submit name=addmore-@ds.fieldid@ value="Add More">
</if>
<if @ds.empty@ gt -1>

<small>@ds.error-text@</small>
</if>

</td></tr>

<multiple name=multiplefields>
<if @multiplefields.fid@ eq @ds.fieldjid@>
<tr>
<td></td>
<td>
<if @ds.display-type@ eq "text">
<input type=text name=multiple-@ds.field-id@ @ds.display-attributes@
value="@multiple-fields.fval@"></if>
<if @ds.display-type@ eq "textarea">
<textarea @ds.display-attributes@ name=multiple-
@ds.fieldid@>@multiplefields.fval@</textarea></if>
</td>
</tr>

</if>
</multiple>
</multiple>
<tr><td colspan=2 height=20></tr>
<tr><td colspan=2 align=center>
<input type=submit name=submit-type value="Save">
<input type=submit name=submit-type value="Cancel">
<input type=submit name=submit-type value="Upload to @schema-name@">
</td></tr>
</table>
</form>

73

B.4 meta-view.tcl
adpage-contract

Try meta
} {

schemaid:integer
file-id:integer

}

set schemaname [db-string get-sn "select schema-name from metadataschemas where
schema-id=$schema id"]

set context [fs-contextbarlist -final "Upload to $schemaname" $file-id]

set the submit file
if [string equal $schemaname DSpace] {

set submitfilename dspace-submit

}

set empty-fields [list]

#check for empty required fields
if [ns-queryexists empty-req-field]

set empty-fields [ns-querygetall empty-req-field]

set startrow 1
set numrows 0
multirow create multiplefields fid fval

dbmultirow -extend { value empty I ds getdsmetadata
select * from metadatafields where schemaid = :schemaid

} {
#check for empty field
set empty [lsearch -exact $empty-fields $fieldjid]

#check for and set existing field values
if [ns-queryexists $fieldjid] {

set value [nsqueryget $fieldid]
else {

set dbvalues [dbjlist getval "select fieldvalue from metadata-field values
where fileid=$file-id and field id=$fieldjid"]

if { [llength $db-values] == 1 } {
set value [lindex $db values 0]

I elseif { [llength $db-values] > 1 1
set i 0
foreach db-value $db-values

if { ![string equal $db-value ""}
if { si == 0 1 {

set value $db-value
} else f

if [string equal $multiple t]
multirow append multiple-fields $fieldjid $db-value

} elseif [string equal $multiple f]
append value " $dbvalue"

}

set i [expr si + 1]

else
#get from other schemas
set value "
set db-mapped-fields1 \

[db-list \
getjmfl \
"select fieldid_1 from metadata_schema-mappings where

field-id-2=$field-id and (map-type=O or map-type=l)"]
set db-mapped-fields2 \

[db-list \

74

get-mf2 \
"select fieldid_2 from metadata-schema-mappings where

field-idl=$fieldid and (map-type=O or map-type=-l)"I
set db-mappedfields [concat $db-mapped-fieldsj $dbjmapped-fields_2]
if { [llength $dbjmapped-fields] >= 1 } {

foreach mfield $dbjmappedjfields {
set db-vals [db_list getvals "select fieldvalue from

metadatafieldvalues where file_id=$fileid and field id=$mfield"]
if { [llength $db-vals] == 1} {

set value [lindex $db-vals 0]
} elseif { [llength $db-vals] > 1} {

set j 0
foreach db-val $dbvals {

if { ![string equal $db-val ""]
if {$j == 0} {

set value $db-val
} else {

if [string equal $multiple t]
multirow append multiple-fields $fieldid $db-val

} elseif [string equal $multiple f]
append value " $db_val"

}

set j [expr $j + 1]

#get from ss table
if (string equal $value ""{

if { [exists_andnotnull mapping-ssfield] && ($maptype == 0 ||
$map-type==-l) I

set value
set has-mapping \

[dbOorlrow \
get-mapping \
"select mappingtableorview,mapping-col-name from

sloanspace-filejmetadata where fieldname='$mapping-ssfield'"]
if {$has-mapping == 11 {

query get-value value onevalue \
"select $mappingcolname from $mapping-table-or-view where

file-id=$fileid"

else
set value

#check for multiple values in querystring and append to multiple-fields multirow
set multlist [ns-querygetall multiple-$field_idl
set list_length [llength $mult_list]
foreach mult $multlist {

multirow append multiple-fields $fieldid $mult

}

#replace selected in select lists with new value
if [string equal $display-type select]

if { ![empty_stringp value] I
if { ![string equal $value ""1 }

set string-length [string length $display-elements]
set valindex [string first value=\"$value\" $displayelements]
if { $valindex > -1 } {

set start-index [expr [string length value=$value] + $valindex + 2]

set start-string [string range $display-elements 0 [expr $start-index
- 1]]

75

set end-string [string range $display-elements $start-index [expr
$stringjlength - 1]]

set display-elements $startstring
append displayelements " selected"
append display_elements $end-string

76

B.5 schema-add.adp
<master>

<table width=100% cellspacing=0 cellpadding=0>
<tr><td><u>Add Schema</u>
</td></tr></table>

<form action="schema-add-2" method=get>
<table>
<tr>
<td align="right">Schema Name:</td>
<td colspan=2><input type=text name="name" value="" size=50></td>
<td></td>
</tr>
<tr><td align="right">Number of Fields:</td>
<td align="left" colspan=2><input type=text name= "numjfields" value="" size=7></td>
</tr>
<tr>
<td colspan=3 height=10></td></tr>
<tr>
<td></td>
<td align="left"><input type="submit" value="Add Schema"></td>
<td align="right">Add Schema Help</td>
</tr>
</table>
</form>

B.6 schema-add-2.tcl
ad-page-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

name:trim
numfields:integer

set schema-id [db-string getid "select seqschemaid.nextval from dual"]

dbdml addschema {
insert into metadataschemas values (:schemaid, :name)

}

ad-returnredirect "schema-add-fields?schema-id=$schema__id&num-fields=$num-fields"

77

B.7 schema-add-fields.adp
<master>
<table width=100% cellspacing=O cellpadding=O>
<tr><td><u>Add Fields</u>
</td></tr></table>

<form method=get action="schema-add-fields-2">
<input type=hidden name="schema id" value=@schema-id@>
<input type=hidden name="num_fields" value=@num-fields@>
<table>

<multiple name=fields>

<tr>
<td align="right">Field @fields.rownum@ Name:</td>
<td colspan=2><input type=text name="field_@fields.rownum@" value="" size=50></td>
</tr>

<tr>
<td align="right">SloanSpace Mapping:</td>
<td colspan=2><select name="ssm_@fields.rownum@">
<option value="none">None</option>
<option value="author">Author</option>
<option value="title">Title</option>
<option value="publishdate">Publish Date</option>
<option value="description">Description</option>
</select>

Mapping Type:
<select name="ssmt_@fields.rownum@">
<option value="O">Both Ways</option>
<option value="1">Remote Schema to SloanSpace</option>
<option value="-1">SloanSpace to Remote Schema</option>
</select></td>
</tr>

<tr>
<td align="right">Required:</td>
<td colspan=2><select name="req_@fields.rownum@">
<option value="t">Yes</option>
<option value=" f" >No</option>
</select>
Has Multiple Values?
<select name="mult_@fields.rownum@">
<option value="t">Yes</option>
<option value="f" >No</option>
</select></td>
</tr>

<tr>
<td align="right">Display Name:</td>
<td colspan=2><input type=text name="pn_@fields.rownum@" value="" size=70></td>
</tr>

<tr>
<td align="right">Display Type:</td>
<td colspan=2><input type=radio name="dt_@fields.rownum@" value="text" checked>Text Field
<input type=radio name="dt_@fields.rownum@" value="textarea">Text Area
<input type=radio name="dt_@fields.rownum@" value="select">Select List:

of Options:<input type=text name="num-ops_@fields.rownum@" value="" size=7>
</td>
</tr>

<tr>
<td colspan=2 height=20></td>
</tr>

</multiple>

78

<tr>
<td></td>
<td align="left">
<input type=submit value=" Submit and Continue ">
</td>
<td align="right">Add Schema Help</td>
</tr>

</table>
</form>

79

B.8 schema-add-fields.tcl
ad-page-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

} {
schemaid:integer
num-fields:integer

multirow create fields fname

for {set i 1} {$i <= $num-fields} {incr i} {
multirow append fields "field_$i"

}

80

B.9 schema-add-fields-2.tcl
ad-page-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

} {
schemaid:integer
numfields:integer

set mylist [list 1]

set options-query ""

#process fields from schema-add-fields
for {set i 1} {$i <= $num-fields} {incr i} I

set field-name [ns-queryget field_$i]
set ssmapping [nsqueryget ssm_$i]
set maptype (ns-queryget ssmt_$i]
set required [ns-queryget req_$i]
set ismult [nsqueryget mult_$i]
set pretty-name [ns-queryget pn_$iI
set display-type [nsqueryget dt_$i]

lappend mylist $fieldname
lappend mylist $pretty-name

if { [string equal $fieldname ""] && ![string equal $pretty-name ""}
set fieldid [dbstring get-id "select seq-fieldid.nextval from dual"]
if [string equal $ssjmapping "none"]

dbdml addfield \
"insert into metadata fields

values($field-id, '$fieldname', '$prettyname',$schema-id,null,$map-type, \

null, '$display-type',null,null,null, '$required', '$is-mult')"

else {
dbdml addfield \

"insert into metadatafields

values($field-id, '$fieldname', '$pretty-name',$schema_id, '$ss-mapping',

$maptype,null, '$displaytype',null,null,null,
'$required','$ismult')"

if [string equal $display-type "select"]
set num-options [ns-queryget num-ops_$i
append options-query "&num-ops_$field-id=$num-options"

#redirect to continue page
adreturnredirect "schema-add-fields-cont?schemaid=$schema-id$opt ions-query"

81

B.10 schema-add-fields-cont.adp
<master>
<table width=100% cellspacing=O cellpadding=O>
<tr><td><u>Add Fields (cont.)</u>
</td></tr></table>

<form action="schema-add-fields-cont-2" method=get>
<table>
<input type=hidden name=schema id value=@schema-id@>
<multiple name=fields>

<tr><td colspan=3>Field Name: @fields.field-name@</td></tr>

<tr>
<td align="right">Display Text:</td>
<td colspan=2><input type=text name=dt_@fields.fieldid@ size=100></td>
</tr>
<tr>
<td align="right">Error Text:</td>
<td colspan=2><input type=text name=et_@fields.field-id@ size=100></td>
</tr>

<if @fields.display-type@ eq "text">
<tr>
<td align="right">Text Field Size:</td>
<td colspan=2><input type=text name=tfs_@fields.fieldid@ size=7></td>
</tr>

</if>
<if @fields.display-type@ eq "textarea">

<tr>
<td align="right">Text Area Rows:</td>
<td colspan=2><input type=text name=tar_@fields.fieldid@ size=7>

Columns:<input type=text name=tac_@fields.fieldid@ size=7>

</td>
</tr>

</if>
<if @fields.display-type@ eq "select">

<multiple name="options">
<if @options.fieldjid@ eq @fields.fieldid@>
<tr>
<td align="right">Option Text:</td>
<td colspan=2><input type=text name=opt_@fields.field-id@_@options.index@ size=20>

Value:<input type=text name=opv_@fields.fieldid@_@options.index@ size=20>

</td>
</tr>
</if>
</multiple>

</if>

<tr><td colspan=3 height=20></td></tr>
</multiple>

<multiple name="num-ops_list">
<input type=hidden name=@num-ops_list.numops-string@ value=@num-opsjlist.num-ops-value@>
</multiple>

<tr>
<td></td>
<td align="left">
<input type=submit value=" Submit ">
</td>
<td align="right">Add Schema Help</td>
</tr>
</table>

</form>

82

B.11 schema-add-fields-cont.tcl
ad_page-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

schemaid:integer

multirow create options fieldid index

#this is the multirow for the num-ops key in the query
multirow create num-ops_list numopsstring num-ops-value

dbmultirow fields get-fields {
select * from metadata fields where schema id = :schema id

if [string equal $display-type "select"]
if [ns-queryexists num-ops_$fieldid]{

set num-ops [ns-queryget num-ops_$fieldid]
for {set i 11 {$i <= $numops} {incr i} f

multirow append options $field-id $i

I
multirow append num-ops-list num ops_$field-id $num-ops

83

B.12 schema-add-fields-cont-2.tcl
ad-page-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

schemaid:integer

#process fields for schema-add-fields-cont
dbforeach setfields "select * from metadatafields where schema id=$schemaid"{

set display-text null
set errortext null
set display-attributes null
set display-elements null

set field values
if [ns-queryexists dt_$fieldjid]

set display-text [ns-queryget dt_$fieldid]

if [nsqueryexists et_$field-id{
set errortext [ns-queryget et_$fieldjid]

}
if [string equal $displaytype "text"] {

if [ns-queryexists tfs_$fieldjid] {
set size [ns-queryget tfs_$fieldjid]
set displayattributes "size=$size"

elseif [string equal $display-type "textarea"]
set rows ""
set cols ""
if [ns-queryexists tar_$fieldjid]

set rows "rows=[ns-queryget tar_$fieldid]"

}
if [ns-queryexists tac_$fieldjid]

set cols "cols=[ns-queryget tac_$field-id]"
}
set display-attributes "$rows $cols"

} elseif [string equal $displaytype "select"] I
set display-attributes
set display-elements ""
if [ns-queryexists num-ops_$fieldjid) {

set num-ops [ns-queryget num-ops_$field_id]
for {set i 11 {$i <= $num-ops} {incr i}

set option-text
set optionvalue
set opt-str opt_$fieldid
append opt-str "_$i"
set opvstr opv_$fieldid
append opv-str "-$i"
if {[ns-queryexists $opt-str] && tns-queryexists $opv-str]}

set optiontext [ns-queryget $opt-str)
set option-value [ns-queryget $opv-str)
append displayelements "<option

value=\"$option-value\">$option-text</option>"
}

}

}

#add avlues to database
dbdml set-values "update metadatafields set display-text='$display-text',

errortext='$error text', \
display-attributes='$display-attributes', display elements='$display-elements' where
field-id=$field-id"

}
ad-returnredirect " schema-add- fields -done"

84

B.13 search-url.adp
<master>
<property name="title">@page-title;noquote@</property>
<property name="context">@context;noquote@</property>

<form method=GET action="search-url-results">
<input type=hidden name="folderjid" value="@folder-id@">

<table border=O>

<tr>
<td align=right>Search:</td>
<td colspan=2><input size=70 name=searchstring value=" "></td>
</tr>

<tr>
<td></td>
<td><input type=submit value="Search" > & nbsp;
in <input type=radio name="searchtype" value="dspace" checked>DSpace
<input type=radio name=" searchtype" value="google" >Google
<input type=radio name="searchtype" value="googledspace">DSpace-restricted Google</td>

</tr>

</table>
</form>

85

B.14 search-url.tcl
adpage-contract {

page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

folderid:integer,notnull
{type "fs-url"}
{title ""}
{locktitlep 0}

I -validate {
validfolder -requires {folderjid:integer} {

if ![fs_folderp $folderid] {

adcomplain "[_ file-storage.ltThe-specifiedparent_]"

} -properties
folder id:onevalue
context:onevalue

check for write permission on the folder

ad-require-permission $folder-id write

set templating datasources

set pretty-name "Search DSpace"
if {[empty-string-p $pretty-name]} I

return -code error "[_ file-storage.No-such-type]"
}

#set context [fs-contextbarlist -final [_ file-storage.Search [list pretty-name
$prettynamel] $folder_id]
set context [fs-contextbarlist -final "Search DSpace" $folderid]

Should probably generate the itemid and versionid now for
double-click protection

if title isn't passed in ignore locktitle-p
if {[empty-string-p $title]} {

set lock-title-p 0

}

Message lookup uses variable pretty-name
set page title [_ file-storage.simple-add-page-title]

86

B.15 search-url-results.adp
<master>
<property name="title">Search Results</property>
<property name="context">@context;noquote@</property>

<form method=GET action="search-url-results">
<table>
<input type=hidden name="folder-id" value="@folder-id@">
<tr><td align="right">Search:</td>
<td><input size=50 name=searchstring value="@searchstring@"></td>
</tr>
<tr>
<td></td>
<td><input type=submit value="Search">

in
<if @searchtype@ eq "dspace"><input type=radio name="searchtype" value="dspace"
checked>DSpace</if>
<else><input type=radio name=" searchtype" value="dspace">DSpace</else>
<if @searchtype@ eq "google"><input type=radio name="searchtype" value="google"
checked>Google</if>
<else><input type=radio name=" searchtype" value="google">Google</else>
<if @searchtype@ eq "googledspace"><input type=radio name="searchtype"
value="googledspace" checked>DSpace-restricted Google</if>
<else><input type=radio name=" searchtype" value="googledspace">DSpace-restricted
Google</else>
</td>
</tr>
</table></p>

</form>

<hr>
<table cellspacing=O cellpadding=O width=100%>
<tr>
<if @numrecords@ eq 0><tr><td>No Matches</td></if>
<else>
<td>Results @pageminval@ - <if @numrecords@ lt @pagemaxval@>@numrecords@</if>
<else>@pagemaxval@</else> of @numrecords@ for @searchstring@:</td>
</else>
<td align=" right ">Search Help</td>
<td width=l%></td>
</tr>
</table><hr>

<table>

<multiple name="urls">
<tr><td>@urls.title;noquote@</td></tr>
<tr><td>@urls.description;noquote@</td></tr>
<tr><td><small><i>@urls.url@</i> -
<a href="simple-add-
2?folderid=@folder-id@&title=@urls.title@&url=@urls.url@&description=@urls.description@"
>[Add URL]
<if @searchtype@ eq "dspace">
 I
<a href="dspace-
get?folderid=@folder_id@&schemajid=2&itemID=@urls.url@&title=@urls.title@&description=@u
rls.description@">
[Add File]</if>
</small>
</td>
</tr>
<tr height=30><td> </td><tr>
</multiple>

<tr><td align=center>
<if @pagenum@ gt 1>

87

<a href="search-url-
results?folder-id=@folder-id@&searchstring=@searchstring@&pagenum=@prevpage@&searchtype=@
searchtype@">
<small>Previous</small>
</if>

<if @numrecords@ gt @pagemaxval@>
<a href="search-url-
results?folder-id=@folder-id@&searchstring=@searchstring@&pagenum=@nextpage@&searchtype=@
searchtype@">
<small>Next</small>
</if>
</td></tr>
</table>

88

B.16 search-url-results.tcl
ad-page-contract

Search results in DSpace

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 1 Apr 2004

} f
folderid:integer,notnull
searchstring:trim
{searchtype dspace}
{pagenum:integer 1}

-validate
validfolder -requires {folder id:integer} {

if ![fs_folder_p $folderid]
ad-complain "[_ file-storage.ltThe-specified-parent_]"

check for write permission on the folder

ad require-permission $folder-id write

set context [fs contextbarlist -final "Search Results" $folder id]

#set pagination variables
set recordsperpage 5
set pagemaxval [expr $pagenum * $recordsperpage]
set pageminval [expr $pagemaxval - $recordsperpage + 1]
set nextpage [expr $pagenum + 1]
set prevpage [expr $pagenum - 1]

multirow create urls title url description

if [string equal $searchtype google]
set results [acs-sc::invoke \

-operation paged-search \
-contract URLSearcher \
-impl GoogleSearcher \
-call-args [list $searchstring $recordsperpage $pagenum]]

elseif [string equal $searchtype googledspace] {
set results [acs sc::invoke \

-operation restricted-paged search \
-contract URLSearcher \
-impl GoogleSearcher \
-call args [list $searchstring $recordsperpage $pagenum "dspace"I]

else
set results [acs-sc::invoke \

-operation paged search \
-contract URLSearcher \
-impl DSpaceSearcher \
-call args [list $searchstring $recordsperpage $pagenuml]

}

set resultslist [lindex $results 1]
foreach result $resultslist

multirow append urls [lindex $result 0] [lindex $result 1] [lindex $result 2]

set numrecords [lindex $results 0]

89

B.17 dspace-search-procs.tcl
ad_library {

The "dspace searcher" searches and retrieves dspace uris.

@author gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 09:51:04 peterm Exp $

}

namespace eval dspace-search

ad-proc -private search-url
query

Implements the search operation for URLSearcher.

set res} [list "Google" {www.google.com google website"]
set res2 [list "Yahoo" "www.yahoo.com" "yahoo website"]
set res3 [list "MIT" "web.mit.edu" "mit website"]
return [list $resl $res2 $res3 $query]

ad-proc -private paged-search-url
query
results-per-page
page-num

Implements the paged search operation for URLSearcher.

#initialize results list
set results [list]

#set pagination vars
set pagemaxval [expr $page-num * $results-per-page]
set pageminval [expr $pagemaxval - $results-per-page + 1]

regsub -all " " $query "+" url-query
if { [catch {set content [ns-httpget http://dspace-

demo.mit.edu:8080/SRW/search/DSpace?query=%22$url-query%22&maximumRecords=$results-per-pa
ge&startRecord=$pageminval]} errMsg] }

return

}

#set doc [dom parse $content]
if { [catch {dom parse $content doc} errMsg] I {

return

}
set root [$doc documentElement]

set recordTitle
set recordUrl
set recordDesc
set numrecords 0

foreach child [$root childNodes] {
set childName [$child nodeName]
if [string equal $childName numberOfRecords]

set numrecords [$child text]
} elseif [string equal $childName records] {

foreach recordsChild [$child childNodes] I
set recordsChildName [$recordsChild nodeName]
if [string equal $recordsChildName record] {

set recordDesc "
foreach recordChild [$recordsChild childNodes] {

set recordChildName [$recordChild nodeName]
if [string equal $recordChildName recordData] {

foreach dataChild [$recordChild childNodes]
set dataChildName [$dataChild nodeName]
if [string equal $dataChildName srwdc:dc] {

90

foreach dcChild [$dataChild childNodes]
set dcChildName [$dcChild nodeName]
if [string equal $dcChildName dc:identifier.uri)

set recordUrl [$dcChild text]
elseif [string equal $dcChildName dc:title] {
set recordTitle [$dcChild text]

elseif [string equal $dcChildName

{

dc:description]{
append recordDesc " "
append recordDesc [$dcChild text]

set result [list $recordTitle $recordUrl

lappend results $result
$recordDesc]

return [list $numrecords $results)

91

}
}

}
}

}
}

}
}

}

}

B.18 google-search-procs.tcl
ad-library {

The "google searcher" searches and retrieves google urls.

@author gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 09:51:04 peterm Exp $

namespace eval google-search

ad-proc -private search-url
query

Implements the search operation for URLSearcher.

set resl [list "Google" "www.google.com" "google website"]
set res2 [list "Yahoo" "www.yahoo.com" "yahoo website"]
set res3 [list "MIT" "web.mit.edu" "mit website"]
return [list $resl $res2 $res3 $query]

ad-proc -private paged-search-url
query
resultsper-page
page-num

Implements the paged search operation for URLSearcher.

#initialize results list
set results [list]

#set pagination vars
set google-page-num [expr $page-num - 1]
set start-index [expr $google-page-num * $resultsperpage]

#set google soap variables
set endpoint http://api.google.com/search/beta2
set schema http://www.w3.org/2001/XMLSchema
set Key {orDfgkBQFHKCjAlmJ3TqqHksuu+SUmZm}

#google soap method call
::SOAP::create doGoogleSearch \

-proxy $endpoint \
-params {key string q string start int maxResults int \

filter boolean restrict string safeSearch boolean \
lr string ie string oe string} \

-action urn:GoogleSearchAction \
-encoding http://schemas.xmlsoap.org/soap/encoding/ \
-schema [list xsd $schema] \
-uri urn:GoogleSearch

set unparsedresult [doGoogleSearch \
$Key \
$query \
$startindex \
$results-per-page \
false \

false \

utf-8 \
utf-8]

-- parse the results

set resultTagIndex [lsearch -exact Sunparsedresult resultElements]
set resultsIndex [expr $resultTagIndex + 1]
set resultList [lindex Sunparsedresult $resultsIndex]

92

set totalNumResultsTagIndex [lsearch -exact $unparsedresult
estimatedTotalResultsCount]

set totalNumResultsIndex [expr $totalNumResultsTagIndex + 1]
set totalNumResults [lindex $unparsedresult $totalNumResultsIndex]

foreach record $resultList I
set urlTagIndex [lsearch -exact $record URL]
set urlIndex [expr $urlTagIndex + 1]
set titleTagIndex [lsearch -exact $record title]
set titleIndex [expr stitleTagIndex + 11
set snippetTagIndex [lsearch -exact $record snippet]
set snippetIndex [expr $snippetTagIndex + 1]
set title [nsstriphtml [lindex $record $titleIndex]]
set url [nsstriphtml [lindex $record $urlIndex]]
set snippet [ns-striphtml [lindex $record $snippetIndex]]
set result [list $title $url $snippet)
#set result [list [lindex $record $titleIndex] [lindex $record $urlIndex]

[lindex $record $snippetIndex]]
lappend results $result

}

return [list $totalNumResults $results]

ad-proc -private restricted-paged-search-url {
query
results-per-page
page-num
restriction

} {
Implements the paged search operation for URLSearcher.

} {
#initialize results list
set results [list)

#set pagination vars
set google-pagenum [expr $page-num - 1]
set start-index [expr $google-page-num * $results-per-page]

#set google soap variables
set endpoint http://api.google.com/search/beta2
set schema http://www.w3.org/2001/XMLSchema
set Key {orDfgkBQFHKCjAlmJ3TqqHksuu+SUmZm}

#google soap method call
::SOAP::create doGoogleSearch \

-proxy $endpoint \
-params (key string q string start int maxResults int \

filter boolean restrict string safeSearch boolean \
lr string ie string oe string} \

-action urn:GoogleSearchAction \
-encoding http://schemas.xmlsoap.org/soap/encoding/ \
-schema (list xsd $schema] \
-uri urn:GoogleSearch

set unparsedresult (doGoogleSearch \
$Key \
$query \
$startindex \
$results-per-page \
false \
$restriction \
false \
utf-8 \

utf-8]

#-----parse the results

set resuItTagIndex [lsearch -exact $unparsedresult resultElements]

93

set resultsIndex [expr $resultTagIndex + 1]
set resultList [lindex $unparsedresult $resultsIndex]

set totalNumResultsTagIndex [lsearch -exact $unparsedresult
estimatedTotalResultsCount]

set totalNumResultsIndex [expr $totalNumResultsTagIndex + 1]
set totalNumResults [lindex $unparsedresult $totalNumResultsIndex]

foreach record $resultList I
set urlTagIndex [lsearch -exact $record URLI
set urlIndex [expr surlTagIndex + 1]
set titleTagIndex (lsearch -exact $record title]
set titleIndex [expr $titleTagIndex + 1]
set snippetTagIndex [lsearch -exact $record snippet]
set snippetIndex [expr $snippetTagIndex + 1]
set title [nsstriphtml [lindex $record $titleIndex]]
set url [nsstriphtml [lindex $record $urlIndex]]
set snippet [ns-striphtml [lindex $record $snippetIndex]]
set result [list $title $url $snippet]
lappend results $result

return [list $totalNumResults $results]

94

C Instructions for Integration With Other Systems

Here are instructions for how to integrate other systems with the file transfer component.

Three major steps need to be completed in order to make the integration:

1. Fill in the database tables via the Add Schema interface.

2. Add the code files for the submit interface.

3. Add the implementation for the search service contract.

4. Add the code files for the retrieve interface.

C.1 Filling in the database tables via the Add Schema Interface

1. Go to the add schema interface at: http://your url/dotlm/file-storage/schema-add

2. Enter the schema name and the number of fields. For example, enter "JJ Digital

Repository" for schema name and "3" for number of fields as shown below:
VU

File Edt %Aew Go Bookmarks ITools ieip 0_

12I http://helice.mit.edu:OOO3/dottrn/ffle-storage/schema-add

Getting Started Latest HeadInes

.LRN Genevieve Cuevas
My Space Help Logout

My Space My Calendar My Files Cordrol Panel

Add Schema

Schema Name: JJ Digital Repository

Number of Fields:

Add Schema Add Schema Help

My Space My Calendar My Files Control Panel

dotLRN Home I dotLRN Project Central I Change Locale I Toggle translator mode

Done

Click on the "Add Schema" button when finished.

3. Fill in the field information with the metadata field information of your metadata

schema. The information queried is as follows:

95

a. Name: specifies the name of the field.

b. SloanSpace Mapping: specifies which SloanSpace field it maps to.

c. Mapping Type: which direction the mapping goes.

d. Required: specifies whether or not a value for this field must be supplied

when submitting into your system being integrated.

e. Has Multiple Values: specifies whether or not the field can contain multiple

values.

f. Display Name: specifies the name of the field displayed in the submit user

interface.

g. Display Type: specifies the input type of the field value.

h. # of Options: this is only relevant if the display type selected is "Select List".

This specifies how many options the select list will have.

Below are sample values:

File Edit View rap loootrvks Eo* Help ~4

http:/hekce.mit.edu:8003dotrnfie-storage/schemo-add-fields?schema id: l
SGettiN Started Latest Head)ns

My Space Help Logout

My Space My Calendar My Files Control Panel

Add Fields

Field 1 Name: jjauthor

SloanSpace Mapping: Author Mapping Type: Both Ways

Required: Yes Has Multiple Values? No

Display Name: Autho

Display Type: OText Field OText Area OSelect List: # of options:

Done

4. Click on the "Submit and Continue" button when finished.

5. Fill out the rest of the field information. The information queried is as follows:

a. Display Text: specifies the text appearing on top of the input form, containing

instructions for filling out that field.

b. Error Text: specifies the text that appears when this field is filled out

incorrectly.

96

c. Text Field Size: specifies the size of the text field, if the display type is "text

field".

d. Text Area Rows: specifies the number of rows of the text area, if the display

type is "text area".

e. Columns: specifies the number of columns of the text area, if the display type

is "text area".

f. Option Text and Option Value: specifies the option text and option values of

the select list, if the display type is "select list".

Below is an example of the field information for jjauthor, created above:
VU

File Ldt View Go pookmarks Iools jjelp

http: /helice.mit edu:8003/dotirn/file-storageschema-add-fields-cont?schen

O Getting Started 9 Latest Headfnes_

.LRN Genevieve Cuevas
My Space Help Logout

My Space My Calendar My Files Control Panel

Add Fields (cont.)

Field Name: jj-author
Display Enter author here.

Text: --.----.- _ __ __

Error Text: [You must enter an author.

Text Field 50 j
Size: -

Done

6. Click "Submit" when done. This concludes filling out the database tables.

C.2 Adding the code for the submit interface

In order to complete the submit portion of the integration, you would first need to provide

the code that communicates with your web service method that submits files into your

system. For example, say the "JJ Digital Repository" created above has a web service

with a method called "SubmitlntoJJ(content, jjauthor, jjjtitle, jjdescription)".
"SubmitlntoJJ" has as input the content, encoded in base64, and the values for the

97

metadata fields jj-author, jjtitle, and jjdescription. Thus, the code must contain a call

to this method. Here is a sample of what the tcl code file for the "JJ Digital Repository"

submit component will look like. Let's name this file "jj-submit.tcl".

jj-submit.tcl

adpage-contract {
Try meta

I {
schemaid: integer
fileid: integer

}

get the jj-author, title, and description fields
set author [nsqueryget $authorfieldid]
set title [nsqueryget $title-fieldjid]
set description [ns-queryget $description-fieldid]

get the file contents and encode it to a base 64 string
set content [::base64::encode $file]

call the web service "SubmitIntoJJ" web service method
::SOAP::create SubmitIntoJJ
-uri "http: //www. j jdigitalrepository. com/webservice
-name "SubmitIntoJJ"
-params (content string, jj-author string, jj-title string, jj description stringl

SubmitIntoJJ $content, $author, $title, $description

redirect to the file area
ad-returnredirect "file?file_id=$fileid"

Once this file is created, you would now need to call this code when the "Upload" button

is clicked in the submit user interface, if the schemaid specified is the schemaid of your

schema. To do this, you would need to modify the meta-view.tcl file as follows. Look

for the line in meta-view.tcl that says "### set the submit file . . . ". This looks like:

set the submit file
if [string equal $schema-name DSpacel {

set submitfilename dspace-submit

}

Add to this the following:

if [string equal $schema-name <yourschema_name>]

set submitfilename <your-code filename>

98

For example, for the jjsubmit.tcl file above, the new piece of code will look like:

set the submit file
if [string equal $schema-name DSpace] I

set submitfilename dspace-submit

}

if [string equal $schemaname "JJ Digital Repository]

set submit-file-name jj-submit

C.3 Adding the search service contract implementation

In order to complete the search component of the integration, you must add an

implementation of the search service contract that searches your system, through your

web service.

To do this, first create the service contract operations to the database. Do this by creating

a file called <system>-search-create.sql. For example, for "JJ Digital Repository", create

a file called "jj-repository-search-create.sql. The contents of the file are as follows:

declare
foo integer;

begin
-- create implementation
foo := acs-sc-impl.new

impl-contractname => 'URLSearcher',
implname => 'JJRepositorySearcher',
impl-pretty-name => 'JJ Digital Repository URL Search',
impl-ownername => 'jjrepository-search'

-- create paged search operation
foo := acs-sc-impl.newalias (

impl-contractname => 'URLSearcher',
implname => 'JJRepositorySearcher',
impl-operationname => 'paged-search',
implalias => 'jjrepository-search::paged search-url',
implpl => 'TCL'

--add binding
acsscbinding.new

contract-name => 'URLSearcher',
impl-name => 'JJRepositorySearcher'

);

end;

show errors

Copy the file contents above and replace all instances of "JJRepository" with your system

name.

99

Also create the drop file. For example, here are the contents of "jj-repository-search-

drop.sql" file:

declare
foo integer;

begin

acssc_binding.del(
contractname => 'URLSearcher',
implname => 'JJRepositorySearcher'

foo := acs-sc-impl.delete-alias(
implcontractname => 'URLSearcher',
implname => 'JJRepositorySearcher',
impl-operationname => 'search'

foo := acssc-impl.delete_alias(
impl-contractname => 'URLSearcher',
implname => 'JJRepositorySearcher',
impl-operationname => 'paged-search'

acssc-impl.del(
impl-contractname => 'URLSearcher',
implname => 'JJRepositorySearcher'

end;

show errors

Copy the file contents above, and replace all instances of "JJRepository" with your

system name. Add both these files to your /packages/file-storage/sql/oracle directory.

Now, you are ready to supply the code of the implemented operation. First, create the

file <system>-search-procs.tcl, and add this file to your /packages/file-storage/tcl

directory. Now copy the contents below:

adjlibrary {

The "<system> searcher" searches and retrieves <system> urls.

@author gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 09:51:04 peterm Exp $

namespace eval dspace search

ad-proc -private searchurl {
query

} {
Implements the search operation for URLSearcher.

} {
//fill in search code here

100

Fill in the code starting at the line "/fill in search code here", with the code that searches

your system.

After this is done, you must now add the radio button for this search implementation. To

do this, open "search-url.adp", and add the following after the line "<input type=radio

name="searchtype" value="googledspace". . . ":

<input type=radio name="searchtype" value="your-system name">

Now, add the following to "search-url-results.tcl", after the line "-call_args [list

$searchstring $recordsperpage $pagenum "dspace]]", with the following:

} elseif [string equal $searchtype jjrepository] I
set results [acs sc::invoke \

-operation restricted-paged-search \
-contract URLSearcher \
-impl JJRepositorySearcher \
-call-args [list $searchstring $recordsperpage $pagenum "dspace"]1

Change all instances of "JJRepository" above with your system name.

Once all these pieces have been implemented, you are now ready to integrate the retrieve

component.

C.4 Adding the code for the retrieve interface

The steps for adding the retrieve interface are as follows. First, create the code file that

communicates with your web service method that fetches files from your system's web

service. For instance, say "JJ Digital Repository" has 2 web service methods:

GetJJFileContent and GetJJFileMetadata. Both these methods have as input, file-id,

which is the id of file you want to fetch. The GetJJFileContent method returns a base64

encoded string containing the file contents, and the GetJJFileMetadata method returns the

metadata in XML format. The code file, "jj-get.tcl", will be as follows:

101

jj-get.tcl

adpage-contract {Add File}
folderid:integer
schemaid:integer

}

#call the web service methods
::SOAP::create GetContent
-uri "http://www.jjdigitalrepository.com/webservice
-name "GetJJFileContent"
-params {file_id string}

::SOAP::create GetMetadata
-uri "http: //www. j jdigitalrepository. com/webservice
-name "GetJJFileMetadata"
-params {file_id string}

set content GetContent $fileid
set metadata GetMetadata $file-id

#parse the metadata file to get the parameters

#add the file into the folder with folderid = $folder id

Once this file has been created, modify the "search-url-results.adp" file, adding the

following line after the line "[Add File]</if>":

<if @searchtype@ eq "your-system-name">

<a
href="your-getfile?folderjid=@folderjid@&schemaid=2&itemID=@urls.url@&title=@urls.title
@&description=@urls.description@\

[Add File]</if>

Replace "your-systemname" with your system name, and "your-get-file" with the get

code file you created in the previous step.

Once this is all done, restart your .LRN server. Enjoy!!!

102

D Installing the system into .LRN

I. Go to "http://web.mit.edu/gtcuevas/www/Thesis" and get the "Thesis.tar" file.

2. Unxip Thesis.tar

3. Go to the main directory, "Thesis"

4. "Thesis"contains 3 directories:

a. file-storage

b. fs-portlet

c. sql

5. Go to file-storage, and do the following:

a. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN

packages/file-storage/sql/oracle/ directory

b. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN

packages/file-storage/sql/oracle/ directory

c. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN

packages/file-storage/sql/oracle/ directory

d. For all the files in file-storage/www/Modified, copy them and paste them into

your .LRN packages/file-storage/www/ directory, replacing all the original

files in .LRN with these modified files.

e. Make a directory called dspace-temp into the .LRN packages/file-

storage/www/ directory, and set permissions so that the directory is writable

by all users.

f. Copy all the files in file-storage/www/Modified/resources/ and place them in

your .LRN packages/file-storage/www/resources/ directory.

6. Now, go back up to the fs-portlet directory in "Thesis", and do the following:

a. Copy the file in fs-portlet/www/Modified/ into your .LRN packages/fs-

portlet/www/ directory (replacing the original .LRN file with this modified

file).

7. Restart the server.

103

