SloanSpace-DSpace File Transfer Component

by

Genevieve T. Cuevas

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
December 16,2004 {Feryes ST

<

Copyright 2004 Genevieve T. Cuevas. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.
MASSACHUSETTS IN
OF TECHNOLOGY

JUL 18 2005

LIBRARIES

E

Author

I/ Department /(\)f Elec@i Engineering and Computer Science
o December 16, 2004

Certified by

. ‘Harold Abelson
... Thesis Supervisor

e B Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Accepted by ,

BARKER

SloanSpace-DSpace File Transfer Component

by

Genevieve T. Cuevas

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

December 16, 2004

Thesis Supervisor: Harold Abelson

Abstract

This thesis demonstrates how to use Web services to integrate course management
systems with digital repositories. We present a component that provides interoperation
between SloanSpace, a course management system, and DSpace, a digital repository,
both developed at MIT. In particular, a file transfer component was created that enables
SloanSpace users to search and retrieve DSpace documents while in SloanSpace, and
submit SloanSpace documents into DSpace. DSpace’s web services provided the means
for interaction between the systems. The architecture of the component was designed to
handle not only the metadata mappings between SloanSpace and DSpace metadata, but
mappings between file metadata of SloanSpace and other systems as well. Two scenarios
were then created to test the effectiveness of the component. The test results demonstrate
the ability of the component to decrease the amount of time spent in performing file
transfers between the two systems. Most importantly, however, the component
demonstrates more generally interoperation with digital repositories. It not only
integrates SloanSpace with DSpace, but also allows for a more a general integration with
any other system.

Acknowledgements

I would like to thank Hal Abelson for teaching me how to write a thesis. I could not ask
for a better advisor. I would like to thank Al Essa, for helping me construct my thesis. 1
would like to thank Andrew Grumet for guiding me in the development of my system. I
would like to thank MacKenzie Smith and Richard Rodgers for providing the DSpace
web services. Lastly, I would like to thank my family. None of this would have been

possible without the love and support.

Table of Contents

1
2

INEEOQUCTIONviiitiii ittt ettt ettt et e e bt e et esab e et b e e b e eabeabe et be s e aseessnensaeenseas 7
Backgroundooeiieiiiiiniici e b 8
2.1 STOANSPACE ...ttt st st st s 8
2.2 DSPACE -eeereiiiiciteenee et e 10
23 Scenario 1: Populating a SloanSpace File Storage Area via DSpace................ 12
2.4 Scenario 2: Submitting a SloanSpace file to DSpaceccccccceevviiciinnnnnennnne. 17
2.5 What is the motivation behind this SyStem?ccocvviiimnriiiiienninineciiecn 18
2.6 CNALIENEES ..ottt st a e eeae e b s 19
2.7 ReIAted WOTK ..ottt e cbe e et e e s s bee e e 20
SYSEM OVEIVIEW ...eeiriiiiiirnieniieee ettt sace e s b s re e san e ane s 22
3.1 System FUNCHIONS ..c..coviiiiiiiiiici et e 23
3.1.1 SEArCh/REIIEVEoouvieiiiieere et 23
312 SUDIMIL ..ottt ettt bt e ae e e bbb e 29
3.2 DataModel. ..o e 35
3.2.1 Exploring the Data Model Requirementsccoociiiiiiiiiiiiniinnn 35
3.2.2 Generalizing the Data Model ..o 37
33 System Implementation Detailscccccveriiinciriiiiiiiiiiicirin e 39
3.3.1 Search Interfaceococovierien e e 39
332 Retrieve INterface.oooveiveieriiiiiiiiiiic s e 41
333 Submit INtErface........covvvieiiiir s 43
Integrating the File Transfer Component with Other Systems..........ccocveieeeennn. 44
4.1 Filling in the Tables Using the Add Schema Interface...........ccccooviiininne 45
4.2 Providing the Code for the Submit and Retrieve Interfacescccceeeee. 51
4.3 Implementing the Search Service Contract........cocvvveviivviiiiiniciiniccee 52
System Testing and Analysiscocoviiieeiieir e 52
5.1 Testing the File Transfer Componentcccoccoociiiiiiiiiiniiiie e 52
5.2 Results Of the TeSES ...occiiiiiiiiiieciiee et 53
5.3 Discussion of the Test ReSUltSccoeviiiiiiiiniiiiiiiiiiiie e 54

O IS W OTK et e e v e s e veaes s s ena s e s e eaaseseseaenreeennraasessennssnnnnns 55

6.1 System Deploymentcccooimiiiiiiiiiii i 55
6.2 Integration with Other SYSIEMScociiiiiiiiiiiii e 56
RETEIEINCES ...outieiiieeiiteee ettt et et e et b s st b st e e e et e e 57
A Database TabIESccccceiereeriieniiiiiirtt e 58
B Critical SOUICE COdE . cuuiiiioieiiiieeteiee ettt ettt vt e sen e be e saae s 61
B.1l dSPace-get.tCl ..ot 61
B.2 dspace-Submit.tClooceriiiiiiiiii e 70
B3 MEtA-VIEW.AAD cueeveeiieiieeeie ettt ettt 73
B4 meta-vIEW.LCL. ..ot e 74
B.5 schema-add.adp.....cccccccoomiiiiiiiiiiie s 77
B.6 schema-add-2.8C]cooiviiiiiiiiiii e 77
B.7 schema-add-fields.adpccooccooieiiiieeii e 78
B.8 schema-add-fields.tCl ..o 80
B.9 schema-add-fields-2.6C].........ccoivmiiiniiiiiii 81
B.10 schema-add-fields-cont.adpc.occeeviiiimiiiiiniiniiiiiiie e 82
B.11 schema-add-fields-cont.tCl.........ccoiiiiiiiiinniiiienienicc e 83
B.12 schema-add-fields-cont-2.tCl.....ccoooeiiiiiiiiiiiiii e 84
B.13 search-url.adp......ccccociiiiiiiiiiii 85
B.14 search-urltCh...cooooiiiiiii s 86
B.15 search-url-reSultS.adpcccoiviiiiieicriiieiiieiie et e 87
B.16 search-url-resultS.tCl...... oottt 89
B.17 dspace-search-procs.tcl ... 90
B.18 google-search-procs.tel......ccooiiiviiiiiiiiiiic e 92
C Instructions for Integration With Other SysStems......ccccceccevviiiiinienneniiniie e 95
C.1 Filling in the database tables via the Add Schema Interface ... 95
C.2 Adding the code for the submit interface..........cccccoviviiiiininiiiin, 97
C.3 Adding the search service contract implementationccoecevviniininiinennnn. 99
C.4 Adding the code for the retrieve INtErfaceovvvvveeviiiiniveiier it 101
D Installing the system into .LRN ..., 103

List of Figures

Figure 2-1: SloanSpace screenshot ... 9
Figure 2-2: DSpace home Page.......ccoocveiuiiiiiiiiiiiiiici e s 13
Figure 2-3: DSpace search resSultS........ovieiiiiiiiiiiiiiiiiii e 14
Figure 2-4: DSpace search result..........coooiiiiiiiiiiiiiiiccii e 15
Figure 2-5: SloanSpace file Storage areac.ccoccveiieireiiincniiiccee e 16
Figure 2-6: SloanSpace file upload..........cccociiiiiiiiiiiiii e, 16
Figure 2-7: DSpace SUDMISSION PAZE...ceccuermriereriiriieeriieer et ettt e eeesicae st ssbineereecssnaes 18
Figure 3-1: SYSIEIM OVEIVIEW ...cvviiiiiiiiiiiiiitiiiiir it s 22
Figure 3-2: Prof. Smith’s File Storage.........cccooiviinie 24
Figure 3-3: Search qQUEry Pagecccociiiiiiiniiiiiiiiiii i s s 25
Figure 3-4: Search results Page....cocooiiiiiiiiiiiiieicceccec et 26

1 Introduction

The number of systems developed to promote the use of technology in learning has risen
dramatically as information technology resources have become more readily available.
Many higher learning institutions and universities have directed much effort to the
creation of course management systems, online courses, and other technologically
enhanced leaming tools. At the same time, the number of digital repositories being
developed has also seen a similar growth rate. Many institutions and communities have
created their own digital repositories. Journals, theses, books, software, and other
published works now reside in the digital repositories provided by the institution, and

members of the institution now have easy access to these digital resources.

It would be expected that the growth and abundance these systems would lead to efforts
directed towards the interoperability between the systems. Education and learning tools
equipped with direct access to digital repositories would result in more powerful and
comprehensive systems. Digital repositories would also see an increase in usage if it can
be accessed through other systems. However, a comparatively small amount of time and

resources have been spent in making these integrations happen.

The system developed in this thesis provides one such integration. This work provides a
component that enables interoperation between two systems developed at MIT —
SloanSpace, a course management system, and DSpace, a digital repository. The
component allows SloanSpace users to search and retrieve DSpace documents from
SloanSpace and submit SloanSpace documents into DSpace. Moreover, because
SloanSpace and DSpace follow different file metadata standards, the component contains
a mapping interface that transforms file metadata from one system into the file metadata
of the other system. Testing the component with two scenarios show that searching and
retrieving DSpace documents using the file transfer component cuts the time (i.e. the time

it takes using current system without the file transfer component) by 57%. Similarly,

submitting SloanSpace files into DSpace using the file transfer component cuts the time

by 44%.

2 Background

2.1 SloanSpace

SloanSpace [1] is an online management system for courses and learning communities
that enables information to be shared within each class or community. Each community
or course in SloanSpace has a community area web page that stores and displays
community content. Access to this community area is given only to community
members. Furthermore, different types of access can be given to the members. These
access types determine what types of actions members can perform in the respective

community area.

Currently, all MIT Sloan School classes use SloanSpace to store and display class
content. A typical class area in SloanSpace contains such content as class documents, a
class calendar and syllabus, class news, and a class forum. Professors, teaching
assistants, and administrators for that class are given a professor-type access to the class
community area, which allows them to add and modify the displayed content. Students
are typically given a student-type access, which restricts them from viewing or modifying

certain content in the class area.

SloanSpace is also being used by various online communities at MIT. Examples of such
communities are student groups and research groups. Through SloanSpace, members of
the groups can communicate with each other online via the community forums.

SloanSpace also enables them to share their files securely.

Each community area has an associated file storage area page, which displays files and
related to that class or community as well as operations to the file. A link is also

available for each file, which, when clicked, will take the user to the respective file area.

The file area contains links to perform operations on the file, such as editing the file or
deleting the file. Operations on files and the file storage area can be restricted so as only
to prohibit certain members from performing certain actions. For instance, only members
of type professor or teaching assistant may modify or add files to the area. Either files or
URLs can be added to the file storage area. Directories may also be added to organize

the files.

SloanSpace is organized into packages. A package represents a single component or
service. For example, the file storage package is the package associated with the file
storage area in the community area in where users can add and manage community files.
The calendar package is the package associated with the calendar for the community.
Each package comprises of the user interface files for that component, the library files
containing processes, or operations, related to the component, and database files

containing database table definitions and functions for the component. Below is a

screenshot of main SloanSpace class page for the “Intro to CS” class.

003 - Mozilla Firefox

fle Edt Wew Go Bockmaks Toos teb
DG 0 B[O

@ FrefoxHelo | Frefox Support Bl Pugin FAQ s

™
.LRN Genevieve Cuevas

My Space Hel| Logout
m My Calendar My Files Control Panel
GROUPS DAY SUMMARY

1 dsind 85 o Community Group | + December 11, 2004 =

Classes:
® Intro to CS
= Trial Subiect

1%

LT e e
L

FORUMS
No Forums

FREQUENTLY ASKED QUESTIONS (FAQS)
No FACs

HEWS
No News

Figure 2-1: SloanSpace screenshot

The calendar package is responsible for the calendar component shown in the screenshot.
Similarly, the forums package contains all the code files and user interface files that
handle the forums component. The file storage area is reachable by clicking the “File
Storage™ tab in the top of the page. Again, this file storage area is handled by the file

storage package.

SloanSpace is an implementation of .LRN [3], an open-source course application suite for
online course management systems and learning communities. .LRN is based on the
OpenACS framework [4], a toolkit used for building online community-oriented web

applications. OpenACS, and SloanSpace, in tumn, are implemented in Tcl.

2.2 DSpace

DSpace [2] is a digital repository that provides long-term storage for all types of digital
content developed at MIT. Examples of content stored currently in DSpace are papers,
theses, books, preprints, images, simulations, computer programs, and multimedia

publications.

Content in DSpace is organized by communities and collections. All items belong to a
specific collection, and all collections belong to a community. In addition, each item
contains two types of data — the metadata, which describes the item, and the item content,
stored as bitstreams. The item metadata is based on the Dublin Core metadata standard

[5].

Access to the content stored in DSpace can be done via the DSpace web interface.
Through this web user interface, users can browse or search for DSpace content. Users
can also submit content into DSpace via this interface. The submission process consists
of two tasks: the user must first enter the content description (or metadata) and then
upload the file into DSpace. Users must also specify which collection to store the item
in. Access to some of the collections and to the submission interface is restricted to

authorized users.

10

DSpace also provides a web service to enable communication with other systems.
Methods implemented in the web service include a search and browse function, an ingest
function, and a deposit function. The search/browse function, which allows users to
search and browse DSpace content, is based on SRW (Search/Retrieve Web Service).
Through SRW, a user may enter a search or browse query via a URL, and will be
returned an XML document containing results. For example, the URL query for a search

for “math” returning the 1 result is:

http://dspace-demo.mit.edu:8080/SRW/scarch/DSpace?query=math&maximumRecords

=1 &startRecord=1

When this URL is entered, the DSpace SRW service returns the XML document

containing the search result. Below is part of that XML document:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl"
href="/SRW/searchRetrieveResponse.xsl"?>
<searchRetrieveResponse xmlns="http://www.loc.gov/zing/srw/">
<version>l.1</version>
<numberQfRecords>1</numberOfRecords>
<resultSetId>fov7lco</resultSetId>
<resultSetIdleTime>300</resultSetIdleTime>
<records>
<record>
<recordSchema>default</recordSchema>
<recordPacking/>
<recordData><srw_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:srw_dc="info:srw/schena/1/dc~-v1.1">
<dc:contributor.author>Carroll, Lewis</dc:contributor.author>
<dc:date.accessioned>2003-12-03T22:04:10Z</dc:date.accessioned>
<dc:date.available>2003-12-03T22:04:10Z</dc:date.available>
<dc:date.issued>2002-12-03T21:26:17Z2</dc:date.issued>

11

DSpace also provides a two SOAP based web service that allows users to submit and
retrieve DSpace content. The ItemAccessService contains methods that allow users to
retrieve DSpace files. Similarly, the ItemIngestService contains methods that allow users
to deposit files into DSpace. For example, in order to retrieve a file from DSpace, the
user calls the retrieveltem and retrieveBitstream SOAP methods of the
ItemAccessService. The file id is given as an input to index the file. The retrieveltem
request retrieves the file metadata associated with the file, while the retrieveBitstream

request retrieves the file content encoded in a base64 string from DSpace.

2.3 Scenario 1: Populating a SloanSpace File Storage Area via DSpace

Say, for example, that Professor Smith, the professor for Physics 101, wants to populate
the course’s SloanSpace file storage area. He feels that DSpace would be a good
repository to search for such files. Prof. Smith can accomplish this task with the current
system, but it would require him to interact explicitly with both SloanSpace and DSpace.
In the following chapter, we’ll see how this need to explicitly deal with both systems can

be avoided.

Here is the current process Prof. Smith would go through in order to accomplish this task:

He first would first through DSpace via the DSpace web interface. The following

screenshot shows the DSpace web user interface:

12

Search DSp

ﬂ;:e. = SRS s :What cav ol
= == find in DSpace?

Welcome to MIT's digital repository!
MIT Research in digital
form, including preprints,
technical reports,
warking papers,
e T - e 2 conference papers,
Search images, and more.

i New community - Department of Political Science.

| More news...

. Enter some text in the box below to search DSpace.

| lphysics — i[se) ' Is this all of
‘) e)] o MIT's research?

- | No. DSpace is limited ta
Sign on to: ' Select a community to browse its collections. | digital research products.
i o Rec?we_ email i : ;g:tlézm!sw:?r g‘;:—gz‘to
updates Center for Global Chanige Science mung
" E‘ﬂé_ﬁ\i{%”‘ | Center for Innovation in Product Devalopment (CIPD) { and growing rapidly.
5 Edit profis | Center for Technoloay, Policy, end Industrial Development (CTPID) { . Check back often.
T Computer Science and Artificial Intslligence Lab (SSAILY |
| Departrment of Ocean Enginsering -
| Department of Politizal Seience
. Hatsopouios Microfluids Laboratory (HML)
! Laboratory for Informaticn and Decision Systems (LIDS)
MIT Press
I MIT Workplace Canter
Operations kesearch Center
| Research Laboratory for Electronics (ALE
Singzpore-MIT Aliance (SMA}
| Sloan Schoo! of Management

s asemunmiowy

e s
e e

["Communities in DSpace

¥ Help
 About DSpace

Figure 2-2: DSpace home page

Once the search query “physics” is entered into the search textbox, as shown above, Prof.
Smith clicks on the “Go” button to fetch the search results. The following figure is the

screenshot of the page returned by DSpace, containing the search results for the query:

13

) DSpace at MIT: Search Resulfs - Mozilla Firefox
Fle Edt Vew Go Bookmarks Toos Help

@ - B L) D B rosiiiwne.n.cossnpe smrciamy-shctabme=

’G:!thq?alad @uﬁm :

Smc e About DSpace

Sann:h DSpcce M
|)
| sivancsasearcn | Search Results

. S ———

l @ Homs Search. [AII ufDSpnu

| Browse
E o5 Cmeu ities

| @ authore Item hits:
L & By Date H

Authors

Laszfo, 1907‘
Panavot:s, Sussman Gerald

E‘Date oF Issue

| Signonto: | WIAE;GW3 _V

: R ve email
() Recewe

i
i

updates i 1-Apl’-1995
| o tisme | iey-1954 Automats TR

Johnson Tlrnothy Lee o

1976/ N
Feshbach, Hem'van' Ingard, K. Uno;

i 3 Edit Profile

| % Help 19_69 Morse, Philip r"dc(_?owid 1903-
| 3 About DSpace 1-May 1983;Qual|tatw-= Process Theory \Forbus, Kenneth D
A e T L

i 1-5ep-1976 15— ;-. sl . Abelson, Harold; dlSessa, Andv
. 'Jul v i,.,w_.,v, ; Heygf{?[Car.f Baker
51 Dec—1984 . Doyle, RachardJ

|Sources of n Mul!cative.Noiae and Their :
Characterizations : |Rafuse, Robert P.

27 Sep 2004

Figure 2-3: DSpace search results

Prof. Smith then would browse through these results and choose whichever ones he feels
is appropriate for the class. Once he has decided which files to add into the file storage
area, he would then click on the link for that result. For example, suppose Prof. Smith
decides that the first file listed above, “The conceptual structure of physics”, is a good
candidate, he would then click on the file link to go to the page displaying the file

information. The following is a page that displays the file information:

14

J DSpace at MIT: item 1721.1/4416 - Mozilla Firefox
Fle Edt View Go Bookmarks Toodks Help

- G- & G D) D mosievscentedimadeliza) a1
e e U

sma 3 Ahout DSpace MiTLibraries

| DSpace at MIT >

i Research Laboratary for Electronics (RLE) >

il L i BLE Technical Reports >

vanced Sea:

o Dipace:

E E [Piease use th 3
) Homa : i LS i
; Title: The conceptual structure of physics
| Browse
- - Authors: Tisza, Laszlo, 1907-
@ Communities
; Collections Issue Date: 1963
Titles Publisher: Massachusetts Institute of Technology, Research Laboratory of Electronics
i ') aethare . Series/Reportno.: Technical report (Massachusetts Institute of Technology. Research Laboratory of
| @ By Date i Electronics) ; 409.
" Description: Reprinted from the Review of modern physics, v. 35, no. 1, January, 1963. "February |
i Signonto: 1, 1963"--Cover.
] @ Paceive email | Includes bibliographical references.
| Lpdates URI: http://hdl.handle.net/1721.1/4416

i 5 My DSpa . . .
B e Appears in Collections: RLE Technical Reports

8

| pel
3 About DSpace

o

show full itern record

All iterns in DSpace are protected by copyright, with all rights reserved.

anrd Hewlett-P
e S

e

Figure 2-4: DSpace search result

Suppose Prof. Smith simply wanted to add the URL of the file. He would then simply
have to save the value for URI listed above, and then add this URL to the file storage
area. Suppose however that he wanted to add the actual file into the file storage area. He
would then need to save the file into his local computer, by either right clicking on the
“View/Open” link above and choosing the “Save” option, or click on the link and then
saving it into his computer from the menu bar. Once he saves it into his computer, he
then logs on to SloanSpace and goes to the file storage area for the class. Here is the file

storage area for Physics 101:

15

%7 Helice: BOO3 - Mozilla Firefox
Fle Edt View Go Bookmarks Tools Help

@ - -8 €) (L htpueice.nk.edu:s003/dotimiclssesiphysisfhysics 01 physics1012fone-communty?page _num=2 » G]

" T Started ,m Latest Headines ot S e i

= =
.LRN Physics 101 John Smith

My Space Help Logout
Hnsyione i F{‘.—‘:n

BOCUMENTS

[Create s new folder | Upload a file | Create a URL]

tems folder 11/220

items folder
tems folder 11/22/04 03:48 PM

Uﬁems folder 11/22/04 03:48 PM
11!2210403:43PME
dotLRN Home | dotLRN Project Central | Change Locale
Dore . i L i % : e i

Figure 2-5: SloanSpace file storage area

Finally, in order to upload the file into the file storage area, shown above, Prof. Smith
would then click on the “Upload a file” link, and from there, proceed with uploading the

file he saved in his computer from DSpace, into the file storage area. The “upload a file”

screen is shown below:

He Edt Vew Go fookmaks Toos Heb e o

@ - D G O B D remiheice v eous00soumdassesiphysciphyses 01 ohymcs 1013/ siorage/te addoder 6-36% > el
& rirefoxrep [Frefox Support Bl PliginFag
™ ~
.LRN Physics 101 : File Storage : Physics 101's Files : Add File John Smith
............ o — My Space Help togout
Class Homa Catendar Fite Storsge Aomin
version flename :: *
1] Use the "Browse..." button to locate your file, then click "Open®. o
Muitiple files: [] This is a ZIP file containing multiple files _‘
Title: 7 e ﬁ
Ii] Leave title blank when uploading multiple interlinked documents.
Description: |))]
%
R e B . S s ; ___..

Figure 2-6: SloanSpace file upload

16

Once Prof. Smith enters all the information and clicks on the Upload button, the file is

then added into the file storage area.

2.4 Scenario 2: Submitting a SloanSpace file to DSpace

Suppose that Jane, a member of the Dolphins Research Group, wanted to submit a group
research paper into DSpace. In order for all the members to be able to contribute to the
paper, the file was uploaded in the Dolphins Research Group SloanSpace file storage
area. Once the file was ready for submission, Jane and her group were ready to submit
the paper into DSpace. Here is the submission process Jane would currently go through

in order to accomplish this task:

First, Jane would download the file from the file storage area into her computer. She
would then go to the DSpace web submission interface, and enter all the metadata
information for the file. A screenshot of one of several pages for the DSpace web

submission interface is shown in the following figure:

17

Submit: Describe Your Item

Please fill in the requested information about your submission below. In most browsers, you can use the tab key to move the cursor to the
next input box or button, to save you having to use the mouse each time. (More Help...}

Enter the names of the authors of this item below.
Last name First name(s) + or*
8.g. Smith
Authors | i

Enter the main title of the item.

e[

Enter the series and number assigned to this item by your community.
Series Name Report or Paper No.
Series/Report No. | I [(AddMore |

If the item has any identification numbers or codes associated with it, please enter the types and the actual numbers or codes below.

ISSN ™
Identifiers _

Select the type(s) of content you are submitting. To select more than one value in the list, you may have to hold down the "CTRL" or “Shift" key.
e oy

Animation
Article ?z
T Book

YP® Book chapter
Dataset

Leamning Object

Select the language of the main content of the item. If the language does not appear in the list below, please select "Other®, If the content does not really have a
language (for example, if it is a dataset or an image) please select "N/A".

Figure 2-7: DSpace submission page

There are 8 screens Jane would need to go through in order to complete the submission.
The “Describe” tab, highlighted in red in the screen above, shows where she is in the
submission process. The screens query Jane for the file metadata. Examples of metadata

are the title, the author, the type, and the language, as shown above.

2.5 What is the motivation behind this system?

The two scenarios described above shows content transfer between SloanSpace and
DSpace. However, imagine if there was some component that would simply enable users
to perform these content transfers without having to switch between both environments.
Even more so, the component would make use of the file information already stored in

the system, and use that information when performing the content transfer, instead of

18

having the user supply this information once again. This component is the system

developed in this thesis.

SloanSpace and DSpace are merely two of several systems at MIT developed to
incorporate technology into the learning environment. OpenCourseWare, which places
MIT course materials on the web for free, is another one of these systems. Efforts to
integrate OpenCourseWare with DSpace are also being made. The vision for the future is
that all of these different learning environments can interoperate with each other, thus
building a very comprehensive environment for the users. This system in this thesis is

the first of such integrations.

Most importantly, however, the system developed in this system demonstrates more
generally interoperation with digital repositories. Although more and more digital
repositories are being developed, a relatively small effort has been made to integrate
other systems with these repositories. The system developed in this thesis not only
integrates SloanSpace with DSpace, but also allows for a more a general integration with

any other system.

2.6 Challenges

The main problem to be solved in this thesis deals with the metadata handling. The files
from DSpace and SloanSpace have metadata associated with them, but the specific
metadata stored in the SloanSpace files and DSpace files is different. The metadata for
DSpace files is based on the Dublin Core metadata standard. The metadata standard
specifies elements for the metadata, such as the title, the author, the publication date, the
type, and the publisher, among others. The SloanSpace files also have data associated
with it, such as the title, the user who uploaded the file into SloanSpace, the date the file
was uploaded, the file size, and the file type. Since the metadata specifications for both
systems are different, the file metadata for files transferred from one system to the other
must be adjusted to map to the file metadata specifications for the other system. For
instance, a file coming in from DSpace contains Dublin Core metadata. In order to add

the file to SloanSpace, the file must contain SloanSpace specific metadata. Thus the

19

system must contain a mapping module that maps the DSpace metadata to the

SloanSpace data.

Another challenge in this thesis is developing a user interface that will make it easier for
users to transfer files between the two systems. Files being transferred already contain
metadata from the system they are coming from. Thus the file submission process to the
new system must be simpler than the current submission process for that system. For
instance, as shown in Scenario 2, in order to submit files into DSpace (via the DSpace
web interface), users enter file metadata through a series of screens. Since the Dublin
Core metadata standard contains a significant number of elements, the process can be
lengthy. In the file transfer interface developed in this thesis, submitting a file into
DSpace from SloanSpace should be a faster and simpler process since the file being
submitted already contains metadata from SloanSpace. In other words, a user should not
have to enter the DSpace metadata that mdps directly to the SloanSpace metadata. Thus
the user interface must pre-populate DSpace metadata from the SloanSpace metadata

using information from the metadata mapping module.

Finally, the design of the system should be more general to include integration with other
repositories, and not specific solely for integration with DSpace. For example, the
metadata mapping module must also be able to map SloanSpace metadata with metadata

of any other system or repository.

2.7 Related Work

Awareness of the need for integration between systems and digital repositories has been
growing over the past few years. For example, an effort has been made by IMS and OKI
to develop standards of integration among education systems and repositories. The work
done by these two organizations focus mainly on developing the specifications for
interoperability between systems and repositories, whereas the system developed in this

thesis is an actual implementation of a system that provides this interoperability.

20

The IMS Digital Repositories Interoperability (DRI) Specification provides specifications
for digital repository interoperation of common repository functions. It specifies five
core interactions between systems and repositories. These five interactions include
search/expose, gather/expose, request/deliver, submit/store, and alert/expose [9]. The
search/expose interaction defines the process in which systems search metadata exposed
by content repositories. The gather/expose interaction defines the process in which
systems request metadata that is exposed by the repository. The request/deliver
interaction involves the process in which a system requests access to the leaming object
exposed through the search operation. The submit/store interaction defines the process in
which a system submits content to the repository. This interaction refers to the IMS
Content Packaging Specification as a standard on how to package and export the content.
Lastly, the alert/expose specification defines the process in which repositories alert

systems on new or updated metadata or resources.

The Open Service Interface Definitions (OSIDs) developed by the Open Knowledge
Initiative (OKI) provides specifications for integration in an education technology
environment. These specifications describe how components of education technology
systems interact with one another. OSIDs provide a layer of abstraction between the
client application and the service application [10]. Implementation details of the service
application need not be known by the client application in order for the client to
interoperate with the service application. Similarly, details of the client application are
hidden from the service application. OSIDs simply specify what is needed from the
service and what is expected out of the client. Repository OSIDs are OSIDs developed
for interoperability between digital repositories and other components. With repository
OSIDs, clients don’t need to know the implementation details of each particular
repository, and instead simply provide data the OSID specifies is expected out of the
client [11]. The repositories on the other hand would provide data that the OSIDs have

specified for them to provide to the client.

21

3 System Overview

The file transfer component described in this thesis integrates SloanSpace with DSpace,

as illustrated in the figure below.

/ SloanSpace \

Services

File retrieve, submit
Transfer

Component

service

SloanSpace Database

File Transfer
Storage

Figure 3-1: System overview

The component sits in SloanSpace, and interacts with DSpace, directly through two of
DSpace’s web services — the SOAP web service and SRW (Search/Retrieve Web
Service). Three types of operations can be performed by this component. The search
operation searches DSpace content through SRW. The retrieve operation gets files from
DSpace and places them in the proper SloanSpace area. The submit operation submits
files from SloanSpace to DSpace. Both the retrieve and submit operations are performed

via the DSpace SOAP web service.

The file transfer component contains a storage element, which consists of database tables

used to store both the metadata mappings and the specific file metadata. These database

22

tables are created in the SloanSpace database, and can therefore reference other tables in

the database.

This chapter first shows how the system functions. In particular, it shows the how the
system behaves in the two scenarios described in the previous chapter. Then it describes
the data model of the system, on which the database tables are based. Finally, it

describes the implementation details of the system.
3.1 System Functions

3.1.1 Search/Retrieve

The search and retrieve interface allows SloanSpace users to search and retrieve files

from DSpace, without leaving the SloanSpace environment.

Recall the first scenario described in the previous chapter, where Prof. Smith wants to
populate his Physics 101 SloanSpace file storage area. Although he was able to
accomplish his task, he had to leave the SloanSpace environment and go to DSpace to
search the files. Then he had to save the file in his own computer, after which he could

then finally upload the file to the SloanSpace file storage area.

The search and retrieve interface developed in the system in this thesis makes Prof.
Smith’s job much easier and speeds up the process, by enabling Prof. Smith to search and
retrieve DSpace files, while never leaving the SloanSpace environment. Here now is the
process Prof. Smith would go through in the same scenario, but using the system in this

thesis:

He would first go to the file storage area. Here is the screenshot of the file storage area in

this system:

23

3 Helice:B003 - Mozilla Firefox
Ble Edt Yew Go Bookmarks Tools Help Z W o=ne e
@ - !‘ - g ”:,‘ @ i3 http:ﬂheice.lrt.edu:Mdlﬂvu‘da;seslp}wsicsfﬁrystslEl!_mysi:slulzimumwﬂ!y?paua_mm-z

B Getting Started [Latest Headlnes
™
.I_RN Physics 101

(luss Homa Calandar

DOCUMENTS

[Craate 3 newfolder | Uptoad afile | Create 3 URL | Search for Files | Browse DSpacs]

0 items folder 11/22/0403:48 PM |
{3 Lecture Notes O items folder 11/22/04 03:48 P|
';”!éi Physics 101's Public Files Ditems folder 11/22/34 03:48 PM |

flass Homae Caterdur Etl e Adin
JotlRN Home | dotLRN Project Central | Change Locale
L e e T A o

Figure 3-2: Prof. Smith’s File Storage

In this system, the file storage area now contains a “Search for Files” link, shown above.
To proceed with the DSpace file search, Prof. Smith would now click on this link. When
he clicks on the link, he is directed to the first page of the search interface, which is the
page in which Prof. Smith can enter the search query. As described in the previous
chapter, Prof. Smith then enters “physics” as the search query. Below is the search

interface page, with the query “physics” typed in the text box for the query:

24

£3 Create Search DSpace - Mozilla Firefox

B¢ B Yoiv G Pockiaris Joob ibebcon : e OE

Ga- v - & T @ 0 nisiioke.nt.edus0nsdotimidassesiohysecsiphysis 0L fphysics 012{fe-storagelseardhvulfoder_kd=38686 5
B Getting Started £ Latest Headlines
o =z
.LRN Phyzics 101 : File Storage : Physics 101's Files : Search DSpace John Smith
I . =z TR s ___MySpace tHelp Logout
ClaEs Homae Catendar Fite Slcrage Admin
Search: Ip?!;’siczr 7::77) }

in ®pspace O Google O DSpace-restricted Google

flass Homa Catendss File Slcrage Admin

dotLRN Homsa | dotLRN Project Central | Change Locale

R - PR,

Figure 3-3: Search query page

As shown in the page above, Prof. Smith also has an option of searching Google and a
restricted version of Google where it would only search through DSpace URLSs, indicated
above by the “Google” and “DSpace-restricted Google” radio buttons respectively. An

example of search using these different domains will be shown later in this section.
Once Prof. Smith has entered the query into the text box, as shown above, he would now

click on the “Search” button to get the search results. Below is the search results page

returned for the query “physics™

bl

%2 Search Results - Mozilla Firefox

mmmmam

™ -
LRN Physizs 101 : File Storage : Physics 101's Files : Search Results John Smith
My Space Help Logout “2

atane Fite Storage i : ‘E
o
; - 4
Search: physics | ;
in ® pspace O Google O DSpace-restricted Google §
Results 1 - 5 of 30 for physics: Search Help

The conceptual structure of physics
Reprinted from the Review of modern physics, v. 35, no. 1, January, 1963. "February 1, 1963"--Cover. Includes bibliographical references.

http //hd) handle.net/1721.2/376 - [Add URL] | [Add File]

Analysis of a Proposed First Generation Physical Map of the Human Genome
hitp://hdl.handle.net/1721.2/2753 - |Add URL] | [Add Fila]

The Architect’s Collaborator: Toward Intelligent Tools for Conceptual Design
http:/fhdi handle.net/1721.2/3269 - [Add URL] | [Add File]

Organizing principles underlying the formation of arm trajectories
http://hdl.handle.net/1721.2/3432 - [Add URL] | LAdd File] ;

ADAM: A Decentralized Parallel Computer Architecture Featuring Fast Thread and Data Migration and a Uniform Hardware Abstraction :..
htto://bdl handle.net/ 1721.2/3291 - |AJ URL] | [Add File] &

Slass Homa Cadandur Rie Storsge Aamin

Figure 3-4: Search results page

Each result in the search results page for a DSpace search displays the result title, the
result description, and the URL of the document, as shown above. In addition, the result
contains two links displayed to the right of the URL — the “Add URL” and the “Add File”
link. If Prof. Smith wanted to add the URL of the file to the file storage area, he would
click on the “Add URL” link. If he instead wanted to add the file itself in the file storage
area, then he would click on the “Add File” link. Suppose Prof. Smith wanted to add the
first document, “The conceptual structure of physics” to the file storage area, he then
clicks on the “Add File” link for this result. After he clicks on this, he is then redirected
back to the file storage area, which now contains the added file. Here is a screenshot of

the newly updated file storage area:

26

3 Physics 101's Files - Mozilla Firefox (=)
Bo £k Yew Go|fookmarks Took Hep i et gy

@ 5 I:.Ig\s‘ = g :’E;%F @ ;LJ lttp:fﬁ'slce.mi.ud_l:.ﬂm;myy_-‘r e = _,, e G T _qgi ‘ﬁ']' -

Fhysics 101 : File Storage : Physics 101's Files John Smith
. MySpace Hels Logout

Upload = file | Create a URL | Search for Files | Browse DSpace Show files modified in the past | 0¥ days as new.

Create a new folder | Modify permissions on this folder

Totens fader 1z ovm e
0 items folder 11/22/04 03:48 PM L
0 item - |
LA e S i = A E
G e der 1y o
Oitems folder
stricture of physics new vies datalls 135,403 bytes application/pgf.
Download an archive of the contents of this folder
Note: This may take » while, please be patient. o
Class Home Catandy Fla Slorsge Admin iN
dotLRN Home | dotLRN Project Central | Change Locale &

Done

A design issue arose of whether or not to throw away the extra metadata. That is, the file
coming from DSpace contained other metadata values that SloanSpace does not need.
Although throwing away the extra metadata allows for simplicity and does not require the
addition of extra storage space, the metadata would be useful when the system is
extended to allow for integrations with other systems, since these other systems may use

the extra metadata. Thus for this system, extensibility was chosen over simplicity.

Using the system in this thesis, Prof. Smith then did not have to leave SloanSpace to
search DSpace. Furthermore, he did not have to first save the file into his local computer.
Most importantly, however, Prof. Smith did not need to enter all the file information, as
he did when using the current system. Recall that when using the current system, Prof.
Smith had to upload the file manually to SloanSpace, which required him to fill out the
SloanSpace file information. In particular, he had to fill out the title, description, and file
location. Using the file transfer component in this thesis, Prof. Smith did not need to fill

this out. Instead, the retrieve interface mapped the DSpace metadata values of the file to

27

the SloanSpace metadata values, and automatically filled out this information, thus

speeding up the file transfer process.

In addition to searching through the DSpace domain, users can also search through
Google. For instance, suppose Prof. Smith was not satisfied with the search results
returned by DSpace. He can then search through Google by the following process: He
first goes to the file storage area, as he did before, and clicks on the “Search for Files”

link. Now, instead of selecting the “DSpace” button in the search query page as he did in

the previous scenario, he now selects the “Google” button. This is shown below:

%3 Create Search DSpace - Mozilla Firefox Fz“ﬁwrzl
Hle Edt Vew Go Dookmarks Toos tep @

@- - B) B[O rwincemitcansonpiotmidassesphyscsiphyscs 101physics 012/l storagefsearchu I [IGL |
@ FrrefoxHelp [] Frefox support Bl PlugnFaQ : :

™
.LRN Physics 101 : File Storage : Physics 101's Files : Search DSpace John Smith
My Space Help lLogout

Class Home Catendar File Storage Admin

Search: physics I
in ODspace ®Google O DSpace-restricted Google

Class Home Calendar Fite Storage Admin

dotLRN Homs | dotLAN Broject Central | Change Locale v

Figure 3-5: Google search

He then clicks on the “Search” button as he did before to get the search results. Here in

the following figure is the search results page for the “Google” search for “physics™

28

%J Search Results - Mozilla Firefox
Fle Edt View Go Bookmarks Tools Help |

Ga- - B C @ [ntmimeice.mited:5003/dotm/dasses pryscs/ohyscs 10 Upysis 1012/ storagesearch-utresuts?fod ¥

@ Frefoxrien L Frefoxsuport Bl avgnraq

™
.LRN Physics 101 : File Storage : Physics 101's Files : Search Results John Smith
My Space Help Logout

Class Home Calendar Fite Storage Admin

Search: iphysics E
in ©DSpace @ Google © DSpace-restricted Google

Results 1 - 5 of 9980000 for physics: Search Help

PhysicsWeb - home

PhysicsWeb, The web site for physicists, PhysicsWorld, Institute of Physics, Electronic Publishing, online products and services. ...
PHYSICS JOBS. ...

http:/{physicsweb.org/ - [Add URL]

physics central
with Physics Central, we communicate the excitement and importance of physics to everyone. We invite you to visit our site every |

http://www.physicscentral.com/ - [Add URL]

Physics 2000
http:ffveww.colorado.edu/physics/ 2000/ index.p! - [Add URL]

Physics and Astronomy - Physlink.com
Physics, astronomy and science news, community, education and reference. Job board ... Latest Physics Astronomy Stories. An

artists ...
http:/fvenw. physlink.com/ - [Add URL]

www.iop.orq from The Institute of Physics
... Institute of Physics Undergraduate Bursary Scheme Jun 16. banner. ... Books, Education, Careers, Groups. Magazines,
Industry/Business, Physics Policy, Branches. ...
hittp:/fwww.iop.org/ - [Add URL]

Class Home Calendar Fiie Storage Admin

Figure 3-6: Google search results

Note that the “Add File” link is not available for the Google page, since the results
returned are web sites instead of web documents returned in the DSpace search. Thus,

only the URL’s of the results can be added to the file storage area.

3.1.2 Submit

Through the file transfer component, SloanSpace users would be able to submit files in

their file storage area to DSpace, while never leaving the SloanSpace environment.

29

Recall the second scenario described in the previous chapter, where Jane wanted to
submit a group research paper into DSpace. In order to do this using the current system,
Jane had to go to the DSpace submission web user interface, which, through a series of

screens, queried her for the file metadata.

The submit interface in the file transfer component developed in this thesis makes the
process in this scenario easier and faster by accomplishing two things. First, using the
file transfer component, Jane no longer has to leave the SloanSpace environment to
submit files into DSpace. And second, the submit interface pre-populates the entries for
the DSpace file metadata values by mapping the SloanSpace metadata values to the
corresponding DSpace metadata values. Thus Jane will no longer have to fill out values
for file metadata entries that SloanSpace already maintains. Here now is the process Jane
would go through for the second scenario described in the previous chapter, but this time

using the submit interface developed in this thesis:

First, Jane would go to the file area for the file that she wants to submit to DSpace. Here

is the file area for the file:

©J Dolphins Research Paper - Mozilla Firefox
e Edt yew Go Bookmarks Jook Hep

G- -8 0 B [0 rwirom Vb dophirsressarhgroupltie-storageiisitie =39168 _ g [
T

™
.LRN Colphins Pesearch Group : File Storage : Dolphins Research Group's Files : Dolphins Research Paper Jane Jacobs |
My Space Help Logout

Comimrarity Horme Calendar File Storaga Faople Adrain
« Title: Dolphins Research Paper (edit)
» Owner: Jane Jacobs

« Actions: show only live version | Upload a new version | Copy | Move | Madify permissions on this file | Delete this file (including all versions) |
Upload to DSpace

Back to folder view

{|all Versions of "Dolphins Research Paper”. o]
version filename __|Author Size (bytes) |Type d EEVErsiun Notes/|Actions

@ Dolphins Research Paper.doc Jane Jacobs: 20,992 application/msword |11/23/04 02:55 PMEIpaper || delete | administer permission! :]

wirdly Homa Calandy Fite Slorane Pespia Admin

dotlRN Home | dotLRH Projact Central | Chanqe Locale &

Done

Figure 3-7: File area

30

To proceed with the DSpace submission, Jane would click on the “Upload to DSpace”
link, shown above as one of the actions for the file. Clicking on this directs Jane to the
page that contains the form that queries for the file DSpace metadata values. Some of the
metadata values are filled out, depending if there exists a mapping from a SloanSpace file
metadata field to the respective DSpace field. Here are two screenshots of this page. The
first screenshot shows the top of the page. The second screenshot shows the page when

scrolled to the bottom.

J Upload to DSpace - Mozilla Firefox |
Fle Edt View Go Bookmarks Tools Help Q

@D B O D D roireicem causoosjsotmickbsidophnsesearhyoupiie-sorspsimets-vowTtie d=mseeschema b=t M BL]
| @ Getting Started [Latest Headines

™
LRN Dalphins Research Group : File Storage : Dolphins Research Group's Files : Dolphins Research Paper ! Jaine Jacobs
L4 Upload to DSpace

My Space Help Logout

Community Home Calander Fila Storage Facple Asmin

Enter the author of the item.
Author Jane Jacabs | (AddMore |

Enter the title of the item.
Title Dolphins Research Paper

Enter the alternative title of the item.
Other Title | E [(Add More |

Enter the publisher of the item.
Publisher | - ~ |[AddMoe]

Enter the publication dlt{ of the itemn.
Publication Date 2004-11-23

Enter the citation of the item,
PR 1 - |
Citation | g

Enter the language of the item.
Language | English (United Stetes)]

Enter the item type

Type W—o?k::ng Paper ¥

Enter subject keywords for the item
Subject Keywords | ‘[Add More |

Enter the description of the item.

‘paper

Description :

hitp:/hekce.mit. e0u:B003; dotimy cubs /dolphinsresearcharoupf

Figure 3-8: Metadata entry

31

'2) Upload to DSpace - Mozilla Firefox
He Edk Vew Go Bookmaks ook Hep

a-op - £ 0 D [mpueice.nit.edu:5003/dotirjchbs/doiphinsresearchoroupifie-storage meta-viewtfie_id=391683schema_id=1

B Getting Started 5 Latest Headlines

Lenguage | English (United Stotes) ¥

Ehtarthe temibipe. .
Type | Working Paper /!

Enter subject keywords for the item

Subject Keywords |) ~ [AddMore |

Enter the description of the item,

paper

Description

Enter the abstract of the item.

Abstract
Enter the sponsors of the item.
Sponsorship
|
Enter the itern series namae and report no. |
Series Name and Report No. | i [Add More | il
Enter the advisor of the item.) o
Advisor) B 1 Add More o)
Save] [Cancal] [Uploadto DSpace |
i
Pacple Adrin ; :
|
&5
-

Figure 3-9: Bottom of metadata entry

In the page above, all the fields and all their display information, including the field label,
the display text above the field input element, the input element (i.e. the text box, select
list, or text area associated with the field), and the “Add More” button (for fields that can
have multiple values) are all dynamically generated. Moreover, the author, title,
publication date, and description values were pre-populated. After Jane finishes filling
out the rest of the values, she then clicks on the “Upload to DSpace” button at the bottom

of page, which would finally submit the file to DSpace. Note that Jane also has an option

32

of saving the current metadata entries, and come back to the submission process later, on

canceling the process, by clicking the “Save” or “Cancel” buttons respectively.

After the submission is made, the submit interface returns a page the status of the
submission. That is, it shows whether or not the submission was successful. The success
of the submission depends on the values Jane submitted. For example, if the value for the
field is required for submission, but Jane has failed to fill it out, then she will be directed
back to the pre-populated entry page with a message for field that was unsuccessfully fill
out. Here is an example of that returned page, when Jane did not fill out the required title

field. Note the red error text, “Please enter a title”, next to the title field:

oad to DSpace - Mozilla Firefox

™
.LRN Dolphins Research Group : File Storage : Dolphins Research Group’s Files : Dolphins Research Paper : Upload to DSpace Jane Jacobs
My Space Help Logout

Comemanity Homs Catandar Fils. Stexage Propie Admin

uthor of the item.

| AddMore 1
Enter the title of the item. 4
Title | | tanse enter a tHie
Enter tha altarnative title of the item. _‘
Other Title | | (Add More
Enter the publisher of the itam.
| __[AddMoare
Enter the publication date of tha Rem. i

Publication Date [2004-11-23

Entar the citation of the item.
Citation |

Enter the language of the item.

Language En;iish {United States} &

Enter the item type
Type| Working Paper &

Entar subjact keywords for the item

Subject Keywords |) __|[AddMore

Enter the descrigtion of the item.
{paper
Description

Figure 3-10: Metadata entry error text

33

Finally, once all the field values are successfully entered, the interface submits the file to

DSpace. Here is the page returned to Jane indicating that the submission was successful:

% Successful - Mozilla Firefox

File Edt View Go Bookmarks Tools Help

G- - T B 0 rwiieke.mt.cous003)dotimichibs/dophinsresearchoroupfie-sorgelmeta-sub il id=39168 ic]
P e i :

™
LRN Dalphing Rscearch Groun : File Storage : Dolphins Research Group's Files : Dolphins Research Paper : Submit
L4 Successful

Jane Jacobs

I My Space Help Logour

Commisiiy Hora Calendur File Sicrage Peopla agrran
You have successfully submitted the file to DSpace.

Back Tao File View

Community Home Calendar Fite Steraga People Al
dotLRN Home | dotLRM Project Central | Change Locale
Done (ki o i e .. ks
e e — - amn w e = e —

Figure 3-11: Successful submission

In order to indicate that the file has already been submitted to DSpace, a new icon is

associated with the file. The new icon is similar to the old file icon, except that it shows

a “D” beside it. Here is a screenshot of the updated file storage area:

} Dolphins Research Group's Files - Mozilla Firefox i z
fle ER Yew Go Bookmarks Toos e , : &
a-p - & © T 0 ntpiimeicemtcdusondotinic insresearchgroupie-storage indextafolder_jd=39090 e]

My Space Help Logout &
Community Homa Lalardar Fite Srerage People Adrair.
Upload a fle | Create a URL | Search for Files | Browse DSpace Show files modified in the past _U_ & days as new. E

Create a new folder | Medify permissions on this folder

e AR S 1 I

@ hi;:s Research croup's Public Files : 0 items folder

p Dolphins Research Paper new visw datails 20,992 bytes application/msword 11/23/04 02:55 PM |

Download an archive of the contents of this folder &
Nate: This may taka a whils _olease he natient. . " :
Done

Figure 3-12: Updated file storage area

The icon for the “Dolphins Research Paper” shows a “D” next to the file icon. In

addition, the submit interface won’t allow the file to be submitted to DSpace. The

34

interface simply returns a page telling the user that the file has already been submitted to

DSpace.

Using the file transfer component, Jane no longer has to leave the SloanSpace
environment. More importantly, Jane doesn’t need to fill in some of the metadata fields,
whose values can be mapped to SloanSpace file values, making the submission process

faster and easier.

3.2 Data Model

In order to explain the design choices for the data model, this section first takes a closer
look at the two scenarios and explores the types of data needed to be managed and stored
in order to perform the specific functionalities. Then, the section explains how this data
was modified to allow for generality. That is, the section describes how the data was
structured to not only contain information specific to DSpace, but also to contain

information for other remote systems that wish to integrate with SloanSpace as well.

3.2.1 Exploring the Data Model Requirements

Recall the second scenario where Jane wants to submit a paper into DSpace. In
particular, recall what happens once Jane clicks on the “Upload to DSpace” link in the

file area. Illustrated below is a summary of this process:

Jane clicks on

the “Upload” Pre-Populated

link Interface looks page is displayed
up metadata to Jane

information

Pre-Populated
Page

Storage

v
\ 4

Element

Figure 3-13: Submit process summary

35

As seen in the illustration, the storage element contains the information needed to
generate the data in the pre-populated page. In particular, recall the two types of data
dynamically generated in the pre-populated page. The first is the metadata fields, and the
information associated with those fields. This information includes the display label and
text for the field, the input type, and flags indicating whether the field value is required
upon submission and whether or not the field can have multiple values. The second type
of data dynamically generated is the pre-populated values for the field, where the values
are the SloanSpace field values that map to the respective DSpace value. Thus the
storage element needed to store data containing the DSpace metadata fields and their
information, including the display information, the multiple and required flags, and the
SloanSpace — DSpace mapping information. In addition, once the file was submitted to
DSpace, the submit interface tagged the file so as to indicate that the file was already
submitted. In order to do this, the storage element then needed to store a record of the

files that were submitted to DSpace.

Now, recall the first scenario where Prof. Smith wants to search and retrieve files from
DSpace into the file storage area for his class. In particular, recall what happens once
Prof. Smith has clicked on the “Add File” link associated with a particular search result.

Dlustrated below is a summary of this process:

. Retrieve Interface Interface adds the
Prof. Smith B
e looks up DSpace- file into the file-
clicks “Add SloansS
File” link oanSpace storage component
—— Storage SloanSpace File
Element Storage
Element
Updated File
Storage Area

Storage

Element

The updated file storage area is displayed, Retrieve Interface stores the extra
with the retrieved file newly added DSpace metadata values for the file

Figure 3-14: Retrieve process summary

36

The illustration above shows the need for the file transfer component’s storage element to
additionally store two types of information. The first is the DSpace-SloanSpace
mapping, shown in the second step of the process. The second is the DSpace metadata

for the file being retrieved from DSpace, shown in the fourth step of the process.

In summary, the scenarios described above require the storage element to store the
following information. First, it needs to store the DSpace metadata fields and the
information associated with them. This information includes the display information, the
multiple and required flags, and the mapping information. Mapping information in both
directions, that is, SloanSpace field to DSpace field and DSpace field to SloanSpace field
needs to be stored since the submit interface uses the first type of mapping mentioned,
and the retrieve interface uses the second. Second, it needs to store a record of the files
being submitted to DSpace. And third, it needs to store the DSpace metadata information

for files retrieved from DSpace.

3.2.2 Generalizing the Data Model

The most important design decision for the data model was to structure the data in a way
that would easily allow other remote systems to integrate with SloanSpace. In order to
accomplish this task, the data stored needed to be generalized for any remote system, not
just DSpace, but still meet the data model requirements outlined in the previous section.
Thus, the data model requirements were modified as follows. First, instead of simply
storing the DSpace metadata fields and the information associated with them, the data
model was modified to now store any type of metadata field, from any system. This data
type is called metadata_fields. However, since each field in metadata_fields can now
belong to any system, the fields then needed to contain an extra property indicating which
metadata schema (or system) it belongs to. Second, instead of simply storing a record of
the files submitted to DSpace, the data model now stores records of files submitted to any
remote system. This data type is called metadata_submissions. Like the
metadata_fields data type, each record needed to contain an extra property indicating

which metadata schema (or system) the file was submitted to. Finally, instead of simply

37

storing the DSpace metadata information for files retrieved from DSpace, the modified
data model stores any remote system’s metadata information for files retrieved from that

system. This data is called metadata_field_values.

In addition, three other data types needed to be created to complete the generalized data
model. First, as described above, both the metadata_fields and metadata_submissions
contain an extra property that indicates which remote system the data belongs to. In
order to do this, an extra data type was created that stores all the remote systems
integrating with SloanSpace. This of course includes DSpace as one of its records. Let
us call this new data type, the metadata_schemas. Second, the SloanSpace metadata
exists in several tables. For instance, the file title exists in one SloanSpace table, while
the file creator exists in another. Thus, the field mapping in the metadata_fields can’t
simply list the SloanSpace metadata field name. Instead, a new data type was created to
solve this problem, where each record contains the SloanSpace metadata field name and
the SloanSpace table and column that contains the value for that field. Let us call this
new data type, the ss_metadata_fields. Lastly, when other systems, along with DSpace,
are integrated with SloanSpace in the future, the metadata values of the retrieved files
coming from a remote system can be used in the pre-population step of the submission
process into another system. In order to be able to do this, a new data type was created
that stored mapping information between the fields of remote systems. This data type is

called metadata_mappings.

Thus, in summary, six data types (database tables) were created:

1. metadata_schemas — stores information about the different metadata systems
integrated with SloanSpace.

2. metadata_fields — stores the information about the metadata fields.

3. ss_metadata_fields — stores information about the SloanSpace file metadata. More
specifically, it gives the table and column locations of the metadata values.

4. metadata_field_values — stores the remote system metadata information for the

retrieved files

38

5. metadata_submissions — stores the records of the file submissions to remote systems.
6. metadata_mappings — stores mapping information between the metadata of remote

systems.

SloanSpace, and in turn, the file transfer component, uses Oracle for its relational

database.
3.3 System Implementation Details

3.3.1 Search Interface

The main design decision made in developing the search user interface was to allow for
generality. That is, not only should the search interface enable users to search through
DSpace, but the design of the interface should also allow the search interfaces of other

remote systems to be easily built and integrated with the current search interface.

In the first scenario described in section 3.1, Prof. Smith has an option of searching
through both the DSpace and the Google domain. The search query page in which Prof.
Smith entered the query contained radio buttons indicating which domain to search
through. When Prof. Smith clicked on the search button, the interface then searched
through the proper domain, and returned the respective results. The only difference
between processes of searching DSpace and Google was in the step that fetches the
search results from the given domain, and the parsing of those results. The use of ACS

service contracts allowed for this task of developing a more generalized search interface.

ACS service contracts is a package available in OpenACS, and, in turn, is available in
SloanSpace. Service contracts provide a way to develop interfaces or contracts, which
can then be implemented by other packages. The contracts specify operations that

implementers are required to fill.

The search service contract contained a paged search operation, paged_search. This
operation takes as input a query string, a page number, and the number of results per

page. The output of this operation is the search results, indexed on the page number. The

39

number of search results retumed is the number of results per page indicated in the input.
For instance, if the page number is 2 and the number of results per page is 5, then the
operation will return the 6 through the 10™ search results. Each search result is an array
of three strings. The first value in the array is the string value for the title of the search
result document. The second value it the URL of the document. The third value is the

string containing the search result document description.

The DSpace search interface implements the search service contract, and therefore
contains a method that fulfills the contract requirements of the paged_search operation.
As the paged_search operation specifies, the DSpace paged_search operation takes as
input a query string, a page number, and the number of results per page. This method
then searches DSpace content via the DSpace SRW web service. The SRW web service
allows remote systems to search through DSpace, through its SRU (Search and Retrieve
URL service) service. Through SRU, remote systems can formulate search requests to
DSpace via a URL. The query URL consists of two parts, separated by a “?” symbol.
The first part specifies the SRW server location, and the second part specifies the query
string and other query options or elements, where each query option is separated by a
“&” symbol. Each search option contains the option tag followed by an “=" sign which
is followed by the option value. For example, using the first scenario in section 3.1, Prof.
Smith’s query to search for content in DSpace containing the word “physics”, starting

with the 3™ search result, and returning a maximum of 5 results would be:

http://dspace-demo.mit.edu:8080/SRW/search/DSpace?query=phsyics&maximum

Records= 5&startRecord=3

The DSpace paged_search method makes the search request to DSpace by calling this
URL. The response returned by the SRW service is an XML document which contains
the search results and the Dublin Core metadata for the result. The method then parses
the XML document, using the XML parsing processes of the TCL Tdom package, in
order to obtain the Dublin Core metadata values for the result document’s title,

description, and URL.

40

In order to further demonstrate the usability of the search service contract, a Google
search interface was also developed. The Google paged_search method implements the
paged_search operation of the service contract. This method searches Google content
through Google’s SOAP-based web service. In particular, it calls the doGoogleSearch
SOAP request, and is returned a SOAP response, which is then parsed using the SOAP
methods of the TcISOAP package. The SOAP response returned by the Google web

service contains the title, the description, and the URL of the search results.

Thus, once Prof. Smith has clicked the “Search” button in the search query page, the
search interface calls the search service contract paged_search operation for specific
implementer, depending on which domain radio button was selected in the search query

page. Finally, the search results page displays the results of the paged_search operation.

3.3.2 Retrieve Interface

The “Create URL” method in SloanSpace simply takes in a title, description, and URL,
and adds that to the file storage area. Thus, once the “Add URL” is clicked, the retrieve
interface simply needs to call the “Create URL” method using the title, description, and

URL values returned in the search result.

The “Add File” interface on the other hand, can’t simply take the values returned in the
search result, since it actually needs to fetch the contents of the file and the extra file
metadata. In order to this, the interface makes the SOAP requests to the DSpace
ItemAccessService SOAP-based web service. The ItemAccessService contains the
SOAP requests “retrieveltem” and “retrieveBitstream”. The “retrieveltem” request asks
the service to return the Dublin Core metadata for the file, encoded in XML. The
“retrieveBitstream” request, on the other hand, asks the service to return the bitstream
content of the file. In order to know which file contents to return, both methods require
the SOAP service client to supply the file id, which is the file URL returned by the SRW

service.

41

Using the “retrieveltem” and “retrieveBitstream” SOAP requests, the “Add File”

component then works as follows:

process add_file (file_id) {
1. title_fields = lookup metadata fields in metadata fields table
that SloanSpace title field maps to
2. desc_fields = lookup metadata fields in metadata fields table
that SloanSpace description field maps to
3. Initialize title_fields_value, desc_fields_value
4. xml_doc = retrieveltem(file_id)
5. name_value_array = xml_parse (xml_doc)
a. xml_parse also sets title_fields_value and
desc_fields_value
. bitstream = retrieveBitstream(file_id)
temp = create_file(bitstream)

upload_file(title_fields_value,desc_fields_value,temp.loc)

w o w Jo

add values in name_value_array to metadata_field_values table

The first step of the process looks in the “metadata fields” table for the Dublin Core
metadata elements to which the SloanSpace title field maps to, and stores this list of
elements in an array. The second step does the same for the SloanSpace description field.
The third step initializes the variables title_fields_value and desc_fields_value, which
will contain the values that map to the SloanSpace title field and the SloanSpace
description field, respectively. Once these arrays are set and the variables are initialized,
step 4 then calls the “retrieveltem” SOAP request, which returns an XML file. Step 5
parses this XML file to get all of the file’s Dublin Core metadata element name and value
pairs. During the XML parsing, if the metadata element being read is in the title_fields or
desc_fields arrays, then the value of this element is concatenated to the current
title_fields_value or desc_fields_value, respectively. Thus, after step 5, the
name_value_array contains all the file’s Dublin Core metadata name-value pairs, while
title_fields_value contains the value for the file’s SloanSpace title and desc_fields_value
contains the value for the file’s SloanSpace description. Step 6 then calls the

“retrieveBitstream” request, which fetches the bitstream content of the file. Step 7 saves

42

this bitstream content into a temporary file. Step 8 then calls the same file upload process
used when a SloanSpace user manually uploads a file into the file storage area, which
takes in the SloanSpace file title, the SloanSpace file description, and the file location.
Step 8 calls this process using title_fields_value, desc_fields_value, and the temporary
file location as the input. Finally, step 9 adds the file metadata values from the

name_value_array into the “metadata field values” table.

3.3.3 Submit Interface

The most important process of the submit interface is dynamic generation of the pre-
population page, reached when a user clicks on the “Upload to DSpace” link the file area,
as shown in the second scenario in section 3.1. Recall from the second scenario, the
generated pre-populated page when Jane clicked on the “Upload to DSpace” link. A

portion of the screenshot for this page can be seen below:

™
LRN Dolphins Research Group : File Storage : Dolphins Research Group's Files : Dolphins Research Jeine: dacibi i
L] Paper : Upload to DSpace

My Space Help Logout |

Community Home Calendar File Storage Peaple Admin

Enter the author of the item.

Author [Jane Jacobs i [Add More |

Enter the title of the item.
Title iDolphins Research Paper }

Enter the alternative title of the itam.
Other Title. | [Add More |

Enter the publisher of the item,
Publisher - _ [[[AddMore |

Enter the publication date of the item.
= e S
Publication Date 2004-

Entar the citation of the item.

Citation | - -) j

Enter the language of the item.

The dynamic generation for this page works as follows: First, the submit interface looks
up the metadata_fields table for all the fields and their corresponding field information.

For each field, the submit interface then generates an entry for the field, containing the

43

field label, the display text, an input element, and an optional “Add More” button,
depending if the field’s multiple flag is true. Finally, the submit interface looks up the
SloanSpace — DSpace mapping of the field. If a mapping exists, then the interface looks
up the ss_metadata_fields table for the SloanSpace table and column name containing
the SloanSpace mapped value for this field. It then calls the appropriate database query
to fetch this value, and pre-populates the field input element with this value. As shown
above, the author, title, and publication date are already pre-populated by the submit

interface.

Once the metadata values have been filled and the user has clicked on the “Upload to
DSpace” button, the submit interface generates the SOAP request to the DSpace
ItemIngestService SOAP-based web service. Three ItemIngestService SOAP requests
must be called in a particular order to submit the file into DSpace. The first SOAP
request is “depositltem”, which deposits the file metadata, encoded in XML. Thus before
this SOAP request is made, the interface first encodes the metadata into XML. After
“depositltem” is called, the interface must then make the “depositBitstream” SOAP
request. This submits the file contents to DSpace, encoded as a base64 string. Finally,

the interface calls “depositComplete” which finalizes the file submission process.

If the “depositComplete” request returns true, indicating the success of the DSpace file
submission, the interface adds the file to the “metadata submissions” table, and then
redirects the user to a page displaying a message indicating the success of the file

submission.

4 Integrating the File Transfer Component with Other
Systems

The process for integrating another system with the file transfer component consists of
several steps. First, the file transfer component’s database tables need to be filled with
the metadata information of the systcm being integrated. Then, the code that

communicates with the web service, both to submit and retrieve files from the system

44

remotely, must be provided. Lastly, a search service contract implementation that

searches through the system’s domain must be implemented.

To demonstrate the process of integrating a system with the file transfer component, this
chapter will show the steps taken to integrate a sample repository called “JJ Digital

Repository”.

4.1 Filling in the Tables Using the Add Schema Interface

The first step in making the integrating involves filling in the file transfer component’s
database tables with the metadata information and metadata mappings of the system
being integrated. In order to simplify this process, an “Add Schema” user interface was
developed. This interface queries the user for the metadata information of the system

being integrated then adds the information to the database.

For instance, suppose Jane Jacobs now wanted integrate the “JJ Digital Repository” with
SloanSpace. Say that the metadata for the files in her system contain three fields each
author, description, and language, where the language can only be either English or
Spanish. Furthermore, say that author was a required field, and that it could contain
multiple values. In other words, the file can have multiple authors. The process would

then proceed as follows:
First, Jane goes to the main “Add Schema” page, and enters the schema name and the

number of metadata fields of the schema. This page is shown in the following

screenshot:

45

%2 Helice:8003 - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Hep

@- -8 O B L) reouheicemted0034otim/fie storage/schema-add ~G

0 Spveree i nivcioeer Bl poReta. : ; g debivnes s
™

.LRN Jane Jacobs

My Space Help Logout

My Space Ry Calendar My Files Control Panel

Add Schema

Schema Name: JJ Digital Repository

Number of Fields: 3
MO

Add Schema Add Schema Help
My Space My Calendar My Files Control Panet
dotlRN Home | dotlRN Project Central | Change Locale
Done B
olyddi . A S—

Figure 4-1: Adding a schema

Then, Jane clicks on the “Add Schema” button to proceed to the field addition page.
Here, Jane fills out the appropriate field information. The field information consists of
the field name, the SloanSpace mapping, the mapping type, the required field flag, the
multiple values flag, the display name, and the display type, as shown in the following

screenshot:

46

J Helice:8003 - Mozilla Firefox
E&E&t\ﬂewﬁogodun_a’ksTuﬂ:Heb : £ R

@ 1) [heps/phekce.nitiedus 8003 ot e storageischem- 5 feldsschema d=2iseun felds=3 ~

@Frefuxﬂap L_} Fse!oxsmn-r B pug-nFaQ

.LRN"“ : Jane .Facobrs'

My Space Help Logout

My Space My Calendar My Files Conlrol Panel

Add Fields

Field 1 Name: 5

SloanSpace Mapping:
Required:
Display Name: !

Display Type: ® Text Field O Text Area O Select List = of Opbons:i

Field 2 Name: Ea_esc-zip-t-ion L]

R O T e | r]
SloanSpace Mapping: | Description M| Mapping Type: {Bom Ways P
Required: @ﬁ Has Multiple Values? | No L

Display Name: Description

pisplay Type: O Text Field ® Text Area O Select List: # of Options:|

Field 3 Name: Ela_n_ggage y

SloanSpace Mapping: | No

Required: | No

Display Name: kLanguage
Display Type: OText Field O Text Area @ Select List: # of Options:2

Submit and Continue Add Schema Help
My Space My Calendar MyFiles Control Panel
dotiRN Home | dottRN Project Central | Change Locale
Done. . - 5
= i i s S— _— _—

Figure 4-2: Adding field information

Once Jane, has filled out the field information, she then clicks on the “Submit and
Continue” button. Clicking on this button will then direct Jane to the next page, which
queries her for the field display information which is used in the submit interface’s pre-
populated metadata field query page. Here in the following screenshot is this field

display information query page, with the appropriate information filled out:

47

%7 Helice:8003 - Mozilla Firefox
Fie Edit View Go Bookmarks Tools Help

@5 80

@ FrefoxHe (| Frefox suppart Bl pluginFag

@ i:_] hm:lhdce.mt.em:ﬁmaﬁo&n;‘ﬁesmge[sdwna-edd-ﬂ-e;dstmt?sm:ma_id-Zl&run_ups_SS-Z

.LRN"

My Space

Jane Jacobs

Help Logout

My Space

Add Fields (cont.)

My Calendar My Files

Field Name: author

Control Panel

Display Text: Enter author here.

Error Text: Please enter author.

Text Field Size: (70

Field Name: description

Display Text: %Enler désc{ipliaﬁ here.

Error Text: Please enter description

Text Area Rows: 57777:3

Field Name: language
pisplay Text: [Please selecta language.

Columns: 50 |

Error Text: \Youmustselect a language.

Option Text: gEninsh

Add Schema Help

Figure 4-3: Adding field display information

Finally, Jane clicks on the “Submit” button to finish the process. The following

screenshot shows the page that indicates the success of the submission:

48

%2 Helice:8003 - Mozilla Firefox

Be it Vew Go fookmaks Tods Hep AR EEo L e T e _ Sro e
&5 - @ [} http:jhelice.mit.2cu:8003/dotim/Sle-storage fschema-add-fieids-done - I B

& FrefoxHelp || Frefox Support uﬁw-\‘nFaQ

.LRN“" | - ” Jane Jacobs

My Space Help Logout

My Space My Calendar MyFiles Control Panel
You have succesfully submitted the schema.
Back to File Storage

My Space My Calendar My Files Control Panel

doti R Homa | doH AN Project Central | Change Locale

Figure 4-4: Add schema success

This process creates the data necessary for the integration. Through this process, the
submit interface can now dynamically generate the metadata entry page, using the fields
in this schema. To demonstrate this, here is a demo page that will generate the metadata

entry page for a file.

% Helice: 8003 - Mozilla Firefox i
fle Edt Yew Go Bookmatks Toos Hep £

& - - @ % @ [53 httoshekice.mit.edu:8003/dotinfdubsdolphinsresearchgroupfle storage jschema wpload?fie id=39168 > IGL j_

.@.Frefmtﬂcb ;Eri;"!;fox&mi Bl piuginFag i

™
.LRN Dolphins Research Group Jane Jacobs

R My Space Help Logout

Community Hame Calandar File Storage People Admin

Upload File to Schema: |JJ Digital Repository ¥, [Upload to Schema |

dotlRY Home | dotiRN Projact Central | Change Locale

Figure 4-5: View new schema metadata

This page, created simply for the purpose of demonstrating the “Add Schema”

functionality, allows a user to choose which system to upload the file to. To show that

49

the “Add Schema” worked for the JJ Digital Repository Jane created, the JJ Digital
Repository option is selected. Once the “Upload to Schema” button it now clicked, the
dynamically generated metadata entry page for a JJ Digital Repository file submission is

displayed. Here below is a screenshot of that page:

) Upload to DSpace - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Hep 0

@ - g - @ “’”’?} @ [nttpsfjhelics.mit.edu:8003/dotim/clubs/doipt thoroup/fle jmeta view?fle_id=39163aschems ¥ [[GL, |

@ rrefoxrie |) Frefox support [l PuginFaQ

™
s - . i i <
i 5 R2! L : B F : P
LRN O\J[D'HH Rasearch Group File Storage DD]D!‘III‘IE Research Group's iles Dolthns Research aper) J t

: Upload to DSpace
My Space Help Logout

Community Home Caiendar File Storage People Admin

Entar author here.

Author [Jane Jacobs | [AddMore]

Enter description here.
paper

Description

Please select a language.

I.anguageé E;'Igﬁﬁh. ~

[[save] [Cancal] [Upload to JJ Digital Repository |

Community Home Calendar File Storage People Admin

dotLRH Home | dotLRN Project Centra! | Change Locale

Figure 4-6: New schema metadata page

Note that the author field was pre-populated with the SloanSpace author field, which Jane
indicated during the “Add Schema” process. In addition, note that the author entry input
is a text box, while the description input is a text area, and the language entry input is a
select list. Furthermore, the author entry contains an “Add More” button since this field

was specified to allow multiple values.

50

4.2 Providing the Code for the Submit and Retrieve Interfaces

Once Jane has added the metadata schema and fields to the database, she must now
provide the code that communicates with the “JJ Digital Repository” web service. This
code makes the necessary calls to the web service in order to submit the file into the
repository. For example, say that the web service contains the SOAP method
“submitToJJ” that takes in the base64 encoded content and the values for the metadata

field. Jane would then need to create a file with the code that does the following:

e create SOAP request for “submitTolJ”
¢ cncode the file content into base64

¢ call the SOAP request with the base 64 content and the metadata values

Then, Jane would need to specify, in meta-submit.tcl (which can be found in the
appendix), to redirect to this file when the “Upload” button is clicked and the schema id

equals the schema id for the “JJ Digital Repository” schema.

Similarly, Jane would need to add the code that retrieves a file from the repository, via
the web service. For instance, say that the web service contains two SOAP methods
“retrieveMetadataFromJJ” and “retrieveContentFromJJ”, that both take in a file id. The
“retrieveMetadataFromJJ” method returns the file metadata and the
“retrieveContentFromJJ” returns the base 64 encoded file content. Jane would then need

to create a file with the code that does the following:

¢ create SOAP request for “retrieveContentFromJJ”

e call the SOAP request for “retrieveContentFromJJ” with the file id
® save the content into a temporary file

e create SOAP request for “retrieveMetadataFromJJ”

e call the SOAP request for “retrieveMetadataFromlJJ” with the file id

* add the temporary file into the file storage area, and use the title and description fields

returned by the “retrieveMetadataFromJJ” method

51

¢ add the metadata values returned by the “retrieveMetadataFromJJ” method into the

metadata_field _values table

4.3 Implementing the Search Service Contract

The last component needed to complete the integration is the implementation of the
search service contract. Like both the DSpace and Google implementations, Jane needs
to create a “‘JJ Digital Repository” implementation that contains a paged_search operation
that takes in a query string, a page number, and the number of results per page. The
operation then searches “JJ Digital Repository” content via the repository’s web service.

Finally, it returns the parses then returns the search results, returned by the web service.

5 System Testing and Analysis

This section describes the tests run to measure the effectiveness of the file transfer

component, and discusses the results of the tests.

5.1 Testing the File Transfer Component

To show the effectiveness of the search and retrieve interface, a test was conducted using
the first scenario. The test comprised of running the task in the first scenario, first
without using the file transfer component, and then using the file transfer component.
Recall that the task consisted of searching for the word “physics” in DSpace, and then
adding the search result entitled “The Conceptual Structure of Physics” into the file
storage area. The times it took to accomplish the task both without the file transfer

component with the file transfer component were recorded and compared.

To show the effectiveness of the submit interface, a similar test was conducted, this time
using the second scenario. Recall that the task of the second scenario consisted of
submitting a file that was already in SloanSpace into DSpace. Like the first test for the
search and retrieve interface, this test comprised of running the task in the second

scenario first without using the file transfer component, and then using the file transfer

52

component. The times it took to accomplish the task without the file transfer component

and with the file transfer component were recorded and compared.

Note that the file transfer component tests were done on a development version of
SloanSpace, and not the actual deployed version of SloanSpace. Furthermore, the tests

were run against a development DSpace web service.

5.2 Results of the Tests

Below are summary of results obtained from three users: (Note that the time is recorded

in minutes).

Here first are the results from the search and retrieve test:

Search and Retrieve Test

Time w/o

component

Time w/

component

(Time w/ component) /

(Time w/o component)

3:16

1:25

434

4:07

1:34

381

2:15

1:03

467

Table 5-1: Results for the search and retrieve test

Here now are the results from the submit test.

Submit Test
Time w/o Time w/ (Time w/ component) /
component | component | (Time w/o component)
4:50 2:43 562
3:58 2:25 .609
4:40 2:26 521

Table 5-2: Results of the submit test

53

The results for the search and retrieve test, shown in Table 1, show that using the file
transfer component speeds up the task in the first scenario significantly. On average,
ratio of the time to accomplish the task with the component to the time to accomplish the
task without the component is .427:1. Thus, using the file transfer component cuts the

time to accomplish the task without the component by 57%, which is a little more than
half.

The results for the submit test, shown in Table 2, also show a significant decrease in time
spent performing the task in the second scenario when using the current system without
the file transfer component vs. using the file transfer component. On average, the ratio of
the time to accomplish the task with the component to the time to accomplish the task
without the component is .564:1. Thus, using the file transfer component cuts the time to

accomplish the task without the component by 44%, which is a little less than half.

5.3 Discussion of the Test Results

The test results show that the search and retrieve interface significantly cuts down the
time to search DSpace, and to place the search results into the respective file storage area.
Several factors contribute to this improvement. First, the user performing the search need
not leave the SloanSpace environment. So time is no longer spent switching between the
two environments. Second, with the file transfer component, the user no longer has to
save the file into the local computer. And third, the user no longer has to fill in the
information for the uploaded file. Recall that when uploading a file into SloanSpace, the
user has to fill out the title, description, and file location (in the local computer). When
using the file transfer component, this information is filled in automatically. Thus a

significant amount of time is saved.
The results also show that the submit interface significantly cuts down the time to submit

a file into DSpace, if the file was already uploaded into SloanSpace. This is again due to

several factors. First, as in the search and retrieve interface, the user performing the

54

submission need not leave the SloanSpace environment. And second, the file transfer
component pre-populates the metadata so that users no longer have to fill in data that

SloanSpace already keeps track of.

More importantly however, the results show the usefulness of interoperability between
SloanSpace and DSpace, and more generally, the interoperability between systems and
repositories. This project shows integrating SloanSpace with DSpace allows for faster
file transfers between the two systems by using the data already stored by the systems,

cutting down time to accomplish the tasks approximately by half.

6 Future Work

6.1 System Deployment

The file transfer component currently runs on a development version of SloanSpace, and
communicates with a development version of the DSpace web services. The hope for the
future is for this component to actually be deployed and used in the deployed version of

SloanSpace.

However, in order for the file transfer component to be deployed, two major issues need
to first be addressed. The first issue deals with authentication. Currently, users who wish
to submit files into DSpace must be registered DSpace users. With the file transfer
component however, any SloanSpace user can submit files into DSpace. DSpace has no
way to authenticate the users who are submitting files to their system if the users submit
files through the SloanSpace file transfer component. In order then for the system to be
deployed and used, a component must be developed that allows DSpace to authenticate

and authorize the user before performing any file transfer operations.
The second issue deals with which DSpace collection the files go to when submitted via

the file transfer component. Currently, in DSpace, when a user wishes to submit a file, he

first specifies which DSpace collection he wants to add the file in. The file transfer

55

component currently submits all files into a demo collection. An example solution to this
problem would be for DSpace to create a collection specifically for files coming in from
SloanSpace. Using this, the file transfer component would then only need the
identification for this collection. Although this simplifies the process, it is not very
flexible and not very organized, since papers from SloanSpace can be very varied, as they
can come from different SloanSpace communities. Another potential solution to this
problem would be for the file transfer component to provide the users with a list of
DSpace collections, and have the user choose the collection he wishes to add the file to.
The problem with this is that certain collections can be restricted, and so there must also

be a way to know which collections can be accessed.

6.2 Integration with Other Systems

Future work can also be directed towards integrating more systems with SloanSpace.

The architecture of the file transfer component allows this to be done easily, as shown in
chapter 4. For example, a useful integration would be to integrate OpenCourseWare with
DSpace. OpenCourseWare is a system that places MIT course materials on the web for
free. The course materials are not the materials of the current semester, but the material
of a past semester. Thus, in order to construct an OpenCourseWare page, it would
simplify the process if material from SloanSpace could be transferred easily into
OpenCourseWare. Integration could also be made with other digital repositories. This

would enable users to search through more domains.

56

References

[1] SloanSpace. http://sloanspace.mit.edu

[2] DSpace. http://dspace.mit.edu

[3] .LRN. http://www.dotlrn.org

[4] OpenACS. http://www.openacs.org

[5] DublinCore. http://www.dublincore.org

[6] OpenCourseWare. http://ocw.mit.edu

[7] IMS Global Learning Consortium. http://imsglobal.org

[8] OKI - Open Knowledge Initiative. http://www.okiproject.org

[9] K. Riley and M. McKell. “IMS Digital Repositories Interoperability - Core Functions
Information Model.” 13 January 2003. 8 December 2004.

http://www.imselobal.org/digitalrepositories/driv 1 p0/imsdri_infov1p0.html#1263439

[10] *“About the Open Knowledge Initiative.” 26 July 2004. 8 December 2004.

http://www.okiproject.org/documents/About%200KI.pdf

[11] “Managing Complexity and Surviving Technology Change”.

Massachusetts Institute of Technology. 2004. 8 December 2004.

http://www.okiproject.ore/documents/OKIManagingComplexity rel 1 O.pdf

[12] TclSOAP. http://tclsoap.sourceforge.net

[13] TDom. http://www.tdom.org

57

A Database Tables

~- The table contains the metadata schemas used by the system.

~- Each row in the table contains the schema name and the table

-- name of the schema table. (The schema table is the table containing
~- information for that specific schema. For every schema added, a

~- new schema table is created.)

create table metadata_schemas (
schema_id integer
constraint metadata_schemas_table_name_pk
primary key,
schema_name varchar (100)
constraint metadata_schemas_name_nn
not null
)i

create sequence sed_schema_id start with 1 increment by 1;
create or replace trigger trg_schema_insert

before insert on metadata_schemas
for each row

begin
if :new.schema_id is null then
select seq schema_id.nextval into :new.schema_id from dual;
end if;

end;

/

-- This table will contain the SloanSpace metadata. Each row contains
-— the S$S metadata name, the original SleoanSpace table or view,
-~ and the column that the field is mapped to.

create table sloanspace_file_metadata (
field_name varchar (50)
constraint ss_file_name_pk
primary key,
mapping _table_or view varchar(50),
--table or view name of column to which this field is
mapped to
mapping_col_name varchar (50)
--column name

-- This table contains the fields and the field information for the Dublin
-— Core metadata schema. It is specific to the Dublic Core schema. Each
—- row contains the field id, the field name, the SloanSpace metadata field
-- that the Dublin Core field is mapped to, and the mapping certainty value,
—- which specifies how certain the mapping is between the two fields.

create table metadata_fields (
field_id integer
constraint metadata_fields_field_id_pk
primary key,
field_name varchar (50)
constraint metadata_fields_name_nn
not null,

pretty_name varchar (100)
constraint metadata_fields_pretty_name_nn
not null,

schema_id integer

constraint metadata_fields_schema_£fk
references metadata_schemas
constraint metadata_fields_schema_nn
not null,
mapping_ss_field varchar (50)
constraint metadata_fields_mapping_fk
references sloanspace_file_metadata,
-~table or view name of column to which this field is

58

~-mapped to
map_type integer
constraint metadata_field_map _type_ck
check (map_type in (1,0,-~-1)),
~--map type = 1 if from field to ss, 0
~-if both to and from, and -1 if from ss to field
display_text varchar (200},
display_type varchar (30},
-- type of input display, e.g. text, textarea, select,
-- radio, etc.
-- display_type will be inside <display_type> and
-- </display_type>
display_attributes varchar (200},
~- attributes of the display, ex. for textarea rows=3
-~ cols=50, etc.
-- ex. <display_type display_attributes></display_type>
display_elements varchar2 (4000),
-- elements of display (for select lists)
-~ ex. <display_type
-- display_attributes>display_elements</display_type>
error_text varchar {500},
-- text displayed field is required, but left empty
required char (1)
default 'f°!
constraint metadata_fields_required_nn
not null
constraint metadata_fields_required_ck
check (required in ('t’,'f')),
-~ indicates whether or not the field is required upon
-~ submission
multiple char{l)
default 'f°
constraint metadata_fields_multiple_nn
not null
constraint metadata_fields_multiple_ck
check (multiple in ('t’','£'))
)i

create sequence seq_field_id start with 1 increment by 1;
create or replace trigger trg_field_insert

before insert on metadata_fields
for each row

begin
if :new.field_id is null then
select seq_field_id.nextval into :new,field_id from dual;
end if;
end;
/
create table metadata_field_values ¢
file_id integer
constraint metadata_values_file_id_nn
not null,
field_id integer

constraint metadata_values_field_id_nn
not null,

field_value varchar?2 (4000),

schema_id integer
constraint metadata_values_schema_nn
not null

)i

--map type = 1 if from field 1 to field 2, 0 if both to and from, and -1 if from field 2
to field 1

create table metadata_schema_mappings (

field id_1 integer
constraint metadata_mappings_£f1_nn
not null,

schema_id_1 integer

constraint metadata_mappings_sl_nn

59

not null,

field_id_2 integer
constraint metadata_mappings_f2 nn
not null,

schema_id_2 integer
constraint metadata _mapings_sZ_nn
not null,

map_type integer
constraint metadata_mappings_ck
check (map_type in (1,0,-1))

)i

create table metadata_submissions (
file_id integer
constraint metadata_subm_file_id_fk
references cr_items
constraint metadata_subm_file_id_nn
not null,
schema_id integer
constraint metadata_subm_schema_fk
references metadata_schemas
constraint metadata_subm_schema_nn
not null
Vi

~- VIEWS -~

create or replace view metadata_file_view
as
select i.item_id as file_id,
i.name,
r.title as file_name,
r.publish_date,
r.description,
r.content,
r.content_length,

r.mime_type

from cr_items i, cr_revisions r
where i.live_revision = r.revision_id;

create or replace view metadata_user_view

as
select o.object_id as file_id,

p.first_names [{| ' ' || p.last_name as full name
from acs_objects o, persons p

where o.creation _user = p.person_id;

-— DATA --

——insert the sloanspace file metadata

insert into sloanspace_file_metadata values ('author', 'metadata_user_view','full_name');
insert into sloanspace_file_metadata values {'title', 'metadata_file_view’, 'name');
insert into sloanspace_file_metadata values

{'publish_date', 'metadata_file_view', 'publish_date');

insert into sloanspace_file_metadata values

('description’, 'metadata_file_view', 'description’};

60

B Critical Source Code

B.1 dspace-get.tcl

ad_page_contract {
Add File From DSpace

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 1 Apr 2004

folder_id:integer,notnull
schema_id:integer, notnull
{itemID:trim none}
{title:trim ""}
{description:trim ""}
} -validate {
valid_folder -requires {folder_id:integer} {
if ! [fs_folder_p S$folder_id] {
ad_complain "{_ file-storage.lt_The_specified_parent_1"

set old_title $title

set old_desc $description
set title ""
set description

uw

set context [fs_context_kar_list -final "Add File From DSpace" 5folder_id]

#get the dspace-export file
#base this on file title or filename (however dspace web service is formatted)
#set content [util_httpget http://web.mit.edu/gtcuevas/Public/export.txt]

##44#4 DSPACE WEB SERVICE CALL ####

::30AP: :create GetFile \
-uri "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService™ \
-proxy "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService "\
-name "retrieveItem"” \
—action "" \
~params { epersonlID string itemID string }

set personid rrodgers@mit.edu

set itemid http://hdl.handle.net/123456789/23

if [catch {set content_encoded [GetFile $personid $itemid]} errmsgl {
ad_return_complaint 1 "Error getting the file from DSpace”
ad_script_abort

}

set content [::baseé4::decode Scontent_encoded]

#get the field name of the fields that map to ss title and description
set titles \
[db_list get_titles \
"select field_name from metadata_fields where mapping_ss_field='title' and
schema_id=$schema_id and (map_type=l or map_type=0)"]
set descriptions \
[db_list get_desc \
"select field name from metadata_fields where mapping ss_field='description’
schema_id=$schema_id and (map_type=1 or map_type=0)"]}

#parse export file

if { [catch {dom parse Scontent doc} errMsg] } {
return

61

and

}

set root ([$doc documentElement]

set mods_field ""
set mods_value ""
set file_loc ""

set file_md [list]

foreach child [$root childNodes] {
set childName [$child nodeName]
lappend file_content $childName
if [string equal $childName fileSec] {
foreach fileSecChild {$child childNodes] {
if [string equal [$fileSecChild nodeName] fileGrpl {
foreach fileGrpChild [$fileSecChild childNodes] ({
if [string equal [$fileGrpChild nodeName] file] {
set parsed_file_loc [$fileGrpChild getAttribute OWNERID novall}
if { !i{string equal $parsed_file_loc novall } {
if { ![string equal $parsed_file_loc ""] } {
set file_loc "Sparsed_file_loc"
}

}
}
} elseif [string equal $childName dmdSec] {
foreach dmdChild [$child childNodes] {
set dmdChildName [$dmdChild nodeNamel
if {string equal $dmdChildName mdWrap] {
foreach mdChild [$dmdChild childNodes] {
set mdChildName {$mdChild nodeName]
if [string equal $mdChildName xmlData) {
foreach field [$mdChild childNodes] {
set mods_field ""
set mods_value "%
set fieldName {[S$field nodeName]
lappend md_content $fieldName
if { {llength {$field childNodes]] == 1} {
set field_child [$field firstChild]
##4 parse the mods fields
if [string equal $fieldName mods:abstract] {
if {string equal [$field_child nodeTypel TEXT_NODE] {
set mods_field description_abstract
set mods_value [$field text]
}
} elseif [string equal $fieldName mods:accessCondition] {
if { [$field hasAttribute xlink:simpleLink] == 1} {
if [string equal [$field_child nodeType] TEXT_NODE]

set mods_field rights_uri
set mods_value [$field text]
}
} elseif { [string equal ([$field getAttribute type
noval] "useAndReproducation"] } {
if [string egual [$field_child nodeType] TEXT_NODE]
{
set mods_field rights
set mods_value {[$field text]
}
}

} elseif [string equal $fieldName mods:classification] {
set attr_val [$field getAttribute authority noval]
if [string equal ([$field child nodeType) TEXT_NODE] {

if [string equal $attr_val ddec) |
set mods_field subject_ddc
set mods_value [$field text]
} elseif [string equal S$Sattr_val lcc] {
set mods_field subject_lcc
set mods_value [$field text]
} elseif {string equal S$Sattr_val lecsh] {

62

{

noval] iso8601] {

TEXT_NODE} {

mods :dateAccessioned)

mods :dateAvailable]

mods :dateSubmitted]

{

{

{

set mods_field subject_lesh
set mods_value {[$field text]

} elseif [string equal $attr_val mesh] {
set mods_field subject_mesh
set mods_value [Sfield text]

} elseif (string equal $attr_val local] {
set mods_field subject_other
set mods_value [$field text]

} elseif [string equal $attr_val noval] {
set mods_field subject_classification
set mods_value ([$field text]

}

}
} elseif [string equal $fieldName mods:extension] {
if [string equal [$field_child nodeType! ELEMENT_NODE]

if [string equal [$field_child getAttribute encoding

if { [llength [$field_child childNodes]] == 1} {
set element_child [$field_child firstChild]
if [string equal [Selement_child nodeTypel

set element_name [S$field_child nodeName]
if [string equal S$element_name

set mods_field date_accessioned
set mods_value [S$field_child text]
} elseif [string equal $element _name

set mods_field date_available
set mods_value [$field_child text]
} elseif [string equal $element_name

set mods_field date_submitted
set mods_value [$field_child text]

}
}

} elseif [string equal $fieldName mods:genre] {

if [string equal ([$field_child nodeType]l TEXT_NCDE] ({
set mods_field type
set mods_value [$field text]

}

} elseif [string equal $fieldName mods:identifier]} |{
set attr_val [$field getAttribute type noval]
if [string equal [$field child nodeType] TEXT_NODE] {

if [string equal $attr_val govdoc] {
set mods_field identifier_govdoc
set mods_value [$field text])

} elseif [string equal $attr_val isbn] {
set mods_field identifier_isbn
set mods_value [$field text]

} elseif [string equal $attr_val ismn) {
set mods_field identifier_ismn
set mods_value [$field text]

} elseif [string equal $attr_wval issn] |
set mods_field identifier issn
set mods_value [$field text]

} elseif [string equal $attr_wval locall {
set mods_field identifier local
set mods_value [$field text]

} elseif [string egual Sattr_val sici] {
set mods_field identifier_sici
set mods_value [$field text]

} elseif [string equal Sattr_val uril} ({
set mods_field identifier_ uri
set mods_value [$field text)

} elseif [string equal $attr_val noval] {
set mods_field identifier

63

set mods_value [$field text]
}
¥
} elseif {[string equal $fieldName mods:language] {
if [string egual [$field_child nodeType] ELEMENT_NODE]
{
if [string equal ([$field_child nodeName]
mods : languageTerm] {
set element_attr [$field_child getAttribute
authority novall
if { [llength [$field_child childNedes]] == 1} {
if [string equal [[$field_child firstChild]
nodeType] TEXT_NODE] {
if {string egqual S$element_attr rfc3066]
{
set mods_field language_iso
set mods_value [$field child text}
} elseif [string equal $element_attr
noval] {
set mods_field language
set mods_value [$field_child text]

}
}
} elseif [string equal $fieldName mods:name] {
if [string equal [$field_child nodeType] ELEMENT_NGDE]
{
if [string equal [$field_child nodeName]
mods :namePart]
if { [1length [$field_child childNodes]] == 1} {
if [string equal [[$field _child firstChild]
nodeType] TEXT_NODE}l ({
set mods_field contributor
set mods_value [$field _child text]

}
}
} elseif [string equal $fieldName mods:note] {
if [string equal [$field_child nodeType] TEXT_NODE} {
if { ($field hasAttribute xlink:simpleLink] == 1} {
set mods_field description_uri
set mods_value [$field text]
} else {
set attr_val [$field getAttribute type noval]
if [string equal $attr_val provenance] {
set mods_field description_provenance
set mods_value [$field text)
} elseif [string equal $attr_val sponsorship] {
set mods_field description_sponsorship
set mods_value [$field text]
} elseif [string equal $attr_val "statement of
responsibility"] {
set mods_field
description statementofresponsibility
set mods_value [$field text]
} elseif [string equal $attr_val noval}l {
set mods_field description
set mods_value [$field text]

)
}
} elseif [string equal $fieldName mods:originInfo] {
if [string equal [$field_child nodeType] ELEMENT_NODE]

if { [llength [$field_child childNodes]] == 1} {
if [string equal [[$field child firstChild]
nodeType] TEXT_NODE] {

set attr_val [$field_child getAttribute
encoding novall
set element_name [($field_child nodeName]
if {[string egual $attr_val iso8601) {
if {string equal $element_name
mods :copyrightDate] {
set mods_field date_copyright
set mods_value [$field_child text]
} elseif [string equal $element_name
mods :dateCreated] {
set mods_field date_created
set mods_value [$field_child text]
} elseif [string equal Selement_name
mods :dateIssued] {
set mods_field date_issued
set mods_value [$field_child text]
} elseif [string equal $element_name
mods :dateOther] {
set mods_field date
set mods_value [$field_child text]
}
} elseif ([string equal $attr_val novall {
if [string equal $element_name
mods :publisher] {
set mods_field publisher
set mods_value [$field_child text])

}
}

} elseif |[string equal $fieldName mods:physicalDescription]
if [string equal [$field_child nodeType] ELEMENT_NODE]

if { [llength [$field_child childNedes]] == 1 } {
if [string equal [[$field_child firstChild]
nodeType] TEXT_NODE] {
set element_name [$field_child nodeName]
if [string equal $element_name mods:extent]

set mods_field format_extent
set mods_value [$field _child text]
} elseif [string equal $element_name
mods:form] {
set mods_field format
set mods_value [$field_child text]
} elseif [string equal S$element_name
mods:internetMediaType] {
set mods_field format_mimetype
set mods_value [$field_child text]

}
}
} elseif [string equal $fieldName mods:relatedItem] {
if [string equal {$field_child nodeType] ELEMENT_NODE]
{
if {string equal [$field getAttribute type novall
host] {
if [string equal [$field _child nodeNamel
mods:part} {
if { {llength [$field child childNodes}] ==
1)
set text_node ([S$field_child firstChild}
if [string equal [$text_node nodeType]
ELEMENT_NODE] {
if [string eqgual [$text_node
nodeName] mods:text] (
set mods_field
identifier_citation

65

set mods_value [$text_node text]

}
}
} elseif [string equal [$field getAttribute type
novall] novall] {
if [string equal [$field_child nodeName]
mods:title] |
set mods_field relation
set mods_value [$field child text]
} elseif [string equal ([$field_child nodeName}
mods : location] {
if { [llength {$field_child childNodes]] ==
1} {
set url_ele [$field_child firstChild]
if [string equal [$url_ele nodeName]
mods:url)] {
set mods_field relation_uri
set mods_value {[Surl_ele text]

}
}
} elseif [string equal [$field_child nodeTypel]
TEXT_NODE] {
set attr_val [$field getAttribute type novall
if (string equal $attr_val constituent] {
set mods_field relation_haspart
set mods_value [$field text]
} elseif [string equal $attr_val otherVersion] {
set mods_field relation_version
set mods_value [$field text]
} elseif [string equal $attr_val original] {
set mods_field relation_isbasedon
set mods_value [$field text]
} elseif [string equal $attr_val otherFormat] {
set mods_field relation_isformatof
set mods_value [$field text]
} elseif [string equal $attr_val host] {
set mods_field relation_ispartof
set mods_value [$field text]
} elseif [string equal $attr_vwval series] {
set mods_field relation_ispartofseries
set mods_value [$field text]
} elseif [string equal $attr_val isReferencedBy] {
set mods_field relation_isreferencedby
set mods_value [S$field text)
} elseif [string equal $attr_val succeeding] (
set mods_field relation_isreplacedby
set mods_value (S$field text]
} elseif [string eqgual $attr_val replaces] {
set mods_field relation_replaces
set mods_value {S$field text]
} elseif [string equal $attr_val requires] {
set mods_field relation_requires
set mods_value [$field text]
} elseif [string equal $attr_val originall] {
if { [$field hasaAttribute xlink:simplelink] ==
1} |
set mods_field source_uri
set mods_value [Sfield text]
} else {
set mods_field source
set mods_value [$field text]

}
}
} elseif [string equal $fieldName mods:subject] {
if [string equal [$field_child nodeType] ELEMENT_NODE]

66

if { [llength {$field_child childNodes]] == 1 } {
if [string equal [[$field_child firstChild]
nodeType] TEXT_NODE] {
set element_name [$field _child nodeName]
if [string equal $element_name
mods:geographic] {
set mods_field coverage_spatial
set mods_value [$field_child text]
} elseif [string equal $element_name
mods :temporall (
set mods_field coverage_temporal
set mods_value [$field_child text]
} elseif [string equal $element_name
mods:topic] {
set mods_field subject
set mods_value [$field_child text]

}
}
} elseif [string equal $fieldName mods:tableOfContents] {
if (string equal ([$field child nodeType] TEXT_NODE] {
set mods_field type
set mods_value [$field text]
}
} elseif [string equal $fieldName mods:titleInfo] {
if [string egual [$field _child nodeTlype] TEXT_NODE] {
set attr_val [$field getAttribute type noval)
if [string equal $attr_val alternativel] {
set mods_field title_alternative
set mods_value {[$field text]
} elseif [string equal $attr_val novall {
set mods_field title
set mods_value [$field text]

}
}
} elseif { [llength [$field childNodes]] == 2} {
if [(string equal $fieldName mods:name] {
set role_ele [$field firstChild]
set namePart_ele [$field lastChild}
if [string equal {$role_ele nodeName] mods:role] {
if [string equal {$namePart_ele nodeName]
mods:namePart] {
if { [llength [$role_ele childNodes]] == 1} {
set roleTerm_ele [$role_ele firstChild]
if [string equal [$roleTerm_ele nodeName]
mods:roleTerm] {

if [string equal [$roleTerm ele
getAttribute type noval] text] {

set role_term [$roleTerm_ele text]
if [string equal $role_term advisor)

{

set mods_field
contributor_advisor

set mods_value [$SnamePart_ele

text]
} elseif [string equal S$role_term
author] {
set mods_field contributor_author
set mods_value [$namePart_ele
text]
} elseif [string equal $role_term
editor] |{
set mods_field contributor_editor
set mods_value [$namePart_ele
text]
} elseif |[string egual $role_term
illustrator] f{

set mods_field
contributor_illustrator

67

set mods_value [$namePart_ele

text)
} elseif [string equal $role_term
otherj {
set mods_field contributor_other
set mods_value [$namePart_ecle
text]

}
if { ![string equal $mods_value ""] } {
lappend file_md [list $mods_field $mods_value]
if { [lsearch -exact $titles $mods_field] != -1} {
append title "3Smods_value "
}
if { [lsearch -exact $descriptions Smods_field] != -1} {
append description "$mods_value "

}
##4#4 DSPACE WEB SERVICE CALL ###

::SOAP::create GetContent \
-uri "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService” \
-proxy "http://dspace-14.mit.edu:8080/axis/services/ItemAccessService "\
-name "retrieveBitstream" \
—action "" \
-params { epersonlID string bitstreamID string }

set bitstream_content [GetContent $personid $file_loc]

set tempfile_loc [acs_root_dir]/packages/file-storage/www/dspace-temp/tempfile
set out [open S$tempfile_loc w]

fconfiqure $out -translation binary

puts -nonewline $out [::base6d::decode S$bitstream content]

close Sout

#44 add the file into sloanspace ###

Check for write permission on this folder
ad_require_permission $feolder_id write

Get the user
set user_id [ad_conn user_id]

Get the ip
set creation_ip [ad_conn peeraddr]

Get file mime_type
set mime_type [(cr_filename_to mime_type -create $file_loc]

Get the filename part of the upload file

if { !lregexp {["//\\1+$)} $file_loc filenamel } {
4 no match
set filename $file_loc

)

Get the title

if { [empty _string_p Stitle}l } {
set title Sfilename

68

b

#db calls
db_transaction {
set file_id [db_exec_plsql new_lob_file {}]
set version_id [db_exec_plsgl new_versiocn {}]
db_dml lob_content {} -blob_files {list S$tempfile_ loc]
Unfortunately, we can only calculate the file size after the lob is uploaded
db_dml lob_size {}

if { [string is false [permission::permission_p -party_id $user_id -object_id
$folder_id -privilege admin]l] } {
permission: :grant -party_id $user_id -object_id $file_id ~privilege admin

}

add metadata to metadata_field_values
delete any old records for files (so this new record will replace them)
db_dml delete_old_values \

"delete from metadata_field _values where file_id = $file_id and schema_id =

S$schema_id"
#set insert_record ""

#add record
foreach data_record $file_md {
set data_field [lindex $data_record 0]
set data_value {lindex S$data_record 1]
query get_fieldid data_field_id onevalue \
"select field_id from metadata_fields where schema_id=$schema_id and
field _name='$data_field’"
##4# substitute single quotes ' for two single quotes (so i can insert in oracle)
L}
regsub -all "'" $data_value "''" data_value_for_oracle
db_dml insert_record \
"insert into metadata_field_values values
($file_id, $data_field_id, '$Sdata_value_for_oracle’', $schema_id)"
}

db_dml insert_md_submission \
"insert into metadata_submissions values ($file_id,1)"

} on_error {
ad_return_complaint 1 "We got an error here. The file probably already exists."

ad_script_abort

}

ad_returnredirect "dspace-getsuccess?file_id=$file_id"

69

B.2 dspace-submit.tcl

ad_page_contract {
Try meta

bAoA
schema_id:integer
file id:integer

}
set url_query [ad_conn query}

FH#
#4# check if submit type = addmore
#4#

set addmore_start [string first addmore $url_guery]
if { $addmore_start > ~1 } {
set query_length {string length $url_query}
set substring [string range S$Surl_guery $addmore_start [expr S$query_length - 11]]
set addmore_end [string first = $substring]
set addmore_string [string range $substring 8 [expr Saddmore_end - 111
append url_query "&multiple-$addmore_string”
ad_returnredirect "meta-view?$url_qguery"
ad_script_abort

#44
check if submit type = cancel
44

set submit_type [ns_queryget submit_type]l

if [string equal $submit_type Cancel] {
ad_returnredirect "file?file_id=$file_id"
ad_script_abort

}

44
check to see if file was already submitted
#44

if { [db_Oorlrow get_val "select * from metadata_submissions where file_id=$file_id and
schema_id=$schema_id"] == 1} {
ad_returnredirect "dspace-submitted?schema_id=$schema_id&file_id=$file_id"
ad_script_abort

}
set has_required 0

#44
###check for empty fields
#44
db_foreach get_required "select * from metadata_fields where schema_id=$schema_id" |{
#get empty fields
if [string equal $required t] {
if {empty_string_p [ns_queryget $field_id]l {
append url_query "&empty_req field=$field_id"
set has_required 1

}
#44
upload to dspace

###

set mylist [list]

70

set xml_file "<dublin_core>\n"

#process fields

if { Shas_required == 1 } {
ad_returnredirect "meta-view?5url_query"
ad_script_abort

} else {
db_dml delete_old_values {

delete from metadata_field_values where file_id = :file_id and schema_id =

:schema_id
}

db_foreach get_fields "select * from metadata_fields where schema_id=$schema_id" {

#set field name tag for xml file
regsub -all "_" $field _name " " split_fname
set elt [lindex $split_fname 0]
set qual "none"
if { [llength $split_fname] > 1 } {
set qual [lindex $split_fname 1]
}

#get value
if [ns_queryexists $field_id] {
if { ![empty_string_p [ns_queryget $field_id}]} {
set value [ns_qgueryget $field_id])
lappend mylist "S$field_id = Svalue"

#add value to database
db_dml insert_value {

insert into metadata_field_values values (:file_id, :field_id, :value,

:schema_id)

}

#insert value into xml file
append xml_file "<dcvalue element=\"$elt\"
qualifier=\"$qual\">$value</dcvalue>\n"

}
}
get multiple values
if [ns_queryexists multiple-$field_id] {

set mult_list [ns_gquerygetall multiple-$field_id}

foreach mult $mult_list {

if { ![string equal $mult ""] } {
db_dml insert_mult_val {

insert into metadata_field_values values (:file_id,
:mult, :schema_id)

}

append xml_file "<dcvalue element=\"$elt\"
qualifier=\"$qual\">$mult</dcvalue>\n"
}
}

}

#append end tag to xml file
append xml_file "</dublin_core>"

#either save or submit

if [string egual $submit_type Savel {
ad_returnredirect "dspace-submitsaved?file_id=$file_id"
ad_script_abort

} else {

#44% ADD OTHER SUBMIT CALLS HERE ###
if { $schema_id != 1} {

ad_returnredirect "file?file_ id=$file_ id"

}

71

:field_id,

#turn xml file into baseé64binary string
set xml_file_base6d4 [::basebd::encode $xml_file]

set file name [db_string get_fn "select file_name from metadata_file_view where
file_id = $file_id"]

#get the file content and save as an base64 encoded string

set tempfile "/web/gen/www/temp"

set blob_file [db_blob_get_file "get_content" \
"select content from metadata_file_view where file_id = S$file_id" \
-file $tempfile]

set open_file {open S$tempfile r}

fconfigure $open_file ~encoding binary

set pure_file [read S$open_file]

close Sopen_file

set encoded_string [::baseé4d::encode Spure_file]

DSPACE WEB SERVICE CALL

Create SOAP Requests

::SOAP: :create DepositItem \
-uri "http://18.42.6.79:8080/axis/services/ItemIngestService” \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService” \
-name "depositItem" \
—action "" \
-paramns { epersonlID string cecllectionID string docBytes base64Binary }

::SOAP: :create DepositBitstream \
-uri "http://18.42.6.79:8080/axis/services/ItemIngestService"” \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService” \
-name "depositBitstream" \
-action "" \
-params { ticket string fileName string bitstream baseé64Binary }

::SOAP: :create DepositComplete \
-uri "http://18.42.6.79:8080/axis/services/ItemingestService" \
-proxy "http://18.42.6.79:8080/axis/services/ItemIngestService” \
-name "depositComplete™ \
—action "" \
-params { ticket string }

Call SOAP Methods

set personid rrodgers@mit.edu

set collectionid http://hdl.handle.net/123456789/2

if [catch {set ticket ([DepositItem $personid $collectionid $xml_file base64]} errmsg]

ad_return_complaint 1 "Error depositing metadata into DSpace”
ad_script_abort

}

if [catch {set depositBitstream [DepositBitstream S$ticket $file_name

Sencoded_stringl]} errmsgl {

ad_return_complaint 1 "Error depositing file bitstrean into DSpace”
ad_script_abort

}

if [catch { set depositComplete [DepositComplete S$ticket) } errmsg] {
ad_return_complaint 1 "Error depositing file bitstrean into DSpace"
ad_script_abort

}

db_dml insert_submission {
insert into metadata_submissions values (:file_id, :schema_id)

}

ad_returnredirect "dspace-submitsuccess?file_id=3$file_id"
ad_script_abort

72

B.3 meta-view.adp

<master>

<property name="title">Upload to DSpace</property>

<property name="context">@context;noquote@</property>

<form method=get action="Q@submit_file_name@">

<input type=hidden name=schema_id value=@schema_id@e>

<input type=hidden name=file_id value=@file_id@>

<table>

<multiple name=ds>

<tr height=40 valign=bottom><td></td><td>

<if @ds.display_text@® not nil>

<small>@ds.display_text@</small>

</if>
</td>
</tr>
<tr><td align="right">@ds.pretty_name@</td>
<td>

<if @ds.display_type@ eq "text" and @ds.valueB egq "">
<input type=text @ds.display_ attributes® name=@ds.field_ide>
</if>
<if @ds.display_type@ eq "text" and @ds.value@ not eq "">
<input type=text @ds.display_attributes® name=@ds.field_ide
value="@ds,value@">
</if>
<if @ds.display_typel eq "textarea" and @ds.value@ eq "">
<textarea @ds.display_attributes@ name=@ds.field_id@></textarea>
</if>
<if @ds.display_typel eq "textarea" and @ds.value@ not eq "">
<textarea @ds.display_attributes® name=8ds.field id@>fds.valuel@</textarea>
</if>
<if @ds.display_type@ eg "select">
<select B@ds.display_attributes@
name=0@ds.field_id@>@ds.display_elements; noquote@</select>
</if>
<if @ds.multiple@ eq "t">
<input type=submit name=addmore-Qds.field_id@ value="Add More">
</if>
<if @ds.empty® gt -1>
<small>@ds.error_text@</small>
</if>
</td></tr>

<multiple name=multiple_fields>

<if @multiple_fields.fid@ eq @ds.field_id@>

<tr>

<td></td>

<td>

<if @ds.display_typeQ eq "text">

<input type=text name=multiple-@ds.field_id@ @ds.display_attributes@
value="@multiple_fields.fval@"></if>

<if Rds.display_typeld eq "textarea">»

<textarea @ds.display_attributes® name=multiple-
@ds.field _id@»R@multiple_fields.fval@</textarea></if>
</td>

</tr>

</if>

</multiple>

</multiple>

<tr><td colspan=2 height=20></tr>

<tr><td colspan=2 align=center>

<input type=submit name=submit_type value="Save">
<input type=submit name=submit_type value="Cancel">
<input type=submit name=submit_type value="Upload to @schema_name@">
</td></tr>

</table>

</form»>

73

B.4 meta-view.tcl

ad_page_contract {
Try meta

oA
schema_id:integer
file_id:integer

}

set schema_name [db_string get_sn "select schema_name from metadata_schemas where
schema_id=$schema_id"1]

set context [fs_context_bar_list -final "Upload to $schema_name" $file_id]

set the submit file
if [string egual $schema_name DSpacel {
set submit_file_name dspace-submit

}
set empty_fields [list]

#check for empty required fields
if [ns_queryexists empty_req field] f{

set empty_fields [ns_guerygetall empty_req field]
}

set startrow 1
set numrows 0
multirow create multiple_fields fid fval

db_multirow -extend { value empty } ds get_dsmetadata {

select * from metadata_fields where schema_id = :schema_id
JR

#check for empty field

set empty [lsearch -exact Sempty_fields $field_id]}

#check for and set existing field wvalues
if [ns_queryexists $field_id] {
set value [ns_queryget $field_id]
} else {
set db_values [db_list get_val "select field value from metadata_field_values
where file_id=5file_id and field_id=$§field_id"]

if { [llength $db_values] == 1 } {
set value [lindex $db_values 0]
} elseif { [llength $db_values] > 1 } {
set i 0
foreach db_value $db_values [
if { ![string equal $db_value ""] } {
if { $i == 0} {
set value $db_value
} else {

if {string equal 3$multiple t] {
multirow append multiple_fields $field_id $db_value
} elseif {string equal $multiple £f] {
append value " $db_value”
}
}

set i [expr $i + 1)}

}
} else {
#get from other schemas
set value ""
set db_mapped_fields_1 \
{db_list \
get_mfl \
"select field_id_1 from metadata_schema_mappings where
field_id 2=5field_id and {(map_type=0 or map_type=1)"]
set db_mapped_fields_2 \
[db_list \

74

get_mf2 \

"select field_id_2 from metadata_schema_mappings where

field_id_1=$field id and (map_type=0 or map_type=-1)"]

set db_mapped_fields [concat $db_mapped_fields_1 $db_mapped_fields_2]

if { [llength $%db_mapped_fields] >= 1 } {
foreach mfield $db_mapped_fields {

set db_vals {db_list get_vals "select field_value from

metadata_field_values where file_id=$file_id and field_id=$mfield"])
if { {llength $db_vals] == 1} {
set value [lindex $db_vals 0]
} elseif { [llength S$db_vals] > 1} {
set j 0
foreach db_val S$db_vals {
if { ![string equal $db_val ""] } {
if {$3 == O} ¢
set value $db_val
} else {
if [string equal $multiple t] {

multirow append multiple_fields $field_id $db_val

} elseif [string equal S$multiple f]

append value " $db_val"
}

}
set j [expr $j + 1]

}

#get from ss table
if {string equal Svalue ""] {

{

if { [exists_and_not_null mapping_ss_field] && ($map_type == |1l

$map_type==-1}) } {
set value "7
set has_mapping \
fdb_QOorlrow \
get_mapping \

"select mapping_table_or view,mapping_col_name from

sloanspace_file_metadata where field_name='S$mapping_ss_field'"]
if {Shas_mapping == 1} {
query get_value value onevalue \

"select Smapping_col_name from $mapping_table_or_view where

file_id=$file_id"
}
} else {
set value

nn

}

}

#check for multiple values in guerystring and append to multiple_fields multirow

set mult_list [ns_guerygetall multiple-$field_id]
set list_length [llength $mult_list]
foreach mult $mult_list {

multirow append multiple_fields $field_id $mult

}

#replace selected in select lists with new value
if [string equal Sdisplay_type select] {
if { !{empty_string_p valuel } {
if { ![string equal $value ""] } {
set string_length [string length $display _elements]

set val_index [string first value=\"3$value\" S$display_elements]

if { $val_index > -1 } {

set start_index [expr [string length value=$value}l

set start_string (string range $5display_elements O

75

+ $val_index + 2]

[expr $start_index

set end_string [string range $display_elements $start_index [expr
$string_length - 11]]

set display_elements $start_string

append display _elements " selected"
append display_elements S$Send_string

76

B.S schema-add.adp

<master>

<table width=100% cellspacing=0 cellpadding=0>

<tr><td><u>Add Schema</u>
</td></tr></table>

<form action="schema-add-2" method=get>

<table>

<tr>

<td align="right">Schema Name:</td>

<td colspan=2><input type=text name="name" value="" size=50></td>
<td></td>

</tr>

<tr><td align="right">Number of Fields:</td>

<td align="1left" colspan=2><input type=text name="num_fields" value="" size=7></td>
</tr>

<tr>

<td colspan=3 height=10></td></tr>

<tr>

<td></td>

<td align="left"><input type="submit" value="Add Schema"></td>

<td align="right">Add Schema Help</td>
</tr>

</table>

</form>

B.6 schema-add-2.tcl

ad_page_contract {
page to add a new nonversioned object to the system

Gauthor Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

name:trim

num_fields:integer
}
set schema_id [db_string get_id "select seqg_schema_id.nextval from dual"]
db_dml add_schema {

insert into metadata_schemas wvalues (:schema_id, :name)

}

ad_returnredirect "schema-add-fields?schema_id=$%$schema_id&num_fields=$num_fields™"

77

B.7 schema-add-fields.adp

<master>

<table width=100% cellspacing=0 cellpadding=0>

<tr><td><u>Add Fields</u>
</td></tr></table>

<form method=get action="schema-add-fields-2">

<input type=hidden name="schema_id" value=@schema_id@>
<input type=hidden name="num_fields" value=@num_fields@>
<table>

<multiple name=fields>

<tr>

<td align="right">Field @fields.rownum@ Name:</td>

<td colspan=2><input type=text name="field @fields.rownum@" value="" gize=50></td>
</tr>

<tr>

<td align="right">SloanSpace Mapping:</td>

<td colspan=2><select name="ssm_@fields.rownum@”">
<option value="none">None</option>

<option value="author">Author</option>

<opticon value="title">Title</option>

<option value="publish_date">Publish Date</option>
<option value="description">Description</option>
</select>

Mapping Type:

<select name="ssmt_@fields.rownum@">

<option value="(">Both Ways</option>

<option value="1">Remote Schema to SlocanSpace</option>
<option value="~1">SloanSpace to Remote Schema</option>
</select></td>

</tr>

<tr>

<td align="right">Required:</td>

<td colspan=2><select name="req_@fields.rownum@">
<option value="t">Yes</option>
<option value="f">No</option>
</select>
Has Multiple Values?

<select name="mult_@fields.rownum@">
<option value="t">Yes</option>
<option value="f">No</option>
</select></td>

</tr>

<tr>

<td align="right">Display Name:</td>

<td colspan=2><input type=text name="pn_@fields.rownum@" value="" size=70></td>
</tr>

<tr>

<td align="right">Display Type:</td>

<td colspan=2><input type=radic name="dt ffields.rownum@" value="text" checked>»Text Field
<input type=radio name="dt_@fields.rownum@" value="textarea">Text Area

<input type=radio name="dt_@fields.rownum@" value="select">Select List:

of Options:<input type=text name="num_ops_@8fields.rownum@” value="" size=7>

</td>

</tr>

<tr>
<td colspan=2 height=20></td>

</tr>

</multiple>

78

<tr>

<td>»</td>

<td align="left">

<input type=submit value=" Submit and Continue ">
</td>

<td align="right">Add Schema Help</td>
</tr>

</table>
</form>

79

B.8 schema-add-fields.tcl

ad_page_contract {
page to add a new nonversioned object to the system

fauthor Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

schema_id:integer
num_fields:integer
}
multirow create fields fname
for {set i 1} {$i <= Snum_fields} {incr i} {

multirow append fields "field_S$i"
}

80

B.9 schema-add-fields-2.tcl

ad_page_contract {
page to add a new nonversioned object to the system

Qauthor Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

schema_id:integer
num_fields:integer

}
set mylist [list 1]
set options_guery ""

¥process fields from schema-add-fields
for {set i 1} {$i <= $num_fields} {incr i} {
set field_name [ns_qgueryget field_ $i]
set ss_mapping [ns_gueryget ssm_5i}
set map_type [ns_gueryget ssmt_$i)
set required [ns_qgueryget reqg_$i])
set is_mult [ns_gueryget mult_$i]
set pretty_name [ns_queryget pn_35il]
set display_type [ns_queryget dt_$i]

lappend mylist $field_name
lappend mylist $pretty_name

if { ![string equal $field _name ""] && ![string equal $pretty_name ""] } {
set field id [db_string get_id "select seq_field_id.nextval from dual"]
if [string equal $ss_mapping "none"] {
db_dml add_field \
"insert into metadata_fields
values ($field_id, '$field_name', '$pretty_name', §schema_id, null, $Smap_type, \

null, '$display_type',null,null,null, *$required’, '$is_mult')"

} else {
db_dml add_field \
"insert into metadata_fields
values ($field_id, '$field_name', 'Spretty name', $schema_id, '$ss_mapping', \

Smap_type,null, '$display_type',null,null, null, \
'Srequired', 'Sis_mult')"
}
}

if [string equal $display_type "select"] {
set num_options [ns_queryget num_ops_$il
append options_query "&anum_ops_S$field_id=$num_options”

}

#redirect to continue page
ad_returnredirect "schema-add-fields-cont?schema_id=$schema_id$options_query"

81

B.10 schema-add-fields-cont.adp

<master>

<table width=100% cellspacing=0 cellpadding=0>

<tr><td><u>Add Fields (cont.)</u>r
</td></tr></table>

<form action="schema-add-fields-cont-2" method=get>

<table>

<input type=hidden name=schema_id value=@8schema_id@>

<multiple name=fields>

<tr><td colspan=3>Field Name: @fields.field name@</td></tr>

<tr>

<td align="right">Display Text:</td>

<td colspan=2><input type=text name=dt_Rfields.field_id@ size=100></td>
</tr>

<tr>

<td align="right">Error Text:</td>

<td colspan=2><input type=text name=et @fields.field_id@ size=100></td>
</tr>

<if @fields.display_typel eq "text">
<tr>
<td align="right">Text Field Size:</td>
<td colspan=2><input type=text name=tfs_@fields.field_id@ size=7></td>

</tr>
</if>
<if @fields.display_type@ eqg "textarea">
<tr>
<td align="right">Text Area Rows:</td>
<td colspan=2><input type=text name=tar_@fields.field_id@ size=7>

Columns:<input type=text name=tac_@fields.field_idR@ size=7>
</td>
</tr>
</if>

<if @fields.display typel@ eq "select">
<multiple name="options">
<if @options.field idR eq @fields.field_ide>
<tr>
<td align="right">Option Text:</td>
<td colspan=2><input type=text name=opt_Qfields.field id@_Goptions.index@ size=20>

Value:<input type=text name=opv_@fields.field id@_@options.index@ size=20>
</td>
</tr>
</if>
</multiple>
</if>

<tr><td colspan=3 height=20></td></tr>
</multiple>

<multiple name="num_ops_list">
<input type=hidden name=@num_ops_list.num_ops_string@ value=@num_ops_list.num ops_value@>
</multiple>

<tr>

<td»</td>

<td align="left">

<input type=submit value=" Submit "
</td>

<td align="right">Add Schema Help</td>
</tr>
</table>

</form>

82

B.11 schema-add-fields-cont.tcl

ad_page_contract {
page to add a new nonversioned object to the system

Rauthor Genevieve Cuevas (gtcuevas@mit.edu)
Becreation-date 01 April 2004

oo
schema_id:integer

)

multirow create options field_id index

#this is the multirow for the num_ops key in the query
multirow create num_ops_list num_ops_string num_ops_value

db_multirow fields get_fields {
select * from metadata_fields where schema_id = :schema_id
boA
if [string equal $display_type "select"] {
if [ns_queryexists num_ops_S$field id] {
set num_ops [ns_gueryget num_ops_S$field id]
for {set i 1} {$i <= S$Snum _ops} {incr i} {
multirow append options $field_id $i
}
multirow append num_ops_list num_ops_$field_id $num_ops

83

B.12 schema-add-fields-cont-2.tcl

ad_page_contract {
page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

oo
schema_id:integer

}

#process fields for schema-add-fields-cont
db_foreach set_fields "select * from metadata_fields where schema_id=$schema_id" {
set display_text null
set error_text null
set display attributes null
set display_elements null

##4 set field values ###
if [ns_qgueryexists dt_$field_id] {

set display_text [ns_queryget dt_$field_id]
}

if {ns_qgueryexists et_5field_id] {
set error_tcxt [ns_gqueryget et_S5field_id]
}
if [string equal S$display_type "text"] {
if [ns_gueryexists tfs_$field_id] ({
set size [ns_queryget tfs_S$field_id]
set display_attributes "size=$size"
)
} elseif [string equal $display_type "textarea"] {
set rows ""
set cols "7
if [ns_qgueryexists tar_$field_id] {
set rows "rows=[ns_queryget tar_S$field_id}l"
}
if [ns_queryexists tac_$field_id] {
set cols "cols=[ns_queryget tac_Sfield_idl"
}
set display_attributes "$rows S$cols"”
} elseif [string equal S$display_type "select"] ({
set display_attributes ""
set display_elements ""
if [ns_queryexists num_ops_Sfield_id] {
set num_ops [ns_gueryget num_ops_S$field_id]
for {set 1 1} {$1i <= $num_ops} {incr 1} {
set option_text ""
set option_value ""
set opt_str opt_$field_id
append opt_str "_S$i"
set opv_str opv_$field_id
append opv_str "_35i"
if {[ns_queryexists Sopt_str] && [ns_queryexists Sopv_strl} {
set option_text [ns_qgueryget $opt_str]
set option_value [ns_qgueryget Sopv_str]
append display_elements "<option
value=\"$option_value\">$option_text</option>"
}
}
}
}
#add avlues to database
db_dml set_values "update metadata_fields set display_text='$display_text',
error_text='S$error_text', \
display_attributes='$display_attributes', display elements='S$display_elements' where
field id=5field _id"
}

ad_returnredirect "schema-add-fields-done"

84

B.13 search-url.adp

<master>
<property name="title">@page_title;noquotel</property>
<property name="context">@context;noquotel</property>

<form method=GET action="search-url-results">
<input type=hidden name="folder_id" value="Gfclder_id@">

<table border=0>

<tr>

<td align=right>Search:</td>

<td colspan=2><input size=70 name=searchstring value=""></td>
</tr>

<tr>

<td></td>

<td><input type=submit value="Search">

in <input type=radio name="searchtype" value="dspace" checked>DSpace

<input type=radio name="searchtype" value="google">Google

<input type=radioc name="searchtype” value="googledspace">DSpace-restricted Google</td>

</tr>

</table>
</form>

85

B.14 search-url.tcl

ad_page_contract {
page to add a new nonversioned object to the system

@author Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 01 April 2004

folder_id:integer,notnull
{type "fs_url"}
{title ""}
{lock_title_p 0}
} -validate {
valid_folder -requires {folder_id:integer} {
if '{fs_folder_p S$folder_id] {
ad_complain "{_ file-storage.lt_The_specified parent_1"
}
}
} -properties {
folder_id:onevalue
context:onevalue

}

4 check for write permission on the folder
ad_require_permission $folder_id write

4 set templating datascurces

set pretty name "Search DSpace"
if {{empty_string_p $pretty_namel} {

return -code error "[_ file-storage.No_such_typel"”
}

#set context [fs_context_bar_list -final [_ file-storage.Search [list pretty_name
Spretty_namej] S$folder id]
set context [fs_context_bar_list -final "Search DSpace" $folder_id]

Should probably generate the item_id and version_id now for
double-click protection

if title isn't passed in ignore lock_title_p
if {{empty_string_p $titlel} {

set lock_title p 0
}

Message lookup uses variable pretty_name
set page_title [_ file-storage.simple_add_page_title]

86

B.15 search-url-results.adp

<master>
<property name="title">Search Results</property>
<property name="context">@context;noquotel</property>

<form method=GET action="search-url-results">

<table>

<input type=hidden name="folder_id" value="@folder_id@">

<tr><td align="right">Search:</td>

<td><input size=50 name=searchstring value="@searchstring@"></td>

</tr>

<tr>

<td></td>

<td><input type=submit value="Search">

in

<if @searchtype@ eq "dspace”"><input type=radioc name="searchtype" value="dspace"
checked>DSpace</if>

<else><input type=radio name="searchtype" value="dspace">»DSpace</else>

<if @searchtype@ eg "google"»<input type=radio name="searchtype"” value="google"
checked>Google</if>

<else><input type=radio name="searchtype" value="google">Google</else>

<if @searchtypel eqg “"googledspace"><input type=radio name="searchtype"
value="googledspace"” checked>DSpace-restricted Google</if>

<else><input type=radio name="searchtype” value="googledspace">DSpace-restricted
Google</else>

</td>

</tr>

</table></p>

</form>

<hr>

<table cellspacing=0 cellpadding=0 width=100%>

<tr>

<if @numrecords@ eq 0><tr><td>No Matches</td></if>

<else>

<td>Results @pageminval@ - <if @numrecords@ lt @pagemaxval@>@numrecords@</if>
<else>@pagemaxval@</else> of @numrecords@ for @searchstring@:</td>
</else>

<td align="right">Search Help</td>

<td width=1%></td>

</tr>

</table><hr>

<table>

<multiple name="urls">

<tr><td>@urls.title;noquotel</td></tr>
<tr><td>Qurls.description;noquote@</td></tr>

<tr><tdr<small><i>@urls.url@</i> -

<a href="simple-add-
2?7folder_id=@folder_id@stitle=@Qurls.title@surl=Qurls.url@&description=@urls.description@"
>[Add URL]

<if @searchtypel eg “"dspace”>

 |

<a href="dspace-
get?folder_id=Qfolder_id@&schema_id=2&itemID=furls.url@&title=Qurls.title@&description=Q@u
rls.description@">

[Add Filel</if>

</small>

</td>

</tr>

<tr height=30><td> </td><tr>

</multiple>

<tr><td align=center>
<if @pagenum@ gt 1>

87

<a href="search-url-
results?folder_id=0folder_idR&searchstring=@searchstring@spagenum=@prevpage@@&searchtype=@
searchtype@">

<small>Previous</small>

</if>

<if @numrecords@ gt @pagemaxval@>

<a href="search-url-
results?folder_id=@folder_id@s&searchstring=@searchstringl&pagenum=@nextpagel&isearchtype=Q@
searchtype">

<small>Next</small>

</if>

</tdr</tr>

</table>

88

B.16 search-url-results.tcl

ad_page_contract {
Search results in DSpace

Rauthor Genevieve Cuevas (gtcuevas@mit.edu)
@creation-date 1 Apr 2004

folder_id:integer,notnull
searchstring:trim
{searchtype dspace}
{pagenum: integer 1}
} -validate {
valid_folder -requires {folder_id:integer} {
if ![fs_folder_p $folder_id} {
ad_complain "[_ file-storage.lt_The_specified parent_]"

}

check for write permission on the folder

ad_require_permission $folder_id write

set context [fs_context_bar_list -final "Search Results" $folder_id]

#set pagination variables

set recordsperpage 5

set pagemaxval [expr $pagenum * $recordsperpage]

set pageminval [expr $pagemaxval - $recordsperpage + 1]
set nextpage [expr $pagenum + 1]

set prevpage [expr $pagenum - 1]

multirow create urls title url description

if [string equal $searchtype google] {
set results ({acs_sc::invoke \
~operation paged_search \
—-contract URLSearcher \
-impl GoogleSearcher \
—-call_args [list $searchstring $Srecordsperpage $pagenum]]
} elseif [string equal $searchtype googledspacel {
set results [acs_sc::invoke \
~operation restricted_paged_search \
~contract URLSearcher \
-impl GoogleSearcher \
~call_args [list $searchstring S$recordsperpage $pagenum "dspace™]]
} else {
set results [acs_sc::invoke \
~operation paged_search \
~contract URLSearcher \
~impl DSpaceSearcher \
~call_args {list $searchstring $recordsperpage $pagenum]}

}
set resultslist [lindex Sresults 1)
foreach result $resultslist {
multirow append urls [lindex S$result 0] [lindex $result 1] (lindex $result 2]

}

set numrecords [lindex S$results 0}

89

B.17 dspace-search-procs.tcl

ad_library {
The “dspace searcher" searches and retrieves dspace urls.

Qauthor gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 039:51:04 peterm Exp $
}

namespace eval dspace_search {

ad_proc -private search_url {
query

bod
Implements the search operation for URLSearcher.

b
set resl [list "Google" "www.google.com" "google website"]
set res2 [list "Yahoo" "www.yahoo.com" "yahoo website"]
set res3 [list "MIT" "web.mit.edu" "mit website"]
return [list $resl $res2 Sres3 S$Squery]

}

ad_proc -private paged_search url {

qguery

results_per_page

page_num
PoA

Implements the paged search operation for URLSearcher.
P oA

#initialize results list

set results [list]

#set pagination vars
set pagemaxval [expr $page_num * $results_per_page]
set pageminval (expr $pagemaxval - S$Sresults_per_page + 1]

regsub -all " " $query "+" url_query
if { [catch {set content [ns_httpget http://dspace-
demo.mit .edu:8080/SRW/search/DSpace?query=%22%url_query%22&maximumRecords=Sresults_per_pa
ge&startRecord=$pageminval]} errMsg] } {
return
}

#set doc [dom parse $content]

if { [catch {dom parse $content doc} errMsgl } {
return

}

set root [$doc documentElement]

set recordTitle ""
set recordUrl ""
set recordDesc ""
set numrecords 0

foreach child [Sroot childNodes] {
set childName [$child nodeName]
if [string equal $childName numberOfRecords] {
set numrecords [$child text]
} elseif [string equal $childName records] (
foreach recordsChild [S$child childNodes] {
set recordsChildName ([$recordsChild nodeName]
if [string equal $recordsChildName record] (
set recordDesc ""
foreach recordChild [$recordsChild childNodes}l {
set recordChildName [$recordChild nodeName]
if [string equal SrecordChildName recordDatal] {
foreach dataChild [SrecordChild childNodes]
set dataChildName ([$dataChild nodeName]
if [string equal $dataChildName srw_dc:dec} {

90

foreach dcChild ({$dataChild childNodes] {
gset dcChildName [$dcChild nodeName]
if {string equal $dcChildName dc:identifier.uri]

set recordUrl [$dcChild text]
} elseif [string equal $dcChildName dc:titlel |
set recordTitle [$dcChild text]

} elseif [string equal $dcChildName
dc:description] {

append recordbesc " "

append recordDesc {$dcChild text]
}
}

set result {list $recordTitle $recordUrl
SrecordDesc)

lappend results Sresult

}

return [list $numrecords Sresults]

91

B.18 google-search-procs.tcl
ad_library {
The "google searcher" searches and retrieves google urls.

Rauthor gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 09:51:04 peterm Exp $
}

namespace eval google_search {

ad_proc -private search_url {
query

PoA
Implements the search operation for URLSearcher.

PoA
set resl [list "Google" "www.google.com” "google website"]
set res2 [list "Yahoo" "www.yahoo.com" "yahoco website"]
set res3 [list "MIT" "web.mit.edu" "mit website"]
return {list Sresl $res2 Sres3 $queryl]

}

ad_proc -private paged_search_url {

query

results_per_page

page_num
PoA

Implements the paged search operation for URLSearcher.
b

#initialize results list

set results [list])

#set pagination vars
set google_page_num [expr $page_num - 1]
set start_index [expr $google_page_num * $results_per_page]

#set google scap variables

set endpoint http://api.google.com/search/beta2
set schema http://www.w3.0rg/2001/XMLSchema

set Key {orDfgkBQFHKCJAImJI3TqgHksuu+SUmZm}

#google soap method call
::SOAP: :create doGoogleSearch \
-proxy $endpoint \
-params {key string g string start int maxResults int \
filter boolean restrict string safeSearch boolean \
lr string ie string oe string} \
~action urn:GoogleSearchAction \
—encoding http://schemas.xmlsoap.org/scap/encoding/ \
~schema {list xsd $schemal \
-uri urn:GoogleSearch

set unparsedresult [doGoogleSearch \
$Key \
Squery \
$start_index \
Sresults_per_page \
false \
"N \
false \
"hn \
utf-8 \
utf-8]

$o- parse the results
set resultTagIndex [lsearch -exact Sunparsedresult resultElements]

set resultsIndex [expr $resultTagIndex + 1]
set resultlist {lindex $Sunparsedresult $resultsIndex]

92

set totalNumResultsTagIndex [lsearch -exact Sunparsedresult
estimatedTotalResultsCount]

set totalNumResultsIndex [expr $totalNumResultsTaglndex + 1]

set totalNumResults [lindex S$unparsedresult $totalNumResultsIndex]

foreach record SresultList {
set urlTagIndex [lsearch -exact $record URL]
set urllIndex [expr SurlTaglIndex + 1]
set titleTaglndex [lsearch -exact S$record title]
set titlelndex [expr $titleTagIndex + 1}
set snippetTaglndex [lsearch -exact $record snippet]
set snippetlndex [expr $snippetTagIndex + 1}
set title [ns_striphtml {lindex $record $titleIndex]]
set url [ns_striphtml [lindex $record SurllIndex]]
set snippet [ns_striphtml {lindex Srecord $snippetIndex]]
set result [list Stitle Surl $snippet)
#set result [list ([lindex Srecord $titleIndex] [lindex Srecord SurlIndex]
[lindex Srecord $snippetIndex]]
lappend results $result
}

return [list S$totalNumResults S$results]

}

ad_proc -private restricted_paged_search_url (
query
results_per_page
page_num
restriction

Implements the paged search operation for URLSearcher.

#initialize results list
set results [list)

#set pagination vars
set google_page_num [expr $page_num - 1]
set start_index [expr $google_page_num * Sresults_per_page)

#set google soap variables

set endpoint http://api.google.com/search/beta2
set schema http://www.w3.0rg/2001/XMLSchema

set Key {orDfgkBQFHKCjAlmJI3TggHksuu+SUmZm}

#google scap method call
: :SOAP: :create doGoogleSearch \
-proxy S$endpoint \
-params {key string g string start int maxResults int \
filter boolean restrict string safeSearch boolean \
l1r string ie string oe string} \
—action urn:GoogleSearchAction \
~encoding http://schemas.xmlsoap.org/soap/encoding/ \
—-schema {list xsd $schemal \
-uri urn:GoogleSearch

set unparsedresult [doGoogleSearch \
$Key \
Squery \
Sstart_index \
Sresults_per_page \
false \
Srestriction \
false \
" \
utf-8 \
utf-8]

o parse the results

set resultTagIndex [lsearch -exact S$Sunparsedresult resultElements]

93

set resultsIndex [expr S$resultTagIndex + 1]
set resultlList {lindex Sunparsedresult $resultsIndex]

set totalNumResultsTagIndex [lsearch -exact S$Sunparsedresult
estimatedTotalResultsCount]

set totalNumResultsIndex [expr StotalNumResultsTagIndex + 1]

set totalNumResults [lindex Sunparsedresult $totalNumResultsIndexl

foreach record Sresultlist {
set urlTaglndex [lsearch -exact $record URL]
set urllndex [expr $urlTagIndex + 1]
set titleTaglIndex [lsearch -exact Srecord title}
set titleIndex [expr $titleTagIndex + 1]
set snippetTaglndex [lsearch -exact Srecord snippet]
set snippetindex [expr $snippetTagIndex + 1]
set title [ns_striphtml [lindex $record $titlelIndex]]
set url [ns_striphtml [lindex $record $SurlIndex])
set snippet [ns_striphtml [lindex $record $snippetIndex]]
set result [list S$title Surl S$snippet]
lappend results S$result
}

return [list S$totalNumResults Sresults)

94

C Instructions for Integration With Other Systems

Here are instructions for how to integrate other systems with the file transfer component.
Three major steps need to be completed in order to make the integration:

1. Fill in the database tables via the Add Schema interface.

2. Add the code files for the submit interface.

3. Add the implementation for the search service contract.

4

Add the code files for the retrieve interface.

C.1 Filling in the database tables via the Add Schema Interface
1. Go to the add schema interface at: http://your_url/dotlrn/file-storage/schema-add

2. Enter the schema name and the number of fields. For example, enter “JJ Digital

Repository” for schema name and “3” for number of fields as shown below:

) Helice: B003 - Mozilla Firefox

Fle Edt Vew Go Bookmarks | Took Help Q-

) @3 [hetpsselce.mit.edu:5003/dotimfle-storagejschema-add [k

Y

P Getting Started [Latest Headines

™
ol-RN Genevieve Cuevas

My Space Help Logout

My Space My Calendar My Files Cortrol Panel

Add Schema

Schema Name: |JJ Digital Repository

Number of Fields: i

Add Schema Add Schema Help
My Space My Calendar My Filas Control Panel

dotLRM Horne | dotLRM Project Central | Change Locale | Toggle translator mode

Done

Click on the “Add Schema” button when finished.
3. Fill in the field information with the metadata field information of your metadata

schema. The information queried is as follows:

95

Name: specifies the name of the field.

S

SloanSpace Mapping: specifies which SloanSpace field it maps to.
c. Mapping Type: which direction the mapping goes.

e

Required: specifies whether or not a value for this field must be supplied

when submitting into your system being integrated.

e. Has Multiple Values: specifies whether or not the field can contain multiple
values.

f. Display Name: specifies the name of the field displayed in the submit user
interface.

g. Display Type: specifies the input type of the field value.

h. # of Options: this is only relevant if the display type selected is “Select List”.

This specifies how many options the select list will have.

Below are sample values:

%7 Helice: 8003 - Mozilla Firefox E
Fle Edt View Go Bookmarks Tools Help . 0G

@ L%’ @ @ @ [L} http:{helice.mit.edu:8003/dotIrnjfile-storagefschema-add-fields?schema_id: @ L_ . *

P Getting Started 5 Latest Headlines

T S , SRl

My Space Help Logout
e

My Space My Calendar My Files Control Panel

Add Fields

Field 1 Name: !ji_authur

SloanSpace Mapping: | Author] Mapping Type: ;Bmh Ways y{

Required: | Yes \'}5 Has Multiple Values? ‘_l‘\-.'—u)

- §

Display Name: EAuthql - i
Display Type: @ Text Field O Text Area O Select List: # of Options:

Done

4. Click on the “Submit and Continue” button when finished.
5. Fill out the rest of the field information. The information queried is as follows:
a. Display Text: specifies the text appearing on top of the input form, containing
instructions for filling out that field.
b. Error Text: specifies the text that appears when this field is filled out

incorrectly.

96

c. Text Field Size: specifies the size of the text field, if the display type is “text
field”.

d. Text Area Rows: specifies the number of rows of the text area, if the display

type is “text area”.
e. Columns: specifies the number of columns of the text area, if the display type
is “text area”.

f. Option Text and Option Value: specifies the option text and option values of

the select list, if the display type is “select list”.

Below is an example of the field information for jj_author, created above:

% Helice:BOO3 - Mozilla Firefox
Fle FEdt View Go Bookmarks Took Help

@ - E} - @ @ @ [Ej http:,f,fhelice.mi“t.edu-.BDDSIdotIrn;‘fie-storaqe!schema—add-ﬁelds-cont?schen’g%l “_@_,

> Getting Started [Latest Headines

™ . |
.LRN Genevieve Cuevas

My Space My Calendar My Files Cortrol Panel

Add Fields (cont.)

Field Name: jj_author

My Space Help Logout

Display [Epar author here.
Text: |

Error Text: éYou must enter an author.

Text F_ield {SU—ﬁ
Size: ——

!@;;

6. Click “Submit” when done. This concludes filling out the database tables.

C.2 Adding the code for the submit interface

In order to complete the submit portion of the integration, you would first need to provide
the code that communicates with your web service method that submits files into your
system. For example, say the “JJ Digital Repository” created above has a web service
with a method called “SubmitIntoJJ(content, jj_author, jj_title, jj_description)”.

“SubmitIntoJJ” has as input the content, encoded in base64, and the values for the

97

metadata fields jj_author, jj_title, and jj_description. Thus, the code must contain a call
to this method. Here is a sample of what the tcl code file for the “JJ Digital Repository”
submit component will look like. Let’s name this file “jj-submit.tcl”.

jj-submit.tcl

ad_page_contract {
Try meta

PoA
schema_id: integer
file_id: integer

}

get the jj_author, title, and description fields
set author {ns_queryget S$author_field_id]

set title [ns_dgueryget Stitle field_id]

set description [ns_queryget $description_field_id}

get the file contents and encode it to a base 64 string
set content {::base6d::encode S$file]

call the web service “SubmitIntoJJ” web service method

::SOAP: :create SubmitIntoJJ

—uri “http://www.jjdigitalrepository.com/webservice

~name “SubmitIntoJJ”

-params {content string, jj_author string, jj_title string, j3j description string}
SubmitIntoJJ Scontent, Sauthor, Stitle, $description

redirect to the file area
ad_returnredirect “file?file_id=$file_id”

Once this file is created, you would now need to call this code when the “Upload” button
is clicked in the submit user interface, if the schema_id specified is the schema_id of your
schema. To do this, you would need to modify the meta-view.tcl file as follows. Look

for the line in meta-view.tcl that says “### set the submit file . . . “. This looks like:

##4 set the submit file
if [string equal $schema_name DSpacel] {
set submit_file_name dspace-submit

}

Add to this the following:

if [string equal S$schema_name <your_schema name>] {

set submit_file_name <your_code_file_name>

98

For example, for the jj_submit.tcl file above, the new piece of code will look like:

##4 set the submit file
if [string equal $schema_name DSpace] {
set submit_file_name dspace-submit
}
if [string equal $schema_name “JJ Digital Repositoryl {

set submit_file name jj_submit

C.3 Adding the search service contract implementation
In order to complete the search component of the integration, you must add an
implementation of the search service contract that searches your system, through your

web service.

To do this, first create the service contract operations to the database. Do this by creating
a file called <system>-search-create.sql. For example, for “JJ Digital Repository”, create

a file called “jj-repository-search-create.sql. The contents of the file are as follows:

declare
foo integer;
begin
--create implementation
foo := acs_sc_impl.new (
impl_contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher’,
impl_pretty_name => 'JJ Digital Repository URL Search’',
impl_owner_name => 'jjrepository_search’
)i

--create paged search operation

foo := acs_sc_impl.new_alias (
impl_contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher’,
impl_operation_name => ‘'paged_search',
impl_alias => '"Jjjrepository _search::paged _search_url’,
impl_pl => 'TCL'

)i

-~-add binding

acs_sc_binding.new (
contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher’

)i

end;
/

show errors

Copy the file contents above and replace all instances of “JJRepository” with your system

name.

99

Also create the drop file. For example, here are the contents of “jj-repository-search-
drop.sql” file:

declare
foo integer;
begin

acs_sc_binding.del (
contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher’
)i

foo := acs_sc_impl.delete_alias(
impl_contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher’,
impl_operation_name => 'search'

Yi

foo := acs_sc_impl.delete_alias(
impl_contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher',
impl_operation_name => 'paged_search’

)i

acs_sc_impl.del{
impl_contract_name => 'URLSearcher’,
impl_name => 'JJRepositorySearcher'’

)i

end;

/

show errors

Copy the file contents above, and replace all instances of “JJRepository” with your

system name. Add both these files to your /packages/file-storage/sql/oracle directory.

Now, you are ready to supply the code of the implemented operation. First, create the
file <system>-search-procs.tcl, and add this file to your /packages/file-storage/tcl

directory. Now copy the contents below:

ad_library {
The "<system> searcher" searches and retrieves <system> urls.

@author gtcuevas@mit.edu
@version $Id: dspace-search-procs.tcl,v 1.0 04/14/04 09:51:04 peterm Exp $
}

namespace eval dspace_search {

ad_proc -private search_url {
query
oA
Implements the search operation for URLSearcher.
boAo
//£ill in search code here
}

100

Fill in the code starting at the line “//fill in search code here”, with the code that searches

your system.

After this is done, you must now add the radio button for this search implementation. To
do this, open “search-url.adp”, and add the following after the line “<input type=radio

4

name="searchtype” value="googledspace” . ..

<input type=radio name="searchtype” value="your_system name"”>

Now, add the following to “search-url-results.tcl”, after the line “-call_args [list

$searchstring $recordsperpage $pagenum “dspacel]]”, with the following:

} elseif [string equal $searchtype Jjjrepositoryl {
set results [acs_sc::invoke \
-operation restricted_paged_search \
~contract URLSearcher \
—impl JJRepositorySearcher \
—call_args [list $searchstring $recordsperpage $pagenum "dspace"}]

Change all instances of “JJRepository” above with your system name.

Once all these pieces have been implemented, you are now ready to integrate the retrieve

component.

C.4 Adding the code for the retrieve interface

The steps for adding the retrieve interface are as follows. First, create the code file that
communicates with your web service method that fetches files from your system’s web
service. For instance, say “JJ Digital Repository” has 2 web service methods:
GetJJFileContent and GetJJFileMetadata. Both these methods have as input, file_id,
which is the id of file you want to fetch. The GetJJFileContent method returns a base64
encoded string containing the file contents, and the GetJJFileMetadata method returns the

metadata in XML format. The code file, “jj-get.tcl”, will be as follows:

101

jj-get.tel

ad_page_contract {Add File} {
folder_id:integer
schema_id:integer

}

#call the web service methods

::SOAP: :create GetContent
—uri “http://www.jjdigitalrepository.com/webservice
-name “GetJJFileContent”
-params {file_id string}

::SOAP: :create GetMetadata
-uri “http://www.jjdigitalrepository.com/webservice
-name “GetJJFileMetadata”
~-params {file_id string}

set content GetContent $file_id

set metadata GetMetadata $file_id

#parse the metadata file to get the parameters

#add the file into the folder with folder_id = $folder id

Once this file has been created, modify the “search-url-results.adp” file, adding the

following line after the line “[Add File]</if>""

<if @searchtype@ eq "your_system_name">
 |
<a

href="your_get_file?folder_id=@folder_id@&schema_id=2&itemID=@urls.url@stitle=Qurls.title
@sdescription=@urls.description@\

'

[Add Filel</if>

Replace “your_system_name” with your system name, and “your_get_file” with the get

code file you created in the previous step.

Once this is all done, restart your .LRN server. Enjoy!!!

102

D Installing the system into .LRN

1. Go to “http://web.mit.edu/gtcuevas/www/Thesis” and get the “Thesis.tar” file.
Unxip Thesis.tar

Go to the main directory, “Thesis”

& LN

“Thesis”contains 3 directories:
a. file-storage
b. fs-portlet
c. sql
5. Go to file-storage, and do the following:

a. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN
packages/file-storage/sql/oracle/ directory

b. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN
packages/file-storage/sql/oracle/ directory

c. Copy all the files in file-storage/sql/oracle/ and place them in your .LRN
packages/file-storage/sql/oracle/ directory

d. For all the files in file-storage/www/Modified, copy them and paste them into
your .LRN packages/file-storage/www/ directory, replacing all the original
files in .LRN with these modified files.

e. Make a directory called dspace-temp into the .LRN packages/file-
storage/www/ directory, and set permissions so that the directory is writable
by all users.

f. Copy all the files in file-storage/www/Modified/resources/ and place them in
your .LRN packages/file-storage/www/resources/ directory.

6. Now, go back up to the fs-portlet directory in “Thesis”, and do the following:

a. Copy the file in fs-portlet/www/Modified/ into your .LRN packages/fs-
portlet/www/ directory (replacing the original .LRN file with this modified
file).

7. Restart the server.

103

