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Abstract
Digital devices and their underlying DSP technology are widespread in modern soci-
ety. Consequently, optimizing DSP applications is necessary to satisfy tight power,
space, and bandwidth constraints. As code length and complexity increases for these
applications, the value of time-intensive, manual expert analysis has decreased. In its
place, robust, compiler-generated optimizations have become necessary.

We target linear state-space sections of applications to analyze and optimize, and
use the programming language StreamIt to implement and test our ideas. StreamIt
enables its users to create filters and connect them in.a simple, structured manner. A
linear state-space filter may have a set of state variables that it uses from execution
to execution. Such a filter has the property that its outputs are a linear combination
of its inputs and states, and the states are updated by a linear combination of the
inputs and states. Examples of such filters that use states include IIR filters and
linear difference equations.

We automate the following steps in the StreamIt compiler. We extract the rep-
resentation for each filter that is linear state-space. We combine representations of
filters to form a single linear state-space filter. We remove unnecessary states and
reduce the number of computations needed per filter execution. Lastly, we convert
the optimized filter back to StreamIt code.

We have compiled a number of StreamIt benchmark applications using our analysis
and optimizations. Our data indicates state-space replacement works as well as linear
replacement (a filter is linear if its outputs are an affine combination of its inputs)
for stateless filters, and improves performance by as much as 66% for combinations
of filters with state.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

1.1 Problem Overview

Digital devices are increasingly common in everyday life. Examples include cell

phones, modems, CD players, and high definition television. These products require

DSP (Digital Signal Processing) applications to operate on their real-time streaming

data. Applications have wide-ranging uses, such as signal compression and decom-

pression, noise reduction, and error correction.

DSP applications often must process massive amounts of data quickly with limited

power consumption. Therefore, it is crucial they are optimized appropriately. Un-

fortunately., DSP optimizations typically defy high level language compiler analysis.

Consequently, DSP applications must be hand-coded or at the very least fine-tuned

at the assembly level. This leads to a host of problems: DSP experts must spend

valuable hours writing optimized low level code; every change in the design of the ap-

plication necessitates rewriting the code; the optimizations are typically architecture

dependent, hence they are not portable or robust. These factors indicate there is a

need to effectively analyze DSP applications, and automate their optimizations in a

comnipiler.

13



1.2 DSP Analysis

Ill order to p)r1)erly amallv ze DSP ail)l)liiti(ois. we must use aln aplprolprite franiiework

to llo(lel them. This framllework shouldl conltail a number of simpllifications in order

to cmalke our analvysis Nvorkacl)le. but not too lllnllM simplifications that our analysis

fails to be robust.

We stlart with the top level notion of an capplicationl, defined as a large module

that receives inpts, performls computatiois, and outputs results. This definition.

while correct, does not lend itself to any type of application analysis. The first

simplification we make is to divide all application into blocks, which are abstract

input-output modules. These b)locks are intercoimected in a certain way to form the

full application. We can think of each block as a mini-application: it takes its own

inputs, performs calculations, and produces outputs.

Figure 1-1: A DSP block diagram of the application Beamformer

Blocks can be characterized in various ways. The simplest characterization of

blocks is a linear block, defined as a module that outputs a linear combination of its

inputs plus a constant term. A linear block can be represented by a matrix relating

inputs to outputs and a vector of constants. The next simplest characterization of

14
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)lo)cks is ilc:('ir .'t(tc-.sl)c'. Sch a l)lock uses a set of state varial)les. Tlle( olltp)lt

of this 1)h)lock is linear ('01111)illation of its inpul)llts and(l state varialhles. In (lliti)ion.

tle stalte variab)les are ld(late(l l )V a linear (')ll )ilnatioln of teelves 1 a ( i )llt s. A

linear stat(e-s)ace l)lo()ck (l 1)(e rel)reselltedl )v four ind(le)l(elnt ilatri(ces.

A linear state'-s)ace cliaraterizatioln is more general than a linear chlaracterizatioil

- all linear b)locks are also linear state-sl)ace b1locks, but the converse is not true. Tile

intuitive reason for this fact is that a linear block is niemioryless. meaning the oltplUts

only.v depenld on current in)ults. However, a linear state-space block has iiimemor in

the form of state variables. so the outputs depend on current inputs and past inputs.

XWe will perform analysis and optimization of DSP applications at the linear state-

space level. We choose this re presentation because it models a wide class of aL)plica-

tions or parts of applications. and it is simnple to work with.

Our work with state-space representations will be done in the context of StreamIt,

a programming language designed for streaming applications [17]. StreamIt allows

users to create their own blocks, but limits the way these blocks can be connected.

We perform the following steps on a StreamIt program:

1. Examine each block and determine whether or not it can be characterized as

linear state-space. If it can, extract the appropriate state-space representation.

2. Combine connected blocks that each have a state-space representation, using

an appropriate set of rules depending on the type of connection.

3. Optimize representations through the use of state-space transformations.

4. Convert the state-space representation(s) back to StreamIt code.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2 we provide background

information about StreamIt and formal linear and linear state-space models. Chapter

3 is devoted to state-space analysis of StreamIt programs (Items 1, 2, and 4). Chapter

15



1 (lescribcs otiliatiolls (Item 3). Ill Clhal)te 5 wC( (liS(lsS o()U illl)lelllelltationl ld

resullts. Clhallt(l ( (ttaiilS 1r('llte((l orlk. I (Cltl)t1 7 we W l)ri(l0 olu c(clllisiolls (il

list possible future w(r'k.
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Chapter 2

Background Information

2.1 The StreamIt Programming Language

Strearnlt is a programming language specifically tailored to DSP streaming appli-

cations. The user creates a graph composed of four types of StreamIt constructs:

.filters, pipelines, splitjoins, and feedback loops. Filters encapsulate the computation

done within an application - they represent the blocks mentioned in the previous chap-

ter. Each filter operates on a one-dimensional 'tape' of values (of any type, including

structures and arrays). The other three constructs dictate the type of connections

possible between filters. Every construct explicitly states its input type and output

type, and can be passed parameters as would be to a procedure.

StreamIt uses a buffer between every pair of filters to hold values. When the input

buffer of a construct (equivalent to the output buffer of the previous construct) is ap-

propriately filled, the construct can execute. Execution involves three steps: reading

and removing items from the input buffer (consumption); performing computations;

putting items in the output buffer (production). We will not consider the intricacies

of managing these buffers, and instead refer to the more abstract notion of a tape.

A filter has pre-defined peek, pop, and push rates (StreamIt code examples are

given below). During each execution, the filter accesses a maximum of peek values

fronm its input tape, consumes exactly pop input values from its input tape, and

produces exactly push values onto its output tape. Since the removal of an input

17



value is tchlnicallh an acc(ess of that input. the peek lrate of a filter lmust be greater

than ('(11 ual t the pop) rate of' tat filter. The lsh ()i pop lrate canl 1)e zero -

the fiorln'er correspl)onds to a filter tat (consumes items )llt does not pro(dluce thel

(typlically the last filter ill a se(qiellce) and the latter corres)Ollnds to a filter that

plrolduces items lbut does not collSUllne theim (typlically the first filter in a sequence).

All the accesses, outputs, and relmovals. as well as all the COlmputation is done inside

the main body of the filter, known as the Nwork fulction.

Figure 2-1: StreamIt filter

StreamIt also supports a prework function, which has its own push, pop, and

peek rates. The prework function executes in place of the work function for the first

computation sequence, and is never run again. Additionally, there is an init function

which is run only once upon creation of the filter, and is usually used to initialize

variables. The init and prework functions are both optional.

A filter can store two types of variables - field and local. Field variables are declared

outside of the specific functions (work, prework, init), and can be accessed from

anywhere within the filter. Local variables are declared within a specific function,

and only have scope within that function. For example, a variable declared within the

init function is local, and could not be accessed within the work function. Therefore,

the init function is used to initialize field variables.

Code examples of StreamIt filters are shown below.

// This filter adds the parameter scalar to each input.

// It does not have an init or prework function

float -> float filter scalarAdd(float scalar) {

work push 1 pop 1 peek 1 {

push(scalar + pop());

18



// This filter outputs a running average of every three consecutive inputs.

// The first time it runs, it ouputs the average of the first two inputs without removing anything from the tape.

// It does not have an init function.

float -> float filter threeWayAverage() {

prework push 1 pop 0 peek 2 {

float temp; // example of a local variable

temp = (peek(0)+peek(1))/2;

push(temp);

}

work push 1 pop 1 peek 3 {

float temp; // example of a local variable

temp = (peek(O) + peek(l) + peek(2))/3

push(temp);

pop()

}

// This filter computes an infinite impulse response function.

// It does not have a prework function.

float->float filter IIR() {

float curr; // example of a field variable

init {

curr = 0;

}

work push 1 pop 1 peek 3 (

float temp; \\ example of a local variable

temp = (peek(O) + peek(l) + peek(2))/6;

curr = temp + curr/2;

push(curr);

pop();

}

Pipelines, splitjoins, and feedback loops are higher level constructs created from

filters. Each structures the layout of its filters in a certain format. Even though

these three constructs do not directly provide the syntax to perform computations

and work from an input or output tape, they can be thought of as filters in the

following way: the construct recieves inputs which are passed to one or more of the

filters; all the filters perform computations and pass values to one another through

their input and output tapes; the construct outputs values from one or more of its

19



filters. Ill fact. for (\very pipeiline, sl)litjoin. nlld feedballck loop there is an eqtlivalelnt

filter l represe(ntsatio l. Therefore. these thrll('(' c(llstructs are not strictly lncessary for

writing a StreamIt pr(ograni. However. they simplify anid structure writing a large

aIpplicatioll.

The higher level construicts are not limited to comline filters - they can lso

combine each other. This follows directlY fromn the fact that a higher level construct

has some equivalent filter. Therefore. if a p)ipeline can be composed of filters, it call

also be composed of pipelines splitjoins. and feedback loops, which are all like filters.

We shall refer to all four Streamllt constructs generically as blocks. This corresponds

to the fact that any StreanmIt construct behaves as a block: it takes inputs, performs

calculations, and produces outputs.

Pipelines combine a set of blocks in sequential fashion, so that the output of the

first block is the input to the second block, the output of the second block is the input

to the third block, etc. The blocks are placed in order using the add statement.

Figure 2-2: StreamIt pipeline

// This pipeline connects the filters scalarAdd and threeWayAverage.

// The parameter scalar passed to this pipeline is passed to the

// filter scalarAdd.

float -> float pipeline combinedWork(float scalar) {

add scalarAdd(scalar);

add threeWayAverage();

}

A splitjoin arranges blocks in a parallel fashion. The inputs to a splitjoin are sent

to each block in a roundrobinr or duplicate manner, and the outputs of each block are

joined in a roundrobin manner. Duplicate splitting means the inputs to the splitjoin

are copied and sent to each block, so that each block receives exactly the same set of

20



illplltX. RI()lll(OI)ill sl)littiii lllelSl the iplits t the(' sl)litjoin are sent to each )lock

(o('(lito user (lefill('(l w-e(ihts. For e'xlnple. the first lhl)(k rec(eives two illuplts.

the sc'()nll block receives ()i(, illl)llt. the thir(l lO(lck receives two iilpllts. Therefore.

(,each 1)()(k see(s dliffelrlt set ol illpllts . R ol(indo)i jini ng (the oly tpe Of joillilg

I)er'litt((l) iieans the outputs of each 1)lock ar comllllinel according to ser dlefinled

weiglits. and these replresent th(e otputs of te enltire splitjoin. Blocks are listed in

the o(rder which te eyieve iputs usinlg Caddl statctemenlts. The way inputs are sent

is dleteriiniecd by using the split statement I)efore the )lock list. and the way outputs

are recievedl is determiined by using the joill statement after te })lock list.

Figure 2-3: StreamIt splitjoin

// This splitjoin splits its inputs three ways.

// The first two inputs are sent to the first block, the next

// input to the second block, and the next two inputs to the third

// block.

// The outputs are collected in the following manner: three from

//the first block, five from the second block, and four from the

21



// third block.

// For every 2+1+2=5 values inputted, 3+5+4=12 values are

// outputted.

float -> float splitjoin mySplitjoin() {

split roundrobin(2,1,2);

add combinedWork(3.5);

add combinedWork(4.5);

add threeWayAverage();

join roundrobin(3,5,4);

}

A feedback loop uses some of its output as an input. It consists of a body block

and a loop block. The input to the entire feedback loop is combined with the output

of the loop block and sent to the body block, via a roundrobin joiner. The output

of the body block is split two ways in a roundrobin or duplicate manner. The first

set of outputs is used as the output of the entire feedback loop, and the second set

of outputs is used as the input to the loop block. Note that there must be initial

values enqueued on the output tape of the loop block in order for the feedback loop

to begin executing. The first statement in a feedback loop is a join, determining how

inputs are sent to the body block. The body and loop blocks are listed next. The

last statement is a split, determining where outputs are sent from the loop block.

// This is a feedback loop implementation of the IIR filter.

// The body and loop are both anonymous filters.

float -> float feedbackloop IIRFeedback() {

join roundrobin(3,1);

body float->float filter {

work push 1 pop 1 peek 4 {

push((peek(O)+peek(l)+peek(2))/6 + peek(3)/2);

pop();

}

loop float->float filter {

work push 1 pop 1 peek 1 {

push(pop());

}

split duplicate();

enqueue(O.O);

}

22



Figure 2-4: StreanmIt feedback loop
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T'o) run i )rogranil. t(e Streamlt (om)iler fin(Ids stecad(ly-state schedule of the

lllll)'er o)f tillles t exe(llt(e (l'adl ilt(r [1()]. I'f 5sll(l i s( e(lIle CcaRl(t )be found.

the user (creiate(l b)lock (ligiram is ill-fornlle((l il(l (ll(l ot represent real world

a Ip)lic(ati( )11.

2.2 Block Representations

The execution of a block (StreamlIt or otherwise) can by characterized by a single

equlation if the block is linear, and a pair of equations if the block is state-space

linear. We describe these terms in detail below.

2.2.1 Linear Representations

A block is termed linear if its outputs are a linear combination of its inputs plus a set of

constants. In mathematical terms, this relationship can be modelled by the equation

:y = Dii + b, where -i is a column vector representing the inputs, D is a matrix

representing the weights applied to each input, b is a column vector representing

constants added to the inputs, and y is a column vector representing the outputs.

Suppose we have the following linear model:

12 7

5;-=- 3 4 i-+ 8

56 9

It is exactly described by the following StreamIt filter:

int -> int filter linearFilter() {

work push 3 pop 2 peek 2 {

push(l*peek(O) + 2*peek(l) + 7);

push(3*peek(O) + 4*peek(I) + 8);

push(5*peek(O) + 6*peek(l) + 9);

pop(); pop();

A process for analyzing and optimizing linear StreamIt filters is described in [11].

24



2.2.2 State-Space Representations

Il()e e( 11e1l wr of re l)re se11til l) lol is ) 1l st ate-splace o(ldel. A set )f

v-iial' )les (cptlures the state of the filter. so thalt the outpl)lt is a/ colbinatioll of these

-varialhdes (t(el]Md state varial)les) an(l tle il)ltts. A(dditionally. the states thellmselves

(iaInge ili)onl every execution of the block. This i represented by the two equaitions:

x = fQx )

The state vector is denoted by x, the inputs by i, and the outputs by . x

rep)reselnts the new state vector, i.e. the state vector after it is updated. The first

equation is for the outputs, the second equation is for the state updates.

A linear state-space model has the additional property that the state updates and

outputs are linear in the state variables and inputs. We can use a simpler set of

equations:

y = C +Dfi

x = A:i+Bii

A, B, C, and D are matrices whose dimensions depend on the number of states,

inputs, and outputs. Not all blocks can be represented by a linear state-space model.

However, a linear state-space model is more general than a linear model, so a wider

class of blocks can be represented. We will not discuss general state-space models any

further in this paper, therefore we will write state-space instead of linear state-space

for conciseness.

Suppose we have the following state-space model:

= [11 12]x+[ 13 14 15]i

2 3 4 5

6 78 9 10
L[1 2 

_
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It is exactly d(lescribe(d l)v the following StreanIt filt(er:

int -> int filter stateSpaceFilter() {

int xl, x2;

work push 1 pop 3 peek 3 {

int xltemp, x2_temp;

push(ll*xl + 12*x2 + 13*peek(O) + 14*peek(l) + 15*peek(2));

xl_temp = 1*xl + 2*x2 + 3*peek(O) + 4*peek(1) + 5*peek(2);

x2_temp = 6*xl + 7*x2 + 8*peek(O) + 9*peek(1) + 10*peek(2);

xl = xl_temp;

x2 = x2_temp;

pop(); pop(); pop();

}

Note we introduced two extra variables - :.ltenmp and x2_temp. We do this

because we do not want to overwrite the old values for xl and x2 until all the new

values are calculated. Also, we have made no provisions for constants as in the linear

model. This issue is resolved in the next chapter.

26



Chapter 3

State-Space Analysis

VVe analyze StreamIt programs at the filter level. We create a data structure repre-

sentation that fully describes a state-space filter. We parse the code of each StreamlllIt

filter to determine whether or not it is state-space; if so we initialize a data structure,

fill it with the appropriate values through a process called extraction, and associate

the structure with the filter.

We provide a set of rules to combine state-space representations of filters in higher

StrearnIt blocks-pipelines, splitjoins, and feedback loops. Such a process results in a

single state-space representation for the entire block. Some representations may need

to change so that they are properly combined. We detail what the changes are and

when they need to be made. Finally, we describe how to convert a representation

back to StreamIt code for a filter.

3.1 Representation

Our first task is to create a data structure that fully captures the state-space rep-

resentation of a StreamIt filter. We save a filter's number of states, push rate, and

pop rate in variables which we term s, u, and o, respectively. Our data structure

also contains the matrices A, B, C, and D with dimensions s x s, s x o, u x s, and

u x o, respectively. The inputs to a filter are denoted as ii (length o), the outputs as

y (length u), and the states as :x (length s). Upon every execution of the filter, we

27



can alculllate the( oultlputs b)v the fornlla = CiX + Di. and update the state matrix

b) the fornmulal x= Ax + Bfl. F (oll(vli(n('(. owe, will (alclllate the filter outp)uts

)ef()ore udatilln the state matrix. Since the states nav have initial values other than

zero. w(' store these( values as the vector iitVec (letli s).

Since we have not included a constant term in o' model, we will set one of the

state variablles to be the constant 1. This variable will not be updlated by ay of the

states or inputs. and its initial value will b)e 1. so it will always remain that value.

Any state or output that depends on a constant terml can now refer to a multiple of

the constant state variable instead.

As long as a filter's peek rate (which we term e) equals its pop rate, the data struc-

ture as currently designed can fully represent the filter. We must include additional

modifications for a filter with a peek rate greater than its pop rate. Note that such a

filter still removes o items from its input tape upon every execution, but it accesses

e - o additional items on its input tape. Therefore, our current data structure would

work as long as there is some way to access these additional items.

We solve the problem of having a peek rate greater than a pop rate by storing e - o

items from the input tape in the state vector . Therefore, when a filter executes,

it can access all e items it needs, o items from its input vector and e - o items from

its state vector. These e - o states must be updated by the inputs and themselves -

the specifics are covered in the next section. We store the number of states used for

inputs as the variable stored. This will be useful when combining representations.

When the filter is executed for the first time, it will have access to the o items in the

input vector, but the e - o states it needs will be uninitialized from the input tape.

Therefore, we need to update the state vector before computing the output/state

update equation pair for every filter execution. We introduce two new matrices, Apre

and Bpre to perform this initialization. Before the filter runs it will perform the

state update x = Apre + BpreUpre· The initialization input vector, upre, has length

Opre = e - o. For now, opre and stored have the same value, but combining filters

might result in Opr, being greater than stored. Apre is s x s and Bpre is s X Opre. Note

that initial assignments of the state variables by initVec are done immediately when
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ia filt(er is creatte(l. while illitializationl 1b' Apre 11( Bpr e is aft(rwarids. when there are

a slffiienllt iuinil)ler (r,,, ) of itils oil the illI)llt tl)'.

PuttiIng these pieces tgeth'r. we filid a fll lre)reseint ati(o consists of tile push ian(l

)lt) 1tes. tlt 1111111)('1he er f Stat(e varial)les. the nuil)er f storle(l inpu)ts. the fourl stat(a

matrities. an initial stat( vector. anid possilly ii iintiail )op rate an(l two initialization

,tlat( Inatli(ces. \Ve' define state-sp)ace representation R as the tulle (. o. .s, .stoeld.

A. B. C. D, initVec, Apre. Bpre, o),,). \\'hell we introduce a representatioll Ri,

ea(ch of its values in the ordered set will be dclenotel with the index i (for example 'i,

Ail. For representations of filters that do not need the initialization matrices, we will

write Apre = n.lll, Bpre = null, opr = 0. In this case, the filter will not have any

stored inputs, so stoed = 0 as well.

Representations are initially created from StreamlIt filters and ultimately con-

verted to StreamlIt filters. Between these steps, however, representations of the higher

StreamIt block types can be derived by combining the representations of their parts.

Therefore, from now on we will say that a representation refers to a block rather than

a filter. The exception is in Section 3.2, where we discuss how to create a represen-

tation from a StreamIt filter. Hence we explicitly refer to a filter rather than block

representation in that section.

3.2 Extraction

We write a module that extracts the state-space representation of a filter. We sym-

bolically execute a single iteration of a filter's work function, maintaining a vector

pair representation for each local variable and filter field variable that is encountered

(combined, these are termed program variables). If the outputs and field variables all

have vector pair representations, then the filter is state-space linear, and the vectors

are used as rows of A, B, C, and D. This type of procedure is termed data flow

analysis. See [11] for a treatment of the linear case.

We attempt to find a vector pair (V,xW) for each program variable y where y

V· i i- + ·v . ui is the filter input vector and :x is the filter state vector. When y is
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011 tilhe left hancll( side of an assignment stateilent. terlns froni the right hand side ale

('111)r,1(l with entries frolm fi (inputs) and (| X (states). The co'efficients from terlms

tihat niatlhl are used for to fill tile correslon(ling entries in V and xW. as long as they

are (onstants. If' aly coefficienlt is not a coistait,. the(ll j is non-lillnear.

The ip)utl vector. U. is lefned as [cck(c - o) pck(c - o + 1)... pccA(o- 1)]. The

state vector. . holds c - o variables fiom the input tape (peek(O) ... peek(e - o - 1)),

every field variable. and variable for the constant 1. We do not consider local vari-

cl)les for the state vector, because their values iare not saved across filter executions.

Therefore, their values should be resolved to constants at compile time. A field vari-

able has the initial vector pair (, 0 ... 1 ... 0 ]), where the 1 corresponds to

the field variable itself.

If' the vector pair can be found, then the program variable y can be written as

a linear combination of the inputs and state variables, with the vector pair entries

representing the weights. Then the final assignment to state variable xi by some

program variable yi indicates that the ith rows of A and B should be wVi and vi,

respectively. Similarly, the jth push statement using program variable yj indicates

that the th rows of C and D should be vwj and Vj, respectively. For the constant

state variable 1, the corresponding rows of A and B are all zeros.

We use the same procedure in the init function to find the initial values for each

field variable. However, we do not need a vector V for the inputs, since there are no

inputs to the 'init function. The initial value for each stored inputs is zero, and the

initial value for the variable 1 is one.

Finally, consider the stored input states (call them x). They are updated by the

inputs; however if stored > o, then some of the input states must be updated by

other input states. In particular, the first stored - o input states are updated by the

last stored - o inputs, and the remaining o input states are updated by the o inputs.

The update is described by the equation:

I ]+ d (3.1)
L 
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\\eV alls(, crealte iitializltioll ltrices to 1)llt vale(ws froii tile inpull)llt tal)(, into the

ilti)llt stiates:

Xs = Ox, + Iure

Store(l inll)lts are al-ilays ul)dated ais shown ill tile samlllle alner. Therefore. we

wvill use A, and Bs to dlescribe this ull(late. where the values of these two lmatrices

are shown inl (3.1).

3.2.1 Example Procedure

Consider the IIR filter from Chapter 2:

// This filter computes an infinite impulse response function.

// It does not have a prework function.

float->float filter IIR() {

float curr; // example of a field variable

init {

curr = 0;

}

work push 1 pop 1 peek 3 {

float temp; // example of a local variable

temp = (peek(O) + peek(l) + peek(2))/6;

curr = temp + curr/2;

push(curr);

pop();

}

The input vector is [ peek(2)
]

and the state vector is

peek(O)

peek(l)

curr

1

gram variable encountered is temp. It is given the vector pair ([ 1/6 ], 1

The variable curr, as a state variable, has an initial vector pair: ( [ O ], [ 0
/6 1/6 0 0 ]).

0 1 0]).
X;hen curr is found in an assignment statement, it is given a new vector pair, coil-

structed as 1 times the vector pair for temp plus 1/2 times the old vector pair for
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,: ( [1/ 1 /] 1/6 t/2 ) ),, The oult,,put is Ci i,. so it is givell the a lll(

vc(tor )ailr. The finll plail fir U/l' retl()r('s(llts its stalt( ll)(late. The stored ill)llts

p'e'k(()). pe'erA( 1) 11are i)(ltlted(l s mentionell in (3.1). anI(l thlle constant 1 is not upda(lted.

Therefore, we have:-(

C

D

initVec =

Apre

Bpre =

[

0
0

0

1

1/6

1/6

1/6

0

0

0

1

0 0

0 0

0 0

O O

1 0

0 1

O O

O O

1

1/6

0

1/2

0

0

0

1/6 1/2 0]

0 0

0 0

1 0

0 1
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i'lie o] ) 111 llr lcates are 1 I)th one. 11(1 'C hali\ve four staltS So O = 1. l - 1.. =

1. \V(, lmv t) tore(' iplut states. s o,., = . ./o/(d = 2.

3.3 Combination

If all l)locks within a p)ipeline. splitjoinl or feedlback loopl) have state-sp)ace represen-

tations. we canl coll)inle thenl into a sinlgle represcntation using the rules developed

in this section. We combine blocks for two reasons. One reason is that it is easier

t.o optimize a single block than mulltiple b)locks. The second reason is that we may

eliinate redundant comlputations across blocks.

3.3.1 Pipeline

CoLnsider two blocks connected in a pipeline with representations R1 and R9. Let R

denote the combined representation of the two blocks, which we are trying to derive.

Suppose the output rate of R1 equals the input rate of R2 ( 1 = 2). If this is not

the case, we must expand one or both blocks to have their input/output rates match

(7ll, = o2 _,new = cm(ui, 02)). Block expansion is covered in Section 3.4.1. Since

the output of R1 (yI) is equivalent to the input of R2 (2), we can write:

x = Alxj + Bti

X2 = A2X2 +B2yr

Y1 = Cxj + Dlut

y- = C1x. + DY

Substitulting for y5 we get:

x2 = A2X2 + B2(C1X + Dllj)

2 = C2x2 + D2(C1l + Dl)
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Nlich siniplifies to:

X2 = A 2X2 + B 2CIXl + B2 Diul

-y2 = C2:x + D2ClX + D2Dlij

Let x 1 , 1 = u (the input to the entire pipeline). anld y = y2 (the output
X2

of the entire pipeline). The equations relating x, u. and are:

x = A:+Bii

y = C + Dii

A1 °1
B2 C1 A2 -

B B1 1
B2 D1

C = D2 C1 C2 ]

D = D2D

The input to the pipeline is identical

pipeline is identical to the output of R2.

the states of the first block appended to

u = u2, o = 01, = S1 + s2, initVec =

to the input to R1, and the output of the

Furthermore, the states of the pipeline are

the states of the second block. Therefore,

initVecl

intWec2|

If both blocks do not have initialization matrices, then the entire pipeline does

not need initialization matrices, so Apre =-- null, Bpre = null, Opre = 0, stored = 0. If

only the first block has initialization matrices, then we want to initialize the states in

the pipeline corresponding to the first block while keeping the states corresponding
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to( the scc()nd )1(t ( lo k l cllal c(l. Thc()efore:

A pre F Aprel o

B pre Bprel

()tc °/ -prc l

stored = stored1

If the second block has initialization matrices, we must run the first block enough

times to provide the necessary inputs to initialize the second block. However, this

might result in the first block providing extra initial inputs to the second block.

In that case, we must change the representation of the second block to increase its

number of stored inputs (the way to do this is covered in Section 3.4.2). Suppose this

is lone and the first block must run n times (along with its initialization matrices,

if it has then) to initialize the second block. Denote A1e, B e, C1e, and D 1e as

the matrices that describe running the first block n times (see Equations (3.6)-(3.9)).

Then the initialization of the entire pipeline is derived by combining these matrices

with Apre2, Bpre2 just as the A, B, C, and D matrices are combined for the two

blocks:

Apre
Bpre2 Cle Apre2

Bpre le

Bpre2De
Opre O= prel + n * 02

stored = storedl

If there are more than two blocks in a pipeline, we collapse the pipeline in the fol-

lowing manner: combine the first two blocks to get one block representation, combine

this with the third block, etc.



3.3.2 Splitjoin

Tlhere aic two tl)es of splitjoinls - tllos(' witl 1 roll(lrol)ill anid dluplicate splitters.

In (o(l(r to collap)se the )llrlnches of splitjoin to a singile rel)resenttion.. we need

the splitjoin to have a duplicate splitter. wcause then the representation in each

b1ranch accesses the same inputs. Therefore. for roundrobill splitjoins we first detail

a procedure to convert to a duplicate splitjoin. Then we describe how to create a

rel)reselntation of a duplicate splitjoin.

Conversion from roundrobin to duplicate splitjoin

Suppose the roundrobin splitjoin has k: branches and let u!i and Mi denote the splitter

weight and state-space representation, respectively, on the ith branch. In each branch

i we add a filter with representation Li that outputs to Mi in a pipeline format. Since

the splitjoin now has a duplicate splitter, Mi receives every input element to the entire

splitjoin. In order to exactly simulate the original roundrobin splitter, Mi should only

see wi elements for every =l wj input elements to the splitjoin. Therefore, we make

Li input >=1 wj elements and output wi elements. In particular, Li ignores the

first j= wj inputs (which correspond to inputs to the previous branches), outputs

the next wi inputs (which correspond to inputs to the ith branch), and ignores the

remaining ZE=i+ wj inputs1 (which correspond to inputs to the later branches).

The values for Li are o = Z>,w j, u = wi, s = 1, A = 0, B = 0, C = 0,

D= [0 I ], initVec = 0, Apre Bpre = null, opre = 0, stored = O0. We use one

state in the representation, even though none are needed, to make combinations of

representations simpler. Once Li is created, it can be combined with Mi to form a

single representation (call it Ri).

Collapsing duplicate splitjoins

Let R be the representation for the entire splitjoin, Ri be the representation on the ith

branch, k be the number of branches. In order to combine the branch representations,

1In DSP terminology, Li is called a downsampler.
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\\-(' lllist d(l'ive stea(l-st t(' exe(cutioll of the (lltire s)litj(ill. Denote the joiner

Xe'(i, ol (A ('ll I)anch / als 'I (nlote that w(' lse(l 'I earli(' t (llote a s)litter weig(lt).

Ewll hi)allcll ollt)llt eIl itells )llt l'i items fom tlhat )ranchll are nleeed(l to execute

tlh(' si)litj(ill )lL('e. Ri (all 1)e eXp)aCle(l t)o olitl)lit ('1ll(;. 'i) items. whlich would

i'(essl1t ill /,l/.'') split.join executions. ThiS ll(llS W( e nmust execute the splitjoill a

llllllti)le of (" I"ll ) tillles to satisfy tlle conllstraints of the first bralich a ullltip)le
llWI

of :,'(',¢ " times to satisfy the constraints of the seconld branch, etc. Therefore, we

shall co)llstruct R, to execute the splitjoin 1c, ( ."`( ) l( .) time llies.
W I ; 2 ' I k

Cldll tis vlue E. Each representation Ri mlst outlt i * E elements, so Ri lmust

)e expanlded L'L*E times.

After these expansions, each branch representation should now have the same

ilnl)ut rate oi. If not, the splitjoin is ill-formed and cannot be compiled by StreamIt.

Since these representations will be combined, we need each to have the same number

of stored inputs and the same initial pop rate. To satisfy both constraints, we increase

the number of stored inputs in each representation to the value max(storedi, oprei)

over all i.

Now that the branch representations have been standardized, they can be com-

bined to a single representation. The stored input states in each representation evolve

in the same manner, so only one set of them is needed for the entire splitjoin represen-

tation. Let xi = 1Xs , where xs and xr are the stored input states and remaining
Xir

states of Ri, respectively. For each representation i denote the state-space equation

pair as:

[Xis Ais 0 X s Bis

Xir Airs Airr Xir Bir

- Cis ir i 1 Dii
ir

Since the stored input states in each representation are equivalent, we set them to
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}1 xs. l1l(1 set their (orrespndilig matrix 1()(loks to 1e A, ani(l Bs. Let =

The states Xir evolve separately, so:

A

B

As 0 0

Airs Alrr

A 2rs 0

0

A2rr

Akrr 0 0

Bs

Blr

B2 r

Bkr

... 0

... 0

... 0

... Akrs

Similarly for the initialization matrices we have:

Apre

Bpre

O 0

O Aprelrr

0

0

... O
0O

0 0 Apre2rr

0 0

Bpres

Bprelr

Bpre2r

Bprekr

0

0

Aprekrr
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Xlr

X2r

Xkr



These eq (llttionS <1(' Sillsimpler )('causell( Apres. 0 1d(l Apreirs 0.

In order to simulate the roundrobin nature of the joiner, we must output wl items

from R1, then w2 items from R2, up to Wt. items from Rk, and repeat this process E

times (because we are running the splitjoin E times). Let Ci =

Cisl

Cis 2

Cisexecutions

Cirl

Cir2

Cirexecutions

where [ Cij Cirj] is wi x si. Let Di =

we have:
Diexecutions

, where Dij is wi x o. Then

ClsI Clrl 0 ... 0

C2 sl C2rl 0 ... 0

... ... ... ... ...

Cksl 0 0 ... Ckrl

... ... ... ... ...

Clsk Clrk 0 ... 0

C2sk C2rk 0 ... 0

Cksk 0 0 ... Ckrk
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Dkl

Dlk

D2k

Dkk

We have derived A, B, C, D, Apre, and Bpre. As mentioned previously, all the

pop rates are equal so o = o. Additionally, all the initial pop rates and stored inputs

are equal, so pre = Oprcl and stored = prel. The splitjoin runs E times, hence

u = E * _:= wj. The states of the entire representation are the non-stored input

states of each branch representation concatenated along with one set of the stored

input states. Let sir be the number of non-stored input states in representation i and

let initVecir be the initial values of these states. Then s = stored + i =1 sjr and

initVec =

6O

initVeClr

initVec 2r

initVeckr

3.3.3 Feedback Loop

Recall that a feedback loop has a loop block and a body block. Outputs from the

body block and inputs to the entire feedback loop are combined via a joiner to form

the inputs to the loop block. Outputs from the loop block are used as outputs of the

entire feedback loop and inputs of the loop block via a splitter.

Let the loop block have representation R1, the body block have representation R2,

and the entire feedback loop have representation R. If the splitter is a roundrobin
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011(m. 'W ('ollVl't it to a (tllp)licate ()1( bv addiiig the appi)rol)riate down-llsal)lels to the

o(),tIlit ' 1 l l'h('s. (-s (lsc('r(ii(ed ill Sction :3.:3.2. Th( olltlut l) lt lllall(es f a f(((lle ack

lOO) sl)littelr ca(l to the 1o)I) block and(l the output, of the ('lti(re ifee(ldl)ac'k loo1). There-

fo'r'. (111 (owllslli)ler lmust te )la('((l 1)efore the l(oop ll)ck(' in l pipe)(line(' formlt. anlld

011e (l()wllslllple(r lmust )e pla(e(ld after tile feedback loopl in a )ilpelile frmat. The

first (dowllsanplll(r Cand loop block is combined to form a nw loop) block. The sec-

on(l (dowllsalll)ler can )e comlll)inecd with the feedback loop after the feedback loop's

ret)resent ation is computed.

As in the case of a splitjoin, we must derive a steady-state execution of the entire

feedback loop in order to combine the loop and body blocks. First we match the

output rate of the body block (02) with the input rate of the loop block (l) by

expanding the two representations appropriately. Now consider the roundrobin joiner,

and let w1 , uw2 be the weights on the branches from the loop block and input to the

body block, respectively. The loop block outputs ul items, but wi items are needed

to run the feedback loop once. Therefore, the loop block can be expanded to output

lcmr(ul, wl) items which would result in lcm(ul,w) feedback loop executions. Call this

value E. The loop block is expanded to run 1Cm(ui,wI) times, and the body block isU1

expanded by this amount as well, since we still want the output rate of the body

block to equal the input rate of the loop block. Since the feedback loop runs E times,

the body block receives E * (wl + w 2) inputs, which should equal the input rate of

the expanded body block. If not, the feedback loop is ill-formed.

Once the above expansions are implemented, the feedback loop is run by executing

the loop and body blocks alternately. However, the loop block depends on outputs

from the body block, and the body block depends on outputs from the loop block. In

order to begin execution of the entire feedback loop, there must be items enqueued

on the output tape of the loop block. The minimal number of enqueued items is al,

the output rate of the loop block. However, there can be more enqueued items. We

create a new representation R3 that stores the enqueued values. Upon each execution

R3 inputs 'ul items from the loop block and outputs ul items to the body block. It
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hais (on(' stat( for (each (nq(lueied item. The equacltions for R:j are:

R: does ot have initializatioll

values.

matrices, all initVec 3 is assigned the enqueued

Note that the output 3 does not depend on the input U3f. This is the key to

starting the feedback loop: R3 outputs first, the body block uses these outputs along

with inputs to the entire feedback loop to execute and produce outputs, the loop

body uses these outputs to execute and produce outputs, R uses these outputs to

execute and produce outputs, etc.

U

Figure 3-1: Labelled feedback loop

From figure 3-1 it is apparent that u3 = Y1, y = Y2 = ul, and u2 is composed of
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i and (I 3. \\e (anll write th el tions for thi 1))odV )loc(k a1s:

X2 = A 2X2 + B2Li2 = A2X + B232 1 + B2_23 = A2x2 + B2 1(i -+ B2 2C3X3

Y2 = C2 2 D22 = C22 D D 2 _2Y3 = C2 D 2 + D 2_2Y = + D 2 _ D2 2C3X3

Since y = Y2 we have writtenl the ou(lt)lt of the fe(lack loop) and the update for

x2 in terms of the input to the feedback loo01) and the state vectors. For the updates

to kx and x3 we can write:

x := Alxj + Bui 1 = AlxI + B1y = Alx: + B1(C 2:2 + D 2 1 + D 2 2C3X3 )

- AlxI + B3C x2 + BlD2-11i + B1D2_2C3x3

X3 = A 3X3 + B 3U3 = A3 1X + B 3y = A3X3 + B3(C1Xl + Dl)

= A3X3 + B3(C1xl + Dly) = A3d3 + B3(C1Ix + D1 (C2 2 + D2_l1 + D2_2 C3 ))

- A3X3 + B3C1Xl + B3D1C2 2 + B3D1D2 + B3D1D2_2C3 3

of 

For the input and output rates we have o = E * w2 and u = u2. We use the states

initVecl

ill three representations, so s = sl - S2 + S3 and initVec initVec 2 . For

initVec 3
simplicity, we do not consider a loop or body block with initialization matrices.

3.4 Representation Changes

3.4.1 Expansion

We may want to run a block multiple times in order to properly combine it with other

blocks. For example, suppose block B1 inputs three items and outputs two items, and

block B 2 inputs five items and outputs seven items. In order to combine these blocks

in a pipeline, B1 must run five times (in order to output ten items) and B 2 must

run two times (in order to input ten items). Therefore, we need to have a method
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to exl)andl a( representatioll so that it nlodels Ilocklllll running multiple tilles. rather

thi~1 ()11('e.

Conllsider tile st te-sl)ace euactionll Iii . where l and y'1 are tile first set of illl)uts

and outputs. ad x is the original st~ate vector:

x= A: +Buti

Y1 = C + Dutf

If we run the block again, the equation pair in terms of the original state vector

x and the next set of inputs and outputs (2 and Y2) is:

x = A(Ax + B) + B2

Simplifying yields:

x = A2 + ABil + B2

y3 = CAx + CBui + Du2

Let ii be the combined. input vector (ii =

vector (Y =

I

U2[ t2j) and y be the combined output

). The representation in terms of these two vectors is:

x = A2x+B 2 Ui

y = C2x + D 2iI

A 2 = A2

B2 =

C2 

AB B]

C

CA
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D2 =

Tlhis Iinet\

the o(ld block

An

Bn

D

CB

0

D

e)eselltioti) (o(sI)oll(ds to a b)lock that lpoii very e(Xec((llti(Oll s111111

t-wice. Bv ill(lul(tiOll. a general fornlla for rlmllillg a )lo(k nI tillL'S is:

= A" (3.2

A"t--B A"-'2B ... AB B (3.3)

(3.4)

.. 0 0 0
0 0 0

.. O O 0

.. D

... CB

... CAB

0 0
D 0

CB D

(3.5)

Since initializations are not affected, initVec, preA, preB, stored, and opre re-

main unchanged from the initial representation. Since the number of states is not

changed, s remains the same. The new representation runs the old representation n

times, so u,ew = n* Uold, Onew = n * 0ol dd

As mentioned in the pipeline combination section, we may need to run a block n

times, in addition to its initialization matrices, for the purpose of initializing the full

pipeline. We denoted the matrices for doing this as Ae, Be, Ce, and De. If the block

being run n times does not need initialization, the calculation for these four matrices

is exactly the same as described in equations (3.2)-(3.5). Otherwise, we must make
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1
=

L

Cn 

Dn =

C

CA

CA" 2

CAn-1

D

CB

CAB

CA, -4B

CA'n.-3B

CA ,-2B

0

D

CB

CAn-5B

CAn-4B

CAn-3B

0

0

D

CAn-6B

CAn-5B

CAn-4B



A = A"Apre (3.6)

Be = AnBpre A"-lB A'-2B ... B ](3.7)
CApre

CAApre

CAn- 1Apre

(3.8)

CBpre D 0 0 ... 0 0

CABpre CB D 0 ... 0 0

CA 2 Bpre CAB CB D ... 0 0

... ... ... ... ... ...

CA n-Bpre CAn-2B CA"-3B CAn-3B ... CB D

(3.9)

3.4.2 Increasing the number of Stored Inputs

As mentioned in Section 3.3.1, it may be necessary to changed the stored inputs in a

representation in order to combine it with another representation in a pipeline. Sup-

pose we want to change the number of stored inputs from oldStored to newStored.

Consider what happens in the old representation, with oldStored stored input vari-

ables. The filter accesses peek(O), peek(l), ... peek(oldStored- 1) from the oldStored

stored input state variables. The o inputs to the filter are peek(oldStored), peek(oldStored+

1), ... peek(oldStored + o - 1). Now we want to add newStored - oldStored stored

input variables, so that the total newStored stored input variables represent peek(O),

peek(l), ... peek(newStored- 1), and the o inputs to the filter are peek(newStored),

peek(newStored + 1), ... peek(newStored + o - 1). Therefore, any references in the

original representation to peek(O), peek(l), ... peek(oldStored - 1) remain the same,

while references to peek(oldStored), peek(oldStored), ... peek(oldStored + o- 1)

must be changed.
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Trl( l(l (' 1plrS('entt tioii w-s:

r 1 [ All A12 1 FBll B121 [ 1 11

x2 A 2 1 A 2 LX2 B 2 1 B 2 2 j 2 1

Y= [C C2 ][ ]+ D 2 ] + D12 ]

W\' have divided the state vector x into the non-stored input variables (x) and the

stored input variables (2), and divided the input vector ii into the first rc!wStored -

oldStored inputs (i) and the remaining inputs (2). We will assume newStored -

oldStored <= o (If not we can run this algorithmn multiple times). The matrices A.

B, C, and D are put into block-matrix form according to the state and input vector

divisions.

In our new representation, we use 3 to denote the added newStored - oldStored

states. As mentioned early, references to the first oldStored stored input states (2)

remain the same. Additionally, references to the non-input states (x1) also remain

the same. Our new representation so far is:

L jAll A12 ? ? ?

X2 A 21 A 22 ? 2 + ? 

C? ? ? ]

The ? indicates yet to be determined entries. In the old representation, the first

newStored--oldStored input elements (ul) were peek(oldStored) ... peek(newStored-

1). In the new representation, these values are stored as states ( 3). Therefore, any

matrix block that was previously multiplied by ul should be multiplied by x2 instead.
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No( te new lel)rcsellt ationl is:

xl

X2

X3

All

A 21

A12 Bl X '

A 22 B2 1 X:2 +

x 3X3

C 2 D1 ] :x + ? !

LI]

Lf2 

In the old representation, the remaining o - (newStored - oldStored) input ele-

nients (u2) were peek(newStored) ... peek(o + oldStored- 1). In the new represen-

tation, these are the first o - (newStored - oldStored) input elements. We divide

the input vector into the first o - (newStored - oldStored) elements (u7,) and the

remaining newStored - oldStored elements (2,). Any matrix block that was previ-

ously multiplied by iu2 should be multiplied by uI, instead. Additionally, there is no

dependence on u2, by xj, x2 , or y. The new representation is:

xl

X 2

X 3

All A12 Bl :x B12 0

-- A21 A22 B21 2 + B 22 0

? ? ? x[

= [C1 C2 Dii X2 ID 2 o4Ul]
T2

:q

u2' 1I

The entries for the state update remain to be determined. Any stored input

variable representing peek(i) must get updated by peek(i + o). X3 is peek(oldStored)

... peek(newStored - 1), so it must be updated by peek(o + oldStored) ... peek(o +
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1,c'/ool'5cd- 1). This ins l)lccisl Il/ . so the finial new lresentation is:

X-L All A 12 B x B 12 0

X2 A 2 1 A 2 2 B 2 1 x2 + B 2 2 0

X3 0 0 0 X3 0 I

Y =[C1 C2 D |2 + 2 - j

Simnilarly. let the original initialization equation be:

Xl1 L Aprell Aprel2 x Bprell prel2 Uprel

L2 0 0 L ° jLL I 0 Upre2

Where Uprel has length oldStored, and Upre2 has length o,,,, - oldStored. Now

we sinmply consider Upel t h length newStored and to have length newStored and pr have length -

newStored. If Opr < newStored, we set pre = newStored. Then the initialization

equation is the same as before, except the original stored input states (2) are replaced

by the new stored input states ( )X2

We have derived A, B, C, D, Apre, and Bpre for the new representation. Clearly,

stored = newStored and pre,, = preold + newStored - oldStored. The input/output

rate remains the same, so o = old and u = Uold. We have added newStored -

initVecl
oldStored total states, so s = Sold+(newStored-oldStored) and initVec = initVec

3.5 Replacement

Once we have combined filters to a single representation and performed optimiza-

tions on it (see Chapter 4), we would like to convert it to StreamIt code. Given a

representation R we can create the following StreamIt filter:
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float -> float filter replacementFilter() {

float xO, ... , xs-1};

prework push 0 pop preu peek preu {

xO = preA[0,0]*xO + ... + preA[O,s-l]*x{s-1} + preB[0,0]*peek(O) + ... + preB[O,preu-1]*peek(preu-1);

xl = preA[1,0]*xO + .+ + preA[l,s-1]*x{s-1} + preB[1,0]*peek(O) + ... + preB[1,preu-1]*peek(preu-1);

x{s-1} = preA[s-l,0]*xO + ... + preA[s-l,s-1]*x{s-1} + preB[s-l,0]*peek(0) + ... + preB[s-l,preu-1]*peek(preu-1);

}

work push u pop o peek o {

float xO_temp, ... , x{s-1}_temp;

push(C[O,O]*xO + ... + C[O,s-l]*x{s-1} + D[O,0]*peek(O) + ... + D[O,o-l]*peek(o-1));

push(C[l,0]*xO + ... + C[l,s-1]*x{s-1} + D[1,0]*peek(O) + ... + D[l,o-l]*peek(o-1));

push(C[u,O]*xO + ... + C[u,s-l1*x{s-1} + D[u,O]*peek(O) + ... + D[u,o-l]*peek(o-1));

xO_temp = A[O,O]*xO + ... + A[O,s-l]*x{s-1} + B[O,O]*peek(O) + ... + B[O,o-l]*peek(o-1);

xl_temp = A[1,0]*xO + ... + A[l,s-1]*x{s-1} + B[1,0]*peek(O) + ... + B[l,o-1]*peek(o-1);

x{s-l}_temp = A[s-1,0]*xO + ... + A[s-l,s-1*x{s-1} + B[s-l,0]*peek(O) + ... + B[s-l,o-l]*peek(o-1);

xO = xO_temp;

x{s-1} = x{s-l1_temp;

pop(); pop(); ... pop(); // o pops

}

We make two modifications to this filter. If a matrix entry is zero, any term

involving that matrix entry is not placed in the filter. If a matrix entry is one, the

multiplication of a peek or variable by this matrix entry is removed.
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Chapter 4

Optimization

There are multiple metrics used to analyze performance of a. computer program - speed

(throughput. or outputs per second), space, power consumption, etc. We focus on

speed and attempt to minimize the computation performed to produce each output.

Obviously, this type of optimization has positive effects on the other parameters.

However, we are mainly concerned with speed because it is simple to track, and due

to falling hardware costs, is frequently a program's bottleneck.

There are two types of optimizations we consider. The first is to remove extraneous

state variables from the linear state-space representation. This reduces the memory

allocation for a program and reduces the number of loads and stores executed, which

are typically time intensive operations. It also eliminates computations that involve

the removed states. The second optimization is to reduce the parametrization of a

state-space representation, by changing the representation to one with more zero and

one entries in its matrices. This directly eliminates computations, since all multipli-

cations by zero or one are not processed by the replacement algorithm.

4.1 State-Space Transformations

For ally state-space equation pair, there are an infinite number of transformations to

an equivalent state-space system. These transformations involve a change of basis of

the state vector x to Tx, where T is an invertible matrix. Consider the state-update
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e(llitio1n X A + Bii. iNlultiplying the entire equaltiuui )V T vields:

Tx = TAx + TBii

Sinlce T-'T = I. we C wI wprite:

Tx = TA(T-'T): + TBii = TAT-'(Tx) + TBIi

y = C(T-IT) + Di = CT'-(Tx)+ Dfi

Where we have introduced the output equation as well. Let = Tk. z is a new

state vector related to the old state vector by the change of basis T. Substituting

into the equations above we get:

z = TAT-zi+TBu

= CT-1i+ Dii

These is precisely the original state-space equation pair, with A, B, and C trans-

formed to TAT-', TB, and CT-1, respectively.

For a StreamIt state-space representation R, we must determine how the other

values change. The initialization state update equation is essentially the same as the

regular state update equation, so Apre and Bpre are transformed to TApreT - 1 and

TB respectively. Since the old state vector :x is multiplied by T, the old initial state

vector is multiplied by T. The number of states, inputs, and outputs is the same, so

s, o, and u are unchanged.

4.2 State Removal

There are two types of states that can be removed from a state-space system without

changing its behavior - unreachable and unobservable states. Informally, unreachable

states are unaffected by inputs and unobservable states have no effect on outputs.

More formally, the set of states in a system can be divided into reachable and un-
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r(a(lhil)lc stat es where:

1. Te llre(acihal)le stat(s il(' l( Ot ill)(lal((l dl) v ail of the re(achtlcll)l( states.

2. The llle(acllai)le stat(es re l(not Iq)(lat(ed I)x anly inputs.

In terms of the state-sp)ace eqllltill pair. this Inanlls A[i..j] = 0. B[i. A] = O where

i is tle row of anll nreaclhable state. j is the column of a reachable state, and / is

any of tihe inputs. If all the ulllleachll)hle states alIre initially zero. they remain zero

because they are not updated by a non-zero value (either a reachable state or an

input). Therefore, all unreachable states that are not initialized can be removed from

( representation, since they (do not effect the reachable states or the outputs.

The set of states in a systeln can also be divided into observable and unobservable

states where:

1. The observable states are not updated by any of the unobservable states.

2. The outputs do not depend on the unobservable states.

In terms of the state-space equation pair, this means C[i, j] = 0, D[k, j] = 0 where

j is the column of an observable state, i is the row of an unobservable state, and k

is any of the outputs. The unobservable states are not used to update the observable

states and are not used to determine the outputs. Therefore, all unobservable states

can be removed from a representation (regardless of their initial values).

A simple algorithm to isolate the unreachable and unobservable states in a sys-

tem by use of transformations is explained in [12]. The algorithm works as follows:

Perform row operations on the augmented matrix [A B] to put it into a type of

row-echelon forml, and perform the corresponding inverse column operations on A

and C to keep the system equivalent to the original (Performing a row operation on a

matrix is equivalent to left multiplying it by some invertible matrix, and performing a

column operation on a matrix is equivalent to right multiplying it by some invertible

1A matrix is in standard row-echelon form if the first non-zero entry in each row is a 1 (called
the leading 1) and the leading 1 in a higher row is to the left of the leading 1 in a lower row. For
our type of row-echelon form, the last non-zero entry in each row is a 1 (call it the ending 1) and
the ending 1 in a higher row is to the left of the ending 1 in a lower row.
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matrix). One(' the aCIllgmellted(l matrix is in the desire(l form, row /i of the conlbined

matrix rep)resents ll Illlureaclaib)le' stat(' if there( are no lnon-zero entries p)ast the it/

(colnlllll. For lnol)servalble states. the coll)iline(l iliatrix [ A' C' ] is opera.ted on

inlstea(ld.

Using this algoritlllll, we call find the entire set of unobservable states and remove

theln all. The only exceptions are those unobservable states that affect observable

states in the initialization matrix A,,. If j is the column of an observable state then

we must have Apre[i.j] = 0 for all values of i, where i is the row of an observable

state. Otherwise, the unobservable state j cannot be removed, because it affects at

least one observable state, and therefore may affect the outputs.

More care must be taken when removing unreachable states. If an unreachable

state has a non-zero starting value, or is affected by the initialization matrices, it

cannot be removed. In either of these cases, the unreachable state may attain a non-

zero value, and therefore may have an affect on the reachable states and/or outputs.

Additionally, an unreachable state xl that is updated by a different unreachable state

x2 that cannot be removed may eventually have a non-zero value, even if it (xI) is

initially zero. Therefore, the unreachable state x1 cannot be removed as well.

The last case may cause problems when trying to remove unreachable states. If

an unreachable state x1 is updated by unreachable states x2 and X3, we must check

if those states can be removed before determining if state x1 can be removed. If

one of those states, say x2, depends on xi, we must determine if xi can be removed

before determining whether x2 can be removed - resulting in an impossible 'loop-like'

determination. Clearly, a more robust approach is necessary.

Suppose we have found the set of unreachable states and they form the first k

states of the state vector (we can do both of these steps by isolating the unreachable

states, then moving them to the top of the state vector if necessary). Consider the

sub-matrix A[1 : k; 1: k] consisting of the first k rows and first k columns of A. This

sub-matrix represents how the unreachable states are updated based on each other.

Suppose this sub-matrix is in upper-triangular form, which means that all entries

below the main diagonal are zero. We can remove states in the following manner:
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1. C('llec'l the states i everse order, from state to state 1.

2. F t i t/ ' state. ch('leck whe('the('r the state hals a initial val(. is lupldated by

tlie iitializiation lliltrices. or (l)lle(ls on a state' withi a higher index. If any

of these are true. we cannot remliove the stat('. Otherwise. we can relmove the

state'.

Since the ullreachable state sub-imatrix is in upper-triaigrli forli, all unreachable

states can o(ilV have de)endencies onl states with a higher index. Furthermore, since

we are working from the state with highest index first, at each step in the algorithm

we canl inlediately determine whether or not a given state is removable. Therefore

we have found our robust approach to remove unreachable states. What remains to

be done is transforming the sub-matrix to upper-triangular form.

The QR algorithm, described in [18], is an iterative method of converting any

square matrix P to upper-triangular form. The algorithm is essentially the following

two step procedure, applied as many times as necessary.

1. QR = P (QR factorization of P)

2. P = RQ

The QR factorization of a matrix P factors P into the product of an orthogonal

matrix Q2 and an upper-triangular matrix R. Since R = Q- 1P, the QR algorithm

is repeatedly transforming P to Q- 1PQ.

Since Q is invertible, we can apply this transformation to the unreachable state

sub-matrix, where the transformation matrix T is Q-l. Since we want to keep the

other states unchanged, the full transformation matrix applied to A, B, C is T
Q-1 0

An orthoona atrix has the property that its transpose is equa to its inverse

An orthogonal matrix has the property that its transpose is equal to its inverse
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4.3 Putting Inputs into States

So far wc halve conlsidered optiunizations that Caffect A. B. and C. Since the opti-

inizttiolis are lentirely the result of state transformaltions. they do not affect D. which

is independent of the choice of state-space basis. By storing every input as a state.

however. all the elntries of D are moved into A anlld (can then be changed by state

olt illlizat ions.

We have already discussed how to store inputs as states. When every input is

stored as aI state, we find the new state-equation pair is:

A B NC 0

Xinputs 0 0 Xinputs I

s sCD s +iXinputs 

These states should be added before state-removal is performed. It may seem

counter-intuitive that we first add states, then seek to remove them. However, the

added states represent computations involving D, which were not considered before.

Removing some of these states results in reducing computations involving D.

4.4 Parameter Reduction

After removing as many states as possible, including input states, we want to change

the state-space system to one with the fewest number of non-zero, non-one entries

(termed parameters). If A, B, and C are completely filled, there are s * (s + o + u)

parameters. Ackermann and Bucy [1] show a general form for A and C (B can be

filled with parameters) to have at most s * (o + u) parameters, assuming there are

no unobservable or unreachable states. They derive this form using system impulse

responses. We will achieve this same form using row operations on the augmented
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iitlrix [ A' C . The fo ila wan wit is:

A' -

CT =

L1

0

0

0

1

()

0

0

...

- O

The matrices Li are rectangular,

necessarily have the same dimensions

A12

L2

0

0

0(

A1 3

A 23

L3

.. Al,,

... A 2 u

... A 3 u

0

) ... ()

O ... (

1 0 ... (

0 0 0 

00... ...

0 0 ... 1

and the matrices Aij are square, but do not

as each other. These matrices have the form:

0 0 ... 0

1 0 ... 0

0 1 ... 0

*

*

*

0 0 ... 1 *

0

0

The entries marked with a * are the parameters of the system. This is known

as the observable canonical form of the system. In contrast, the reachable canonical

form defines A and B instead of AT and C, and C may be filled with parameters

instead of B.
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\N plesenlt il simple lglorithl, ill )pseuldo(code to attail the form above. We do not

ill(1lll (' t lie 11('(ssa' iin(vese (111111 o()('rati(ms t lit lIltist w() ith all row op)el tiOls.

Reduce Parameters {

currRow = O; colA 
=
O; colC 

=
0;

while(currRow < totalRows) (

-find a non-zero entry in column colC at or below row currRow of C{transpose}, and swap it with the

entry in row currRow;

-set C{transpose}[currRow,colC] = 1 by scaling the row appropriately;

make all entries above and below it zero by adding appropriate multiple of row currRow to other rows;

currRow = currRow + 1;

colC = colC + 1;

do {

-find a non-zero entry in column colA at or below row currRow of A{transpose}, and swap it with the

entry in row currRow;

-set A{transpose}[currRow,colA] = 1 by scaling the row appropriately;

make all entries below it zero by adding appropriate multiple of row currRow to other rows;

currRow = currRow + 1;

colA = colA + 1;

} while a non-zero entry in column colA is found

colA = colA + 1;

It is possible that one type of form has fewer parameters than the other. Therefore,

we perform the above algorithm on [ AT

form, and on [ A

CT ] as noted to produce the observable

B ] to produce the reachable form, and check which one has fewer

parameters.

4.5 Staged Execution

Using input state variables corresponds to executing a state-space block in two stages:

1. Put inputs into input state variables.
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2. Ex(cu lt( the o( riinail i )loe k. using input states instead of actllal ill)llts.

\\ (111 al(ld dl(liti(llal stages 1)V havillng Inlll til)le sets of illl)llt stalte - Xinputsl.

Xinpts2. (tc. Tlhe first s(t gets sved i the seeoll(l set. the scolnd set g'ts sav-('d

ill the thilr( set. (t(. Sll)pose there are - illlllt sets. W\e (ll write 0111 state-st)ace

equllationll ]ir s f(-llo)ws:

x

Xinputsk

...

Xinputs2

Xinputsl

A B 0 ...
0 0 I ... 0
...............
O O O ... I

O O O ... O

Y = [C D ... 0 ]

x

Xinputsk

Xinputs2

Xinputsl

x

Xinputsk

...

Xinputs2

Xinputsl

+

O

O

O

I

ui

By itself, executing the work of a filter in stages does not result in any gain in

performance. However, minimally parameterizing the resulting system may be more

productive than minimally parameterizing the one or two execution stage system.

The canonical forms of the previous section do not in general minimally parameterize

the system; hence evaluating staged execution remains an area of future research.
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Chapter 5

Results

We have illlllenented the extraction, combination, and optimization (except multiple

execution stages) procedures within the StreamIt compiler, which uses the KOPI java

compiler infrastructure [8]. We measure performance by counting the number of float-

ing point operations (additions and multiplications) executed in a given benchmark.

The program DynamoRIO [2] is used to count operations.

We have collected the data for the base case (no replacement) and with state-space

and linear replacement [11]. For each benchmark, values are expressed as a ratio of

floating point operations with state-space or linear replacement' over operations with

no replacenment.

For the first 5 applications, which mainly have linear components without state,

linear replacement and state-space replacement are equally effective. There is a huge

performance downgrade for an FFT (Fast Fourier Transform) for both types of re-

placement. This is not surprising, since an FFT performs its computations sparsely

across multiple filters. Combining these filters creates one filter densely packed with

computations. This is exactly a conversion form an FFT to a DFT (Discrete Fourier

Transform). We would need staged execution with minimal parameterization to con-

vert the DFT back to an FFT.
1We do not consider frequency replacement in our comparison
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App)llic(at Statespl)ce Linear
FM Ra lio 0.1740 0.1692

FIR Pr )grall 0.9961 (.998()
C'lwiliiel Voco('e 0.2601 ().2620

Filte rB alnk 1.00( 1.()01
FFT (16 l)t) 2.938 3.000

Linearl Difference Eq(uation 1.005 1.()00
IIR 1.005 1.000

IIR + 1/2 Decilllator 0.6441 1.000
IIR + 1/16 Decimator 0.3393 1.000

IIR + FIR 0.9413 1.000
FIR + IIR + IIR 0.9214 1.000

Table 5.1: Floating point operations with state-space and linear replacement normal-
ized for no replacement

The remaining applications have filters with state, thus they cannot be analyzed

linearly. Therefore we use the value 1.000 as the ratio in the linear column. For

a simple standalone Linear Difference Equation or IIR (Infinite Impulse Response)

filter, state-space replacement shows a very slight degradation in performance. The

reason for this is that there are a few extra operations performed by the prework

function. In terms of steady-state behavior, state-space replacement is equivalent

to no replacement. There is no gain in performance because the filters are written

optimally.

When we combine state filters with other filters, we notice a performance im-

provement using state-space replacement. For example, combining an IIR filter with

a decimator that leaves 1 out of every 16 values has a 66% improvement. Combining

an IIR filter with an FIR filter has a 6% improvement. In the case of an IIR filter with

a decimator, there are extraneous computations performed by the IIR filter that are

thrown away by the decimator. Combining their respective matrices removes these

computations. In the case of an IIR filter with an FIR filter, the computations in both

filters can be merged to a single set of computations. This indicates that state-space

replacement is more useful when applied to combined filters than when applied to

individual filters.
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Chapter 6

Related Work

This thesis builds directly on the work done to analyze and optimize linear compo-

nents in StreanIt graphs [11]. We have extended the theoretical framework for linear

analysis to state-space analysis in order to apply our optimizations to a wider class

of applications. We have also changed some parts of the underlying representations.

Previously, constants were handled separately and peeked items beyond the pop rate

were considered inputs. For our current work we have placed both types of items ill

states.

Many other groups are researching methods for automated DSP application opti-

mizations. SPIRAL [14] is a system developed to generate libraries of DSP transforms.

These libraries are designed for specific architectures, and can be re-optimized when

hardware is upgraded or replaced. Other such libraries that have been designed in-

clude a package for linear algebra manipulations by the ATLAS project [19] and a set

of optimized FFTs (Fast Fourier Transforms) [5].

Aside from StreamIt, other programming languages have been designed for stream-

ing data. Synchronous languages which target embedded applications include LUS-

TRE [9], Esterel [3], and Signal [7]. Other stream-based languages are Occam [4],

SISAL [6], and StreamC [15]. These are designed to exploit vector and parallel pro-

cessing. However, none of these languages have compilers that run state-space or

linear analysis.
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Chapter 7

Conclusion

We present a methodology for the detection, analysis, combination, and optimization

of linear state-space filters in DSP applications. This work is automatized in the

compiler of a high-level programming language, StreamIt, designed for streaming ap-

plications. This frees the programmer from the burden of writing low-level optimized

code that requires expert DSP analysis. Instead, the programmer can focus on the

top-level design of a DSP application and write modular code in a structured setting.

Due to the infinite number of possible state-space transforms, the optimizations

discussed are not necessarily ideal. Additionally, parts of DSP applications are non-

linear and cannot be analyzed in the state-space domain. Therefore, the work pre-

sented in this thesis does not fully optimize some portions of DSP applications, and

does not apply towards other portions. However, it does represent an additional step

towards the goal of a full analysis and optimization of any application. We outline

some of the future steps that can be taken, both to improve on the work in this thesis

and to expand it to other types of domain-specific analyses and optimizations.

* As mentioned in Chapter 4, minimally parameterize a system, then uses multiple

execution stages.

* Use a balanced representation [13] to quantify the relative impact of each state

of a filter on its execution. Then the states that have impact values below a

certain threshold can be removed, resulting in only a small change in the filter's
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e('x(lltioll.

* Forinllat e 0l()p in tra(lditionl pr'ogram inlg lilllilagesS sta te-sl)pac( filters. Clnd

Ilse state-sl)ac( w(-ok (levelo)ed ill this thesis to detect their induction vriab)lcs

all(l olptinliize their eXe(iltion.

* Create a cost fun(tion inmetric. f (A, B, C, D), that balances the traditional pro-

graml alylvsis mletrics (throughput., power consuiption, memory allocation.

etc.) in any lannller desired. Then find a general way to inimize this cost

flnction over all possible state-space transformations T.

* Formulate a methodology to deal with filters whose outputs are a linear coml-

bination of their inputs but a non-linear combination of their state variables.

* Use a 'black box' method to find the appropriate representation of a filter. In

this approach the filter is given inputs and the output data is collected. The

input/output relations are used to formulate an appropriate state-space model

that may not exactly represent the filter, but does so within a tolerable error

margin (see [16]).
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Appendix A

Benchmark Source Code

This is the Streamlt source code for the applications used in the Results chapter. All

code is copyrighted to MIIT.

Library Files (for use with FMRadio, FIR Program, and Channel Vocoder)

/**

* Simple sink that just prints the data that is fed to it.

**/

float->void filter FloatPrinter {

work pop 1 {

println(pop ());

}

}

* Simple FIR low pass filter with gain=g, wc=cutoffFreq(in radians) and N samples.

* Eg:

* - H(e-jw)

* I I

* I I I

* <------------------------- > w

* -WC wc
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* This implementation is a FIR filter is a rectangularly windowed sinc function

* (eg sin(x)/x), which is the optimal FIR low pass filter in

* mean square error terms.

* Specifically, h[n] has N samples from n=O to (N-l)

* such that h[n] = sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* and the field h holds h[-n].

*/

float->float filter LowPassFilter(float g, float cutoffFreq, int

N) {

float[N] h;

/* since the impulse response is symmetric, I don't worry about reversing h[n]. */

init {

int OFFSET = N/2;

for (int i=O; i<N; i++) {

int idx = i + 1;

// generate real part

if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/

h[i] = g * cutoffFreq / pi;

else

h[i] = g * sin(cutoffFreq * (idx-OFFSET)) / (pi*(idx-OFFSET));

}

/* implement the FIR filtering operation as the convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=O; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

/**

* Simple FIR high pass filter with gain=g, stopband ws(in radians) and N samples.

* Eg

* ^ H(e^jw)

* I

* I
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* I I I I I

< -------------------------- w

* pi-wc pi pi+wc

* This implementation is a FIR filter is a rectangularly windowed sinc function

* (eg sin(x)/x) multiplied by e(j*pi*n)=(-l)^n, which is the optimal FIR high pass filter in

* mean square error terms.

* Specifically, h[n] has N samples from n=O to (N-l)

* such that h[n] = (-l)^(n-N/2) * sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* where cutoffFreq is pi-ws

* and the field h holds h[-n].

*/
float->float filter HighPassFilter(float g, float ws, int N) {

float[N] h;

/* since the impulse response is symmetric, I don't worry about reversing h[n]. */

init {

int OFFSET = N/2;

float cutoffFreq = pi - ws;

for (int i=O; i<N; i++) {

int idx = i + 1;

/* flip signs every other sample (done this way so that it gets array destroyed) */

int sign = ((i%2) == 0) ? 1 : -1;

// generate real part

if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/

h[i] = sign * g * cutoffFreq / pi;

else

h[i] = sign * g * sin(cutoffFreq * (idx-OFFSET)) / (pi*(idx-OFFSET));

}

}

/* implement the FIR filtering operation as the convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=O; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}
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}

/* This is a bandpass filter with the rather simple implementation

of

* a low pass filter cascaded with a high pass filter. The relevant parameters

* are: end of stopband=ws and end of passband=wp, such that O<=ws<=wp<=pi

* gain of passband and size of window for both filters. Note that the high

* pass and low pass filters currently use a rectangular window.

**/

float->float pipeline BandPassFilter(float gain, float ws, float

wp, int numSamples) {

add LowPassFilter(l, wp, numSamples);

add HighPassFilter(gain, ws, numSamples);

}

/**

* This filter compresses the signal at its input by a factor M.

* Eg it inputs M samples, and only outputs the first sample.

**/

float->float filter Compressor(int M) {

work peek M pop M push 1 {

push(pop());

for (int i=O; i<(M-1); i++) {

pop();

}

}

FM Radio

/*

* Software equalizer. This version uses n+1 low-pass filters directly,

* as opposed to n band-pass filters, each with two low-pass filters.

* The important observation is that we have bands 1-2, 2-4, 4-8, ...

* This means that we should run an LPF for each intermediate frequency,

* rather than two per band. Calculating this in StreamIt isn't that bad.

* For a four-band equalizer:

* I

* DUP

* +------------------+* I II
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* I DUP I

* +----+----+ I

* I I I I I

* 16 8 4 2 1

* I I I I

* I (dup)(dup)(dup)

* I I* + +----RR(2)
+---------+---------+

* WRR(1,2(n-1),1)

* I

* (a-b)

* I

* SUM(n)

* It's straightforward to change the values of 1, 16, and n. Coming out

* of the EqualizerSplitJoin is 16 8 8 4 4 2 2 1; we can subtract and scale

* these as appropriate to equalize.

*/

float->float filter FloatNAdder(int count) {

work push 1 pop count {

float sum = 0.0;

for(int i=O; i<count; i++)

sum += pop();

push(sum);

}

float->float filter FloatDiff() {

work push 1 pop 2 {

push(peek(O) - peek(l));

pop();

pop();
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}

float->float filter FloatDup() 

work push 2 pop 1 

float val = pop();

push(val);

push(val);

}

float->float pipeline EqualizerInnerPipeline(float rate, float

freq) {

add FMLowPassFilter(rate,freq,64,0);

add FloatDup();

}

float->float splitjoin EqualizerInnerSplitJoin(float rate, float

low, float high, int bands) {

split duplicate();

for(int i=0; i < bands-1; i++)

add EqualizerInnerPipeline(rate,(float)exp((i+l)*(log(high)-log(low))/bands + log(low)));

join roundrobin(2);

}

float->float splitjoin EqualizerSplitJoin(float rate, float low,

float high, int bands) {

split duplicate();

add FMLowPassFilter(rate,high,64,0);

add EqualizerInnerSplitJoin(rate,low,high,bands);

add FMLowPassFilter(rate,low,64,0);

join roundrobin(l,(bands-1)*2,1);

}

float->float pipeline Equalizer(float rate) {
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int bands = 10;

float low = 55;

float high = 1760;

add EqualizerSplitJoin(rate,low,high,bands);

add FloatDiff();

add FloatNAdder(bands);

float->float filter FMLowPassFilter(float sampleRate, float

cutFreq, int numTaps, int decimation) {

float[numTaps] COEFF; //all frequencies are in hz

float tapTotal;

init {

float m = numTaps -1;

//from Oppenheim and Schafer, m is the order of filter

if(cutFreq == 0.0) {

//Using a Hamming window for filter taps:

tapTotal = 0;

for(int i=O;i<numTaps;i++) {

COEFF[i] = (float)(0.54 - 0.46*cos((2*pi)*(i/m)));

tapTotal = tapTotal + COEFF[i];

}

//normalize all the taps to a sum of 1

for(int i=O;i<numTaps;i++) {

COEFF[i] = COEFF[i]/tapTotal;

}

else{

//ideal lowpass filter ==> Hamming window

//has IR h[n] = sin(omega*n)/(n*pi)

//reference: Oppenheim and Schafer

float w = (2*pi) * cutFreq/sampleRate;

for(int i=O;i<numTaps;i++) {

//check for div by zero
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if(i-m/2 == 0)

COEFF[i] = w/pi;

else

COEFF[i] = (float)(sin(w*(i-m/2)) / pi

/ (i-m/2) * (0.54 - 0.46

* cos((2*pi)*(i/m))));

}

work push 1 pop decimation+1 peek numTaps {

float sum = 0.0;

for(int i=O; i<numTaps; i++) {

sum += peek(i)*COEFF[i];

}

pop();

for(int i=O; i<decimation; i++)

pop();

push(sum);

float->float filter FMDemodulator(float sampRate, float max, float

bandwidth) {

float mGain;

init {

mGain = max*(sampRate/(bandwidth*pi));

}

work push 1 pop 1 peek 2 {

float temp = 0;

//may have to switch to complex?

temp = (float)(peek(O) * peek(1));

//if using complex, use atan2

temp = (float)(mGain * atan(temp));

pop();

push(temp);

}

}
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void->float filter FloatOneSource {

float x;

init 

x 
=

0;

}

work push 1 pop 0 {

push(x++);

}

/*
* Early attempt at an FM Radio... probably junk

*/

float->float pipeline FMRadioCore {

// float samplingRate = 200000; //200khz sampling rate according to jeff at vanu

float samplingRate = 250000000; // 250 MHz sampling rate much more sensible, though

float cutoffFrequency = 108000000; //guess... doesn't FM freq max at 108 Mhz?

int numberOfTaps = 64;

float maxAmplitude = 27000;

float bandwidth = 10000;

//decimate 4 samples after outputting 1

add FMLowPassFilter(samplingRate, cutoffFrequency, numberOfTaps, 4);

add FMDemodulator(samplingRate, maxAmplitude, bandwidth);

add Equalizer(samplingRate);

void->void pipeline FMRadio {

add FloatOneSource();

add FMRadioCore();

add FloatPrinter();

FIR Program
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/**

* This streamit program contains a simple low pass filter

* that filters the data from a source and funnels it directly

* to a sink. This is more of a "kernel" type benchmark because

* FIR filtering is widely used in actual DSP applications.

**/

/**

* Top level program.

**/

void->void pipeline FIRProgram {

add FloatSource();

add LowPassFilter(l, pi/3, 256);

add FloatPrinter();

}

* Simple float source -- put:

* 0 to 15 over and over agaiI

* generates its output data

* and the oly work that occui

* is pushing the data on to 1

* buffer management.

**/

void->float filter FloatSourcE

float[16] inputs;

int idx;

init {

for(int i=O; i<16; i++) {

inputs[i] = i;

}

idx = 0;

work push 1 {

push(inputs[idx]);

idx = (idx + 1) % 16;

}

}

3 out a ramp from

n. Note that it

in its init function

rs in the work function

the tape and doing some

Channel Vocoder

/**

* This is a channel vocoder as described in 6.555 Lab 2.

* It's salient features are a filterbank each of which
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* contains a decimator after a bandpass filter.

* Sampling Rate is 8000 Hz.

* First the signal is conditioned using a lowpass filter with

* cutoff at 5000 Hz. Then the signal is "center clipped" which

* basically means that very high and very low values are removed.

* Then, the signal is sent both to a pitch detector and to a

* filter bank with 200 Hz wide windows (18 overall)

* Thus, each output is the combination of 18 band envelope values

* from the filter bank and a single pitch detector value. This

* value is either the pitch if the sound was voiced or 0 if the

* sound was unvoiced.

**/

void->void pipeline ChannelVocoder {

add DataSource();

// low pass filter to filter out high freq noise

add LowPassFilter(1, (2*pi*5000)/8000, 64);

add MainSplitjoin();

add FloatPrinter();

}

/** This class is just a wrapper so that we don't have anonymous

inner classes. **/ float->float splitjoin MainSplitjoin {

int PITCH_WINDOW = 100; // the number of samples to base the pitch detection on

int DECIMATION = 50; // decimation factor

int NUM_FILTERS = 4; //18;

split duplicate;

add PitchDetector(PITCH_WINDOW, DECIMATION);

add VocoderFilterBank(NUM_FILTERS, DECIMATION);

join roundrobin(1,4); // can't be NUM_FILTERS b/c const prop didn't work

/** a simple data source. **/ void->float filter DataSource() {

int SIZE = 11;

int index;

float[SIZE] x;

init {

index = 0;

x[O] = -0.70867825;
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x[1] = 0.9750938;

x[2] = -0.009129746;

x[3] = 0.28532153;

x[4] = -0.42127264;

x[5] 
=
-0.95795095;

x[6] = 0.68976873;

x[7] = 0.99901736;

x[81 = -0.8581795;

x[9] = 0.9863592;

x[101 = 0.909825;

work push 1 {

push(x[index]);

index = (index+l)YSIZE;

* Pitch detector.

**/

float->float pipeline PitchDetector(int winsize, int decimation) {

add CenterClip();

add CorrPeak(winsize, decimation);

/** The channel vocoder filterbank. **/float->float splitjoin

VocoderFilterBank(int N, int decimation) {

split duplicate;

for (int i=0; i<N; i++) {

add FilterDecimate(i, decimation);

}

join roundrobin;

/**

* A channel of the vocoder filter bank -- has a

* band pass filter centered at i*200 Hz followed

* by a decimator with decimation rate of decimation.
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**/

float->float pipeline FilterDecimate(int i, int decimation) {

//add VocoderBandPassFilter(i, 64); // 64 tap filter

add BandPassFilter(2, 400*i, 400*(1+1), 64);

add Compressor(decimation);

/**

* This filter "center clips" the input value so that it is always

* within the range of -.75 to .75

**/

float->float filter CenterClip {

float MIN = -0.75;

float MAX = 0.75;

work pop 1 push 1 {

float t = pop();

if (t<MIN) {

push(MIN);

} else if (t>MAX) {

push(MAX);

} else {

push(t);

}

}

/**

* This filter calculates the autocorrelation of the next winsize elements

* and then chooses the max peak. If the max peak is under a threshold we

* output a zero. If the max peak is above the threshold, we simply output

* its value.

**/

float->float filter CorrPeak(int winsize, int decimation) {

float THRESHOLD = 0.07;

work peek winsize push 1 pop decimation {

float[winsize] autocorr; // auto correlation

for (int i=O; i<winsize; i++) {

float sum = 0;

for (int j=i; j<winsize; j++) {

sum += peek(i)*peek(j);

}

autocorr[i] = sum/winsize;

}
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// armed with the auto correlation, find the max peak

// in a real vocoder, we would restrict our attention to

// the first few values of the auto corr to catch the initial peak

// due to the fundamental frequency.

float maxpeak = 0;

for (int i=O; i<winsize; i++) {

if (autocorr[i]>maxpeak) {

maxpeak = autocorr[i];

}

}

//println("max peak" + maxpeak);

// output the max peak if it is above the threshold.

// otherwise output zero;

if (maxpeak > THRESHOLD) {

push(maxpeak);

I else {

push(O);

}

for (int i=O; i<decimation; i++) {

pop();

}

FilterBank

void->void pipeline FilterBankNew {

int N_sim = 1024 * 2;

int N_samp = 8;

int N_ch = N_samp;

int N_col = 32;

float[N_sim] r;

float[N_ch][N_col] H;

float[N_ch] [N_col] F;

for (int i = O; i < N_col; i++)

for (int j = O; j < N_ch; j++) {

H[j] [i] = i*N_col + j*N_ch + j + i + j + 1;

F[j][i] = i*j + j*j + j + i;
I
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add source();

add FilterBank(N_samp, N_ch, N_col, H, F);

add sink(N_sim);

void->float filter source() {

float max = 1000.0;

float current = 0.0;

work push 1 pop 0 {

push(current);

if (current > max) {

current = 0.0;

} else {

current = current+l.0;

}

float->void filter sink(int N) {

work pop 1 { print(pop()); }

}

float->float pipeline FilterBank(int N_samp, int N_ch, int N_col,

float[N_ch][N_col] H,

float [N_ch] [N_col F)

add Branches(N_samp, N_ch, N_col, H, F);

add Combine(N_samp);

float->float splitjoin Branches(int N_samp, int N_rows, int N_col,

float[N_rows] [N_col] H,

float [N_rows] [N_col] F)

split duplicate;

for (int i = O; i < N_rows; i++)

float[N_col] H_ch;

float[N_col] F_ch;

for (int j = O; j < N_col; j++)

{

H_ch[j] = H[i] [j];

F_chtj] = Fi [j];

}
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add Bank(N_samp, N_col, H_ch, F_ch);

}

join roundrobin;

}

float->float pipeline Bank(int N, int L, float[L] H, float[L] F) {

add Delay_N(L-l);

add FirFilter(L, H);

add DownSamp(N);

add UpSamp(N);

add Delay_N(L-1);

add FirFilter(L, F);

float->float filter Delay_N(int N) {

float[N] state;

int place_holder;

init {

for (int i = O; i < N; i++)

state[i] = 0;

place_holder = 0;

}

work pop 1 push 1 {

push(state[place_holder]);

state[place_holder] = pop();

placeholder++;

if (place_holder == N)

place_holder = 0;

float->float filter FirFilter(int N, float[N] COEFF) {

work pop 1 peek N push 1 

float sum = 0;

for (int i = O; i < N; i++)

sum += peek(i) * COEFF[N-1-i];

pop();

push(sum);

}

float->float filter DownSamp(int N) {

work pop N push 1 {
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push(pop());

for (int 1 = 0; i < N-1; i++)

pop();

}

float->float filter UpSamp(int N) {

work pop I push N {

push(pop());

for (int i = 0; i < N-1; i++)

push(O);

}

I

float->float filter Combine(int N) {

work pop N push 1 {

float sum = 0;

for (int i = 0; i < N; i++)

sum += pop();

push(sum);

}

FFT

void->void pipeline FFT2() {

add FFTTestSource(16);

add FFTKernel2(16);

add FloatPrinter();

float->float filter CombineDFT(int n) {

float wn_r, wn_i;

init {

wn_r =

wni =

(float)cos(2 * 3.141592654 / n);

(float)sin(-2 * 3.141592654 / n);
}

work push 2*n pop 2*n {

int i;
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float w_r = 1;

float w_i = 0;

float[2*n] results;

for (i = O; i < n; i += 2)

// this is a temporary work-around since there seems to be

// a bug in field prop that does not propagate nWay into the

// array references. --BFT 9/10/02

//int tempN = nWay;

//Fixed --jasperln

// removed nWay, just using n --sitij 9/26/03

float yO_r = peek(i);

float yO_i = peek(i+1);

float yl_r = peek(n + i);

float yl_i = peek(n + i + 1);

float ylw_r = yl_r * w_r - yl_i * w_i;

float ylwi = yl_r * w_i + yl_i * w_r;

results[i] = yO_r + ylw_r;

results[i + 1] = yO_i + ylw_i;

results[n + i] = yOr - ylw_r;

results[n + i + 1] = yO_i - ylw_i;

float

float

wr =

wi =

w r next = w_r * wn_r

w i next = w_r * wni

wrnext;

w_i_next;

- w_i * wn_i;

+ w_i * wn_r;

for (i = O; i < 2 * n; i++)

pop();

push(results[i]);

}

}

}
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float->float filter FFTReorderSimple(int n) {

int totalData;

init {

totalData = 2*n;

work push 2*n pop 2*n {

int i;

for (i = O; i < totalData; i+=4)

push(peek(i));

push(peek(i+l));

I

for (i = 2; i < totalData; i+=4)

push(peek(i));

push(peek(i+l));

}

for (i=O;i<n;i++)

{

pop();

pop();

}

float->float pipeline FFTReorder(int n) {

for(int i=l1; i<(n/2); i*= 2)

add FFTReorderSimple(n/i);

float->float pipeline FFTKernell(int n) {

if(n>2) {

add splitjoin {
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split roundrobin(2);

add FFTKernell(n/2);

add FFTKernell(n/2);

join roundrobin(n);

}

add CombineDFT(n);

}

float->float splitjoin FFTKernel2(int n) {

split roundrobin(2*n);

for(int i=O; i<2; i++) {

add pipeline {

add FFTReorder(n);

for(int j=2; j<=n; j*=2)

add CombineDFT(j);

}

}

join roundrobin(2*n);

}

void->float filter FFTTestSource(int N) {

work push 2*N pop 0 {

int i;

push(O.0);

push(O.0);

push(1.0);

push(O.0);

for(i=0; i<2*(N-2); i++)

push(O.0);

float->void filter FloatPrinter {

work push 0 pop 1 {

print (pop());

}

}
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void->float filter source() {

float x;

init {

x = 1.0;

work push 1 pop 0 {

push(x);

x = 0.0;

I

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

void->void pipeline diffEq() {

add source();

add linDiff();

add sink();

}

float->float filter linDiff() {

// these variables save the previous outputs

float x,y,z;

init {

x = 0.0;

y = 0.0;

z = 0.0;
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}

work push 1 pop 1 peek 3 

float temp;

temp = 0.2*peek(O) + 0.4*peek(1) - 0.5*peek(2) + 0.3*x - 0.8*y - 0.6*z;

push(temp);

pop();

x = y;

y = z;

z = temp;

}

}

IIR + 1/2 Decimator

void->float filter source() {

float x;

init {

x = 1.0;

work push 1 pop 0 {

push(x);

x = 0.0;

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add decimate();
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add sink();

}

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(O)/4 + peek(l)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

float->float filter decimate() {

work push 1 pop 2 {

push(pop());

pop();

}

}

IIR + 1/16 Decimator

void->float filter source() {

float x;

init {

x = 1.0;

work push 1 pop 0 {

push(x);
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x = 0.0;

}

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add decimate();

add sink();

}

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(O)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

float->float filter decimate() {

work push 1 pop 16 {
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push(peek(O));

for(int i=O; i<16; i++)

pop();

}

.1

IIR+FIR

void->float filter source() {

float x;

init {

x = 1.0;

work push 1 pop 0 {

push(x);

x = 0.0;

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add FIR();

add sink();

}

float->float filter IIRFilter() {

float curr;
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init {

curr = 0.0;

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(l)/8 + peek(2)/6;

curr 
=

curr/2 + temp;

push(curr);

pop();

float->float filter FIR() {

work push 1 pop 1 peek

push(0.45*peek(0) -

pop();

}

5 

0.8*peek(l) - 0.56*peek(2) - 0.8*peek(3) + 0.45*peek(4));

}

FIR+IIR+FIR

void->float filter source() {

float x;

init {

x = 1.0;

work push 1 pop 0 {

push(x);

x = 0.0;

}

I

float->void filter sink() {

92



work push 0 pop 1 {

print(pop());

}

void->void pipeline IIR() {

add source();

add FIR();

add IIRFilter();

add FIR();

add sink();

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

float->float filter FIR() {

work push 1 pop 1 peek 5 {

push(0.45*peek(0) - 0.8*peek(1) - 0.56*peek(2) - 0.8*peek(3) + 0.45*peek(4));

pop();

}

}
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