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Chapter 1

Introduction

Multiple Input Multiple Output (MIMO) systems when used in a point-to-point com-

munication scenario provide substantial capacity increase compared to single antenna

systems. We also know that MIMO systems can increase the reliability of a point-

to-point link through appropriate design choices. Zheng & Tse demonstrated the

existence of a fundamental tradeoff between these two performance measures of wire-

less systems [6]. Namely, there is a tradeoff between the data rate and diversity

provided by a MIMO channel. Diversity can be thought of as a measure of the reli-

ability of a link, and will be explained in detail later in this chapter. Diversity-data

rate plots are, therefore, of great importance for system designers and architects as

they demonstrate the effect of increasing the data rate of a system on the reliability

of the same system. Often systems do not operate at either extreme of the diversity-

rate tradeoff, and the diversity-rate tradeoff is an important tool in deciding how to

design systems and where to operate them.

1.1 Diversity

Diversity is a measure of reliability of a link. In multiple antenna systems, there

is a path between each transmit and receive antenna. If each of these paths are

independently faded, then we can obtain independently faded replicas of data symbols

by sending them through different paths. Then we can use these independently faded

11



replicas to improve our reception. Diversity can also be thought of as the number

of independent fading coefficients in the channel. In a system with nr transmit, n,

receive antennas, assuming the channel is Rayleigh faded, the maximum diversity

gain is ntn,, the number of independent fading coefficients in the channel. In other

words, the fastest error probability can decay with SNR is SNR-nt nr. Diversity is

obtained via averaging over multiple path gains (fading coefficients). By averaging,

the reliability of the overall link is increased, since the failure of the link depends

on more fading coefficients with averaging. Intuitively, depending on average of k

independent fading coefficients is more reliable than depending on any one of those k

fading coefficients. For the averaging to fail, all of the k independent replicas of the

data symbol must be lost.

1.2 Spatial Multiplexing

In addition to being used to increase link reliability (provide diversity), MIMO sys-

tems can also be used to increase the data rate of a point to point link. Multiplexing

can be thought of as the number of parallel spatial channels that can be created us-

ing a point-to-point MIMO channel. If the path gains between transmit and receive

antenna pairs are independent, multiple spatial channels are created. By sending

independently coded data streams through these parallel channels, the data rate of

the point to point link can be increased. In an n, x ntchannel, where path gains

between individual antenna pairs are i.i.d Rayleigh variates, ergodic capacity with

channel side information at receiver (CSIR) only is given by:

min{nt,nl} SN R
C(SNR) = S log (I + n At

where A, > A ... ;> Amin{nt,nr} are the ordered singular values of H, the channel

matrix. At high SNR, we can ignore the addition of 1 and approximate the above

expression as [4]:

C(SNR) = min{nt, n,} log SNR + 0(1)

12



Thus the channel is said to have min{nt, nr} degrees of freedom. min{nt, nTr} are

the maximum number 'single antenna channels' we can embed in the nt x n, system.

As we increase SNR, the capacity scales with min{nt, n}. Hence, if n, > nt adding

one more receive antenna will not have a degree of freedom gain. A degree of freedom

can only be obtained if we increase min{nt, n.} by one.

1.3 Diversity-Multiplexing Tradeoff

Achieving maximal diversity gain ntn, requires that we communicate at a fixed rate

R, since we are using all the fading coefficients to combat fading. In a way, we are

sending replicas of the same data stream through independent paths. A fixed data

rate becomes vanishingly small compared to the fast fading ergodic capacity which

grows like min{nt, n,} log SNR at high SNR. Thus, even though we achieve maximal

diversity gain, we are not harnessing any of the degrees of freedom offered by the

nt x nr channel. In order to harness at least a fraction of the degrees of freedom

offered by the channel, we communicate at a rate, R ~ r log SN R, which scales with

increasing SN R. As defined in [6], we define spatial multiplexing gain r and diversity

gain d as

lim R(SNR) r
SNR-oc log SNR

lim Pe(SNR)
SNR-*oo log SNR

Then the diversity gain is the rate, average error probability decays in SNR. That is

Pe(SNR) = SNR-d. According to the above definition, any scheme that achieves full

spatial multiplexing gain, has zero diversity gain. It is shown in [6] and [4] that for

the i.i.d. Rayleigh fading MIMO channel with nt transmit, n, receive antennas, the

high SNR outage probability at rate R = r log SNR is given by

Poutage ~ SNR-(n-r)(nr)

13



for integer r = 0, 1, - - - , min(nr, nt) [6]. The interpretation of the above result is sim-

ple; when operating at a multiplexing gain of r, the maximal diversity gain we can

get is (nt - r)(nr - r). That is, it is possible to reach a positive diversity gain while

attaining some degrees of freedom provided by the channel. There is a fundamen-

tal tradeoff between diversity and multiplexing. Higher multiplexing gain comes at

the price of lower diversity and higher diversity necessarily decreases the achievable

multiplexing gain.

1.4 Contribution of this thesis

There are systems that can achieve the optimal tradeoff between data rate and diver-

sity [1, 6]. We shall call such systems optimal systems from this point on. However,

often these systems are hard to deploy due to the complications in their implemen-

tations or other practical reasons. Therefore, suboptimal architectures (architectures

that cannot achieve the entire optimal tradeoff curve for a MIMO channel) are often

deployed in practice. These systems suffer performance penalties either in diversity or

data rate due to their simple implementations. Since the reliability of these systems

is low compared to optimal architectures, it is often of great interest to increase their

reliability without increasing the complexity of their implementations.

This thesis describes a particularly simple method to improve the reliability of

some suboptimal architectures. In particular, we will be focusing on the decorrela-

tor and the MMSE transceiver architectures. The method we describe uses unitary

rotations with joint-coding in order to improve the diversity performance of these

systems. The idea is still to average over multiple path gains to increase reliability.

The rotations merely serve as bringing out some of the fading coefficients that are

lost due to nulling the interference from other sub-streams. By rotating the channel

each time a symbol is transmitted, and coding over the rotated replicas of the same

channel realization, we show that the reliability of the decorrelator and the MMSE

systems can be improved for Rayleigh fading channels. The observed improvement

in diversity is less than unity, but might be significant in some scenarios.
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The organization of this thesis is as follows. Chapter 2 describes the subopti-

mal transceiver architectures we will analyze, and Chapter 3 introduces the rotation

method we propose. Chapter 4 provides deeper analysis of the rotation method. We

conclude our findings in Chapter 5.
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Chapter 2

Practical Transceiver Designs

Practical transceiver implementations rarely employ information theoretically opti-

mum receivers due to complications in the implementation of such receiver architec-

tures. Maximum likelihood (ML) detection can be fairly difficult to implement on a

cellular phone or wireless sensor due to lack of processing power, battery, time and

sometimes all three of these factors. Therefore, suboptimal receiver architectures such

as the decorrelator and the minimum mean squared estimator, MMSE, are of great

practical importance to many applications .

There are schemes that achieve information theoretically optimum capacity using

linear receiver architectures in conjunction with successive cancellations [1, 5] These

schemes are known as successive interference cancellation (SIC) schemes and require

the receiver to successfully decode data of a sub-stream, and encode the successfully

decoded data and subtract it from the received data vector, prior to decoding other

sub-streams. The process of decoding and subtracting out interference is a significant

overhead, and increases the total decoding time. Therefore, most practical receivers

do not employ successive interference cancellation.

In what follows, we briefly explain the decorrelator and the MMSE architectures

in an effort to provide some background.
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2.1 The Decorrelator

2.1.1 Description

The data transmitted on a nt x n, multi-antenna array is often separated into nt

independent data streams that can be coded independently. The reason for this

being the fact that code generation for a multi-antenna area is quite complicated and

there are no known good coding mechanisms. The symbols across the streams at

time m form the vector x[m] which is transmitted through a n, x nt channel matrix

H. The received signal is also corrupted by noise, in which case we have the familiar

time-invariant MIMO channel:

y[m] = Hx[m] + w[m], m = 1, 2, -. (2.1)

where x[m] 6 Cn, y[m] E Cnr and w[m] ~ C.(O, In,) are the transmitted signal,

received signal and white Gaussian noise at time m respectively.

Therefore, receivers need to separate the data streams that from different 'users'.

The term 'user' here is a bit misleading, and it refers to the virtual user which owns

one of the independently coded data streams. All the streams in a point to point

communication scenario belong to the same user. However, we will stick to this

convention and associate each data stream with a virtual 'user'.

It is not clear whether the receiver can separate the data streams efficiently enough

so that the resulting system attains full degrees of freedom of a nt x n, antenna array.

In such a system, the kth user's data stream faces interference from all other users,

and is also corrupted by noise. In such scenarios, our aim is to maximize the signal

to interference ratio (SINR) as opposed to signal to noise (SNR) ratio. The matched

filtering (maximal ratio combining) aims to preserve as much energy in the signal

as possible at the expense of facing high inter-stream interference. The decorrelator

is motivated by the same idea, but works at the other end of the spectrum. The

idea is to remove the inter-stream interference by projecting the received signal y on

to a subspace that is orthogonal to one containing all the other subspaces. This is
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h2

h2perpl hl

Figure 2-1: Projection of h2 into the subspace orthogonal to hl.

the subspace orthogonal to the one spanned by the vectors h1 , ...hk_1, - --hk+1, h, (
hj's are columns of channel matrix H). The projection operation can be represented

by matrix transformation, i.e. projection into a subspace V of dimension dk can

be carried out with multiplying by a dk by n, matrix Qk. The rows of Qk form an

orthonormal basis of Vk and hence multiplying any vector v by Qk will have the effect

of projecting v onto Vk. This is shown in figure 2-1.

Obviously, for the interference cancellation to be successful the spatial signature,

hk, of data stream k must not be linear combination of the spatial signatures of the

other data streams. If this is the case, the projection will result in a zero vector,

and the receiver will fail. Now, if we use more than n, data streams, this strategy

of interference cancellation cannot be successful, since at least one of the processed

received streams will be completely zero. Hence we have a natural constraint here,

the number of data streams must be equal to or less than nr. Assuming nt < n,

after the projection the channel for the kth sub-stream looks like

y[m] - QkhkXk[ml + QkW

which is the familiar scalar channel with projected spatial signature signal Qkhk. We

know that matched filtering maximizes SN R for such a channel and the signal to noise

19



ratio is given by:

_Pk Qkhk2SNR- N=
No

where Pk is the power allocated to the kth stream, and No is the average noise power.

The combination of the projection operation and matched filtering is usually called

the decorrelator. Both operations involved in the decorrelator are linear, hence the

decorrelator itself is a linear filter. The overall decorrelating filter is given by:

Cdecork = (QkQk)hk)

which is the projection of hk onto the subspace Vk, expressed in terms of the original

coordinates. In effect, the decorrelator maximizes the signal to noise ratio subject to

the constraint that the interference from all other users are nulled. We will see the

performance implications of this nulling in the next subsection. However, notice that

JJQkhkJJ will often be less than llhkll, and we will face some penalty in nulling the

interference.

The individual filters can be described by the above formula, however there is a

compact form for a bank of decorrelators for each user given by:

Ht := (H*H)lH*

Ht is called the pseudo-inverse of the matrix H. The decorrelator for the kth stream

is the column k of the pseudo-inverse of the matrix H. This matrix is also known as

Moore-Penrose matrix inverse, and is only defined if H*H has an inverse. H*H is only

invertible if and only if H has linearly independent columns [2]. This would always

be the case for a full rank H, which would be the most relevant channel matrix type

for our analysis as we would see later.

20



2.1.2 Performance

The performance of the decorrelator can be expressed in terms of the capacities of

individual sub-streams belonging to each user. The output of each decorrelator bank

is a Gaussian channel with SNR given as above. The capacity of such a channel is

Pk|Qkhk||2C = log(1- +N)
No

The capacity of the entire array is then just the sum of individual sub-streams.

Notice that in general lJQkhkJJ < ||hk l, (specifically, when hk's are not orthogonal,

lJQkhkJ| < ||hk I will always be true). Nulling the interference discards some in-

formation about the vector we are trying to estimate. This means that unless the

spatial signatures are in totally different directions, there is no way to cancel interfer-

ence without losing some portion of data. Indeed, intuitively this is what one would

expect.

The above analysis was done for deterministic channel matrix H. For a stationary

distribution of the channel matrix H, the achievable fast fading rate is simply the

expected value of the expression above. The decorrelator bank performance for a i.i.d

Rayleigh fading channel is then:

min(nt,n,) SNR
Cdecor = I[ 0 log(1 + ||Qkhk 2)]

The optimal covariance here is scaled version of the identity, and we have chosen

to pour equal powers to each data stream. We can approximate the rate expression

above at high SNR, to see the spatial degrees of freedom attained. At high SNR:

Cdecor = min(nt, nr) log( ) + E[ log(Qkhk 2)]
nt i+'[10JJk I')

i=1

Cdecor = min(nt, nr) log(SNR ) + 0(1)nit

We see that the decorrelator bank achieves full spatial degrees of freedom of the

MIMO channel, since the log SN R term above has a min(nt, nr) coefficient. Hence the
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decorrelator bank can reach the full spatial multiplexing gain offered by the channel.

To analyze the diversity gain, we start by restating the problem. We still have the

channel model described in 2.1, i.e. we have the bank of decorrelators, belonging to

each user and we encode each user's data independently at the transmitter. However,

we assume a slow fading scenario, in which channel matrix H is random, but remains

fixed once chosen. We will assume for the analysis to follow that H is Rayleigh faded.

Hence, our system looks like a V-BLAST system without successive interference

cancellation. Our performance metric is the outage probability, the probability of the

random channel capacity falling below some target data rate R. Since each of the

sub-streams are independently coded at R, an outage occurs if any of the sub-streams

cannot be decoded completely.

The equivalent parallel channel for our system in equation 2.1 can be written as

follows [6]:

yj = SNR gixi + wi for i = 1 .. ., nt (2.2)
n

where xi, y , wi c C' are the transmitted, received signals and the noise for the ith

sub-stream; gi is the gain of the ith decorrelator, i.e. the square root of the signal to

noise ratio at the output of ith decorrelator.

Then, an outage happens if any of the scalar channels above falls below the target

data rate R. We will assume that each sub-stream is assigned the same rate, Ri =

& log SNR. The order in which the sub-streams are detected is not important. The

receiver can choose arbitrarily, or use a fixed decoding order. Under these conditions,

with a Rayleigh faded channel, each of the gi's is chi-square distributed with one

degree of freedom; gi ~ X. The constant degree of freedom in gi's is due to lack

of successive interference cancellation. If we had employed successive interference

cancellation, each of the g's would have been chi-square distributed, with i degrees

of freedom. Since each sub-stream passes through a scalar channel with gain gi, an

error occurs at the ith sub-stream with probability Pe (log(1 + SNRg) < r log SNR).

When gi is chi-squared distributed of order 1, this probability is given by:

22



Pjz = SNR(' ')

Hence the diversity of order of the bank of decorrelators is just 1. In the above system,

outage occurs whenever one of the sub-channels is in deep fade and cannot support

the rate of the stream using that sub-channel. However, we can do better by coding

across the sub-channels to provide reliable communication when

lt SNR
log(1 + g') > R (2.3)

i=1

The reason this scheme is superior is that each individual sub-stream passes

through all the sub-channels; and hence an error in one of these sub-channels might

not be fatal and the sub-stream might still be recovered.

2.1.3 Diversity Order: Decorrelator with Outer Code

To derive the diversity order of the bank of the decorrelators, we will need of find

the probability that D log(1 + S g?) < R. Each of the terms in the sum are

independent identically distributed variates with the following cumulative distribution

function (assuming n, = nt):

2R _1

FR(R) = 1 - e 2SNRn

where SN R, = SNR. To calculate the probability of sum rate falling below some
flt

arbitrary rate R, we need to know the probability density function (PDF) of the

summation. We can calculate this PDF by using iterated convolutions, since each

of the associated terms are independent. We differentiate the above CDF to get the

PDF of the individual terms:

fR(R) =n(2)2Re 2SNRn (2.4)
2SNRn

The PDF for the sum is then just
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ft M f t1 ... Jt2 fR(t-tnt_1)fR(tflI-tnt-2) ... fA(tl-T)fR(T) 87 &t1 ... atnt_10 0 0 0
(2.5)

It is difficult to evaluate this integral explicitly. For the outage event, we are only

interested in the tail of the probability distribution of the sum. Note that, since each

of the PDFs involved in the convolution are one sided, we can approximate these

PDFs near their tails, and convolve the approximations to get an approximation to

the tail of the PDF of the sum. Let us now substitute R = 5 log SNR into 2.4 and

take the taylor series expansion of the resulting expression near 3 = 0:

fn(2) SNR' - SNR2 + 0.5SNR' - SNR 2 1 + 0.5SNR 36

2SN R ± 2SNR 4SNR2

Now we can approximate

pansion 2.6:

ft (M = n

(2.6)

2.5 by using the first order terms of the Taylor series ex-

.j. t 1 SNRTSNRt-T ... SN Rtnt -1-"t-2 SNRt-nt- aT ati ... Ot

(2.7)= (2 )fl SNR t tnt fnt > 2
2SN R nt - I

The outage probability can be readily calculated using 2.7 when r is small (r < 1)

(ll SNR2
P log(1 + -g?)

nt

fr (n2 \t

0 2SNR,

n 2 n JR

2SN R 0

SNRttntl at
nt - 1

SNRttnt-la
nt -1

In 2 nt ) t- (-1)itnt-i-ISNR' (nt - 1)!(2.8)
2SN R . (In SN R)i+l (nt - Z - 1)!.1=0 t=O

Leading term in the above summation is the one that has the lowest ln SN R exponent

in the denominator, i.e. i = 0. One easy way to see this is the following. If this was

not the case, the above expression cannot be guaranteed to be positive and hence
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it would be useless as a probability approximation. As SNR goes to infinity, we can

ignore all other terms and calculate log P using this term only. This gives us thelog(SNR)

diversity order we expect, which is nt:

In (( In2 flt rnt-ISNR'\
ln~e n 2SNR) 1nSNR

ln(SNR) lnSNR
i((Ln2)ft rsnt1rSnRn -SN R\2 /In SNR

InSNR
- r - nt + Q(rnt-1)

2.1.4 Diversity Order: Decorrelator with SIC

Although the decorrelator bank receiver achieves maximal spatial multiplexing gain, it

falls short of achieving the full diversity gain, nr x nt , provided by the MIMO channel.

Hence it is not diversity optimal. Before we move on to ways of improving this, we

would like to briefly talk about why decorrelator bank performs so poorly. Each

of the nt data streams in the decorrelator bank see exactly one channel coefficient,

since everything in the direction of other data streams is being discarded. Hence the

decorrelator bank's diversity is lowered by the inter-stream interference. The nulling

operation costs us a lot of fading coefficients. One way to increase the number of

fading coefficients seen by each channel is to use successive cancellations.

The idea for successive cancellations is simple, once a data stream is successfully

recovered, we can subtract it off from the received vector and decrease interference

to the receivers of the remaining data streams. In this section we will again assume

that we code across the transmit antennas (over the data streams), so that an outage

happens only if the sum rate falls short of the target data rate. Hence our expression

for outage event is still nt log(1 + SRgy) < R, however now each of gi's are chi-

squared distributed with nr - (nt - i) degrees of freedom. The streams that are

decoded later have more tolerance to error. In effect, successive cancellations ensures

that the later streams see more channel coefficients. nt - i is the number of interfering

streams at the ith stage, hence the loss of diversity at stage i is exactly the same as
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the number of interfering streams needed to be nulled out. The outage probability

P ( log(1 + SNRg2) <r log SNR) can be explicitly calculated as in section 2.1.3,

and turns out to be :

Pe = SNR(l--)SNR( 2 2 r)SNR(3 3 r) ... SNR(n-nr) (2.9)

for a Rayleigh fading square channel (nt = nr = n). Hence the maximal diversity

reached by a decorrelator SIC system is 2(+'. By increasing the number of fad-

ing coefficients seen by each sub-stream, the decorrelator-SIC receiver increases the

diversity order significantly.

2.2 MMSE

2.2.1 Description

The decorrelator was motivated by the fact that it completely nulls out inter-stream

interference; in fact it maximizes the SNR among all linear receivers that completely

nulls out the interference. However, eliminating the interference causes some loss of

the signal of interest as well. There is a natural tradeoff between eliminating the

inter-stream interference and preserving as much energy in the signal as possible.

The decorrelator performs very well at high SNR, where inter-stream interference is

dominant over noise, but performs poorly at low SNR where noise is the primary

factor impeding the performance. The MMSE filter optimally trades off inter-stream

interference and background Gaussian noise [4]. The decorrelator maximizes SNR

within all receivers that completely null out the interference, however intuitively we

need a receiver that maximizes SINR for any value of SNR. Such a receiver would

behave like a decorrelator when the inter-stream interference is large, and like a

maximal ratio combiner when the inter-stream interference is small. The MMSE

receiver was formulated in [4]. We use the same model as in section 2.1.1 equation

2.1, however we denote Zk[m] as the noise plus interference faced by data stream k:

26



y [m] = hkxk [m] + Zk[m]

where Zk = Zik hjxk[m1 + w[m]. The covariance of Zk is given by Kzk = NoI, +

ntg Pihih* where P is the power associated with the data stream i. The filter that

will first whiten the noise, and then maximize the signal to noise ratio is simply the

inverse of the noise plus interference covariance multiplied by the spatial signature of

user k:

Cmmse = Non, + J Ph ih hk

The SINR of user k and the rate achieved is then given by:

nt -1

SINRk Pk NOIn,+ Pihi h* hk
i~k

C= log(1 + SINRk)
i=1

2.2.2 Performance

At high SNR, the MMSE filter reduces to the decorrelator, so we readily know that it

also achieves maximal spatial degrees of freedom offered by MIMO channel. At low

SNR, the MMSE filter reduces to the maximal ratio combiner and therefore performs

better than the decorrelator [4].

An outage probability calculation for a bank of MMSE's, like that of section 2.1.3,

is difficult since SINR's of different sub-streams are correlated for the MMSE receiver.

In [6], it is shown that MMSE filter and successive cancellations can achieve the

entire optimal tradeoff curve. For any realization of channel matrix H, MMSE-SIC

can achieve the mutual information of the channel, hence it can also reach optimal

outage performance offered by the channel.

The reason MMSE performs better is that the channel gains SNRi or gi's are

independent in the case of decorrelator, whereas SINR's are negatively correlated
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in the case of MMSE. The data streams in a MMSE-SIC see all the ntn, channel

coefficients offered by the MIMO channel.

To summarize, we discussed the decorrelator and MMSE transceiver architectures

in this section. We have seen that when successive interference cancellations is not

used, the outage performance of the bank of decorrelators or MMSE's is fairly poor.
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Chapter 3

Beyond Diversity

In the last section, we have seen that in a Rayleigh faded n x n channel, the decorre-

lator and the MMSE can reach a maximal diversity of n in the absence of successive

cancellations. This is quite small compared to the full diversity gain, n2 offered by

the MIMO channel. Augmented with SIC, the MMSE can reach the full diversity

gain. The reason MMSE-SIC performs so well with appropriate coding is that all the

n 2 channel coefficients are 'seen' by all the data streams. In a decorrelator or MMSE

without SIC, each data stream is affected by only n coefficients, hence it is not pos-

sible to reach a higher diversity gain. However, it might be possible to increase the

outage probability performance and still use a decorrelator or MMSE without SIC.

This can be achieved in a variety of ways, but the underlying idea in all of them is

to average over multiple path gains to increase reliability.

To facilitate how averaging over more channel gains might help, imagine a block

fading scenario with multiple symbol transmissions happening within the same chan-

nel coherence block. In the fast fading scenario, we exploit the randomness of the

channel by coding over many independent channel realizations in order to reach the

ergodic capacity. We could do the same trick for the block-fading channel if the

channel gains of different symbol transmissions were different. An extreme case of

this would be to get a new channel every time we transmit a symbol. Most of the

time, the coherence block is quite long, so we can segment it into equal length short

sub-blocks. Then, by coding over N short sub-blocks within the original block, we
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get an error only if a codeword is confused with another codeword in all sub-blocks

[6]. And hence, we can say that

PN (P1 \Noutage outage)

where PJltage is the outage probability within a single sub-block (see Appendix A).

Hence, the diversity gain we can expect from a bank of decorrelators is Nn, since the

maximal diversity of single sub-block decorrelator bank is just n. That is, if we can

afford to increase our code length, we can operate at a higher rate by reducing our

diversity gain. The diversity performance offered by coding over N sub-blocks is quite

impressive. This scheme provides an order of N improvement over the single block

scheme evaluated in Chapter 2 equation 2.8. The improvement is caused by having

N independently faded blocks. As N approaches oc, the outage (error) probability

becomes vanishingly small and we can communicate reliably at the ergodic capacity.

Now let us modify the above scenario a bit. We assume we do not have N

independently faded sub-blocks (hence we can never reach the gain above), and that

our coherence block is long enough so that we can transmit multiple times within

a block as before. Even though we cannot have independent and hence perfectly

uncorrelated channel gains for each sub-block, we can have somewhat uncorrelated

channel gains in the case of suboptimal receivers. By coding over these correlated (in

fact highly correlated for the most part) channel replicas, it is possible to decrease

the outage probability and increase the reliability of the system by having each data

sub-stream see more fading coefficients. In effect, some of the fading coefficients that

are not seen in the original system are brought out by having each sub-stream go

through many correlated channel gains. In the remainder of this chapter, we give an

example of a technique that can exploit more of the fading coefficients to decrease the

outage probability compared to decorrelator and MMSE transceivers described in the

previous chapter. The technique we describe uses unitary rotations with joint-coding

in order to improve the diversity performance of these systems. The rotations merely

serve as bringing out some of the fading coefficients that are lost due to nulling the
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Figure 3-1: Depiction of sub-blocks

interference from other sub-streams. The technique we describe cannot be used for

the optimal transceivers, since such transceivers already achieve the best diversity

performance offered by a Rayleigh faded MIMO channel. For a proof of this, see

Appendix B.

In this thesis, we focus on correlated channel coefficients with suboptimal transceiver

architectures unlike the previous work in the area [6]. This problem is challenging to

work with for the following reasons:

" Due to the correlation of channel coefficients, the outage probability cannot be

calculated explicitly.

" The improvement observed in the outage probability, is usually too small to be

captured by diversity analysis but could be important in practice. Therefore a

more precise formulation that goes beyond the diversity analysis is required to

observe the improvement.

3.1 Formulation

Motivated by coding over independent sub-blocks described earlier, we can generate

highly correlated (but not identical) sub-blocks from a given channel matrix and

code over the correlated sub-blocks. We propose randomly rotating the input vector

each time we transmit within each coherence block. We assume the receiver and the

transmitter agree on k rotations at the beginning of transmission, and also that k
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symbols can be transmitted within the coherence time of each block. We will denote

each of the k rotation matrices with Qm, with m being the index of a particular

rotation within the rotation set (1 < m < k).

During each coherence block, the transmitter encodes nt data streams indepen-

dently, and transmits knm symbols, nt symbols a time in k transmissions. The symbol

vector x[m] ceC" at time m contains the symbol for each data stream in one entry.

Then we rotate x[m] with the mth rotation matrix Qm. The receiver upon receiving

the vector y[m]cC'r of entire k sub-blocks, then decodes each data stream using either

the MMSE or the decorrelator. Since the receiver also knows the order of rotations,

it can perfectly recover each of the sub-streams.

For simplicity, we propose choosing k unitary rotation matrices uniformly at ran-

dom. We could have chosen to draw the rotation matrices from any arbitrary dis-

tribution. However, we argue, without proof, that a uniform distribution is at least

optimal in the asymptotic sense. Intuitively, without any prior information about the

channel state, any direction of rotation is as good of a choice as the other. As long

as we do not choose our rotations to be very similar, this scheme works fine.

However choosing k rotation matrices independently at random will not give the

optimal performance for finite k in almost all cases. Since with independent choice

of rotations, there always is the chance that two rotations are arbitrarily close to

each other, hence we cannot get different coefficients from these two rotations. In

other words, one can always come up with better set of rotations, i.e. one that covers

more of the rotation space than the one generated randomly. For example, in the

all real case, we should choose the angle of rotation uniformly between 0 and 27, as

rotating the channel in any direction is good for our purposes. However, when chosen

randomly, any one of these rotation matrices might be similar to another one, as our

selection scheme does not guarantee that this would never happen and fine tuning

on the set of rotation matrices chosen this way is likely to improve the performance.

When k goes to infinity, then our fine tuning will be unable to find a better set of

rotations, hence random generation of rotation matrices will be as good as fine tuning.

These issues will not be discussed in further detail in this thesis, but are interesting
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problems to look at.

By using rotations, we divide a single block into k sub-blocks. In effect, we create

the new channel picture depicted in figure 3-1. However, note that now the Hi's

are not independent from each other whereas before we assumed their independence.

We now give the following example to illustrate how rotations create sub-blocks with

different channel gains.

3.2 An Example: Decorrelator Bank

As an example, consider a decorrelator bank system that does not employ successive

interference cancellation of sub-streams. The channel model is identical to the one

used in section 2.1.1 of Chapter 2. We will assume we have a 2 x 2 square channel,

with all real and deterministic entries. We will later relax this constraint and return

to our original channel.

y=Hx+w

where H = h, h2 w being Gaussian noise with covariance 12.
h 2 1 h 2 2

We further assume that the input data is divided into 2 independent sub-streams

which are transmitted on different antennas. Then the equivalent channel is given

by:

/SNR
y = 2VS gzi + w, i = 1, 2

2

Each g? is the magnitude squared of projection of each user's channel onto a subspace

perpendicular to channels of all other users. For n = 2, with hi = [h11h21]t, h2

[h12 h 221t, gi's are defined as g2 = Ihi - __h2| 12 and g2 = 11h2- 2*hi 2 Now

consider rotating the input x with a unitary rotation matrix Q = . The
q2 1 q2 2
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rotated channel will then be :

2 =hijqji E2_ hiiq2
HQ = E[ : i= I

Note that channel gains for the rotated channel are different from the channel

gains for the original channel. To see this more carefully note that < h'I, h' > with

h'I = [E2_1 hijqj E2 1 h 2jqig] t and h' = hjqi2 Z_ 1 h2 qi 2] tfor the rotated

channel is the following

2 2

< h', h2 ' >= E Z(hihij + h2ih2j)qilqj2
j=1 i=1

< h', h2 ' > _ 1  1(hi hi + 2h2j)qqj2

<h', h' > E Zihi h1j + h2ih2j)qi2q22

User 1 will have h'±2 as its effective channel:

hI12  [ 2 hi(qjj - (Ti2)11 1 21 2 qh - ( q i2 )
21 2<(q4 - qI2)

with = > Note that h11 2 will be equal to h' 2 if Q In. In general, for

different choices of Q, h'I 2 and h'1 will be different from h11 2 and h2 1 1 and hence

the channel capacity obtained will be different.

As seen from this example, the rotated channel's capacity will be different from

the original channel's capacity for different choices of rotation matrix Q. It can be

lower or higher than the capacity given by the original channel. The reasoning behind

the different capacity we obtain for the decorrelator bank is because each sub-stream

in the rotated channel has different channel gains. The channel gains for each sub-

stream in the rotated channel are different since each sub-stream sees a different set

of n coefficients than the original channel. If we can transmit many times with a

fixed channel realization, maybe with appropriate coding, we can recover some of the

diversity advantage by having each sub-stream see more channel coefficients.
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3.3 Outage Analysis

The independence of the Hi's in figure 3-1 allows us to use a random Gaussian code

to code over different blocks to achieve the ergodic capacity of the channel. For the

correlated sub-blocks, we can still use a random Gaussian code for each sub-stream,

however, we can do better by using some other code than the Gaussian, since the

channel gains of different sub-blocks are correlated.

For the analysis to follow, we will assume that we will be using random Gaussian

code in calculating the capacity of the channel since this simplifies the capacity calcu-

lations and gives a lower bound on the performance. We will not discuss the problem

of finding a better code that probably works better with a particular set of rotations,

although it is a quite challenging and interesting problem.

Assuming a n x n channel, by coding over k sub-blocks, we can achieve the average

capacity of a block:

Ck = E log ( + SNR g) (3.1)
j=1 i=1

(i.e. Ck represents the average capacity with the original block broken into k sub-

blocks.) However, gij's are correlated now, and outage analysis is not straightforward.

Calculating the probability density function of the Ck is difficult due to the correlation

of gij's. We can approximate p(Ck < R) using an upper bound, and see how it

compares to outage performance when rotations are not employed P(Cl < R):

p(Ck < R) < P(C1 < kR) P(C2 < kR) ... P(Ck < kR)

with R = rlog SNR, Ck = Zj Ci and C. = DE' (log(1 + SNRg?). Ci's above

are identically distributed, and P(Ci < kR) can be calculated explicitly. Then,
P(Ck < R) < (P(C1 < kR))k. Note that with C 1 = Ci for any i. We claim that

p(Ck < R) is less than P(C1 < R) for sufficiently small R. That is, when operating

at very low rates, the outage probability of a system that employs rotations over k

sub-blocks is lower than that of one that does not employ rotations. The argument
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is straightforward for the decorrelator bank, and we provide in the next section.

3.3.1 Decorrelator: Outage with Rotations

Assuming the receiver uses the decorrelator to recover each sub-stream and assuming

the square channel model of section 2.1.1 , we need to calculate P(Cl < R) and

P(Cl < kR)k.

P(C1 < R) and P(Cl < kR), with R = rlogSNR, can be estimated by the

approximation derived in equation 2.8, provided that kr is sufficiently small. This

implies that if the number of sub-blocks, k, is small, then

P(C < kR) _1n2 (kr)nlSNRkr (3.2)
K2SNR) lnSNR

Now for (P(C' < kR))k will be less than P(Cl < R) if we are operating at the outage

tail. By equating P(Cl < kR)k to P(C1 < R), and solving for r we find that

P(Cl < kR)k < P(C1 < R) (3.3)

if 0 < r < e-W(k,n,SNR) where W(z) is a Lambert's W function. W(k, n, SNR) will

be finite and positive for finite k, n and SNR, but will tend to infinity for arbitrarily

larger k, n or SN R. This means that as SN R goes to infinity, our approximation and

probability inequality 3.3 is valid in a vanishingly small region.

Assuming we are operating in outage tail defined above and k is small, the outage

probability for the rotation system given in equation 3.2 will have a diversity order

of kn. This is a very promising gain, however there are number of things that need

to emphasized. The diversity order kn will be valid for only small k, e.g. k = 2, and

it would not scale linearly with increasingly large k. The reasoning for this is simple.

The probability approximation we used P(C1 < kR) will only be valid if kr is not

significantly larger than r, as the probability approximation we calculated is valid for

r ~ 0. In other words, the performance improvement will not scale linearly, but settle

after a small number of rotations have been used. For example, in an actual system,
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using 4 rotations will have some performance benefit, whereas using 64 rotations will

improve very little compared to 4 rotations.

The analogous analysis for the MMSE transceiver is difficult. The channel gains.

g s, that belong to each rotated channel replica are already correlated with each

other. Hence an analysis like the above gives only a very coarse estimate, and cannot

capture the additional benefit of using the MMSE transceivers. A more rigorous

analysis involving Chebyshev type of tail bounds did not give enough accuracy to

capture the effect of the MMSE rotations. Therefore, we omit the analysis here and

provide a set of simulations demonstrating the reduction in the outage probability for

the MMSE transceivers.

3.3.2 Simulation Results

In this section, we provide MATLAB simulation results for the decorrelator and the

MMSE transceiver architectures. From here on we will refer to a system that uses

n sub-blocks and hence rotations as an n-rotation system. In our simulations, we

used the channel model of equation 2.1, and assumed H to be consisting of circularly

symmetric Gaussian entries with unit variance (i.e. hkj = Xkj -+ i Yk 3 with Xkj, Yk 2 ~

A (0, >)). We also assumed unit noise covariance, S [wwt] = Lt. The n unitary

rotations used were generated uniformly in random and same set of rotations was

used for the MMSE and the decorrelator.

Figure 3.3.2 and 3.3.2 show the distribution of a 4-rotation system capacity com-

pared to the distribution of a no rotation system capacity for the decorrelator and the

MMSE transceivers respectively. Note that for both the decorrelator and the MMSE

transceivers, the distribution of 4-rotation system lies under the no-rotation curve

near R ~ 0.

Figure 3.3.2 shows the 1% outage capacity for 4-rotation MMSE and decorrelator

systems. 1% outage capacity refers to the capacity point when the outage probability

is 1. The improvement we see in the MMSE transceiver is higher at high SNR, and

almost negligible at low SNR. We will discuss the reasons for this in the next chapter.
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Figure 3-2: Decorrelator 4-rotation capacity distribution
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Figure 3-3: MMSE 4-rotation capacity distribution
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Chapter 4

Geometric Analysis

The previous section laid out the foundations of rotation scheme and demonstrated

its impact on the outage probability. If we look at equation 3.1, we see that for a

rotation system to perform better than a regular system, for a particular realization in

outage, at least one of our rotations should give us a sufficiently high capacity so that

the average capacity is greater than the target data rate. Put slightly differently, for

a rotation to help, we must be facing a channel realization, that supports the target

data R for sure with optimal transceivers and furthermore also supports the data

rate with a right rotation with sub-optimal transceivers, but is in outage due to poor

arrangement of individual channels. If the channel is in outage because of deep fade,

there is nothing a rotation can do to get it out of outage. In this section, we will be

using the term "channels" to refer to the sub-channels belonging to virtual users, i.e

the columns of channel matrix H.

This raises an interesting question, for a particular realization of channel matrix,

how many of k rotations might take us out of outage? More importantly, what kind

of channel realizations can be improved by rotations? That is, with some channel

realizations no matter how the channel is rotated, there will be outage, whereas with

some of them almost all of the rotations will help. Are these channel events different

for the MMSE and the decorrelator?

In this section, we describe in which channel events rotations become useful. Our

treatment will be focused on the decorrelator and the MMSE architectures. There
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are several reasons why rotations can help in moving a channel out of outage. The

decorrelator projects the signal of each user, into a subspace perpendicular to all

other users. The obvious way a rotation might help, is to make the channels of each

user perpendicular to other channels. In that way, less of the signal content will be

thrown away, and a higher capacity would be reached. The less obvious is how a

rotation might effect capacity when the channels of users are almost perpendicular

to each other. This happens by redistribution of channel gains between channels,

and can have some capacity impact as we describe later on. With the first case we

mentioned, we would expect most of the k rotations to improve our performance, as

the rotations will change the relative directions of the channels. However, with the

second case, when the channels are almost perpendicular, we need a 'lucky' rotation

to tune the channel coefficients in the right way in order to maximize the capacity

achieved. Therefore, we would expect this to be a much less likely event, considering

that we have finite amount of rotations.

The above statements are valid for the MMSE transceiver as well at relatively high

SNR, but how does a rotation-augmented MMSE transceiver behave when operating

at low SNR?

With the equivalent channel model given in chapter 2, we have the following

maximization problem:

n

max 1 (log(1 + SN Rg2))
QQt=QQ-:,=In =

with g2 are channel gains derived from rotated channel matrix HQ as given in Chapter

2. The solution to the above problem can be found by setting up the appropriate

Lagrangian. The solution turns out to be very similar to the water-filling solution for

the MIMO channel, with the obvious modification that we provide equal power to

each eigenmode. The maximizing rotation Qmax turns out be related to the singular

value decomposition of channel matrix H:

H = UAVt
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where U and V are unitary matrices, and A is a real diagonal matrix. Then we have

Qmax =V. By a rotation of V we create n sub-channels which are all orthogonal

to each other. To see this note that the columns of matrix UA are identical to the

columns of U, except a scaling of Ai, where Ai's are the singular values of H and are

the diagonal entries of the matrix A. The columns of matrix U are orthogonal to each

other as U is unitary, and scaling the columns with a real constant will not change

their orthogonality. It is also true that any matrix A that has its columns orthogonal

to each other, can be represented as a product of a unitary matrix U and a diagonal

matrix A that contains the singular values of A. Hence, UA always has orthogonal

columns.

We can set up the same problem, to minimize the capacity expression, which

would give us the worst case Q. The actual solution of the above problem is of little

relevance. The important thing is that there is a maximizing rotation, Qmax, with

an associated maximum capacity CQm., and a minimizing rotation, Qmin with an

associated minimum capacity Camin. Surely, these maximum and minimum capacities

are with respect to the sub-optimal architectures being used and do not represent the

true capacity of the channel at hand. Note that it is always true that CQ m

CQrnax Coptimai, where Coptimai is the capacity of an optimal system.

When Qmax = In, then our original channel is already good, and most of our

rotations will end up giving a smaller channel capacity. Similarly, with Qm , = In,

our original channel is the worst possible and we can only improve by using rotations.

A channel realization that can be improved by rotations necessarily has CQmin <

R < CQmax. The probability of improvement via rotations increases as CQmax - R

increases at the expense of R - Ca . If CQx - RI > IR - CQrni, then with

our k rotations we have more chance of falling above outage than falling below on

average. One can think of this as a dart game, as the target gets bigger the chances

of hitting it increases. Note that, with CQra. ~ R, we can almost be certain that the

rotations will not be helpful, as it is almost sure that the particular rotation Qmax is

not within our original set of rotations. This is depicted in figure 4-1. The pie chart

on the left represents the scenario where the channel is above the outage rate only in
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C< R

C< R

Figure 4-1: Depiction of outage event on rotation space

a small portion of the rotation space. With a uniformly distributed rotation set, we

are unlikely to improve under these conditions. The chart on the right represents the

opposite scenario where the channel is above outage rate almost in all of the rotation

space. Under such conditions, almost of the rotations will bring the channel out of

outage.

4.1 Decorrelator

Now we turn to the decorrelator. For the decorrelator, when we say that a channel

realization is in outage, we mean that the data rate rate supported by the channel

with the sub-optimal decorrelator transceiver is less than some target rate R. For

rotations to help increase the rate supported, the channels belonging to virtual users

must almost be parallel to each other. A rotation which makes these channels less

parallel will surely improve the rate supported by the channel. The reasoning follows

from the fact that maximizing rotation Qmax makes the channel look like n orthogonal

channels. Hence if the channels are not orthogonal to begin with, using the right set

of rotations we can improve.

For channels that are perfectly parallel, the gain would be the most, as then most

of the rotations will make them non-parallel, and there is some room for improvement.
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The amount of improvement depends on how good a channel realization we are facing.

If Cmax~ R, then our rotations will most likely not help, as each of the terms making

up the average capacity can only get as large as R, and with a well-chosen rotation set

we would expect each rotation to give a different rate. With an evenly spaced rotation

set, the aim is to hit the channel realizations with their unrotated capacity somewhere

between CQmin and CQma. Therefore, by bringing such channel realizations out of

outage, we reduce the number of channel realizations that are in outage with the

original channel.

For channel realizations that have their columns perfectly orthogonal, rotations

will most likely hurt. The maximizing rotation in such cases is identity matrix, and

therefore almost all the rotations within our set will decrease individually, and natu-

rally, the average rate of the block will also decrease. However, this is not performance

reducing in terms of outage probability. Since our goal is to get a channel realization,

which is already in outage, out of outage, we do not affect the number of channel

realizations that are in outage in. Channel realizations, with orthogonal columns,

that were already in outage, stay in outage.

In the earlier sections we argued that rotations can improve some channel realiza-

tions. Following the same logic, one can argue that rotations can hurt in the same

way. However, even though this statement is true for some channel realizations, it

is a secondary effect in terms of the number of channel realizations that fall into

this category. These are the channel realizations for which Qmax is identity, and

CQmax R. The probability of facing such a channel realization is low compared

to the probability of facing a channel realization, whose columns are almost parallel.

Hence, even though, we lose some channel realizations to outage with rotations, the

number of realizations we gain is much larger.

This is illustrated in the scatter plot of figure 4-2. The simulation is carried

out in MATLAB, with 2 x 2 channel matrix H having all real entries that are i.i.d

Gaussian with unit variance. The covariance matrix of noise was also assumed to be

identity. The x-axis on the plot, is the angle between columns of H (in degrees), and

y-axis represents the capacity of a 4-rotation system. Each of the stars and diamonds
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Figure 4-2: Decorrelator rotation capacity versus 0

represents a channel realization, with the x-coordinate representing the angle between

the columns of H prior to rotation. The stars represent the capacity of the channel

realization prior to rotation, and diamonds represent the capacity after 4-rotations

and averaging. The black line represent the target data rate R. As it can be seen,

most of the channel realizations that are brought above the target rate are those that

have their columns almost parallel to each other. There is almost no improvement

when the columns are perpendicular.

4.2 MMSE

The MMSE transceiver maximizes SINR ratio for each user. It takes into account

how strong the interference from other streams are, and if the interference is not

strong it does not ignore the signal content in the direction of interference. For

the decorrelator transceiver the relative directions of the signals belonging to each

user is the most important channel realization characteristic determining the channel
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capacity. However, for the MMSE transceiver this effect is not as significant, as the

MMSE also checks how strong of an interference is faced by each stream prior to

nulling operation. Therefore, although rotations have some impact on the channel

capacity of a realization, through changing the relative directions of streams, this

effect is not as significant as the one we observe in the decorrelator. Hence the

improvement we see on outage probability due to rotations and averaging is not

as significant in the MMSE transceiver, since the channel gains do not show much

variation for different rotations. The MMSE extracts almost all the gain from the

channel realization. The rotations are merely providing some of the gain lost due

to the successive interference cancellation. As we have seen MMSE-SIC achieves the

mutual information of the channel for every realization of the channel matrix, hence

rotations cannot change the capacity of sub-blocks at all.

As the SINR for each sub-stream increases, the effect of rotations become more

important for the MMSE transceiver. In general, as SNR -- oc, the MMSE starts

behaving more like the decorrelator, and hence all the effects described in the previous

section about the decorrelator applies to the MMSE. As we lower the SINR the gain

we can get from using an n-rotation system decreases, and this is due to the MMSE

transceiver already doing a good job in extracting almost all the gain from the channel

realization.

This is illustrated in the scatter plot of figure 4-3. The simulation is carried out

in MATLAB, with 2 x 2 channel matrix H having all real entries that are i.i.d Gaussian

with unit variance. The covariance matrix of noise was also assumed to be identity.

The x-axis on the plot, is the angle between two columns of H (in degrees), and y-axis

represents the capacity of the system. The black line represent the target data rate

R. As it can be seen, rotations do not improve many channel realizations for MMSE

at low SNR. The scatter plots of figure 4-4, show the effect of increasing SNR per

sub-stream. As it can be seen, the MMSE scatter plots start looking more like the

scatter plots of the decorrelator as SNR is increased.
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Chapter 5

Conclusions

We introduced a scheme that reduces the probability of outage for sub-optimal tran-

ceiver architectures in slow fading channels. The scheme we describe uses unitary

rotations combined with coding over correlated channel replicas in order to decrease

the outage probability. The exact characterization of the amount of diversity gain is

difficult due to the correlated channel gains. We provided simple approximations in

order to quantify this gain.

We also explained how a rotation system helps in the case of the decorrelator

and the MMSE tranceivers. In the case of the decorrelator, the gain achieved by the

rotation system is higher compared to the MMSE.
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Appendix A

Decorrelator Diversity

A.1 Diversity: Sub-block coding

As described in chapter 3, if we code over N sub-blocks the channel will only be in

outage if the overall sum capacity of N sub-blocks is less than some rate NR (the

rate is normalized here since we are transmitting N times). The average capacity of

a sub-block is then:

Cm = log (1 +SNRgy)
i=1 i=1

Assuming that the channel gains are independent for different sub-blocks, we can

reduce the capacity expression to a single summation. The outage probability is then

P ( I , log (1 + SN Rg?) < R) with R = r log SN R. We have already calculated

the outage probability of such a channel in chapter 2. The outage probability is given

by 2.8:

pN _1n_ 2 Nn (Nr)Nn-SNR Nr

outage 2SNR) lnSNR

and hence the maximal diversity order reached is Nn.
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Appendix B

Optimal Receivers with Rotations

To see that the capacity of a MIMO channel using an ideal receiver architecture

is invariant to rotations or permutations when the channel matrix H is circularly

symmetric, we note that the mutual information between input and output of the

MIMO channel can be written as :

I(x; y) = H(y) - H(ylx)

assuming x is zero-mean and satisfies E[xtx] < P and that S[xxt] = Q, then y is

zero-mean with covariance E[yyt] = HQHt + I,,. The choice of y that maximizes

the entropy is circularly symmetric complex Gaussian [3] . The mutual information

is then given by:

I(x; y) = log (det(In, + HQHt)) (B.1)

This is the channel capacity for a n, x nt MIMO channel with channel matrix H. For

general distributions of H, we do not know the optimal distribution of Q. However,

it turns out for isotropic H, the optimal distribution of Q turns out to be identity

Q = ,, in the lack of CSI. So the mutual information is thus log det(I + H Ht)

. Now to prove that rotations cannot improve performance for optimal receivers for

Rayleigh fading channels, it suffices to note that (HI)(HII)t = HHt for any unitary

matrix I. This also makes sense from an intuitive point of view. Since the channel is
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symmetric in each direction and since we do not know the realization of channel, there

is no benefit one can expect from rotating the channel in any particular direction. So

any scheme that achieves log(det (I + H Ht)) for each realization of H, cannot benefit

in any way from rotating the input vector. In fact, such schemes are called outage

optimal, since they can reach the full diversity advantage provided by the MIMO

channel. For other distributions of H this might or might not be true.
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