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Abstract
Classical random matrix models are formed from dense matrices with Gaussian en-
tries. Their eigenvalues have features that have been observed in combinatorics, sta-
tistical mechanics, quantum mechanics, and even the zeros of the Riemann zeta func-
tion. However, their eigenvectors are Haar-distributed-completely random. There-
fore, these classical random matrices are rarely considered as operators.

The stochastic operator approach to random matrix theory, introduced here, shows
that it is actually quite natural and quite useful to view random matrices as random
operators. The first step is to perform a change of basis, replacing the traditional
Gaussian random matrix models by carefully chosen distributions on structured, e.g.,
tridiagonal, matrices. These structured random matrix models were introduced by
Dumitriu and Edelman, and of course have the same eigenvalue distributions as the
classical models, since they are equivalent up to similarity transformation.

This dissertation shows that these structured random matrix models, appropri-
ately rescaled, are finite difference approximations to stochastic differential operators.
Specifically, as the size of one of these matrices approaches infinity, it looks more and
more like an operator constructed from either the Airy operator,

d2
A = d -x,

or one of the Bessel operators,

d a
= x-2 dx + /Y

plus noise.
One of the major advantages to the stochastic operator approach is a new method

for working in "general " random matrix theory. In the stochastic operator ap-
proach, there is always a parameter /3 which is inversely proportional to the variance
of the noise. In contrast, the traditional Gaussian random matrix models identify
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the parameter p with the real dimension of the division algebra of elements, limiting
much study to the cases p = 1 (real entries), P = 2 (complex entries), and /3 = 4
(quaternion entries).

An application to general 3 random matrix theory is presented, specifically re-
garding the universal largest eigenvalue distributions. In the cases P = 1, 2, 4, Tracy
and Widom derived exact formulas for these distributions. However, little is known
about the general P case. In this dissertation, the stochastic operator approach is
used to derive a new asymptotic expansion for the mean, valid near P = o. The
expression is built from the eigendecomposition of the Airy operator, suggesting the
intrinsic role of differential operators.

This dissertation also introduces a new matrix model for the Jacobi ensemble,
solving a problem posed by Dumitriu and Edelman, and enabling the extension of
the stochastic operator approach to the Jacobi case.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics

4



For Mom and Dad.

5



6



Acknowledgments

Greatest thanks go to my family: to Mom for the flash cards, to Dad for the computer,

to Michael for showing me how to think big, and to Brittany for teaching me that

it's possible to be both smart and cool. Also, thanks to Grandma, Granddaddy, and

Granny for the encouragement, and to Mandy for all the pictures of Hannah.

To my adviser, Alan Edelman, I say, thanks for teaching me how to think. You

took a guy who said the only two things he would never study were numerical analysis

and differential equations, and you turned him into a Matlab addict.

To Charles Johnson, thank you for looking after me. You taught me that I could do

real mathematics, and your continuing generosity over the years will not be forgotten.

To my "big sister" Ioana Dumitriu, thanks for all your knowledge. You always

had a quick answer to my toughest questions. As for my "brothers," I thank Raj

Rao for many interesting-and hard-problems and Per-Olof Persson for humoring

my monthly emails about his software.

At Virginia Tech, Marge Murray instilled a love for mathematics, and Dean Riess

instilled a love for the Mathematics Department. Go Hokies!

Finally, I wish the best for all of the great friends I have made at MIT, including

Andrew, Bianca, Damiano, Fumei, Ilya, Karen, Michael, and Shelby.

7



8



Contents

1 A hint of things to come

2 Introduction
2.1 Random matrix ensembles and scaling limits
2.2 Results. ....................
2.3 Organization .................

3 Background
3.1 Matrix factorizations.
3.2 Airy and Bessel functions .........
3.3 Orthogonal polynomial systems.

3.3.1 Definitions and identities.
3.3.2 Orthogonal polynomial asymptotics
3.3.3 Zero asymptotics.
3.3.4 Kernel asymptotics.

3.4 The Selberg integral ............
3.5 Random variable distributions.
3.6 Finite differences ..............
3.7 Universal local statistics ..........

3.7.1
3.7.2
3.7.3

Universal largest eigenvalue distribut
Universal smallest singular value dist
Universal spacing distributions . . .

33
. . . . . . . . . . . . . . . 33

.............. . .. 35

. . . . . . . . . . . . . . . 35

. . . . . . . . . . . . . . . 35

. . . . . . . . . . . . . . . 38

. . . . . . . . . . . . . . . 39

. . . . . . . . . . . . . . . 40

. . . . . . . . . . . . . . . 42
. . . . . . . . . . . . . . . 42

. . . . . . . . . . . . . . . 43
. . . . . . . . . . . . . . . 44

ions ............ 45
ributions ......... 46.............. . .47

4 Random matrix models
4.1 The matrix models and their spectra .........
4.2 Identities .........................

5 The Jacobi matrix model
5.1 Introduction.

5.1.1 Background.
5.1.2 Results .

5.2 Bidiagonalization ....................
5.2.1 Bidiagonal block form.

9

15

21
24
29
31

49
49
51

55
55
57
59
62
62

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .



CONTENTS

5.3
5.4
5.5

5.2.2 The algorithm .
5.2.3 Analysis of the algorithm .
Real and complex random matrices .........
General /3 matrix models: Beyond real and complex
Multivariate analysis of variance ...........

6 Zero temperature matri
6.1 Overview .
6.2 Eigenvalue, singular vw
6.3 Large n asymptotics

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

Jacobi at the e
Jacobi at the ri
Jacobi near one
Laguerre at the
Laguerre at the
Hermite near zi
Hermite at the

7 Differential operator limits
7.1 Overview .
7.2 Soft edge .

7.2.1 Laguerre at the right edge
7.2.2 Hermite at the right edge

7.3 Hard edge.
7.3.1 Jacobi at the left edge
7.3.2 Jacobi at the right edge
7.3.3 Laguerre at the left edge

7.4 Bulk ................
7.4.1 Jacobi near one-half .
7.4.2 Hermite near zero .....

......... . .65
. . . . . . . . . . .67

. . . . . . . .. I . .69

......... . .. 73......... . .76
79x models

. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

dlue, and CS decompositions .......... . 82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .......87

eft edge . . . . . . . . . . . . . . . . . . . 87

.ght edge ................... .. 88
e-half ....................... 88
eleft edge ................... .. 90
right edge .................... 91

ero . . . . . . . . . . . . . . . . ...... 91

right edge .................... 94

95
. .. . . . . . . . . . . . . . . . . . . 96

.. . .. . . . . .. . . .. . . . . . .97

. . . .. . . . . .. . . .. . . . . . .97

.. . .. . . . . . . . . . .. . . . . .99.................... .101.................... .101.................... .104.................... .104.................... .106.................... .106.................... .108
8 Stochastic differential operator limits

8.1 Overview .
8.2 Gaussian approximations .
8.3 White noise operator .........
8.4 Soft edge ................

8.4.1 Laguerre at the right edge
8.4.2 Hermite at the right edge
8.4.3 Numerical experiments ....

8.5 Hard edge.
8.5.1 Jacobi at the left edge ....
8.5.2 Jacobi at the right edge . . .
8.5.3 Laguerre at the left edge . . .

111
........ ..112

........ ..116

........ ..120

........ ..120

........ ..120

........ ..122

........ ..122

........ ..123

........ ...123

........ ...124

........ ...124

10

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .



CONTENTS

8.5.4 Numerical experiments . .
8.6 Bulk ................

8.6.1 Jacobi near one-half . . .
8.6.2 Hermite near zero .....
8.6.3 Numerical experiments

9 Application: Large f3 asymptotics
9.1 A technical note .
9.2 The asymptotics
9.3 Justification ............
9.4 Hard edge and bulk ........

A Algorithm for the Jacobi matrix model

Bibliography

Notation

Index

125
126

126
129
131

133
133
134
136
140

143

147

151

11

....................................................................................................

................................................................................

154



12 CONTENTS



List of Figures

1.0.1 Jacobi matrix model ............................. 16
1.0.2 Laguerre matrix models . . . . . . . . . . . . . . . . . . . . .. 17
1.0.3 Hermite matrix model . .......................... 17
1.0.4 Airy operator ................................ 18
1.0.5 Bessel operators . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 19
1.0.6 Sine operators ............................... 20

2.1.1 Level densities . . . . . . . . . . . . . . . . .. . . . . . . . . . . 25
2.1.2 Local statistics of random matrix theory . ............... 27
2.1.3 Local behavior depends on the location in the global ensemble . .... 28

5.2.1 Bidiagonal block form .......................... 63
5.2.2 A related sign pattern. .......................... 66

6.0.1 Jacobi matrix model ( = o). . ...................... 80
6.0.2 Laguerre matrix models ( = o). ..................... 81
6.0.3 Hermite matrix model ( = o) ...................... 81

8.1.1 Largest eigenvalue of a finite difference approximation to the Airy op-
erator plus noise ............. ................ 112

8.1.2 Smallest singular value of a finite difference approximation to a Bessel
operator in Liouville form plus noise .................. 113

8.1.3 Smallest singular value of a finite difference approximation to a Bessel
operator plus noise . . . . . . . . . . . . . . . . . ......... 114

8.1.4 Bulk spacings for a finite difference approximation to the sine operator
plus noise . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 115

8.2.1 A preliminary Gaussian approximation to the Jacobi matrix model. 118
8.2.2 Gaussian approximations to the matrix models ... ........ 119
8.6.1 Bulk spacings for two different finite difference approximations to the

sine operator in Liouville form plus noise . ................ 128

9.2.1 Large , asymptotics for the universal largest eigenvalue distribution. 135
9.4.1 Mean and variance of the universal smallest singular value distribution. 141
9.4.2 Mean and variance of the universal spacing distribution ...... . 142

13



14 LIST OF FIGURES

A.O.1Example run of the Jacobi-generating algorithm on a non-unitary matrix. 146
A.0.2Example run of the Jacobi-generating algorithm on a unitary matrix. 146



Chapter 1

A hint of things to come

Random matrix theory can be divided into finite random matrix theory and infinite

random matrix theory. Finite random matrix theory is primarily concerned with

the eigenvalues of random matrices. Infinite random matrix theory considers what

happens to the eigenvalues as the size of a random matrix approaches infinity.

This dissertation proposes that not only do the eigenvalues have n - o limiting

distributions, but that the random matrices themselves have n - oc limits. By

this we mean that certain commonly studied random matrices are finite difference

approximations to stochastic differential operators.

The random matrix distributions that we consider model the classical ensembles

of random matrix theory and are displayed in Figures 1.0.1-1.0.3. The stochastic

differential operators are built from the operators in Figures 1.0.4-1.0.6.1 These six

figures contain the primary objects of study in this dissertation.

1The reader may find the list of notation on pp. 151-153 helpful when viewing these figures.
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LAGUERRE MATRIX MODEL (square)

X(a+n)f3

-X(n-1)i3 X(a+n-1)0 / > 
Lao- -X(n-2)3 X(a+n-2) a > -1

n-by-n
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-X(n-1)f X(a+n-2)i 3 > 
M: / -X(n-2)i X(a+n-3)3 a > 

·X .. . n-by-(n + 1)

-Xf Xa/3

Figure 1.0.2: The Laguerre matrix models. Xr denotes a chi-distributed random
variable with r degrees of freedom. Both models have independent entries. The
square model was introduced in [6].

HERMITE MATRIX MODEL

v/2G X(n-1),

X(n-1),3 v G X(n-2),3

2d a |X20 v2G X: 

Figure 1.0.3: The Hermite matrix model. Xr denotes a chi-distributed random vari-
able with r degrees of freedom, and G denotes a standard Gaussian random variable.
The matrix is symmetric with independent entries in the upper triangular part. The
model was introduced in [6].



A HINT OF THINGS TO COME

Figure 1.0.4: The Airy operator.

AIRY OPERATOR

Operator:

d2

Boundary conditions:

f(0)=0, lim f(x)=o

Eigenvalue decomposition:

A [Ai(x + Ok)] = (k [Ai(x + Ok)], > ¢1 > 2 > . . zeros of Ai
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BESSEL OPERATOR

Operator:

d
a = -2 d +dx

a d
dx

Boundary conditions:

Ja : f- 
(i) f(1) = 0, (0) = 0

(ii) g(0) = g(1) = 0

Singular value decomposition:

(i) Ja[a((k V)I = ¢k a+1 ((kV
< < 2 < ... zeros of ja

a+l
on (0, 1]

-)] , Ja* a+l (kx/ )] = (k a ((k )]

Ja[ja(kVX)] = (k[ja+l((k/)] , Ja*[ja+l((k
(ii) < (1 < 2 < ... zeros of ja+l

ija[Xa/2] = 0

X] = (k [ja((k V)]

BESSEL OPERATOR (Liouville form)

Operator:

- =-d
Ja= - (ady

1 *d
j, a

Y dy

1
+(a+ ) -on (0,1]

Boundary conditions:

Ja : f 9

(i) f(1) = 0, g(0) = 0
(ii) g(0) =g(1) =0

Singular value decomposition:

(i) Ja[ja((kY)] = (k[1Yja+l((kY)], Ja*[Vja+l(1(kY)1
0 < 1 < 2 <... zeros of ja
f Ja[V/a((kY)] = (k[V/Yja+l((kY)], Ja[Vja+l((kY)] = (k['/ja((kY)]

(ii) 0 < 1 < (2 < ...-- zeros of ja+l

j Ja[Xa+l/ 2] = 0

Figure 1.0.5: Two families of Bessel operators, related by the change of variables
x = y2. The families are parameterized by a > -1.

= (k[,I-Yj((kY)
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SINE OPERATOR

Operator:

-1/2 = -2 ddx
d

dx

Boundary conditions:

-1/2 : f -9 g

(i) f(1) = O, g(O) = 0
(ii) g(0) =g(1) =0

Singular value decomposition:

r COS(k 1 . [ sin(k/X
J-1/2 [ x1/4 ] = (k [ x1/4 
(k = (k - ), k - 1,2,...

C(coskViX skL
- - 01/2 (k [ 1/4

(k = k, k = 1,2,...

/2[X -1 / 4] = 0

1
+ on (0, 1]

sin([kVX COS(k ')X

[ sin(ZkV%) 1 cos(k 1
,* /4

SINE OPERATOR (Liouville form)

Operator:

- d
3-1/2 =-dy *1/2J-1/2 = d on (0, 1]

Boundary conditions:

'f-1/2 : f "- 9
(i) f(l) = 0, g(0) = 0

(ii) g(0) = (1) = 0

Singular value decomposition:

(i) { J-1/2[cos((k)] = (k[sin((ky)], *l1/2[sin((kY)] = (k[Cos((kY)]
( = (k - ), k = , 2,...

f -l/2[coS((ky)] = (k[sin((ky)], _1*/ 2[sin((k)] = -k[COS(kyi)]
(ii) (k = 7k, k= 1,2...

-1/2[1] = 0

Figure 1.0.6: Two sine operators, related by the change of variables x = y2. These
operators are special cases of the Bessel operators.
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Chapter 2

Introduction

In the physics literature, random matrix theory was developed to model nuclear

energy levels. Spurred by the work of Porter and Rosenzweig [29] and of Dyson [8],

the assumption of orthogonal, unitary, or symplectic invariance (A - U*AU) quickly

became canonized. As Bronk described the situation, "It is hard to imagine that the

basis we choose for our ensemble should affect the eigenvalue distribution" [3]. Even

the names of the most studied random matrix distributions reflect the emphasis on

invariance, e.g., the Gaussian Orthogonal, Unitary, and Symplectic Ensembles (GOE,

GUE, GSE).

The starting point for this dissertation is the following notion.

Although physically appealing, unitary invariance is not the most useful

choice mathematically.

In all of the books and journal articles that have been written on random matrix

theory in the past fifty years, random matrices are rarely, if ever, treated as operators.

The eigenvalues of random matrices have become a field unto themselves, encompass-

ing parts of mathematics, physics, statistics, and other areas, but the eigenvectors

are usually cast aside, because they are Haar-distributed-quite uninteresting. Haar-

distributed eigenvectors stand in the way of an operator-theoretic approach to random

21



CHAPTER 2. INTRODUCTION

matrix theory.

Fortunately, new random matrix models have been introduced in recent years,

pushed by Dumitriu and Edelman [4, 6, 19, 21]. In contrast to the dense matrix

models from earlier years, the new random matrix models have structure. They are

bidiagonal and symmetric tridiagonal, and hence are not unitarily invariant. Indeed,

the eigenvectors of these matrix models are far from Haar-distributed. As will be

seen, they often resemble special functions from applied mathematics, specifically,

the Airy, Bessel, and sine functions. This eigenvector structure is a hint that perhaps

random matrices should be considered as random operators.

What develops is the stochastic operator approach to random matrix theory:

Rescaled random matrix models are finite difference approximations to

stochastic differential operators.

The stochastic differential operators are built from the Airy, Bessel, and sine operators

displayed in the previous chapter.

The concrete advantage of the stochastic operator approach is a new method for

working in "general 3" random matrix theory. Although classical random matrices

come in three flavors-real, complex, and quaternion-their eigenvalue distributions

generalize naturally to a much larger family, parameterized by a real number P > 0.

(The classical cases correspond to = 1,2,4, based on the real dimension of the

division algebra of elements.) These generalized eigenvalue distributions are certainly

interesting in their own right. For one, they are the Boltzmann factors for certain log

gases, in which the parameter plays the role of inverse temperature, P = T

This dissertation is particularly concerned with extending local statistics of ran-

dom eigenvalues to general P > 0. Local statistics and their applications to physics,

statistics, combinatorics, and number theory have long been a major motivation for

studying random matrix theory. In particular, the spacings between consecutive

eigenvalues of a random matrix appear to resemble the spacings between consecu-

22
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tive energy levels of slow neutron resonances [22] as well as the spacings between the

critical zeros of the Riemann zeta function [24]. Also, the largest eigenvalue of a ran-

dom matrix resembles the length of the longest increasing subsequence of a random

permutation [2]. The past two decades have seen an explosion of analytical results

concerning local statistics for 3 = 1,2, 4. In 1980, Jimbo et al discovered a connec-

tion between random eigenvalues and Painleve transcendents [16], which Tracy and

Widom used over a decade later to develop a method for computing exact formu-

las for local eigenvalue statistics [34, 35, 36, 37, 38]. With their method, Tracy and

Widom discovered exact formulas for the distributions of (1) the largest eigenvalue,

(2) the smallest singular value, and (3) the spacing between consecutive eigenvalues,1

for commonly studied random matrices, notably the Hermite, or Gaussian, ensem-

bles and the Laguerre, or Wishart, ensembles. With contributions from Forrester

[12, 13], Dyson's threefold way [8] was extended to local eigenvalue statistics: exact

formulas were found for the three cases = 1, 2, 4. These were extraordinary results

which breathed new life into the field of random matrix theory. Unfortunately, these

techniques have not produced results for general /3 > 0.

The stochastic operator approach is a new avenue into the general P realm. Each of

the stochastic differential operators considered in this dissertation involves an additive

term of the form aW, in which a is a scalar and W is a diagonal operator that injects

white noise. In each case, a is proportional to , so that the variance of the noise

is proportional to kT = . This connection between /3 and variance is more explicit

and more natural than in classical random matrix models, where P is the dimension

of the elements' division algebra.

In the final chapter, the stochastic operator approach is successfully employed to

derive a new quantity regarding general local eigenvalue statistics. Specifically,

an asymptotic expansion, valid near 3 = oc, for the mean of the universal largest

eigenvalue distribution is derived.

1These universal statistics arise from the Airy, Bessel, and sine kernels, respectively, in the work
of Tracy and Widom.



CHAPTER 2. INTRODUCTION

2.1 Random matrix ensembles and scaling limits

The three classical ensembles of random matrix theory are Jacobi, Laguerre, and

Hermite, with the following densities on Rn:

Ensemble Joint density (up to a constant factor) Domain

Jacobi Hn 1A(a+1)-1(1- Ai)(b+l)-l1 l< i - (01)l-L=1 -- i - ,
Laguerre e-2 E1i [i 1 il(a1)1 l<i<j<n Ai - Ajl (0, oO)

Hermite e -2 '= 2
1 <i<j<n IAi - Ajl' (-00, c0)

In each case, p may take any positive value, and a and b must be greater than -1.

The name random matrix ensemble at times seems like a misnomer; these den-

sities have a life of their own outside of linear algebra, describing, for example, the

stationary distributions of three log gases-systems of repelling particles subject to

Brownian-like fluctuations. In this statistical mechanics interpretation, the densities

are usually known as Boltzmann factors, and 3 plays the role of inverse temperature,

kT'

Curiously, though, these densities also describe the eigenvalues, singular values,

and CS values of very natural random matrices. (See Definition 3.1.4 for the CS

decomposition.) For example, the eigenvalues of (N + NT), in which N is a matrix

with independent real standard Gaussian entries, follow the Hermite law with P = 1,

while the eigenvalues of (N + N*), in which N has complex entries, follow the

Hermite law with p = 2. Similarly, the singular values of a matrix with independent

real (resp., complex) standard Gaussian entries follow the Laguerre law with /3 = 1

(resp., p = 2) after a change of variables. (The parameter a is the number of rows

minus the number of columns.) If the eigenvalues or singular values or CS values of a

random matrix follow one of the ensemble laws, then the matrix distribution is often

called a random matrix model.

This dissertation is particularly concerned with large n asymptotics of the ensem-

bles. One of the first experiments that comes to mind is (1) sample an n-particle

24



2.1. RANDOM MATRIX ENSEMBLES AND SCALING LIMITS

0 pi/2 0 2*sqrt(n) -sqrt(2*n) 0 sqrt(2*n)
cos- ( 1/2 ) x1/2

(a) Jacobi (b) Laguerre (c) Hermite

Figure 2.1.1: Level densities, n * o0, /, a, b fixed. The level density is the density of
a randomly chosen particle.

configuration of an ensemble, and (2) draw a histogram of the positions of all n

particles. (The particles of an ensemble are simply points on the real line whose

positions are given by the entries of a sample vector from the ensemble.) Actually,

the plots look a little nicer if {cos-1 (v/§\)}i=l,...,n is counted in the Jacobi case and

{/}i=,...,n is counted in the Laguerre case, for reasons that will be apparent later.

As n - oo, the histograms look more and more like the plots in Figure 2.1.1, that is,

a step function, a quarter-ellipse, and a semi-ellipse, respectively. In the large n limit,

the experiment just described is equivalent to finding the marginal distribution of a

single particle, chosen uniformly at random from the n particles. (This is related to

ergodicity.) This marginal distribution is known as the level density of an ensemble,

for its applications to the energy levels of heavy atoms.

For our purposes, the level density is a guide, because we are most interested in

local behavior. In the level density, all n particles melt into one continuous mass.

In order to see individual particles as n -- oo, we must "zoom in" on a particular

location. The hypothesis of universality in random matrix theory states that the local

behavior then observed falls into one of three categories, which can be predicted in the

Jacobi, Laguerre, and Hermite cases by the form of the level density at that location.

Before explaining this statement, let us look at a number of examples. Each example

describes an experiment involving one of the classical ensembles and the limiting
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CHAPTER 2. INTRODUCTION

behavior of the experiment as the number of particles approaches infinity. Bear with

us; seven examples may appear daunting, but these seven cases play a pivotal role

throughout the dissertation.

Example 2.1.1. Let max denote the position of the rightmost particle of the Hermite

ensemble. As n - oo, V/nl/ 6(Amax - %V~) converges in distribution to one of the

universal largest eigenvalue distributions.2 Cases P = 1,2,4 are plotted in Figure

2.1.2(a).3

Example 2.1.2. Let Amax denote the position of the rightmost particle of the La-

guerre ensemble. As n - oo, 2-4/ 3n-1/ 3(ma - 4n) converges in distribution to one

of the universal largest eigenvalue distributions, just as in the previous example.

Example 2.1.3. Let Amin denote the position of the leftmost particle of the Laguerre

ensemble. As n -- o, 2 / Amin converges in distribution to one of the universal

smallest singular value distributions. 4 The cases = 1,2, 4 for a = 0 are plotted in

Figure 2.1.2(b).

Example 2.1.4. Let Amin denote the position of the leftmost particle of the Jacobi

ensemble. As n - oo, 2n X/min converges in distribution to one of the universal

smallest singular value distributions, just as in the previous example. The precise

distribution depends on a and /3, but b is irrelevant in this scaling limit. However,

if we look at 2nv/1 - Amax instead, then we see the universal smallest singular value

distribution with parameters b and /3.

Example 2.1.5. Fix some x E (-1, 1), and find the particle of the Hermite ensemble

just to the right of xv/2. Then compute the distance to the next particle to the

right, and rescale this random variable by multiplying by 2n(1 - x2). As n - oo,

the distribution converges to one of the universal spacing distributions.5 The cases
2These are the distributions studied in [35]. See Subsection 3.7.1.
3In Examples 2.1.1-2.1.7, the behavior is not completely understood when 3 # 1, 2,4. (This is,

in fact, a prime motivation for the stochastic operator approach.) See Chapter 9 for a discussion of
what is known about the general case.

4 These are the distributions studied in [36]. See Subsection 3.7.2.
5These are the distributions studied in [34]. See Subsection 3.7.3.
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u.0
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Ai

-4 -2 0 2 0 1 2 3 4 5 0 2 4 6 8
(a) Universal largest eigen- (b) Universal smallest singular (c) Universal spacing distribu-
value distributions (soft edge). value distributions for a = 0 tions (bulk).

(hard edge).

Figure 2.1.2: Local statistics of random matrix theory. See Section 3.7. Exact for-
mulas are not known for other values of 3.

d = 1,2, 4 are plotted in Figure 2.1.2(c).

Example 2.1.6. Fix some x C (0, 1), and find the particle of the Laguerre ensemble

just to the right of 4nx2, and then the particle just to the right of that one. Compute

the difference VA+ - -A, where A+, A_ are the positions of the two particles,

and rescale this random variable by multiplying by 2v/n(1- x2). As n -* o, the

distribution converges to one of the universal spacing distributions, just as in the

previous example.

Example 2.1.7. Fix some x G (0, ), and find the particle of the Jacobi ensemble just

to the right of (cos x)2, and then the particle just to the right of that one. Compute

the difference cos- ' A/ - cos-'1 Vi;, where A+, A_ are the positions of the two

particles, and rescale this random variable by multiplying by 2n. As n - oc, the

distribution converges to one of the universal spacing distributions, just as in the

previous two examples.

The universal distributions in Figure 2.1.2 are defined explicitly in Section 3.7.

The technique in each example of recentering and/or rescaling an ensemble as

n ---+ o to focus on one or two particles is known as taking a scaling limit.

Although there are three different ensembles, and we considered seven different

scaling limits, we only saw three families of limiting distributions. This is univer-
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0 pi/2 0 2*sqrt(n) -sqrt(2*n) 0 sqrt(2*n)
cos-1 (/2) x1/2

(a) Jacobi (b) Laguerre (c) Hermite

Figure 2.1.3: Local behavior depends on the location in the global ensemble.

sality in action. Arguably, the behavior was predictable from the level densities. In

the first two examples, the scaling limits focused on the right edges of the Hermite

and Laguerre ensembles, where the level densities have square root branch points.

In both cases, the universal largest eigenvalue distributions were observed. In the

next two examples, the scaling limit focused on the left edges of the Laguerre and

Jacobi ensembles, where the level densities have jump discontinuities. In both cases,

the universal smallest singular value distributions were observed. In the final three

examples, the scaling limit focused on the middle of the Hermite, Laguerre, and Ja-

cobi ensembles, where the level densities are differentiable. In these three cases, the

universal spacing distributions were observed.

Hence, scaling limits are grouped into three families, by the names of soft edge,

hard edge, and bulk. The left and right edges of the Hermite ensemble, as well as the

right edge of the Laguerre ensemble, are soft edges. The left and right edges of the

Jacobi ensemble, as well as the left edge of the Laguerre ensemble, are hard edges.

The remaining scaling limits, in the middle as opposed to an edge, are bulk scaling

limits. Scaling at a soft edge, one sees a universal largest eigenvalue distribution;

scaling at a hard edge, one sees a universal smallest singular value distribution; and

scaling in the bulk, one sees a universal spacing distribution. The scaling regimes for

the classical ensembles are indicated in Figure 2.1.3.

I !hard bulk hard! I hard bulk .,soft (soft bulk softl.~~~~~~~ot

I I

I I

I I

I I

I I
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2.2. RESULTS

The central thesis of this dissertation is that the local behavior of the ensembles

explored in Examples 2.1.1-2.1.7 can be modeled by the eigenvalues of stochastic dif-

ferential operators. The stochastic differential operators are discovered by interpreting

scaling limits of structured random matrix models as finite difference approximations.

2.2 Results

Matrix models for the three ensembles are displayed in Figures 1.0.1-1.0.3. The

square Laguerre model and the Hermite model appeared in [6], but the Jacobi model

is an original contribution of this thesis. (But see [19] for related work.)

Contribution 1 (The Jacobi matrix model). When a CS decomposition of the Jacobi

matrix model is taken,

Jfi= [U1
C S 1

U2--S C [

T
V1

V2 -

the diagonal entries of C, squared, follow the

JQb "models" the Jacobi ensemble.

See Definition 3.1.4 for a description of the

model is developed in Chapter 5. The need for

of the problem are discussed there.

law of the 3-Jacobi ensemble. Hence,

CS decomposition. The Jacobi matrix

a Jacobi matrix model and the history

The differential operators A, J, and fJa in Figures 1.0.4-1.0.6 have not been

central objects of study in random matrix theory, but we propose that they should

be.

Contribution 2 (Universal eigenvalue statistics from stochastic differential opera-

tors). Let W denote a diagonal operator that injects white noise. We argue that

* The rightmost eigenvalue of A + W follows a universal largest eigenvalue

distribution (Figure 2.1.2(a)).
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CHAPTER 2. INTRODUCTION

* The smallest singular value of Ja + W follows a universal smallest singular

value distribution (Figure 2.1.2(b)), as does the smallest singular value of Ja +

* The spacings between consecutive eigenvalues of

-1/2 1 2wll v/2 1

L*12 j Xx2W1 2 2W22

follow a universal spacing distribution (Figure 2.1.2(c)). Here, Wll, W12, W22

denote independent noise operators.

See Chapter 8 for more details, in particular, the role of boundary conditions.

These claims are supported as follows.

* Scaling limits of the matrix models are shown to be finite difference approxi-

mations to the stochastic differential operators. Therefore, the eigenvalues of

the stochastic operators should follow the n -+ o limiting distributions of the

eigenvalues of the matrix models.

* In the zero temperature case ( = oo), this behavior is confirmed: The eigen-

values and eigenvectors of the zero temperature matrix models are shown to

approximate the eigenvalues and eigenvectors of the zero temperature stochas-

tic differential operators.

* Numerical experiments are presented which support the claims.

Above, we should write "eigenvalues/singular values/CS values" in place of "eigen-

values."

Finding the correct interpretation of the noise operator W, e.g., It6 or Stratonovich,

is an open problem. Without an interpretation, numerical experiments can only go so

far. Our experiments are based on finite difference approximations to the stochastic
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2.3. ORGANIZATION

operators and show that eigenvalue behavior is fairly robust: different finite difference

approximations to the same stochastic operator appear to have the same eigenvalue

behavior as n -* oo.

The method of studying random matrix eigenvalues through stochastic differential

operators will be called the stochastic operator approach to random matrix theory.

The approach is introduced in this dissertation, although a hint of the stochastic

Airy operator appeared in [5]. The stochastic operator approach is developed in

Chapters 6-8.

We close with an application of the stochastic operator approach. This application

concerns large / asymptotics for the universal largest eigenvalue distributions.

Contribution 3 (Large /3 asymptotics for the universal largest eigenvalue distri-

butions). We argue that the mean of the universal largest eigenvalue distribution of

parameter /3 isI + 1 (-4 G(t,t) ((t))2dt + ( ) ( -o)

in which 1 is the rightmost zero of Ai, v(t) = Ai(t + ¢1), and Gl(s,t) is a

Green's function for the translated Airy operator _ - -1.

These large P asymptotics are developed in Chapter 9, where a closed form ex-

pression for the Green's function can be found. The development is based on Con-

tribution 2, and the result is verified independently by comparing with known means

for = o, 4, 2, 1.

2.3 Organization

The dissertation is organized into three parts.

1. Finite random matrix theory.
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CHAPTER 2. INTRODUCTION

2. Finite-to-infinite transition.

3. Infinite random matrix theory.

Chapters 4 and 5 deal with finite random matrix theory. They unveil the Jacobi

matrix model for the first time and prove identities involving the matrix models.

Chapters 6 through 8 make the finite-to-infinite transition. They show that scaling

limits of structured random matrix models converge to stochastic differential opera-

tors, in the sense of finite difference approximations. Chapter 9 applies the stochastic

operator approach to derive asymptotics for the universal largest eigenvalue distribu-

tion. This chapter is unusual in the random matrix literature, because there are no

matrices! The work begins and ends in the infinite realm, avoiding taking an n - o

limit by working with stochastic differential operators instead of finite matrices.
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Chapter 3

Background

This chapter covers known results that will be used in the sequel.

3.1 Matrix factorizations

There are three closely related matrix factorizations that will play crucial roles. These

are eigenvalue decomposition, singular value decomposition, and CS decomposition.

For our purposes, these factorizations should be unique, so we define them carefully.

Definition 3.1.1. Let A be an n-by-n Hermitian matrix, and suppose that A has n

distinct eigenvalues. Then the eigenvalue decomposition of A is uniquely defined as

A = QAQ*, in which A is real diagonal with increasing entries, and Q is a unitary

matrix in which the last nonzero entry of each column is real positive.

When A is real symmetric, Q is real orthogonal.

Our definition of the singular value decomposition, soon to be presented, only

applies to full rank m-by-n matrices for which either n = m or n = m + 1, which is

certainly an odd definition to make. However, these two cases fill our needs, and in

these two cases, the SVD can easily be made unique. In other cases, choosing a basis

for the null space becomes an issue.
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CHAPTER 3. BACKGROUND

Definition 3.1.2. Let A be an m-by-n complex matrix, with either n = m or n =

m + 1, and suppose that A has m distinct singular values. Then the singular value

decomposition (SVD) of A is uniquely defined as A = UEV*, in which E is an m-by-n

nonnegative diagonal matrix with increasing entries on the main diagonal, U and V

are unitary, and the last nonzero entry in each column of V is real positive.

When A is real, U and V are real orthogonal.

CS decomposition is perhaps less familiar than eigenvalue and singular value de-

compositions, but it has the same flavor. In fact, the CS decomposition provides

SVD's for various submatrices of a unitary matrix. A proof of the following proposi-

tion can be found in [27].

Proposition 3.1.3. Let X be an m-by-m unitary matrix, and let p, q be nonnegative

integers such thatp > q andp+q < m. Then there exist unitary matrices U1 (p-by-p),

U2 ((m - p)-by-(m - p)), V1 (q-by-q), and V2 ((m - q)-by-(mrn - q)) such that

[, [ U1 1
U2

C

-S

S

Ip-q

C

Im-p-q

[1 1* /....

V2

with C and S q-by-q nonnegative diagonal. The relationship C2+S2 = I is guaranteed.

Definition 3.1.4. Assume that in the factorization (3.1.1), the diagonal entries of

C are distinct. Then the factorization is made unique by imposing that the diagonal

entries of C are increasing and that the last nonzero entry in each column of V1 · V2

is real positive. This factorization is known as the CS decomposition of X (with

partition size p-by-q), and the entries of C will be called the (p-by-q) CS values of X.

This form of CSD is similar to the "Davis-Kahan-Stewart direct rotation form"

of [27].

--
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3.2. AIRY AND BESSEL FUNCTIONS 35

The random matrices defined later have distinct eigenvalues, singular values, or

CS values, as appropriate, with probability 1, so the fact that the decompositions are

not defined in degenerate cases can safely be ignored.

3.2 Airy and Bessel functions

Airy's Ai function satisfies the differential equation Ai"(x) = xAi(x), and is the

unique solution to this equation that decays at +oo. Bi is a second solution to the

differential equation. See [1] or [25] for its definition.

The Bessel function of the first kind of order a, for a > -1, is the unique solution

to

x2 d f + Xdf (X2 - a2)f = 0
dx2 dx

that is on the order of Xa as x - 0. It is denoted ja.

3.3 Orthogonal polynomial systems

3.3.1 Definitions and identities

Orthogonal polynomials are obtained by orthonormalizing the sequence of monomials

1, x, x2 ,... with respect to an inner product defined by a weight, (f, g) = (d fg w.

This dissertation concentrates on the three classical cases, Jacobi, Laguerre, and

Hermite. For Jacobi, the weight function wJ(a, b; x) = xa(1 - X)b is defined over the

interval (0, 1), and a and b may take any real values greater than -1. (Note that many

authors work over the interval (-1, 1), modifying the weight function accordingly.)

For Laguerre, the weight function wL(a; x) = e-Xxa is defined over (0, oc), and a may

take any real value greater than -1. For Hermite, the weight function wH(x) = e- 2

is defined over the entire real line. The associated orthogonal polynomials will be
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denoted by ry(a, b; .), nr(a; .), and r'H(.), respectively, so that

j 7 J (a, b; x)1rnJ(a, b; x)xa(l - x)bdx = 6mn,

fo r (a; x)7rL(a; x)e-xxadx =- mn,

J00
r<(x)r(x)e - dx = mn-

-00oo

(3.3.1)

(3.3.2)

(3.3.3)

Signs are chosen so that the polynomials increase as x -- oo. The notation 4 oJ(a, b; x) =

~ir(a, b; x)wJ(a, b; X)1/ 2 , nL(a; x) = 7rTL(a x)WL(a;(a;x)/2 , /H4(x) = rH(X)WH(X)1/2 will

also be used for convenience. These functions will be known as the Jacobi, Laguerre,

and Hermite functions, respectively.

All three families of orthogonal polynomials satisfy recurrence relations. For Ja-

cobi, [1, (22.7.15-16,18-19)]

b+n n 3 (a + , b;x)/(a, b; x) =- ab2n l+a+b+2n n-b;x)

~/ la+(n +b+n ,J( + 1, b x)
V a+b+2(n+l) V l+a+b+2n'q n a

Vx ,Jb(a + 1, b;x) =

V/1 -x x.nj(a, b; x) =

1- x. ?,)(a,b+ 1;x) =

a+(n+l) / a+b+n ,J(a b x)
V a+b+2(n+l) V l+a+b+2n n ''

/ b+(n+l) ¢ (a,,(n+l)
- a+b+2(n+l) l+(n++2(n+l) (n+l (a, b; x),

a+b+2n +a+b+2n fnl-l(a, b 1;x)

+ /ab+(n+) (a, b + 1; x),
q- a+b+2(n+l) l+a+b+2n n a;

/ b+(n+l) l+a+b+n (a, b; x)
+ a+b+2(n+) / l+a+b+2n b; x

a+(n+) la +(n±) ~/)njl (a, b; x).
V a+b+2(n+l) a+b+2(n+l) 

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

When n = 0, equations (3.3.4) and (3.3.6) hold after dropping the term involving

J _l(a + 1, b; x).
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3.3. ORTHOGONAL POLYNOMIAL SYSTEMS

For Laguerre, [1, (22.7.30-31)]

(3.3.8)

(3.3.9)

When n = 0, the first equation holds after dropping the term involving ',Li (a+ 1; x).

For Hermite, [33, (5.5.8)]

(3.3.10)

When n = 0, the equation holds after dropping the term involving bH l(x).

In Section 4.2, we show that some familiar identities involving orthogonal polyno-

mials have random matrix model analogues, not previously observed. The orthogonal

polynomial identities [33, (4.1.3), (5.3.4), (5.6.1)], [43, 05.01.09.0001.01] are

rJ(a, b; x) = (-l)rn(b, a; 1 -x),

7rL(a x) = lim b-l(a+ )n(ab; x),
b-.oo

2n~~1(x " V r(2n+1) 1n ( 2, I x2 ),

1H2n+l(X) = (_-1)n2n+/27r 1/4/ (n+ l)r(n+')Mr L1. X2),2nH~~~ (r (2n+2) X7n 2;X

(x) = lim a-n/27r-1/4/(a + n + 1) . r(a; a- x).a-o

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

The Jacobi, Laguerre, and Hermite kernels are defined by

n
KfJ(a, b; x, y) = E W' (a, b; x)gJ(a, b; y),

k=O
n

Kn (a; x, y) = OL(a; X),OL (a; y),
k=O

n

Kn (X, y) = .k 
k=O

37
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3.3.2 Orthogonal polynomial asymptotics

The following large n asymptotics follow immediately from Theorems 8.21.8, 8.21.12,

8.22.4, 8.22.6, 8.22.8, and 8.22.9 of [33].

=/ VJ(a, b; x) = j(vt) + O(n-l), x = t

(3.3.16)

v/2J (a, b; x) = jb(v/) + (n-1), x = 1- I-2t,

(3.3.17)

(- 1)mV/ J(a b; x)
2 Y2mka,;x) cos ( 4 + rt + O(m-1),

= sin ((-a+b)Tr4 + t) + O(m-1),

ja (Vi) + O(n-2),

(-l)n(2n)l/3bL(a; x) ='n 
Ai(t) + O(n-2/3), x = 4n + 2a + 2 + 24/3n1/3t,

(3.3.21)

2n/271/4 r(n/2+1) H (x) =

2- /4 nl/' 2 / (x)

os (t - ) + (n-1),

= Ai(t) + O(n-2/3),

In (3.3.16,3.3.17,3.3.20), the error term is uniform for t in compact subsets of the

positive half-line. In (3.3.18,3.3.19,3.3.21,3.3.22,3.3.23), the error term is uniform for

t in compact subsets of the real line.

2 2(2m)

(3.3.18)

X 1 7r
2(2m+1)

(3.3.19)

X = It
4n

(3.3.20)

X-= It,

(3.3.22)

x = v/2n + 2-/2n-1/6t.

(3.3.23)

38 CHAPTER 3. BACKGE(RO UND

(-1)M+1-�,r7rV )j +,(ab;x)1 2 2m

,0'(a- x =n I



3.3. ORTHOGONAL POLYNOMIAL SYSTEMS

3.3.3 Zero asymptotics

Asymptotics for zeros of orthogonal polynomials follow. Znl < Zn2 < *-- < Znn denote

the zeros of the indicated polynomial.

In the third and fourth rows of the table, {Kn}n=1,2,... is a sequence of integers inde-

pendent of k. Kn should be asymptotic to [L2, but determining Kn precisely requires

uniform asymptotics that are not available in Szeg6's book.

Polynomial Zero asymptotics (n - oo) Eq. in [33]

rJ(a, b; .) Znk n-2(k2, 0 < (1 < 2 < .. zeros of ja (6.3.15)

J (a, b; ) Zn,n+l-k 1 - n-2/2, 0 < 1 < 2 < -...- zeros of ib (6.3.15)

7J (a,; ., 1 1
nZn,K,+k r 2 + 1 + 2 + k) (8.9.8)n even

J (a, b; ) Zn,Kn+k 2 + -2n( + k) (8.9.8)
n odd 2 _4

*Znk . , 4n - k, 0 < (1 < 2 < ... zeros of ja (6.31.6)

r- /n'nl- k 2V / 2-2 /3 n-1/6k (6.32.4)
n ;0 > (1 > 2 > ... zeros of Ai

feven Zn,n/2+k - (k - 1) (6.31.16)
n even

7~nrff I Zn,[n/21+k - s- k (6.31.17)
n odd _ _

Ho Zn, k 1 -1/6Fk,
7rn (6.32.5)

0 > (I > (2 > 2 >... zeros of Ai

H Zn,n+l-k > 1 n-ros of Ai (6.32.5)7n -v/2 (6.32 5)0 > (1 > 2 > -.- zeros of Ai
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3.3.4 Kernel asymptotics

The universal largest eigenvalue distributions, the universal smallest singular value

distributions, and the universal bulk spacing distributions can be expressed in terms

of Fredholm determinants of integral operators. The kernels of these operators are

the Airy kernel, the Bessel kernel, and the sine kernel, defined on R2, (0, oc) x (0, oc),

and R2, respectively.

~K ~ Air(s)t) Ai '(t)-Ai'(s) Ai(t) (s t)

-t Ai (t) 2 + Ai/ (t) 2 (S = t)

= j Ai(s + r) Ai(t + r) dr,

j (v '(,5j/ ()-,Ai (i)~ (v)

KBessel(a; s, 2(s-t)=
1 ((ja (V/7))2- ja-l( )a+l(/) )

j= ja(V/)ja(t) dr,

sinr(s-t) (s 0 t)

Ksine(s, t) r(s-t) s
1 (s= t)

(st)
( = t)

= j sin(rsr) sin(7rtr)dr + cos(1rsr) cos(rtr)dt.

The original and best known development of the Painleve theory of universal local

statistics, which leads to Figure 2.1.2, starts from the Fredholm determinants. There

is a rich theory here, covered in part by [12, 22, 34, 35, 36].

Our application of the Airy, Bessel, and sine kernels is somewhat more direct.

It is well known that orthogonal polynomial kernels provide the discrete weights

used in Gaussian quadrature schemes. These discrete weights also play a role in

the CS/singular value/eigenvalue decompositions of zero temperature random matrix

models; see Chapter 6. As n -, oo, the Jacobi, Laguerre, and Hermite kernels,
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3.3. ORTHOGONAL POLYNOMIAL SYSTEMS

appropriately rescaled, converge to the Airy, Bessel, and sine kernels. We have, as

n --+ oo,

KJ(a, b; x, y) d = KBeSsel(a; s, t) + O(n-), X= 1= 4n2s, y 4

K(a, b;x, y) II = KBsel(b; s, t) + (n-),) dt 

KJ(a, b; x, y) I I = Ksine(, t) + O(n-1),

KL(a; x, y) I = KBssel(a; s, t) + O(n -2),

X = 1- 2s,8y = 1- 2t

(3.3.25)

1 1 _ t= +n, = + 2n 

(3.3.26)

Yx
Y

KL(a; X, y)ldJ = KAiry(s, t) + O(n-2/3),

s4n y 4nt,

(3.3.27)

= 4n + 2a + 24/3nl/3s

= 4n + 2a + 24/3n/3 t

(3.3.28)

Ksine(, t) + O(n- 1/2),

x
Y

= KAirY(s, t) + O(n-2/3 ),

1 1
X =- $, Y= = n/-n-t,

(3.3.29)

= /2n + 1 + 2-1/2 n-1/6s

= V2n+ 1 + 2-1/2 n-1/6t

(3.3.30)

In (3.3.24,3.3.25,3.3.27), the error term is uniform for s, t in compact intervals of

(0, oo) [20, (1.10)],[14, (7.8)]. In (3.3.26,3.3.28,3.3.29,3.3.30), the error term is uniform

for s,t in compact intervals [20, (1.9)],[14, (7.6-7)].

(3.3.28) is not stated explicitly in [14], but the proof for (3.3.30) works for the

Laguerre kernel as well as the Hermite kernel. (Note that [14] actually proves a

stronger uniformity result. The weaker result stated here is especially straightforward

to prove.)

(3.3.24)

KH(r, y)l d I =

41
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3.4 The Selberg integral

This subsection follows Chapter 3 of [14].

Let p > 0 and a, b > -1. Selberg's result [31] is

|01 1 . 2 (a+ l)-1 (1 ) (b+)-1 h i 

i=1 l<i<j<n
Aj dA 1'' dAn

n r( (a + k ))r(P(b + k))r("k + 1)

;=l r(o(a + b + n + k))r(± + 1)
(3.4.1)

Performing the change of variables Ai = Ai, i = 1,..., n, and taking the limit b - oo

gives

1j , e r0 I -e- 2 i fi Ai-jdAl ... dAn
i=1 l i<j<n

2 a IF( O( a- ¢ k) ) r( ~]k q- 1)
= J k 2 ( ± . (3.4.2)

P/ ~k=1 2~ 1

Performing an alternative change of variables, setting b = a, and letting a - oo gives

IeH2 II
i=1 l<i<j<n

n r(j k + 1)

k-=1 (, 1)
(3.4.3)

(See [14, Proposition 3.18].)

3.5 Random variable distributions

The real standard Gaussian distribution has p.d.f. -- 1e-2 /2. A complex standard

Gaussian is distributed as 2(G1 + --1G 2), in which G1 and G2 are indepen-

dent real standard Gaussians. The chi distribution with r degrees of freedom has
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p.d.f. 21-r/2P( r -lxre-r 2 /2. A random variable following this distribution is often

denoted Xr- The beta distribution with parameters c, d has p.d.f. r r(cd)xl (1-x)d-1.

A random variable following this distribution is often denoted beta(c, d).

Remark 3.5.1. If p, q -+ oo in such a way that p- c, < c < 1, then

2/1+ - c/i (cos- /beta(p, q)- cos-l((1 + c)-1/2))

appears to approach a standard Gaussian in distribution.

It is known that the beta distribution itself approaches a Gaussian as p, q - o in

the prescribed fashion [11]. The remark applies the change of variables 0 = cos-1 x/i.

The Gaussian asymptotics should hold because the change of variables is nearly linear,

locally. This remark is mentioned again in Section 8.2, but it is not crucial to any

part of the dissertation.

3.6 Finite differences

The stochastic operator approach to random matrix theory is developed by viewing

certain random matrices as finite difference approximations to differential operators.

These finite difference approximations are mostly built from a few square matrices,

whose sizes will usually be evident from context.

-1 1

D= -1 , (3.6.1)

-1

-2 1

1 -2 1

D2= ' . .. , (3.6.2)

1 -2 1

1 -2



F-= K 

-1

~ = g =

1

1

-1

Also, let P denote a "perfect shuffle" permutat

from context,

CHAPTER 3. BACKGROUND

I
1

o

-lion matrix,

(3.6.3)

(3.6.4)

whose size will be evident

1
D_ D _ [1

D__ g __
- n - 1

1
P=P= -1 I 1 ¥ t-f.IL ,

1_-

1

l | (n odd).

(3.6.5)

1
1

The stochastic eigenvalue problems that appear later are related to classical Sturm-

Liouville problems. A reference for both the theory and numerical solution of Sturm-

Liouville problems is [30].

3.7 Universal local statistics

The universal distributions in Figure 2.1.2 are expressible in terms of Painleve tran-

scendents. This is work pioneered by Jimbo, Miwa, M6ri, and Sato in [16] and

perfected by Tracy and Widom in [34, 35, 36]. The densities plotted in Figure 2.1.2

are called foft, fad, and fulk below. The plots were created with Per-Olof Persson's

software [10], after extensions by the present author.

44
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3.7.1 Universal largest eigenvalue distributions

Let (A1, . . , A) be distributed according to the -Hermite ensemble. Consider the

probability that an interval (s, oo) contains no rescaled particle V2nl1/6(Ai - -), i.e.,

the c.d.f. of the rescaled rightmost particle. As n --+ oo, this probability approaches a

limit, which will be denoted F°Oft(s). (The same limit can be obtained by scaling at

the right edge of the Laguerre ensemble [12, 17, 18].) Also define f (s) =d (s),

which is, of course, the density of the rightmost particle. In this subsection, exact

formulas for F°oft(s), F2°ft(s), and F4°ft(s) are presented. The / = 2 theory is found

in [35]. The / = 1, 4 theory was originally published in [37], and a shorter exposition

can be found in [38].

Let q be the unique solution to the following differential equation, which is a

special case of the Painleve II equation,

q = sq+2q3 ,

with boundary condition

q(s) - Ai(s) (s - oc).

Then

F2°ft(s) = exp [- (x - s)(q(x))2dx],

Floft(s) = VFft(s)xp --

=l F~j2(s) cosh j q(x)dx]

The plots in Figure 2.1.2(a) can be produced by differentiating these three equations

to find foft(s)
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3.7.2 Universal smallest singular value distributions

Let (Al, ... , A) be distributed according to the P-Laguerre ensemble with parameter

a. Consider the probability that an interval (0, s) contains no rescaled particle 4nAi.

As n - o, this probability approaches a limit, which will be denoted Eard(s).

Of course, 1 - Eard(s) is the c.d.f. of the rescaled leftmost particle 4nA1. In this

subsection, exact formulas for Eha(s), Ehard (s), and Ehard(s) are presented. This

material is somewhat scattered in the literature. The 3 = 2 formulas are derived in

[36]. The derivation starts with an expression for Ehad(s) in terms of the Fredholm

determinant of an integral operator whose kernel is KBeSSel, due to [12]. The extension

of the formulas to p = 1,4 is found in [13]. The limiting distributions E,ard(s) can

also be obtained by scaling the Jacobi ensemble at either edge. This fact, restricted

to 3 = 2, can be found in [20], where more references are also cited.

The probability Ehard(s) of a particle-free interval will be expressed in terms of

the Painleve transcendent p, satisfying the differential equation

1 2 1
s(p - 1)(sp)' p(sp )2 + 1 (s - a2)p + -sp 3(p2 - 2)

4 4

and the boundary condition

p(s) a(/s) (s - 0).

The differential equation is a special case of the Painleve V equation. (Painleve III

also appears in the hard edge theory. See [13].)
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The formulas below are taken from [13]. We have

Ehrd(s) = exp - J(logs/x)(p(x))dx),

Ehard(s) = E)exp (- 1 P() dx)

Ehard (s/.2 (S) cosh (1 P( dx)4,a (9/2) VE2 2. 4 

In order to create the plot in Figure 2.1.2(b), a change of variables is required. Set

o1 = v/l, so that P[21v/-l < t] = P[4nAl < t2] = 1- Ead(t 2). Then the density

of 2V/oa l at t converges to fard(t) -2t 3d ()ls t2) as n-- oo.

3.7.3 Universal spacing distributions

Let (A1,..., A,) be distributed according to the 3-Hermite ensemble. Consider the

probability that an interval (c, d) contains no rescaled particle 4vrAi. (Note that

our rescaling differs from most authors' by a factor of r.) As n - oc, this prob-

ability approaches a limit that depends only on the difference s :=d - c. The

limiting probability will be denoted Eulk(s). Also, define Funlk(s) =- Ebulk(s)

and fulk(s) = Fbulk(s), so that 1 - Fbulk(s) is the c.d.f. of the distance from

a randomly chosen particle to the particle immediately to the right, and f:ulk(s) is

the p.d.f. of this random variable. In this subsection, exact formulas for EbUlk(s),

E2bulk(s), and EbUlk(s) are presented. See [16, 22, 34] for more details. Also see [20]

and references therein for proof that the same limit can be obtained by scaling in the

bulk of the Laguerre and Jacobi ensembles.

Let Jv(x) be the unique solution to the following equation, which is the "o rep-

resentation" of the Painlev6 V equation,

(xo V)2 + 4(Xo -a v) (XO -- v(V )2) = 0V~~~ tr y - tr 
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with boundary condition

Uv(x) -- x
7r

1 2
- 2-7r (x -- 0),

and define D(s), D(s) by

D(s) = exp
(J 8Uv(x)dNI

log D(s) =
log1D(s) /

-d2 log D(y) dx.y=x

EbUlk(s)= D+(s),

1
Ebulk (s) = (D+(2s5)4 ( 2 + D_ (2s)).

Once these quantities are computed, Figure 2.1.2(c) can be generated by differenti-

ating Ebulk(s) twice and multiplying by r to get fulk(o; s).

Then
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Chapter 4

Random matrix models

4.1 The matrix models and their spectra

Matrix models for the three classical ensembles-Jacobi, Laguerre, and Hermite-are

defined in Figures 1.0.1-1.0.3. The Jacobi matrix model is an original contribution of

this thesis. The Laguerre and Hermite matrix models were introduced in [6] and fur-

ther developed in [4]. Special cases ( = 1, 2) of the Laguerre and Hermite models ap-

peared earlier, in [9, 32] and [40], respectively. Jab is a random orthogonal matrix with

a special structure we call bidiagonal block form. The angles 01,... , 1, - ,n-l

are independent. L is a random real bidiagonal matrix with independent entries.

H 3 is a random real symmetric tridiagonal matrix with independent entries in the

upper triangular part.

The following theorem is proved in Chapter 5.

Theorem 4.1.1. Compute the n-by-n CS decomposition of the 2n-by-2n Jacobi ma-

trix model,

a,b fll 
U2 -S C V2 

Then the CS values, squared, follow the law of the -Jacobi ensemble with parameters
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a, b. That is, if C = diag( 1,..., /), then

(A) 1.. An) 1 )( -2(a+)-1 (b+l)-1 II -
i= 1 1<i<j<n

in which the constant c is the quantity in (3.4.1).

The next two propositions were proved in [6].

Proposition 4.1.2 (Dumitriu, Edelman). The singular values al <... < an of L1,

squared, follow the law of the -Laguerre ensemble with parameter a. That is, if

AXi = a, i = 1,..., n, then

! e Z ,=1A jj A(a+l)-i1 -
(1,..., An) , - 2 i= A I (a+)- I | -Aj [

C i=1 l<i<j<n

in which the constant c is the quantity in (3.4.2).

Proposition 4.1.3 (Dumitriu, Edelman). The eigenvalues A1 < "' < An of H

follow the law of the f-Hermite ensemble,

(XlA,.,An) -e 2 IZH IAi- j 
C <i<j<n

in which the constant c is the quantity in (3.4.3).

The rectangular Laguerre model Ma' has not appeared before, to the best of our

knowledge. It is crucial to understanding the connection between the Laguerre and

Hermite ensembles.

Conjecture 4.1.4. The singular values, squared, of the n-by-(n + 1) rectangular

Laguerre matrix model M follow the law of the -Laguerre ensemble with parameter

a.

The conjecture is straightforward to prove in the cases = 1,2, a E Z, by applying
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Householder reflectors to a dense matrix with independent standard Gaussian entries,

in the spirit of [6].

4.2 Identities

In this subsection, we show that several identities from orthogonal polynomial theory

have random matrix model analogues.

Analogous to (3.3.11),

Theorem 4.2.1. We have

[ b = I baa [Q L
(4.2.1)

Analogous to (3.3.12),

Theorem 4.2.2. We have

lim VJ 4-
b-- -boo

(La ) 

T *]La·*£
The off-diagonal blocks of VUJa b do not converge as b -- oo. The top-right block tends

toward diag(oo,.. ., oc) and the bottom-left block tends toward diag(-o, .. ., -oo).

Proof. The beta distribution with parameters c, d is equal in distribution to X 1/(X 1+

X 2), for X1 -2' X 2 X2d So, in the Jacobi model,

Ck ./X.3(a+k)/(X3(a+k) (b+k) )

+ +3 l(b+ k)),

Ck-o /X' k/(Xk + X(a+b+l+k) ) 

Sk VX(a+b+l+k)/(X3k ± X(a+b+l+k)) -
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As r - oc, the mean of X 2 becomes asymptotic to r, while the standard deviation

is 2r. Therefore, as b - oo, Vck d 1 k -1dk -- 1 and

Sk 1. o

Remark 4.2.3. We have no analogous theorem for the rectangular Laguerre model.

We suspect that there may be a "rectangular Jacobi model," containing rectangular

blocks, from which the rectangular Laguerre model would arise after a b -+ o limit.

Analogous to (3.3.13-3.3.14),

Theorem 4.2.4. Let H3 be the n-by-n Hermite matrix model. If n is even, then

[ diag(G1,G3... Gn-1) | L2O Q
PH'3PT d -1/2

Q(L2O/2)TfQ diag(G2, G, Gn) '

in which G1,..., Gn are i.i.d. real standard Gaussians, L21/2 is a Laguerre matrix

model, independent from the Gaussians, and the matrix on the right hand side is

symmetric, so that only one Laguerre matrix is "sampled. " If, on the other hand, n

is odd, then

PH'PT d [ diag(G 1, G3 ... Gn)- 2Q(M122)TQ
-QM 22Q . diag(G 2 , G4, .., Gn.1)

Analogous to (3.3.15),

Theorem 4.2.5. In the following equation, both occurrences of L~ represent the same

random matrix sampled from the Laguerre matrix model. We have

HO I lim -(QLQ + Q(L )TQ - 2V-I).
a-- oo 

Proof. For k = 1,..., n, the (k, k) entry of the right hand side, before taking the

limit, is X(a+n+l-k)3 - ) As r --+ , V(X - /) tends toward a standard

Gaussian random variable [11], so that the (k, k) entry converges in distribution to
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a normal random variable, Gk. For k = 1,..., n- 1, the (k, k + 1) and (k + 1, k)

entries of the right hand side are precisely X(n-k)O3. 0
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Chapter 5

The Jacobi matrix model

This chapter derives the Jacobi matrix model by designing and running a numerically-

inspired algorithm on a Haar-distributed orthogonal/unitary matrix. Then the model

is extended from = 1,2 to general 3 > 0 in the obvious way.

While the algorithmic approach is inspired by [6], crucial pieces are novel: the

connection between the Jacobi ensemble and Haar measure on the orthogonal and

unitary groups is rarely, if ever, observed in the literature, and the algorithm, while

simple, is certainly not widely known.

The central theme of the entire dissertation is that matrix models for the classical

ensembles, appropriately rescaled, are finite difference approximations to stochastic

differential operators. The present chapter strengthens support for the stochastic

operator approach by providing a new, structured Jacobi matrix model. We shall see

later that the new model discretizes the Bessel and sine operators from Chapter 1.

5.1 Introduction

Traditionally, the Hermite ensemble is modeled by the eigenvalues of a symmetric

matrix with Gaussian entries, and the Laguerre ensemble is modeled by the singular

values of a matrix with Gaussian entries. This chapter begins by showing that the
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Jacobi ensemble arises from a CS decomposition problem. Specifically, the P = 1

Jacobi ensemble arises from the CS decomposition of a Haar-distributed orthogo-

nal matrix, and the p = 2 Jacobi ensemble arises from the CS decomposition of a

Haar-distributed unitary matrix. This observation completes the following table, and

enables the development of the Jacobi matrix model seen in Figure 1.0.1.

Ensemble

Hermite

Laguerre

Jacobi

Random linear algebra problem

eigenvalue decomposition

singular value decomposition

CS decomposition

For several decades, random matrix theory concentrated on three values of / in

the ensemble densities. The 3 = 1 ensembles were shown to arise from real random

matrices, the = 2 ensembles from complex random matrices, and the P = 4 ensem-

bles from quaternion random matrices, according to Dyson's "threefold way" [8]. In

recent years, the development of a general P theory, extending beyond = 1,2, 4 to

all > 0, has gained momentum. One of the fundamental problems in developing a

general theory is to find a random matrix distribution that "models" the desired

ensemble in some fashion. Dumitriu and Edelman solved the matrix model problems

for the Hermite and Laguerre ensembles [6]. In the Hermite case, for example, they

provided a random symmetric tridiagonal matrix for each P whose eigenvalues follow

the law of the Hermite ensemble. Dumitriu and Edelman posed the development of

a P-Jacobi matrix model as an open problem, which has been considered in [19, 21].

The major contribution of this chapter is the introduction of the Jacobi matrix

model in Figure 1.0.1. The matrix model is a distribution on structured orthogonal

matrices, parameterized by p > 0, a > -1, and b > -1. Its CS decomposition has

entries from the Jacobi ensemble with the same parameters. We argue that this model

is the P-Jacobi matrix model.

The development of the model is in the spirit of [6], utilizing an algorithm inspired

by bidiagonalization and tridiagonalization algorithms from numerical linear algebra.
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The use of CS decomposition breaks from previous work, which has focused on

eigenvalues. Notable among the existing work is that of Killip and Nenciu [19], which

provides a random matrix model whose eigenvalues follow the law of the Jacobi en-

semble. In fact, this eigenvalue model is closely related to our CS decomposition

model. However, the approach in the present dissertation has the following advan-

tages:

* Our matrix model is a random orthogonal matrix, generalizing certain features

of the orthogonal and unitary groups to general 3.

* CS decomposition is used in place of eigenvalue decomposition, which is natural

considering that the Jacobi ensemble is a distribution on [0, 1]' rather than all

of Rn. (CS values lie in [0, 1] by definition.)

* The matrix model has both left and right CS vectors, rather than just eigen-

vectors.

* The development of the matrix model is illuminating, based on a numerically-

inspired algorithm.

* There is an immediate connection to multivariate analysis of variance (MANOVA),

based on the connections between CS decomposition and generalized singular

value decomposition.

5.1.1 Background

The Jacobi ensemble, proportional to

1 A2/(a+l)-1 (- i)2(b+1)-1I I J -
i=1 i<j

has been studied extensively, motivated by applications in both physics and statistics.
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In statistical mechanics, the ensemble arises in the context of log gases. A log

gas is a system of charged particles on the real line that are subject to a loga-

rithmic interaction potential as well as Brownian-like fluctuations. If the particles

are constrained to the interval [0, 1] and are also subject to the external potential

En=l ( a+l og )+ E ibl ( 1) log(1 - i), then the long term stationary dis-

tribution of the system of charges is the Jacobi ensemble [7, 14, 42].

In statistics, the ensemble arises in the context of MANOVA, starting from a pair

of independent Gaussian matrices N1, N2. If N1 and N2 have real entries, then their

generalized singular values follow the law of the Jacobi ensemble with = 1. If

they have complex entries, then their generalized singular values follow the law of

the Jacobi ensemble with P = 2. Now we define GSVD and make these statements

precise.

Definition 5.1.1 (Generalized singular value decomposition (GSVD)). Let A be

(n + a)-by-n and B be (n + b)-by-n with complex entries. Then there exist matrices

R, U1, U2, V, C, and S such that

V*R, (5.1.1)

in which R is n-by-n upper triangular, U1 is (n + a)-by-(n + a) unitary, U2 is (n + b)-

by-(n + b) unitary, V is n-by-n unitary, and C and S are nonnegative diagonal,

satisfying C2 + S2 = I. The diagonal entries of C are known as the generalized

singular values of the pair A,B, and the factorization in (5.1.1) is a generalized

singular value decomposition (GSVD).

There are a few observations worth mentioning. First, this definition does not

define the GSVD of a pair of matrices uniquely. Second, if A and B have real entries,

[A] U2]

- B -U2 

C

0

-S
O
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then R, U1, U2, and V have real entries. Third, many authors refer to the cotangents

EL, k = 1,..., n, instead of the cosines Ck, as generalized singular values.

One way to construct a GSVD, which may not be the most numerically accurate,

is to first compute a QR decomposition of [], and then to compute SVD's for the

top and bottom blocks of Q. See [41] for details.

The Jacobi ensemble can be seen in the generalized singular values of a pair of

Gaussian matrices.

Proposition 5.1.2. Let N1 and N2 be independent random matrices. Suppose that

N1 is (n+a)-by-n and N2 is (n+b)-by-n, each with i.i.d. real (resp. complex) standard

Gaussian entries. Then the generalized singular values, squared, of the pair N1 , N2

follow the law of the Jacobi ensemble with parameters a, b, for P = 1 (resp. f3 = 2).

Proof. The generalized singular values, squared, are equal to the eigenvalues of

NNiV1(N N1 + N2N 2)-1 , which behave as the Jacobi ensemble [23]. To see this,

note that N'N(NN + N2N2
1 = N1 N1 ([N N [fh] ) , so if the CSD of [] isN~ + ~N2)- = N A~N2 N2 N2J ~

[U1 U2 

C

O

-S
O

V*R,

then Nj 1 (N~N1 + NN 2)- 1 = (R*V)C2(R*V)-1 .

The preceding proposition provides matrix models for the Jacobi ensemble in the

cases = 1 and f3 = 2, for integral a and b. The primary contribution of this chapter

is a general /3 matrix model, which also removes the quantization on a and b.

5.1.2 Results

We show that the Jacobi ensemble arises from Haar measure on compact matrix

groups, through the CS decomposition. This viewpoint is central to the development
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of the Jacobi matrix model.

There is a deep connection between CSD and GSVD. Specifically, if a unitary X is

partitioned into X = [ 2 X22 ], with X11 of size p-by-q, then the generalized singular

values of the pair X 11, X 21 equal the p-by-q CS values of X. This fact is evident from

the definitions.

Theorem 5.1.3. Let n, a, and b be positive integers, and define m = 2n + a + b. Let

X be an m-by-m Haar-distributed orthogonal matrix, and take the CS decomposition

of X with partition size (n + a)-by-n. Then the CS values of X, squared, follow the

law of the /3 = 1 Jacobi ensemble with parameters a, b. If, instead, X is a Haar-

distributed unitary matrix, then the CS values, squared, obey the law of the 3 = 2

Jacobi ensemble.

Proof. Let [A] be an m-by-n matrix of independent standard Gaussian entries, with

A (n + a)-by-n and B (n + b)-by-n. We claim that the CS values of X share the same

distribution with the generalized singular values of the pair A, B. Upon showing this,

the proof will follow by Proposition 5.1.2.

With probability 1, the generalized singular values are distinct, so we can take

a QR decomposition, [A] = QR, with R invertible. Next, randomize signs, QR =

(QD) (D*R), using a diagonal matrix D with i.i.d. entries chosen uniformly from either

{-1, 1 } (if X is real orthogonal) or the unit circle (if X is complex unitary). It is clear

that QD shares the same distribution with the first n columns of X. Therefore, the

CS values of X share the same distribution with the singular values of the first n + a

rows of QD. But these singular values equal the generalized singular values of the pair

A, B. (Note that [] = (QD)(D*R), generalized singular values are invariant under

right multiplication by an invertible matrix, and the first n + a and last n + b rows

of QD must have the same right singular vector matrix since (QD)*(QD) = I.) El

The Jacobi matrix model introduced in this dissertation extends beyond = 1, 2

to general A, and removes the quantization on a and b. The model is a distribution

60



5.1. INTRODUCTION 61

on orthogonal matrices with a special structure.

Definition 5.1.4. Given 9 = (n,... ,01) and 4) = (-l,... ,), we define four

n-by-n bidiagonal matrices, B11((, 4)), B12(O, 4)), B21(O, 4)), and B22 (8, 4)).

Bl ((,4)) B12(, 4))

B21(9,4)) 22(9)) J

n -Sn Cn- 1

Cn-1Sn-_1

cls;
C~151

-Sn -Cn CIn-

-Sn-1 5 n_ 1

-C2C1

-sls1

cS-lc 55 n- -1
Cn-lCn~ $ n--1 fln-2

C1C1 s1

Cn S_

-Sn-iCn -1 n- 2-Sn1C'- Cn-14-22

-Sic1 C1

in which ci = cos 0i, si = sin 0i, c = cos i, s = sin ij.

To prevent any possible confusion, we clarify that the (n - 1, n

B12 (9, 4)) is 52Sl , and the (n - 1, n - 1) entry of B 22 (, 4) is c2 s.I~~~~~~~~~~~~ ,

- 1) entry of

Lemma 5.1.5. For any real O, 4), the matrix

B11l(,4 ))

B 2 1(, 4))

B12(0, ))

B22(0, 4))
]

is orthogonal.

The Jacobi matrix model (Figure 1.0.1) is defined by placing a distribution on

(, (4. Hence, the Jacobi matrix model is a random orthogonal matrix.

The Jacobi matrix model is first derived in the real and complex cases ( = 1, 2)

by applying unitary transformations to a Haar-distributed matrix from the orthogo-

nal or unitary group. These unitary transformations are structured to preserve CS

I
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values. In fact, they are direct sums of Householder reflectors, chosen by an algorithm

reminiscent of familiar algorithms from numerical analysis; see Section 5.2. This algo-

rithmic approach is used in Section 5.3 to prove the following theorem in the special

cases 3 = 1, 2.

Theorem. Let be any positive real number,

a, b > -1. Take the n-by-n CS decomposition of

Ul
U2l_ -S C

The diagonal entries of C, squared, follow the

eters /, a, b.

let n be a positive integer, and let

the 2n-by-2n Jacobi matrix model,

-T

V2

law of the Jacobi ensemble with param-

The theorem is stated again as Theorem 5.4.1 and proved in full generality in

Section 5.4, and the following corollary is presented in Section 5.5 as Corollary 5.5.1.

Corollary. Under the hypotheses above, with Job = [ Bl B12:] , the generalized singular

values, squared, of the pair B11, B21 follow the law of the Jacobi ensemble with the

same parameters.

5.2 Bidiagonalization

5.2.1 Bidiagonal block form

A matrix is in bidiagonal block form if it satisfies a certain sign pattern. Throughout

this chapter, + in a sign pattern denotes a nonnegative entry, - denotes a nonpositive

entry, x denotes an unconstrained entry, and blanks denote zero entries.

Definition 5.2.1. Let A be a real rn-by-m matrix, and let p > q be nonnegative
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+

+

+
+

+
+

+
- +

+
+

+

The rows are partitioned
q, p, (m -p - q).

as p, q, (m - p - q) and the columns are partitioned as

Figure 5.2.1: Bidiagonal block form.

integers such that p + q < m. A is in bidiagonal block form with partition size p-by-q

if A has the sign pattern in Figure 5.2.1.

· Bidiagonal block form is most interesting in the context of unitary matrices. We

shall see an analogy:

Finite computation

tridiagonal form

bidiagonal form

bidiagonal block form

Infinite computation

eigenvalue decomposition

singular value decomposition

CS decomposition

Lemma 5.2.2. If Y is an m-by-m orthogonal matrix in bidiagonal block form with

partition size p-by-q, then there exist unique 3 = (Oq, ... , 01) and Ž = (q- 1, .. , 1),

- -
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with entries between 0 and 2, such that2'

B 11 (, 4))

B 2 1 (0, 4))

B 12 (, ))

Ip-q

B 2 2 (eO, i4)

Im-p-q 

(5.2.1)

Proof. Uniqueness: q is determined by the first column. Then q-1 is determined

by the first row. Then q-1 is determined by the second column, q-2 by the second

row, and so on.

Existence: Once q is fixed, rows 1 and p + 1 must have the forms given by the

right hand side of (5.2.1) in order for these two rows to be orthogonal. Now qq-1

is fixed, and columns 2 and q + 1 must have the forms given by the right hand side

of (5.2.1) in order for these two columns to be orthogonal. The proof continues by

induction. D

Lemma 5.2.3. Suppose that a unitary matrix Y = (yij) has the sign pattern in Figure

5.2.2. Then Y must be in bidiagonal block form.

Proof. First we will show that the (1,2) and (2, 1) blocks of Y have zeros in the

necessary positions. If Yi,q+l were nonzero, with 3 i < p, then the inner product

of rows 1 and i would be nonzero. Now knowing that column q + 1 has zeros in the

locations just checked, the same argument applies to column q + 2 in rows 4 through

p, and then to column q + 3, and so on. A similar argument shows that Yp+i,j is zero

for every j > i + 2. Now we check for zeros in the (2, 2) block of Y. If Yp+i,q+j were

nonzero, with 1 i < q and 1 < j < p and j > i, then the inner product of columns

i and q + j would be nonzero. If yp+i,q+j were nonzero, with 1 < i < q and 1 < j < p

and j < i - 1, then the inner product of rows j and p + i would be nonzero. Now

we check for zeros in the (2, 3) block of Y. If Yp+i,p+q+j were nonzero, with 1 i < q

and 1 < j _ m - p - q, then the inner product of columns 1 and p + q + j would be
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nonzero. Now, knowing that the p + 1 row of Y has zeros in columns p + q + 1 through

m, we can use the same argument on the next row, taking inner products of column

2 with columns p + q + 1 through m to show that row p + 2 has zeros. Continuing, the

(2, 3) block of Y has all zeros. A similar argument works for the (3, 2) block taking

inner products of rows 1 through p with rows p+q+ 1 through p q + m in a judicious

order. For the (3, 3) block of Y, first check column p + q + 1. This column must have

zeros below the main diagonal by taking the inner product of row p + q + 1 with row

p + q + i, 2 < i < m - p - q. Then the same technique may be applied to column

p + q + 2, then p + q + 3, and so on.

It remains to check the signs on the subdiagonal of block (1, 2), the superdiagonal

of block (2, 1), and the main diagonal and subdiagonal of block (2, 2). Taking the inner

product of columns j and j + 1 shows that Yp+j,j+l must be negative, for 1 < j < q- 1.

Taking the inner product of rows i and i + 1 shows Yi+l,q+i must be positive, for

1 i < p - 1. Finally, taking the inner products of columns j and q + j, 1 < j < p

shows that the main diagonal of the (2, 2) block of Y must be positive, and taking

the inner product of column q + j with column q + j 1, 1 < j < p - 1 shows that

the subdiagonal of the same block must be negative. []

5.2.2 The algorithm

We present an algorithm, hereafter known as "the algorithm," that transforms any

matrix into a matrix having the sign pattern in Figure 5.2.2. The transformation is

accomplished using unitary matrices with special structure. When the algorithm is

run on a unitary matrix, the output is a unitary matrix in bidiagonal block form with

the same CS values as the input matrix.

The complete algorithm is presented as Matlab code in Appendix A. Here is a

rough sketch.
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+
x

x

x

+

+

-x x .
X ...

....

X

X

X

The rows are partitioned as p, q, (m - p
q,p,(m - p -q).

+

x

x xx +

X X X X ...

X X X X ...

X X X X ...

. . .
X X X ...

X X X ...

X X X ...xx xxx xx xx

X X X ...

X X X ...

X X X ...

+

x x

- q) and the columns are partitioned as

Figure 5.2.2: A related sign pattern.

The algorithm

Input: X (m-by-m) and p > q > 0 such
Output: Y

for k= 1 : q

H := blkdiag(householder(...),
Y2k-1 := H * Y2k-2;
H := blkdiag(householder(...),
Y2k := Y2k-1 * H;

end
Y := postprocess(Y 2q);

that p + q < m

householder(...));

householder(...));

In the appendix, Yi is denoted Z(:,: ,i).

The behavior of the algorithm on non-unitary X is suggested in Figure A.0.1, and

the behavior on unitary X is suggested in Figure A.0.2. In the first step, Householder

reflectors are used to place zeros in several entries in the first column, and then a

second pair of Householder reflectors is used to place zeros in several entries in the

first row, without modifying the first column. The algorithm continues, designing

rows in the second column, then the second row, then the third column, then the
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third row, and so on. The direct sums of Householder reflectors are designed to

preserve CS values when the input is unitary.

5.2.3 Analysis of the algorithm

Theorem 5.2.4. When X is unitary, the algorithm produces matrices Y, U, V such

that

1. U*XV = Y.

2. U is unitary and block diagonal, with blocks of sizes p-by-p and (m - p)-by-

(m - p).

3. V is unitary and block diagonal, with blocks of sizes q-by-q and (m - q)-by-

(m - q).

4. Y is an orthogonal matrix in bidiagonal block form with partition size p-by-q.

5. X and Y share the same p-by-q CS values.

Proof. (1), (2), and (3) are straightforward and hold even if X is not unitary. The

Householder reflectors are chosen so that Y satisfies the sign pattern in Figure 5.2.2.

Hence, (4) holds by Lemma 5.2.3. (5) is immediate from (1), (2), and (3). [1

Eventually, we want to run the algorithm on a random matrix. Analyzing the

behavior will require a better understanding of the intermediate matrices Y1, Y2, .. .,

Y2q. The algorithm proceeds by fixing one column, then two rows, then three columns,

then four rows, and so on. In the remainder of this section, we develop this idea.

Let

I ,k 0 I q,k 0 

P2k-1 = 0 Ip,k-1 0 Ip,k-1 (5.2.2)

0 0 0 01
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P2k =

Ip,k 0 Ip,k

o Iq,k 0

o 0 0

0

Iq,k

0

T

(5.2.3)

For given 0 = (Oq,..., Oq-k+l) and = (q-1,... , qq-k+l), let

'2k -1(, ) =

B 1 1

B 2 1l

B 12

Ip-q

B 22

D (5.2.4)

and for given O = (q,..., Oq-k+l

Y2k(6, 4) = F

) and 4) = (q-l, ..., . q-k), lel

2k

B1 1

B 2 1

B12

Ip-q

B 2 2

Im-p-q

In each case, Bij = Bij(3, 4), where O is formed by extending ) arbitrarily to a q-

vector and ( is formed by extending (4 arbitrarily to a (q - 1)-vector. The particular

extensions chosen do not affect the right hand side of (5.2.4) or (5.2.5).

Lemma 5.2.5. Suppose that the algorithm produces intermediate matrices Y1, Y2,. . ., Y2q

and final matrix Y defined by e = (Oq,... , 01) and 4 = (q-1,... 1 . , q1). Then

Y2k-lP2k-1 = 2k-l(q,... , Oq-k+l; qq-1,.. , q-k+l), k = 1, . . q,

and

P2kY2k = Y2k(q,., , Oq-k+1; q-1, .- , qq-k),

(5.2.5)

I'll-p-q _

-i

CHAPTER 5.68

2k-1,

k= l,...,q.
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Lemma 5.2.6. Suppose that the algorithm produces intermediate matrices Y1, Y2, . ,Y2q

and final matrix Y defined by = (q,..., 1) and = (q-1, ..., 1). Then

O6q-k -' tan-111 (Y2k)((p+l+k):m),(l+k) k O,... q - 1
J(Y2k)((1+k):p),(1:k)jt

}q-1-k = tan 1 (Y2k+l)(1+k),((q+1+k):m) k = ... ,q - 2,

with all angles between 0 and 

In the lemma, submatrices of Y2k are specified in Matlab-like notation.

5.3 Real and complex random matrices

Let G be either O(m) or U(m), i.e., either the orthogonal group or the unitary group

of m-by-m matrices. Let X be a random matrix from G whose distribution is Haar

measure. Running the algorithm on X produces a sequence of intermediate matrices

Y1, Y 2,. .. , Y2q. Each Yi is itself a random matrix, and we are interested in its distri-

bution. In constructing Y, the algorithm observes certain rows and columns when

choosing Householder reflectors, but it does not directly observe the remaining entries.

Therefore, it is natural to consider the distribution of Y conditioned on YiPi if i is odd

or P/Y if i is even. By Lemma 5.2.5, this is equivalent to conditioning on specific val-

ues for n,..., 6n-k+l , n-l,) ... n-k+l if i = 2kn- 1 or n, n-k+l, n-1l,..., n-k

if i = 2k.

With this consideration in mind, define

/2k-1(6, b) = distribution of Y2k-1, conditioned on Y2k-l1P2k-1 = Y2 k-1(, ),

/12k((, ) = distribution of Y2k, conditioned on P2kY2k = Y 2k(O, b).
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We shall show that these distributions are defined by invariance properties. Let

ui(6, )= u E G: U*Y = 'i,

V(e,)= {v E G:Y V=Yj,

in which i is short for Y~(e, 4). We call a matrix distribution Ui(, 4)-invariant if

it is invariant w.r.t. left-multiplication by U*, for all U E Ui(e, 4)). Similarly, we call

a matrix distribution Vi(0, 4)-invariant if it is invariant w.r.t. right-multiplication

by all V cE V(, 4). Notice that Uo D Ul(0 0 ) D U2 (0o; qo) D U3 (0o, 01; qo) D ... and

Vo D V 1 (00 ) D V2 (00; 0 ) D V3 (0, [1; o0) D ....

Lemma 5.3.1. For any appropriately sized 6 and 4 with entries between 0 and 2,

li(O, 4)) is Ui ( 3, 4) -invariant and Vi (, 4))-invariant.

Before proving the lemma, we must state and prove another lemma.

Lemma 5.3.2. Suppose that A follows a random matrix distribution for which

1. APi = i (e, 4) if i is odd, or

2. PA = i (8, (4) if i is even,

for some fixed e, 4. Then the distribution of A is Ui-invariant if and only if it is

Vi-invariant.

Proof. We prove only the case when i is odd. The case when i is even is very similar.

A can be broken into two terms, A = APi + A(I - Pi). Let U and V be m-by-

(m - i) matrices containing orthonormal bases for the orthogonal complements of the

column space and row space, respectively, of Y(O, 4)). The following statements are

equivalent.

1. A(I - P) d [Haar] V.

2. A is U-invariant.
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3. A is Vi-invariant.

The proofs of (1)4X(2) and (1)X(3) are straightforward. [

Proof of Lemma 5.3.1. The proof uses induction. We will abuse notation and sup-

press e and 4. For example, instead of writing UL2k(l:k, l:k), we will simply write

/2k-

Base case: /o is Haar measure by definition, and U0 = Vo = G.

Induction step: Assume that i-1 is Ui_l-invariant and Vi_l-invariant. By Lemma

5.3.2, it suffices to prove that pi is either 2-invariant or Vi-invariant. When i = 2k

is even, we show that /t2k is U2k-invariant; the case when i is odd is left to the reader.

Because U2k-1 D U2k, /12k-1 is U2k-invariant. The action of any U E U2k also has the

special property that it preserves rows k and p+k, so that it preserves 0n-k. Therefore,

t2k-_11 n-k, the distribution obtained from /12k-1 by conditioning on q)n-k, is also

U2k-invariant. Now, /12k is simply the pushforward distribution of kz2k-llqn-k along

right-multiplication by a suitably chosen Householder reflector H. The U2k-invariance

of / 12k follows from associativity: UY2k = U(Y 2k-lH) = (UY 2k-l)H Y2k-H = Y2k
d(It is worth emphasizing that the = is conditioned on O)n-k and is justified because

we checked that /1 2k-1 is /2k-invariant, even after conditioning on 0qn-k-) []

Theorem 5.3.3. Let n, a, and b be positive integers, and define m = 2n + a + b.

Suppose that X follows Haar measure on G (either O(m) or U(m)), and run the

algorithm on X using partition size (n + a)-by-n. Then the output Y is a random

orthogonal matrix in bidiagonal block form,

Bll

B 2 1

B1 2

I
B 22

I
: 
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distributed in such a way that

[ B 1 1 B 1 2 1 Jo

B2 1 B 2 2

In other words, the distribution of [l B2] is the 2n-by-2n -Jacobi matrix modelIn other words, the distribution of I 11B'ZdB21 B22

with parameters a and b, where p = 1 if G = O(m), or /3 = 2 if G = U(m).

Proof. First assume that G = O(m). Let /2k denote the left factor in (5.2.2),

and let P2k denote the left factor in (5.2.3).

V2k-1 (, $) does not actually depend on 0 or 1; it contains precisely the orthog-

onal matrices V such that P2k- 1V = P2k-1. By Lemma 5.3.1, if Y2k -1 -'/2k-l(), )

then Y2k-1 = Y2k-lV. This implies that the direction of each row of Y2k-l/1P2k-1

is uniformly distributed on the real sphere S2k - 2 . By Lemma 5.2.6, q,-k depends

only on the direction of row k of this matrix, and the distribution is given by

cos qn-k - beta ((n - k), (a + b 1 + n- k)). The same distribution results re-

gardless of which ( = (On,.. ., n-k+l), 4 = (n-l ,.., qn+l-k) are assumed by condi-

tioning. Hence, n-k is actually independent of On,..., n-k+l, qOn-1, .. , n-k+l and

has the indicated distribution.

The preceding discussion applied to i = 2k - 1 odd. For i = 2k even, note that

U2k(O, 1) does not depend on 8 or and contains precisely the orthogonal matrices

U such that UTP 2 k = P2k. For Y2k - /2k( 0, 4), the directions of the columns of

(f-~)T Y2 k are uniformly distributed on the real sphere S2k -1, regardless of which

8, are used. Therefore, n-k is independent from 0n,..., 0 n-k+l,1,n- 1,..., -k,

and its distribution is defined by cos _k \beta ((a+n-k),(b+ n-k)).

When G = U(m), the proof is exactly the same, except that (1) V2k-l(O(, 1) and

U2k(0 , 4) contain unitary matrices in addition to orthogonal matrices, (2) conjugate

transpose replaces transpose, (3) complex spheres replace real spheres, and (4) P = 2

replaces / = 1 in cosn-k - /beta ( (n- k), (a + b+ 1 + n- k)), cosn-k 

/beta ((a + n- k), (b + n - k)). 
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5.4 General /3 matrix models: Beyond real and

complex

Theorems 5.1.3 and 5.3.3 imply that the n-by-n CS values of JOb follow the P-Jacobi

law when p = 1 or p = 2 and a, b are nonnegative integers. It remains to show that

the CS values model the /3-Jacobi ensemble for other values of /3, a, and b.

Theorem 5.4.1. Let P be any positive real number, let n be a positive integer, and let

a, b > -1. Take the n-by-n CS decomposition of the 2n-by-2n Jacobi matrix model,

U2 -S C [ V2

The diagonal entries of C, squared, follow the law of the -Jacobi ensemble with

parameters a, b. Also, the first row of V1, up to sign, is distributed as a vector of

i.i.d. X random variables, normalized to unit length.

The proof is at the end of this section.

The /3-Jacobi matrix model is a distribution on 2n-by-2n orthogonal matrices, but

the CS values are completely determined by the upper-left n-by-n block. In fact, the

CS values are precisely the singular values of this matrix. Their distribution will be

obtained by changing variables.

Given = (,..., 01) and = (qn-l,... ,ql), let ci = cosOi, si = sinOi, c =

cos i, and s = sin qi. Also, let al > > a, be the singular values of B 11(e, ),

and, for i = 1,..., n - 1, let vi be the first entry of the right singular vector of

B1 (, b) corresponding to i, constrained to be nonnegative.

Lemma 5.4.2. The 2n- 1 parameters oh,...,, vl, ... , n- defined above uniquely

determine a matrix of the form [Bl(e,) B12 (e,,)]The Jacobian for the changef variables between (c,...21(,..,) B22(e,) The Jacobi ) can the hange
of variables between (,.. . , Cl , Cn cl, , Cl) and (l..., on, V1,... , vn 1 ) can be ex-
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pressed as

(i3(i-1)+ls(i-)dci)

1

n

i<j i=l

i=l
n-1

aido-i i=lV-l dv)

for any p > 0.

Proof. Denote the entries of Bll(, 4) by

Xn -Yn-1

Xn-1 --Yn-2

Xn-2

-Y 1

X1

It follows from Lemmas 2.7, 2.9, and 2.11 of [6] that

(( 0 -_02)/ H90i d'i) (v-Il dvi)
i<j i=l1 = i=1 i=1 il

in- 1

n n
= 0(i-l)+l

i 
i=1 i=1

The Jacobian matrix (n.'XlYn-l Yl) is,cn,,...,l l,C I. IC )

0 ... 0

Using the Schur complement formula for the determinant [15], we find that the Jaco-

n-1
/3i-1 r 2ai-l dyi .

i=1
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bian is the product of the determinant of the top-left block with the determinant of

a lower triangular matrix whose diagonal is given by the bottom-right block. Hence,

n n-1 n n-1

Hi dx dyi = II sidci sidci.
i=1 i=1 i=2 i=1

Changing variables again using this Jacobian and evaluating xi, yi gives

n
Hx 0(i.i 

i=1
n n n-1 n-1 n

fI (i-1)+lI si1r (i--1) =1(Ci)i-1 B(S i) ( i- 1
i i H(i-1)+ i i

i=1 i=1 i=1 i=1 i=1

n-1
dci H dc.i

i=l

Proof of Theorem 5.4.1. The differential for the /3-Jacobi matrix model is

dJ = const
x I| (C=(a+i)-10(b+i)-2d 

i=l i=l

Changing variables using the lemma gives

n n n-1

dJ = const x I ci3(a+l)-2 HJ s8 (b+l)-2 ](i )13(a+b+2)-4X
i=1

X (S2
i<j

i=1

n n

= const x JiX i (a+l)-2 Iw3(b+l)-2 ( 2(o2

i=1 i=1 i<j

in which xn,... ,X1 are the diagonal entries of B 11 and Wn,... , w1 are the diagonal

entries of B21 . Now notice that 1ni=1 xi is the determinant of B 11, that in wi is the

n n-1

viyl6i)
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determinant of B21, and that BT B 21 =- I-BTBll, so that

dJ = const x det(BTBl) (a+l) -1 det(I - B T B1 1) (b+l)- X11 2 ~~~~11

X II(i<j
i<j

n n-1

) 1 n idai i dvi
i=l i=l

= const x i (1
i=1

- i) (b+1)- 
i<j

in which Ai = a/2. ]

5.5 Multivariate analysis of variance

Pairs of Gaussian matrices are often important in multivariate analysis of variance

(MANOVA). The following corollary may be useful in this context.

Corollary 5.5.1. Let n, a, and b be nonnegative integers. Suppose that N1 ((n + a)-

by-n) and N2 ((n + b)-by-n) are independent random matrices, each with i.i.d. real

(resp., complex) standard Gaussian entries. If

a,b - B21
B21

B12 1
B22

with ,B = 1 (resp., p3 = 2), then

d
gsvd(N 1, N 2) - gsvd(B 11, B 21 ).

Here, gsvd(C, D) evaluates to the generalized singular values of C, D in decreasing

order.

Proof. Because the columns of Jab are orthonormal, the generalized singular values

of B 11, B21 are just the CS values of Ja,b (see [26]), whose squares follow the Jacobi

76 CHAPTER 5.

-xj ,·nd·) i i=



5.5. MULTIVARIATE ANALYSIS OF VARIANCE

law. The proof follows by Proposition 5.1.2.
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Chapter 6

Zero temperature matrix models

Each of the matrix models has a natural extension to /3 = oo, displayed in Figures

6.0.1-6.0.3. These "zero temperature" random matrix models are not random at all.

In fact, they encode orthogonal polynomial recurrence relations.

6.1 Overview

This chapter provides explicit formulas and large n asymptotics for the CS decomposi-

tion (CSD) of Ja°,b, the singular value decomposition (SVD) of L', and the eigenvalue

decomposition of Ho.

It will be shown that the CSD of Jab can be constructed from Jacobi polynomials

and their zeros, the SVD of La can be constructed from Laguerre polynomials and

their zeros, and the eigenvalue decomposition of H' can be constructed from Hermite

polynomials and their zeros.

The large n asymptotics for eigenvalues/singular values/CS values proved later in

this chapter are suggested by the following table.
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B 11 (E, ))

B21(, ))
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c-1Sn_

B 1 2 (E, ) 1
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a + b + 2i

= (n-1, * 1) E [, ]n-1
Ci = COS i

S = sin ¢i

I!' =, ic - a+b+1+2i

Figure 6.0.1: The P/= oo (zero temperature) Jacobi matrix model.
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6.1. OVERVIEW

LAGUERRE MATRIX MODEL, /3 = oc (square)

an- a+1

LAGUERRE MATRIX MODEL, / = oo (rectangular)

-v-n Va + n-1
-/n- a+ n-2

nMa,) -=/n~a-/ -2 /a +n-3

-V Tv

Figure 6.0.2: The P = oc (zero temperature) Laguerre matrix models.

HERMITE MATRIX MODEL, 3 = oc

0 o n-i

n V-i 0 vn -2

V o

Figure 6.0.3: The = oo (zero temperature) Hermite matrix model.
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Matrix model (3 = oc) Scaling Scaling Eigenvalue/singular value/
limit limit type CS value asymptotics

Jacobi left edge hard edge Bessel zeros
Jacobi right edge hard edge Bessel zeros
Jacobi center bulk linearly spaced
Laguerre (square) left edge hard edge Bessel zeros
Laguerre (square) right edge soft edge Airy zeros
Laguerre (rectangular) left edge hard edge Bessel zeros
Laguerre (rectangular) right edge soft edge Airy zeros
Hermite center bulk linearly spaced
Hermite right edge soft edge Airy zeros

The large n asymptotics for eigenvectors/singular vectors/CS vectors proved later

in this chapter are suggested by the following table.

Matrix model (P = oo) Scaling Scaling Eigenvector/singular
limit limit type vector/CS vector

asymptotics

Jacobi left edge hard edge Bessel functions
Jacobi right edge hard edge Bessel functions
Jacobi center bulk sine waves
Laguerre (square) left edge hard edge Bessel functions
Laguerre (square) right edge soft edge Airy functions
Laguerre (rectangular) left edge hard edge Bessel functions
Laguerre (rectangular) right edge soft edge Airy functions
Hermite center bulk sine waves
Hermite right edge soft edge Airy functions

6.2 Eigenvalue, singular value, and CS decompo-

sitions

In this subsection, some of the results are new, and some are old. The proposition

regarding the Hermite matrix model is common knowledge. It states that the zero

temperature Hermite matrix model encodes the Hermite polynomial recurrence, so

that the eigenvalues are Hermite polynomial roots, and the eigenvectors are con-

structed from Hermite eigenvectors. The propositions for the Jacobi and Laguerre
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models are similar, but use CS decomposition and singular value decomposition in-

stead of eigenvalue decomposition. The Jacobi case is likely an original contribution

of this dissertation, because of the relative obscurity of the CS decomposition, and

the Laguerre case is also original to this dissertation as far as we know.

Many works on orthogonal polynomials mention the ubiquity of three-term re-

currences, which lead to tridiagonal matrices. It is obvious that these tridiagonal

matrices can be generated from the Lanczos iteration, a topic discussed in [39]. How-

ever, in the Jacobi and Laguerre cases, two-term recurrences are actually available,

if one considers rnL(a + 1; x) in addition to rnL(a; x), for example. These two-term re-

currences are encoded by bidiagonal matrices, as seen below, which can be generated

from the conjugate gradient iteration. This idea follows from viewing the conjugate

gradient iteration as a "one-sided" Lanczos iteration [28].

Proposition 6.2.1. Take the n-by-n CS decomposition of the 2n-by-2n Jacobi matrix

model Ja,b

U2 -S C] [ V2]

Then

1. The diagonal entries of C, squared, are the zeros z1 < z 2 < ... < Zn of J(a, b; ).

2. The (1,j) entry of V1 is

/tn Z-1/2bj_ (a, b+ ; zj)a+b+2n j fl__ l ab 1;j)

-' ' a+b+2n ; ?n-1 ( a
and for i > 2, the (i, j) entry is

nJ _i(a + 1,b + 1;zj)aIK:2(a±1,b±;zjzj)± +b~n~, .j= 1,...,n.
2(a + 1, b + 1; j, Z) + a+b+2n-l )J(a , ,Zj)2
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3. For all i, j, the (i, j) entry of V2 is _i(a, b; zj)/KJ_ (a,b; j, j).

4. For all i, j, the (i,j) entry of U is nji(a,b+1;zj)/KnJ_ 1(a,b+ l;z,zj).

5. For all i, j, the (i,j) entry of U2 is J (a + 1, b; z)/

Proof. For any x1 , .. ., x between 0 and 1, we have

diag(l,, [ ... ( ,n,-= [ J-(a +1,b,xi) ]i=1...,n, B
j-1,.,=l..,n j1.

diag(V-,.. . , [ )J(a + 1,b, xi) ]il,. ..,n,-J1 l(a,b,xi) i=l,...,n C
j=l,.,n j=l,...,n+l

in which the entries of the upper bidiagonal n-by-n matrix B and the lower bidiagonal

(n+ 1)-by-n matrix C are determined by the recurrence relations (3.3.4-3.3.5). In fact,

the leading n-by-n submatrix of C equals the transpose of B. Now, when xl,..., xn

are the zeros z,... ,zn of rJ(a, b; ), the last column of

?J-1(a, b, xi) ] i=...
j=l,...,n+l

contains zeros, and so the equations still hold after dropping the last column of this

matrix and the last row of C, reading

diag(,..., /z) [ ?l(ab, xi) ]i= ...,n, = [ J _l(a+ 1,b, xi) ]i=,...,n, B,
j=l,...,n j=l,...,n

diag(V/T,..., V/) [ 1 (a + 1,b, xi) .,n, = j1 (a,b,) ] il,...,n, B
=l,...,n, =-(ab, iil,...,n

Because B is precisely the bottom-right block of Jab after permuting rows and

columns, we have explicitly constructed the singular value decomposition of this block,

up to normalization of the singular vectors. It is quite clear that the correct normal-

ization constant is given by the kernel, as in the statement of the theorem. This

shows that the CS values are the zeros of the polynomial and that the entries of U2

and V2 are as advertised.
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It remains to check the singular vectors of the top-left block of Job are given by U1

and V1. The proof is similar, but this time we already know that the singular values

are the zeros of rf(a, b; .). O

The proof shows that the top-left and bottom-right blocks of Jb encode recurrence

relations (3.3.4-3.3.5). It is worth noting that the top-right and bottom-left blocks

encode recurrence relations (3.3.6-3.3.7).

Proposition 6.2.2. Take the SVD of the n-by-n Laguerre matrix model L' to get

LO = UEVT . Then

1. The singular values, squared, are the zeros zl < 2 < .. < Zn of 7rn(a; ).

2. For all i,j, the (i,j) entry of V is f_(a ;zj)/KnLl(a;zj,Zj).

3. For all i,j, the (i,j) entry of U is n/_i(a + 1;zj)/ K_(a + 1;z zj).

Proof. The proof is similar to the proof of the previous proposition. For any positive

X,...,xn, we have

diag() (a x i) ] i,...,n, ( [ )1 (a + 1, xi) ] i=1...,n, B,
9 ... , n j=l,...,n

diag(/,, ... ,7) [ 1_ (a+ 1,xi) ]i=1,...,n,= [ jl(a,xi) ] i=l ...,n, C,
3=,...,n j=l,...,n+l

in which the entries of the n-by-n upper bidiagonal matrix B and the (n + )-by-n

lower bidiagonal matrix C are determined by the recurrence relations (3.3.8-3.3.9).

When xl,... ,xn are the zeros zl,. . zn of T7r(a; ), the last column of

[ L-1 (a, xi) ] i=l,...,n,
j= l,...,n+l

is zero, so this column and the last row of C can be dropped. Observing that B =

CTn,:n = FLaF, we have explicitly constructed the SVD of the 3 = oo Laguerre
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model. It remains to check the normalization constants involving the Laguerre kernel,

which is straightforward. [

Proposition 6.2.3. Take the SVD of the n-by-(n + 1) rectangular Laguerre matrix

model M to get Ma = UEVT. Then

1. The singular values, squared, are the zeros z1 < 2 <... < Zn of 'nL(a; .).

2. For i = 1,...,n+ 1 and j = 1,..., n, the (i, j) entry of V is +l-i(a- 1; j)/

/Kn(a -- 1; zj, zj). Fori = 1,..., n+1, the (i, n+1) entry is ar(an+1)r(a+n+1-i)

3. For all i, j, the (i, j) entry of U is Li(a;zj)/VK_ i(a; z;,z;).

The proof is similar to the previous proof and is omitted.

Proposition 6.2.4. Take the eigenvalue decomposition of the n-by-n Hermite matrix

model H' to get H' = QAQT. Then

1. The diagonal entries of A are the zeros z1 < z 2 < ... < zn of r

2. The (i,j) entry of Q is L H i(zj)/ K 1 (z, zj).

Proof. This time, we have an eigenvalue problem. For any real x1,... ,,

i 1(x) i=.n,=.· br ,xi i 1,.,j= ,., - [ 1(x i) ]i=l,...,n,j=l,...,n+l1

in which the entries of the (n + 1)-by-n tridiagonal matrix T are determined by the

Hermite recurrence (3.3.10). When the xi are the zeros zl,..., Zn of rH, the last

column of

[ jl1 (i) ]i=l,...,n,j=l,...,n+

is zero, and so the equation holds after deleting this column and the last row of

T. What remains of T is precisely FH°F, and the equation gives the eigenvalue

decomposition. It remains to check the normalization constants involving the Hermite

kernel, which is straightforward.
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6.3. LARGE N ASYMPTOTICS

Remark 6.2.5. The signs of the entries in the matrix models were chosen to make the

statements of these four propositions concise.

6.3 Large n asymptotics

Proofs are omitted in this section, because they are straightforward applications of

results in Subsections 3.3.2, 3.3.3, 3.3.4 and Section 6.2.

This section uses a substantial body of notation. The reader will find Section 3.6

and the list of notation at the end of the dissertation particularly helpful.

6.3.1 Jacobi at the left edge

Theorem 6.3.1. Take the CS decomposition of the 2n-by-2n Jacobi matrix model

Jab, as in Proposition 6.2.1. Fix a positive integer k, and let k denote the kth

smallest positive zero of ja. Then, as n * oo with h = 1+(a+b+l)/2 we have

1. The kth diagonal entry of C is asymptotic to k

2. Let xi = 1- h(n - i) and 1LFV (v()). Then En V()1(-h/2,h/2j con-
i ik (,ih/i+h/2 co-

verges pointwise to /lja+l(CkX)/ 2KBessel(a1; ,) on (0, 1).

3. Let xi = (1 - h) - h(n - i) and 1nFV2 = ( (2)) Then i( /+/2Vij ) . i=2 Vi i-h/2,xi+h/21

converges pointwise to V/Xja (kX)/ /2KBSsel(a; k, ) on (0, 1].

4. Let xi = (1 - ) -h(n -i) and 1 FU = ()). Then En 1I()(h/2,xj+h/2I.. 3 .he ~.i=l Uik (xi-h/2,i+h/2

converges pointwise to v/Xja (k)/ 2KB-sel(a ; (2, ( ) on (0, 1 ].

5. Let xi =( 1- -) h(n- i) and hFU 2 = ( 2), Then En (2) h/2,x+h/2]2 v=1 Sti 1-b7L i=(x i-h/2,ih/2]

converges pointwise to V/ja+l1((kX)/ V/2KBsel(a + 1; (2, 2) on (0, 1].

In parts (2)-(5), the convergence is uniform on any interval [, 1 - ] or [, 1], E > 0,

as appropriate.
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6.3.2 Jacobi at the right edge

Theorem 6.3.2. Take the CS decomposition of the 2n-by-2n Jacobi matrix model

Jab, as in Proposition 6.2.1. Fix a positive integer k, and let k denote the kth

smallest positive zero of ib. Then, as n -* oo with h = 1 we have
n+(a+b+l)/2'

1. The (n + 1 - k, n + 1 - k) entry of S is asymptotic to 1 k.

2. Letxi = 1-h(n-i) and --- QFV1 = ) Then ( 1 _
Vij .i=1i,n+1-k1-(x-h/2,j+h/2j

converges pointwise to V/jb+l((kX)//2KBessel(b + 1 ; (k ') on (0, 1).

3. Let xi = (1-h)-h(n-i) and -;QFV 2 = (v,)). Then E 1n(2)> k1 (Xih/2Xi+

converges pointwise to \jb( kx)/ /2KBesselb; , ) on (0, 1].

4. Letxi = (1 h\)-h(n-i) and-7QFU 1 = ((J)). Then (1)

converges pointwise to \Xjb+1((kX)/ 2K ± k k n(0,1].

5. Letxi = (1- h)-h(n-i) and- QFU2 = (uj)). Then Ei= ()+l-k(xi-h/2,i+h/2

converges pointwise to N/~jb(+lkx)//2KBessel(b; , c) on (0,1].

In parts (2)-(5), the convergence is uniform on any interval [E, 1 - ] or [e, 1], E > 0,

as appropriate.

6.3.3 Jacobi near one-half

Theorem 6.3.3. Suppose that n = 2m is even, take the CSD of the 2n-by-2n Jacobi

matrix model Jab as in Proposition 6.2.1, and consider the SVD of the bottom-right

block, B22 = U2CV2T. Fix an integer k, and define Kn as in Subsection 3..3.3. Then,

as n - cc over even values with h = 2 we have
n+(a+b+l)/2' we have

1. The (Kn + k)th diagonal entry of C2 is asymptotic to 2 + 2n + + k).

2. Letxi = (1-h)-h(m-i), yi = (1-h)-h(m-i), and ((QmQm)PF(ViV 2) =

)Then =2 iKn+kl(i-h/2,zi+h/2] converges pointwise to - v/2 cos(r(a-b+/3 2 Te i=2 i,Kn xi
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I-+k)x+ (-a+b)r) on (0, 1] and E- vi 2+k_±'yi-h/2yi+h/2] converges pointwise

to V2 sin(7r(a-b + + k)y + ) on (0,1].

3. Let xi = (1- 3h)- h(m-i), Yi = (1--h)-h(m-i), and (QmEDQm)PF(v2U2) =

m) Then E' ~ (2) COS(7r[a-l+(U)). Then Ei=i' i,Kn+kI(xi-h/2,xi+h/2 ] converges pointwise to - cos(r(a +

1 +kL (-(a+l)+b)r) on (, ) and U(2)
2Tk)x - (-(a+)+b)) on (0, 1) and i um+iKn+k(yi-h/2,y]h/2] converges point-

wise to v/2sin(1r(ab + + k)y + ( (a+l)+b)7r on (0, 1].

In parts (2)-(3), the convergence is uniform on any interval [E, 1 - e] or [e, 1], E > 0,

as appropriate.

Theorem 6.3.4. Suppose that n = 2m+1 is odd, take the CSD of the 2n-by-2n Jacobi

matrix model J~ab as in Proposition 6.2.1, and consider the SVD of the bottom-right

block, B22 = U2CV2T. Fix an integer k, and define Kn as in Subsection 3.3.3. Then,

as n - oo over odd values with h = 2 we have
n+(a+b+l)/2 

1. The (K, + k)th diagonal entry of C2 is asymptotic to 2 ± a + k).

2. Let xi = (1 h(m + 1 i), = (1 h) - h(m - i), and (Qm+l 3
Q.)PF(v2)V2 = (,(2)) Then E-m+2l v(2) c r

-- [Vi3 ' .i=2 i,Kn+k (xi-h/2,xi+h/21 converges pointwise

to--v/2COS(r(a- + k ) x + ( a+b)r) on (0, 1], and i=1 Vm+1+i,Kn+k(yi-h/2,yi+h/2]

converges pointwise to xvsin(r(a-b + k)y + (-b)) on (0,1].

3. Let xi = (1 - h) h(m + - i), y = (1 - h) h(m -i), and 1 (m+l 
~IpFV/~V2)- /(2)) , pm-l U(2)
Qm)PF(v-U 2 ) (j ). Then -i=1 iKn+k(xi-h/2,xi+h/2] converges pointwise

to -/2cos(7(a-+k)x+ (- (a+l )+b) ) on (0, 1], and E i=l Um+(2)+iKn (yih/2yih2

converges pointwise to /2sin(r(a-b + k)y + (-(a+l)+b) r) on (0, 1).

In parts (2)-(3), the convergence is uniform on any interval [, 1 - ] or [, 1], E > 0,

as appropriate.
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6.3.4 Laguerre at the left edge

Theorem 6.3.5. Take the SVD of the n-by-n Laguerre matrix model La, as in

Proposition 6.2.2. Fix a positive integer k, and let Ck denote the kth smallest positive

zero of ja. Then, as n - oc with h = ) we haven+(a+1)/2' 

1. The kth smallest singular value is asymptotic to i k.

2. Let xi = (1 - h) - h(n - i) and FV = (vij). Then Ein Vik1(xi-h/2,xi+h/2]

converges pointwise to j (k )//4KBessl(a; , ) on (0, 1] .

3. Let xi = (1 - h) - h(n - i) and FU = (uij). Then Ei= 1uik1(x-h/2,xj+h/2]

converges pointwise to ja+l ((kX/X)/ 4KBeSsel(a + 1; , ) on (0, 1].

In parts (2)-(3), the convergence is uniform on any interval [, 1], E > 0.

Theorem 6.3.6. Take the SVD of the n-by-(n+ 1) Laguerre matrix model Ma , as in

Proposition 6.2.3. Fix a positive integer k, and let (k denote the kth smallest positive

zero of ja. Then, as n -. o with h = 1+(+1)/2, we have

1. The kth smallest singular value is asymptotic to (k.

2. Let xi = (1 h) h(n+ 1-i) and 1 FV= (vij). Then i k+l1(xi-h/2x+h/2]

converges pointwise to ja-1 ((kVX)/ 4KBeSsel(a - 1; k2, k) on (0, 1]

3. With xi and vij as in part (2), EZn+l Vi,n+l(xi-h/2,xi+h/2] converges pointwise to

V/a (a-l )/ 2 on (0, 1].

4. Let x i = (1 - h) - h(n - i) and JhLFU = (uij). Then Ein 1Uik(xi-h/2,xi+h/2]

converges pointwise to ja (kV\)/ V/4KBesse(a; , Ck) on (0, 1].

In parts (2)-(4), the convergence is uniform on any interval [, 1], E > 0.
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6.3.5 Laguerre at the right edge

Theorem 6.3.7. Take the SVD of the n-by-n Laguerre matrix matrix model L, as in

Proposition 6.2.2. Fix a positive integer k, and let (k denote the kth rightmost zero

of Ai. Then, as n o with h = 22/3n-1/3, we have

1. The kth largest singular value is asymptotic to 2 n ± +1 + 2-2/3n-1/6k

2. Let xi = hi and (-1)n1QV = (vij). Then Ei=1vi,n+kl-k(x-h/2,xz+h/2 con-

verges pointwise to Ai(x + Ck)//KAirY(k, k) on [0, oo).

3. Letxi = h+h(i-1) and (-U = (uij). Then Ei= Uin+l-k(xi-h/2,xi+h/2]

converges pointwise to Ai(x + Ck)/ KAirY(Ck, Ok) on [0, oc).

The convergence in parts (2)-(3) is uniform on any interval [0, M], M > 0.

Theorem 6.3.8. Take the SVD of the n-by-(n + 1) Laguerre matrix model Ma, as

in Proposition 6.2.3. Fix a positive integer k, and let (k denote the kth rightmost zero

of Ai. Then, as n - oo with h = 22/ 3n-1/3, we have

1. The kth largest singular value is asymptotic to 2/+n ± 1 + 2-2/3n-1/6(k.

2. Letxi = h+h(i-1) and (-l)n+l 'QV = (vij). Then i _ Vi,n+1-kl(xi-h/2,xi+h/2]

converges pointwise to Ai(x + Ck)/ KAirY(Ck, Ok) on [0, oc).

3. Let xi = hi and (-1)n QU = (uij). Then Ei=1 Ui,n+lk(xi-h/2,xi+h/2] con-

verges pointwise to Ai(x + ok)/ KAirY(¢k, ok) on [0, oo).

The convergence in parts (2)-(3) is uniform on any interval [0, M], M > 0.

6.3.6 Hermite near zero

As special cases of Theorem 4.2.4, we have, for n = 2m even,

(Qm (D Qm)PH°°PT(Qm GD Qm) = L L -1/2 (6.3.1)
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in which H ® is 2m-by-2m and L 1/2 is m-by-m, and for n = 2m + 1 odd,

(Qm+l $ Qm)PH PT(Qm+i O Qm) = 1/
- 1/2 

-(M]'2)T (6.3.2)

in which HI is (2m + 1)-by-(2m + 1) and M112 is m-by-(m + 1).

Theorem 6.3.9. Suppose that n = 2m is even, and consider the n-by-n Hermite

matrix model H° . Compute an eigenvalue decomposition of (Qn2,fm) )PH°PT(Qm2

Q,m) and permute rows and columns to find

(Q, ED Q)PHOPT (Q ® Qm) =
U -U

V V

T

-E V V

in which E has positive diagonal entries

Fix a positive integer k, and let (k =

h = 2+1 we have

in increasing order and U and V are m-by-m.

(k - )r. As n oc over even values with

1. The kth diagonal entry of E is asymptotic to (Ck.

2. Let xi = (1 - h) - h(m- 1) and _FV = (vij). Then zi=l Vik(xih/2,xi+h/2]

converges pointwise to 1 / 2 X-/4 cos((k/x-)/ 4KBesse1(-1; (, (k) on (, 1]

3. Let xi = (1 - )- h(m- i) and dFU = (uij). Then Eil ik1 (x,-h/2xj+h/2]
.5B -1/2 -1/4 0, ]

converges pointwise to (k / X1sin((kv )/ on (0,1].

In parts (2)-(S), the convergence is uniform on any interval [E, 1], > 0.

Theorem 6.3.10. Suppose that n = 2m + 1 is odd, and consider the n-by-n Hermite

matrix model H ®. Compute an eigenvalue decomposition of - (Qm+i Qm)PHI pT( m,+i 
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Q,) and permute rows and columns to find

-(Qm+iQ )PH" pT(Qm+lQm) = [ - 1] [ 
U U 0 U U 0o

in which E is m-by-m with positive diagonal entries in increasing order, V is (m+ 1)-

by-m, U is m-by-m, and z is (m + 1)-by-1. Fix a positive integer k, and let (k = kr.

As n -+ o over odd values with h = - we have2n+1'

1. The kth diagonal entry of E is asymptotic to 7; k.

2. Letxi = (1- )-h(m+l-i) and FV = (vij). Then yi=+l Vikl(xi-h/2,x+h/2]

converges pointwise to S1/2-Lk/4 CO5(k/)/ 4KBessel(-V; ~, 2) on (0, 1]

3. Let xi be defined as in part (2), and let LFz = (zi). Then +' Zil(x-h/2,xi+h/2

converges pointwise to 2x- 1/ 4 on (0, 1].

4. Let xi = (1 - h) - h(m - i) and dFU = (uij). Then 7i=l Uik 1 (xi-h/2,xi+h/2]

converges pointwise to -/ 2x-14 s in((k/)/ KB es(; 2 ) on (0, 1].

In parts (2)-(4), the convergence is uniform on any interval [, 1], E > 0.

Remark 6.3.11. Theorems 6.3.9 and 6.3.10 hold because of the perfect symmetry

of the f, = oo Hermite ensemble: the eigenvalues come in positive/negative pairs,

whose absolute values are precisely the singular values of a Laguerre matrix model.

For finite A, the diagonal of the Hermite matrix model becomes nonzero, and the

positive/negative symmetry of the eigenvalues is broken. In more technical language,

the Hermite ensemble and the Laguerre chiral ensemble coincide at /3 = oo, and

the theorems say as much about the chiral ensemble as they do about the Hermite

ensemble. When stepping to / < oo, care must be taken to differentiate the Hermite

ensemble from the chiral ensemble. The chiral ensemble is discussed in [14].
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6.3.7 Hermite at the right edge

Theorem 6.3.12. Take the eigenvalue decomposition of the n-by-n Hermite matrix

model H", as in Proposition 6.2.4. Fix a positive integer k, and let (k denote the kth

rightmost zero of Ai. Then, as n -- oc with h = n- 1 / 3, we have

1. The kth rightmost eigenvalue of H' is asymptotic to v/2n + 1 n-1/6(k

2. Let xi = hi and ;Q = (qij). Then En=1 qi,n+l-kl(xi-hl/2,h+h/2] converges

pointwise to Ai(x + ok)//KAirY((k, On [0, oc). The convergence is uniform

on any interval [0, M], M > 0.



Chapter 7

Differential operator limits: the

zero temperature case

Take a moment to study the operators in Figures 1.0.4-1.0.6, and compare them with

the results in Section 6.3. It appears that the Airy, Bessel, and sine operators play

roles in the spectra of the zero temperature matrix models as n -* oc. Recalling the

soft edge, hard edge, and bulk from Section 2. 1, the operators appear to be associated

with scaling limits:

scaling limit

soft edge

hard edge

bulk

operator

A (Airy)

.a, a (Bessel)
-1/2, -1/2 (sine)

The present chapter argues that not only do the spectra of the matrix models

resemble the spectra of the continuous operators, but actually the matrix models

themselves are finite difference approximations to the Airy, Bessel, and sine operators.

In order to view the matrix models as finite difference approximations, the models

must be recentered and rescaled as n - oo. For example, a Laguerre model can
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be viewed as a finite difference approximation of either an Airy or Bessel operator,

depending on the rescaling. The situation is exactly as in Figure 2.1.3.

7.1 Overview

The limiting differential operators are indicated in the following table.

Remark 7.1.1. The "center" scaling limits in the table refer to the very center of the

spectrum: for Jacobi and 0 for Hermite. Applying the stochastic operator approach

to other bulk locations in the Jacobi and Hermite ensembles, and anywhere in the

bulk of the Laguerre ensemble, is an open problem.

Matrix model Scaling limit Scaling limit Differential operator
(i = oo) type

Laguerre (square right edge soft edge A
or rectangular)

Hermite right edge soft edge A

Jacobi left edge hard edge Ja type (i) b.c.

Jacobi right edge hard edge b type (i) b.c.

Laguerre left edge hard edge Ja type (i) b.c.
(square)

Laguerre left edge hard edge Ja-1 type (ii) b.c.
(rectangular)

Jacobi (n even) center bulk - 1/2 type (i) b.c.

-3/*
Jacobi (n odd) center bulk -1/2 type (ii) b.c.

31/2

Hermite (n even) center bulk type (i) b.c.

Hermite (n odd) center bulk [ 1/2] type (ii) b.c.I ~ ~~~~I J-1/2 I

CHAPTER 7.96
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7.2 Soft edge

In this section and the remaining two, we make a slight abuse of notation. Several

times, we refer to row LMJ or ] of an n-by-n matrix, in which M and E are fixed

constants, and h = h, is the step size, as in the previous chapter. For small values of

n, these indices may be greater than n, referring to rows that do not exist. However,

for sufficiently large n, the indices are valid. This is sufficient, since all of the theorems

concern large n asymptotics.

7.2.1 Laguerre at the right edge

- The first two theorems concern the square Laguerre matrix model La.

Theorem 7.2.1. With step size h = 22/3n-1/3 and mesh Xk = hk, k = 1,..., n, make

the approximation

h((Q(L- )TL Q - 4(n + a+l-)In)= D2 -4 a2 4

2x1 xi2 

xI 2X 2 X2

Xn-2 2Xn-1 Xn-1

Xn-1 2Xn

Then E is symmetric tridiagonal, and its entries are O(h) as n - oo, uniformly.

Proof. E is clearly symmetric tridiagonal. Its diagonal entries are exactly - +lh. For

k = 1,..., n-1, the (k, k + 1) entry is -h-2 + kh + h V/(n- k)(a + n-k). Rewriting

the last term as h\/(a + n - k)2 - ()2 and taking a series expansion of the square

root factor about -+ n-k, we see that the entry equals h (a + R[ 4 a2]), in which

R[x] represents a quantity bounded in magnitude by x. [O

Theorem 7.2.2. With step size h = 22/3n-1/3 and mesh Xk = h(k - ), k = 1,. .. n,

+E.

_ _
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make the approximation

(QL (L )TQ - 4(n + a+) In) = D2-
4 a a 2 h2 4

2x1 2x2 2

Xn-2 2 Xn-1 Xn-1

Xn-1 2Xn

in which D2 is obtained from D2 by replacing the (1, 1) entry with -3. Then E is

symmetric tridiagonal, and its entries are O(h) as n -, oc, uniformly.

Proof. E is clearly symmetric tridiagonal, and every diagonal entry equals -a+h.

For k = ,..., n - , the (k, k+ 1) entry is- 1 -1+2 + h (n-k)(a+ +n -k).

Rewriting the last term as + n-k) 2 - (a)2 and taking a series expansion

of the square root factor about a+ + n - k, we see that the entry equals h(a +

Rr (a+l1])

Claim 7.2.3. (La )TL and L(L )T, scaled at the soft edge, are finite difference

approximations to the Airy operator A.

The claim is supported by Theorems 6.3.7, 7.2.1, and 7.2.2.

The next two theorems concern the rectangular Laguerre model Ma.

Theorem 7.2.4. With step size h = 22/3n-1/3 and mesh xk = h(k- ), k = 1 ... n+

1, make the approximation

h(Q(Ma-)TMaQ-4(n+ +1 )I+l) = h2f2 1
4 2 2 

2x 1 x 1

X1 2x2 x 2

X-_1 2 2Xn 

Xn 2n++

+ E,

+E)
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in which D 2 is obtained from D2 by replacing the (1, 1) entry with -3. Then E is

symmetric tridiagonal, and its entries are O(h) as n - oo, uniformly.

Proof. E is clearly symmetric tridiagonal. For k = 2,..., n, the (k, k) entry is - a+l-h.

The (1, 1) entry and the (n + 1, n + 1) entry both equal - 2a-lh. For k = 1,..., n,

the (k, k + 1) entry is- 1l 2 h + + h (n+ 1- k)(a + n-k). Rewriting the last

term as hfa( + n-k) 2 (-)2 and taking a series expansion of the square root

factor about a+l + n- k, we see that the entry is h8a + R(a + 12 ]). 

Theorem 7.2.5. With step size h = 22/3n- '1 /3 and mesh Xk = hk, k = 1,...,n, make

the approximation

(h (M(Ma)TQ -4(n + a+l)I-)= 4D2-4 h2 4

2x1 Xi

xi 2x 2 X 2

Xn-2 2Xn-1 Xn-1

Xn-1 2n,

Then E is symmetric tridiagonal, and its entries are O(h) as n - oo, uniformly.

Proof. E is clearly symmetric tridiagonal. The diagonal entries are exactly -a+lh.

For k = 1,...,n - 1, the (k,k + 1) entry is - 2 + h + v(n-k)(a + n -k).

Rewriting the last term as h-V/(a + n- k) 2 ()2 and taking a series expansion of

the square root factor about + n-k, we see that the entry is h (a + R[ ]). 

Claim 7.2.6. (M°°)TMaa and M (M~a)T, scaled. at the soft edge, are finite difference

approximations to the Airy operator A.

The claim is supported by Theorems 6.3.8, 7.2.4, and 7.2.5.

7.2.2 Hermite at the right edge

Claim 7.2.7. Let H a be the (2m)-by-(2m) zero temperature Hermite matrix model,

and let h = 22/3 m-1/3. We claim that h(P(H°°)2pT - 4(m + )I2m) is a finite

+E.
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difference approximation to [ A] Similarly, when the size of the matrix model is

odd, n = 2m + 1, we claim that (P(H°) 2 PT - 4(m + 4)I2m+1) is a finite difference

approximation to [A Al], in which h = 22/3m - 1/ 3

The claim is supported by Theorem 6.3.12 as well as Subsection 7.2.1. To apply

Theorem 6.3.12, note that the eigenvalues of H °° come in positive/negative pairs, so

that squaring H"° forms 2-dimensional eigenspaces. The Ak eigenspace is spanned by

a vector of the form [ ] and a vector of the form [0 ], with u an F 1 vector and v an

L2J vector. To apply Subsection 7.2.1, note that when n = 2m is even, (H) 2 can

be expressed in terms of the m-by-m Laguerre model,

P(Ho )2pT =
L QL01 1 (Lr 1/ 2 )TQ

so that Theorems 7.2.1 and 7.2.2 can be used, and when n = 2m + 1 is odd, (H°) 2

can be expressed in terms of the m-by-(m + 1) rectangular Laguerre model,

P(H- )2pT =
L Q(M1/2)T M1/2Q

QM 1 /2(Ml/2) Q 

so that Theorems 7.2.4 and 7.2.5 can be used.

The Hermite matrix model can also be analyzed directly, without appealing to

the Laguerre matrix model.

Theorem 7.2.8. With step size h = n-1 /3 and mesh Xk = hk, k = 1,..., n, make

the approximation

2;(°-h32 1 =1
(HO_ v/-h ) = -D2-h~~~~~~h 

0 X1

X 1 0

Xn-2 0

Xn-1

Xn-1

O

7

+ E.

100
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Then E is symmetric tridiagonal, and the entries in rows 1,..., [LJ of E are uni-

formly O(h2), for any fixed M > 0.

Proof. E is clearly symmetric tridiagonal, and its diagonal entries are exactly zero.

Fork = 1,, n-, the (k, k+1) entry is +-k hk 1 Taking a series expansion of

n- k about fV, we see that the entry equals + v/ 2 n-1/2(-k) +R[-41 1 (n-

k)-3 /2 (-k) 2 ] + h2k - Substituting h = n-1/3, the entry becomes n2 /3 - n-/ 3 k+

n-1 /3 k -n 2 /3 + R[nl/ 6(n - k)- 3/2 k2], which is bounded in magnitude by n1/ 6 (n -

k)-3 /2 k2 . For all rows of interest, k < M, so the entry is bounded in magnitude by

¼(1- Mh)- 3 / 2 M 2 h 2 . L

The theorem only considers the first O(n1 /3 ) rows of the Hermite matrix model.

However, from Theorem 6.3.12, the k "rightmost" eigenvectors have almost all of

their support within this regime, for any k. Under the n - oc scaling limit, the

bottom-right portion of the matrix is often irrelevant.

Claim 7.2.9. (HO - V/h- 3/2In) is a finite difference approximation to A.

The claim is supported by Theorems 6.3.12 and 7.2.8.

7.3 Hard edge

7.3.1 Jacobi at the left edge

Theorem 7.3.1. Let B22 denote the bottom-right n-by-n block of the 2n-by-2n Jacobi

matrix model J°b. With step size h = 1 and mesh Xk = (1-) - h(n, k)amb '~n+(a+b+1)/2 and me 2
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k = 1,..., n, make the approximation

F B22 F
h

-(1 ) + (a+ 1

2

1 1
X1 X1

1
X2

1
X2

1
z3

1
Xn-1

1
Xn

+ E.

Then E is upper bidiagonal, and, for fixed E E (0, 1], the entries in rows [], ... , n

are O(h), uniformly.

Proof. E is clearly upper bidiagonal. Check that entry (n + 1 - k, n + 1 - k) of the

left hand side equals

1 (n+l-k + a-b)/ 2 (Xn+k a+b))1/2 (fl-l-k ) a1/2 (Xn+l-k _ 1 )-1/2 .

After rewriting this expression as

b2 )/ 2 Xn+ - k

- _T) (( hk
_ )2_ ) - 1/2

4 T6

it is straightforward to check that the entry is

I I iU)T I/ ~-z~c,,, O(h),1 + (a + ) - l + (h),

with the O(h) term bounded uniformly over all k such that n + 1 - k > [1.

The superdiagonal error terms can be bounded similarly. []

Theorem 7.3.2. Let B11l denote the top-left n-by-n block of the 2n-by-2n Jacobi

With step size h = +(a++l) and mesh k = 1 - h(n - k),

1 KXn+l-k
T at h

CHAPTER 7.102
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k = 1,... , n, make the approximation

-FB11F= h (-D) + (a+ 2) h h 2 2

1
X1

1 1
X1 X2

1 1
z2 X3

1 1
Xn--1 Xn

Then E is lower bidiagonal, and, for fixed E (0, 1], the entries in rows [FE,... ,n- 1

are O(h), uniformly.

The proof is similar to the proof of the previous theorem. Note that the theorem

says nothing about the last row of FB11F. In fact, the (n, n) entry is qualitatively

different from nearby entries, enforcing the right boundary condition evident in the

previous chapter. We omit details for brevity.

Claim 7.3.3. The Jacobi matrix model scaled at the hard edge on the left, (Fn (

Fn) Jb(Fn Q F), is a finite difference approximation to

with type (i) boundary conditions.

The claim is supported by Theorems 6.3.1, 7.3.1, and 7.3.2.

Remark 7.3.4. Notice that type (ii) boundary conditions are not seen in this sub-

section. Perhaps the rectangular Jacobi model, conjectured in Remark 4.2.3, would

reveal type (ii) boundary conditions. This idea is suggested by Subsection 7.3.3.

+E.



DIFFERENTIAL OPERATOR LIMITS

7.3.2 Jacobi at the right edge

Claim 7.3.5. The Jacobi matrix model scaled at the hard edge on the right, (Q, e
fQ)(F, F.)J (F~ · F)(Q, ED Qn), is a finite difference approximation to

[;b *J

with type (i) boundary conditions.

This claim is equivalent to the claim of the previous subsection, considering (4.2.1).

7.3.3 Laguerre at the left edge

Theorem 7.3.6. With step size h = n+(a+l)/2 and mesh Xk = (1 - ) - h(n- k),

k = 1,..., n, make the approximation

2-FL` °F
v hA-a

=-2 diag(j, . 1

2
(D 1 ). ,.1 X') -· · ,~\hUh

1 1

1

,IX 
1

1
v3

1
. Vxn- 1

1

+ E.

Then E is upper bidiagonal, and the entries in rows [l,... , n of E area uniformly

O(h), for any fixed 0 < E < 1.

Proof. For k = 1,..., n, the (k, k) entry of E is (2 /k +a- 2/2- + a/2 _ a )

Taking a series expansion of + a about k + a/2, the entry can be bounded in

magnitude by 6(a)3/2h for all k > . The superdiagonal of E can be bounded in a

similar fashion, at one point taking a series expansion of v/ about Vk + a/2. O
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Claim 7.3.7. The Laguerre matrix model L', scaled at the hard edge, is a finite

difference approximation to the Bessel operator J with type (i) boundary conditions.

The claim is supported by Theorems 6.3.5 and 7.3.6.

Theorem 7.3.8. With step size h = 1 and mesh Xk = (1-h) - h(n - k),n+(a+l)/2

k =1,..., n, make the approximation

2 FM F = -2 diag(/x, /xn) ((D1) l:n,l:n+l 
Vh

1
+ (a - 1) 

2

1 1

I 1

1 1

1 I

+E.

Then all nonzero entries of E lie on the main diagonal and superdiagonal, and the

entries in rows F ... , n of E are uniformly O(h), for any fixed 0 < E < 1.

Proof. For k = 1,..., n, the (k, k) entry of E is (2k +a - - 2/k + (a- 1)/2 -
a-I )h ' Taking a series expansion of /k + a -I about V/k (a- 1)/2, the

entry can be bounded in magnitude by (a- 1)2 h for all k > h The superdiagonal

of E can be bounded in a similar fashion, at one point taking a series expansion of

k about v/k - (a-1)/2. [

Claim 7.3.9. The rectangular Laguerre matrix model Ma, scaled at the hard edge, is

a finite difference approximation to the Bessel operator Ja-1 with type (ii) boundary

conditions.

The claim is supported by Theorems 6.3.6 and 7.3.8.
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7.4 Bulk

7.4.1 Jacobi near one-half

Theorem 7.4.1. Suppose that a = b and that n = 2m is even, and let B22 denote

the bottom-right block of the 2n-by-2n Jacobi matrix model J.b-

n+(a+b+l)/2' make the approximation

With step size h =

hDTiQm)PFBTB 22FP T (Qm & Qm) +E.
[D1

Then E is symmetric and has the same sparsity pattern as [ D1
DT 

fixed E (0, 1], the entries in rows h,. .. , m of the bottom-left block of E are O(h),

uniformly.

Proof. First, consider the symmetry and sparsity pattern claims. The (1, 1) entry of

the left hand side is 4 2(a+-b+2) 0. For k = 2,..., m, the (k, k) entry of the left hand

side is

4 ( 2(k-1)(b+2(k-1)) + (l+a+b+2(k-1))(a+(2k-1)) _ 1 0
h (a+b+2(2(k-1)))(l+a+b+2(2(k-1))) (l+a+b+2(k- 1))(a+b+2(2k- 1)) 2- 

For k = 1,..., m, the (m + k, m + k) entry of the left hand side is

4 (2k-)(2k- 2k-1)) + (l+a+b+(2k-1))(a+2k) 1 _ 0.
(a+b+2(2k-1))(l+a+b+2(2k-1))) (l+a+b+2(2k-1))(a+b+2(2k)) 2

Now E is clearly symmetric with the indicated sparsity pattern.

For 2 < k < m, the (k, k) entry of the bottom-left block of E is

4 / a+(2k-1) b+(2k-1) 2k-1 a+b+1+2(k-1) 
-h a+b+2(2k-1) a+b+2(2k-1) Va+b+l+2(2k-1) a+b+l+2(2(k-1)) h

Also, for any

CHIAPTER 7.106
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which can be rewritten

-4 ((2k+ a+b _ 1)2 _ (a-b)2)1/2 ((2k+ a+b 1)2 (a+b)2) 1/2

((4k + a + b - 2)2 - 1)-1/2 ((4k + a + b - 2)2)- 1/2 1

Asymptotically, then, the entry is

-4(2k + a+b _ 1 + O(kmln))(2k + a+b_ 1 + O(kmn))2 min 2 min

((4k + a + b - 2)-1 + O(km))(4k + a + b - 2)-1 + 

=(4 + O(ki )) + 
= O(h-'k)min

for all k > kmin > 1 as n --- o. (The implicit constant is uniform for all k > kin.)

If the sequence of kmin'S is bounded below by , then the entry is O(h).

The superdiagonal can be bounded similarly. [

Theorem 7.4.2. Suppose that a = b and that n = 2m + 1 is odd, and let B22 denote

the bottom-right block of the 2n-by-2n zero temperature Jacobi matrix model Ja°b. With

step size h = n+(a+b+l)/2 make the approximation

4 ((Qm+1 Qm)PFB B 22FPT (Qmli n) 2 I)

= [ (D) :m,l:m+l + E.
(Dl)l:m,l :m+l

Then E is symmetric and has the same sparsity pattern as the other term on the

right hand side. Also, for any fixed G (0, 1], the entries in rows 1 . , m of the

bottom-left block of E are O(h), uniformly.

The proof is similar to the proof of the previous theorem.
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Claim 7.4.3. When a = b and n = 2m is even, the Jacobi matrix model scaled in

the center of the spectrum, - ((m Qm)PFBB 22FPT(Qm Z,) - I), is a finite

difference approximation to

[ -1 /2 1 / 2

with type (i) boundary conditions. When a = b and n = 2m+ 1 is odd, the Jacobi ma-

trix model scaled in the center of the spectrum,- -((Qm+l eQm) PFBTB 22FPT(Qm+G

Qm) - ), is a finite difference approximation to

-c-J --·1/2

with type (ii) boundary conditions.

The claim is supported by Theorems 6.3.3, 6.3.4, 7.4.1, and 7.4.2.

The above discussion applies only to the ultraspherical case a = b. When a : b,

Theorems 6.3.3 and 6.3.4 suggest that similar finite difference interpretations exist,

but with different boundary conditions.

7.4.2 Hermite near zero

Claim 7.4.4. If H' is the zero temperature 2m-by-2m Hermite matrix model, then,

with h = 2 4 (Qm G Qm)(Fm G F,)PH°PT(Fm ® Fm)(Qm Q,) is a finite

difference approximation to

~[ / 2 -1/2
with type (i) boundary conditions. If, instead, H°° is (2m + 1)-by-(2m + 1), then, with

h = 2 +1 ( l Qm)(Fm+ Fm)PH°°PT(Fm+I G Fm)(Qm+l ( Qm) is a finite
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difference approximation to

[

-* 1/2

J-i 1/2

with type (ii) boundary conditions.

The claim is a natural consequence of (6.3.1) and Claim 7.3.7, in the even case,

and (6.3.2) and Claim 7.3.9, in the odd case.
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Chapter 8

Stochastic differential operator

limits

The previous two chapters considered zero temperature (3 = oc) random matrix

models. The present chapter moves to the finite 3 case, in which randomness actually

plays a role. We argue that the random matrix models, rescaled appropriately, are

finite difference approximations to stochastic differential operators. In other words,

we add noise to the previous chapter.

The arguments work in two steps. First, we replace the matrix models with

Gaussian approximations, a step that appears to be benign as n - 00o. Second, we

claim that the n oc limit of a diagonal or bidiagonal matrix of Gaussian entries

is a diagonal operator that injects white noise, usually denoted W. However, we

do not propose an interpretation, in the It6 or Stratonovich sense, for example, for

white noise. The numerical experiments in this chapter justify the use of Gaussian

approximations and may someday be useful for finding the correct interpretation

of white noise. They alone, however, cannot justify the step from finite matrix to

stochastic operator in our arguments.
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Figure 8.1.1: Largest eigenvalue of a finite difference approximation to A + 2W.

The smooth curves are n - o theoretical densities (see Figure 2.1.2(a)), while the
square waves are finite n histograms.

8.1 Overview

This chapter presents several conjectures regarding the eigenvalues and singular values

of stochastic differential operators. These conjectures are motivated by the observa-

tion that scaling limits of random matrix models are finite difference approximations

to the stochastic differential operators, and the conjectures are partially supported by

numerical experiments. The conjectures follow. Each should be prefixed by, "Under

the appropriate SDE interpretation for the diagonal noise operator W...."

Conjecture 8.1.1. The largest eigenvalue of A + W follows the universal largest

eigenvalue distribution with parameter P > 0.

Results from numerical experiments are presented in Figure 8.1.1. More details

can be found in Section 8.4.

Conjecture 8.1.2. The smallest singular value of Ja + W with type (i) bound-

ary conditions follows the universal smallest singular value distribution with parame-

ters 3, a.

Results from numerical experiments are presented in Figure 8.1.2. More details

can be found in Section 8.5.
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Figure 8.1.2: Smallest singular value of a finite difference approximation to Ja +

2LW with type (i) boundary conditions. The smooth curves are n - o theo-

retical densities (see Figure 2.1.2(b)), while the square waves are finite n histograms.

Conjecture 8.1.3. The smallest singular value of Ja + W with type (i) boundary

conditions follows the universal smallest singular value distribution with parameters

/3, a. With type (ii) boundary conditions, the smallest singular value follows the

universal smallest singular value distribution with parameters ,3, a + 1.

Results from numerical experiments are displayed in Figure 8.1.3. More details

can be found in Section 8.5.

Conjecture 8.1.4. With W11, W12, W22 denoting independent diagonal noise opera-

tors, the eigenvalue gap about zero of

J-1/2 [ W 11 W2 1 (8.1.1)

L * 1J2 J Lx W 12 2W 2 2 J

follows the universal spacing distribution with parameter > O. We conjecture that

this holds whether type (i) or type (ii) boundary conditions are imposed on the sine

operators.

Results from numerical experiments are displayed in Figure 8.1.4. More details

can be found in Section 8.6.

'' ''~~~~~~~~~~~~~~~i
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(a) a = 0, 3 = 4, type (i) b.c.

0.6

0.4

0.2

A

0 2 4 6

(b) a = 0, 3 = 2, type (i) b.c.

0 2 4 6

(c) a = 0, = 1, type (i) b.c.

U.0

0.4

0.3

0.2

0.1

n

U.5

0.4

0.3

0.2

0.1

A

4 6 8 0 2 4 6 8

,/ = 4, type (ii) b.c. (e) a = 0, = 2, type (ii) b.c.

0 2 4 6 8

(f) a = 0, /3 = 1, type (ii) b.c.

Figure 8.1.3: Smallest singular value of a finite difference approximation to Ja+ 2W.

The smooth curves are n -+ o theoretical densities (see Figure 2.1.2(b)), while the
square waves are finite n histograms. The problem area near zero in figure (c) appears
to disappear as n -- oo.
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8.1. OVERVIEW
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(a) /3 = 4, type (i) b.c.
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(b)
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(d) 3 = 4, type (ii) b.c.
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/3 = 2, type (i) b.c.
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1 
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(e) 3 = 2, type (ii) b.c.
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0.1
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(c) /3 = 1, type (i) b.c.

0 5 1'

(f) 3 = 1, type (ii) b.c.

Figure 8.1.4: Bulk spacings for finite difference approximations to (8.1.1). The smooth
curves are n --+ o theoretical densities (see Figure 2.1.2(c)), while the square waves
are finite n histograms.
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Notably absent in these conjectures is the sine operator in Liouville form, J 1/ 2 ,

which played a vital role in understanding the Jacobi ensemble scaled in the center

of its spectrum in the previous chapter. Work concerning this operator is presented

in Subsection 8.6.1, where a more measured approach is taken because of apparent

sensitivity to the interpretation of white noise.

The above conjectures are motivated by scaling limits of random matrix models,

suggested by the following table.

Matrix model Scaling Scaling Stochastic differential operator
limit limit type

Laguerre (square right edge soft edge A plus noise
or rectangular)

Hermite right edge soft edge A plus noise

Jacobi left edge hard edge Ja plus noise, type (i) b.c.

Jacobi right edge hard edge b plus noise, type (i) b.c.

Laguerre left edge hard edge Ja plus noise, type (i) b.c.
(square)

Laguerre left edge hard edge Ja-1 plus noise, type (ii) b.c.
(rectangular)

Hermite (n even) center bulk [ J1J2 1/2 ] plus noise, type (i) b.c.

Hermite (n odd) center bulk [ -/ 2 1/2 plus noise, type (ii) b.c.

8.2 Gaussian approximations

The approximations presented in this section are based on the observation that, for

large n, the Jacobi, Laguerre, and Hermite matrix models contain many independent

random variables, and these random variables do not have heavy tails. These are

116



8.2. GAUSSIAN APPROXIMATIONS

the sorts of hypotheses necessary for central limit theorems. We conjecture that for

our purposes, the only relevant features of the entry distributions are (1) mean, (2)

variance, and (3) no heavy tails. We can replace an entry distribution with a different

distribution without affecting the eigenvalue statistics of interest as n - oo, as long

as we preserve these three features. In practice, we use Gaussian approximations, for

ease of notation and sampling.

Although we doubt that there is anything special about Gaussians, we note that

Gaussians can give especially good approximations to the matrix models, based on

the observation that /2(Xr, - /) approaches a standard Gaussian as r - o [11]

and based on Remark 3.5.1, concerning asymptotics of the beta distribution. (Note

that, for example, nearly all Xr entries in the matrix models have r -- x oc as n -+ oo.)

The approximate Jacobi matrix model is obtained by first replacing angles 01,..., ,On

1,-..., qn-1 by Gaussians (Figure 8.2.1), replacing certain instances of ci, si, d/, and si

by 1, multiplying out the matrix entries, and throwing away "second-order terms."

For example, a diagonal entry in the top-left block of the preliminary approxima-

tion is of the form cis', which equals 1 - 2 Gi + -
~ 2 + i 'G -c/s i , v/~ i a-- -b+ 2 i,. 2-a Ci2v a+b+l+2i Li

1 CGiG'. For moderately large i, this expression is well approximated
4l Va+b+2iya+b++2i 

byi- / G + a+b++2i G'. Using this approximation for all i, based

on the assumption that a not-so-good approximation for a finite number of entries

does not significantly change the CS values of interest as n - o, we have the final

Gaussian approximation to the Jacobi model, displayed in Figure 8.2.2. Gaussian

approximations to the Laguerre and Hermite models are also displayed in this fig-

ure. They are obtained by replacing chi-distributed random variables with Gaussian

approximations.

Whether or not the Gaussian approximations are appropriate to use depends on

the eigenvalue statistic of interest.
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JACOBI MATRIX MODEL, PRELIMINARY APPROXIMATION

Cn -nCn--1 nnSn-1
cn-i n- 1 -Sn-lCn- 2 an-lC,-_1 sn-lSn- 2

Cn-2S-2 Cn--2 Cn-2 Sn-2S-3

-n -Cnn 1 c n_ -1
-Sn-1s -1 -n-l.n-2 -Sn9ln-1 n-S-2

-Sn- 2Sfn-2 *-.-n- 2 2 -Cn-2Sn-3

/i> 0, a, b>-

1 V2sa 1 __ __ __ _

9 = -i -. v/ c2v/f = i + 1 2 i \/_ G1
Si = s + 2Gi 2V/3 v/a+b+ 1 + 2i

Figure 8.2.1: A preliminary Gaussian approximation to the Jacobi matrix model. ci,
si, i, and si are defined in Figure 6.0.1.
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8.2. GAUSSIAN APPROXIMATIONS

JACOBI GAUSSIAN APPROXIMATION

1 [X 1 [-(-QD 1 Q) -D)T

1 -D1 -D T] r

2/ D1 (-Q2D1Q)T J 1 Y2

X = diag(a + b + 2(n: -1: 1))- 1/2 diag(G,..., G1)
Yi = diag(1, a + b + 1 + 2(n-1 -1: 1))-1/2 diag(O, Gn1, ... , G)
Y2 = diag(a + b + 1 + 2(n-1: -1: 1), 1)-1 /2 diag(Gn_1,..., GI, 0)

LAGUERRE GAUSSIAN APPROXIMATION (square)

Gn
G~n- Gn-

L' 3 1 GI -2 Gn-2

G G1

LAGUERRE GAUSSIAN APPROXIMATION (rectangular)

1GGn 1 G'n

G1 G'

HERMITE GAUSSIAN APPROXIMATION

2Gn Gn
Gn_ 2Gn 1 n-2C__ n-2

H)l3 H GI 2G2 G
GI 2G1

Figure 8.2.2: Gaussian approximations to the matrix models. In each case,
G1,. ., Gn, Gl,.. , GI 1 (or, in the rectangular Laguerre case, G 1,..., G,
GI,... G[) are i.i.d. standard Gaussian random variables. Also, a+b+ 2(n: -1: 1)
is Matlab notation for the vector (a + b + 2n, a + b + 2(n - 1),..., a + b + 2).
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8.3 White noise operator

Given a uniform grid on [a, b] with mesh size h, i.e., Xk = a + hk, k = 1,...., n, where

n = LbJha, our intuitive idea of a diagonal white noise operator is diag(G 1,..., Go),

in which G 1,..., G, are i.i.d. real standard Gaussians. The diagonal of this matrix

approximates white noise in the sense that its values at distinct locations are uncor-

related, and the variance per unit interval of the real line is 1. To illustrate this last

statement, suppose that a = 0 and b = 1, so that fJ Wtdt equals Brownian motion at

time 1, i.e., a standard Gaussian:

G Wt dt

kl

-AhN(LHJ)

N(O, 1) (h -- 0).

A diagonal matrix with i.i.d. Gaussian entries is not the only reasonable approxi-

mation to a white noise operator. In fact, many textbooks construct Brownian motion

from a sum of uniform random variables on {-1, 1} instead of Gaussians. As long

as the construction has 0 mean, unit variance per interval, independent increments,

and no heavy tails, everything is fine. The remainder of this chapter identifies vari-

ous bidiagonal and tridiagonal random matrices as discretizations of the white noise

operator.

8.4 Soft edge

8.4.1 Laguerre at the right edge

We would like to extend Claims 7.2.3 and 7.2.6 to / < oo.
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Claim 8.4.1. The Laguerre matrix models, scaled at the right edge, are finite dif-

ference approximations to the Airy operator plus white noise. Specifically, if h =

22 /3n- 1/3, then h(Q(L4)TLQ - 4(n + a+l)In), h(QL(La)TQ - 4(n a)In),

hQ(M)TMQ - 24(n +) ), a+nd (QM (Ma)TQ - 4(n + -1)In) are finite( M~ f -4(n + -- l), and4 a2 '
difference approximations to A + W.

W should represent a diagonal operator that injects white noise, but the correct

interpretation of white noise is not clear. Our argument gives some guidance for

future work.

The support for the claim is heuristic and numerical.

For h (Q(L)TL8Q - 4(n + a')In), start by replacing La3 with its Gaussian ap-E a a 2 a

proximation L. The resulting approximation can be expanded to h (Q(L a )TLQa -

4(n + a+l)I) + h 4 Q (L°)TBQ + 4 h QBTLaQ + h QBTBQ, in which B is a lower2 427 d- a 4,/2)Ia 8-

bidiagonal matrix with i.i.d. standard Gaussian entries. The first of these terms is

a finite difference approximation to the Airy operator, by a claim of the previous

chapter. The entries of the fourth term are negligible in magnitude compared to

the entries of the other terms, except in the bottom-right portion of the matrix.

Fortunately, this bottom-right portion is insignificant, because the dominant eigen-

vectors of the nonrandom term have almost all of their mass in their first O(n1/ 3)

entries (Theorem 6.3.7). After dropping the fourth term, the remaining random bit

is 4 ((La )TB + BTLa)Q. This is a symmetric tridiagonal matrix with Gaus-

sian entries, which we claim discretizes a diagonal white noise operator. It remains

to carefully consider the covariance matrix of the entries. Each of the entries is a

sum of two Gaussians, each of whose standard deviation is determined by an entry

of L. Because only the first O(n1 /3 ) rows of the matrix are really significant, the

entries in row k of the noise matrix will be approximated by v/(Gn+_k- G' k

h(2Cn+lk- 2Gnk), and 4 (Gn+l_(k+l) - Gnk). Taking into account correla--, /27 n-, and hnI 1G - w hrov des the c ntant
tions, the "average standard deviation per row" is which provides the constant

in the white noise term W. We should also note that the noise at grid point x is
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independent of the noise at grid point y : x, i.e., rows J and L]J are independent

for sufficiently large n, so that the noise is "white."

The arguments for the three other resealed matrix models mentioned in the claim

are similar.

8.4.2 Hermite at the right edge

Claim 8.4.2. The Hermite matrix model, scaled at the right edge, is a finite difference

approximation to the Airy operator plus white noise. Specifically, if h = n-1/3 , then

J(H - /2h-3/2 In) is a finite difference approximation to A + 2NW.

To justify this claim, replace HB by its Gaussian approximation H'3. This gives

a nonrandom term V/2nl/6(H° °- v/2I), which we previously argued is a finite dif-

ference approximation to A, and a random term which is a symmetric tridiagonal

matrix with Gaussian entries. Taking into account correlations between the entries,

the "average standard deviation per row" is -- , so that the h 0 limit should

give 2W.

8.4.3 Numerical experiments

The claims presented earlier in this section give rise to Conjecture 8.1.1. The best

way we know to investigate this conjecture is numerically, through a finite difference

approximation to the stochastic Airy operator A + W. Of course, the point of

the conjecture is to jump from finite matrices to continuous operators, so jumping

back to finite matrices to test the conjecture is not ideal. Nevertheless, the technique

does have its merits. We have already seen two random matrices that can reasonably

be called discretizations of the stochastic Airy operator-the Laguerre and Hermite

matrix models. If a number of different discretizations to the stochastic operator all

show similar eigenvalue behavior, then support for the conjecture is strengthened.

Figure 8.1.1 was created by approximating A by D 2 -diag(xl, ... ,x ) and W
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8.5. HARD EDGE

by 2 diag(G1,..., G,), with n = 200, h = 7-1/3, X k = hk, and G1 ,..., G i.i.d.

standard Gaussians. Over 105 trials, the largest eigenvalue of this random matrix was

computed, for the three cases = 1, 2, 4.

8.5 Hard edge

8.5.1 Jacobi at the left edge

Claim 8.5.1. The Jacobi matrix model, scaled at the hard edge on the left, is a finite

difference approximation to the Bessel operator in Liouville form plus white noise.

Specifically, if h = n+(a+lb±)/2 and B22 denotes the bottom-right n-by-n block of the

2n-by-2n Jacobi matrix model Jb, then FB 2 2F is a finite difference approximation

to a + / i W-

As in the soft edge case, the correct interpretation of the diagonal noise operator

W is not clear.

To justify the claim, start by replacing Jb by its Gaussian approximation Jab

The bottom-right block can be expressed as the sum of a nonrandom term and a ran-

dom term. The nonrandom term comes from the 3 = oc matrix model, and we have

already argued that this matrix is a finite difference approximation to the Bessel op-

erator. The random term is ( 2JaFXF(-(-QD 1 Q)) + 12 (-QD 1Q)FY 2 F). This

matrix is upper bidiagonal, and its (k, k) entry is (-(a + b + 2k)-1/2 Gk+(a+ b +

1 + 2(k-1)-1/2 G!- 1 ) 1 1 k (-Gk±+ G-_l), for k > 1, while its (k, k + 1) entry is

h, (-(a+b+2k)-1/ 2Gk +(a+b+ 1 +2k)-1/ 2G') G h2k (-Gk ), for k < n.

Taking into account correlations, the standard deviation per row is approximately

Ih /2 = /2 v/h - 2 1 in the vicinity of row k, in which Yk = hk.
hvT - yv=n - /3 VT

There is an obvious analogue for the top-left block of the Jacobi matrix model, in

which a should be replaced by its adjoint.
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8.5.2 Jacobi at the right edge

Claim 8.5.2. The Jacobi matrix model, scaled at the hard edge on the right, is a

finite difference approximation to a Bessel operator in Liouville form plus white noise.

Specifically, if h = 1+(a+b+l)/ and B12 denotes the top-right n-by-n block of the

Jacobi matrix model Jb then 2QFB12FQ is a finite difference approximation to

ib + v W

This claim is equivalent to the claim of the previous subsection, considering (4.2.1).

8.5.3 Laguerre at the left edge

Claim 8.5.3. The square Laguerre matrix model, scaled at the hard edge, is a finite

difference approximation to a Bessel operator plus white noise. Specifically, if h =

then 2 FL:F is a finite difference approximation to Ja + W, in which

the Bessel operator has type (i) boundary conditions.

To justify the claim, start by replacing L B with its Gaussian approximation L1.

Then 2-FLAF can be expressed as the sum of a nonrandom term 2FL°F and a
/2 _random term whose (k, k) entry is B--Gk and whose (k, k + 1) entry is Gk'

for all possible k. We have already argued that the nonrandom term is a finite differ-

ence approximation to Ja with type (i) boundary conditions, and the total standard

deviation over row k of the random term is 2 1 for k < n.

We make an analogous claim for the rectangular Laguerre model.

Claim 8.5.4. The rectangular Laguerre matrix model, scaled at the hard edge, is a

finite difference approximation to a Bessel operator plus white noise. Specifically, if

__ 1 .±TAJ_h =+(al)/2 then FMF is a finite difference approximation to Ja-l + W, in
which the Bessel operator has type (ii) boundary conditions.
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8.5.4 Numerical experiments

The claims presented earlier in this section give rise to Conjectures 8.1.2 and 8.1.3.

Results from numerical experiments regarding Ja + 2 W are displayed in Fig-

ure 8.1.2. The Bessel operator was approximated by -D 1 + (a + ) diag(1,, ),

with n = 2000, h = n, and k = hk. The random term was approximated by

/diag( i . (f diag(G1,..., G)) ((-QD 1 Q)), in which G1,..., Gn

are i.i.d. standard Gaussians. (The averaging matrix (-QD 1 Q) splits the noise over

two diagonals instead of one.) Over 105 trials, the smallest singular value was com-

puted in the cases = 1,2, 4.

Results from numerical experiments regarding Ja + W are displayed in Figure

8.1.3. First, we consider type (i) boundary conditions. In this case, the Bessel op-

erator Ja was approximated by -2 diag(,..., V/Y4)( D1) + adiag(v ,..., ),

with n = 2000, h = , and xk = hk. The random term was approximated by
2-(-QD 1 Qm)) (\ diag(G,...,G)), in which G,...,Gn are independent stan-

dard Gaussians. Over 105 trials, the smallest singular value was computed in the

cases p = 1,2,4. In Figures 8.1.3(a)-(c), the experimental agreement with the uni-

versal smallest singular value distributions is quite good for /3 = 2, 4, but not terribly

good for /3 = 1. Based on our experience with several values of n, it appears that the

problem area near zero shrinks as n grows larger, and likely disappears as n -+ o.

Next, we consider type (ii) boundary conditions. In this case, the Bessel operator Ja

was approximated by -2 diag(x/x,,..., /n)((D):n,:) + a diag( , 1 ) l n,:)

with n = 2000, h = , and Xk = hk. The random term was approximated by 

times an n-by-(n + 1) matrix with i.i.d. Gaussian entries on the main diagonal and

superdiagonal, each with mean 0 and variance . (This approximation to the white

noise operator, using two independent diagonals of noise, is different from the other

approximations, which multiply a diagonal noise matrix by an averaging operator. An

n -+ oo, we believe that either scheme works, but for the Bessel operator in Liouville

form with type (ii) boundary conditions, the convergence is significantly faster with
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two independent diagonals of noise.) Over 105 trials, the smallest singular value was

computed in the cases p = 1,2,4. The resulting histograms are plotted in Figures

8.1.3(d)-(f).

Remark 8.5.5. Numerical experiments tend to produce histograms that better match

the universal distributions when the noise is centered.

For example, in the Airy case, with a centered second difference scheme involving

D2 , either a diagonal or tridiagonal noise matrix produces good results. Each places

the noise in any row symmetrically about the corresponding mesh point (in terms of

variance).

The Bessel cases are more interesting. The experiments involving both Ja and

Ja use forward differences. Therefore, there are two meshes-one mesh for the do-

main, and a different mesh for the codomain--and the meshes interlace each other.

Experimentally, putting all of the noise on either the main diagonal or superdiagonal

produces histograms that do not fit the universal distributions. However, splitting

the noise evenly across the two diagonals often produces good fits, e.g., Figures 8.1.2

and 8.1.3. Splitting the noise can be accomplished in at least two ways: (1) by us-

ing two independent diagonals of noise, adjusting the variance appropriately, as in

the experiment that produced Figures 8.1.3(d)-(f), or (2) by multiplying a diagonal

noise matrix by an averaging operator, e.g., (-QD 1 Q), as in the experiment that

produced Figures 8.1.2 and 8.1.3(a)-(c).

8.6 Bulk

8.6.1 Jacobi near one-half

Suppose that a = b and that n is even, and let B 22 denote the bottom-right block

of the 2n-by-2n Jacobi matrix model Jab. Then, with h = n+(a+2b+l)/2' ((fQ q

126



8.6. BULK

Q)PFB TB 22FP T (Q e Q2) - 1I) is well approximated by

i1 DT Ell E 

hDl E LE2 1 E 22
[ T] J-l ~

in which

(8.6.1)

Ell = diag( 1,.

E2 2 = diag( 1,'.

E21 = diag(, 1

. (- 1 - + (D1 +IT2(D + I)),

· 1.W2),
.. I )( W3(-QD 1Q)/(-QDQ)W4),,/-X-,/ 2 /2- 2 f2- 2~~~~~~~~~~~~~~~~

with W/1 = Ldiag(G1,G 3,... ,Gn- 1 ), W2 = l diag(G2, G4, . ,Gn), V3 =

1 diag(G, 3, .. , GI1), and W14 = diag(O, GG ... G I, 

This random matrix appears to be a finite difference approximation to

-C1/2+ 1 _ W1 W2
0 1 L A/iw 1 WI

- - /y- 2 . /-y-Jj

(8.6.2)

[--1/2

with type (i) boundary conditions (see Subsection 7.4.1), and with W1 and W2 de-

noting independent diagonal noise operators. Numerical experiments indicate that

this stochastic operator is especially sensitive to the interpretation of white noise,

however. Figures 8.6.1(a-c) contain histograms of the spacings between eigenvalues

m and m + 1 of the 2m-by-2m random matrix

I D 1
h 1

['Di D]

1 Ell

4- diag(vj/ , V (2(-QD1))·, .. /~' (~-D1)
(2(-QD 1 )) T W 5 diag( 1 1

E2 2

in which Ell and E22 are defined as above, and W 5 is 1h times a diagonal matrix
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0.4

0.3

0.2

0.1

n
0 5

(a) /3 = 4, discretization I

10 0 5 10

(b) 3 = 2, discretization I

0.4

0.3

0.2

0.1

n
0 5 10

(d) /3 = 4, discretization II

3

2

n

O.'

0.2

0.<

0.1

0 5 10

(e) /3 = 2, discretization II

0 5 10

(c) 3 = 1, discretization I

0 5 10

(f) f3 = 1, discretization II

Figure 8.6.1: Bulk spacings for two different finite difference approximations to
(8.6.2). The differences seem to arise from different interpretations of white noise,
somewhat analogously to It6 versus Stratonovich.
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with independent standard Gaussian entries. With m = 200, the agreement with

the universal spacing distributions for 3 = 1,2, 4 is quite good. However, a slightly

different experiment gives very different results. Figures 8.6.1 (d-f) contain histograms

of the spacings between eigenvalues m and m + 1 of the 2m-by-2m random matrix

KhDl DT

1 [diag( 1l .. .)T (-Dl 5 diag( 2, ... 1 Xm

X3 Ldiag( , ) ( -QD1Q)) diag(, 7x=,,. .,7

Again we take m = 200, but this time the histograms do not appear to fit the

universal spacing distributions. The only difference between the two experiments is

in the top-left block of the noise matrix. In the first experiment, IW22 is shifted up

and to the left by one row and one column; in the second experiment, 4W2 is not

shifted. The first experiment conforms more closely to the Jacobi matrix model and

its approximation in (8.6.1), while the second experiment appears to be a perfectly

reasonable approximation to (8.6.2).

The experiments suggest that the spacing statistic is sensitive to the interpretation

of white noise. In the first experiment, the noise is placed "to the left" in the mesh

corresponding to the top-left block, while in the second experiment, the noise is placed

"to the right." This issue is very reminiscent of It6 versus Stratonovich. Because one

has to be particularly careful when discretizing (8.6.2), we stop short of making a

conjecture concerning the eigenvalues. Further work on the interpretation of white

noise is warranted.

8.6.2 Hermite near zero

Claim 8.6.1. First, the even case. Let HB be the 2m-by-2m Hermite matrix model.

We claim that if h = m+/4' then (Q Q)(F ED F)PH3PT(F F)(Q Q) is a
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finite difference approximation to

J-1/2 + 2Wl V/W12L*7,2 2+Wl2W22 [ t'i:
1

3 3 [ V/2yW1 2 2W 2 2 3
in which the sine operators have type (i) boundary conditions, and Wll, W12, W22

denote independent diagonal noise operators.

Now for the odd case. Suppose that H3 is the (2m+ 1)-by-(2m+ 1) Hermite matrix

model. We claim that if h = m3/4 then (Q Q)(F e F)PHOPT(F ) F)(Q ® Q)

is a finite difference approximation to

J *1/2 1 2W11 V/W 1 2 1
L- 1!2 L V/w 12 2W2 2 J

in which the Bessel operators have type (ii) boundary conditions, and W 11, W12, W22

denote independent diagonal noise operators.

As with the other stochastic eigenvalue/singular value problems, the correct in-

terpretation of the noise operators is not clear.

To justify the claim, first replace H 3 with its Gaussian approximation H3. When

the size of the matrix model is 2m-by-2m, (Q D Q)(F ED F)PH'PT(F ® F)(Q E Q)

follows the same distribution as

2212FL20/T+ diag(G,. G)

in which the Gaussians in L( 23 are G' G'[ 2 FL2 F ,,,)T F i] 2 1
in which the Gaussians in L21/2 are G, .. , Gn_1 rearranged appropriately, and the

Gaussians in the diagonal matrix are G 1,..., G, rearranged appropriately. We ar-

gued earlier that -FL2 ', 2 F is a finite difference approximation to J-1/2 + COW.

The argument for odd-sized Hermite matrix models is similar.
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8.6.3 Numerical experiments

Claim 8.6.1 gives rise to Conjecture 8.1.4. We would like to make an analogous

conjecture for the sine operator in Liouville form, i- 1/2, but as discussed in Subsection

8.6.1, numerical experiments do not fully support such a conjecture.

The results of numerical experiments regarding Conjecture 8.1.4 are displayed in

Figure 8.1.4. For type (i) boundary conditions, J-1/ 2 was approximated by

-2 diag('), /x-- -diag()(1 D ) - )

with m = 200, h = , and Xk = hk. Each of WI1 and W2 2 was approximated by 4

times a diagonal of independent standard Gaussians, and W12 was approximated by

1 diag(G,.. .,G)(1)(-QD 1Q), in which the diagonal matrix contains independent

standard Gaussians. Over 105 trials, the gap between eigenvalues m and m + 1

was computed for p = 1,2, 4, and the resulting histograms are displayed in Figures

8.1.4(a)-(c). For type (ii) boundary conditions, J-1/ 2 was approximated by the m-

by-(m. + 1) matrix

-2diag(vT)I, V/-) ; hD)m, -2 diag( 1 1 . 0)l:I,:

with m = 200, h = , and xk = hk. Each of Wll and W22 was approximated by 

times a diagonal of independent standard Gaussians, and W12 was approximated by

a diag(G,..., G)()(-Q(D1)i:m,:Q), in which the diagonal matrix contains indepen-

dent standard Gaussians. Over 105 trials, the gap between eigenvalues m and m + 1

was computed for = 1,2, 4, and the resulting histograms are displayed in Figures

8.1.4(d)-(f).
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Chapter 9

Application: Large /3 asymptotics

This chapter presents an asymptotic expression for the mean of the largest eigenvalue

distribution, valid near /3 = oo. The expression involves quantities intimately related

to the Airy operator, suggesting the intrinsic role of stochastic differential operators

in random matrix theory.

9.1 A technical note

Scaling limits of the ensembles are not well understood when P3 # 1, 2, 4. In Examples

2.1.1-2.1.7, a discussion of the general /3 case was, postponed. Here, we address the

difficulties presented when/3 - 1, 2, 4.

The examples in the introduction describe experiments that can be conducted

on the classical ensembles: Sample an ensemble, select a particular particle, rescale

the position of this particle in some judicious fashion, and draw a histogram of the

rescaled positions over a large number of trials. For each experiment, the histogram

approaches one of the plots in Figure 2.1.2 as the number of particles n approaches

infinity, when = 1,2,4. However, when /3 1,2,4, it is not known whether

the histograms approach n -- o limits; it is not known if universality still holds;

and there are no known analytic expressions for the universal distributions (if the
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distributions even exist). Despite these theoretical difficulties, physical arguments

and numerical experiments strongly indicate that universal distributions exist for

general /3. In fact, this chapter gives some idea of how the universal largest eigenvalue

distributions should look for large /3. The following conjecture provides our definition

of the universal largest eigenvalue distribution for general /3.

Conjecture 9.1.1. Let > . Let AH denote the kth rightmost particle of the

n particle 3-Hermite ensemble, and let denote the kth rightmost particle of the n

particle -Laguerre ensemble with parameter a, for some fixed a > -1. We conjecture

that as n -+ oo, V/2nl/6(kH - v/) and 2-4/3n-1/3 (kL - 4n) converge in distribution

to the same distribution, which we shall denote Xk.

The conjecture is known'to be true in the cases 3 = 1,2 by [12, 17, 18]. In

particular, X,X1,X4 are the universal largest eigenvalue distributions plotted in

Figure 2.1.2(a) using the Painleve theory of Tracy and Widom. We conjecture that

these known results can be extended to general P > 0.

9.2 The asymptotics

In the following conjecture, (k is the kth rightmost zero of Ai, vk(t) = Aik) Ai(t +k),

and

Gk(t, t) -vk(t)v -Vk(t) - v(t)vki'((k) Ai(t + k)2 - Ai(t + k) Bi(t + (k).

Conjecture 9.2.1. We conjecture a large P asymptotic expansion for the mean of

X[)
E[X ] = (k + (-4 Gk(t,t)(Vk(t))2dt + (9.2.1)k ) 02
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Figure 9.2.1: Large P asymptotics for the universal largest eigenvalue distribution,
and four known data points.

and a large 3 asymptotic expansion for the variance,

Var[Xk] = 4 (4 (vk(t))4dt) + 0 ( p2(9.2.2)

The case k = 1 for the variance asymptotics appeared previously in [5]. Our

argument is somewhat different.

All of the expressions in the conjecture are related to the Airy operator A. The

kth eigenvalue of the operator is k, the kth normalized eigenvector is Vk, and the

pseudoinverse of A - Ck is the integral operator with kernel Gk(s, t), to be defined

below. Gk(t, t) is the diagonal of this kernel.

The Green's function Gk(s, t) is known analytically, so each of the coefficients in

(9.2.1) and (9.2.2) can be evaluated with a simple numerical quadrature to give

E[X] m-2.3381 + 1.1248-

Var[X ] ~ 1.6697-.v CLL L~~~~1 P/
These approximations are plotted against known data points in Figure 9.2.1.
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We give what we feel to be a convincing argument for the second conjecture, using

the stochastic operator approach. We state the result as a conjecture, though, since

we have not given a concrete interpretation of the diagonal noise operators in the

previous chapter. We suspect that the interpretation of white noise will make little

difference in this chapter, however, because our argument relies only on the following

benign properties of white noise.

1. E[W,] = 0,

2. E[WsWt] = (s - t),

3. E[WWsWt] = 0.

All three equations refer to a single white noise "path," and state that the "values" of

white noise at distinct time values are uncorrelated, and that the first three moments

of white noise at any single time are essentially 0, 1,0, just like a Gaussian.

9.3 Justification

Under Conjecture 8.1.1, X: is the distribution of the kth largest eigenvalue of A +

VW, in which W is a diagonal operator that injects white noise. The boundary

conditions are the same as those on the unperturbed operator A: f(0) = 0 and

limtO f(t) = 0.

Using eigenvalue perturbation theory, if A is the kth largest eigenvalue of A + EW

and v is the corresponding eigenvector, then we should have

A = A(O) + EA(1 ) + e2A(2 ) + e3 A(3 ) + O(E4),

V = V( 1)+ EV(1 ) + 2V(2 ) + O(E 3 ),
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with

2(O) = k,

v(°)(t) = Vk(t) = A Ai(t + k),

(1)= (WO), v(°)),

v() = -(A - (°))+WV(),

2(2) = (WV(°) V(1) )

v(2) = (A- A(°))+(-Wv (l) + (l)v(1)),

A( 3 ) = (WV( 0), V(2) ).

(In the asymptotic expansion for v, O(3) refers to the elements of v.)

Note that A(, v(0) is an eigenvalue, eigenvector pair of the unperturbed Airy op-

erator: (d2 - t) Ai(t + k) = (k Ai(t + (k) and [fi (Ai) Ai(t + k)) dt] = 1.

In the expression for v(), (A - A()) + denotes the Moore-Penrose pseudoinverse of

the operator A - (), that is, the pseudoinverse that sends v(0) to 0. The pseudoin-

verse is an integral operator whose kernel is a Green's function from ODE theory,

[(A- X(°))+u] (t) = fo Gk(t, s)u(s)ds. Computing the Green's function Gk is some-

what tricky since the operator is singular, but verifying it is straightforward.

Lemma 9.3.1. Let k be the kth rightmost zero of Ai, and let Vk denote the eigenvector

of A belonging to k, Vk(t) = Ai') Ai(t + (k). The Green's function G(s,t) for

A - k that sends Vk to zero and that satisfies the boundary conditions G(0, t) = 0,

lims,,, G(s, t) = 0, is

Gk(S, t) := -Vk(S)Vk(t) - Vk(S)Vk(t) + Bi Ai(s + (k) Ai(t + k)
Ai'((k)

7r Ai(t + k) Bi(s + k) s < t (931)

Ai(s + k) Bi(t + (k) s > t
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Proof. Noting that A - k is Hermitian and Gk(s, t) is symmetric, three conditions

must be checked.

First, the boundary conditions must be checked. This step is omitted.

Next, it must be checked that [(A - k)Gk(-,t)](s) = (s - t) - k(s)vk(t). For

convenience, denote the terms of the right hand side of (9.3.1) by C(s) = -k(s)vk(t),

D(s) = -Vk(s)Vk(t), E(s) = Bi'(k) Ai(s + Ok) Ai(t + Ok), and F(s) equaling the final,

piecewise term, regarding t as fixed. That [(A-(k)C1(s) = [(A-Ck)D](s) = 0 is quick

to check. It is also straightforward to see that [(A- k)B](s) = d (-Vg (s)Vk (t) )-(s +

ck)(-Vk(S)Vk(t)) = -Vk(S)Vk(t). Computing [(A- Ok)E](s) = 5(s - t) is the final and

most difficult part. First, notice that [(A - k)]E(s) is zero when s Z t, since both

Ai and Bi are solutions to Airy's equation. To see what happens at the diagonal,

compute

lim J [(A - (k)Gk(, t)](s)ds = im [(d2 - (u + k))Gk(u,t)u=s ds

d~ d
lim t- ( Gk(u,t))) u=] ds6--.0 Jr- u du

= lim( Gk(s, t) =t+6 - dGk(s, t) Is=t-6)

= -r(Ai'(t + ) t + k) - Ai(t + Ok) Bi'(t + Ck))

= 1,

where the final step involves evaluation of the Wronskian of Ai and Bi [25]. This shows

that [(A - k)E](s) = 6(s - t), which completes the proof that [(A - k)Gk(, t)](s) =

(s - t) - vk(s)vk(t).

Finally, we must check that the integral operator with kernel Gk sends vk to zero.

Using identities found in [25], notably the Wronskian again, it is straightforward to

show that fo Gk(s, t)vk(t)dt = 0. O

Now, we have a stochastic expression for the largest eigenvalue of A + W, specif-
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ically, = () + ( 1) + E2A(2) + S3A(3) + O(j4), in which

-() = (k,

(~) = ((t))2Wtdt,

(2) = va (°) (t)v(l) (t)Wtdt

00
Vk(t) 

00Gk(tok M o, s)vk(s)Wds] Wtdt

= j j Vk(t)Gk(t, s)Vk(S)WtWdsdt,

(3) = v(°) (t)v( 2) (t)Wtdt
o

o 0 0 00 oo

00

Gk(t, s)(-WSv( 1)(s) + A(l)v()(s))ds Wtdt

Vk(t)Gk(t, s)Gk(s, r)vk(r)WrWsWtdrdsdt

-0 00 v, ) vrq10 J I j Vk(t)Gk(t, s)Gk(s, q)vk(q)(vk(r)) 2 WqWrWtdqdrdsdt.

Taking expectations reveals

E[A(O)] = k,

E[A(1)] = 0,

E[A( 2)]
- FL0 0

E[(3)] = .

E[A(3)] = o.

Vk(t)Gk(t, s)vk(s)(s - t)dsdt

Gk(t, t)(vk(t))2 dt,

Finally, substituting = 2 gives the asymptotic expansion for the mean of theFinally, substituting c =
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eigenvalue,

2 4 (' 8 (
E[] = k + 7 * 0+ 13 Gk (-, tt)(vk(t)) dt + 3/2 + +0 32

= (k- j Gk(t, t)(Vk(t))2dt + 0 2

For the variance, we have ( - E[A])2 = (eX(1 ) + e2X(2) + O(e3 ))2 = 2(/(1)) 2 +

2E3A(1)X(2 ) + O(e4), so we compute

E[(A(1))2] =E [Jo Jo(vk(t))2(vk(s))2WsWtdsdt

= y/(k(t))4dt,

E[() (l(2)]E [(j (Vk(t))2Wtdt) (- Vk(t)G(t ) , S)Vk()WtWsdt)]

= 0.

Substituting E = , this gives the asymptotic expansion for the variance,

Var[A] = E[( - E[A])2] = ((t))dt ( )

9.4 Hard edge and bulk

Ideas from this chapter can likely be applied to the hard edge and bulk. Four known

data points for the universal smallest singular value distributions and the universal

spacing distributions are plotted in Figures 9.4.1 and 9.4.2. In general, these figures

do not show as strong of a linear trend as the universal largest eigenvalue distribu-

tions, for p as small as 1. In the largest eigenvalue case, /3 = 1 may be considered

"moderately large," because the linear approximation gives a somewhat accurate ap-

proximation to the mean and variance. However, in the smallest singular value and
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Figure 9.4.1: Mean and variance of the universal smallest singular value distribution.

spacing cases, 3 = 1 should not be considered large. Based on this observation, the

experiments in Chapter 8 appear to support the claim that the stochastic operator

approach is valid for all P > 0, not just "large /3."
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Appendix A

The algorithm to produce the

Jacobi matrix model

Matlab code for the algorithm introduced in Section 5.2.2 follows.

function [Y,U,V]=blockbidiagonalize(X,p,q)

%blockbidiagonalize Transform a unitary matrix into

block bidiagonal form.

% [Y,U,V] = blockbidiagonalize(X,p,q), where X is unitary,

% produces an equivalent Y in block bidiagonal form with

% partition size p-by-q.

1. Y is in bidiagonal block form.

2. Y = U'*X*V.

3. U is of the form [ U1 ]

[ U2 ]

with U p-by-p unitary and U2
4. V is of the form [ V ]

(m-p)-by-(m-p) unitary.

[ V2 ]

with V q-by-q unitary and V2 (m-q)-by-(m-q) unitary.

% If X is not unitary, then Y has the "related sign pattern" in

% Chapter 5.

% For demonstration purposes only. This code may be numerically

% unstable.

%%%%%%%%%% Argument checking %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% If p<q, work with conjugate transpose.
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if p<q

[Y2,U2,V2]=blockbidiagonalize(X',q,p);

Y=Y2';U=V2;V=U2;

return;

end

[m,n]=size(X);

if m-=n

error('X must be square.')

end

if p<0llq<OIIp+q>m

error('Invalid partition size.')

end

%%%%%%%%%% Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Y=X;U=eye(m);V=eye(n);Z=zeros(m,m,2*q);

%%%%%%%%%% Main loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Iterate over rows and columns.

%%% At each iteration, choose Householder reflectors based on

%%% sections of column p and then on sections of row p.

for k=l:q

angles(q+l-k,1)=atan(norm(Y(p+k:end,k))/norm(Y(k:p,k)));

%%% Put zeros in Y(k+l:p,k).

[w,eta]=gallery('house',Y(k:p,k));

F=blkdiag(eye(k-1),eye(p-k+1)-eta*w*w',eye(m-p));U=U*F';Y=F*Y;

D=singlephase(m,k,conj(nzsign(Y(k,k))));U=U*D';Y=D*Y;

%%% Put zeros in Y(p+k+l:end,k).

[w,etal=gallery('house',Y(p+k:end,k));

F=blkdiag(eye(p+k-1),eye(m-p-k+l)-eta*w*w' );U=U*F';Y=F*Y;

D=singlephase(m,p+k,-conj(nzsign(Y(p+k,k))));U=U*D';Y=D*Y;

Z(:,:,2*k-1)=Y;

if k<q

angles(q-k,2)=atan(norm(Y(k,q+k
:end))/norm(Y(k,k+l:q)));

end

%%% Put zeros in Y(k,k+2:q).

if k<q

[w,eta]=gallery('house',Y(k,k+l:q)');
F=blkdiag(eye(k),eye(q-k)-eta*w*w',eye(m-q));V=V*F;Y=Y*F;
D=singlephase(m,k+i,-conj(nzsign(Y(k,k+l))));V=V*D;Y=Y*D;

end

%%% Put zeros in Y(k,q+k+l:end).
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w,eta]=gallery('house',Y(k,q+k:end)');
F=blkdiag(eye(q+k-1),eye(m-q-k+1)-eta*w*w');V=V*F;Y=Y*F;

D=singlephase(m,q+k,conj(nzsign(Y(k,q+k))));V=V*D;Y=Y*D;

Z(:,:,2*k)=Y;

end

%%%%%%%%%% Post-processing %%%%%%%%%%%Y%%%%%%%%%%%%%%%%%%%%%%

%%% Transform Y([l+q:p p+q+l:end],2*q+1:end) into lower triangular.
if 2*q<m

[Q,R]=qr(Y([l+q:p p+q+l:end],2*q+1:end)');

Q=Q*diag(conj(sign(diag(R))));

Q=blkdiag(eye(2*q),Q);

V=V*Q;Y=Y*Q;
end

%%%%%%%%%% Utility functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D=singlephase(m,i,phase)

D=diag([ones(1,i-1) phase ones(l,m-i)]);

function omega=nzsign(z)

if abs(sign(z))>0.5,omega=sign(z);else,omega=l;end
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Figure A.0.1: An example run of the algorithm on a non-unitary matrix. In this example,
m = 6, p = 3, and q = 3. When p + q < m, a little more work is involved.
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Figure A.0.2: An example run of the algorithm on a unitary matrix. The extra zeros,
contrasted with Figure A.0.1, are guaranteed by the orthogonality constraints; no extra
work is necessary.
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Notation

T transpose

* Hermitian adjoint

® matrix direct sum: X e Y = [x y]

equal in distribution

lls indicator function for the set S

A Airy operator (Figure 1.0.4)

Ai Airy Ai function (§3.2)

beta(c, d) beta-distributed random variable (§3.5)

Bi Airy Bi function (§3.2)

Xr chi-distributed random variable (§3.5)

Di first difference matrix (eq. (3.6.1))

D2 second difference matrix (eq. (3.6.2))

5ij Kronecker delta

F flip permutation matrix (eq. (3.6.3))

G real standard Gaussian-distributed random variable (except in
Chapter 5)

H2 Hermite matrix model (Figures 1.0.3, 6.0.3)

H Gaussian approximation to the Hermite matrix model (Figure 8.2.2)

ja Bessel function of the first kind (§3.2)

J7a Bessel operator (Figure 1.0.5)

Ja Bessel operator (Liouville form) (Figure 1.0.5)

i-1/2 sine operator (Figure 1.0.6)

sine operator (Liouville form) (Figure 1.0.6)
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NOTATION

JOa,b

KAiry (X, y)

KBsel(a; x, y)

K (, y)
KJ(a, b; x, y)

KL (a; x, y)

Ksine(x, y)

a

M:

a

N

O(m)

Q

P

Ir(a, b; x)

7rL(a; x)

¢0(a, b; x)

On k(a; x)

R

R[x]

U(m)

W

Wt

Jacobi matrix model (Figures 1.0.1, 6.0.1)

Gaussian approximation to the Jacobi matrix model (Figure 8.2.2)

Airy kernel (§3.3.4)

Bessel kernel (§3.3.4)

Hermite kernel (§3.3.1)

Jacobi kernel (§3.3.1)

Laguerre kernel (§3.3.1)

sine kernel (§3.3.4)

square Laguerre matrix model (Figures 1.0.2, 6.0.2)

Gaussian approximation to the square Laguerre matrix model
(Figure 8.2.2)

rectangular Laguerre matrix model (Figures 1.0.2, 6.0.2)

Gaussian approximation to the rectangular Laguerre matrix model
(Figure 8.2.2)

matrix with i.i.d. standard Gaussian entries, either real or complex

group of m-by-m orthogonal matrices

alternating signs permutation matrix (eq. (3.6.4))

perfect shuffle permutation matrix (eq. (3.6.5))

Hermite polynomial (§3.3.1)

Jacobi polynomial (§3.3.1)

Laguerre polynomial (§3.3.1)

Hermite function (§3.3.1)

Jacobi function (§3.3.1)

Laguerre function (§3.3.1)

the real numbers

remainder term bounded in magnitude by xl (proof of
Theorem 7.2.1)

group of m-by-m unitary matrices

diagonal white noise operator (Chapter 8)

white noise generalized stochastic process (§9.2)

Hermite weight e- x2 (§3.3.1)
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NOTATION

wJ(a, b; x)

wL(a; x)

7/
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Jacobi weight xa(l - )b (§3.3.1)

Laguerre weight e-Xa (§3.3.1)

the integers



Index

Airy function, 18, 22, 35, 82, 91, 94, 134-
135

Bi, 35, 134
zeros of, 18, 79-82, 91, 94, 134-135

Airy kernel, 40, 91, 94
Airy operator, 18, 22, 29, 31, 95-101, 112,

116, 120-123, 135-140
algorithm for the Jacobi model, see Jacobi

matrix model

Bessel function, 19, 22, 35, 82, 87-88, 90
zeros of, 19, 79-82, 87-88, 90

Bessel kernel, 40, 87-88, 90-93
Bessel operator, 19, 22, 30, 95-96, 101-

105, 113, 114, 116, 124
Liouville form, 112, 113, 123-124

beta distribution, 16, 43, 51, 116
bidiagonal block form, 49, 62-65

Jacobian for CSD, 73-75
Boltzmann factor, 22, 24
Brownian motion, 24, 58
bulk, 28, 95-96, 106-109, 126

chi distribution, 17, 42, 51, 52, 116
asymptotics, 51, 117

chiral ensemble, 93
classical ensemble, 24, 49
CS decomposition, 29, 34, 49, 56, 57, 59-

62, 65, 73-76, 83-85, 87-89

Dumitriu, Ioana, 22, 50, 56
Dyson, Freeman J., 23, 56

Edelman, Alan, 22, 50, 56
eigenvalue decomposition, 33, 56, 86-87,

91-94

eigenvalue perturbation theory, 136-140
energy level, 25
ergodicity, 25

finite difference approximation, 29, 30, 32,

43, 95
finite random matrix theory, 15, 31
Forrester, Peter J., 23

Gaussian distribution, 17, 42, 51, 52, 55,
111, 116

complex, 42
Gaussian ensemble, see Hermite ensemble
Gaussian matrix, 24, 58-60, 76-77
Gaussian quadrature, 40
general random matrix theory, 22, 56,

133-134
generalized singular value decomposition,

57-60, 62, 76-77
Green's function, 31, 136-140

Haar distribution, 21, 22, 55, 56, 59-61,
69

hard edge, 28, 95-96, 101-105, 123
Hermite ensemble, 23-26, 28, 45, 47, 49,

50, 56
Hermite function, 36, 86-87
Hermite kernel, 37, 40, 86-87
Hermite matrix model, 17, 49, 50, 116

/ = oo, 79-82
as Laguerre matrix model, 52
eigenvalue decomposition of, 86-87
Gaussian approximation to, 116-119
scaled at right edge, 94, 99-101, 122
scaled near zero, 91-93, 108-109, 129-

130
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INDEX

Hermite polynomial, 36, 79
as Laguerre polynomial, 37
asymptotics, 38
recurrence relation, 37
weight, 35
zero asymptotics, 39
zeros of, 79, 86-87

Householder reflector, 51, 62, 65-67

infinite random matrix theory, 15, 32

Jacobi ensemble, 24-29, 46, 47, 49, 56-60
Jacobi function, 36, 83-85
Jacobi kernel, 37, 40, 83-85
Jacobi matrix model, 16, 29, 32, 49, 51,

55-77, 116
= oo, 79-82

algorithm to generate, 55-57, 62, 65-
73

CS decomposition of, 83-85
Gaussian approximation to, 116-119
Laguerre matrix model as, 51
scaled at left edge, 87, 101-103, 123
scaled at right edge, 88, 104, 124
scaled near one-half, 88-89, 106-108,

126-129
Jacobi polynomial, 36, 79

asymptotics, 38
Laguerre polynomial as, 37
recurrence relation, 36
weight, 35
zero asymptotics, 39
zeros of, 79, 83-85

Jimbo, Michio, 23, 44

Killip, Rowan, 57

Laguerre ensemble, 23-28, 45-47, 49, 50,
56

Laguerre function, 36, 85-86
Laguerre kernel, 37, 40, 85-86
Laguerre matrix model, 17, 49, 50, 116

3 = oc, 79-82
as Jacobi matrix model, 51

Gaussian approximation to, 116-119
Hermite matrix model as, 52, 91-93
rectangular, 50
scaled at left edge, 90, 104-105, 124
scaled at right edge, 91, 97-99, 120-

122
singular value decomposition of, 85-

86

Laguerre polynomial, 36, 79
as Jacobi polynomial, 37
asymptotics, 38
Hermite polynomial as, 37
recurrence relation, 37
weight, 35
zero asymptotics, 39
zeros of, 79, 85-86

level density, 25, 28
local statistic, 22, 25, 27, 29

largest eigenvalue, see universal dis-
tribution

smallest singular value, see universal
distribution

spacing, see universal distribution
log gas, 22, 24, 58

M6ri, Yasuko, 44
Miwa, Tetsuji, 44
multivariate analysis of variance (MANOVA),

57, 58, 76-77

Nenciu, Irina, 57

orthogonal group, 57, 59-60, 69
orthogonal polynomial system, 35

asymptotics, 38
kernel, 37-38, 40
zero asymptotics, 39

Painleve transcendent, 23, 40, 44-47, 134
Persson, Per-Olof, 44

random matrix model, 49
recurrence relation, 36
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INDEX

Sato, Mikio, 44
scaling limit, 27, 29, 32, 95, 133
Selberg integral, 42
sin, 20, 22, 82, 88-89, 91-93

zeros of, 20, 79-82, 88-89, 91-93
sine kernel, 40, 88-89
sine operator, 20, 22, 30, 95-96, 106-109,

113, 115-116, 129-130
Liouville form, 116, 126-129

singular value decomposition, 33, 56, 85-
86, 90-91

soft edge, 28, 95-101, 120-123
statistical mechanics, 24, 58
stochastic differential operator, 22, 29, 31,

32, 111-131
stochastic operator approach, 22, 31, 32
Sturm-Liouville problem, 44

temperature, 22, 24, 30, 79
threefold way, 23, 56
Tracy, Craig A., 23, 44, 134

unitary group, 57, 59-60, 69
universal distribution, 40, 44, 133

largest eigenvalue, 23, 26, 28, 29, 31,
32, 45, 112, 134

smallest singular value, 23, 26, 28, 30,
46, 112-114

spacing, 23, 26-28, 30, 47, 113, 115
universality, 25, 28

white noise, 29, 111-131, 135-140
interpretation of, 30, 111

Widom, Harold, 23, 44, 134
Wishart distribution, see Laguerre ensem-

ble
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