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Abstract
Space-suited activity is critical for human spaceflight, and is synonymous with human
planetary exploration. Space suits impose kinematic and kinetic boundary conditions
that affect movement and locomotion, and in doing so modify the metabolic cost
of physical activity. Metabolic requirements, found to be significantly elevated in
space-suited activity, are a major driver of the allowable duration and intensity of
extravehicular activity.

To investigate how space suited locomotion impacts the energetics of walking and
running, I developed a framework for analyzing energetics data, derived from basic
thermodynamics, that clearly differentiates between muscle efficiency and energy
recovery. The framework, when applied to unsuited locomotion, revealed that the
human run-walk transition in Earth gravity occurs when energy recovery for walking
and running are approximately equal. The dependence of muscle efficiency on gravity
-during locomotion and under a particular set of assumptions- was derived as part
of the framework.

Next, I collected and transformed data from prior studies of suited and unsuited
locomotion into a common format, and performed regression analysis. This analysis
revealed that in reduced gravity environments, running in space suits is likely to
be more efficient, per unit mass and per unit distance, than walking in space suits.
Second, the results suggested that space suits may behave like springs during running.

To investigate the spring-like nature of space suit legs, I built a lower-body ex-
oskeleton to simulate aspects of the current NASA spacesuit, the Extravehicular Mo-
bility Unit (EMU). Evaluation of the exoskeleton legs revealed that they produce knee
torques similar to the EMU in both form and magnitude. Therefore, space suit joints
such as the EMU knee joint behave like non-linear springs, with the effect of these
springs most pronounced when locomotion requires large changes in knee flexion such
as during running.

To characterize the impact of space suit legs on the energetics of walking and
running, I measured the energetic cost of locomotion with and without the lower-body
exoskeleton in a variety of simulated gravitational environments at specific and self-
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selected Froude numbers, non-dimensional parameters used to characterize the run-
walk transition. Exoskeleton locomotion increased energy recovery and significantly
improved the efficiency of locomotion, per unit mass and per unit distance, in reduced
gravity but not in Earth gravity. The framework was used to predict, based on Earth-
gravity data, the metabolic cost of unsuited locomotion in reduced gravity; there were
no statistical differences between the predictions and the observed values. The results
suggest that the optimal space-suit knee-joint torque may be non-zero: it may be
possible to build a 'tuned space suit' that minimizes the energy cost of locomotion.
Furthermore, the observed lowering of the self-selected run-walk transition Froude
number during exoskeleton locomotion is consistent with the hypothesis that the
run-walk transition is mediated by energy recovery.

The major contributions of the dissertation include:

1. A model that predicts metabolic cost in non-dimensional form for unsuited
locomotion across running and walking and across gravity levels,

2. An assessment of historical data that reveals the effect of pressure suits on work
output and the metabolic cost of locomotion,

3. A method of simulating a space suit using a lower-body exoskeleton, and meth-
ods for designing and characterizing the exoskeleton,

4. An explanation for the differences in the energetic costs of walking and running
in space suits,

5. Evidence that there is an optimal space suit leg stiffness, perhaps an optimal
space suit leg stiffness for a given gravity environment,

6. Evidence, mostly indirect, that energy recovery plays a role in gait switching.

Thesis Supervisor: Dava J. Newman, Ph.D.
Title: Professor, MacVicar Faculty Fellow, HST Affiliate
MIT Department of Aeronautics & Astronautics and Engineering Systems Division
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Chapter 1

Introduction

1.1 Motivation

Space-suited activity is critical for human spaceflight, and is synonymous with human

planetary exploration. Space-suited activity, absolutely essential for Apollo lunar sur-

face exploration, was not planned for the Shuttle program until it was realized that

contingencies such as a payload bay door failure would require astronauts to venture

outside their shirt-sleeve environment to conduct a contingency extravehicular activ-

ity (EVA), or space-walk. The value of space-suited activity was later demonstrated

through satellite captures and repairs, including multiple repairs or upgrades of the

Hubble space telescope, and construction of the International Space Station.

A high fraction of the EVAs conducted to date (154 unique space-walks, some with

more than one space-walker, from March 1965 to April 1997 [Portree and Treviiio,

1997]) have been in conducted in weightlessness; it is likely that during a single

future Mars mission, over four times as many EVAs would be conducted as in the

entire history of human spaceflight (Figure 1-1).

1.2 Problem Statement

Space suits impose kinematic and kinetic boundary conditions that affect movement

and locomotion, and in doing so modify the metabolic cost of physical activity.
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Figure 1-1: The number of extravehicular activities in the US and Russian space
programs from 1965-2000 are compared to the number of extravehicular activities for
a single human mission to Mars. Planned extravehicular activities due to construction
of the International Space Station are shown for the time period 2001-2006. Number
of extravehicular activities for a human Mars mission are based on a 600 day surface
stay by four to six crew members, each conducting approximately two extravehicular
activities per week, a conservatively low estimate. Figure from [Carr, 2001].

Metabolic requirements, found to be significantly elevated in suited (as compared

to unsuited) movement [Roth, 1966], are a major driver of the allowable duration and

intensity of extravehicular activity.

The principle question I address in this dissertation is How do space suits affect

the energetics of walking and running, and can this information be used to improve

space suit design and to learn something fundamental about locomotion?

1.3 Hypotheses and Research Objectives

Three principle hypotheses were developed and tested as part of this work:

1. Dominant factors exist that can explain the metabolic cost of locomotion in

space suits.

2. Space suit legs act like springs.

3. Energy recovery plays a role in the run-walk transition, and explains the effect

of space-suited locomotion on walking and running.

To test the first hypthesis and to lay the groundwork for subsequent work, I sought

to develop a framework for consistent analysis of energetics data, (Objective 1) and

to review what is known about suited and unsuited locomotion through quantitative

case-study analysis, and a meta-analysis based on regression modeling (Objective 2).

20



To test the second hypothesis, I sought to understand how and why the energetics

of running and walking in space suits differs by examining past data and simulating

aspects of space suited locomotion (Objective 3).

To test the third hypothesis, I examined or calculated, based on the energetics

framework, how energy recovery changes under various conditions of unsuited and

suited locomotion (Objective 4).

Two additional research objectives included making recommendations that will

guide designers of space suits and extravehicular activity systems (Objective 5), and

exploring what space-suited locomotion has to tell us about unsuited locomotion

(Objective 6).

1.4 Thesis Outline

Chapter contents, very briefly described in this section, are described in more detail

in the next section, the Executive Summary.

Chapter 2, Literature Analysis, defines a framework for making consistent com-

parisons of metabolic cost across studies, and applies this framework to the analysis of

unsuited and suited locomotion (Objectives 1-3). Results of applying the framework

to unsuited locomotion suggest a possible role for energy recovery during gait in the

run-walk transition (Objectives 4,6).

Chapter 3, Regression Analysis, describes a meta-analysis of data from prior stud-

ies of unsuited and suited locomotion. The results demonstrate that running tends

to be more efficient per unit distance than walking in space suits, and suggests that

space suit legs may act as springs during running (Objectives 2-3).

Chapter 4, Exoskeleton Characterization, describes the characterization of a lower-

body exoskeleton intented for simulation of some aspects of space-suited locomotion.

The lower-body exoskeleton legs are shown to induce similar knee joint-torques as

does the current NASA space suit, the Extravehicular Mobility Unit (EMU). Because

a physical spring has a joint-torque relationship similar in form and magnitude to the

EMU, space suit joints like the EMU knee joints act like springs (Objective 3).
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Chapter 5, Exoskeleton Energetics, describes a locomotion experiment with the

lower body exoskeleton. The experiment is used to validate the model developed in

Chapter 2, and understand the specific effects of space suit legs on the energetics

of locomotion (Objectives 3-6). The results suggest that spring-like space suit legs

improve efficiency per unit distance during locomotion, although the impact of the

rest of the space suit impairs performance relative to unsuited locomotion. The results

also suggest that there may be an optimal, non-zero joint-torque for space suit knee

joints (Objective 5). Finally, the effects of the exoskeleton on the run-walk transition

suggest a role for recovery in the run-walk transition (Objective 6).

1.5 Executive Summary

1.5.1 Chapter 2 - Literature Analysis

In Chapter 2 I review the biological and biomechanical determinants of metabolic

cost during muscular exercise and locomotion, unsuited and suited.

A framework, derived from basic thermodynamics, is developed to enable compar-

ison of metabolic cost across and between studies. This framework, when applied to

locomotion, is used to define and differentiate between muscle efficiency and energy

recovery, two concepts often confused in the existing running energetics literature.

Calculations based on data reported in the literature reveal that the human run-walk

transition in Earth gravity occurs at the point for which energy recovery is approxi-

mately the same for walking and running, suggesting a possible role for recovery in

gait switching.

Muscle physiology limits the overall efficiency by which chemical energy is con-

verted through metabolism to work. Walking and running utilize different methods

of energy storage and release, and consequently differ in their relative recovery of

energy. These differences contribute to the relative changes in the metabolic cost of

walking and running as gravity is varied, with the metabolic cost of locomoting at a

given velocity dropping in proportion to the reduction in gravity for running and less
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than in proportion for walking.

Application of the framework to space suits demonstrates that suit pressurization

has a significant impact on mechanical efficiency, mobility, and the metabolic cost

of locomotion relative to unsuited conditions. Metabolic data from the Apollo lunar

surface missions, not previously published, is presented and demonstrates that low

metabolic rates were an important and beneficial consequence of performing traverses

on the Moon using the Lunar Rover. The results of modeling work by Carr et al.

[2003] hint that space suits may affect walking and running differently, and that the

impact during running may be less severe.

1.5.2 Chapter 3 - Regression Analysis

I performed a cross-study analysis of past suited and unsuited locomotion energetics

studies to try to understand how space suits affect cost of transport. I hypothesized

that space suit legs act as springs during running, thereby maintaining or lowering

cost of transport relative to space-suited walking.

I transformed data from past studies into a common format, and developed a

regression equation for the specific resistance, a non-dimensional form of metabolic

cost, based on the Froude number (a non-dimensional velocity), surface slope, earth-

relative gravitational acceleration, and space-suit pressure. Acceptance criteria for

regression factors included significance and a reduction in the residual variance. I

divided suited data into fast running and walking or slow running groups and per-

formed a group means hypothesis test and categorical regression of metabolic cost

per unit weight (efficiency per unit time) and specific resistance (efficiency per unit

distance).

The specific resistance regression achieved a DOF-corrected multiple R2 of 0.83;

all factors were significant (p < 0.0005). No additional evaluated factors met the

acceptance criteria. The categorical regression, but not the hypothesis test, suggested

that the fast running group had reduced efficiency per unit time; both tests suggested

that the fast running group had increased efficiency per unit distance. Variations in

specific resistance across studies were largely explained by a simple regression model.
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Several findings suggest that gas-pressure suit legs function as springs during running,

including the finding of higher efficiency per unit distance during fast running, despite

the increased work against space suit joint torques at higher velocities.

1.5.3 Chapter 4 - Exoskeleton Characterization

In the historical analysis of suited and unsuited locomotion energetics (Chapter 3),

I found evidence that space suits act as springs during running. Video images from

the lunar surface suggest that knee torques create, in large part, this spring effect. I

hypothesized that a lower-body exoskeleton, properly constructed, could be used to

simulate the knee torques of a range of space suits.

In Chapter 4 I report characterization of a lower body exoskeleton. Equivalent

spring stiffness of each exoskeleton leg varies as a function of exoskeleton knee angle

and load, and the exoskeleton joint torque relationship closely matches Extravehic-

ular Mobility Unit knee torques in form and in magnitude. I have built a physical

nonlinear spring, and demonstrated that this spring achieves space-suit like joint

torques; therefore space suit legs act as springs, with this effect most pronounced

when locomotion requires large changes in knee flexion such as during running.

1.5.4 Chapter 5 - Exoskeleton Energetics

I hypothesized that locomotion with the exoskeleton would improve net energy re-

covery, reduce the cost of transport, and lower the Froude number of the run-walk

transition relative to unsuited locomotion.

I measured the energetic cost and other variables during treadmill locomotion,

with and without a lower body exoskeleton, in simulated reduced gravity (G =

0.165, 0.379) and in Earth gravity (G = 1). Subjects walked or ran at constant Froude

numbers of 0.25 or 0.60, respectively, and walked and ran at a self-selected run-walk

transition. Using the framework developed in Chapter 2, g1 measurements of specific

resistance' during unsuited locomotion were used to estimate the specific resistance

1A non-dimensional measure of efficiency per unit distance: energy per unit of force supported
per unit distance traveled.
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of unsuited locomotion in the reduced gravity conditions. Net energy recovery was

estimated for all exoskeleton conditions, based on metabolic cost measurements from

the exoskeleton and unsuited conditions.

Six subjects completed the experiment after giving informed consent. Exoskele-

ton locomotion significantly lowered the cost of transport 2 [J/(kg m)] and specific

resistance [J/(N m)] relative to the unsuited condition, increased the estimated net

energy recovery, and lowered the Froude number of the run-walk transition relative

to the unsuited condition. Theoretical and actual values for the unsuited specific

resistance in reduced gravity conditions showed no statistically significant differences.

The exoskeleton control condition (an exoskeleton leg with 1/8th the stiffness of the

primary exoskeleton leg with space-suit-knee-like stiffness) had the lowest cost of

transport of the three conditions tested.

Although order effects cannot be ruled out, it appears that the high energy re-

covery of the exoskeleton legs led to the observed reduction in the cost of transport

and specific resistance during exoskeleton locomotion. The lower costs of transport

of the exoskeleton control condition suggests the possibility of a tuned space suit: a

exoskeleton or space suit leg stiffness that results in minimum metabolic cost during

locomotion. The findings explain the previously observed effect of space suits on run-

ning: exoskeleton locomotion improved recovery during both walking and running,

but because space suits impair walking recovery, the benefit of spring-like legs is most

prominent during space-suited running. The results of the experiment and the success

of the theoretical model also point to a potential role for recovery in the run-walk

transition, although more data is needed to evaluate the linkage between recovery

and gait transitions.

2 Energy per unit mass carried a unit distance.
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1.5.5 Overall Contributions

The major contributions of the dissertation include:

1. A model that predicts metabolic cost in non-dimensional form for unsuited

locomotion across running and walking and across gravity levels (Chapters 2

and 5),

2. An assessment of historical data that reveals the effect of pressure suits on work

output and the metabolic cost of locomotion (Chapters 2 and 3),

3. A method of simulating a space suit using a lower-body exoskeleton, and meth-

ods for designing and characterizing the exoskeleton (Chapter 4),

4. An explanation for the differences in the energetic costs of walking and running

in space suits (Chapters 2-5),

5. Evidence that there is an optimal space suit leg stiffness, perhaps an optimal

space suit leg stiffness for a given gravity environment (Chapter 5),

6. Evidence, mostly indirect, that energy recovery plays a role in gait switching

(Chapters 2 and 5).
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Chapter 2

Literature Analysis: The

Metabolic Cost of Space Suits

Abstract

In this chapter I review the biological and biomechanical determinants of metabolic

cost during muscular exercise and locomotion, unsuited and suited.

A framework, derived from basic thermodynamics, is developed to enable compar-

ison of metabolic cost across and between studies. This framework, when applied to

locomotion, is used to define and differentiate between muscle efficiency and energy

recovery, two concepts often confused in the existing running energetics literature.

Calculations based on data reported in the literature reveal that the human run-walk

transition in Earth gravity occurs at the point for which energy recovery is approxi-

mately the same for walking and running, suggesting a possible role for recovery in

gait switching.

Muscle physiology limits the overall efficiency by which chemical energy is con-

verted through metabolism to work. Walking and running utilize different methods

of energy storage and release, and consequently differ in their relative recovery of

energy. These differences contribute to the relative changes in the metabolic cost of

walking and running as gravity is varied, with the metabolic cost of locomoting at a

given velocity dropping in proportion to the reduction in gravity for running and less
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than in proportion for walking.

Application of the framework to space suits demonstrates that suit pressurization

has a significant impact on mechanical efficiency, mobility, and the metabolic cost

of locomotion relative to unsuited conditions. Metabolic data from the Apollo lunar

surface missions, not previously published, is presented and demonstrates that low

metabolic rates were an important and beneficial consequence of performing traverses

on the Moon using the Lunar Rover. The results of modeling work by Carr et al.

[2003] hint that space suits may affect walking and running differently, and that the

impact during running may be less severe.

2.1 Introduction

Metabolism is the mechanism by which chemical processes occur in living organisms

in order to maintain life and sustain energy production in support of human activities

[OED, 2004]. Space suits support basic physiological functions in the space environ-

ment and permit humans to affect physical change in the environment, or to acquire

information. Space suits impose kinematic and kinetic boundary conditions that af-

fect movement and locomotion, and in doing so modify the metabolic cost of physical

activity. Human metabolism is a primary determinant of the duration and intensity

of activity by astronauts in space suits during extravehicular activity (EVA); EVA

consumables such as oxygen and water set the total allowable metabolic cost, the in-

tegral of the metabolic rate over the duration of the EVA. To carry out NASA's new

exploration vision to return humans to the moon by 2020 and later to send humans to

Mars [Bush, 2004], significant changes in today's space suits are required to improve

the efficiency of locomotion and improve interaction with the external environment.

This review focuses primarily on the sources of metabolic cost during extravehic-

ular activity operations and factors that modify those sources; life-support system

considerations are essentially excluded from this discussion, whereas locomotion is

emphasized. After reviewing what is known about unsuited locomotion I review and

analyze the interactions of space suits with mass carried, traverse velocity, surface
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slope, and (perhaps of most interest) gravity. Because the mechanical counter pres-

sure spacesuit concept [Annis and Webb, 1971], is now being explored once again

[Tanaka et al., 2002, 2003, Frazer et al., 2002, Bethke et al., 2004, Danaher et al.,

2005], potential metabolic consequences of using an MCP suit during planetary ex-

ploration are also discussed based on results from past studies with gas-pressure and

MCP suits.

2.2 A Framework for Energetics Analysis

In this section, a basic framework is developed that clearly defines metabolic cost and

muscular efficiency. This framework can be applied to generic activities involving

external work, or to locomotion, in which it facilitates a clear differentiation between

muscle efficiency and energy recovery, terms often given inconsistent meanings in the

literature.

2.2.1 Enthalpy, Heat, and Work

The 1st law of thermodynamics expressed in terms of a differential change in enthalpy

can be written as

dH = dW + dQ (2.1)

where dH is the differential change in enthalpy of breathing gases, food, and waste

products, dW is the differential work done by the system, and dQ is the differential

change in heat added to the system. The sources of metabolic cost during human

movement can be represented in an equivalent form (modified from [Wortz, 1968])1:

1Wortz [1968] originally wrote the work terms using Qi instead of Wi, and defined these terms as
amounts of energy, not work. His definition could lead to an overestimate of the sum of terms on the
right-hand side of Equation 2.2, because, for example, waste heat generated during a muscular task
to perform external work Ww, is accounted in the Wortz model by the heat storage term Q,, but
might also incorrectly be included as part of the term representing "energy utilized in performing
useful work" [Wortz, 1968] term, Q,. The notation used here avoids this confusion, and adds a
explicit term for the space suit,W,,.
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Qm = Ww+W + Wwr + w + Q + Q,2

where Qm is the metabolic cost, W, is the external (useful) work (done by the

system), W,, is the work done by the counterforce, Wwr is the work done to restore

the body and limb position and orientation, W,, is the work done deforming the

space suit, Q, is net heat lost, and Q, is body heat storage.

Equation 2.2 illustrates the sources of metabolic cost based on measurable (as

opposed to physiological) quantities: Qm can be estimated from measurements of

oxygen consumption and carbon dioxide production. W, can be estimated based on

force and position measurements or the mechanics of the particular task (for example,

potential energy change achieved while raising or lowering a weight, as in Prescott

and Wortz [1966]). Likewise, Ww, and W,, can be estimated from force and position

measurements or mechanics calculations (for example, measurements from an instru-

mented foot-restraint used by an astronaut who generates a counterforce against the

foot restraint to permit upper-body work while maintaining body position). W,, can

be predicted from static and dynamic torque measurements of space suits [Dionne.,

1991, Barer et al., 1994, Menendez et al., 1994, Morgan et al., 1996, Newman et al.,

2000, Schmidt et al., 2001, Gonzalez et al., 2002, Yang and Yuan, 2002, Du et al.,

2003]. During a cyclical movement W,, = 0 since no net work is performed in de-

forming the space suit; unless the energy stored from deforming the space suit is used

to do some form of external work (or work on the center of mass, such as during

locomotion), the work done in deforming the space suit is converted to heat and ac-

counted for by Q, + Q,. Qn can be estimated through heat flux measurements: One

common method, used during the Apollo missions [Waligora, 1976], relies on the use

of a liquid cooling garment (LCG) and estimation of enthalpy changes between outlet

and inlet water (or another fluid) with corrections for radiative cooling, any non-LCG

conductive and convective cooling, and evaporative heat losses associated with sweat-

ing or respiration. Q, can be estimated from deviations in body temperature relative

to normal, or computed as
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Q = Q, - Qn - Ww , - W, - Ww. (2.3)

A physiological breakdown of the sources of metabolic cost can be represented as

Qm =Qb + Qw + Qwc + Qwr + Qws, (2.4)

where Qb is basal metabolism, Qw is the energy associated with the external (use-

ful) work, Qw, is energy associated with generating the counterforce, Qwr is the energy

associated with restoration of the body position, and Qws is the energy associated

with deformation of the space suit.

The Equation 2.4 terms are harder to measure but can be estimated from the

Equation 2.2 terms or from differences in Qm between different conditions. The Wi

work terms from Equation 2.2 are related to the Qi terms of Equation 2.4 through

marginal efficiencies Ei such that, for example, Ww, = E, Q,. Qb can be estimated

as Qm in a minimum external force condition such that Qw + Qw, + Qwr + Qw8 0

(a subject at rest). Qws can be estimated as the AQm between conditions with and

without a space suit.

2.2.2 Overall Mechanical Efficiency

A space suit may limit (or in very particular circumstances, enhance) the ability to

perform external work, can transmit loads that affect the energy cost of generating

the counterforce Q,,, and may hinder or help the maintenance or restoration of body

position. Therefore, it is clear that Qw, Qwc, Qwr, and Qws are coupled terms, and

it is often useful or necessary to lump them together. Qwc can be estimated as the

AQm between conditions with 'normal' and 'reduced' traction. Depending upon the

experimental design, some sources of metabolic cost in Equations 2.2 and 2.4 cannot

be disambiguated; however, when external work is performed, the overall mechanical

efficiency E can be defined by the ratio of the external (useful) work to the total

metabolic cost [Wortz, 1968]:
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E= W. (2.5)
Qm

By expressing the metabolic cost from Equation 2.4 in terms of work and efficiency,

Q m= + +W + - + +Qb, (2.6)
E. EC Ewr E,,

one can see that the metabolic cost (as intuition would suggest) is minimized by

minimizing each work term, maximizing each efficiency term, and minimizing basal

metabolism (for example, staying calm).

Designers of current EVA systems have improved the value of EVA operations by

minimizing the metabolic cost required to achieve a particular outcome through all of

these methods. EVA tools provide biomechanical advantage to match the rate of work

done to the ability to supply that work, or to improve the efficiency at which the work

is done. Foot restraints help to reduce the energy cost of providing the counteractive

force, and to reduce the energy spent restoring the body position. Work envelopes, if

appropriately defined, reduce the work done on the space suit by ensuring that suit

torques are not excessive in the work area Schmidt et al. [2001].

2.2.3 Total Metabolic Cost and Energy Supplied to do Ex-

ternal Work

Assuming a (conservatively high) overall efficiency of 0.30 and a maximum sustainable

metabolic rate of a human of about 750W, the maximum sustainable rate of external

work is roughly 225W. Consequences of this result for EVA operations include a

requirement that a space suit need only support sustained work rates below 750W,

and a requirement that all tasks to be performed require an energy delivery rate

Q, less than 225W. In practice, the energy delivery rate for a given task is much

lower because of space suit forces and the biomechanical nature of the task, including

considerations of local muscle fatigue.

Adequate cooling was provided during Apollo lunar surface EVA using a maximum
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heat removal capability of about 590W (2000 BTU/hr, or 1900 kJ/hr) [Johnston et al.,

1975], the same heat removal capacity of early ventilation and cooling systems such as

the 1959 system developed by Webb [Webb, 1959]. A similar system has proved more

than adequate for cooling during subsequent low earth orbit operations (personal

communication, Dr. Jeffrey Hoffman).

2.2.4 Energy Required to Generate Counterforce

Newton's third law requires forces to be equal and opposite: any force associated with

energy delivered to do external (useful) work (Qw) must be balanced by a counter-

force, associated with Qc,.

Springer et al. [1963] simulated a loss of traction in a one-degree-of-freedom task,

and measured a 12% (N = 10, p < 0.01) and 29% (N = 14, p < 0.001) increase

in oxygen consumption for raising and lowering weights of seven and 15.5 pounds,

respectively, with no difference in work rates. These increases correspond to decreases

in E of 11% and 22%. The maximum efficiency of 1.5% occurred in the tractive con-

dition with the 15.5 weight. Prescott and Wortz [1966] demonstrated that metabolic

rates during an upper body task increased as simulated reduced gravity levels were

reduced (N = 7, p < 0.01) but that no such increase occurred during several types

of exercises that involved no external work (N = 7); this finding is consistent with

increases in the muscular power required to generate a given counter-force.

If the counter-force cannot be produced, then the astronaut cannot generate the

force required to do the desired external work. This well-understood principle formed

the basis for a variety of load-transmission devices (such as foot restraints) used

during microgravity EVA. For example, upper body activity often results in torques

that must be 'removed' by the ankles (the muscles and tendons that cross the ankle

joint must produce counter-torques); the stiff space suit ankle reduces the magnitude

of the torque that must be produced by the ankles, lowering Qc.
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2.3 Biological and biomechanical determinants of

metabolic cost

The energy required for maintenance of life, or homeostasis, and movement, or loco-

motion, is derived from a reduction in enthalpy through aerobic and (in the short-

term) anaerobic metabolism. Both the usage of energy released by basal metabolism

(Qb) and the work done by muscles (W, + Wwc + W,, + W,,) are limited in efficiency

by thermodynamics and biomechanics. When chemical energy is released, only part

of that energy is available for 'basal' processes (such as cellular repair, communica-

tion, digestion, pumping of blood, and cognition) and muscular contraction; the rest

is converted directly to heat (Q, + Qn), and contributes to an increase in entropy [van

Ingen Schenau and Cavanagh, 1990].

The efficiency of human movement and physical interaction with the world (E,

E, Er,, E,,, and therefore E), to the extent determined by biological factors,

is determined by cellular energetics, musculoskeletal structure and function, supply

of substrates to and removal of wastes from the relevant tissues, and integration

of the result via coordination and control. These factors may be modified during

extravehicular activity due to the impact of the space suit or due to short- or long-

term physiological adaptation to an altered gravity environment.

At the cellular level, muscle contraction results from the repetitive load-dependent

displacement of the protein myosin along actin filaments [Reconditi et al., 2004]; the

load-dependence of the myosin stroke is the primary molecular determinant of the

mechanical performance and efficiency of skeletal muscle [Reconditi et al., 2004],

and explains the high relative efficiency of muscle at high loads and slow shortening

velocities, originally characterized by A.V. Hill [Hill, 1922]. Adenosine tri-phosphate

(ATP) consumption due to muscular contraction is driven by the rate of myosin and

actin cross-bridge cycling ( 70-85%) and contraction regulation via calcium regulation

(15-30%) [Conley, 1994].

Endogenous ATP sustains maximum metabolism rates, related to the maximal

shortening velocity of the muscle fiber, for only four seconds; between four seconds
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and about 30 seconds, maximal ATP use relies on ATP synthesis by creatine ki-

nase (CK) from endogenous creatine phosphate (PCr) [Hochachka, 1994]. Beyond

a few minutes of maximal work, glycolysis provides the dominant source of energy

for regeneration of PCr and thus ATP. Glycolysis without aerobic metabolism leads

to fermentation and the buildup of lactic acid; in the short-run, an oxygen debt is

occurred that must be paid back through future increased aerobic metabolism. The

volume fraction of skeletal muscle fiber occupied by mitochondria is a good measure

of skeletal muscle oxidative capacity because skeletal muscle mitochondria consume

an approximately equal volume of oxygen per volume of mitochondria at V/02,max

(the maximum volume flow rate of total organism oxygen consumption), even across

different mammalian species [Billeter et al., 1994]. The structure of skeletal muscle

is optimized for delivery of oxygen to mitochondria, and shows a linear relationship

between capillary length density and mitochondrial volume density and an increased

volume density of mitochondria near capillaries [Billeter et al., 1994]. The maximum

transfer rate of non-oxygen metabolic substrates (carbohydrates, triglycerides, lac-

tate) limits the maximum sustainable work rate over time scales longer than a few

minutes [Billeter et al., 1994]. Margaria calculated that the efficiency of oxidative

synthesis of PCr from glucose is 0.64 (versus 0.76 for synthesis from glycolysis); in

experimental studies he observed a maximum mechanical efficiency in aerobic mus-

cular exercise of about 0.25, which suggests an efficiency of production of mechanical

work from PCr of about 0.40 [Margaria, 1976].

The value found by Margaria for the peak mechanical efficiency agrees well with

the Hill muscle model as implemented by Alexander [2003], shown in Figure 2-1 and

described in detail in Appendix A.

Muscles achieve a wide range of power outputs at relatively high efficiencies

through the selective recruitment of different fiber types characterized by their differ-

ent myosin isoforms [Billeter et al., 1994]. 'Slow' or type I fibers have higher oxida-

tive capacities resulting from a higher mitochondrial volume fraction in comparison

to 'fast' or type II fibers; type I fibers are optimized for support and low shortening

velocity contractions whereas type II fibers are most efficient for fast shortening ve-
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Figure 2-1: Hill muscle model for positive muscle contraction velocities. In the model,
V/Vmax is the ratio of muscle contraction velocity to maximum muscle contraction
velocity, T/To is the ratio of muscle tension to isometric tension, (I is a cost function
describing cellular energetics (see Appendix A for details), and Emusc is the muscle
efficiency. Appendix A describes how the model can be tuned for different muscles;
the above model uses parameter values typical for vertebrate muscles. Peak efficiency,
above, is 0.23 for V/Vmax = 0.23. The peak power condition occurs at v/Vmax = 0.31,
for which the efficiency is 0.22.
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Efficiency: Gravity Dependence
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Figure 2-2: Approximate gravitational dependency of muscle efficiency derived from
the Hill Model. See Appendix A for derivation.

locities. Humans exposed to weightlessness experience muscle atrophy and selective

loss of contractile proteins that lead to increases in the highest-efficiency shortening

velocity in both fiber types [Fitts et al., 2001]. This may be an appropriate adap-

tation to reduced gravity, in which locomotion muscles, contracting against reduced

weight, would contract at higher velocities.

For an isolated muscle contracting against a fixed mass one can compute, using

the Hill model, how the muscle efficiency would vary with gravity (Figure 2-2). This

result, derived in detail in Appendix A, is based on the assumption that the muscle

is optimized for Earth gravity, so that at G = 1 the muscle would have a contraction

velocity that achieves peak muscle efficiency. In this model, muscle efficiency would

decline from 0.23 to 0.18 on Mars (a 22% drop), or to 0.11 on the Moon (a 52% drop).

Because humans can adjust muscle activation patterns (for example, producing lower

forces by recruiting a smaller muscle volume), these values are likely to represent a

lower bound for the achievable peak muscle efficiency.

Muscles are not merely devices for producing force, but are also elastic energy

storage devices, dampers, struts, and sensors that allow movement and interaction

through integrated and multilevel feedback control [Dickinson et al., 2000]. Muscu-
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loskeletal system dynamics and control impacts the overall achievable efficiency by

modulating the transformation of energy within an organism and between an organ-

ism and the environment. During running, for example, mass-specific mechanical

work increases in a curvilinear manner with speed, but metabolic cost is observed to

increase linearly with speed [Roberts, 1998]. Therefore the mechanical work rate of

the body does not determine the metabolic energetics of running, and energy storage

and recovery play an important role in locomotion.

2.4 Unsuited Locomotion: A brief review

Humans on land in earth gravity show three characteristics forms of locomotion

[Minetti, 1998]: In walking, at least one foot maintains ground contact at all times,

whereas in running there is no double support phase. Skipping is characterized by

a stance phase involving an exchange of the support foot, and an extended aerial

phase between two stance periods with the same supporting foot. Loping, a type of

one- or two-footed hopping observed in reduced gravity environments, is biomechan-

ically similar to skipping without the support foot exchange, or to running, with an

extended aerial phase. Figure 2-3 illustrates these four forms of locomotion.

At its most basic approximation, the compass gait of walking can be modeled as an

inverted pendulum [McMahon, 1984]. Stance-leg knee flexion, a second determinant

of gait, can also be incorporated, leading to an improved model of ballistic walking

[Mochon and McMahon, 1980]. Other major components of gait include pelvic rota-

tion, pelvic tilt, plantar flexion of the stance ankle, and lateral displacement of the

pelvis. These components of gait generally act to reduce oscillations of the center of

mass, and thus limit the mechanical work done by the muscles during locomotion [Lee

and Farley, 1998]. The metabolic cost of walking is largely explained by the cost of

generating muscular force during the stance phase [Griffin et al., 2003]; the required

muscular force is dictated by the time of contact and the load carried. Energy expen-

ditures during the swing phase are harder to assess, but have recently been shown

to account for up to 30% of the metabolic rate, at least in guinea fowl [Marsh et al.,
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Figure 2-3: Forms of Gait in Humans: A. Three forms of locomotion in humans
in earth gravity on land. R and L indicate contact periods for right and left feet,
respectively. From Minetti [1998]. B. A hypothetical reconstruction of loping meant
to illustrate the biomechanical similarities of loping and skipping.

2004].

Load-carrying studies have found a linear relationship between load carried and

metabolic cost [Santee et al., 2001]. Hill-climbing studies have found a similar re-

lationship between slope gradient and metabolic cost for positive slopes [Margaria,

1976]. Minimum metabolic cost is achieved for slightly negative slopes (8-10 degrees)

[Margaria, 1976, Santee et al., 2001].

McMahon developed another simple model of locomotion that treated the body

as an inverted pendulum with a single spring representing leg stiffness [McMahon and

Cheng, 1990]. Humans (arid other animals) modify leg stiffness [Farley et al., 1998]

and there is a change in leg stiffness in response to changes in surface compliance

[McMahon, 1984, Ferris and Farley, 1997]. Metabolic cost is also affected by changes

in surface compliance: Kerdok et al. [2002] found that a 12.5-fold reduction in sur-

face stiffness 2 resulted in a 12% reduction in metabolic cost with unchanged support
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mechanics.

2.4.1 Locomoting in Reduced Gravity

As gravity is reduced3 , the metabolic cost of walking at a given velocity declines

[Wortz, 1968, Fox et al., 1975, Newman et al., 1994]. Fox et al. [1975] found that the

mass specific volume rate of oxygen consumption, VO2 per unit mass, was reduced in

simulated 0.25g and 0.5g treadmill walking at 3.2, 4.8, and 6.4 km/hr; net VO2 per

unit weight carried was nearly uniform with a slight elevation for simulated reduced

gravity conditions (not statistically significant) relative to g controls. Wortz [1968]

maintained a subject's 165 lb weight during simulated reduced gravity locomotion at

4 mph by addition of weights in reduced gravity conditions, and demonstrated a pro-

gressive elevation in the metabolic cost per unit weight of reduced gravity locomotion

at 0.5g, 0.25g and 0.17g compared to g controls Wortz [1968].

The findings of Wortz [1968] and Fox et al. [1975] both suggest that the reduced

metabolic cost of locomotion in partial gravity results largely from the reduction in

body weight carried but do not specify the source of the decrease in mechanical effi-

ciency during partial gravity locomotion. Several factors are likely at work: Increased

inertial forces in Wortz experiment; decreased recovery during walking at moderately

reduced gravities < 0.5 G [Griffin et al., 1999], and higher muscle contraction veloci-

ties.

While smaller fluctuations in horizontal forces are observed in moderately reduced

gravity, the ratio of vertical forces to horizontal forces stays nearly the same [Griffin

et al., 1999], suggesting a reduced cost of stability at least under some reduced grav-

ity conditions. Non-propulsive lateral forces benefit stability and maneuverability

[Dickinson et al., 2000], suggesting that there may be a reduced cost of maintaining

stability in moderately reduced gravity conditions.

Metabolic rates during running are determined by the volume of muscle activated

and the rate of ground force application [Wright and Weyand, 2001], which is directly

related to the velocity of shortening of the muscle and the reciprocal of the contact

3 See Davis and Cavanagh [1993] for a review of reduced gravity simulation methods.
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time. A recent study by Pontzer [2005] links anatomical variables such as leg length

to force production requirements to predict the metabolic cost of locomotion.

Farley and McMahon [1992] had subjects walk at 1 m/s and run at 3 m/s in lg

and in simulated reduced gravity (Figure 2-4). They found that a 75% drop in gravity

produced a 72% drop in the rate of energy consumption ((Qm - b)/(BodyMass))

during running, but only a 33% decline during walking. The mass-specific oxygen

uptake findings of Newman et al. [1994] are very similar in form to the metabolic

rate changes observed by Farley and McMahon [1992], with large percent decreases in

metabolic cost during locomotion at 2.3 m/s but much smaller percent decreases at 0.5

m/s (Figure 2-5). These finding demonstrate that running and walking energetics are

different in nature; these differences derive in large part from the different mechanisms

of energy storage and recovery, discussed in the next section.

Studies of walking and running [Newman et al., 1994, Ivanenko et al., 2002, Davis

and Cavanagh, 1993] have found that contact time is relatively constant and peak

ground reaction forces decreased as the simulated gravity level is reduced, suggesting

that humans maintain similar kinematics but not kinetics across gravity levels from

100% to as little as 10% of Earth gravity.

In terms of the Hill model, this suggests that humans are able to maintain contrac-

tion velocities by reducing the volume of muscle recruited in reduced gravity. This

provides direct evidence that the gravitational dependence of E illustrated in Figure

2-2 is likely to represent a lower bound for peak muscle efficiency in reduced gravity

conditions.

2.4.2 Recovery during Walking and Running

In level locomotion on a flat non deformable surface there is no true external work,

so that Q = 0 ('external' work as referred to by many locomotion researchers is the

work done while accelerating the center of mass). In locomotion without a space suit

Qws = 0. In this condition, Equation 2.4 can be written as

Qm - Qb = Qloco, (2.7)
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not cheaper than running at all levels of gravity because reducing gravity had a much
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1 m/s. Abridged caption and figure from Farley and McMahon [1992]; the plot has
been relabeled with the notation used in this chapter.
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Figure 2-5: Oxygen uptake Vo2, versus gravity level. Each point is the mean and
the error bars are standard deviations of the means. Plot and caption from Newman
et al. [1994]; the study was performed using an underwater treadmill, with subjects
ballasted to achieve the indicated reduced gravity weight conditions.
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where Qloco = Qwr + Qwc is the energy expended to maintain the required center

of mass motion (e.g. to generate the required counter-forces and restore the body

position). Qloco can also be expressed as

Qloco wmsc (2.8)Emusc

where Wmusc is the net work done by the locomotion muscles on the center of

mass, and Emusc is the net efficiency of that muscular effort. The net work done

by the locomotion muscles on the center of mass, Wmusc = Wi - Wot, is equal to

the difference between the total work done on the center of mass Win, and the work

recovered through energy storage mechanisms such as inter-conversion of kinetic and

potential energy, or storage and release of elastic strain energy, Wout. The ratio of

recovered work to total work is the recovery, :

Wi n (2.9)

Equation 2.8 can be rewritten as

Q0co 1-7 (2.10)

Win Emusc

or, alternatively as

Qm - Qb = Win E (2.11)
musc

Equation 2.11 shows that the net metabolic cost of locomotion (e.g. excluding

basal metabolism) is a function, in this model, of three factors: First, the kinematics

and dynamics of the center of mass determine Wi,. Second, muscle physiology and

its interaction with the environment determines Em,sc. Third, mechanisms of energy

conversion, or energy storage and release determine the cycle-to-cycle energy recovery

r1. As previously mentioned, peak muscle efficiency Emus,, during locomotion can reach

25% [Margaria, 1976, Whitt and Wilson, 1982].

In walking, kinetic and potential energies are out of phase, and there is a high

44



percent recovery of potential energy (60-65%) [Griffin et al., 2004a], while in running,

kinetic and potential energies are in phase and the contribution to recovery from in-

terconversion of kinetic and potential energy is near zero. Percent recovery stays high

in reduced gravity walking (0.5-0.75g) but is decreased at 0.25g [Griffin et al., 1999].

Griffin et al. [1999] determined recovery during reduced gravity walking as a function

of velocity and gravity (Figure 2-6). Griffin et al. [2004a] also examined recovery as

a function of a non-dimensional velocity called the Froude number, computed as

V2

Fr = gL (2.12)gL'

where Fr is the Froude number, v is the velocity, g is the gravitational acceleration,

and L is the leg length. A consistent pattern emerges when recovery is plotted as a

function of the Froude number (Figure 2-7), supporting the analogy of recovery as a

pendular exchange of kinetic and potential energy. The run-walk transition in humans

occurs near Fr - 0.5 Minetti [2001] across different G-levels, although increases in

the Froude number are observed as gravity is reduced, at least in simulated reduced

gravity experiments [Kram et al., 1997].

In reduced gravity walking, at least two factors act against a linear reduction

in metabolic cost for a linear reduction in gravity: First, ground reaction forces in

walking are much lower than during running so that muscle contraction velocities may

be higher; this may cause muscle efficiency to decline more for reduced gravity walking

than for reduced gravity running. Second, in environments with G < 0.5, energy

recovery r is adversely affected in walking. In contrast, a reduction in G directly

contributes to a reduction in Win during running, consistent with the proportional

drop in metabolic rate observed by Farley and McMahon [1992].

Recovery in running is determined by how effectively elastic strain energy, stored

in tendons and muscles, can be released. Kaneko [1990] reported the efficiency of run-

ning, after noting the multiple inconsistent meanings applied to "running efficiency"

in the literature, as the ratio of work done on the center of mass to the net metabolic

cost Win/Qioco, so that
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Figure 2-6: Energy recovery r7 in reduced gravity walking as a function of G and
velocity. From Griffin et al. [1999].
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from the literature are presented for children and adults walking at a range of speeds
in normal gravity, and for adults walking at a range of speeds in simulated reduced
gravity. Percent recovery is similar at equal Froude numbers, suggesting that at equal
Froude numbers the inverted-pendulum dynamics are mechanically equivalent. Child
data from Cavagna et al. [1983] for 3-4, 7-8 and 11-12-year olds. Adult and reduced
gravity data from Griffin et al. [1999]. Caption and figure from Griffin et al. [2004a].
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EKaneko- (2.13)

Kaneko [1990] demonstrated that running efficiency in g is around 50% at its

peak, declines with increasing velocity (Figure 2-8) and declines as step frequency

deviates from an optimal value of about 2.9 steps/sec (Figure 2-9). Why does the

efficiency decrease with velocity? As the running speed increases, stride length in-

creases dramatically while stride frequency elevates slightly [Cavanagh and Kram,

1989]. Furthermore, Weyand et al. [2000] have shown that faster top running speeds

are achieved using greater ground reaction forces, not higher stride frequencies. As

velocity increases, the elevation in stride length increases the relative proportion of

Qloco associated with the swing phase. Other irreversible factors such as losses to

wind resistance also increase4 .

If Eu,,, is taken to be 0.225, the peak value for muscular work for G = 1 in

the Hill muscle model implementation, then EKaneko = 0.50 represents a running

recovery r7 = 1 - Emusc/EKaneko of 0.55. Perhaps not coincidently, this value for

running recovery is approximately equal to the recovery during human walking at

Fr = 0.5; this finding strongly hints that recovery might play an important role in

gait switching.

While much is known about unsuited locomotion, space suited locomotion is much

less well understood.

2.5 Working in Space Suits

2.5.1 Energy Associated with Movements in a Space Suit

A.S. Iberall provided a theoretical basis for space suit design in 1951, and charac-

terized the work done while deforming a space suit as the sum of the work done in

4 Much more important than the losses due to wind resistance is the impact of wind on the
maximum metabolic rate: in cycling, higher maximum metabolic rates are possible due to the
increased cooling, and therefore reduced heat storage, associated with higher relative wind speeds
for the same metabolic rate[Whitt and Wilson, 1982].
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changing the gas volume, and the work done elastically deforming the suit [Iberall,

1951]. In a more complete articulation of his space suit design principles [Iberall,

1970], Iberall characterized the work done by the space suit occupant in an arbitrary

deformation of the space suit as

AW = Wp + AWb + AW, (2.14)

where AW is the total work done, AWp is pressure-volume work, AWb is bending

work, and AW, is stretching work. Bending and stretching work derive from defor-

mation of the suit and redistribution of the stress distribution. Iberall argues that for

arbitrary deformations, all right-hand terms in Equation 2.12 must vanish in order

to minimize the work done by the spacesuit occupant.

To minimize pressure-volume work, space suit joints are designed to minimize

the change in joint volume during bending [Harris, 2001]. Because the body is ap-

proximately incompressible over the small pressure increases incurred during suit joint

movement, minimizing the volume change during bending of an isolated joint is, prac-

tically speaking, a sufficient condition for minimization of the joint-torque resulting

from pressure-volume work.

Schmidt [2001] evaluated two physical models of space suit joint torques. One

model, the beam model, assumes that joint-torques are due to deformation within the

restraint layer of the space suit; work done against these joint-torques would account

for AWb and AW, . The other model, the membrane model, assumes that joint-torques

are due to gas compression; work done against these joint-torques would account for

Wp. Data from the Extravehicular Mobility Unit (EMU) knee joint (Figure 2-10)

demonstrates that space suit torques for joints like the EMU knee joint result largely

from gas compression.

In a different type of space suit known as mechanical counter-pressure (MCP),

body pressurization is provided by direct mechanical pressure applied to the skin by a

fabric. Onle a single full prototype MCP suit has been built to date: the Space Activit

Suit, or SAS [Annis and Webb, 1971]. Joint-torques in the SAS result from changes
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excess of those predicted by the membrane model; this is indicative of unmodeled
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zero-torque flexion angle. Data and figure from [Schmidt, 2001].

in the stress-strain distribution of the fabric layer providing body pressurization, the

AWb + AzWs components of Equation 2.14.

To the author's knowledge, no quantitative data exists on mechanical counter-

pressure (MCP) joint-torques. However, it is clear that MCP joint-torques are low

enough to vastly improve mobility in comparison to gas pressure space suits (Figure

2-11).

2.5.2 Suit Pressurization Effect

Streimer et al. [1964] investigated the effects of pressure suits on work output (N = 5

males, age 18-20, 50th-95th percentile stature) while in shirt-sleeves, or in one of three
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Figure 2-11: Mobility of the only full prototype mechanical counter-pressure (MCP)
space suit, the Space Activity Suit, was substantially better than all past and current
space suits (Don't try doing this in a gas-pressure space suit). MCP joint-torques,
unlike gas-pressure suits, result predominantly from changes in elastic strain energy
(AWs + AWb). It is not known what are the minimum achievable joint-torques using
MCP technology; current MCP efforts [Tanaka et al., 2002, 2003, Frazer et al., 2002,
Bethke et al., 2004, Danaher et al., 2005] have focused on pressure production, and
no joint-torque measurement of MCP garments have been reported to date. Image
from Annis and Webb [1971].
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different space suits. Subjects were evaluated in both unpressurized and pressurized

conditions, and tractive and reduced traction conditions, for a total of 14 conditions.

From the published metabolic data and work output means, the overall mechanical

efficiency E was estimated for each condition. The overall mechanical efficiency E

dropped from 6.4% in the shirt sleeve tractive condition, to as low as 2.4% in one of the

reduced traction pressurized suit conditions. A two-factor ANOVA with replication

(each space suit was considered a replication) of these E estimates demonstrated

significant percent decreases in E resulting from suit pressurization (-31%, p <

0.0001), and reduction in traction (-12%, p < 0.05); the interaction effect was not

significant.

To quantify the rate of energy expended in moving the space suit Qws, the marginal

efficiency of work E,, = WW/Qw was computed from the shirt-sleeve tractive condition

(with Qwc + Qwr + Qws set to 0, and Qb = 80W, a reasonable approximation of basal

metabolic rate), and was assumed to be constant. For the reduced traction conditions,

Qwc + Qwr was estimated by assuming the same heat of work rate Qw in tractive and

reduced traction conditions. Qws was then estimated as Qm - Qb - w - (Qwc + Qwr).

Figure 2-12 shows the dual effects of reduced traction and suit pressurization for

the work output study by Streimer et al. [1964], as compared to a cycle ergometry

study by Annis and Webb [1971] in the only full prototype MCP space suit to date, the

Space Activity Suit. The relatively low ratio of Qgw/Qw observed in the MCP suit (at

a metabolic cost of 560-730W) almost certainly results from the lower joint-torques

and low mass of the MCP suit in comparison the gas pressure space suits.

2.5.3 Suited Locomotion

Webbon et al. [1981] used a Self Contained Atmospheric Protective Ensemble (SCAPE)

suit pressurized to 1.8 kPa (0.26 PSI) to simulate a space suit while evaluating sev-

eral liquid-ventilation cooling garments (LCVGs); the mean metabolic rate during

treadmill walking at 0.9 m/s (2 mph) was 464W, 109% above the unsuited mean

metabolic rate. This high metabolic rate illustrates the importance of minimizing

change in volume during joint movement. Space suit joint designs achieve energetics
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Figure 2-12: Gas Pressure Suits: The three space suits studied by Streimer et al.
[1964] in a work output task are labeled A, B, and C. Using the framework, energy
expended moving the space suit Q,, was computed as described in the text, and plot-
ted versus QWs/QW, which represents the factor by which overall mechanical efficiency
is reduced by the space suit relative to the unsuited condition. The effect of reducing
traction for unpressurized suits was consistent in sign: an elevation in QWs/Qw. The
effect of reducing traction for pressurized suits (24 kPa) was inconsistent, and may
have even resulted in a reduction in QWs/Qw. Loss of traction may have forced the
suit occupant to use the suit as a load-carrying member in order to generate the
required counterforce. MCP Suit: Annis and Webb [1971] had subjects wearing the
Space Activity Suit (SAS) MCP suit pedal a bicycle ergometer. The data indicates
that subjects in the MCP suit expended about as much energy moving the MCP suit
as in doing external work, a substantial achievement at such a relatively high work
rate.
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comparable or closer to unsuited conditions than this SCAPE suit at ~ 17 times the

SCAPE suit operating pressure.

The framework was applied to the study of 0.45 m/s (1 mi/hr) walking in three

space suits by Streimer et al. [1964]. Q was taken to be zero and Qc + Qwr was

taken as - b = 131W in the unsuited condition. Locomotion data at slightly

higher velocities (0.9-1.3 m/s) from Annis and Webb [1971] in the SAS is plotted with

the Streimer et al. [1964] data for comparison (Figure 2-13). In the unpressurized

condition, subjects used 75% more energy to maintain the movement of their body

center of mass than energy moving the space suit. In the pressurized condition,

subjects expended over 400% more energy moving the space suit than energy moving

the body center of mass. This dramatic difference illustrates the extent to which

limited mobility and increased joint-torques can dramatically increase the metabolic

cost of locomotion. In comparison, subjects in the SAS, walking at higher velocities

(more than twice as fast than the pressure suit subjects), achieved low Q,,s/Q ratios

comparable in magnitude to subjects in the unpressurized space suits evaluated by

Streimer et al. [1964]. This indicates that the joint-torques and mobility limitations

of the SAS lack the serious detrimental effect on the walking metabolic rate of the

pressure suits tested by Streimer et al. [1964]. In other words, the SAS demonstrated

significantly improved mobility relative to the gas pressure suits evaluated by Streimer

et al. [1964].

Approximate recovery values can be estimated using Equation 2.11, if Win can be

estimated. One can assume a value for rq based on the Froude number for walking (see

Figure 2-7), and assume a reasonably high muscle efficiency (for example, Emusc =

0.20)5. Win can then be estimated under the unsuited condition, with Win in the

suited condition given by

msuited (2.15)
Win,suitsui= m Win,unsuited, (2.15)

munsuited

5 Taking a constant value for muscle efficiency assumes that mechanical advantage is not modified
by use of the suit (in which case muscle efficiency is likely to decline), an assumption probably not
valid for most space suits.
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Figure 2-13: Streimer et al. [1964] measured metabolic cost during 0.45 m/s (1.0
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Table 2.1: Recovery During Locomotion in the Space Activity Suit
Velocity Froude Qwr + Q Win Qws rlunsuited Tsuited

[m/s] Number [W] [W] [W]
0.89 0.09 199 94 140 0.55 0.28
0.89 0.09 129 61 35 0.55 0.46
1.11 0.13 129 79 104 0.65 0.41
1.33 0.19 304 185 140 0.65 0.52

SAS Suit mass taken as 4.7 kg, and muscle efficiency Emusc taken as 0.20.

a Energy associated with work done on the center of mass.

where msuited and munsuited are the total masses transported in the suited and

unsuited conditions, respectively. For Equation 2.15 to be valid, the kinematics must

not change in the suited condition as compared to the unsuited condition (so that

the positive work done in moving the center of mass changes only by the mass ratio).

Equation 2.15 is therefore a gross simplification.

Performing this procedure for the Streimer et al. [1964] data using munsuited = 75

kg and msuited = 125 kg (an assumed 50 kg suit mass) kg yields an average recov-

ery of 27% under unpressurized conditions and -150% under pressurized conditions.

Clearly, the assumptions are invalid in this case, but one can safely conclude that

recovery wass adversly affected. Performing a similar procedure with the locomotion

data from Annis and Webb [1971] yields the results shown in Table 2.1: recovery

values decline from the unsuited condition, but are still substantial.

As might be expected from studies of unsuited locomotion, surface condition also

affects the metabolic cost of space-suited locomotion (Figure 2-14).

Similarly to unsuited locomotion, slope gradient has a significant effect on the

metabolic cost of space-suited (Figure 2-15).

Some metabolic cost estimates, generated during Apollo Lunar-surface extravehic-

ular activities using the estimation procedure described in [Waligora, 1976] have been

published, but for later Apollo missions only broad averages for activity categories

have been published. Stolwijk [1970] published limited metabolic data from Apollo

11, while the most complete treatment of data from the Apollo Missions, by Johnston

et al. [1975], includes a relatively detailed assessment of components of Apollo 14 and
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walking traverses, showing a relationship between metabolic cost and surface slope.
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15. These metabolic estimates were used in real-time mission planning decisions such

as whether it would be feasible to extend an EVA.

One important feature lacking from previously published Apollo metabolic cost

estimates is the impact of the lunar rover on metabolic rates. Figure 2-16 shows the

original metabolic estimates for each Apollo lunar surface EVA "traverse segment"6,

grouped by whether the traverse was performed on the lunar rover or on foot (un-

published data, provided to the author by Jim Waligora). To interpret the results,

it is important to know that the rover average speed was ~ 2.7 m/s (6.0 mi/hr) 7 , a

reasonably fast running speed in lunar gravity. This allowed the astronauts of Apollo

15, 16, and 17 to cover more ground than had previous lunar explorers, but perhaps

more importantly, the lower average metabolic rate achieved during rover traverses

allowed the total EVA time to be extended.

Carr et al. [2003] reconstructed the Apollo 14 traverse and applied the load car-

rying model of Santee et al. [2001], which includes gravity as an explicit model com-

ponent, to this reconstructed traverse. The Santee et al. [2001] model results agreed

with the Apollo 14 metabolic cost estimates from Johnston et al. [1975] to within

- 11% [Carr et al., 2003], despite the lack of model parameters to account for the

space-suit (other than as an adjustment to the total mass).

The Santee et al. [2001] model, designed to model load-carrying by soldiers, can

not be expected to accurately predict the impact of space suit joint-torques. Carr

et al. [2003] concluded that some effect must be compensating for the unmodeled

detrimental effect of mobility restriction and joint-torques imposed by the Apollo

space suits. A detailed comparison of the Apollo 14 metabolic cost estimates (Un-

published data, C. Carr) indicates that the Santee et al. [2001] model over-predicts

the metabolic cost at velocities with Fr > 0.5 and under-predicts the metabolic cost

for velocities with Fr < 0.5, suggesting that some feature of space suits might reduce

the metabolic cost of running or elevate the metabolic cost of walking.

Another important explanation for why the Apollo 14 estimates are not too differ-

6 This dataset includes all traverse segments during the Apollo missions, except one of the Apollo
16 EVAs, for which the original Apollo data table was not available.

7 http://ares.jsc.nasa.gov/HumanExplore/Exploration/EXLibrary/docs/ApolloCat/Partl/LRV.htm
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Figure 2-16: Original estimates for metabolic rate (Qm) from the Apollo missions:
Each point represents a the metabolic cost estimate for a single "traverse segment."
Data has been grouped by whether the traverse was performed on the lunar rover
(filled circles) or on foot (filled squares). The data suggests that a major benefit of
the lunar rover was to lower the average metabolic rate, thereby allowing extension
of the EVA duration. (Unpublished data provided to the author by Jim Waligora).
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ent from the estimates based on the Santee et al. [2001] model is the possibility that

the detrimental effects of the space suit may be approximately balanced, in this case,

by a reduction in weight supported by the suit occupant. Because of high longitudi-

nal pressure forces, pressure suits become partly to fully self-supporting in reduced

gravity environments. For example, a 100 cm2 suit cross section (not unreasonable

for a space suit ankle) at a suit pressure of 30 kPa would provide a longitudinal force

of 300 N. On the Moon (g = 1.62m/s 2 or G = 0.165) a 100 kg suit weights only

162 N; therefore, if a suit occupant stabilized the suit (maintained small knee flexion

angles and provided the torques required to maintain upright suit and body posture),

the suit weight would be entirely carried by the suit.

2.6 Summary and Conclusions

Muscle physiology limits the overall efficiency by which chemical energy is converted

through metabolism to work. Walking and running utilize different methods of en-

ergy storage and release, and consequently differ in their relative recovery of energy.

These differences contribute to the relative changes in the metabolic cost of walking

and running as gravity is varied, with the metabolic cost of locomoting at a given

velocity dropping in proportion to the reduction in gravity for running and less than

in proportion for walking.

The framework described in this chapter, derived from basic thermodynamics, can

be used to compare different studies in a clear, consistent manner. This framework

was applied to locomotion, for which it clearly defines and differentiates between

muscle efficiency and energy recovery, two concepts often confused in the existing

running energetics literature. Furthermore, calculations based on data reported in the

literature reveal that the human run-walk transition in Earth gravity occurs at the

point for which energy recovery is approximately the same for walking and running.

Application of the framework to space suits demonstrated that suit pressurization

has a significant impact on mechanical efficiency, mobility, and the metabolic cost

of locomotion relative to unsuited conditions. Space suit torques in pressure suit
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soft joints result largely from gas compression, and are approximately proportional

to the internal gas pressure. Thermodynamic irreversibility increases due to energy

dissipation in the restraint layer as the joint angle becomes large relative to its zero

torque value.

Metabolic data from the Apollo lunar surface missions, not previously published,

was presented and demonstrates that low metabolic rates were an important and

beneficial consequence of performing traverses on the Moon using the Lunar Rover.

Available data from the literature indicates that many factors substantially alter the

cost of space-suited locomotion, including gravity, surface slope and surface condition.

The results of modeling work by Carr et al. [2003] hint that space suits may affect

walking and running differently, and that the impact during running may be less

severe.

In the next chapter, these findings are synthesized and generalized via regression

modeling of prior energetics data from studies of unsuited and suited locomotion.
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Chapter 3

Regression Analysis: Cost of

Transport During Locomotion In

Space Suits

Abstract

I performed a cross-study analysis of past suited and unsuited locomotion energetics

studies to try to understand how space suits affect cost of transport. I hypothesized

that space suit legs act as springs during running, thereby maintaining or lowering

cost of transport relative to space-suited walking.

I transformed data from past studies into a common format, and developed a

regression equation for the specific resistance, a non-dimensional form of metabolic

cost, based on the Froude number (a non-dimensional velocity), surface slope, earth-

relative gravitational acceleration, and space-suit pressure. Acceptance criteria for

regression factors included significance and a reduction in the residual variance. I

divided suited data into fast running and walking or slow running groups and per-

formed a group means hypothesis test and categorical regression of metabolic cost

per unit weight (efficiency per unit time) and specific resistance (efficiency per unit

distance).
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The specific resistance regression achieved a DOF-corrected multiple R2 of 0.83;

all factors were significant (p < 0.0005). No additional evaluated factors met the

acceptance criteria. The categorical regression, but not the hypothesis test, suggested

that the fast running group had reduced efficiency per unit time; both tests suggested

that the fast running group had increased efficiency per unit distance. Variations in

specific resistance across studies were largely explained by a simple regression model.

Several findings suggest that gas-pressure suit legs function as springs during running,

including the finding of higher efficiency per unit distance during fast running, despite

the increased work rate against space suit joint torques at higher velocities.

3.1 Introduction

Before humans first walked on the moon, Roth [1966], in his groundbreaking synthesis,

summarized the state of knowledge of the bioenergetics of space suits for planetary

exploration: walking in a pressurized space suit might require more than twice [Roth,

1966] to four times [Streimer et al., 1964] the energy expenditure as unsuited walking.

In primary studies of locomotion energetics, researchers have evaluated the effects of

velocity [Haaland, 1968, Annis and Webb, 1971, Kubis et al., 1972, Johnston et al.,

1975, Wortz and Prescott, 1966, Sanborn and Wortz, 1967, Fox et al., 1975, Stauffer

et al., 1987, Newman et al., 1994], surface slope [Haaland, 1968, Johnston et al., 1975,

Margaria, 1976, Fox et al., 1975, Patton et al., 1995, Santee et al., 2001], reduced

gravity [Robertson and Wortz, 1968, Wortz and Prescott, 1966, Fox et al., 1975,

Newman et al., 1994, Farley and McMahon, 1992], increased mass carried [Wortz,

1968, Stauffer et al., 1987, Patton et al., 1995, Wickman and Luna, 1996, Santee

et al., 2001], and space suits [Streimer et al., 1964, Robertson and Wortz, 1968, Annis

and Webb, 1971, Lee et al., 2001]. Recent studies, geared toward space-suited work

in microgravity, have focused on the static and dynamic torques required to move

space suit joints [Dionne., 1991, Barer et al., 1994, Menendez et al., 1994, Morgan

et al., 1996, Newman et al., 2000, Schmidt et al., 2001, Gonzalez et al., 2002, Yang

and Yuan, 2002, Du et al., 2003].
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With renewed interest in planetary exploration [Bush, 2004], I sought to under-

stand how space suits modify the metabolic cost of locomotion by transforming data

from past studies into a common format amenable to multiple regression analysis. To

examine the effect of space suits and the relative importance of different factors, I an-

alyzed locomotion studies in which subjects were suited or unsuited, carried no load

or additional loads, walked or ran, and traveled on negative, level, or positive-sloped

surfaces.

During locomotion in gas pressure space suits one must counteract suit joint-

torques; at higher speeds one might expect this would require the occupant to do

more work on the space suit per unit time. However, some joint torques may be

beneficial: the knee joint torques of space suits may act as springs during running,

reducing the required work rate. I hypothesized that fast running may be less efficient

per unit time, but more efficient per unit distance, than walking or slow running in

gas-pressure space suits.

3.2 Background

An extremely abridged review of locomotion is presented here; for a compact review

of locomotion energetics see Margaria [1976] or the recent review by Saibene and

Minetti [2003]. Davis and Cavanagh [1993] reviewed human locomotion in reduced

gravity. Suited and unsuited locomotion in 1G and in reduced gravity is reviewed in

Chapter 2. While Roth [1966] is somewhat out of date, it provides a useful and rather

comprehensive review of pre-1966 studies in locomotion and space suit energetics.

Humans on land in earth gravity show three characteristic forms of locomotion

[Minetti, 1998]: In walking, at least one foot maintains ground contact at all times,

whereas in running there is no double support phase. Skipping is characterized by

a stance phase involving an exchange of the support foot, and an extended aerial

phase between two stance periods with the same supporting foot. Loping, a type of

two-footed hopping performed by suited subjects in reduced gravity environments, is

biomechanically similar to skipping without the support foot exchange.
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While walking, kinetic and potential energies are out of phase, and there is a high

percent recovery of potential energy; while running, kinetic and potential energies

are in phase and the recovery depends upon storage of elastic energy in muscles

and tendons, instead of the pendulum-like exchange of potential and kinetic energy

in walking. Percent energy recovery stays high in reduced gravity (0.5-0.75g) but

is decreased at 0.25g [Griffin et al., 1999]. Alexander [1989] has shown that humans

(unsuited, at lg) choose walking or running at their current speed to minimize oxygen

consumption.

Load-carrying studies have found a linear relationship between load carried and

metabolic cost [Santee et al., 2001]. Hill-climbing studies have found a similar re-

lationship between slope gradient and metabolic cost for positive slopes [Margaria,

1976, Santee et al., 2001]. Minimum metabolic cost is achieved for slightly negative

slopes (8-10 degrees) [Margaria, 1976, Santee et al., 2001].

Non-dimensionalization of locomotion parameters has permitted testing of theories

of invariant parameters of locomotion [McMahon, 1984, Minetti, 2001]. The Froude

number, the ratio of inertial to gravitational acceleration, is computed as:

Fr = - (3.1)
gL

where v is the velocity, g is the gravitational acceleration, and L is a characteristic

length, usually taken, in studies of locomotion, as the leg length or height of the hip

joint (approximately equal to the height of the center of mass in humans). The Froude

number can be used to estimate accurately the run-walk transition speed and optimal

speed of walking across a range of gravitational environments [Minetti, 2001].

The metabolic cost Qm [W] is often normalized to create a figure of merit and

to permit comparison across studies: The metabolic cost Qm [W] normalized by the

locomotion velocity v [m/s] gives the cost of transport, C [J/m],

C = -, (3.2)
v

the energy required to transport a mass a unit distance. Further normalizing
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by the total mass transported m [kg] gives a mass-specific cost of transport, Cm

[J/(m.kg)],

C
Cm = -, (3.3)m

the energy required to transport a unit mass a unit distance. Normalizing by the

gravitational acceleration gives the weight-specific cost of transport, a non-dimensional

parameter called the specific resistance [Gabrielli and Karman, 1950], S:

S=m Q - (3.4)
g mgv

3.3 Methods

I reviewed past energetics studies of suited and unsuited locomotion, using as a pri-

mary reference the journal Aviation, Space, and Environmental Medicine and its

precursor Aerospace Medicine. For each study I extracted data from tables or via

digitization of figures in order to obtain metabolic cost data and to compute cost of

transport, mass-specific cost of transport, and specific resistance. I performed multi-

ple regression analysis to determine what factors best explain the computed specific

resistance. I then performed a statistical test to evaluate my hypothesis.

3.3.1 Data Acquisition

When data were available in both tabular form and in figures, the tabular data were

used. Figure data was scanned and digitized using a custom digitizing application that

used a least-squares method, able to correct for any linear distortions of the source

image, to determine the logical coordinates of digitized points. To test the accuracy of

the digitizing process, 25 randomly generated coordinate pairs were plotted, printed

on letter paper, scanned at 300 dpi, and digitized. Using the generated and digitized

estimated coordinates, the average absolute percent position error was determined.
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3.3.2 Energetics Data

The data required to normalize metabolic cost data in a consistent fashion were not

always available in the published literature; I made the following assumptions in

order to transform data in a consistent manner: Leg length was estimated as subject

height/1.85, if subject height but not leg length data were available. If metabolic cost

data were given in watts, these values were used; metabolic cost data given in terms

of oxygen consumption were multiplied by the conversion factor, k [W]/[mlO 2/s],

k = 4.33. RQ + 16.6, (3.5)

where RQ is the respiration quotient, the ratio of moles of oxygen consumed to

carbon dioxide expelled. All unknown respiration quotients were taken to be 0.87. In

several cases, suit mass was not provided, but could be estimated or bounded from

other sources in the literature.

To create a common format dataset, each study was assigned a unique identifier,

as was each experimental condition for each study. Each experimental condition

represented a single row in the dataset, and every column represented a published or

computed datum from a given study and condition. Data were segmented in as fine-

grained a fashion as possible; that is, published data were never averaged to produce

a single row.

Experimental conditions (rows) were excluded from the dataset for several reasons:

First, because computing cost of transport requires normalization of metabolic cost

by the velocity, rows with zero velocity were excluded from the dataset. Low-speed

measurements of metabolic cost taken immediately after high-speed locomotion would

reflect the gradual recovery from high-speed conditions, and would exaggerate the

metabolic cost at low speed; these rows were removed. Rows with unknown slope

angle data were also excluded, as were rows representing redundant data reported in

a previously analyzed study.
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3.3.3 Regression Analysis

The Froude number Fr was selected as a regression factor on the basis of its success

in predicting the run-walk transition, which is related to the mass-specific cost of

transport [Alexander, 1989]. A binary variable suit was defined, indicating whether

a given trial was suited (suit = 1) or unsuited (suit = 0). Suit might seem an

appropriate choice for a regression factor. However, it was anticipated that some

conditions in the dataset would involve unpressurized suits or partially pressurized

suits; to account for these conditions, another variable called the pressure product

p was defined that was equal to zero for suit=0 and equal to the differential suit

pressure in pounds/in 2 for suit = 1. The pressure product was included in the

regression, as space suit joint torques, and thus the work done on the space suit

during a given movement, are proportional to the differential suit pressure. Reduced

gravity is known to affect the metabolic cost and cost of transport, and so I included

the Earth-relative gravitational acceleration, G = glocal/gearth as a factor. The strong

effect of surface slope on the metabolic cost was demonstrated by data from the

second lunar surface Apollo 14 extravehicular activity [Johnston et al., 1975, Carr,

2001]; the percent grade of the surface a (equal to the ratio of vertical altitude gain

to horizontal distance multiplied by 100) was also included as a factor. Additional

factors were also evaluated.

A mixed hierarchical regression was performed using each study as a cluster and

solving with a random intercept and no interaction terms. The acceptance criteria

for each factor in the regression model included a reduction in the remaining variance

relative to the regression model without the factor, and an estimate for the factor

coefficient that differed significantly from zero at the 0.95 level of significance. Where

possible, factors were used in non-dimensional form in order to permit future inter-

pretation across different conditions. The degrees-of-freedom corrected multiple R2

was computed, using as the degrees of freedom (DOF),

DOF = N- F- I- 1, (3.6)
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where N was the number of conditions, F is the number of fixed terms in the

regression, and I is the total number of clusters.

A sensitivity analysis was performed to quantify differences between the specific

resistance calculated directly from the source data, Si, and the specific resistance

estimated using the regression model, Si. For each condition j within a study i , I

computed:

dSij = Sij - Si (3.7)

and

dSj= Sij - Si (3.8)

where Si is the mean Sij and Si is the mean Sij within study i. To compare

the deviation of condition j from the ideal sensitivity line (S = S) I computed the

deviation from the ideal sensitivity line as

eij = dSij - dSij, (3.9)

and computed the distance of condition j from the mean study condition as

dij = dSj + dS.

I will denote the estimate of the overall deviation from the ideal sensitivity line

as the "fit parameter," and calculate it as

iPi = 1 - Nl :(3.10)
Ni

j=l

where pi2 is the fit parameter, and Ni is the number of conditions in study i. The

fit parameter is similar to the Pearson Coefficient (r) but is geometrically different in
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that it represents how well the conditions within a study are fit by the S = S line,

not how well the conditions are mutually correlated. To permit comparisons, I also

computed the Pearson Coefficient for each study (ri), and calculated the slope of the

linear least-squares fit to the (Sij, Sij) data as:

Ni

Z dSij dSj

Ps,i = j----1 (3.11)
Ni

j=l

A within study fit in close agreement with the global fit would have /s,i 1.

3.3.4 Hypothesis Evaluation

To compare the efficiency of fast running versus walking and slow running in space

suits, I segmented the suited subset of the data and performed a two-sample t-test.

Although the run-walk transition in unsuited humans occurs near Fr = 0.5 even

across different gravitational environments [Minetti, 2001], the effect of the space suit

on the run-walk transition is not well understood. Because the Froude number is

defined as a ratio of centripetal to gravitational acceleration, the condition Fr 1

must be met during walking. Thus, running is guaranteed for Fr > 1.

Because it is theoretically possible to walk with 0.5 < Fr < 1, I split the suited

dataset into two groups using a categorical variable suited-run: fast running for Fr >

1 (suited-run= 1), and walking and slow running for Fr < 1 (suited-run= 0; in this

analysis, I make no differentiation between loping and running, and refer to both

under the category of running). Metabolic cost normalized by mass and gravity

Mmg = Qm/mg was used as a metric of efficiency per unit time (to avoid biases due

to differing gravitational environments and masses), and specific resistance was used

as a metric of efficiency per unit distance. Two-sample t-tests were then performed

at the 0.95 level of significance to evaluate whether the means of Mm and S differed

between the two groups. A regression against the categorical variable suited-run was

performed to evaluate further the significance and trend of any observed difference in
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the means.

3.4 Results

Eighteen primary sources of locomotion energetics data were obtained from the lit-

erature: Table 3.1 lists these sources, segmented into suited studies (top 11 sources)

and unsuited studies (bottom 8 sources), in chronological order of publication.

The source experiments included a variety of independent variables including ve-

locity (11 studies), surface slope (5), type of space suit (5), gravity (4), type of

reduced gravity simulator (4), load mass (3), suit pressure (3), test chamber altitude

(1), and gender (1). These 18 sources represent 298 experimental conditions, of which

115 conditions involved space suits, and 183 conditions involved unsuited subjects and

subjects carrying loads (weights, military gear, and/or chemical protective garments).

The mean number of subjects per study was 4.6 for suited studies, and approxi-

mately 10 for unsuited studies (in some studies not all conditions contained the same

number of subjects, making the number of subjects per study approximate). The

mean number of subjects per condition was 3.9 for suited studies and 9.6 for unsuited

studies.

3.4.1 Validation of Digitizing Process

Average absolute percent position error for the set of 25 test coordinates was 0.2%

and 0.1% for the abscissa and ordinate, respectively. The trend of position errors for

each point in the set indicated a negative correlation with the order of digitization.

3.4.2 Energetics Data

Approximations used and exclusions made during data normalization are detailed in

Table 3.2. After exclusion of 52 conditions, the dataset contained 100 suited and 146

unsuited conditions, or 246 total conditions. Of the 77 lunar gravity conditions, 62

were suited and 15 unsuited; there were 130 earth gravity conditions, 38 suited, and 92
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Table 3.1: Primary Sources

Reference Description Suit or Loadt Independent N,.

Variables:

[Strelller et 4:., 1964]

[Harrilgton et al., 1965]

[Wortz et al., 196 7]

[Haaland, 1968]

[Robertson et al., 1968]

[Amnis & Webb, 19 1]

[Kubis et al., 1972]

[ohntlsron et al., 19 5]

[Bishop et al., 1999]

[Lee et al., 2001]

[Wortz et al., 1966]

[Sanborn, 196']

[Fox et al., 1975]

[Webbon et al., 1981]

[Stauffer et al., 198]

[Newman et al., 1994]

[Patton et al., 1995]

[Santee et al., 2001]

Treadnill locomotion

Treadmnill locomotion

Treadmill locomotion

Treadmill locomotion during snulated lunar

mission

Partial gravity locomotion (4 clof ilclined

plane, 6 dof simtulator)

Treadmill locomotion

Apollo 16 Time and motion study

Apollo 14, 2nd Lunar EVA

Emergency Shuttle egress simnulation

Emergency Shuttle egress simulation

Partial gravity locomotion (4 dof & 5+ dof

gimbaled system)

Partial gravitv locomotioil (4 dof inclined

plane, 4 dof & 6 dof gimbaled system)

Partial gravit- locomotion (2 dof slow

rotation room & 4 dof inclined plane)

Trealnill liquid cooling garment tests

Load carrying at different velocities

Partial gravity locomotion (water tank)

Load carlTing during grade walking

Load carrying during grade walking

Three tuk. stits

Unk. ILC Dover Suit

Geminll G2C

A5L, A6L, or A7L

A5L and RX-2 Suits

Space Activity Suit

A-LB Suit

A-L Suit

LES Stit

LES & ACES Suits

Unsutited

Unsuited

Unsuited

CPG

Unslstuted

Unsuited

Unsuited; CPG

Unsuited

, p

v', a

v, altitude

VI a

4

4

8

2

s, g, dofp 6

V, S

v,a

p

s

V, g, dof

v, dof

v, g, dof

s

v, In, gender

v, g

a, ml

a, nl

9-

10

24

3-6

14

16

* Type of simulator for reduced gravity, if used, is itldicated in parentheses (dof=degrees of freedom).

t Acronvlis are standard space suit designators except CPG denotes Chemical Protective Gear.

.t Independent variables in the original study: v-velocity, a=slope angle, s=suit, g=gravitv, dof=sinnlator degrees of
freedom, in=iiass, p=suit pressure, others as noted.

Total number of subjects in each study; a range is given for studies i which different numbers of subjects participated
in different experimental conditions.

¶ Data from each hluar surface astronaut w-ere treated as a separate study because the Commander and Lunar Module
Pilot experienced different conditions (paths, loads, and tiing).
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unsuited. The remaining 39 conditions represent unsuited locomotion at intermediate

gravities (except four conditions in simulated 1/8g).

Figure 3-1 (upper left) shows that metabolic rates above 1000 W were seldom

achieved; most metabolic rates above 500 W were achieved only in g conditions. Of

the four variables examined (Qm, C, C, and S), mass-specific cost of transport Cm

appeared to vary the least, for a given Froude number, across all conditions in the

dataset; specific resistance data appeared to be segmented by gravity.

3.4.3 Regression Results

An initial regression of the type:

Si = 3o,i + F, Fr + G G + /p p + . (3.12)

yielded estimates

{/3o, Fr t 3G, p, } = {1.95, -0.518,-1.47,0.193,0.036} (3.13)

with

N

So /3o= EN = 19. (3.14)
i=l

All coefficients were significantly different from zero (p < 0.0005). The residual

variance was 0.334 with standardized error 0.031. Insignificant factors, when added

to the aforementioned regression) included the number of subjects (p = 0.171), the

reduced gravity simulator degrees of freedom (p = 0.267), the suit mass (p = 0.514),

the total mass transported (p = 0.719), the variable suit (p = 0.743), the load mass

(p = 0.904), and the leg length (0.945). The only additional factor found to be

significant was the velocity, (p = 0.009); addition of this term lowered the residual

variance to 0.324 with standardized error 0.030, and increased the Fr p-value to

0.03. Replacing Fr with v alone (p < 0.0005 for all factors) yielded residual variance

0.328 with standardized error 0.031. Further results pertain to the initial regression
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Table 3.2: Dataset Development

Approxiations* Number of Conditions and Reason for Exclusion

Original Excluded Remaiilg Reason

[Streimer et al., 1964]

[Harrington et al., 1965]

FWortz et al., 196])

[Haaland, 1968]

[Robertson et al., 1968]

[Anilis & W7ebb, 19-1]

[Kubis et al., 1972]

UJoluston et al., 1975]

[Bishop et al., 1999]

[Lee et al., 2001]

M[ortz et al., 1966]

[Sanborn, 1967]

[Fox et al., 19-53

[W'ebbon et al., 1981]

[Stauffer et al., 1987]

[Newman et al., 1994]

[Patton et al., 1995]

[Santee et al., 2001]

1

3

4

6

8

9

10

11

12

Lb, body and suit mass

ll

Lh, suit mass

Lh

Lh

L1

L

L

L

Lh, RQ

Lhi

Lhi

13 Lli

14 Lh, RQ, subject and

helmet mass

15 L, slut mass

16 Lh, RQ

17 Lh, RQ

18 Lh, RQ

19 Lh, RQ

0

6 2 4 Zero velocity

4 0 4

6 0 6

42 10 32 Zero velocin-

8 0 8

10 2 8

15 0 15

15 0 15

4 0 4

2 1 1

28 14 14

8 0 8

2- 0 0

2 0 2

55 18 37

20 5 15

9 0 9

30 0 30

Unknlown slope

Redtuidant datat

Zero velocity

Redudant data:

Zero velocity

Approximations made in order to compute normlized quantities: L1ii ldicates leg length estinated as height 1.85; L
indicates assumed leg lelgti; RQ indicates respiratory quotient.

-' One of two conditions i tlis study was previously reported in [Bishop et al., 1999].

.t Second measurements at low-velocity conditions were mnade immediately after high-velocity measurements and were
dramnaticalv different than low-velocity measurements made earlier itl the trial.
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(without v as a factor).

The distribution of the random intercept /0,i is plotted in Figure 3-2 (upper left),

and a one-sample t-test of the residuals was performed to identify outliers (Figure

3-2, upper right). Many of the large residuals were associated with small Froude

numbers (Figure 3-2, lower left); when residuals were plotted versus study identifier

(Figure 3-2, lower right) it was noted that most of the largest residuals (including

all five positive outliers) were attributable to data from Apollo 14 [Johnston et al.,

1975]. Examination of these residuals revealed that several of the Apollo 14 conditions

included un-modeled masses or activity, as described in Table 3.3. After removal

of these conditions, as indicated in Table 3.3, the linear regression procedure was

repeated, giving:

{30F, OF, / 3p, fp,} = {1.64, -0.339, -1.16, 0.160, 0.024}. (3.15)

Once again, all coefficients were significant (p < 0.0005). The residual variance

decreased 82% to 0.059 with a standardized error of 0.006. The distribution of the

random intercept 0o,i is plotted in Figure 3-3 (upper left), and appears less like

a normal distribution than in the initial regression. The specific resistance values

calculated from the source data is plotted, in Figure 3-3 (upper right), against S

estimated from the regression model. A reference line of unity slope is shown for

comparison; the DOF-corrected multiple R2 was 0.83. Figure 3-3 (bottom) shows

the residuals as a function of Froude number (left) and study identifier (right). The

variance of suit = 1 residuals was approximately 3.8 times the variance of suit = 0

residuals (p < 0.0005).

A similar regression model with v instead of Fr produced residual variance 0.064;

v was found to be significant (p < 0.015) when added to the original model, but the

residual variance was unchanged.

An analysis of the within-study sensitivity (Figure 3-4) indicates a high level of

variability in the level of fit of the regression equation for the data within each study;

the poorest fit occurred for data from study 16 [Stauffer et al., 1987], which had
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Table 3.3: Residual Analysis of Initial Regression

Reference Study Residual' Explanation or Notest Excluded?

ID

[Johnston et a1., 1975] 8 4.73 Traverse from ALSEP site icluded geology activities. Yes

8 3.43 Traverse to ALSEP site: First time lmauling heavily Yes

loaded (umnnodeled) .MET.

9 3.23 Traverse from ALSEP site included geolog activities. Yes

9 1.90 Traverse to AISEP site: ALSEP modules attacded to Yes

carry--bar vibrated, disrupting movement.

9 1.58 Control problems with NET, inlcluding overturllig; Yes

uphill grade.

8 1.12 Control problems with MET, including overturnmlg; Yes

uphill grade.

8 0.78 CDR haulling MET up steepest part of traverse Yes

(a=1 1.3).

S 0.39 CDR lifts back of TMET to assist LIIP in pullinlg of Yes

MET up slope and over obstacles.

[Harrington et al., 1965] 2 1.11 Lowest velocity (v=0.4 nm/s) conditiotl ill Ig space suit No

trial.

[Newmnan et al., 1994] 17 0.96 Highest velocity (v=2.3 m/s) conditionl hi uldenrwater No

1/6g ulsuited trial.

Included are thle greatest magnitude positive residuals, indicated by o or in Figure II (upper left), and other

conditions from [Johnston et al., 1975] that ilcluded tun-modeled masses or activity.

t ALSEP = Apollo Lular Surface Experiments Package; CDR=Commander; LNMP=Lunar Module Pilot; MET =

Mobile Equipment Transporter, a (completely ul-moddeled) hand-pulled cart used to transport tools and rock samples.

For in-depth details of the Apollo 14 minssion, see [Tones, 2000].
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sensitivity 3S,16 = -1.04: this study focused on lg load-carrying near and across the

run-walk transition. Two studies of space suit locomotion in Ig (study IDs 6 and

10) had the highest sensitivities (3s,6 = 1.62 ,s,0o = 1.95), and one of these (study

6) represented the only study of energetics in a mechanical counter-pressure space

suit [Annis and Webb, 1971]; in these cases only, an increase in the specific resistance

computed using the regression equation would tend to overestimate the actual increase

in the specific resistance. Several studies (study IDs 2, 3, 4, 7, 15) had near-zero

sensitivities; all of these studies except 15 included velocity as an independent variable

during space suit locomotion, and all were in Ig except study 7. The two conditions

of study 15 represented walking unsuited and walking with a slight-positive-pressure

chemical protective garment in Ig. Two studies of unsuited partial-gravity locomotion

had sensitivities near unity (S,13 = 101, S,14 = 0.97). The remainder of the studies

(1, 5, 8, 9, 12, 17, 18, 19) had sensitivities ranging between 0.38 and 0.79.

3.4.4 Hypothesis Testing

With removal of the eight conditions in Table 3.3, the suited datasets for Mmg and S

(plotted in Figure 3-5, top) included 92 records, 14 with Fr > 1 and 78 with Fr < 1.

For Mmg, the two groups were not found to have difference variances (p = 0.977)

and the means of the two groups were not significantly different in a pooled-variance

t-test (p = 0.134, Figure 3-5, lower left). However, a regression on Mmg, performed

with suited-run and a random intercept as the only factors, found both factors to be

significant (p < 0.0005), with /3 = 0.941, suited-run = 0.724, and a residual variance

and error of 0.112 and 0.021, respectively.

For S, the two groups were found to have difference variances (p = 0.004), and

the means of the two groups were significantly different in a separate-variance t-test

(p < 0.0005, Figure 3-5, lower right). A regression found both factors to be significant

(p < 0.0005), with /3 = 1.53, /3suited-run = -0.752, and a residual variance and error

of 0.233 and 0.043, respectively.
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3.5 Discussion

I have intentionally based this analysis on an extremely diverse but comprehen-

sive group of sources, and the results should be interpreted in that context. The

sources selected were limited to those studies for which the data required for non-

dimensionalization were available; many of the unsuited studies were selected out of

convenience, and many other unsuited studies are available in the published litera-

ture. The study by Wickman and Luna [1996] on load carrying in reduced gravity

is noticeably absent from the list of sources; this study was excluded partly because

data on subject height and mass were not available. Wickman and Luna [1996] re-

ported that heart rate, a relatively accurate predictor of metabolic rate over long but

not short time frames, was occasionally used in place of suspect oxygen consumption

data; I did not identify which energetics data was derived from which source, and

consequently chose to exclude this source. Additional studies from the pre-Apollo

era, often published in the form of NASA contractor reports or company-internal

technical documents, remain to be analyzed. Additional metabolic data from Apollo

is available, but has limited accuracy, and cannot readily be transformed because

many of the relevant independent variables would need to be derived from multiple

sources; doing so might compound errors inherent in the source data by introducing

additional errors during the process of data normalization.

3.5.1 Sources of Error

Contributions to error in the analysis may originate from several sources: errors in

digitizing of source data, errors in the source data itself, and assumptions made during

data normalization. Digitizing errors were low, and the trend of errors associated

with the order of points digitized was attributed to learning; digitizing can safely be

excluded as a significant source of error and will not be discussed further.

One of the largest errors in the source data is likely to arise from the variety

of approaches used to simulate reduced gravity. Fluctuations in the constant force

required to simulate reduced gravity in a cable suspension system have been limited to
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under 18% (% error at 3/8g) in a passive steel-spring-based system [Wu, 1999], under

16% (% error at 3/8g, 0.06g in general) in a passive rubber-tube based system [Griffin

et al., 1999], 5% in one 10 m latex-hose-spring-based system [Davis and Cavanagh,

1993], or 2.2% to 10% in a system based on closed-loop control using a pneumatic

actuator [Ray, 1993]. While the vertical force error can be substantial, the mean

vertical force is unlikely to differ from the desired constant force by more than a few

percent.

Another source of error is the uniform treatment of metabolic cost data originally

estimated using a variety of methods. For example, estimates of metabolic cost

from Apollo were based upon a thermoregulation model that included as inputs the

oxygen tank pressure drop, an estimate of suit atmospheric leakage, heat removed

by the liquid cooling garment, and the heart rate [Waligora, 1976]. Apollo metabolic

cost estimates are likely to be accurate to within 5% to 10% [Waligora, 1976]. Most

of the source studies relied upon measurements of inspired and expired oxygen (or of

oxygen and carbon dioxide) to compute metabolic cost, but differing methods within

this group of studies may introduce errors. For example, the technique of measuring

oxygen consumption used by Harrington et al. [1965] "was thought to give values 8%

lower than those obtained by standard [1966] spirometry techniques." [Roth, 1966] One

study [Haaland, 1968] utilized heart rates in conjunction with a oxygen consumption

vs. heart rate calibration procedure, in order to estimate metabolic rates during an

18-day simulation of a lunar mission.

A third source of error is the set of assumptions made in data normalization: the

two most widely used approximations in this analysis were estimation of leg length

as height/1.85, and assumption of the respiration quotient, RQ.

To evaluate the validity of the leg length assumption, I compared values derived

using this estimation procedure to values derived using anthropometric data from

NASA's Man-Systems Integration Standard [NASA, 1995] for men and women, from

5th, 50th, and 95th height percentiles. Because leg height data was not available, leg

height was estimated as the mean of crotch height and weight height. This leg height

estimate was compared to the estimate obtained by dividing the 5th, 50th, and 95th
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percentile heights by 1.85. The average percent error of the height/1.85 procedure was

1.62%; the optimal divisor given this limited set of anthropometric data would have

been approximately 1.875, for which the average percent error was 1.60%. Mohanty

et al. [2001] developed a regression equation (r = 0.84) relating leg length to height

in 505 South Indian Women; the height/1.85 procedure estimate differed on average

by only 2.9% from the Mohanty et al. [2001] regression line, illustrating the relative

accuracy of a simple approach to leg length estimation even in a population quite

different from the population of locomotion energetics subjects.

It is widely known that an RQ of 0.7 corresponds to fat metabolism, while an

RQ of 1.0 corresponds to carbohydrate metabolism. The actual RQ is dependent

upon diet, which determines what energy sources are available, and exertion level,

which is a major determinant of what food sources are actively being used. Moderate

exercise may typically correspond to an RQ of about 0.85, while RQ near 1.0 may

be achieved during intense exercise near conditions of maximum oxygen uptake. The

value I assigned to unknown respiration quotients, 0.87, is the value used by NASA

to estimate metabolic rate from oxygen consumption during on-orbit extravehicular

activities [Snow, 2000](p. 7.1-11). Under a situation of intense exercise (RQ 1.0),

assigning RQ = 0.87 would under-predict energy utilization by 2.7%, while under

"average conditions" (RQ = 0.81, an unlikely lower bound of activity for conditions

in locomotion energetics studies), assigning RQ = 0.87 would over-predict energy

utilization by 1.3%.

It appears that these assumptions used in data normalization probably contributed

no more to overall error than may have been contributed by the variations in equip-

ment and methods used by the authors of the primary sources. With that assurance,

one can now interpret the results.

3.5.2 Energetics Data

Figure 3-1 illustrates the general trend of decreasing C, Cm , and S as a function

of increasing Froude number. While running in g has a higher mass-specific cost of

transport than walking, Farley and McMahon [1992] found that below 0.5g run-
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ning has a lower cost of transport than walking.1 In Ig locomotion, Cm decreases

to a minimum near Fr - 0.25 [Minetti, 2001], then rises again as the walking speed

increases to near Fr ~ 0.5; above the run-walk transition, Cm is approximately con-

stant, independent of Fr, at least for moderate velocities. Margaria [1976] illustrates

this relationship in a plot of Cm vs. velocity (p. 98) with an approximately quadratic

curve for velocities below the run-walk transition and a horizontal line for velocities

above the run-walk transition. I have plotted S vs. vFr in Figure 3-6 to demon-

strate that the dataset of unsuited locomotion shows a similar pattern in lg, but not

in reduced gravity: in < 3/8g it appears that S declines in a monotonic fashion with

increasing Froude number. The minima in specific resistance for g1 to 0.5g is consis-

tent with the high-percent recovery observed by Griffin et al. [1999] at lg, 0.75g, and

0.5g; the disappearance of this minimum is consistent with the reduction in percent

recovery observed by Griffin et al. [1999] at 0.25g.

Because the work done on the spacesuit by the occupant is likely to increase with

velocity due to increases in joint movement, suited S values not too distant from the

unsuited S values at higher Froude numbers imply that an energy saving mechanism

may help reduce the cost of transport at these velocities.

Videos of Apollo astronauts attempting to recover tools from the lunar surface

show them jumping and landing on one leg, in order to compress their space suit

knee joint and permit them to reach the surface with their gloves [Jones, 2004]. The

relative difficulty in performing this act visually illustrates the substantial spring-back

forces resulting from pressure-volume work done during knee flexion. Schmidt et al.

[2001] have quantified the knee torques as a function of joint angle for the training

version of the current NASA space suit, the class III Extravehicular Mobility Unity

(EMU); these angle-dependent torques may function like a spring in parallel with

each leg, reducing the cost of transport by reducing the loads borne by the body and

transforming energy from kinetic to potential and back to kinetic energy during the

rebound phase of running.

1Farley and McMahon [1992] reported cost of transport based on net metabolic cost, excluding
basal metabolism.
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3.5.3 Regression Analysis

The random intercept term of the initial regression appears to be approximately

normally distributed (Figure 3-3, upper left), thereby supporting the implicit as-

sumption that studies constitute random samples. The residuals also appear to be

approximately normally distributed. As might be expected from the lower number of

suited subjects per condition and the variations in space suit hardware, variance of

the residuals for suit = 1 conditions was much higher than for suit = 0 conditions.

For these two groups, the ratios of the standard deviation to the root of the mean

number of subjects per condition differed by only 24%; this suggests that the differ-

ence in the variance of the residuals between the two groups was largely due to the

reduced number of subjects in the suit = 1 conditions.

The high residual variance of the initial regression analysis is explained by the out-

lier residuals attributable almost entirely to un-modeled geologic activity and load-

carriage during the Apollo 14 lunar extravehicular activities. Field geology activities

were some of the most energy intensive activities performed on the lunar surface

[Johnston et al., 1975], and field geology activities occurring during a time period

book-kept as a traverse would tend to reduce the mean velocity (or Froude number)

and increase the metabolic cost substantially. This is entirely consistent with the con-

ditions that produced two of the three largest residuals (Table 3.3). Transportation

of the Apollo Lunar Surface Experiments Package (ALSEP) or the Mobile Equip-

ment Transporter (MET) created a weight distribution rather different than during

other space-suited locomotion; in addition, much of the excess weight may have been

borne by the astronaut and not supported in part by the space suit; inexperience with

these loads or the space suit (ALSEP deployment occurred during the 1st EVA of

the Apollo 14 mission) may also have contributed to the high residuals. Fatigue and

control difficulties may also have played a role. For example, the lunar module pilot

carried two ALSEP modules to the ALSEP deployment site (Table 3.3, 4th line) on

a carry bar that he eventually cradled over his elbow joints during elbow flexion; he

reported that the carry bar "was bouncing and flexing. It was throwing me totally
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off stride. It had a natural frequency of vibration that was not a natural frequency of

my movements. It was just kind of flopping around and throwing me totally off bal-

ance." [Jones, 2004] Control problems with the MET occurred frequently, with many

near-tip-overs.

What is perhaps as interesting as the high residuals identified in the Apollo 14

data are the types of factors that were not found to be significant in the regres-

sion: Non-dimensionalization of the metabolic cost is likely to be responsible for the

insignificance of factors such as the total mass, suit mass, and load mass. While

velocity was found to be significant, it seemed more prudent to perform the second

regression after elimination of the outliers than to change the baseline regression fac-

tors; in addition, I wanted the regression to include as few dimensional factors as

possible.

The large drop in the residual variance in the second regression confirmed that

the residual outliers were responsible for the large residual variance in the initial

regression. The distribution of the random intercept appears less like a normal dis-

tribution than before. The plot of derived specific resistance (S) vs. modeled specific

resistance (S) (Figure 3-3, upper right) shows that across all studies, the regression

model provides a good fit to the observed specific resistance data, with no large ob-

vious discrepancies between suited and unsuited data. While velocity was found to

be a significant factor in the second regression, the stated criteria for acceptance of

additional factors included not only significance, but also a reduction in the residual

variance; as the residual variance remained unchanged when v was added as a factor,

the final regression equation includes as factors only Fr, G, p, and a.

In an analysis across such different studies, one would expect the within-study

sensitivity to vary much more than the across study sensitivity; indeed this is what

Figure 3-4 shows. The poorest within-study fit is for the only study (16) which

unambiguously traces out the Ig run-walk transition, as discussed in the section

entitled Cost of Transport and illustrated in Figure 3-6. The increase in S as the

Froude number increases (whereas S decreases because 3 Fr = -0.34) is responsible

for the negative slope ( 3 S,16 = -1.04) and very low fit parameter (P26 = -0.84).
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At a different extreme, the high sensitivity observed for study 6 [Annis and Webb,

1971] may result from the low-space suit torques of a mechanical counter pressure suit

relative to a typical gas pressure space suit with the same effective internal pressure.

Wickman and Luna [1996] performed multiple regression modeling of energetics

data and achieved an R2 of 0.82; the current model achieves a similar level of fit across

a much more diverse set of data, permits scale independent comparisons through the

use of non-dimensional parameters, incorporates the impact of space suit pressure and

surface slope, and does not require the use of two separate regression equations for

walking and running (at least, not in gravitational environments of < 3/8g). Wickman

and Luna [1996] reported non-zero coefficients for leg length and body mass in her

regression equation for mass-specific metabolic cost (Mm = Qm/m); in the regression

equation for specific resistance (S = Mm/gv) I found neither of these factors to be

significant. However, the spread observed in the sensitivity analysis for some studies

(for example, see Figure 3-4, study identifier 19, a study of unsuited locomotion with

independent variables of grade and load [Santee et al., 2001]), suggests that load does

affect the specific resistance.

The regression equation, while providing a good fit between studies, does not

always provide a good fit within studies. Many improvements to the regression equa-

tion are possible, including the evaluation of interaction terms and transformation of

factors into more appropriate forms. For example, addition of the interaction term

Fr x p results in all p < 0.0005 with residual variance 0.052 and 3Frxp = -0.108,

suggesting that at higher Froude numbers space suit pressurization may help to re-

duce the specific resistance; this may be indicative of the hypothesized space-suit

leg-spring mechanism. One possibility to developing an improved regression equation

would be to normalize and adapt the load-carrying model developed by Santee et al.

[2001].

3.5.4 Hypothesis Evaluation

Metabolic rate normalized by weight (Mmg) seems an appropriate metric for efficiency

per unit time of locomotion, if one seeks to compare locomotion across different gravity
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levels. While the t-test suggested that the means of the Fr > 1 and Fr < 1 suited

locomotion groups were not different, the regression is likely to be a more reliable

indicator of the difference between these two groups: Therefore, fast running is more

expensive per unit time than walking or slow running. However, the lack of data for

Fr > 1 in g limits the generality of this comparison.

The suited specific resistance (S = Mmg/v) data showed a clear trend downward

within a given gravitational environment; the hypothesis test and regression both

support the conclusion that fast running in space suits is more efficient per unit

distance than walking or slow running. A similar comparison cannot be performed

between these two groups within g because no Ig data with Fr > 1 exists; however,

comparisons between these groups within 1/6g would support the same conclusion

but at a higher level of significance.

3.5.5 Summary and Conclusions

In this study, I investigated how space suits modify the metabolic cost of locomotion

by transforming data from a wide variety of unsuited and suited energetics studies

into a common format and performing multiple regression analysis. My conclusions

fall into three categories: those concerned with the transformed metabolic cost data,

the regression analysis, and the evidence that supports the hypothesis that space suits

may act as springs during running.

A major finding of this study is the confirmation that fast running (Fr > 1)

is less efficient per unit time but more efficient per unit distance than walking or

slow running (Fr < 1) in space suits. This has broad implications for extravehicular

activity including for the development of any distance-to-safe-haven rules and the

planning of traverses. Another important finding was that the increase in specific

resistance with Froude number, observed in Ig below the run-walk transition, is not

observed in moderately reduced gravity ( 3/8g). In addition, the suited specific

resistance approaches the unsuited specific resistance in many cases, and especially

at higher Froude numbers.

An important result of the regression analysis is that variations in the specific
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resistance across the analyzed studies can be explained largely by a simple linear

regression model with only four parameters: Froude number, surface grade, earth-

relative gravity level, and a derived factor called the pressure product, which is the

only parameter of these four that captures any impact of the space suit on locomotion.

The within-study analysis highlights the areas in which the regression model is weak:

capturing the increase in specific resistance below the run-walk transition in gravities

near g, capturing the changes in S observed with different loads, and capturing only

with poor sensitivity the within-study changes in specific resistance for several of the

space suit studies.

A finding hinted at, but not demonstrated, by the data, is that the legs of the space

suit may act as springs during running, reducing the specific resistance that would

otherwise be required for locomotion. Several observations support this hypothesis:

First, subjects moving in a space suit do work on the space suit while counteracting

suit joint-torques, and at higher velocities, subjects increase their joint movement in

proportion to the velocity. If the work done on the space suit increases as the Froude

number increases, but the specific resistance decreases, some other energy saving

mechanism must exist. Second, suited specific resistance can approach the unsuited

specific resistance, particularly as the Froude number increases; this suggests than an

energy saving mechanism exists that can make up for the energy cost of doing work

on the space suit, which is not present in unsuited locomotion. Third, the negative

coefficient of the interaction term Fr x p suggests that at higher Froude numbers

space suit pressurization may help to reduce the specific resistance. Fourth, clear

evidence exists of the large spring-back forces that can be exerted by space suit legs,

both from videos of astronauts on the lunar surface, and from direct measurements of

knee torques. The extent to which the legs of gas pressure suits act as springs during

running has yet to be determined, but a better understanding of this phenomenon

would have important implications for the cost of transport in both gas pressure and

mechanical counter-pressure space suits.
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Chapter 4

Exoskeleton Characterization: A

lower-body exoskeleton for

simulation of space-suited

locomotion

Abstract

In a previous historical analysis of suited and unsuited locomotion energetics (Chapter

3), I found evidence that space suits act as springs during running. Video images of

Apollo astronauts on the lunar surface suggest that knee torques create, in large part,

this spring effect. I hypothesized that a lower-body exoskeleton, properly constructed,

could be used to simulate the knee torques of a range of space suits. Here I report

characterization of a lower body exoskeleton. Equivalent spring stiffness of each

exoskeleton leg varies as a function of exoskeleton knee angle and load, and the

exoskeleton joint torque relationship closely matches the current NASA spacesuit, or

Extravehicular Mobility Unit, knee torques in form and in magnitude. I have built a

physical nonlinear spring, and demonstrated that this spring achieves space suit-like

joint torques; therefore space suit legs act as springs, with this effect most pronounced
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when locomotion requires large changes in knee flexion such as during running.

4.1 Introduction

Space suit development for future human planetary exploration requires an improved

understanding of how space suits affect the kinematics, dynamics, and energetics of

locomotion. In a previous analysis of historical data from suited and unsuited loco-

motion energetics studies (Chapter 3), I found evidence that space-suited running is

more efficient per unit distance than space suited walking; this and other evidence

suggests that space suits may act as springs during running, improving cost of trans-

port relative to walking. Video images of astronauts locomoting on the lunar surface

suggest that knee torques create, in large part, this spring effect(for example, see

Apollo 16, 146:49:41 in Jones [2005]).

I hypothesized that if space suit knee joints act like springs in parallel with the legs,

then springs in parallel with the legs could be used to simulate space suit knee joints.

Here I report the characterization of a lower body exoskeleton with two spring-like

legs.

4.2 Methods

I built a lower body exoskeleton consisting of a webbing-based harness (designed for

acrobatics), three-degree-of-freedom hip joints, two spring-like exoskeleton legs, and

two modified cycling shoes. I added a load-transfer cage to transfer exoskeleton hip

torques from one side to the other, largely in order to ensure subject comfort. I then

calibrated two representative exoskeleton legs in order to measure their stiffness and

deformation as a function of leg geometry and applied load. From this calibration

data I derived knee flexion and joint-torque estimates, and compared these estimates

to knee joint-torque data from a space suit, the Extravehicular Mobility Unit (EMU)

[Schmidt, 2001].
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4.2.1 Exoskeleton Construction

Figure 4-1 (A) shows a subject wearing the exoskeleton. A custom hip joint attached to

the harness (Swivel Harness, Climbing Sutra, Las Vegas, NV) provides two rotational

degrees of freedom: a bearing provides free rotation of the exoskeleton hip joint

in (approximately) the sagittal plane; rotation can also occur around a pin joint

attached to the bearing. The hip adapter at the top of each exoskeleton leg provides

a third rotational degree of freedom. Together, these three degrees of freedom provide

relatively complete hip mobility.

The cycling shoes (SH-M 038, Shimano, Osaka, Japan) contain a high-stiffness

sole; to create a load path fully independent from the human leg, a spring steel plate

with a pin joint adapter was attached to the bottom of each shoe taking advantage

of the pedal-clip mounting hardware. Because this plate was attached after cutting

away any interfering soft portion of the outer shoe sole, subjects can walk in the

modified shoes without contacting the metal plate on the ground.

An exoskeleton leg, shown in two views in Figure 4-1(B), includes pin joint

adapters at the hip and ankle joint, a friction-lock knee joint, and fiberglass bars

that connect each knee joint to the pin joint adapters. For a given subject, the

knee joint is set to a specific exoskeleton knee angle , chosen to ensure geometric

compatibility with subject leg length and harness positioning, and locked in place.

Compression of the exoskeleton leg deforms the fiberglass bars; the bending moments

of the fiberglass bars (springs) result in spring-back forces.

The springs were machined from unidirectional fiberglass bar stock (GC-67-UB,

Gordon Composites, Montrose, CO, USA) in thicknesses of 6.35 mm (0.250 in), 3.18

mm (0.125 in), and 1.57 mm (0.062 in). The thickest springs were intended to be

the primary working springs of the exoskeleton, whereas the thinner springs were

selected to provide control conditions: the thinnest spring was intended to be used

to simulate the exoskeleton restrictions of motion but not to provide any appreciable

spring forces. The intermediate thickness spring, I considered, might provide spring

forces adequate to self-support the exoskeleton harness and load transfer cage.
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Figure 4-1: A. Subject crouching while wearing lower-body exoskeleton. The dis-
tance from the exoskeleton hip pin to the greater trochanter, the vertical offset Az,
represents the offset between the center of rotation of the exoskeleton hip and the
center of rotation of the human leg. The distance from the exoskeleton foot pin to
the axis of the lower leg, the forward offset Ax, represents the moment arm of the net
ground reaction force at the center of pressure relative to the lower leg axis. These
anthropometric measurements, along with others, are used to determine exoskeleton
sizing and to perform joint-torque estimation. B. An exoskeleton leg is character-
ized as TxxxByyy where the xxx and yyy represent the three-digit spring codes,
assigned during manufacturing, for the two fiberglass bars in a particular leg (the
longer spring code LaaaTbbbMc specifies spring length aaa in tenths of inches, spring
thickness bbb in thousandths of inches, and the order of manufacturing c). Given
springs of a particular length, exoskeleton knee joint flexion angle ¢ can be adjusted
to accommodate subjects with varying leg length; I set to achieve a zero-torque
exoskeleton leg height compatible with normal standing posture for each subject, and
then locked the exoskeleton leg knee joint in place.
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Springs lengths of 49.5 cm (19.5 in.) and 43.2 cm (17.0 in.) were chosen to

accommodate tall and short subjects, respectively. Because exoskeleton knee angle

was expected to dramatically affect exoskeleton leg stiffness, these spring lengths were

chosen to maintain exoskeleton knee angles within the range of 20-50°.

4.2.2 Exoskeleton Leg Calibration

The apparatus used to calibrate exoskeleton legs (Figure 4-2(A)) allows the stiffness

of each exoskeleton leg to be systematically determined by varying the exoskeleton

knee angle and the applied load. Exoskeleton leg stiffness can be computed from the

change in height due to a change in the applied load. While I use height and load

data to estimate the equivalent knee joint torques, I use a frequency-based method

to estimate the stiffness.

By modeling the exoskeleton leg as a second-order system (Figure 4-2(B)) one can

estimate stiffness by measuring the frequency of vertical oscillations resulting from an

arbitrary vertical displacement d. The differential equation of the undriven system is

given by

m + b + ky = 0, (4.1)

where each dot represents a time derivative, and y(t) is the vertical oscillation

of the hip pin as a function of time, t. Using the initial conditions y(O) = d and

y(O) = 0, Y(s), the Laplace transform of y(t), is given by

) mds + bd ds + bd/m (4.2)
ms 2 + bs + k S2 + (b/m)s + (k/m)(

Because the exoskeleton leg system oscillates, the characteristic equation s2 +

(b/m)s + (k/m) has complex conjugate roots such that (b/m)2 < 4(k/m). Therefore

the roots are given by

A = jw, (4.3)
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Figure 4-2: A. Experimental apparatus used to determine stiffness of exoskeleton
legs. The height adjustment block and the frame attachment bars are both rigidly
attached to a large immobile frame. The long horizontal rods constrain hip pin
motion to approximately the vertical axis for small amplitude oscillations. For each
load tested, height of the exoskeleton leg is read from the level indicator, and small
oscillations around the equilibrium point are induced by adding a small amount of
energy to the system by displacing the additional load downward. Oscillations are
measured using the accelerometer. B. Model of exoskeleton leg used to estimate
stiffness k and damping parameter b as a function of the total mass m, which is the
sum of the spring self mass and the mass of the relevant experimental apparatus
elements, including the additional load.
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with

b
U-- (4.4)2m

and

2 =_ _ - 2 (4.5)

I computed the Fast Fourier Transform (FFT) of the vertical accelerations mea-

sured by the accelerometer, and estimated w as 27rf , where f was the frequency of

the FFT power spectrum peak.

The envelope of the accelerometer data can be used to determine the damping of

the system: The real component of the roots, a, can be estimated as the negative

reciprocal of the time constant of the envelope

E(t) = Eo e-t/T = Eo eat. (4.6)

Here, E(t) is the envelope of the acceleration data (determined from sampling the

magnitude of low-pass filtered acceleration data at points where the derivative is near

zero), Eo is the best-fit magnitude, and T = -1/la is the best-fit time-constant.

I estimated cycle to cycle energy recovery of an exoskeleton leg as:

7 = e-1/(Tf), (4.7)

where r is the ratio of energy stored in the exoskeleton leg to the energy stored

in the exoskeleton leg in the previous cycle.

By defining w, as the natural frequency, Equation 4.5 can be rewritten as:

W = - (4.8)
m

with

Wn2 = o + 2 . (4.9)
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To determine stiffness using Equation 4.8 one must determine the components of

the total mass m, which are given by

m = mself + mapparatus + mload, (4.10)

where mself is the spring self-mass, mapparatus is the mass of the experimental ap-

paratus supported by the exoskeleton leg, and mload is the additional load mass. I

controlled mload and estimated mapparatus as half the mass of the two simply-supported

horizontal rods plus the mass of other apparatus components supported by the ex-

oskeleton leg.

Define m0 as the total mass with zero additional load, and consider measuring

the frequency and damping under conditions of zero load and with a small load of

ANm. If stiffness is assumed to be equal in both cases (true in the limit Am -- 0, or

if stiffness is independent of load), one can write two equations in the two unknowns

mo and k, as given by

Wn k, (4.11)

and

2 _ kW2 m + (4.12)Wn,a mo + Am'

where wn,o and wn,a are the natural frequencies in the two conditions as estimated

using Equation 4.9. Solving equations 11 and 12 gives

2

m 2 wn,- /m, (4.13)
Wn,o -n,A

and

kc = w 2 (4.14)k=- W, 0 - WA· (n 0 + Am). (4.14)

For each exoskeleton knee angle tested, I made five measurements of the self mass

Mself o -mO -mapparatus, using Am = 0.45 kg (1.0 lb). I also compared the measured
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self mass to that predicted for a cantilevered beam, which for a uniform beam with

mass mactual is given by

33
mself 140mactual. (4.15)

140

At exoskeleton angles near 180°, the exoskeleton leg, if actually uniform in cross-

section and stiffness, would approximate such a beam. At exoskeleton angles ap-

proaching zero, most of the self-mass load is carried in compression, and the pure

bending force Fbend is given by

Fbend = mself geffective, (4.16)

where

geffective = 9g sin(0/2), (4.17)

with gravitational acceleration g. Therefore mself -- oc as - 0, and the uniform

beam approximation for the exoskeleton self mass is given by

33 1
mself,beam = 140mactual' $ (4.18)

For small 0, the exoskeleton leg will start behaving more and more like a rod, for

which the resonant frequency-stiffness relationship is given by

- k (4.19)
n M/ 71.2 '

The theoretical contribution to the estimated self-mass due to this rod-like behav-

ior is therefore

1 1
mself,rod mactual o(2) (4.20)

(4.20)with the total theoretical self-mass given by

with the total theoretical self-mass given by
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33 1 1 1

mself = mactual ' sin(c/ /2) - actual cos( /2) (4.21)

I computed mactual as the sum of all the components of a given exoskeleton leg.

For measurements under load conditions other than Am = 0.45kg I took the self

mass as the mean mself under the Am = 0.45kg condition at the same exoskeleton

knee angle. Other load masses used, as allowed by the experimental apparatus for

a given exoskeleton leg, were 0.91kg (2.01b), 1.81kg (4.01b), 2.72kg (6.01b), 3.63kg

(8.01b), 5kg, 7kg, 10kg, and 12kg. For these load masses three measurements were

made. For all measurements, I estimated the stiffness using the above procedure.

I also compared the stiffness at zero load to the theoretical stiffness at zero load

computed from standard beam theory. The deflection in the pure bending direction

produced by the bending force Fbend is given by

L3

dbend = 3E Fbend, (4.22)3E1

where L is the equivalent beam length of the exoskeleton leg, E is the flexural

modulus (35.2GPa to 37.9GPa), and I is the moment of inertia of the beam cross

section. For the thickest fiberglass bars, bar width w = 3.175cm (1.25in), thickness

t = 0.635cm (0.250in), and the moment of inertia I = wt3 /12. I took L as the

total length of the two fiberglass bar segments in a given exoskeleton leg that are not

restrained from bending by the end adapters, and measured this distance to be equal

to

L = 2(S - 4.48cm), (4.23)

where S is the spring length as shown in Figure 1(B). The bending deflection

results in a smaller downward deflection ddown as given by

1
ddown = dbend (/ (4.24)

The theoretical stiffness at zero load (mload = 0) is defined as the ratio of upward
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force 6F theoretically generated for an infinitesimal downward deflection ddown. As

related in the theoretical self mass computation, the bending force is related to the

upward force by

Fbend - F' sin(0/2). (4.25)

Equations 4.22-4.25 can be solved to give the stiffness contribution kexo-beam due

to the exoskeleton leg acting as a beam:

6F 3EI 1
kexo-beam 3=2 (4.26)ddown L sin2 (0/2)

From the standard equation for rod stiffness one can similarly derive that the

stiffness contribution kexo-rod due to the exoskeleton leg acting as a rod is given by

ErodtW 1
kexo-rod = L (4.27)

L cos2(/2) '

with compressive modulus 37.2 < Erod < 40.7GPa. The spring-steel foot-plate

also bends in response to the applied load, acting as a standard cantilevered beam.

The effective stiffness of the foot-plate kfp is given by

kfp= L3EfIfp (4.28)
L3fp

where the spring-steel bending modulus Efp ~ 207GPa, the moment arm of the

load Lfp ~ 5cm, and Ifp = wfptfp/12 with foot plate width Wfp 3.6cm and foot

plate thickness tfp ~ 1.59mm (0.0625in). The total theoretical stiffness at zero-load

ktheory is given by

i I 1 1
1 1 ~ + ~ ~+ (4.29)

ktheory - kexo-beam kexo-rod kfp

4.2.3 Estimation of Knee Flexion and Joint Torques

Figure 4-3 shows the geometrical relationships between a compressed exoskeleton leg

and the leg of the subject. From these relationships one can derive the knee torque T
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that results from a exoskeleton spring-back force F. This spring-back force is given

by F mg, and because m is systematically varied and exoskeleton leg height h

measured during exoskeleton leg calibration, the spring-back force F(h) is known.

The leg length L can be expressed in terms of the exoskeleton leg height as

L = (h - Az)2 + AX2 . (4.30)

The leg length expressed in terms of the knee flexion angle 8 is given by

L2 = L2 L2 - 2LlL2co(7r - ). (4.31)

Knee flexion angle can be computed as a function of h by computing L using

Equation 4.30, and computing 0, from Equation 4.31, as

= - Cos 2L1L2 (4.32)

The knee torque moment arm r is given by

r = L2cos (- -a )- -Ax (4.33)

where

a = sin- 1 [Lsin(r - )], (4.34)

and

sin-l (x) (4.35)

The knee torque vector T is therefore given by

T = -r x F (4.36)

where the moment arm vector r and force vector F have the directions given

in Figure 4-3. This sign convention ensures that the direction of positive equivalent
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Figure 4-3: Geometry for computing knee joint-torque equivalent of exoskeleton
spring force F. All variables are described in the text.
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torque T is consistent with the direction of positive knee flexion angles. Schmidt et al.

[2001] used an opposite sign for her reported EMU knee torques; I modified the sign

of her data to be consistent with this sign convention when comparing the two data

sets.

While L1 + L2, L 2/(L1 + L 2), Ax, and Az are subject specific quantities, I derived

joint torques by assuming the value of L1 + L2 that leads to geometric compatibility

for a given exoskeleton knee flexion angle, and using representative values for L2/(L 1+

L2), Ax, and Az. I took Ax = 12.7cm, the average of the Ax values for the two

pairs of exoskeleton shoes (European sizes 39 and 47) to be used by subjects. I took

Az = 7.5cm, a typical value based on exoskeleton fitting data from eight subjects.

The ratio L 2/(L1 + L2) represents knee height relative to leg length, which I took as

0.58, the ratio of the population mean knee height to population mean leg length for

males [NASA, 1995].

I computed the stiffness of an exoskeleton leg as a function of the exoskeleton knee

flexion angle relative to the EMU, and computed the goodness of fit after scaling the

exoskeleton torque data by this relative stiffness. I performed the relative stiffness

computation on 'fitted' knee flexion angles Ofit given by

SOit = 0 + Oz, (4.37)

where Oz is an angle offset that ensures that the exoskeleton-derived knee flexion

angle of zero-torque coincides with the EMU-derived knee flexion angle of zero torque.

Using the joint-torque method to estimate 0 as a function of h I also computed

the cycle to cycle energy recovery 7r as a function of 0 and normalized leg length

L/(L 1 + L2).
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4.3 Results

4.3.1 Exoskeleton Leg Calibration

Only exoskeleton legs with the 6.35mm (0.250in) thick fiberglass bars were able to

be calibrated; exoskeleton legs with lower-thickness bars had insufficient stiffness for

the calibration apparatus and range of calibration masses available. Using the thick

fiberglass bars, two exoskeleton legs with differing bar lengths were calibrated: Leg

T130B131, with 43.2cm (17in) bar lengths, and leg T11OB111, with 49.5cm (19.5in)

bar lengths.

Each exoskeleton leg generally behaved as a second-order spring-damper system

(Figure 4-4). At X = 20°, frequency measurements were infrequently impaired by

contact between the calibration masses and the exoskeleton leg. At loads near 10kg

to 12kg, large oscillations were observed, in conjunction with side-to-side swaying of

the calibration masses.

At zero additional load, stiffness estimates computed assuming no damping are

lower than with-damping stiffness estimates by 12% to 29% (380N/m to 590N/m).

At non-zero additional loads, no-damping stiffness estimates are consistently slightly

lower than with-damping stiffness estimates, differing by only 0.01% to 3% (0.5N/m

to 25N/m), with a mean difference of only 0.15% (3N/m); this difference grows

consistently in magnitude as calibration mass increases (while holding the exoskeleton

angle constant).

The actual self-mass measurements appear to agree with the theoretical predic-

tions except for low exoskeleton knee flexion angles (Figure 4-5(A)). In contrast,

stiffness results agree with theoretical predictions for low exoskeleton angles but not

for high exoskeleton angles. The relative contributions from the beam and rod modes

of the exoskeleton leg are quite different: the ratio of mean (for a given condition)

stiffness values kexo-beam/kexo-rod is typically less than 0.02%. In contrast, the ratio

of mean stiffness values kfp/kexo-beam is on the order of 2 - 4%.

Stiffness is a strong negative function of both exoskeleton knee angle b and ad-

ditional load mload (Figure 4-6). The relationship between stiffness and load for a
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Figure 4-4: Calibration data from leg T130B131 (17.0" fiberglass bars) at the extrema
calibration conditions for exoskeleton knee angle (200° < < 50°) and load (Okg <
mload < 12kg). Inset within each plot are the oscillation frequency f, exponential
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Figure 4-5: Exoskeleton leg calibration results compared to theoretical approxima-
tions. T130B131 is an exoskeleton leg with 43.2 cm (17 in) fiberglass bars, and
Tl1OB111 is an exoskeleton leg with 49.5 cm (19.5 in) fiberglass bars. A. Estimated
self-mass at zero load (mload = 0): Error bars for self-mass values represent ±i1
(standard deviation) of the calculated self-mass, based on N = 4-7 valid measure-
ments under each angle condition (N = 5.1). B. Measured stiffness at zero load:
Error bars for exoskeleton leg stiffness values represent ila of measured exoskeleton
leg stiffness based on the identical set of measurements as in (A). The ordinate range
of the theoretical curve at a given knee flexion angle represents the stiffness resulting
from fiberglass bar flexural moduli ranging from 35.2 GPa to 37.9 GPa, the range
specified by the manufacturer for the fiberglass bars.
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particular exoskeleton angle becomes progressively less linear as exoskeleton knee an-

gle increases; for example, for leg Tl1OB11l, such linear fits give an R 2 range of 0.99

(O 20°) to 0.80 ( = 50°). A parabolic fit of the stiffness-load data for a given

exoskeleton knee flexion angle gives a much better fit (Figure 4-6).

The stiffness surface represented by contours in Figure 4-6 (Bottom) can be ap-

proximated using

k=X./ T (4.38)

with

X =[1 mload h Mload 2 (4.39)

where P3 T is a column vector of regression

stiffness. For leg T130B131, the coefficients are

1.0. 104

-3.1 .102
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6.8 10-1

8.1 10- 4
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coefficients, and k is

given by
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02)
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with an adjusted R2 of 0.99. For leg Tl1OBIll, the coefficients are given by
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Table 4.1: Torque comparison of Exoskeleton Legs and EMU Knee Joint
LegT130B31I (17.0" bars) LegTl1OB11l (19.5" bars)

0 (°) z ( S a R b Hz () S a R; 

20 41.4 1.7 0.97 43.2 1.2 0.95
30 41.3 1.3 0.98 42.9 0.9 0.91
40 42.2 1.1 0.98 43.3 0.8 0.90
50 40.4 0.9 0.98 42.3 0.7 0.88

a The quantity 5' represents the stiffness of a given exoskeleton leg relative
to the EMUJ knee joint.
b R2 values were obtained after using a scale factor S to best scale the
exoskeleton joint-torque curve to match the EMIJ knee torque data.

6.1 .10 4 N/mrn

-1.9 102 N/(m o)

-3.9 102 N/(m kg)

7.2 100 N/(m kg o)

1.7 100 N/(m o2)

5.9 10-1 N/(m kg2 )

-1.9 . 10- 4 N/[mn (kg. o)2]

(4.41)

with an adjusted R2 of 0.97.

4.3.2 Estimation of Knee Flexion and Joint Torques

Equivalent knee torques for the exoskeleton legs tested agree in form and magnitude

with joint torques reported by Schmidt et al. [2001] for the EMU (Figure 4-7). Table

4.1 gives the EMU-relative stiffness for each tested exoskeleton leg configuration; the

relative stiffness for each exoskeleton leg changed by a factor of 1.7-1.9 over the range

20° < < 50°, and this range is inclusive of an EMU-relative stiffness of one for both

leg T130B131 and Tl1OB111. On average, the shorter length fiberglass bars (used

in T130B131) provide a better match in form to the EMU joint-torque data (Figure

4-7(A), Right).

For the exoskeleton leg with shorter fiberglass bars (T130B131), estimated energy

recovery stayed above 60% for knee flexion angles < 50° (Figure 4-8(A), Middle); the
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Figure 4-7: Left: Estimated Knee Joint-Torques for exoskeleton legs with 17.0" (A)
and 19.5" (B) fiberglass bars as a function of exoskeleton knee angle Q. Space suit
knee-torque data from the Extravehicular Mobility Unit (EMU) from Schmidt [2001]
is shown as a reference. Right: Exoskeleton joint torques have been scaled by their
EMU-relative stiffness S (see Table 4.1) and plotted to permit comparison of the form
of the exoskeleton joint torque curves as compared to the EMU.
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other exoskeleton leg has generally lower energy recovery, reaching a low of /7 P 45%

for < 50°. Energy recovery for a given knee flexion angle or normalized leg length

does not appear to be a strong function of exoskeleton knee flexion angle for r -_ 50%

or greater.

4.4 Discussion

4.4.1 Exoskeleton Leg Calibration

Damping is overestimated by the exoskeleton leg calibration system, primarily because

the testing apparatus does not perfectly constraint motion to within the vertical

direction. For small oscillations, the horizontal rods constrain exoskeleton hip joint

motion, to first order, to the vertical direction; this approximation is not applicable

for large magnitude oscillations.

During large magnitude oscillations, energy is transferred to other degrees of free-

dom of the calibration apparatus. This energy transfer is best illustrated by the

swaying of the calibration masses at high additional loads. This swaying destructively

interferes with the vertical oscillations, further removing energy from the vertical os-

cillation mode. This creates a higher damping condition, and causes an underestimate

of the ratio of energy recovery 7 as compared to the actual ratio of energy recovery

than would be present at this load condition when the exoskeleton is worn by a

subject.

This overestimate of damping also elevates the estimated natural frequency and

produces an overestimate of stiffness. At zero additional load, excess damping due

to the non-ideal nature of the testing apparatus is minimized, and the with-damping

estimates are likely to be much more accurate. At non-zero additional load, no-

damping and with-damping stiffness estimates are very similar, suggesting that the

effect of overestimated damping on stiffness estimates is minimal. The major impact

of overestimating damping appears to be a reduction in the estimated ratio of cycle

to cycle energy recovery r7; the magnitude of this underestimate - or better, more
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accurate values for r - could be better determined by constraining motion of the

exoskeleton leg and calibration masses to the vertical.

Non-idealities of the calibration apparatus may also affect the variability of zero-

load stiffness measurements. The higher variance in zero-load stiffness estimates

associated with lower exoskeleton knee flexion angles (see Figure 4-6) is likely to be

associated with imperfect alignment and mechanical play of the pin joints and rods,

the effects of which are exacerbated by rapid oscillations caused by high-stiffness

exoskeleton leg configurations.

AWhile the calibration apparatus does have some limitations, the exoskeleton leg

calibration procedure provides an effective method to determine exoskeleton leg stiff-

ness. Furthermore, the approximations made in computing leg stiffness are generally

valid over a broad range of conditions, as illustrated by the extent to which the

stiffness measurements are self-consistent and agree with theoretical approximations.

Exoskeleton legs are physically unlike a uniform beam or a rod. Nevertheless, the

uniform beam and rod approximations are useful in predicting exoskeleton self-mass

and stiffness at near zero additional load, when bar deflections are small. At low ex-

oskeleton knee angles, the effective gravitational loading in the direction of bending is

very small, and the highly non-uniform exoskeleton leg behavior is most like a uniform

beam. As increases, the impact of the non-uniform nature of the exoskeleton leg

increases, causing the observed deviation between the theoretical estimates based on

the uniform beam assumption and the actual stiffness measurements (Figure 4-5(B)).

The standard uniform beam solutions assume small deformations; the decreasing

linearity of the stiffness-load relationship as a function of 9 may be a consequence of

the large deformations of the exoskeleton leg at high exoskeleton knee flexion angles.

Exoskeleton leg stiffness is dominated by the bending stiffness of the fiberglass

bars, with the foot plate accounting for not more than a few percent of the measured

stiffness. Because of the large magnitude of kexo-rod and the form of Equation 4.29,

kexo-rod can be neglected, for all practical purposes, in the stiffness estimate.

The stiffness surfaces, for which contours are shown in Figure 4-6(Bottom), can

be represented with high accuracy by a general quadratic equation in X and mlod,
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permitting accurate estimates of stiffness for untested exoskeleton leg geometries.

4.4.2 Estimation of Knee Flexion and Joint Torques

The EMU knee joints are designed to have a zero-torque position of around 50°,

close to neutral body posture in weightlessness, and thus convenient for working

in microgravity. A gas pressure suit designed for planetary exploration could be

designed with a different zero-torque knee flexion angle, but would likely have a joint-

torque relationship similar in form to the EMU (relative to the zero-torque knee

flexion angle). Therefore, adjusting the knee flexion angle by an offset (see Equation

4.37) prior to comparing exoskeleton equivalent joint-torques with the EMU data is

warranted.

Because equivalent knee joint torques for the spring-like exoskeleton legs are sim-

ilar in form and magnitude with knee joint torques reported for the EMU, the EMU

knee joint is confirmed to behave like a non-linear spring. The EMU knee joint-torque

relationship is like other soft-goods (fabric) space suit joints, although flight versions

of the EMU include an additional multilayer insulation blanket that makes the joints

somewhat more stiff.

Schmidt et al. [2001] argue based on physical modeling that EMU soft-goods

joint-torques result predominantly from gas compression, and not from beam-like

bending of the restraint layer (in the latter joint torques would depend substantially on

material properties). This implies that similar soft-goods space-suit joints, including

the knee joints of the space suits used on the Moon during the Apollo missions, also

act like non-linear springs.

Because the relative stiffness varies with exoskeleton knee flexion angle, subjects

with different leg lengths, using the same set of fiberglass bars, will experience knee

joint-torques of similar form but of different magnitudes. By tailoring fiberglass bar

to leg length, knee joint-torques could be matched across subjects.

Exoskeleton-induced knee joint-torques have been computed on the assumption

that the axis of rotation of the knee joint and the axis of the exoskeleton knee joint

are parallel. The exoskeleton provides only one degree of freedom at the ankle, but
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because the exoskeleton has three degrees of freedom at the hip, subjects can cause

the exoskeleton knee axis to become less well aligned with the human knee axis of

rotation by medial or lateral rotation of the ankle.

While medial ankle rotation is limited by the end-stop of the hip assembly, lateral

ankle rotation is permitted; subjects may use lateral ankle rotation as a strategy to

reduce knee torques. In contrast, pressure suits force the axis of rotation of the knee

joint to be approximately parallel to the bending axis of the suit knee joint through

geometric compatibility of the body surface with the inner surface of the pressure

suit.

4.4.3 Energetics: Exoskeleton versus Pressure Suit

While the exoskeleton and the EMU are likely to induce similar knee torques, there

are important differences between the two that are likely to affect the energetics

of locomotion in different ways. First, the longitudinal pressure forces in pressure

suits, absent in the lower-body exoskeleton, allow pressure suits to be partially or

entirely self-supporting in reduced gravity. Second, while the lower-body exoskeleton

somewhat reduces hip mobility, the exoskeleton provides excellent hip mobility in

comparison to a pressure suit; the limited hip mobility in pressure suits prevents

normal pelvic tilt and pelvic rotation, two elements of gait that help to improve cost of

transport by reducing the magnitude of center of mass motion. Third, the exoskeleton

does not restrict upper body motion to the same extent as a pressure suit (near-body

arm motion is only slightly limited by the extent of the load-transfer cage, shown in

Figure 4-1). In normal unsuited locomotion, arm swings help balance trunk torques

induced by the lower limbs [Li et al., 2001]; arm swinging in a pressure suit requires the

wearer to exert additional forces to overcome intrinsic joint torques (predominantly

due to joint volume changes), inertial joint torques, and gravity torques. Fourth,

gas pressure suits generally limit ankle mobility to a greater extent than does the

exoskeleton, due to the need to constrain pressure forces. Fifth, gas pressure suit

helmets can obscure or distort the normal field of view.

Given these differences, how might the non-linear spring-like nature of the ex-
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oskeleton and pressure suits affect the energetics of walking and running in similar or

different ways?

While walking, kinetic and potential energies are out of phase and are inter-

converted in an inverted compass-style gait. This pendular exchange of energy results

in cycle to cycle recovery of energy of 60-65% while walking at 0.15 < Fr < 0.5 in

environments with Earth-relative gravity of 0.5 < G < 1 [Griffin et al., 2004a]. Energy

recovery while walking decreases in environments with G < 0.5 because the relative

excess of kinetic (forward) energy as compared to potential (vertical) energy does not

permit as much inter-conversion as in higher G environments.

The lower-body exoskeleton and pressure suits are likely to affect walking in dif-

ferent ways. Pressure suits impair the normal mechanisms that help to minimize

center of mass motion and achieve high levels of energy recovery during walking.

This is consistent with the earlier finding that fast running (Fr > 1) in a space suit

has a lower cost of transport [J/(kg. m)] than walking or slow running (Fr < 1) 3.

The lower-body exoskeleton, because of its comparatively good hip mobility, may not

significantly impair energy recovery during walking.

It is possible that the exoskeleton might improve energy recovery during walking?

Biewener et al. [2004] reported knee flexion angles during walking at 1.5m/s (Fr 0.2

in Earth gravity) ranging from 4-26°. For the exoskeleton legs tested, energy recovery

ranges from approximately 70-90% over this range of knee flexion angles (Figure 4-8,

Middle), better than the expected pendular energy recovery of in normal walking.

fl values, averaged over 20° < 0 < 50°, were 89% and 81% for the exoskeleton legs

with shorter and longer fiberglass bars, respectively. This suggests that exoskeleton

springs have the potential to improve energy recovery during walking, but whether

they decrease or increase the cost of transport during walking [J/(kg m)] depends

upon whether walking kinematics and dynamics can adjust to take advantage of the

high-return nature of the exoskeleton springs.

While running, kinetic and potential energies are in phase with one another; this

limits energy inter-conversion, resulting in lower energy recovery during running than

during walking. However, kinetic energy can be stored as elastic energy in muscles
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and tendons; for example, the Achilles tendon alone can conserve 35% of the total

mechanical energy required during each stride Farley et al. [1991].

The spring-like nature of an exoskeleton leg and pressure suit joint may improve

energy recovery during running if the leg or joint has sufficiently high energy recovery

and has a stiffness that is 'tuned' to complement that of the human leg. While a

discussion of stiffness tuning is beyond the scope of this paper, interested readers can

find the basic theory in the groundbreaking work on the impact of surface stiffness

during running by McMahon and Cheng [1990].

Does the exoskeleton have adequate energy recovery to improve the cost of trans-

port? Kerdok et al. [2002] reported maximum leg length changes during 3.7m/s

running that correspond to L/(L 1 + L2) ~ 87%. At this normalized leg length, ex-

oskeleton leg energy recovery was estimated to be about 38-40%. At least two factors

make this number significant: First, this is the marginal energy recovery (energy

recovery for an infinitesimal bit of energy stored in the exoskeleton leg spring at a

normalized leg length of 87%), and the mean energy recovery would be somewhat

higher. Second, the estimated energy recovery is an underestimate due to the exag-

gerating damping of the calibration apparatus under conditions of high calibration

loads. It is likely that the exoskeleton leg can improve energy recovery of energy that

is normally lost during running.

Consider another example: Biewener et al. [2004] reported knee flexion angles

during running at 3.5m/s (Fr - 1.3 in Earth gravity) ranging from 16-46°. For

the exoskeleton legs tested, energy recovery ranges from approximately 50-85% over

this range of knee flexion angles (Figure 4-8, Middle). i7 values were 79% and 65%,

respectively, for the exoskeleton legs with shorter and longer fiberglass bars, much

higher than the nominal energy recovery in running.

Even given these numbers, the high energy recovery of the exoskeleton leg may not

be enough to improve cost of transport. For example, the stiffness of the exoskeleton

leg may impede ground clearance during the swing phase, or disrupt the running

gait in other ways. Whether exoskeleton legs can reduce the cost of transport in

running depends upon, as in walking, whether a locomoting human can adjust their
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kinematics and dynamics to take advantage of high-recovery energy storage without

incurring substantial costs that negate these potential benefits.

Do space suits have high energy recovery? To the extent that joint torques result

from gas compression, energy recovery will depend upon the extent to which the work

done on the gas is thermodynamically reversible. Joint-torque profiles of space-suit

joints reveal varying levels of hysteresis, a direct indicator of irreversibility, as a func-

tion of the joint angle [Schmidt, 2001]. This hysteresis can result from irreversibility

of the gas compression process, and is also related to losses associated with energy

dissipation in the restraint layer. Energy recovery of space suit legs is demonstrably

significant, as evidenced by many episodes on the Lunar surface in which astronauts

used their knee joints to spring from a crouched to a standing position (examples

include Apollo 16: 144:35:24, 166:57:55; Apollo 17: 144:50:52, 165:36:33, in Jones

[2005]).

4.4.4 Conclusions

I have built and characterized a passive lower-body exoskeleton that simulates a pair

of non-linear springs in parallel with the legs. Stiffness of the tested exoskeleton

legs is, as expected, a function of the exoskeleton knee angle and decreases with the

applied load, or equivalently, with increased knee flexion. The equivalent knee joint-

torques of the tested exoskeleton legs closely match knee joint-torques of the EMU in

both form and magnitude, suggesting that space suit legs act as springs. Because the

forces generated by such springs are higher at greater knee flexion angles, the spring

effect of space suit legs is likely to be most pronounced when locomotion requires large

knee flexion angles, such as during running. Although not described in this paper,

the joint-torque estimation approach developed herein can be reversed in order to

compute stiffness from space suit joint-torque data.

While the current work does not predict when, specifically, exoskeleton legs will

reduce or increases cost of transport during locomotion, the current work highlights

some of the important differences between the lower-body exoskeleton and space suits,

useful for interpreting the results of past and future energetics experiments. Exoskele-
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ton legs used during locomotion are likely to share some of the energy recovery benefits

of space suits, without the same level of mobility restriction.

To support future planetary exploration, future locomotion and energetics studies

using fully integrated space suit systems are highly desirable. However, exoskeletons

offer an alternative that is less expensive, doesn't require pressurization or use con-

sumables, and permits better observation of limb motions. Although different than

space suits in many ways, exoskeletons may help elucidate the mechanisms by which

space suits impact human movement.
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Chapter 5

Exoskeleton Energetics:

Implications for suited and

unsuited energetics

Abstract

I hypothesized that locomotion with the exoskeleton would improve net energy re-

covery, reduce the cost of transport, and lower the Froude number of the run-walk

transition relative to unsuited locomotion.

I measured the energetic cost and other variables during treadmill locomotion,

with and without a lower body exoskeleton, in simulated reduced gravity (G =

0.165, 0.379) and in Earth gravity (G = 1). Subjects walked or ran at constant Froude

numbers of 0.25 or 0.60, respectively, and walked and ran at a self-selected run-walk

transition. Using the framework developed in Chapter 2, g measurements of specific

resistance during unsuited locomotion were used to estimate the specific resistance

of unsuited locomotion in the reduced gravity conditions. Net energy recovery was

estimated for all exoskeleton conditions, based on metabolic cost measurements from

the exoskeleton and unsuited conditions.

Six subjects completed the experiment after giving informed consent. Exoskele-
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ton locomotion significantly lowered the cost of transport [J/(kg. m)] and specific

resistance [J/(N m)] relative to the unsuited condition, increased the estimated net

energy recovery, and lowered the Froude number of the run-walk transition relative

to the unsuited condition. Theoretical and actual values for the unsuited specific

resistance in reduced gravity conditions showed no statistically significant differences.

The exoskeleton control condition (an exoskeleton leg with 1/8th the stiffness of the

primary exoskeleton leg with space-suit-knee-like stiffness) had the lowest cost of

transport of the three conditions tested.

Although order effects cannot be ruled out, it appears that the high energy re-

covery of the exoskeleton legs led to the observed reduction in the cost of transport

and specific resistance during exoskeleton locomotion. The lower costs of transport

of the exoskeleton control condition suggests how one might design a tuned space

suit: an exoskeleton or space suit leg stiffness that results in minimum metabolic

cost during locomotion. The findings explain the previously observed effect of space

suits on running: exoskeleton locomotion improved recovery during both walking and

running, but because space suits impair walking recovery, the benefit of spring-like

legs is most prominent during space-suited running. The results of the study and the

success of the theoretical model also point to a potential role for energy recovery in

the run-walk transition, although more data is needed to evaluate the linkage between

recovery and gait transitions.

5.1 Introduction

Space suits adversely impact the achievable mechanical efficiency of work, limit mo-

bility, and increase the metabolic costs of locomotion relative to unsuited conditions

(Chapter 2). Results of the regression modeling of historical unsuited and suited

energetics data suggested that space suits may act as springs during running (Chap-

ter 3). Characterization of a lower-body exoskeleton with legs that are non-linear

springs demonstrated that the Extravehicular Mobility Unit (EMU) knee joints act

like springs, with this effect likely to be most pronounced during running (Chapter
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4).

While the lower-body exoskeleton induces joint-torques similar in form and magni-

tude to the knee joint-torques of the EMU, locomotion performance in the exoskeleton

is likely to differ from performance in otherwise similar conditions in a space suit be-

cause of the substantial differences between the two, discussed in Chapter 4. While

space suits significantly impair hip mobility [Schmidt, 2001], the exoskeleton has gen-

erally good hip mobility. These differences are beneficial, because they permit the

isolation and study of different contributions to the effect of space suits on locomotion

energetics.

To understand how space suit knee joint torques affect the energetics of walk-

ing and running, I conducted a energetics study of exoskeleton locomotion, hereafter

referred to in short form as eolocomotion. In addition to elucidating some of the

mechanisms by which space suits affect locomotion energetics, studying exolocomo-

tion may also help to improve understanding of the basic mechanisms underlying

unsuited locomotion energetics, including evaluating whether recovery may play a

role in gait switching (see Chapter 2).

I hypothesized that exolocomotion with high-energy-recovery exoskeleton legs

would elevate the net energy recovery in both walking and running. I expected this

to reduce the cost of transport [J/(kg. m)] and specific resistance [J/(N m)] relative

to the unsuited condition in reduced gravity conditions, whereas in Earth-gravity

conditions I expected the increase in recovery might come at the expense of total

metabolic rate, just as it does in space suits. Furthermore, if recovery is linked to

gait switching, the increase in net recovery should lead to a reduction in the run-walk

transition Froude number relative to the unsuited condition, consistent with video

data of astronauts walking and running on the lunar surface (C. Carr, unpublished

data).

'An easy way to think about this is that in the limit of 100% recovery during running (at any
speed), one could transition to running easily at any speed - indeed it would be hard not to do so-.
Walking cannot attain high recovery at any speed because at very low or very high walking speeds
an effective exchange of kinetic and potential energy cannot occur.
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5.2 Methods

5.2.1 Experimental Protocol

Six subjects, three men and three women, participated in the experiment after giving

informed consent to participate in the experimental protocol as approved by the

MIT Committee on the Use of Humans as Experimental Subjects. Each subject

attended an introductory session involving anthropometric measurements, fitting of

an exoskeleton, and an exoskeleton familiarization period. Subjects completed the

primary session on a separate day.

For the primary session, all subjects completed the same sequence of three trials

over a several hour period in a single day, as illustrated in Figure 5-1. Subjects ran

and walked during the first trial in an unsuited condition, wearing normal athletic

shoes. In the second trial, denoted as the ExoControl condition, subjects wore a

lower-body exoskeleton (see Chapter 4) with fiberglass bars (springs) of intermediate

thickness (0.3175 cm or 0.125 in). In the ExoControl condition, the intermediate

thickness springs were used with the intention to simulate the restrictions of motion

of the exoskeleton without the effect of stiff legs. In the third trial, denoted as

the Exoskeleton condition, subjects wore the lower-body exoskeleton with springs of

thickness 0.635 cm (0.250 in), intended to simulate the knee torques of the EMU.

Trials included ten three-minute stages: an initial basal metabolic measurement

stage, and three gravity conditions (GMOOn, GMars, GEarth) each with three stages.

For the first and last stages during each gravity condition, subjects walked or ran

for the entire three-minute stage at a specified Froude number, a non-dimensional

velocity given by

V2

Fr = (5.1)
gL'

where Fr is the Froude number, v is the treadmill velocity, L is the leg length,

and g is the simulated gravity level given by g = 9earth G, with Earth relative gravity

G and Earth gravity taken as gearth = 9.81m/s 2 (Gearth = 1). Froude numbers
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Figure 5-1: Exolocomotion Experiment Design
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prescribed for walking and running conditions were 0.25 and 0.60, respectively.

In the middle stage during each gravity condition, subjects walked or ran at a self-

selected velocity after being instructed to adjust the velocity up or down to find the

speed at which they were indifferent to whether they were walking or running. During

this middle stage, subjects switched gaits several times in a consistent controlled

fashion using the sequence illustrated in Figure 5-1. In some cases, the experiment

conductor adjusted the velocity up or down at the request of the subject.

Moon and Mars conditions were simulated using the Moonwalker, a spring-based

partial body-weight suspension system (Figure 5-2).

The {Moon, Mars, Earth} order of simulated gravity levels provides the subject

with a roughly increasing workload over time, desirable to limit fatigue. This order

also allows the subject to become comfortable moving in the exoskeleton under slow

conditions prior to fast conditions, in which the cost of a misstep could be greater.

Furthermore, the subject experiences the most uncomfortable gravity condition first,

and has the psychological benefit of knowing that the discomfort associated with

partial body-weight suspension will only resolve -not worsen- as the trial continues.

While the G-level was adjusted, the subject stood flat-footed on the treadmill,

occasionally making small hops at the indication of the experiment conductor who

monitoring the real-time G-level. These hops helped to eliminate the effects of stiction

on the observed G-level, which was estimated for display as,

FG = - F (5.2)
mtotal ' gearth

where F is the net upward force on the total transported mass mtotal. The total

transported mass mtotal was determined by weighing the subject along with shoes,

harness, and if applicable, the exoskeleton, using the Moonwalker load cell during

the first gravity adjustment session in each trial. All masses except body mass were

already known, and body mass was computed as the difference between total mass

and known masses.

Treadmill velocities for each prescribed Froude number stage were calculated in
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Figure 5-2: The Moonwalker is a partial body-weight suspension device with three
degrees of freedom: front-rear translation, vertical translation, and yaw rotation. A
treadmill was placed in the center of the Moonwalker structure, and a harness at-
taches to the Moonwalker via metal shoulder clips. Leg loops, shoulder straps, and
an abdominal strap secure the subject in the harness and permit static control over
the extent of body-weight suspension by adjustment of the line tension using the
winch. A load cell (SM-500, Interface, Scottsdale, Arizona) in combination with an
2kHz-bandwidth signal conditioner (DMD-460WB, Omega Engineering, Stamford,
Connecticut) measures the force applied to the subject. The coil springs elongate un-
der increased tension, and produce a crude simulation of constant-force body-weight
suspension. In practice, vertical oscillations produce substantial deviations in the
simulated G-level (deviations for this experiment are reported in the results section).
This drawing was adapted from Wu [1999].
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real-time based on the actual G-level (obtained during G-level adjustment) and the

subject leg length (measured during a prior introductory session). The test con-

ductor adjusted the velocity of the treadmill, and the treadmill velocity display was

completely obscured from the subject's view during all conditions.

5.2.2 Data Collection

A metabolic analyzer (V02000, MedGraphics, St. Paul, Minnesota), auto-calibrated

on room air before before each trial, recorded 02 consumption and CO2 production

rates throughout each trial by sampling expired air from a special face-mask system

with flow-sensing capability. Data from the last minute of each stage was analyzed2 .

A heart rate monitor worn by the subject allowed monitoring of heart rate.

A ±10g accelerometer (CXL1OLP3, Crossbow Technology, San Jose, California),

mounted near the center of mass, was used to record approximate motion of the center

of mass.

A custom treadmill velocity measurement system based on optical sensing of tread-

mill rear roller revolutions was used to record the treadmill velocity. This system was

implemented because of the limited resolution (0.1 MPH) and unknown accuracy of

the treadmill (Trotter CXTPus, Cybex Corporation, Medway, MA), and is described

in detail in Appendix B.

Analog signals from the treadmill velocity measurement system, moonwalker load

cell, and gait accelerometer were simultaneously sampled and digitized at 1 kHz using

an analog and digital i/o module (PMD-1608FS, Measurement Computing, Middle-

boro, MA) connected to a laptop computer running custom software implemented in

MATLAB (The Mathworks, Natick, Massachusetts).

2 A prior validation experiment had shown that data from the third minute of treadmill walking or
running approximated steady-state conditions, whereas the first two minutes represented a transient
response (C. Carr, unpublished data).
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5.2.3 Gait Analysis

Calculation of gait parameters was limited by the lack of kinematic or kinetic mea-

surements; gait analysis consisted of computing the Froude number and cadence for

each sub-stage condition.

The actual Froude number achieved in each condition was computed using the

measured treadmill velocity, the subject leg length, and the actual mean G-level

achieved over the sub-stage condition.

Cadence (step frequency), denoted by f, was calculated using a combination of

accelerometer and moonwalker load-cell data because of 60Hz noise and a poor ac-

celerometer electrical connection that caused loss of most body-Z-axis accelerometer

data.

Non-dimensional cadence was computed as

A = fL (5.3)v

where A is the non-dimensional cadence, L is subject leg length and v is the

treadmill velocity. If $ is the excursion angle swept out by the leg during a single

stance period, then the non-dimensional cadence is related to the excursion angle

during an idealized compass gait (with no double support and no aerial phase) by

1A=- . (5.4)
2sin (2)

Because actual gait normally involves either a double support phase (in walking)

or an aerial phase (in running3), Equation 5.4 can be adjusted to read

A > 1 for walking, or-2sin(2) (5.5)

A < I for running.
- 2sin(2)

If one compared A values for walking and running, one would expect the observed

differences to originate from differences in the excursion angle or the magnitudes of

3 Groucho running [McMahon et al., 1987] excepted.
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the double support phase (in walking) or aerial phase (in running). Non-divergence

would imply either similar excursion angles, or a change in the excursion angle that

counteracts the effects of the double support and/or aerial phase.

5.2.4 Energetics Analysis

Metabolic rate Qm [W] was estimated by multiplying the 02 consumption rate by the

conversion factor, k [W]/[m10 2 /s],

k = 4.33. RQ + 16.6, (5.6)

where RQ is the respiration quotient, the ratio of moles of oxygen consumed to

carbon dioxide expelled. The constants in Equation 5.6 are standard values for the

free energy released from metabolism of oxygen and food at the specified respiration

quotient. Mass-specific metabolic rate Qm,kg [W/kg], mass-specific cost of transport

Cm = Qm,kg/V [J/(m kg)], and specific resistance S = Cm/g [J/(N . m)]4 were

estimated using the total mass transported, mtotal.

To test the framework for metabolic cost developed in Chapter 2, specific resis-

tance for {reduced gravity, unsuited} conditions was estimated based on the {Earth

gravity, unsuited} condition.

First, I computed the net cost of locomotion, Q1o0 o = Qm - Qb. Recovery, r, in

the G = 1 unsuited condition was estimated as a function of v and G using data from

Griffin et al. [1999], while muscle efficiency, Emu,, was estimated as a function of G

using the Hill model (see Appendix A for details on the gravitational dependence of

Emusc).

The total positive work rate of the locomotion muscles was then estimated, fol-

lowing the derivation in Chapter 2, as

Win = loco. (5.7)

4 Specific resistance, a non-dimensional parameter with descriptive units of J/(N m), is the
amount of energy required to transport a load of unit weight a unit distance
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where w/in is the total positive work rate of the locomotion muscles. The total

rate of positive work done on the center of mass in a different condition (indicated

with a prime, '), assuming similar kinematics and kinetics that scale directly with

mass and gravity, can be estimated as

G m'WI = Win Gm (5.8)

From this result, Equation 5.7 can be used to solve for the new net cost of loco-

motion,

Qloco = Wi E ' (5.9)

which gives

QM = Qloco + Qb, (5.10)

and finally

SI= QmI I I ' .(5.11)

In order to estimate the impact of the ExoControl and Exoskeleton conditions

on recovery, I performed a related procedure. First, wi, was estimated from the

measured metabolic data at each G-level in the unsuited condition. Wi/' was then

calculated for each corresponding ExoControl or Exoskeleton condition. This W'in

value, taken together with the measured S in each condition, was used to estimate

the net energy recovery of the hybrid human-exoskeleton system according to

7= 1 Qloco 'L (5.12)
Mn
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Table 5.1: Subject Characteristics

Subject Height [cm] Leg Length [cm] Ratioa Gender Symbol

1 172 86.0 2.00 Male 0

2 175 84.5 2.07 Male °

3 179 94.0 1.90 Male A

4 170 87.5 1.94 Female V

5 168 89.5 1.88 Female O

6 163 90.0 1.81 Female
m s 171 5.6 88.6 ± 3.4 1.93 ± 0.09 - -

a Ratio of height to leg length.

5.3 Results

Table 5.1 lists selected subject characteristics, including symbols used to plot subject-

specific data. Subject age was 23.1 ± 2.55 excluding one 40-year-old subject. Body

mass with light athletic clothing (excluding shoes) was 64.6 + 5.6 kg.

Table 5.2 lists selected exoskeleton characteristics for each subject. Mean exoskele-

ton masses were 6.78 + 0.14 and 7.13 + 0.14 under the ExoControl and Exoskeleton

conditions respectively, with the variation arising from differences between subjects

in exoskeleton spring length (43.2 cm or 49.5 cm) and shoe size (European size 47 or

39). Mean total masses were 66.2 + 5.7 kg (unsuited), 72.3 ± 5.7 kg (ExoControl), and

72.7 + 5.8 kg (Exoskeleton). Body mass variance accounts for 96% of the variance in

total mass. The mean EMU-relative stiffness for the range of exoskeletons used by

the subjects was essentially unity (Table 5.2).

Basal metabolism Qb,kg was 1.51 + 0.15 [W/kg] across all conditions and sub-

jects. While basal metabolism measurements were highly variable, the mean basal

metabolic rates observed under the ExoControl and Exoskeleton conditions were not

significantly different than the unsuited condition (Table 5.3). In several cases, no

metabolic data was recorded during a particular 3-minute basal metabolic measure-

ment stage.

5 Quantities are m i s (estimated mean±estimated standard deviation) unless otherwise denoted;
m±SE or simply SE indicates standard error.

138



Table 5.2: Exoskeleton Characteristics
Subject Spring Length [cm] Axa [cm] Azb [cm] Oc [] Sd

1 43.2 14.0 7.0 43 1.00
2 43.2 14.0 5.5 36 1.13
3 49.5 14.0 9.0 36 0.83
4 43.2 11.4 8.0 40 1.05
5 43.2 11.4 6.0 40 1.05
6 43.2 11.4 10.0 45 0.97

m ±: s 44.3 ± 2.6 12.7 zt 1.4 7.58 ± 1.39 40 ± 1.7 1.00 ± 0.10
aS Forward offset; see Figure 4-1.
bS Vertical offset; see Figure 4-1.

CS Exoskeleton knee angle; see Figure 4-1.
dS is EMU relative stiffness; see Chapter 4 for details on how this is computed.

Table 5.3: Basal Metabolic Rate Qb,kg [W/kg]

Subject Condition Overall
Unsuited ExoControl Exoskeleton

1 1.65 - 0.83 1.24
2 1.65 0.72 1.95 1.44
3 2.51 1.08 1.58 1.72
4 1.54 0.68 1.72 1.31
5 1.35 1.26 0.86 1.16
6 5.64 0.38 0.45 2.16

mrnSE 2.39 ± 0.67 0.82 ± 0.14 1.23 ± 0.24 1.51 t 0.15
p-valuea - 0.067 0.152

a Two-sample equality of means t-test; a p-value < 0.05 would imply a

significant difference of the mean relative to the Unsuited condition.
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Table 5.4: Simulating Partial Gravity

Variable G-Level G (m ± s) G (Conf. Int.)a p-valueb dfc %Error
tlrget Lunar 0.165 -

Mars 0.376 -

GedjUst Lunar 0.179 ± 0.013 0.173 - 0.186 < 0.0005 17 +8.6
Mars 0.373 ± 0.012 0.367 - 0.379 < 0.0005 17 -0.7

Gaf tual Lunar 0.156 0.030 0.150 - 0.162 < 0.0005 107 -5.5
Mars 0.361 ± 0.026 0.356 - 0.366 < 0.0005 107 -3.9

a Confidence interval for the previously quoted mean.
b One sample t-test relative to Gtarget

c Degrees of freedom for the t-test.
d Gtarget is desired G-level (GMoon or GMars)

e Gadjust is the G-level achieved when moonwalker G-level adjustment is performed.
f Gactual is the mean G-level achieved during each sub-stage.

How well was the G-level set during adjustment, and how did this relate to the

actual G-level experienced by the subjects? Table 5.4 compares the target G-levels

with the G-levels measured during G-level adjustment, Gadjust, and the actual mean

G-level experienced for a given stage Gactual. In the Lunar-gravity condition, the mean

Gactual was 14.1% lower than the mean Gadjust; in the Martian-gravity condition, a

decline of 3.9% occurred. The mean standard deviation of the G-level within each

stage, G, was 0.071 ± 0.011 or 0.061 + 0.003 during the Lunar or Mars condition,

respectively.

How well were the desired Froude numbers achieved? Table 5.5 compares the

target Froude numbers with the Froude numbers actually achieved, based on the

mean Gactual and measured treadmill velocity in each condition. The largest Froude

number errors occurred in the Lunar gravity condition, in which the largest Gactual

errors also occurred. Errors decreased with increasing G-level after removal of the five

G = 1 conditions for which subjects did not reach or maintain the assigned treadmill

speed (these conditions occurred in either the ExoControl or Exoskeleton condition).

Froude number errors tended to be larger during walking than during running. In

Earth-gravity conditions, the mean error magnitude was 1.5%, which corresponds to

a velocity error of 1.2%, close to the 0.8% RMS quantization error of the indicated

treadmill velocity (see Appendix B).

140



Table 5.5: Actual Froude Numbers Achieved
G-Level(s) Gait Fr (m ± s) Fr (Conf. Int.)a p-valueb dfc %Error

All Walk 0.281 ±t 0.050 0.267 - 0.295 < 0.0005 53 12.4
Run 0.595 ± 0.101 0.567 - 0.623 0.719 53 -0.8

Moon Walk 0.330 i 0.060 0.300 - 0.360 < 0.0005 17 32.0
Run 0.647 ± 0.125 0.585 - 0.710 0.127 17 7.8

Mars Walk 0.267 ± 0.010 0.262 - 0.272 < 0.0005 17 6.8
Run 0.599 i 0.038 0.580 - 0.617 0.884 17 -0.2

Earth Walk 0.246 i 0.004 0.244 - 0.248 0.002 17 -1.6
Run 0.539 ± 0.092 0.493 - 0.585 0.012 17 -10.2
Rund 0.592 ± 0.011 0.585 - 0.599 0.022 12 -1.3

a Confidence interval for the mean G-level Gactual.
b One sample equality of means t-test relative to target Froude numbers of
0.25 and 0.60 for Walk and Run conditions, respectively. A p-value < 0.05
indicates the mean Fr number was significantly different than the target.

c Degrees of freedom for the t-test.
d After removal of five conditions in which subjects did not reach or maintain the assigned speed.

5.3.1 Exolocomotion Gait

Cadence values, shown in Figure 5-3, decline with reductions in gravity (p < 0.0005),

and have a significant spread between the walking and running cadence values (p <

0.0005). Non-dimensional cadence values, shown in Figure 5-4, still have a significant

spread between the walking and running cadence values (p < 0.0005), but the spread

is opposite in sign and half the magnitude of the dimensional cadence spread, with A

values for running lower than A values for walking. Unlike f, the A values increase

with reductions in gravity (p < 0.0005).

Self-selected run-walk Froude numbers increased as G-level decreased (p < 0.0005),

reaching a median value of 0.81 in the Lunar condition (Figure 5-5). Median and mean

self-selected run-walk Froude numbers were lower for the ExoControl and Exoskeleton

conditions (p < 0.0005) as compared to the Unsuited condition.

5.3.2 Exolocomotion Energetics

Mass-specific metabolic cost [W/kg], shown in Figure 5-6, increased with G-level

and Froude number, and was significantly lower for ExoControl and Exoskeleton

conditions in comparison to the Unsuited condition (all p < 0.0005). However, the
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Figure 5-3: Quartiles for the cadence (total number of steps/sec) for walking
(Fr = 0.25, unfilled boxes) and running (Fr = 0.60, filled boxes) conditions, as a func-
tion of the target G-level and exoskeleton condition (U= Unsuited, C=ExoControl,
E=Exoskeleton). Symbols * and o indicate outliers.
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C=ExoControl, E=Exoskeleton). Symbols * and o indicate outliers.
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highest absolute mass-specific metabolic cost occurred in the {Exoskeleton, running,

Earth gravity} condition, which also had the highest mean metabolic cost.

During unsuited walking, cost of transport [J/(kg m)] was found to increase with

reductions in gravity (Figure 5-7, p = 0.001). In the running and run/walk unsuited

conditions, changes in gravity did not lead to a significant change in the cost of

transport. In the ExoControl and Exoskeleton walking conditions, changes in gravity

also did not lead to significant changes in cost of transport. However, during the

run/walk and running conditions, cost of transport declined as gravity was reduced

for both ExoControl and Exoskeleton conditions (p < 0.014).

Specific resistance [J/(N m)], shown in Figure 5-8, significantly increased with

G-level reduction across all three exoskeleton conditions (p < 0.0005). There was

a significant effect of the exoskeleton condition, (p < 0.001), and specific resistance

was, on average, higher in the unsuited condition and lower in the ExoControl and

Exoskeleton conditions. There was also a negative association with increases in the

Froude number (p = 0.023), and a significant cross effect with the exoskeleton con-

figuration and the G-level (Figure 5-8, bottom right).

The measured and theoretical S values for the Unsuited condition, shown in Figure

5-9, are in excellent agreement. In the walking (Fr = 0.25) condition, the theoretical

estimates differ from the measured estimates by -17% and 4.5% for Lunar and Mars

conditions, respectively. In the running (Fr = 0.60) condition, the estimates differ by

only 8.7% and 3.4%. These error are comparable in size to the errors in controlling

the Froude number or the errors in setting the G-level. None of these differences were

significant (Table 5.6).

Unsuited values for energy recovery, shown in Figure 5-10, represent input val-

ues based on the literature [Griffin et al., 1999, Kaneko, 1990], used to estimate the

positive work done on the center of mass in each G-level condition. Presence of the ex-

oskeleton, either in the ExoControl or Exoskeleton conditions, elevated the computed

net energy recovery substantially, and more than counteracted the decline in energy

recovery associated with unsuited walking as gravity is reduced. Walking recovery

was elevated more than running recovery in Earth- and Mars-gravity conditions.
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symbols represent the walking (Fr = 0.25) condition, gray-filled symbols represent
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Figure 5-9: Unsuited specific resistance as a function of G-level: Unfilled symbols
represent values computed directly from metabolic data. Filled symbols, the theoret-
ical values, were estimated based on the G = 1 data using the approach described in
the methods. Thus, theoretical results are shown only for the reduced gravity condi-
tions. Symbols , A, and O indicate walking (Fr = 0.25), run/walk, and running
(Fr = 0.60) conditions, respectively. Error bars, one per actual measurement, are
m+rSE.
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Figure 5-10: Computed net energy recovery ratio as a function of G-level and exoskele-
ton condition: Unfilled symbols represent the Unsuited condition, gray-filled symbols
represent the ExoControl condition, and black-filled symbols represent the Exoskele-
ton condition. Symbols 0, A, and D indicate walking (Fr = 0.25), run/walk, and
running (Fr = 0.60) conditions, respectively. Exoskeleton conditions are denoted by
U (Unsuited), C (ExoControl), and E (Exoskeleton).

150

U C E

Running 0 U U

Run/Walk A A A

Walking 0 0 0
, . . .



Table 5.6: Specific Resistance Comparison

Condition G Sactual Sactual (Conf. Int.)a Stheory % Difference p-valueb
Walking

Moon 0.140 5.00 3.64 - 6.37 5.86 17.2 0.167
Mars 0.348 1.84 1.12 - 2.57 1.61 -12.2 0.458
Earth 1.00 0.518 0.370 - 0.665 - - -

Run/Walk
Moon 0.168 2.86 2.13 - 3.59 2.77 -3.0 0.777
Mars 0.356 1.30 0.862 - 1.75 1.21 7.4 0.596
Earth 1.00 0.50 0.432 - 0.571 - - -

Running
Moon 0.192 2.78 2.07 - 3.48 2.53 -8.7 0.418
Mars 0.367 1.24 0.917 - 1.56 1.14 -7.6 0.488
Earth 1 0.46 0.388 - 0.535 - - -

a Confidence interval for the observed values Sactual.

b One sample equality of means t-test relative to theoretical value (df = 5). A p-value < 0.05 would
indicate that the mean S value is significantly different than the theoretical value.

5.4 Discussion

A major limitation of this experiment included a lack of kinematic and kinetic mea-

surements; the availability of center of mass motion data from the accelerometer

would have helped to overcome some of these limitations. While the repeated mea-

sures experiment design prevented order effects from being analyzed, this design was

a reasonable compromise that was made to limit subject fatigue and maintain a low

subject drop-out rate (no subjects dropped out). The limitations of the Moonwalker,

discussed below, contributed substantially to experimental errors.

The basal metabolic rate measurements were highly variable due to problems in

obtaining reliable metabolic measurements at low flow rates using the high-flow pneu-

motach required for subsequent measurements; subjects may also have disrupted basal

metabolic measurements by talking or nose-breathing. However, the basal metabolic

rate averaged across all trials and subjects (1.51 ± 0.15 (SE)) compares favorably with

Farley and McMahon [1992], who found basal metabolic rate to be independent of

gravity and equal to 1.47 ± 0.112 (SE) W/kg (N = 4).
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The difference between the Lunar-condition G-level at adjustment and as expe-

rienced by the subjects demonstrates that subject stance and posture affected the

G-level more than the errors in setting the G-level; subjects were frequently observed

to walk on tip-toes during the Lunar gravity condition, which would tend to increase

the effective G-level, not decrease it. The observed reduction is likely to be due to

limitations of the moonwalker: in simulated lunar gravity, additional spring stretch

produces large forces, enabling subjects to suspend themselves easily in the air (for

example, during the body mass measurement).

Specified Froude numbers were generally slightly but significantly different from

their target values, largely due to the limitations of the moonwalker: the non-constant

force nature of the moonwalker springs made the moonwalker applied load vary signif-

icantly with body position, directly contributing to the larger Froude numbers errors

at greater reductions in gravity. In G = 1 conditions, the Froude number errors are

largely explained by the quantization error of the indicated treadmill velocity.

5.4.1 Exolocomotion Gait

Measured cadence values in the G = 1 running condition are near optimal for running

in Earth gravity [Kaneko, 1990] (see Figure 2-9). Walking cadence values are not

greatly lower than running cadence values because the Fr = 0.25 and Fr = 0.60

conditions have a relative velocity ratio of 0.65. The decline in cadence with reduced

G-level is consistent with data reported by Davis and Cavanagh [1993].

As expected, non-dimensional cadence values for running are slightly less than

those for walking. The similarity of non-dimensional cadence values across walking

and running, and as a function of the G-level, is an indirect indicator that kinematics

may not have changed substantially over the range of conditions studied. The more

modest rise in A values as gravity is reduced suggests a slight change in the excursion

angle, calculated using the Equation 5.4 approximation as 45-50 ° for G = 1 to 33-40 °

for G = 0.165.

The observed increase in the median self-selected Froude number with reduced G-

level is consistent with the findings of Kram et al. [1997], who measured the run-walk
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Table 5.7: Unsuited Self-Selected Run-walk Froude Number Comparison

G-Level Mean Fra Kram et al. [1997] Mean Frb %Differenceb
Moon 0.84 0.91 -7.4
Mars 0.62 0.57 8.4
Earth 0.41 0.45 -9.9

a Froude number at self-selected run-walk transition in unsuited condition.
b Linear interpolation of Froude number at run-walk transition using data from Kram et al. [1997].

transition at a range of simulated gravity levels using a detailed 'titration' procedure

to determine the velocity of transition. For this study I used a much more simple

procedure because of subject time considerations, and therefore expect less consistent

results; the magnitude of the difference between the values observed and the findings

of Kram et al. [1997] was less than 10% in all gravity conditions (Table 5.7), and the

average difference was only -3%.

5.4.2 Exolocomotion Energetics

One surprising feature of the energetics results was that cost of transport at constant

Froude numbers was relatively independent of G-level in the unsuited condition. This

is different, but does not contradict, the relatively linear declines observed in the

constant velocity reduced gravity walking and running measurements by Farley and

McMahon [1992].

The success of the theoretical predictions of specific resistance values across all

Froude number conditions, without any statistical differences between the observed

and predicted values, suggests that the mathematical form of the model is reason-

able, and that reasonable parameter values have been chosen. The goodness of fit

(Adjusted R2 of 0.98 for measured versus theoretical S) is somewhat surprising, be-

cause of the nature and extent of the assumptions that went into the estimates: First,

they assume a very crude derivation of the gravitational dependence of muscle effi-

ciency (see Appendix A). Second, the model as implemented to date is based on an

assumption of 55% energy recovery during running, with no compensation for G or

velocity; the data on walking energy recovery from Griffin et al. [1999] is much more
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extensive. Third, when the total positive work rate by locomotion muscles (Win)

was transformed from one state to another, Win was assumed to scale directly with

the gravity and mass ratios of the two conditions, making an implicit assumption of

contant kinematics and kinetics. Nevertheless, a single equation,

Om b __ Win *1- r
Emuse

successfully predicted the observed metabolic cost across G and v, and across both

walking and running gaits.

Perhaps the most surprising feature of the energetics results was the large effect

caused by the low-stiffness springs used in the ExoControl condition. It was not

anticipated that they would affect cost of transport and other variables to the extent

that they did. The ExoControl springs were not calibrated (see Chapter 4), but by

basic beam theory should be approximately 1/8th as stiff as the Exoskeleton springs

(the latter are roughly equivalent to the EMU knee joints, with peak stiffness values

in the 1-5 kN/m range, depending on the leg geometry). The ExoControl exoskeleton

legs appear to have very high energy recovery, and several subjects commented on

their relative easy of movement in reduced gravity; one subject described wearing

these legs while walking in reduced gravity as 'effortless...I forgot they were there.'

It is possible that net energy recovery ratios are overestimated due to increases

in Win relative to the similar unsuited condition. However, Griffin et al. [1999] found

that vertical displacements of the center of mass changed by less than 10% during

simulated reduced gravity walking in the range 0.25 < G < 1.0. While the observed

net energy recovery ratios are high, they are consistent with the measured recovery

values for the exoskeleton legs. An open question is whether each exoskeleton leg

can store enough enery to account for a significant fraction of Win during reduced

gravity locomotion; this value has not been computed, but could be estimated if

reliable kinematics data were available. It is possible that the ExoControl exoskelton

legs have appropriate stiffness to significantly improve recovery and not significantly

impair normal kinematics.
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A remaining question involving both exolocomotion gait and energetics is why

the unsuited run-walk transition occurs at higher Froude numbers at low gravity - if

recovery signals gait switching, why doesn't the relative decline in walking recovery

lead to a switch to running at lower Froude numbers rather than at higher Froude

numbers? At least two factors may be involved.

First, the swinging of arms and legs creates a downward force that helps keep

the body on the ground during reduced gravity walking, and this effect is magnified

in a center-of-mass partial-body-weight suspension system in which the arms and

legs are acted upon by normal levels of gravity. Kram et al. [1997] estimated the

size of this effect for humans locomoting in reduced gravity, and used it to compute

corrected run-walk transition Froude numbers, which were nearly constant ( 0.5)

over a ten-fold range of gravity.

Second, I have made a broad assumption that energy recovery in running is not

affected by gravity. While the directly reduced-gravity-proportional reduction in

mass-specific metabolic cost found by Farley and McMahon [1992] argues against

a significant change in energy recovery during running, at least for constant velocity

running in 0.25 < G < 1.0, it is possible that energy recovery in running declines

substantially below G = 0.25 and at low velocities.

How do these exolocomotion findings relate to space suit energetics? All the same

mechanisms at work in exolocomotion apply to (soft-goods) space suit legs. For ex-

ample, space suit legs have high energy recovery and similar knee joint stiffness. In

addition, video analysis of walk-run or walk-lope transitions by space-suited astro-

nauts on the Lunar surface suggests that these transitions occur at Froude numbers

as low as Fr = 0.3 (C. Carr, unpublished data). In these cases, loping or running is

preferred at Fr = 0.3 presumably due to very low walking energy recovery.

Major differences between the exoskeleton and space suits include the much higher

mass, impaired hip, ankle, and upper body mobility, and the presence of longitudinal

pressure forces; these and other differences between space suits and the lower-body

exoskeleton are reviewed and summarized in Chapter 4.

Space suits are likely to improve recovery during locomotion, but to do so in an
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unbalanced way with respect to walking and running: while running energy recovery

may be enhanced, the impaired hip and ankle mobility may greatly impair energy

recovery during walking. This is precisely what the meta-analysis and regressions

of Chapter 3 showed: a differential effect of the space suit on walking and running,

with reduced gravity running S values not very high above unsuited values, but with

walking S values comparatively higher across all gravity levels.

5.4.3 The Tuned Space Suit

The current study has an important implication for future space suit design: it pro-

vides a new start to answering the question: What is the optimal space suit joint

torque? One of the mantras of space suit design for more than the last forty years

has been to 'eliminate joint-torques,' based on the assumption that the best joint-

torque is no joint torque. However, as Figure 5-11 illustrates, this is not necessarily

the case when one considers lowering the metabolic cost of locomotion as an objective.

Consider an ideal space suit with lower legs whose stiffness can be adjusted from

zero to beyond the value achieved in the Exoskeleton condition. With zero 'suit' (or

exoskeleton) leg stiffness, the unsuited specific resistance is achieved. As the stiffness

increases, some energy is stored in and released by the high-recovery exoskeleton or

suit leg, slightly improving overall recovery and lowering S. Stiffness must decline

because the observed S in the ExoControl condition is lower than the unsuited S. At

some stiffness level, a minimum is achieved, but the available constraints make it im-

possible to determine whether the optimal stiffness is smaller or larger in magnitude

than the effective stiffness of the ExoControl exoskeleton legs. For this reason, two

representative gray curves are shown in Figure 5-11. It is likely the optimal stiffness is

greater than the ExoControl exoskeleton leg stiffness (solid gray curve), based on sub-

jective feel and the -8-fold difference in stiffness between the ExoControl condition

and the Exoskeleton condition. As stiffness increases further, S must increase because

under the Exoskeleton condition the exoskeleton legs are approximately eight times

more stiff than under the ExoControl condition, and the observed S under the Ex-

oskeleton condition is larger than the ExoControl condition. As the stiffness increases
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Figure 5-11: The 'Tuned Space Suit' concept, demonstrated using mean specific re-
sistance values (averaged across Fr and subject) observed in the Lunar (G = 0.165)
condition, plotted as a function of the EMU relative stiffness k/kEMU. Unsuited spe-
cific resistance was observed to be higher than both exoskeleton configurations, with
the ExoControl specific resistance lower than the Exoskeleton specific resistance. This
implies that an exoskeleton leg stiffness exists, below the leg stiffness of the Exoskele-
ton configuration, which has minimum specific resistance. See text for a detailed
explanation.

further, the greater stiffness of the suit or exoskeleton legs will disrupt normal kine-

matics more and more, until recovery and/or biomechanical advantage is impaired,

resulting in a higher specific resistance. The extent to which the ideal stiffness would

change with the G-level is unknown.

How would one go about creating a Tuned Space Suit? Modifying the thickness of

the exoskeleton fiberglass bars and making additional measurements of specific resis-

tance is one possibility. Another is to address the general problem of how springs in

parallel with the legs change leg stiffness, klg, what changes this implies to regulation

of effective total leg stiffness, kff = kleg + ksuit, and how these changes might effect

157



the metabolic cost of locomotion.

Human leg stiffness, based on a mass-spring model of running [Blickhan, 1989,

McMahon and Cheng, 1990], changes little with velocity [McMahon and Cheng, 1990],

but does accommodate changes in surface stiffness [Ferris and Farley, 1997, Farley

et al., 1998]. Ferris and Farley [1997] found that humans maintained similar vertical

center of mass displacement despite a > 1000 fold change in surface stiffness ksurf.

What happens if regulation of kleg is intentionally disrupted? McMahon et al.

[1987] had subjects run with their knees bent ('Groucho' style, something they wouldn't

normally do on their own), thereby reducing their leg stiffness to 82% of normal. This

incurred a oxygen consumption penalty of up to 50% above 'normal' running, pre-

sumably because the lower leg stiffness led to larger oscillations of the center of mass

(Win increased, resulting in a higher Qm - Qb for the same Emusc and r).

Like Ferris and Farley [1997], Kerdok et al. [2002] found that effective leg stiffness,

keff, was the same despite variations in the surface stiffness. As surface stiffness

decreased, leg stiffness increased, resulting in a similar effective leg stiffness (1/keff =

l/klg + l/k,,,rf, because the leg and surface are in series). Over the range of ksurf

tested (75.4-946 kN/m) Kerdok et al. [2002] found a drop in metabolic rate of 12%

as ksurf was decreased.

Constant keff in the McMahon and Cheng [1990] running model implies similar

magnitude oscillations of the center of mass (similar Win per step), suggesting that

the metabolic cost reduction found by Kerdok et al. [2002] results from increased

recovery (); Kerdok et al. [2002] computed energy delivery by the compliant surface,

and found that for every watt delivered by the surface, the metabolic rate decreased

by 1.8W. This same calculation could be performed for exoskeleton legs using data

from trials for which kinematic data are available.

It is not known how humans modify leg stiffness in response to springs in parallel

with the legs; however, to maintain the same center of mass motion, one would expect

the response to be a reduction in kleg that results in the 'normal' keff at the current

G level. Donelan and Kram [2000] reported leg stiffness values for 2-5 m/s running:

Earth-gravity stiffness values of 8-10 kN/m had declined to approximately 5.0-6.5
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kN/m in G = 0.25. Because the EMU-like exoskeleton springs have stiffnesses in the

range of several kN/m, they could be expected to have a significant effect on kl,,eg.

Studying changes in kle9 in response to springs in parallel with the legs might lead to

a better understanding of human leg stiffness regulation, in addition to determining

whether it is feasible or desirable to build a tuned space suit.

McMahon et al. [1987] and Kerdok et al. [2002] have connected regulation of

leg stiffness to the metabolic cost of locomotion, but the definitive theoretical and

experimental link between leg stiffness, recovery, and metabolic cost has yet to be

made. While such a link is beyond the scope of this work, further discussion about

recovery and its impact beyond the exoskeleton experiment is in order.

5.4.4 The Role of Recovery in Gait Switching

Donelan and Kram [2000], in their study of dynamic similarity in reduced gravity

running, concluded that a single unifying hypothesis for the effects of size, velocity,

and gravity on both walking and running gaits will not be successful. However, the

current work illustrates the linkage between the Froude number and the recovery in

walking, a (tenuous, perhaps) linkage between recovery and the gait transition, and

has demonstrated that basic assumptions regarding center of mass motion, running

recovery, and muscle efficiency can produce specific resistance estimates that closely

approximate measured values. The Froude number incorporates the effects of size

and velocity, whereas gravity is represented both in the Froude number and in the

calculation of positive work done by the locomotion muscles.

Recovery could provide the connection between walking and running that predicts

the run-walk transition (Warning: some speculative material follows).

Why would recovery be a useful trigger for the run-walk transition? Because it

relates net metabolic costs to center of mass kinematics and muscle efficiency, a gait

transition occurring at the same value of recovery for two gait styles would trigger,

in most cases, a gait transition to the gait style with the lower energetic cost.

How could one identify whether recovery triggers the run-walk transition or an-

other gait transition? If the Win term changed between gait styles (if, for example,
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center of mass kinematics changed significantly), the gait transition might result in a

discontinuous change in energetic cost, but a continuous change in recovery. Observ-

ing such a discontinuous change (in the cost of transport, for example) at the point

of equal recovery might support the concept of recovery as a trigger.

A second method for assessing whether recovery triggers the run-walk transition

would be to make computations of the recovery at the run-walk transition using ex-

isting data, or by making new measurements on animals (including humans). For ex-

ample, Riskin and Hermanson [2005] reported that members of the species Desmodus

rotundus (the common vampire bat) exhibit a 'unique bounding gait in which the

forelimbs instead of the hindlimbs are recruited for force production as the wings are

more powerful than the legs...[a gait] different from any gait previously described.'

These bats transition from walking to running at a velocity of - 0.43 m/s; for their

size, the vampire bats have long forelimbs of approximate length 6.5 cm (measured

from video data of Riskin and Hermanson [2005]), giving a transition Froude number

of 0.29. Figure 5-12 illustrates how the equal-recovery at transition hypothesis can ex-

plain the differences in transition Froude numbers between humans and the Desmodus

rotundus. The rotundus gait is extraordinarily similar to a gait style known for over

30 years: it is the direct quadrupedal analog of the loping gait performed by space-

suited astronauts on the Moon, who also had a walk-lope transition Froude number

of 0.3.

More evaluation is required to see whether this finding generalizes; this general-

ization will depend upon an improved understanding of what conditions affect energy

recovery in running for an individual and within and between species.

5.4.5 Summary and Conclusions

In Chapter 2, I developed a clear framework for sources of metabolic cost that per-

mits analysis of both work output tasks and locomotion, and clearly differentiates

between muscle efficiency and energy recovery (Chapter 2). This framework was

used in Chapter 2 to compute the net energy expended in moving the space suit,

which illustrated the benefits of mechanical counter-pressure space suits relative to
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Figure 5-12: Percent recovery for a biped (humans) and quadruped (dogs) versus
Froude number for a range of walking speeds. Percent recovery decreases more pre-
cipitously at faster speeds for the quadruped compared with the biped at similar
Froude numbers. Quadruped data are from Griffin et al. [2004b], and biped data are
for adults walking in normal gravity from Griffin et al. [1999]. Caption and figure
from Griffin et al. [2004a]. The dotted horizontal line indicates human running energy
recovery value computed by C. Carr from Kaneko [1990]. Running energy recovery,
a function of elastic energy storage, may be similar across different species as demon-
strated by the success and wide applicability of the mass-spring running model. The
vertical lines represent the theoretical run-walk transition Froude numbers under the
hypothesis that transition occurs at equal recovery values. Griffin et al. [2004b] do not
report the Froude number at the run-walk transition for the quadrupeds (dogs) that
they studied, but the horses studied in Griffin et al. [2004a] had a run-walk transition
Froude number of 0.35. The vampire bats studied by Riskin and Hermanson [2005],
quadrupeds that walk and run with a loping-style gait (see Chapter 2 for a definition
of loping), transition from walking to running at Fr = 0.29.
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gas pressure suits for work output and locomotion, at least in in earth gravity. That

framework was used in this chapter to successfully estimate the specific resistance

during unsuited locomotion, across gait forms and across G-levels, with no statistical

differences between the observed values and the model predictions.

In Chapter 3, I transformed data from prior studies of unsuited and space-suited

locomotion energetics into a common form and performed a regression analysis. The

results hinted that space suit legs may act as springs, and that 'fast' (Fr > 1)

running in space suits, at least in significantly reduced gravity conditions, has a

lower cost of transport [J/(kg. mI than walking or slow running. This result has

been confirmed by the results of the exolocomotion experiment described in this

chapter: Exoskeleton legs caused a significant reduction in cost of transport and

specific resistance (J/(N m)) relative to unsuited conditions, with this effect most

pronounced under reduced gravity conditions.

In Chapter 4, I described the construction and characterization of the lower-

body exoskeleton used in the exolocomotion experiment. Stiffness measurements

revealed that proper exoskeleton spring selection results in equivalent knee joint-

torques equivalent in form and magnitude to the EMU. Furthermore, the exoskeleton

leg joint-torque comparison proves that space suit legs act as springs: if physical

springs induce space-suit-knee-like joint-torques, then space suit knees-by definition-

act like springs.

I hypothesized that exolocomotion would elevate the net energy recovery in both

walking and running. The results of the exolocomotion experiment demonstrate that

this is the case, even if the net energy recovery values in Figure 5-10 are overesti-

mates. The second hypothesis relates to exoskeleton energetics: as hypothesized, the

exoskeleton conditions decreased cost of transport and specific resistance in reduced

gravity; the exoskeleton conditions increased cost of transport in Earth-gravity run-

ning. The third hypothesis was tested by examining how the relationship between

the Froude number and energy recovery changed as a function of exoskeleton con-

dition and G: because of significant declines in unsuited walking energy recovery in

significantly reduced gravity (G < 0.5), the high exoskeleton energy recovery affected
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walking proportionally more than running as compared to the unsuited conditions. As

predicted, the Froude number at transition was reduced in the exoskeleton conditions

as compared to the unsuited conditions.

Results of the exolocomotion experiment have two main implications for space-

suited locomotion: First, they demonstrate that spring-like space suit legs may be

beneficial in reducing metabolic cost during space-suited locomotion. Second, they

raise the possibility that the optimal space-suit leg stiffness, with respect to minimiz-

ing the metabolic cost of locomotion, is non-zero: a space suit, tuned to the right

stiffness, might achieve a local minima in the cost of transport. Finally, the excel-

lent agreement of the Ig observations and model, along with the observed changes

in the Froude number, support a linkage between recovery and the run-walk tran-

sition; further data are needed in order to determine whether transition occurs at

equal recovery, or whether other factors such as the non-dimensional cadence are also

involved.

The major contributions of the dissertation include:

1. A model that predicts metabolic cost in non-dimensional form for unsuited

locomotion across running and walking and across gravity levels (Chapters 2

and 5),

2. An assessment of historical data that reveals the effect of pressure suits on work

output and the metabolic cost of locomotion (Chapters 2 and 3),

3. A method of simulating a space suit using a lower-body exoskeleton, and meth-

ods for designing and characterizing the exoskeleton (Chapter 4),

4. An explanation for the differences in the energetic costs of walking and running

in space suits (Chapters 2-5),

5. Evidence that there is an optimal space suit leg stiffness, perhaps an optimal

space suit leg stiffness for a given gravity environment (Chapter 5),

6. Evidence, mostly indirect, that energy recovery plays a role in gait switching

(Chapters 2 and 5).
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Many roads lie ahead for interested souls: The current course of investigation

could be greatly enhanced by high quality kinematics and kinetics data. Furthermore,

there is much room to explore the interrelationships between spring stiffness, recovery,

metabolic cost, and the run-walk transition - for example, one could extend the

existing model to estimate the metabolic cost of exoskeleton locomotion based on

kinematics measurements-. The general problem of how springs in parallel with the

legs modify leg stiffness remains unsolved, and relates to whether the 'Tuned Space

Suit' concept is viable and whether it is desirable from a cost-benefit standpoint: How

sensitive is the metabolic cost to the optimal stiffness? Does the optimum change

with gravity? It is not known how running energy recovery changes as a function of

Froude number and gravity. One final question: Does the equal-recovery hypothesis

for the run-walk transition hold, or does it require a more complicated formulation?

We shall see.
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Appendix A

Hill Muscle Model

This appendix describes the implementation of the Hill Muscle Model, including a

rough calculation of the approximate gravity dependence of muscle efficiency.

A.1 Model Derivation

In the same year in which he received the Nobel Prize "for his discovery relating

to the production of heat in the muscle"', A.V. Hill demonstrated that muscles are

most efficient for a particular range of the muscle velocity of shortening, v [Hill,

1922]. Hill later related the tension (force) produced by muscle undergoing an isotonic

contraction, T, to the velocity of shortening [Hill, 1938] as:

(T + a). (T + b) = (To + a) b, (A.1)

where To is isometric muscle tension, and a and b are constants. Geometrically,

this equation represents a rectangular hyperbola with asymptotes of T = -a and

T = -b [McMahon, 1984]. With no load (T = 0) the maximum shortening velocity

Vmax is achieved. Rewriting Equation A.1 in terms of normalized velocity V/Vmax and

normalized tension T/To gives:

1See http://www.nobel.se/medicine/laureates/1922/.
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v 1 - TTo
(A.2)

Vmax 1 + (T/To) k- 1 ' (A2)

where k = a/To = b/Vmax. Equations A.1 and A.2 apply to nearly all types of

muscles in non-insects, including skeletal, cardiac, and smooth muscle [McMahon,

1984]. In addition, 0.15 < k < 0.25 for most vertebrate muscles [McMahon, 1984],

although Alexander [2003] recommends k = 0.25 as a good average value for ver-

tebrate muscles. The molecular basis for this widespread applicability has recently

come to light: the load-dependence of the myosin stroke relative to its actin fiber is

the primary molecular determinant of the mechanical performance and efficiency of

skeletal muscle [Reconditi et al., 2004].

Because muscles share a common architecture within and across organisms and

species, but differ in the types and proportions of protein isoforms upon which the

common architecture depends, it seems reasonable that Equations A.1 and A.2 are

so widely applicable. Van Leeuwen and Spoor [1992] expressed Equation A.2 in a dif-

ferent form and developed a related expression that takes into account the possibility

of negative shortening velocities (muscle lengthening, or eccentric motion):

T aVmax-v forO < v < va (A.3)
vmax+Gv [ (A.3)

To t 1 8-O8· Vmam -rGv] for-v < v < 

where G = 1/k, and r = 7.56 is a factor that reflects the mechanics of eccentric

motion.

For an isotonic contraction of a muscle in which all muscle fibers are oriented

uniformly, so that the velocity of shortening and the tension are collinear, mechanical

power output, W, can be computed as

~df-, d f dl v(bT - av. = Td i dl = T = Tv = (bTo (A.4)
t] dt dt vdb

where 1 is muscle length and t is time. In order to evaluate how the efficiency

of muscle is linked to the parameters of the Hill equation (Equation A.1), Alexander

[1997] defined muscle efficiency as the ratio of mechanical power to metabolic power
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consumption of a fully activated muscle, Pmetab, assuming adenosine tri-phosphate

(ATP) as the energy source. The efficiency of production of ATP from aerobic res-

piration and foodstuffs, rATP, is only about 50% efficient [Alexander, 2003], so that

the net efficiency from the rate of enthalpy change to muscular work is given by

Emusc = ATP (A.5)
Pmetab

Alexander [1997] expressed Pmetab as:

Pmetab = TOVmaz((V/Vmax), (A.6)

and then derived empirical expressions for 4> based on the data of Ma and Zahalak

[1991]:

(V/Vnax ) { 0.23 - 0.16 e(-8m-ax) forO < v <va V(A.7)

0.01 -0.11 v + 0.06 · e(23 .a) for -vma < v < 0.Vmax

Using Equations A.4 and A.6, Equation A.5 can be rewritten as

Emusc = W7ATP -* * (v/Vma ) (A.8)
To gives max

Using G = 4 ( = 0.25) and r = 7.56 gives maximum Emu,, = 0225 for V/Vma=

0.227 and maximum normalized power W/(Tovmax) = 0.096 for V/Vmax = 0.311.

The hill muscle model as computed using these parameters is shown in Figure A-1.

The peak efficiency and peak power values are best visualized in a plot restricted to

positive contraction velocities, as illustrated in Figure 2-1.

A.2 Gravitational Dependence of Muscle Efficiency

I have developed a speculative procedure to estimate the approximate dependence of

muscle efficiency Emusc on gravity. The basic assumption of the derivation is that

muscles operate at near peak efficiency under G = 1 conditions. This is a reasonable
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Figure A-1: Parameters of the Hill muscle model as a function of V/Vmax, the ratio
of muscle contraction velocity to maximum muscle contraction velocity. T/To is the
ratio of muscle tension to isometric tension, > is a cost function describing cellular
energetics, and Emusc is the muscle efficiency.
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assumption, as illustrated by the agreement to within 2-3% between the maximum

muscular efficiency observed during slope walking [Margaria, 1976] or cycling [Whitt

and Wilson, 1982] and the peak efficiency predicted by the above-implemented Hill

Muscle Model.

To simulate the effects of reduced gravity on the muscle, the T/To value at the

G = 1 peak efficiency condition can be scaled so that the new 'reduced gravity'

tension ratio is

TI - G T ' ~~~(A.9)
To (To 1G,EPeak

From Tl/To a new V/Vmax can be estimated using Equation A.2, allowing Emsc

to be computed as a function of G (Figure A-2).

Why might the muscle efficiency vary with G but not vary substantially with

velocity?2 McMahon and others have shown that leg stiffness, but not vertical stiffness

[McMahon and Cheng, 1990] is relatively constant as a function of velocity. Leg

stiffness is related to contraction velocity, and therefore muscle efficiency can be

maintained across a wide range of velocities.

2 Assuming that velocity is not too small.
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Appendix B

Treadmill Velocity Measurement

System

This appendix summarizes the design, construction, and testing of the treadmill ve-

locity measurement system.

B.1 Electronics Design

The treadmill (Trotter CXTPIlS, Cybex Corporation, Medway, MA), used in the

Chapter 5 experiment, displays velocity to a resolution of 0.1 MPH on its graphic

display. Velocity is an important parameter in the Chapter 5 experiment. Because of

poor velocity resolution and unknown accuracy I designed a system to measure the

actual treadmill velocity.

The concept for this improvement is to sense the rotation of the rear treadmill

roller. Counting rotations of the roller per unit time provides an easy way to ac-

curately estimate the treadmill velocity. One argument against this solution is the

possibility of slippage of the treadmill belt against the rear roller. While this is pos-

sible, slippage against the treadmill roller is more likely at the front roller, where the

belt is driven. The rear roller motion results from the friction of the belt - only fast

velocity changes in the belt are likely to cause slippage in the rear.

The implementation developed here is based on the OPB700 (combination IR
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Figure B-1: OPB700 Sensor Mechanical Details (Product Bulletin OPB700, June
1996, Optek Corporation, Carrollton, Texas).

LED and phototransistor sensor), from Optek Technology, Carrollton, Texas, shown

in Figure B-1.

A fixed axle-mounted sensor was used in conjunction with a reflective patch on

the roller drum to count roller rotations. The same sensor could be used to identify a

reflective patch placed directly on the belt; this would provide the most direct means

of measuring velocity and would avoid the slippage problem mentioned above, but

the reflective surface would be exposed and could be easily damaged. Also, because

detections of the surface patch would be infrequent, this solution might require either

careful timing measurements or long data collection periods in order to obtain good

velocity estimates. The roller revolution detection approach is much simpler, and less

prone to wear and tear.

For convenience, a 7805 +5V regulator was selected; a much smaller, more efficient

regulator could certainly be used instead, as much less than the 1 Amp capability of

the 7805 is required for use of the OPB700.

The diode forward current if of the OPB700 must be limited to < 100 mA; I
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Figure B-2: From Fairchild Semiconductor Application Note AN-3005.

have chosen 40 mA as the product bulletin provides device operating curves at this

condition. The desired bias resistance can be calculated as R = (Vs - VF)/if, where

VF is the diode forward voltage (from the product bulletin) and Vs = 5V is the supply

voltage. For if = 40 mA we have R = 82.5Q. The nearest standard resistor value is

82Q; power dissipation at this resistance would be ifR = 0.16W, so a 1/4W resistor

can be selected (for example: bulk, 1/4W, 5%, 5 pack, Digikey # 82QBK-ND is

$0.28).

The phototransistor can be used in two different configurations: common-emitter

amplifier (CEA, Figure B-2 left) or common-collector amplifier (CCA, Figure B-2

right):

The CEA configuration generates an output that transitions from high to low

when light is detected; the CCA output transitions from low to high when light is

detected. The CCA configuration provides an active-high signal.

For each configuration, two modes of operation are possible: active or switch

mode. In active mode, the output is proportional to detected photon flux up to some

saturation level where the output no longer increases with increased flux. In switch

mode the phototransistor is either "off" (cut-off) or "on" (saturated) depending upon

the photon flux. I designed for the switch mode so that I could count pulses and use

pulses per unit time to estimate the treadmill velocity.

The application note provides the following limits on the load resistance (RL = RE
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-

Figure B-3: Sketch of treadmill velocity measurement system circuit.

in our case since we are using the CCA configuration):

Active Mode: Vcc > RL ICC

Switch Mode: Vcc < RL ' ICC

We have Vcc = 5.0V, and, from the OPB700 product bulletin, 161iA for VCE =

5.OV, d = 0.02 inches, assuming worst case minimum to +2u. The switch mode

condition requires RL > 31.3kQ for ICC = 160tA or RL > 313kQ for IcC = 16/LA.

Practically speaking, since the collector current depends upon the incident photon

flux, which is dependent upon the forward diode current, distance to target, and target

reflectivity, the load resistor will be a potentiometer that can be adjusted to ensure

the output voltage will be several volts in the "on" state. A very conservative upper

bound of the power dissipation for the potentiometer would be ICRL = (160iuA)2

313kQ = 8mW (assuming highest current and highest resistance). If the sensor

is well-positioned then a 50kQ potentiometer (4LG54BK-ND, Digikey, 0.3W max,

$0.44 each) should be sufficient.

The overall circuit looks like the sketch in Figure B-3:

The voltage output of this circuit was sampled and digitized at 1 kHz using an

analog and digital i/o module (PMD-1608FS, Measurement Computing, Middleboro,

MA).
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Figure B-4: Reflective Layer Prototype

B.2 Mechanical Design

Reflective Layer

I first created a template of the right size to sit on a detent of the moving section

of the roller (outer circle 2.26 in, inner circle 2.05 in, center line allowing 50% duty

cycle). I built a test ring to do a fit check (Figure B-4): first I applied glue to a sheet

of paper, applied copper-coated Kapton®with non-reflective side down to one half

of sheet (Kapton®can be cut on paper cutter to get a nice straight edge). I cut the

pattern out and mounted the ring on the movable detent of the roller. The white part

can be colored black or one can start with black paper or other material to minimize

reflectivity of the non-copper area.

To make a more robust ring, I cut out a ring using the water jet cutter from 1/8"

thick Aluminum sheet, and attached the copper-coated Kapton®to one side of the

ring (Figure B-5. The bare-aluminum side was later colored black using a permanent

marker. For final mounting of the ring, I cleaned the ring and roller detent surface
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Figure B-5: Reflective Ring

using acetone and used silicone rubber sealant to bond the ring to the roller.

Sensor Mounting

The sensor was mounted on an additional shaft collar (McMaster-Carr, part #

6436K73). This two-sided Aluminum shaft collar fits on the 1 in shaft of the roller;

a small hole was drilled and tapped to permit mounting of the OPB700AL sensor

on the fixed portion of the shaft (Figure B-6). In a pinch one could just use thick

rubber band to mount sensor, but the tapped screw hole with lock-tite®provides a

more reliable mounting.

This shaft collar has an OD of 1.75 in, leaving 3/8 in thickness for drilling and

tapping of a screw hole. To make a #4-40 tapped hole, I used a #43 drill for tapping,

and tapped holes on two sides of the shaft collar to create two sensor placement

options. A single screw permits distance adjustments of the sensor forward/backward

to optimize photon flux to the phototransistor.

Figure B-7 shows the sensor mounted in-place on the rear treadmill roller.

B.3 System Evaluation

An initial test of the sensor was conducted at 1.0 MPH and 8.0 MPH, the velocity

limits of the treadmill. Five seconds of data was collected at each speed, to ensure

that the velocity could be determined even over this short time interval. The DC
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Figure B-6: Mounting of the Sensor
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Figure B-7: Sensor mounted in-place on the rear treadmill roller.
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Figure B-8: Rear-roller geometry

component of the data was removed, and an FFT used to extract the peak frequency,

which represents the frequency of rotation of the roller. To estimate the velocity, I

computed the velocity as a function of the roller diameter and made some measure-

ments, illustrated in Figure B-8, using a micrometer: I measured A = 2.650 in and

B = 0.080 in, so that R = 1.245 in.

Results showed that the treadmill 1.0 mph indication is quite good (Figure B-

9), and the 8.0 mph indication less so (Figure B-10); if the initial measurement is

considered accurate, the 8.0 MPH indication would represent about 1.7% error.

The FFT results are cleaner for higher speed operations; at low velocities, har-

monics of the fundamental frequency are present.

Next, a full calibration of the treadmill indicated velocity curve was performed.

To select a given indicated velocity, I used the minimum number of "increase velocity

button" clicks to obtain the indicated velocity. A given velocity was also set by

starting at a prior velocity below the final desired indicated velocity. This same

procedure was used throughout the Chapter 5 experiment to ensure that velocities

were set in a consistent manner. I tested the indicated velocity over the full treadmill

range from 1 MPH to 8 MPH in indicated increments of 0.1 MPH.

The indicated versus actual (estimated) velocity curve is shown in Figure B-11.

The estimate of the treadmill roller diameter was then modified from 2.490 in to
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Figure B-9: Results for 1.0 MPH Indicated: fpeak = 2.258 Hz, Vestimated = 1.004 MPH.
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2.535 in to minimize the average error between the indicated and actual (estimated)

velocity (this correction assumes that on average the treadmill indicated velocity is

correct). Using the revised roller diameter, percent error for the indicated velocity

was computed as

Perror% :=' (Vactual - Vindicated) 100
Vactual

with

Vactual = f 7 D,

where f is the measured roller revolution frequency and D is the roller diameter.

The RMS of the errors shown in Figure B-12 is 0.83%.

The run walk transition (Fr = 0.5) for a person in 1G with leg length 0.91

m transitions between walking and running at about 2.1 m/s or about 4.7 MPH.

Fr = 0.25 (optimal walking) occurs at about 3.3 MPH. Errors between these values

range from about -1% to +1%. The percent error fluctuates from < 2% to - 2% for

low velocities, such as those that might be encountered in low-Fr activity in reduced

gravity.

In the final calibration used in analyzing all experiment velocity data, the minimum-

bias roller diameter estimate was D = 2.532 inches, which achieved an excellent good-

ness of fit between indicated and actual (estimated) velocity (adjusted R2 = 0.9998).

B.4 Bill of Materials

Spare copper-coated Kapton®was used, but similar material could be purchased from

Dupont. Small proto-boards, miscellaneous wires, and 9V batteries are available from

RadioShack. In practice, the 9V battery connection was replaced with 5V power

provided by the data acquisition board. This prevented a low battery situation from

causing failure of the velocity measurement system. Other materials required to make

two complete systems are listed in Table B.1.
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Figure B-11: Actual versus Indicated Treadmill Velocity

Table B.1: Velocity Measurement System Bill Of Materials

Part # Description Quantity Cost Vendor
6436K73 Al. 1 in. shaft collar 2 $4.71 each McMaster-Carr
94690A107 #4-40 x 9/32 in pack of 100 $4.54 McMaster-Carr
82QBK-ND 82Q resistors 5 pack $0.28 Digikey
365-1010-ND OBP700 sensor 2 $9.90 each Digikey
4LG54BK-ND 50kQ Trim Pot 2 $0.44 each Digikey
296-11108-1-ND 7805 5V Regulator 2 $0.52 each Digikey
229K-ND 9V battery strap 2 $1.45 each Digikey
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