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ABSTRACT

Advances in microarray technology facilitate the study of biological systems at a
genome-wide level. Meaningful analysis of these transcriptional profiling studies, however,
demands the concomitant development of novel computational techniques that take into account
the size and complexity of the data. We have devised statistical algorithms that use replicate
microarrays to define a genome-wide expression profile of a given cell type and to determine a
list of genes that are significantly differentially expressed between experimental conditions.
Applying these algorithms to the study of cultured human umbilical vein endothelial cells
(HUVEC), we have found approximately 54% of all genes to be expressed at a detectable level in
HUVEC under basal conditions. The set of highest expressed genes is enriched in nucleic acid
binding proteins, cytoskeletal proteins and isomerases as well as certain known markers of
endothelium, and the complete list of genes can be found at http://vessels. bwh.harvard. edu/
software/endo_xcriptome . We have also studied the effect of a 4-hour exposure of HUVEC to
10 U/mL of IL-], and detected 491 upregulated and 259 downregulated statistically significant
genes, including several chemokines and cytokines, as well as members of the TNFAIP3 family,
the KLFfamily and the Notch pathway. Applying these rigorous statistical techniques to
genome-wide expression datasets underscores known patterns of endothelial inflammatory gene
regulation and unveils new pathways as well. Finally, we performed a direct comparison of
direct-labeled microarrays with amplified RNA microarrays for an initial assessment of the
effect of the additional noise of amplification on the outputs of the statistical algorithms. These
techniques can be applied to additional genome-wide profiling studies of endothelium and other
cell types to refine our understanding of transcriptomes and the gene regulatory network
governing cellular function and pathophysiology.

Thesis Supervisor: Guillermo Garcia-Cardefia, Ph.D.
Title: Assistant Professor of Pathology, Harvard Medical School
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1. Introduction

1.1. Gene Microarray Technology

Gene microarray technology now allows biologists to assay the transcriptional activity of

tens of thousands of genes simultaneously [1-3]. The combination of this technology with the

sequencing of the human genome has led to the development of total genome microarrays that

allow systems biologists to view the comprehensive transcriptional activity of a cell or tissue

type [4-6]. These total genome datasets possess a degree of richness that allows complex cellular

regulatory mechanisms to be studied at a new level of detail.

These large datasets, however, also pose a myriad of analytical challenges. Data for over

30,000 genes, comprised of hundreds of thousands of individual data points, must be organized

in a meaningful manner. In addition, for any given gene and condition, there are usually three

replicates, and given the signal-to-noise characteristics of most microarray platforms, creative

approaches must be used to analyze the data in a useful, statistically rigorous manner. Yet, when

these aspects are taken into account, there is a vast potential for mining these datasets to uncover

new biology.

1.2. Genome-wide Transcriptional Analysis of Endothelium

Vascular endothelium comprises a dynamic interface between blood and the vascular

wall. Their intact function is essential for the regulation of many vital responses, including

inflammation, haemostasis and vasodilation/constriction. Although this cell type is ubiquitous, it

is far from being homogenous; for example, endothelial cells in the pulmonary, cardiac and brain

microvessels [7] and the high endothelial venules of lymphoid tissue [8, 9], are specialized to

cater to the special needs of their organs. Arterial and venous endothelial cells throughout the

body have different morphologies, protein synthesis and levels of permeability [10, 11].



Discovering the similarities in the expression profiles between different endothelial cells will

help us to define the set of genes required for basic endothelial identity. Determining the

differences between these profiles will help elucidate which pathways confer the unique

properties of specialized endothelial cells. In addition to developmental differences, a wide array

of environmental factors can also affect endothelial cell phenotype; cytokines, hormones,

metabolic products, hydrostatic pressures and flow-induced shear stress all modulate endothelial

function [12, 13]. Studying the genome-wide transcriptional changes caused by such external

stimuli can shed light on the regulatory mechanisms governing endothelial cell structure and

function.

Our laboratory has recently embarked on an effort to extend our transcriptional profiling

studies of endothelium [14, 15] by applying total genome microarray technology. Our recent

foray into analyzing the transcriptional activity of endothelial cells at a global level has been

enabled by a single-channel microarray platform containing 33,096 probes representing the

entire genome of 29,791 genes, based on 60,808 transcripts. The ability to collect data

simultaneously in such a comprehensive manner allows us to explore the transcriptional biology

of endothelium in novel ways. Most immediately, the ability to assess the expression level for

every gene allows us to define a putative endothelial transcriptome-the set of genes that are

required for endothelial identity and are expressed at some detectable level under standard

culture conditions. We can then assess how this global expression profile changes under

different relevant stimuli. As data is collected for additional experimental conditions, we will be

able to begin to decipher the complex gene regulatory networks governing endothelial function.

This study has developed computational techniques to define global expression profiles

and to detect differential expression between profiles. We demonstrate the efficacy of these

5



techniques by defining the genome-wide expression profile for cultured human umbilical venous

endothelial cells (HUVEC) and studying the changes caused by a potent inflammatory stimulus,

IL-1. IL- was chosen as the first stimulus to examine because it has been previously well

characterized and yet has been known to involve several pathways [16], thus increasing the

potential for the discovery of new genes regulated in endothelium.
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2. Genome-wide Expression Profile of Cultured HUVEC

2.1. Two-Population Hypothesis of Gene Intensity Distribution

Determining which genes are expressed in a given cell type under a set of standard

control conditions sheds light on the genes that are required for the basic function of that cell

type. Biologically, the question posed is: under defined baseline conditions, which subset of

genes from the human genome are "turned on" or expressed, and which are the remaining genes

that are "turned off' or not expressed. When microarray data is to be used to determine gene

expression levels, the corresponding computational question becomes: what signal intensity

corresponds to a gene transcript being expressed above noise levels?

Consider the distribution of intensity signal values (Fig 2.1a); i.e., the frequency at which

signal values are observed among all the spots on a single microarray for different small ranges

of signal values. This frequency corresponds to p(x), the probability of a random spot's intensity

having a value of x. Given the biological premise that any gene falls into one of two categories,

expressed or non-expressed, this distribution is actually comprised of two separate

distributions-pE(x), the probability distribution of intensity values for a randomly selected spot

detecting an expressed gene and PN(X), the probability distribution of intensity values for a

randomly selected spot detecting a non-expressed gene. The net probability distribution, p(x), is

a weighted sum of the two individual distributions, f* PN(X) + (1-f)* PE(x), where f is the

fraction of spots detecting non-expressed genes (Fig 2.lb).

This proposed mixed distribution is supported by the skewed shape of the net frequency

distributions shown in Fig. 2.la; the left tails resemble Gaussian distributions, which are

commonly occurring distributions for noise (i.e., "signals" of spots probing non-expressed genes,

that are caused by non-specific hybridization, instrument measurement error, etc.), but the right
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Fig. 2.1. (a) Histogram of signal intensities for three independent replicate
microarrays of cultured HUVEC. (b) Theoretical signal distributions of
expressed and non-expressed spots and the net distribution generated by their
sum. (c) Theoretical net signal distribution and actual signal distribution for
replicate #1. The dashed line indicates the cutoff signal value for expressed
genes that maximizes the theoretical true classification rate.
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tails fall off much more gradually. We hypothesized that this net distribution could be

decomposed into a non-expressed Gaussian distribution (gray line, Fig. 2.lb) and an expressed

distribution, which we modeled as a shifted log-normal distribution (red line, Fig. 2.lb). (A log-

normal distribution implies that the logged values of the signal intensities follow a Gaussian

distribution.). These two separate distributions could then be used to determine appropriate

cutoffs for classifying a spot as representing an expressed on non-expressed gene.

2.2. Experimental Methods

2.2.1. Cell culture. Consistent culture conditions are important to generate a reliable

gene expression profile of HUVEC since several factors such as cell cycle point, age, passage

number, confluency or media can affect transcription. HUVEC were isolated from normal term

cords and pooled from 5 to 7 donors were cultured in complete media supplemented with 20%

fetal calf serum, 2mM L-glutamine, 50 mg/ml endothelial cell growth supplement, 100 mg/ml

heparin and 100 unit/ml penicillin-G1100 mg/ml streptomycin, and incubated at 370C in 5%

C02 in humidified air. Cells from the first subculture were plated at an initial density of 70,000

cells/cm 2 and grown for 24 hours, a time point at which we have documented that only 4-6% of

the cells are in G2M phase [14]. Fresh media was added at this time point and cells were

collected 4 hours later.

2.2.2. RNA isolation and purification. Cells were rinsed twice with PBS before

collection, then scraped into Trizol. Total RNA was isolated by using TRIzol reagent

(Invitrogen, Carlsbad, CA) and the RNeasy kit (Qiagen, Valencia, CA). Total RNA was DNase-

treated with the RNase-free DNase kit (Qiagen) according to the manufacturer's protocol and

purified on RNeasy mini columns (Qiagen). RNA quality was verified by Agilent's 2100
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Bioanalyzer with RNA 6000 Nano LabChip Kit. The concentration of RNA was measured by

spectrophotometric analysis at 260 nm.

2.2.3. Microarray preparation and scanning. Labeling, hybridization and scanning were

performed according to the manufacturer's protocols for the AB 1700 microarray scanner using

total human genome microarrays (Applied Biosystems, Foster City, CA), with 30,096 spots

representing 28,790 different genes. Each spot uses a 60 base pair probe that represents a region

within the first 1500 base pairs of the 3' end of the target mRNA. Briefly, 40 ptg of purified total

RNA for each sample was used in an RT reaction that incorporated digoxigenin label into the

cDNA products. The cDNA was then purified using a DNA purification column, DNA wash

buffer and DNA elution buffer supplied by the manufacturer. Purified cDNA was then

hybridized at 55°C under agitation at 100 rpm for 16 hours, to a glass microarray slide that was

pre-hybridized with AB1700 Blocking Reagent for 1 hour. Slides were then washed as per

manufacturer's protocol, then incubated under agitation with anti-digoxigenin-AP antibody for

20 minutes. Microarrays were then treated with a Chemoluminescence Enhancing Solution.

Finally, the chemoluminescence substrate was added and the array scanned within one hour.

2.3. Methods for Decomposing Spot Intensity Distribution

2.3.1. Recovery of negative intensity values. The Applied Biosystems 1700 microarray

processing software quantifies the spot intensities from two images, one capturing the

chemoluminescent signals from the top half of the microarray and the other capturing the

chemoluminescent signals from the bottom half of the microarray. The software then performs a

number of normalization steps on the image quantification data. First, the chemoluminescent

signal from each spot is subtractively corrected with a control fluorescent signal. This correction

procedure can result in negative values for very dim (i.e., non-expressed) spots, which are
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necessary to observe the true Gaussian nature of the noise distribution. The software, however,

maps negative and other low-valued spots to a positively valued surrogate, the standard deviation

of the different individual pixel values for the spot. The fluorescent-corrected and surrogated

values are then normalized to map into a standard dynamic range of values, so that different

arrays can be compared to one another meaningfully. This normalization step produces a

different normalization factor for each spot, but the correction factors for the spots from the same

region (top image or bottom image) are very similar. Thus, in order to generate normalized but

unsurrogated intensity values, first the normalization factors from all spots that were not

surrogated were averaged to generate a single uniform normalization factor for each region.

Then the pre-normalized signal-to-noise ratio for each spot was multiplied by the inter-pixel

standard deviation to recover the unnormalized, unsurrogated signal value, which was finally

multiplied by the appropriate average normalization factor. This technique maps intensities to an

appropriate dynamic range while preserving negative values. Spots flagged as poor quality (flag

> 10,000) were excluded from analysis.

2.3.2. Net frequency distribution of signal intensity values. Three microarrays, each

representing an independent biological replicate of HUVEC cultured under the conditions

described above, were used to develop a baseline endothelial expression profile. The frequency

of occurrence of normalized, unsurrogated signal values was counted using bin sizes of 0.1

intensity units, centered from -5.0 to 4500.0. The frequency distributions were calculated for

each microarray separately. Figure 2.la illustrates that the three distributions are highly similar

to each other, with the squared Pearson's linear correlation coefficient (R2) between any two

replicates being 0.99.
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2.3.3. Decomposition of net frequency distribution. The net frequency distribution was

modeled as p(x) = f* PN(X) + (-f)* PE(X), i.e., the weighted sum of a Gaussian distribution,

PN(X) = 7 e-(X N)2 /(2aN ) , where the mean, JAN, and standard deviation, N are adjustable

1 e (ln(x X) HE)2 /(2E )2 parameters, and of a shifted log-normal, PE(X) = e- n ° ) ,where the
X , where the

mean, ,gN, and standard deviation, N and shift, x0o, are adjustable parameters. In addition, the

relative fraction of the two distributions, f, is also an adjustable parameter. The associated

cumulative distribution function for p(x) was used to determine the probability p(xl < x < x2) for

each bin ranging from xl to x2. The error between the actual and theoretical distributions was

calculated as the sum of the squared differences between the actual frequency of occurence and

theoretical cumulative probability for each bin. Starting with initial values of f= 0.5, ,UN=O,

oN=0.5 , gE=l, (N=l and xo=0.5, and applying the constraint that x0 > N+CN, Microsoft Excel

Solver, which applies the Generalized Reduced Gradient (GRG2) Algorithm for optimizing

nonlinear problems [17], was used to determine a set of parameter values that minimized the

error. This analysis was performed separately for each of the three replicate arrays. The final

parameter values and root mean square (RMS) error (square root of the mean squared error

across bins) are given in Table 2.1. The theoretical (dashed blue line) and actual (solid black

line) distributions for the first replicate are shown in Fig. 2. lc, illustrating that the two curves are

extremely similar.

2.3.4. Selecting a cutoff for classification of spots as expressed or not expressed. The

two distributions, as seen in Fig. 2.lb, overlap with one another; thus any intensity cutoff used to

classify spots as expressed or non-expressed will generate a certain number of false positives and

false negatives. We generated ROC curves, shown in Fig. 2.2a, that graph the theoretical
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Replicate #1 #2 #3

Minimum signal value -2.70 -1.66 -3.68
Maximum signal value 3245.93 3535.44 4429.74
f 0.38 0.37 0.40

0.06 0.02 0.06

oN 0.17 0.17 0.21

1.62 1.61 1.73

aE 2.09 2.02 2.04

x0 0.30 0.20 0.38
RMS Error 6.9E-03 1.OE-02 6.8E-03

ML Cutoff 0.35 0.31 0.44
True Classification
Rate 98.5% 96.6% 97.7%

Table 2.1. Statistics andparameter valuesfor two-populationfit of signal
intensity distributionsfrom 3 replicate microarrays of cultured HUVEC RNA.

sensitivity (true positive rate) vs. 1-specificity (false positive rate) for a range of cutoff values, to

demonstrate the effect of choosing different cutoff values. That the ROC curves lie close to the

left and upper borders of the graph indicate that the two distributions are well separated despite

their overlap, and that a cutoff with low false classification rates can be selected.

One must therefore select a cutoff that meets some desired criteria for the false

classification rates. For example, to reduce the false negative rate to 0, one should choose a

cutoff c < x0, guaranteeing that every spot belonging to the log normal (expressed) distribution

will be classified as expressed; the tradeoff is, of course, a very high false positive rate. The

other extreme choice to reduce the false positive rate to 0 by choosing a cutoff c >> N + 4 N,

which lies far into the right-hand tail of the Gaussian (non-expressed) distribution; the tradeoff in

this case would be a very high false negative rate. A more balanced option is to choose a cutoff

c that maximizes f*pN(X<C)+(1-f)*pE(x>c), the theoretical net true classification rate. A fourth

option is to choose the cutoff to be the pth percentile of all values, so that the highest (l-p)% of

spots are classified as expressed. Fig. 2.2b demonstrates the different theoretical true positive,
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true negative and net true classification rates for a range of cutoffs, using the theoretical

distribution fits for replicate #1.

We chose to use a cutoff for each array that maximized the theoretical net true classification

rate. The cutoff and corresponding theoretical true positive and true negative rates for each array

are given in Table 2.1. Finally, we selected spots that were classified as expressed on all

replicates of good quality (for most spots there were 3 good quality replicates) to generate a list

of expressed genes in quiescent cultured HUVEC, which included 18,472 (56%) spots

representing 16,026 (54%) genes.

2.4. Patterns of gene expression in cultured HUVEC

2.4.1. Chromosome distribution. Fig. 2.3a shows the physical chromosome location of

all annotated genes on the array in red and Fig. 2.3b shows the location of all expressed genes on

the array in blue. HUVEC appear to express genes found on every single chromosome, and no

regions appear to be enriched in expressed genes compared to the chromosomal distribution of

all annotated genes.

2.4.2. Functional categorization of expressed genes. One of the most tractable ways of

analyzing this genome-wide expression profile for cultured HUVEC is to group expressed genes

by their function. One of the most widely used functional categorizations of genes is the Panther

system [18]. The detailed Panther molecular function categories were partially merged to

generate broader categories and the "molecular function unclassified" category was removed;

these simplified categories are given in Table 2.2. Of the 33,096 spots on the array, 14,993

(45%) spots-representing 12,550 out of 29,791 (42%) genes-were associated with one or

more simplified Panther categories. Of the expressed genes, 8,060 out of 16,207 genes
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No. of No. of Percentage Percentage
ofSimplified Panther Function Genes Genes of Category ExpressedExpressed

on Array Expressed Enrichment Genes

Nucleic acid binding 1769 1559 88.1%/ 9.7%
Transcription factor 1674 1208 72.2% 7.5%
Cytoskeletal protein 730 484 66.3% 3.0%
Kinase 621 461 74.2% 2.9%
Oxidoreductase 614 412 67.1% 2.6%
Transferase 575 401 69.7%/ 2.5%
Myelin protein 476 366 76.9% 2.3%
G-protein 484 357 73.8% 2.2%
Hvdrorlase 491 322 65.6% 2.0%
ransporter 485 277 57.1% 1.7%

Protease 467 273 58.5% 1.7%
Receptor 633 243 38.4% 1.5%
Membrane traffic protein 309 237 76.7% 1.5%
Phosphatase 251 184 73.3/ 1.1%
Synthase and synthetase 196 163 83.2% 1.0%
Liase 1 18C 148 82.2% 0.9%
Cell adhesion molecule 299 132 44.1% 0.8%
G-protein coupled receptor 642 129 20.1% 0.8%
Chaperone 147 128 87.1% 0.8%
Signaling molecule 229 127 55.5% 0.8%
Defense/immunity protein 458 124 27.1% 0.8%
Isomerase 124 117 94.4%/ 0.7%
Transfer/carrier protein 194 116 59.8% 0.7%
Extracellular matrix 229 105 45.9% 0.7%
Lyase 142 97 68.3% 0.6%
Kinase modulator 117 91 77.8% 0.6%
Ion channel 280 78 27.9% 0.5%
Structural protein 173 78 45.1% 0.5%
Select calcium binding protein 146 74 50.7% 0.5%
Protein kinase receptor 105 69 65.7% 0.4%
Membrane-bound signaling molecule 116 68 58.6% 0.4%
Cytokine receptor 81 49 60.5% 0.3%
Cell junction protein 84 47 56.0% 0.3%
Cytokine 132 46 34.8% 0.3%
Protease inhibitor 101 37 36.6% 0.2%
Transmembrane receptor regulatory/adaptor protein 58 37 63.8% 0.2%
Select regulatory molecule 39 32 82.1% 0.2%
Phosphatase modulator 38 28 73.7% 0.2%
Growth factor 71 26 36.6% 0.2%
Peptide hormone 82 24 29.3% 0.1%
Storage protein 23 16 69.6% 0.1%
Chemokine 40 15 37.5% 0.1%
Other enzyme regulator 18 11 61.1% 0.1%
Miscellaneous function 6 6 100.0% 0.04%
Viral protein 8 3 37.5% 0.02%
Surfactant 12 1 8.3% 0.01%

Table 2.2. Summary of simplified Panther classifications for
annotated genes determined to be expressed in cultured HUVEC.
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associated with one or more simplified functional categories. The number of expressed genes

compared to the total number of genes on the array for each category is shown in Fig. 2.4.

Table 2.2, which gives the number of expressed genes as a percentage of the number of

genes on the entire array for each category, indicates that genes from every simplified category

are classified as expressed in cultured HUVEC. Of especial note are the nucleic acid binding,

chaperone and isomerase categories, which are enriched by over 85%.

We examined the top 5% of expressed genes, ranked by average intensity, to study which

genes were the most highly expressed. (A list of all expressed genes, their average intensities

and percentiles can be found at http://vessels.bwh.harvard.edu/software/endo_xcriptome .) A

remarkable 57% of these genes were classified as related to nucleic acid binding. 422 of these

genes were ribosomal, ribonuclear or other RNA-binding proteins, 23 were translation initiation

or elongation factors and 6 were histones, DNA helicases or chromatin-binding proteins. In

addition, 4% of the highest expressed genes coded for cytoskeletal proteins, mostly tubulin and

actin-related, and another 4% of these genes coded for isomerases. Thus, rather than being

endothelial-specific, the highest expressed genes are mostly related to the function of any

transcriptionally active cell, and we would expect to see most of these genes expressed at high

levels for most other cultured cell types.

However, certain genes known to be crucial for endothelial function and identity were

also found within the top 5% of expressed genes, including PECAM/CD31 and Hsp-90 protein 1

alpha and beta. PECAM is considered to be an endothelial cell-surface marker, also plays an

important role in regulating endothelial permeability, cell signaling and cell survival [19].

Hsp90 associates with and activates eNOS, the most important vasodilatory molecule produced

by endothelial cells [20]. Other highly expressed genes-within the top 15% of expressed
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genes-include vonWillebrand factor, a molecule important in hemostasis that is found in

endothelial-specific Weibel-Palade bodies and may be a shear-stress sensitive molecule [21] and

reticulon 4/NOGO, which is a regulator of vascular remodeling [22].

A number of vasoactive proteins in addition to Hsp90 are expressed at high levels. These

genes include caveolin-1, which has been shown to be prominent in vascular endothelium [23] as

well as caveolin-2, both of which binds and disables eNOS [24], and endoglin, which

upregulates eNOS protein expression [25]. Suprisingly, eNOS itself is expressed, but at

approximately the 45th percentile of expressed genes, a lower level than some of its regulators.

Several genes from the endothelin pathway, the most important vasorestrictive system in

endothelial cells[26], are also expressed, including endothelin-1, as well as endothelin converting

enzyme 1 [27] at high levels and endothelin converting enzyme 2, shown to be expressed

previously in HUVEC [28], at lower levels (intensity of 1.3, 1 5th percentile of expressed genes).

Surprisingly, the endothelin receptor B, the chief endothelin receptor for endothelial cells [29], is

expressed in cultured HUVEC, but at a very low level (average intensity -0.50, 0 .7th percentile

of expressed genes). If this result is true, it suggests that perhaps the receptor's turnover from

the cell surface membrane is low. Other vasoactive factors that are expressed in HUVEC include

ACE-1 and 2, and adrenomedullin.

The Notch pathway, initially known for its role in neuronal development, has been shown

to play an important role in vascular development [30, 31] and injury response [32]. Several

genes involved in this pathway were found to be expressed in cultured HUVEC, including notch-

1, 2 and 3 homologs, delta-like 1, 3 and 4, deltex 2 and 3, jagged 1 and 2 (jagged 1 among the

top 15% of genes), presenilin-1 and 2 and suppressor of hairless. Two transcription factors

downstream of suppressor of hairless [33] were also expressed in cultured HUVEC at
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appreciable levels, HEY-1 and HEY-2. HEY-2 is considered to be important in embryonic

vascular development [34] and may also be an arterial-specific marker [35].

A variety of other transcription factors known to play an important role in endothelial

function were shown to be expressed in cultured HUVEC through our analysis. Several

members of the Kruppel-like factor family, KLF-2, 3, 5, 7, 14, 15 and 16 are expressed, the

highest of which is KLF-2, which appears to be a anti-inflammatory and pro-vasodilatory

transcription factor in endothelial cells [36]. Three myocyte enhancing factors, MEF2A, C and

D, were all shown to be expressed. MEF2A has recently been implicated as an endothelial gene

whose mutation causes inherited cardiovascular disease [37].

Those transcription factors whose roles are not well characterized in endothelium include

several members of the foxhead box family, which may play a role in regulation of cell

proliferation of HUVEC [38], the dachshund homolog, which has been shown to play an

important role in optic development [39], as well as several jumonji family genes that are

thought to have a role in neural development [40] but are not further characterized in mammalian

systems. The expression of these transcription factors in endothelium may provide further

insight into their transcription factors.

The pattern of expression of arterial and venous markers in cultured HUVEC is

extremely interesting. A number of Ephrins (A1-5, B 1 and 2) and their Eph receptors (EphA2

and 4, B 1, 2, 4 and 6). The highest expressed of these, Ephrin B2, a putative arterial marker, and

EphB4, a venous marker [41], are both expressed at similar levels (over the 75th percentile

among expressed genes). Expression of both these molecules together is generally not seen after

development. Interestingly, cultured HUVEC appears to express other markers of both veins and

arteries, such as HEY-2 and neuropilin 1, which are arterial, and Tie-2 and neuropilin 2, which
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are venous [30]. This dichotomy may be explained by the unique physiological role of HUVEC

since the umbilical vein receives low flows but oxygenated blood, and is meant to atrophy after

birth. It may also be a result of phenotypic drift after being cultured.

Several endothelial development and angiogenesis-related genes are also expressed in

cultured HUVEC. Among these are tissue inhibitor of metalloproteases 2, which is one of the

top 5% of expressed genes, thought to mediate inhibition of angiogenesis [42], and angiopoietin-

2, among the top 15% of expressed genes, known to control the ratio of arterial/venous vessels

during angiogenesis [43]. Among the 20 collagens that are expressed in cultured HUVEC, the

two highest expressed are collagen IVa2, the primary component of basement membranes,

which would be important for newly plated HUVEC to lay down, and collagen XVIIIa , whose

C-terminal fragment is endostatin, a potent anti-angiogenic factor [44]. IL-8, which is both a

chemokine and an angiogenic stimulus [45], is also expressed appreciably in cultured HUVEC.

The role of these genes under these circumstances could be an influence of culture conditions, or

these genes could possibly play other important roles in endothelial function outside of their

angiogenic roles. For example, VEGF-A (expressed at low levels) and VEGF-B and C

(expressed at higher levels) are considered to be pro-angiogenic factors, but they also play a role

in mediating endothelial permeability.

Endothelial cells play an important role in regulating inflammatory responses. The genes

regulating this function would most likely not be expressed until the cells were exposed to an

inflammatory stimulus, but surprisingly, two adhesion molecules known to be induced by

inflammatory conditions, E-selectin and VCAM, both have intensities above the 3 0 th percentile

of expressed genes. These genes may be false positives, or alternatively, may indeed be

expressed at extremely low basal levels in quiescent conditions. Over 35 MAP kinases and MAP
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kinase-related proteins, which are known to be important in the signaling pathways triggered by

inflammatory responses [46], were found to be expressed basally, presumably primed for being

activated by upstream factors in the case of an inflammatory response.

Several genes involved in hemostasis, which is closely linked to the inflammatory

response, appear to be expressed in cultured HUVEC, including calmodulin, which is among the

top 5% of expressed genes and is involved in von Willebrand factor-dependent shear-induced

platelet aggregation [47], and thrombomodulin, which is an anti-thrombotic factor. Culture

conditions that do not mimic the blood flow endothelial cells see in a physiological setting could

affect the expression of hemostatis-related genes.

Interestingly, the expression data supports recent hypotheses regarding endothelial

function. For example, tight junctions, thought to be primarily an epithelial feature, have

recently been shown to exist in dermal microvascular endothelium [48]. Our data show that

several genes involved in tight junction formation are among the highest expressed genes in

HUVEC, including connexin 43 (in the top 6% of expressed genes) as well as ECAM, zona

occludens 1 and 2 (in the top 20%). Another hypothesis sparking much discussion is the

possible role of endothelial cells as professional antigen presenting cells. They have been shown

to play such a role in the liver [49] and small intenstine [50], but whether endothelial cells play

this role in a generalized fashion is still under debate. A few MHC class II genes, coding for the

molecules used by professional antigen-presenting cells, are expressed in cultured HUVEC, the

highest of which was HLA-DPA1 (average intensity 10.2, approximately 6 0 th percentile of

expressed genes). A similar number of MHC class I genes were also expressed, but at higher

levels (65th to 9 0 th percentiles). Studies have shown that the development of the vascular and

neural system are linked. Interestingly, several of the genes expressed in cultured HUVEC are
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well known for their neural role, such as neuropilin-1 and 2 [51], neurexin-2, a neural cell

surface protein [52] and adrenomedullin and MEF2A, both of which influence neuronal

differentiation [53, 54].

2.5. Caveats of Expression Profile Analysis

A total-genome microarray system allows one to examine the entire pattern of gene

expression across the genome, and provides new data to estimate how many genes are expressed

in a typical mammalian cultured cell type. Our estimate of approximately 16,000 genes is about

50% greater than previous estimates of approximately 10,000 genes in an endothelial-derived

cell line [55]. Several factors could contribute to this difference. For one, our analysis does not

necessarily exclude genes that may have only a few transcript copies; we seek only to distinguish

between signals due to measurement noise and signals due to specific hybridization. We also

make the assumption that the noise level is identical for every gene, when in fact the binding

properties of each probe may be slightly different; a signal level of 1 may indicate specific

hybridization for one probe while it may represent non-specific hybridization for another probe.

Finally, the results are highly dependent on the choice of distributions. We have made the

assumption that the noise distribution itself is a symmetric Gaussian; if this noise distribution

itself is actually skewed towards the right, then our assumption would be generating additional

false positives. However, the strong matching between the theoretical and actual distribution

well, as seen in Fig. 2.lc, supports the use of the current choice of distributions.
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3. Statistical Detection of Regulated Genes Using Intensity-Based Variance
Estimation*

3.1. Statistical Methods for Detecting Differential Expression from Gene Microarray Data

3.1.1. The Necessity for Statistical Detection of Differential Expression. Biologists can

now use microarray technology to determine the expression levels of tens of thousands of genes

simultaneously, in less time than it previously took to measure the expression level of a single

gene. However, there remains the challenge of processing the microarray data from array images

into a format that best facilitates the discovery of new biological insights. The potential of gene

microarray technology is limited without an estimate of the statistical significance of the

observed changes in gene expression. Algorithms beyond standard statistical methods, such as

the Student's t-test, are necessary to produce reliable results. We strongly believe, as do others,

that the quality of the data processing steps is critical to the overall success of a microarray

experiment [56].

A typical data processing pipeline consists of several steps. (See [57] for a review, and

see [58, 59] for a review of microarray processing software.) First, image analysis software

locates the arrayed spots in the scanned image, quantifies the foreground and background

brightness of each spot, and notes any irregularities in spot morphology. The background

intensity value is then subtracted from the foreground intensity value. The background-

subtracted intensity data from each array must then be normalized, or rescaled, to remove

artifactual differences in signal brightness due, for example, to different labeling efficiencies that

produced arrays of different overall intensity. Normalization techniques are often based on the

assumption that a large number of spots will have similar expression levels between conditions.

*This chapter is modified from Comander, J.*, Natarajan, S.*, et al. BMC Genomics. 2004 Feb 27;5(1):17 (* equal
contributors).
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Curve-fitting techniques, such as a locally weighted regression, are used to equalize expression

values between arrays, or between array channels for two-color arrays [60, 61]. After this

normalization, the intensity values can be used by a variety of algorithms for detecting

differences in expression between the measured biological conditions. This processing is applied

whether two samples are compared directly or a "reference sample" experimental design is used.

In a reference sample design, the same reference RNA sample is hybridized to one channel of all

arrays, and the other channel is hybridized with each individual experimental sample. This

design is often used when multiple biological conditions are being investigated and it becomes

impractical to perform every pairwise combination of conditions directly [57, 62].

Given a list of normalized intensity values across various biological conditions, the next

step is to determine which genes are differentially regulated among the conditions being studied.

In the early days of microarray experimentation, an emphasis was placed on analyzing the data

using exploratory data mining techniques, such as hierarchical clustering [63] and self-

organizing maps [64]. Clustering algorithms measure the similarity between observed gene

regulation patterns across the various conditions, and assemble clusters such that similarly

regulated genes are grouped together. The resulting clusters produce an effective overview of

the data, showing which of the many possible patterns of regulation are actually present in the

data. Since these patterns are somewhat robust, a few erroneous spots are unlikely to change

them dramatically. For a researcher who is simply interested in the overall pattern of the data,

performing replicate arrays to reduce the number of errors is not particularly efficient. Many

researchers choose instead to explore a greater number of experimental conditions.

Increasingly, microarrays are being used in a different context; researchers want to know

with high confidence which specific genes are regulated across a small number of experimental
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conditions (e.g., treatment vs. control, or mutant vs. wildtype). To answer this question, it

becomes extremely important to use an accurate method to rank individual genes by their

probability of truly being regulated, especially since this information may be used to plan more

labor-intensive experiments around biological questions raised by a small number of such

putatively regulated genes. In the absence of replicate arrays, the reliability of the data can be

estimated (e.g. [65], [66]), but such "single slide" methods require a model of the expected noise

characteristics of the system, a property that can potentially change between datasets.

Performing replicate arrays can significantly improve predictions of differentially regulated

genes, thereby decreasing the false positive (false detection) rate and false negative rate [62, 67,

68]. Using replicate arrays allows the calculation of more accurate significance estimates (p-

values) that will aid in the interpretation of a list of "top regulated genes," which are commonly

ranked by ratio alone.

Here we address the problem of accurately detecting genes that are significantly

differentially regulated between a pair of biological conditions, given microarray datasets with a

small number of replicates (e.g. N=3 arrays). If the number of replicates were very large (e.g.,

hundreds), the task would be relatively easy; since the ratio of expression levels between the two

conditions would be well estimated by the average ratio or median ratio, the genes could simply

be ranked by one of these estimates. In practice, however, the number of replicate arrays is

rarely greater than 3, and estimates of average expression ratios are not always sufficiently

accurate to predict which genes are truly regulated. The variation of a measured expression ratio

is critical in determining whether the observed ratio is due to random measurement fluctuations

or to a true difference between the quantities being measured. Genes with larger measured

expression ratios between conditions are more likely to be truly regulated, while genes whose
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ratios have a high measured variance are less likely to be truly regulated. This idea can be

expressed mathematically as a test statistic where the numerator contains an estimate of the size

of the effect, i.e. the ratio of gene expression intensities between conditions, and the denominator

includes an estimate of the variance, i.e. the standard deviation of the ratio. A variety of such

statistical tests have been applied to microarray data (reviewed in [57, 69]); the challenge is to

choose the numerator and denominator of the test statistic such that it makes the best use of all

available data in order to get the most accurate determination of which genes are most likely to

be regulated.

3.1.2. Comparing Statistical Tests Used to Find Differentially Regulated Genes. The

familiar Student's t-test (hereafter, "standard t-test") is the most straightforward method of

calculating whether there is a significant difference in expression levels between conditions for

each gene. Suppose that mRNAs from two biological conditions, "X" and "Y", are hybridized to

a small number of replicate arrays (N two-color arrays or 2N one-color arrays). Mavg, the

average logged ratio of expression levels between conditions X and Y, and its sample standard

deviation, yoM, are given by the standard formulas (see Methods). A standard t-statistic is

M
calculated as t = .m/T . From this formula, it is clear that a large t-statistic (and the

corresponding highly significant p-value) can occur because of either a large Mavg (high ratio) or

a small AM (low noise). Although the standard t-statistic (or derivates thereof based on

permutation [70] or Bayesian analysis [71]) can produce acceptable results for larger numbers of

replicates (e.g., N=8), the results are less than satisfactory when applied to a small number of

microarray replicates (e.g., N=3, Fig. 3.1). Fig. 3.1a shows data from an experiment that was

repeated 6 times on two-color arrays. The six arrays were split into two random groups of three

arrays, and the t-statistic described above was calculated for each gene in each group of three.
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Fig. 3.1. Evaluating the reproducibility oft-statistics between spots using a standard t-test. Two subsets of Dataset 4
each contain three replicate arrays derivedfrom identical biological experiments. (a) Comparison oft-statisticsfor each
subset. Values greater than 500 are not shown. (b) Comparison of average logged ratios Ma,,g, which is the numerator
of the t-statistic. (c) Comparison of the inverse of the standard deviation oM, which is in the denominator of the t-
statistic. Values greater than 150 are not shown.
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The t-statistics from the two groups are graphed against each other in Fig. 3. la. Although the

two groups contain replicate arrays from the same experimental conditions, the t-statistic is

clearly not reproducible between the groups. Fig. 3. lb and c demonstrate that Mavg, the

numerator of the t-statistic, is more reproducible between the two groups, while /oM,

representing the denominator of the t-statistic, is not reproducible. This example highlights the

major shortcoming of the t-statistic: due to random chance, the replicate ratios can occasionally

be extremely similar, producing an artificially low CM and high t values. False positives

stemming from this effect prevent the standard t-statistic from serving as a reliable or useful test

of which genes are truly regulated.

To overcome this limitation, various modifications to the t-statistic have been proposed.

First, a "penalized" t-statistic (also called a "moderated" or "regulated" t-statistic) can be used,

where a constant value is added to the denominator. Tusher et al. use a penalized t-statistic of the

form Ma 'g [72]. The addition of the constant so prevents the denominator from becoming
f(UM +so)2 IN

small for low AM, reducing the false positive rate of genes with unusually low oM. Choosing too

large an so, however, effectively makes the denominator a constant, removing useful information

about the variability of genes. Estimating the optimal so for a particular dataset can be based on

minimizing the coefficient of variation of the absolute t-statistic values ("SAM") [72],

minimizing false positive and false negative estimates obtained through permutation ("SAMroc")

[69], or simply choosing so as the 9 0 th percentile of the AM values [73]. These studies have

demonstrated that when ranking genes from a microarray dataset, a penalized t-statistic can

perform better than a standard t-statistic in terms of decreasing the false positive and false

negative rate [57, 69, 71-74], but it also has the potential disadvantage of showing bias against

genes of high intensity [69].
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An alternative to using a penalized t-statistic is obtaining a more precise estimate of the

standard deviation M. Such an estimate should be less susceptible to a chance concordance of

measurements of M that occasionally produces an extremely low oM and a high t-statistic. For

this purpose, knowledge of the relationships between the data points can be used to improve the

estimate. Namely, the variance values, or M2, for one spot can be pooled, or smoothed, with the

OM2 values of spots that are likely to have similar variances. The variance of microarray data has

often been observed to be a function of the spot intensity [65, 68, 74-83], raising the possibility

that the variances of individual spots can be pooled with those of spots of similar intensity to

produce a more precise estimate of the standard deviation. Several studies have taken into

account this intensity-dependent heteroscedasticity. For example, Rocke et al. [80] and Newton

et al. [66] have presented models of measurement error in microarrays that can explicitly take

into account higher variance at lower expression levels. More general approaches to variance

pooling have been implemented in a variety of ways, using loess-based curve fits [68], robust

nonparametric spline fits [81] and sliding windows for calculating either local averages [79, 82,

83] or interquartile ranges [77]. These more reliable estimates of the standard deviation can be

used directly to calculate Z-statistics, which are calculated according to the same formula as the

standard t-statistic, but correspond to lower p-values [79, 84].

3.1.3. Strategies for pooling standard deviations. The studies cited above use methods

that pool spots together based on their average intensity or logged intensity. For example,

consider one set of replicate spots with an average intensity of 128 (27) in one channel and 16384

(214) in the other channel compared to a set of replicate spots with an average intensity of 1024

(210) in one channel and 2048 (2' ) in the other channel (Fig. 3.2). Since both of these sets of

spots have the same average log2 intensity of 10.5, the standard deviations of their ratios would
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Fig. 3.2. Motivation for pooling standard deviations by minimum intensity. A hypothetical noise distribution is given with
higher noise at low intensities. Two sets of replicate spots (N=3 arrays) that have the same average intensity are shown.
However, example 1 produces a higher standard deviation of the logged ratio compared to example 2, because example 1
contains very low intensity measurements that fall into the noisiest range of the intensity scale. In this case, the minimum
intensity would differentiate between these two examples while the average intensity would not.
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be presumed to be similar and would be pooled together using the pooling methods described

above. However, these spots may actually be expected to have quite different standard

deviations; we have noted that many ratios with high variances result from spots that have a

medium or high intensity in one channel and a very low intensity in the other (data not shown).

Thus, the ratios for the first spot are expected to be more variable because of the very low

intensities (-100) in one channel. In this study, we test the hypothesis that if spots are pooled

together with other spots of similar minimum intensity over both channels (Iin), rather than

average intensity over both channels (Iavg), then a larger proportion of the high-variance spots

will be grouped together, resulting in a tighter fit of the pooled standard deviation curve to the

actual variance and generating more accurate estimates of the standard deviation.

This study expands upon previous work on intensity-dependent variance estimation for

microarray data by introducing a new metric, Iin, for pooling standard deviations. We evaluate

the performance of the Iavg and Iin metrics by explicitly comparing the reproducibility and

accuracy of the Z-statistics calculated using these two metrics. We also compare the

performance of the Z-statistics to the performance of other statistical techniques in current use,

the standard and penalized t-tests. Finally, we extend our technique for pooling standard

deviations to two-color microarray data from a reference sample experimental design.

3.2. Methods

3.2.1. Data Acquisition. The analyses in this study were performed on five different

datasets. Datasets 1-4 use the direct comparison experimental design, i.e. labeled cDNA from

two biological conditions, "X" and "Y," were co-hybridized onto a single array. Each dataset

was generated from a different biological experiment using two-color Agilent cDNA arrays. For

Datasets 1-3, microarrays were prepared essentially according to the manufacturer's instructions
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[85]. Briefly, 20 plg of total RNA were direct-labeled with Cy-3 and Cy-5, and labeled cDNAs

were hybridized overnight to Agilent Human 1 cDNA arrays (G4100a, Agilent Technologies,

Palo Alto, CA) containing 16,142 features representing approximately 10,500 unique genes.

After washing, the microarrays were scanned in an Agilent model G2505A microarray scanner.

Dataset 3 contains 3 replicate two-color arrays with condition X in the Cy-5 channel and

condition Y in the Cy-3 channel. Dataset 1 contains 3 replicates from another experiment,

including one dye-swapped array; i.e. condition X in the Cy-3 channel and condition Y in the

Cy-5 channel. Dataset 2 contains 3 replicate arrays without dye-swap, but each array was

hybridized with a different amount of RNA, 5, 10 or 20 gg.

Dataset 4 consists of 23 replicate Agilent cDNA arrays from the Alliance for Cellular

Signaling. The files MAE030201NOO.txt to MAE030223N00.txt were downloaded from

http://www.signaling-gateway.org/data/micro/cgi-bin/microcond.cgi. These arrays correspond to

the conditions "B-cell + SIMDM exposure=0 minutes" vs. "Spleen". Four additional arrays are

available for this condition (numbered MAE02070xNOO.txt), but these arrays appeared to be

slightly different from the other 23 arrays (using hierarchical clustering, data not shown) and

were excluded from further analysis. The B-cell RNA was derived from 23 preparations, each

from a different set of mice, while the spleen RNA was drawn from a single large pool (Rebecca

Hart, Alliance for Cellular Signaling at the California Institute of Technology, Pasadena, CA,

USA, personal communication).

Dataset 5 uses a reference sample design, where RNA from each experimental condition

is co-hybridized on an array with a standardized reference RNA sample. Dataset 5 contains three

replicates arrays for each experimental condition, for a total of 6 microarrays, generated in our

laboratory. Each of the arrays contains a reference RNA sample in the Cy-3 channel. Three
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have condition "X" samples in the Cy-5 channel and the other three have condition "Y" samples

in the Cy-5 channel. Since corresponding biological specimens for conditions X and Y were

prepared together for each replicate, a natural pairing exists for the condition X and Y arrays.

3.2.2. Computer Techniques. Statistical modules were programmed in Perl v5.8.

Microsoft Visual Basic 6.0 was used to integrate the image processing and statistical modules.

3.2.3. Image Processing. For Datasets 1-3 array images were processed using Agilent

Feature Extraction software version A.6. 1.1. The Feature Extraction Software provides

normalized Cy-3 and Cy-5 channel intensity values for each spot on an array (in the

gProcessedSignal and rProcessedSignal fields of the output files). The default settings were used

for all options. Quality control algorithms in the software detect unusual (poor quality) spots;

spots were excluded from analysis that contained a nonzero value any of the following fields:

IsSaturated, IsFeatNonUnifOL, IsBGNonUnifOL, IsFeatPopnOL, IsBGPopnOL, IsManualFlag.

For a detailed description of the Agilent Feature Extraction software and the algorithms it uses,

see the Agilent Feature Extraction Version 6.1 Users' Manual. Briefly, Agilent Feature

Extraction determines the foreground value for each channel based on the pixel values in a fixed-

size circle centered on each spot. The median of pixel values in a concentric ring around the

circle, with an excluded region between the outer boundary of the circle and the inner boundary

of the ring, gives the spot background value. The raw spot value is calculated as its foreground

value less its background value. A surrogate raw value is assigned when the foreground value

does not exceed the background value by two standard deviations of the spot's background pixel

values. Intensity-based normalization between channels using a linear regression and a lowess

curve-fit technique is then applied to remove any systematic dye incorporation biases.
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Images were also processed using SPOT (CSIRO, New South Wales, Australia)[86], an

R-based implementation which uses seeded region growing to determine the foreground pixels

for each spot and morphological opening to determine the background value for each spot. The

raw spot values, foreground less the background values, are normalized between channels using

an intensity-based Loess implementation in R available in the maNorm function of the

marrayNorm package of the open-source Bioconductor software (www.bioconductor.org). We

considered three image processing techniques: Agilent Feature Extraction output alone, SPOT

output alone with maNorm-based normalization and Agilent foreground (gMedianSignal and

rMedianSignal columns) less SPOT background (morphG and morphR columns) with maNorm-

based normalization.

3.2.4. Pooled Standard Deviations-Direct Comparison Design. Three replicate arrays

were processed for each direct comparison experiment. To map intensities from different

replicates onto similar scales without altering the absolute ratio values, we multiplied the

intensity values on each array by a constant such that mean square error between the intensities

of that array and the intensities of the first replicate array was minimized. The multiplicative

G

' (XlgXjg +ylg yg )

factor for array j is given by g=' , where G is the total number of spots and x and y are
E (xjg2+y, 2)

g=i

intensities for condition X and condition Y. Then, for each spot, the mean and sample

(measured) standard deviation (a) across array replicates were calculated for the logged ratio M

= X-Y, where X and Y are log2(x) and log2(y). The sample standard deviation of M, aM, is

(Mi-M, ") 
calculated as m=1 .N- A replicate spot for which either channel was flagged as poor

quality was excluded from these calculations. Spots for which there were less than two

replicates of good quality were discarded from analysis.
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The pooled logged ratio standard deviation, Y'M, was calculated by sorting all the spots by

the average logged intensity Ivg = Xv +Yg or the minimum logged intensity In across both

channels of all replicates and then taking the square root of the moving average of the variance

cM2 with a window of 501 spots. We averaged the variance instead of the standard deviation,

since averaging the standard deviation directly will produce a negatively biased (-13%) estimate

for N=3 [87]. The Z-statistic was then calculated as -g Note that Iavg and M as defined

above are equivalent to the symbols A and M, respectively, as used in other studies [70]. The

common "M-A plot" would be called an "M-I plot" using the notation of this study.

3.2.5. Pooled Standard Deviations-Reference Sample Design. Three pairs of arrays

were processed for each reference sample experiment. For the unpaired analysis, the arrays

within a given condition were linearly normalized to each other, in order to map intensities from

different replicates onto similar scales without altering the absolute ratio values (as described

above). For each condition, the mean Mavg and sample standard deviation oM of the logged ratio

were calculated for each feature. The pooled standard deviation of the logged ratio, C'M, was

calculated by sorting all the spots by the average intensity, Iavg, or the minimum intensity, Imin,

across both channels of all replicates for the condition and then taking the square root of the

moving average of the variance oM2, with a window of 501 spots, centered on the given spot.

M -M
The Z-statistic was calculated as M a,gM Ya'- where Nx and N¥ are the number of replicates

.MX INX +My /NY

for the given spot for condition X and condition Y, respectively.

For the paired reference sample analysis, the intensity vectors were all linearly

normalized to the vector for the first replicate array of condition X to put all intensity values

from both conditions on the same scale without changing the value of the ratios. Then the paired
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difference of logged ratios g = Mx- My for each pair of replicates was computed. The mean and

sample standard deviation of t was then calculated across replicates. The pooled standard

deviation of pg, o',, was calculated by sorting all the spots by the average intensity Iavg or the

minimum intensity Inin across both channels of all replicates for both conditions, and then taking

the square root of the moving average of the variance o42, with a window of 501 spots. The Z-

statistic was calculated as where N is the number of paired replicates for the spot.

To compare Z-statistic values between the paired and unpaired methods, the linear

regression slope coefficient with intercept set to 0 was calculated between corresponding Z-

statistics from the two methods.

3.2.6. Calculation of p-values. For a Z-statistic Z, the two-tailed p-value is given by 1-

2F(IZI), where D is the cumulative distribution function for the zero-mean, unit-variance

Gaussian. The p-value is corrected for multiple tests using Sidak's formula, p' = 1-(l-p)L, where

L is the total number of spots being examined. Note that we did not find it necessary to use more

sophisticated means of controlling the error rate [70, 88], as we are primarily concerned with

ranking regulated genes and not in establishing firm statistical cutoffs.

3.2.7. Calculation of standard t-statistics and penalized t-statistics. Standard t-statistics

for direct comparison arrays were calculated with the formula t = '' . The two-tailed p-

value was calculated using a t distribution with N-1 degrees of freedom. In a penalty-based

technique, a constant penalty so is included in the denominator of the t-statistic. The new

statistic, d, is given by v/Mag . Two different methods of choosing so were used: setting so

to equal the 90th percentile of the actual standard deviations and the significance analysis of

microarrays (SAM) technique, which chooses s such that the coefficient of variation of d is
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minimized. The SAM technique was implemented using software developed at Stanford

University Labs [72, 82]. This software imputes missing logged ratio values before calculating

so, and this feature cannot be disabled. The K-nearest-neighbor technique was selected for

imputation.

3.2.8. Outlier Detection. When outlier detection was enabled, Z-statistics were calculated

using the measured standard deviation instead of the pooled standard deviation for outlier spots.

Outliers were determined by calculating oE, the standard deviation of the residual error E = - '

for spots with c > '. Spots for which E > 2oc were treated as outliers, similar to [79]. The

measured standard deviations for the outlier points were considered to be valid sample

measurements of the variance process and were not excluded from the calculation of the pooled

standard deviations for spots with similar intensities.

3.2.9. Comparison of Z-statistic and penalty-based statistics. In order to test the

reproducibility of different test statistics (cf. Fig. 3.6), two sets of three arrays were randomly

selected from the 23 replicate arrays in Dataset 4. For both of these subsets, we calculated the

several different test statistics described above. For each gene, the value of each of the test

statistics from one 3-array subset was compared to the corresponding value from the other

subset, using the squared Pearson's linear correlation coefficient, R2, and two non-parametric,

rank-based correlation coefficients, Spearman Rho and Kendall Tau, which were calculated

using JMP (SAS Inc., Cary, NC). This entire process was repeated twice with the remaining

arrays in Dataset 4, yielding a total of three independent comparisons. In total, six non-

overlapping sets of three arrays-18 arrays in all-were drawn from the original pool of 23

arrays, leaving 5 arrays that were not used in this analysis. As the sets are non-overlapping, each

comparison is based on independent data.
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In order to evaluate the accuracy of the different test statistics, we compared these

statistics to an approximate "gold standard" measure (cf. Fig. 3.5). 3 arrays were randomly

selected from the 23 arrays in Dataset 4; the other 20 were used to calculate "gold standard" t-

statistics to which the results from the n=3 dataset could be compared. The R2 value and the

linear regression slope coefficient with intercept set to 0 were calculated between the

corresponding experimental statistic and "gold standard" t-statistic for each gene. Only spots for

which there were at least 15 replicates in the "gold standard" set of arrays were used. This

process was repeated on a total of 6 random subsets.

3.3. Results

3.3.1. Average Logged Intensity (Iavg) vs. Minimum Logged Intensity (Imin) Pooling

Metric. We demonstrate our technique of pooling standard deviations using the three arrays in

Dataset 1 as a representative example of a "direct comparison" dataset. For each spot, we

calculate the average logged ratio Mavg and the standard deviation of the logged ratio oM, across

the three replicates. The spots are then sorted by either average intensity (Iavg) or minimum

logged intensity (Imin) before pooling. Fig. 3.3a and b show the results of pooling standard

deviations for Dataset 1, using either the Iavg or Imin metrics; the measured standard deviation OM

and the pooled standard deviation AM' are plotted together against either Iavg or Imin. For better

comparison, the pooled standard deviation curves for G(M'(Iavg) and M'(Imin) are both plotted

together on Fig. 3.3c against their respective intensity metric, Iavg or Imi. Fig. 3.3 is based on

data produced using the Agilent Feature Extraction software Version A.6.1.1 to quantify spot

intensities in the original microarray image. This entire analysis was repeated on Datasets 2 and

3, as well as using two additional image processing techniques: SPOT Processing [86] and a

combination of Agilent foreground and SPOT background values (see Methods).
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Fig. 3.3. Two methods ofpooling standard deviations of M. sorting by Iavg or by Imi,,. The standard deviation (M) is
pooled by taking the moving average of the variance (aM2). (a) Measured (aM, gray) and pooled (M'(Iavg), black)
standard deviation of the logged ratio M, plotted against Iavg. For spots with 7M' > aSM, the average residual error is
0.28, for spots with CM' < 'M, the average residual error is 0.31. (b) Measured (oM, gray) and pooled (M'(IJi,,), black)
standard deviation of M, plotted against Im,,. For spots with M' > o'M, the average residual error is 0.28,; for spots with
c, ' < o x , the aver-age residual error is 0.31. (c) Pooled standard deviation of M (7M') plotted against the intensity metric
used for pooling, I'vg or Imi,,. Data are from Dataset 3.
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Fig. 3.4. Comparison ofpooled standard deviation curves using Iavg or Im, pooling
metrics. The pooling algorithms are applied to a noisy three-array subset of Dataset 4.
(a) Measured ( M, gray) and pooled (M'(Iavg) black) standard deviation of M, plotted
against Ivg For spots with M' > M, the average residual error is 0. 45; for spots with
TM' < M, the average residual error is 0.49. (b) Measured (M, gray) and pooled

(qM'(I,,), black) standard deviation of M, plotted against Imi,. For spots with CM ' > oM',
the average residual error is 0.24, for spots with o7M ' < M, the average residual error is
0.23.
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Dataset 1

Dataset 2

Dataset 3

Dataset 4 #1

Dataset 4 #2

Dataset 4 #3

Dataset 4 #4

Dataset 4 #5

Dataset 4 #6

SPOT Processina

GM
2 '

> M
2

lavg

0.28

0.24

0.20

0.15

0.20

0.45

0.21

0.25

0.18

Iminm

0.28

0.23

0.18

0.14

0.17

0.24

0.20

0.19

0.17

GM
2

< M
2

lavg

0.31

0.25

0.21

0.17

0.23

0.49

0.23

0.28

0.21

Imin

0.31

0.25

0.18

0.15

0.19

0.23

0.21

0.20

0.18

GM
2

> M
2

lavg

0.19

0.15

0.09

NA

NA

NA

NA

NA

NA

0.20

0.15

0.09

NA

NA

NA

NA

NA

NA

GaM
2

< M
2

lavg

0.22

0.16

0.09

NA

NA

NA

NA

NA

NA

Imin

0.25

0.17

0.09

NA

NA

NA

NA

NA

NA

GM
2

> M
2

lavg

0.19

0.15

0.09

NA

NA

NA

NA

NA

NA

Imin

0.20

0.15

0.09

NA

NA

NA

NA

NA

NA

CTM < (M
2

lavg

0.22

0.16

0.09

NA

NA

NA

NA

NA

NA

Imin

0.25

0.17

0.09

NA

NA

NA

NA

NA

NA

Table 3.1. Mean residual errors for spots with ATM'> AM and AM'< icM, using ,,vg or Imi, pooling metric. Data is given
for three datasets using different image processing techniques (Agilent Feature Extraction, SPOT Image Processing
and Agilent foreground combined with SPOT background), and for 6 independent three-array subsets of Dataset 4.

We evaluated the tightness of the Iavg-pooled vs. Im,,-pooled standard deviation curve fits

to the measured standard deviations. Figs. 3.4a and b plot both measured (G(M) and pooled (M')

standard deviations against either the Iavg or Imin pooling metric, analogous to Fig. 3.3a and b but

using an especially noisy three-array subset of Dataset 4 that includes a population of extremely

high variance spots. Instead of pooling together spots with similar variance, the Iavg metric

combines the high-variance spots with the lower-variance spots. In contrast, the Imin metric

pushes the high-variance spots to the left end of the curve, apart from the less noisy spots. This

effect is reflected in the lower mean residual errors between oM and GM' for the Imin metric,

calculated for Datasets 1-3 and six independent three-array subsets of Dataset 4 (see Table 3.1).

For all of the datasets processed with Agilent Feature Extraction software only, the mean

residual errors from using the Imin pooling metric are always less than or equal to the

corresponding mean residual errors from using the Iavg pooling metric. This observation is most

striking for Dataset 4 subset #3, which corresponds to the data in Fig. 3.4. The tighter fit that is

obtained using the Imn, metric is also reflected in the improved accuracy of the final Z statistic
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Fig. 3.5. Comparing the accuracy of different test statistics. Statistics were calculated for 3 replicate arrays
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calculated using OM'(Imin), which is demonstrated in Fig. 3.5 and discussed below. The trend in

residual values is not present when datasets are processed with the SPOT technique or with

Agilent foreground and SPOT background.

3.3.2. Comparing the Accuracy of Different Ranking Statistics. In order to test the

accuracy of the different test statistics-Mavg, the standard t-statistic, the 90th percentile

penalized t-statistic, the SAM penalized t-statistic, Z(Iavg) and Z(Imin)-a subset of three arrays

was randomly selected from the total set of 23 replicate arrays in Dataset 4 (see Methods). Each

statistic was calculated for each gene in this set. The large number of remaining replicate arrays

allowed us to calculate an approximate "gold standard" statistic, tgold, by computing the standard

t-statistic over the set of 20 remaining replicates. The value of each test statistic from the three-

array subset was compared to the value of the "gold standard" t-statistic, tgold, as shown in Fig.

3.5. The squared Pearson's linear correlation coefficient value (R2), representing the degree of

concordance between the test statistic and tgold, was calculated. This analysis was repeated five

additional times, selecting different subsets of experimental and "gold standard" arrays from

Dataset 4 each time, and the R2 values from all six repetitions are given in Table 3.2. The Z-

statistics and penalized t-statistics both have appreciably higher R2 values than either Mavg or the

standard t-statistic. The R2 values for Z(Imin) are greater than the R2 value for any other

technique across all six datasets. Note that there is less scatter for high-magnitude values when

using Z(Imin) instead of Z(Iavg) (Fig. 3.5e and f respectively). Accordingly, the R2 value is higher

for the Z(Imn) than the Z(Iavg) ranking metric for all three datasets, confirming that the tighter

curve fits seen in Fig. 3.4a and b and Table 3.1 (see above) translate into improved accuracy of

using the Imin pooling metric over Iavg.
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Dataset 4 #1

Dataset 4 #2

Dataset 4 #3

Dataset 4 #4

Dataset 4 #5

Dataset 4 #6

0.69

0.66

0.54

0.68

0.64

0.67

0.09

0.08

0.04

0.02

0.06

0.01

0.80

0.78

0.79

0.80

0.80

0.80

0.80

0.78

0.70

0.79

0.74

0.80

0.79

0.79

0.77

0.80

0.78

0.79

0.83

0.82

0.84

0.83

0.84

0.83

Table 3.2. Accuracy of each test statistic when compared to a "gold standard" t-statistic. Each column contains
the R2 value calculated between each experimental test statistic and the "gold standard" t-statistic for (left to right):
the average logged ratio M,,vg, the standard t-statistic, the 9Qh percentile penalized t-statistic, the SAM penalized t-
statistic, the Z-statistic using the ,,vg pooling metric and the Z-statistic using the Imin pooling metric. Data are from
six independent three-array subsets of Dataset 4. Although Mvg is not a statistical test, it is included in this Table
3.for comparison.

3.3.3. Comparing the Reproducibility of Different Ranking Statistics. We also evaluated

the reproducibility of these different test statistics, by constructing test datasets that split six

replicate arrays from Dataset 4 into two subsets of 3 arrays (see Methods). Each test statistic-

Mavg, the standard t-statistic, the 90th percentile penalized t-statistic, the SAM penalized t-

statistic, Z(Iavg) and Z(Imin)- was calculated for both three-array subsets. A precise, i.e.,

reproducible, test statistic should produce similar values for both subsets since all of the arrays in

both subsets were drawn from a pool of replicates prepared from identical biological

experiments. Fig. 3.1 a-b and Fig. 3.6a-d show the correlation for each test statistic between the

two subsets, including a linear regression line in Fig. 3.6. The slope coefficient of the linear

regression indicates whether overall magnitudes of the test statistics are different between the

two subsets, while R2 indicates the degree of correlation on a gene-by-gene basis (Table 3.3).

This analysis was repeated for an additional two pairs of independent three-array subsets of

Dataset 4 (graphs not shown), with the slope coefficients and R2 values given in Table 3.3.

The R2 values for the two Z-statistics were similar to each other and consistently higher

than those of the other techniques. Nonparametric measures of correlation, the Spearman Rho

46

M.... t dRAM1 Z(LI.) Z(Im,-)



(a) (b)

I

8'0Z4
P)

ID

d9oth percentile_1 dSAM_I

(c) (d)

N pt225-

-50 l

Z(lavg)_i Z(Imin)_

Fig. 3.6. Comparing the reproducibility of different test statistics. Two subsets of Dataset 4 each contain three replicate
arrays derivedfrom identical biological experiments. Each test statistic is calculated twice, once for each subset, and the
two statistics are plotted against each other. (a) Comparison of 90t1 percentile penalized statistics. (b) Comparison of
SAM penalized statistics. (c) Comparison of Z-statistics using Iavg pooling metric. (d) Comparison of Z-statistics using
I,, pooling metric. Also see Fig. la for comparison of the standard t-test.
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and Kendall Tau rank correlation coefficients, were also higher for both Z-statistics than any of

the other statistics for all three pairs of subsets (data not shown). All three calculations of the

slope coefficients for both Z-statistics, as well as Mavg and the 9 0 th percentile penalized t-statistic,

are close to 1, indicating that the overall magnitudes of the Z-statistics are consistent across

datasets, whereas the standard t-statistic and the SAM penalized t-statistic produced test statistics

whose overall magnitudes vary across the subsets.

Dataset 4 #1

I Dataset 4 #2

Dataset 4 #3

Dataset 4 #1

. Dataset 4 #2

Dataset 4 #3

0.89

0.90

0.89

0.90

0.93

1.00

0.00

0.00

0.00

0.00

0.01

0.07

0.86

0.87

0.88

0.97

0.96

0.96

0.87

0.87

0.88

1.63

0.58

0.74

0.93

0.93

0.95

1.00

1.02

1.09

0.94

0.93

0.95

1.00

1.04

1.08

Table 3.3. Reproducibility of each test statistic when used on replicate datasets. Linear regression slope
coefficients and R2 coefficients are calculated between corresponding statistics from two replicate three-array
subsets of Dataset 4. Columns represent (left to right): the average logged ratio Mavg, the t-statistic, the 9 0

th

percentile penalized statistic, the SAM penalized statistic, the Z-statistic using I,,v pooling metric and the Z-statistic
using Imi for three different pairs of subsets. Although M,,vg is not a statistical test, it is included in this Table 3.for
comparison.

3.3.4. Outlier Detection. When calculating the Z-statistic, using a much smaller pooled

cM' in place of a large caM has the potential to overestimate the significance of gene regulation in

the case where one of the replicates is an outlier measurement and the large measured standard

deviation provides a better estimate of the variability. As seen in Fig. 3.3a-c, there are several

spots that lie far above the pooled standard deviation curve. Datasets 1 and 4 were reprocessed

using an outlier detection technique (see Methods). Fig. 3.7a shows oM and (M' from Dataset 1

plotted against Imin, as in Fig. 3.3c, except that the y-axis has been rescaled to show all spots

detected as outliers, which are now highlighted in black.

The accuracy of this outlier detection technique was also evaluated by comparing the Z-

statistic to tgold using Dataset 4. Fig. 3.7c plots Z(Imin) vs. tgold for Dataset 4 set #2. The outliers,
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Fig. 3.7. Implementation of outlier (high experimental standard deviation) detection. (a) Measured (M, gray) and
pooled (rM'(Ii,,), black curve) standard deviation of M, plotted against Imi,,, with the outlier spots highlighted (black
points), for Dataset 3. (Compare to Fig. 3.3b.) (b) Scatterplot of average condition X intensity vs. average condition Y
intensity for Dataset 3, with p-values indicated in color. (c) Z-statistic using I i, pooling metric vs. "gold standard " t-
statistic with outliers highlighted in black, for a 3-array subset and 20-array "gold-standard" subset of Dataset 4.
Outlier Z-statistics calculated using the pooled standard deviation. (d) Z-statistic using Imj,, pooling metric vs. "gold
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which are highlighted, include false positive spots for which tgold is low and Z(Inin) is high,

although not all such points are detected as outliers. Fig. 3.7d is an identical plot to Fig. 3.7c

except that the Z-statistics for the outlier spots are calculated using the higher-valued measured

standard deviation icM instead of the pooled value AM'. The outliers are now mostly clustered

around the origin with the other non-significant spots. A few spots with moderately high tgold

values are detected as outliers and have low corrected Z-statistics, and some potential false

positives with high Z-statistic values and low tgold values are not detected as outliers.

At the end of the analysis, the outlier-corrected Z statistics are converted to p-

values. To demonstrate the additional information that the p-values provide, Fig. 3.7b shows a

scatterplot of X vs. Y for Dataset 1, with statistically significant spots colored according to their

multiple-test-corrected p-values (see Methods). Spots with similar ratios may have different p-

values due to their different standard deviations. In addition, after outlier detection, some spots

with high ratios are not found to be significant.

3.3.5. Analysis of Reference Sample Arrays. The techniques used above for a direct

comparison experimental design were extended to a reference sample design (see Methods).

Under a reference sample design, one can estimate either the standard deviation of the individual

logged ratios comparing experimental samples to the reference sample, Mx and My, or the

standard deviation of the paired differences of these logged ratios, p. = Mx-My. Under the first,

or unpaired method, the Z-statistic is calculated as aMg ag" where Nx and Ny are the
V"Mx I Nx + My I Ny

number of replicates for the given spot for condition X and condition Y, respectively. Under the

second, or paired method, the Z-statistic is calculated as where N is the number of paired
21'2
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Fig. 3.8. Methods ofpooling the standard deviation for a reference sample design. The standard deviation (a) is pooled
by taking the moving average of the variance(o;). (a) Measured (o,,, gray) and pooled (%,' (Imi), black) standard
deviation of the difference of logged ratios A plotted against Imn,. (b) Pooled standard deviation of Mx, My and u plotted
against the intensity metric used for pooling, Iavg or Ii,l. Data are from Dataset 5.
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replicates for the spot. The samples used in a reference sample design may not always have been

collected or processed in pairs, so we evaluated both of these methods.

For each replicate in reference sample Dataset 5, the biological specimens for conditions

X and Y were prepared on the same day, so a natural pairing exists for the condition X and Y

arrays. These data were processed using all three image processing techniques and then

analyzed using both paired and unpaired methods, and using either the Iavg or Imin pooling metric

for each approach. Fig. 3.8a shows the measured and pooled standard deviation of the paired

differences of logged ratios (o and o,') plotted together against the pooling metric, Iin. Curve

fits were analogously constructed using the Iavg pooling metric with the paired method (with

results similar to using the Imin metric, data not shown), and using both Iavg and Imin with the

unpaired method (with results similar to using the ratio method with direct comparison arrays,

data not shown). The unpaired aM' and paired ao' curves are plotted together against their the Iavg

or Imin pooling metric in Fig. 3.8b. The paired standard deviations are lower than the unpaired

standard deviations except at low intensity metric values.

Linear regression was performed between Z-statistics calculated using the paired and

unpaired methods for all spots. Table 3.4 gives the linear regression slope coefficients when

either the Iavg or Imin pooling metric was used, for Dataset 5 processed with the three different

image processing techniques. For most spots, both the difference of logged ratios () and

number of replicates (N) are the same, except for the occasional difference between the two

conditions in the number of low quality spots that are excluded from the analysis. Thus,

differences in the Z-statistic primarily reflect differences in the standard deviations. The slope

coefficients are all greater than 1, indicating that the paired technique produced higher Z-statistic

values, due to the lower standard deviations that are produced with paired analysis.
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Agilent Feature SPOT Agilent FG +
Extraction SPOT BG

lavg 1.70 1.68 1.70

min 1.59 1.61 1.63

Table 3.4. Linear regression slope coefficients calculated between the corresponding Z-statistics using independent
or pairwise analysis. Coefficients given for reference sample design Dataset 5. Values greater than I indicate
higher Z-statistics with the pairwise technique. Data is shown for both pooling metrics lavg and lmi and for three
different image processing techniques. Every linear regression analysis produced an R2 value greater than 0.89
(data not shown).

The mean residual errors for spots with a' < a and a' > a were calculated when using the

Iavg or Imin pooling metric in unpaired or paired analyses of Dataset 5, and are given in Table 3.5.

For the unpaired analysis, as in the direct comparison experiments, mean residual values

produced by using the Imin pooling metric are less than or equal to those produced by the Iavg

pooling metric. The same trend is seen between the two pooling metrics for the paired analysis.

These results are consistent regardless of the image processing technique used.

A'~l~1 -i- d~~r-A,'llI ."'.I [UJ.IU

(CM2, Cond. X

M2, Cond. Y

(7,~z

1UIIII rdur . L...ral.ruLU. .rI /rUCSSIN nIUlerr111 I'L~~~~~..w....
c("

lavg

0.19

0.22

0.19

Imin

0.18

0.18

0.18

(,21< 2.-. a
Iava

0.21

0.25

0.22

Imin

0.20

0.23

0.19

(2, > (2

0.14

0.16

0.13

Imin

0.14

0.14

0.13

,g2' < 2a <a2

Iava

0.15

0.17

0.14

Imin

0.15

0.17

0.14

2, > (2

I.ava

0.13

0.15

0.12

Imin

0.13

0.13

0.12

OruLI ou

o2 < 2

Iava

0.14

0.16

0.12

0.14

0.16

0.12

Table 3.5. Mean residual errors for spots with 2'> a2 and o2'< C2 , using ,,vg or Imin pooling metric. Analysis was
performed on Dataset 5 (reference sample design). Data is given for both unpaired and paired analyses, using
three different image processing techniques: Agilent Feature Extraction, SPOT Image Processing, and Agilent
foreground combined with SPOT background.

3.4. Evaluation of Algorithm Performance

Building up new knowledge about biological systems is the ultimate purpose of

microarray experiments, but all such insights have to be built on a solid analytical foundation to

be accurate and useful. Proper normalization of data and accurate detection of which genes are
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regulated are vital to the success of downstream exploration of microarray data. Even for

exploratory cluster analyses, the genes that are significantly regulated must be selected

beforehand. This task of detecting these genes is a difficult statistical problem; a statistical

hypothesis is made for each of tens of thousands of genes tested, but only a small number of

replicate arrays are available to test those hypotheses. The statistical methods presented in this

study attempt to draw as much information as possible out of a small number of array replicates

to determine which genes are likely to be regulated.

It is clear that looking at the measurements of each gene in isolation can produce a test

with low statistical power (e.g. using the standard t-test, Fig. 3.1). To improve statistical power,

we can use knowledge about the relationships among the many thousands of points in the arrays.

Specifically, we group together spots that have similar standard deviations and then pool together

many less accurate estimates of standard deviation into a single, more accurate estimate. Our

data also show that the Z-statistics are more precise than either standard or penalized t-statistics

for detecting differential gene expression in microarray data. We further demonstrate that

pooling standard deviations using the minimum intensity metric produces Z-statistics that are

more accurate than the standard t-test, the penalized t-tests, and the average intensity-based Z-

statistic.

3.4.1. Average Combined Logged Intensity (I_) vs. Minimum Logged Intensity (Imi

Pooling Metric. We evaluated two different intensity-based metrics for pooling standard

deviations. There are many reports that the variance is a function of intensity, but the exact

shape of this relationship could depend on many factors extrinsic to the biological experiment,

such as the array technology being used, the signal-to-noise ratio of the data, the similarity

between the two conditions[83], the normalization technique or the background subtraction
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technique. For this reason, we favor an estimation of the standard deviation using a curve-fitting

technique rather than a fixed model based on previous data. Furthermore, when dealing with

two-channel arrays, there are two different intensity values associated with each replicated spot.

It is possible that the variation is best described as a function of the average intensities of both

channels. However, our own experience and many other reports [74, 78, 89] suggest that the

highest variances are often seen for low intensity spots. If so, the variance may be better

described as a function of the minimum intensity over all the spots.

The data presented here show that the mean residual errors are either equal or lower when

using the Imin compared to the Iavg pooling metric, for every dataset using the Agilent Feature

Extraction image processing technique. The subset of Dataset 4 for which this difference is most

striking, #3 in Table 3.1, also has a population of spots with particularly high variance (see Fig.

3.4). The Iavg metric pools these spots together with other spots that have a much lower variance.

In contrast, the Imin metric moves these spots to the low end of the x-axis, and the curve fit tracks

the standard deviation of the spots much better. The noisiest spots on microarrays are often

those where at least one channel is "blank", i.e. a noisy, low level of signal that presumably

represents no expression. The Imi, metric is better at grouping such spots together. For datasets

with low background levels, there is a smaller difference in the performance of the two pooling

metrics.

The trends in the mean residual errors from the unpaired reference sample analysis agree

with the results from the direct comparison analyses. This similarity is to be expected, since

processing each reference sample condition separately is equivalent to doing a direct comparison

between each condition and reference RNA samples. Both pooling metrics generate similar

mean residual error values when pooling ca,, but one dataset is not enough to make any
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generalizations about which pooling metric will perform best for all paired reference sample

datasets. The improved performance of the Imin pooling metric is lost when using SPOT

processing or combined Agilent foreground and SPOT background image processing, suggesting

that these image processing techniques may be more effective at removing noise at low

intensities.

The Iavg and Imjn pooling techniques are reproducible to the same degree, since their R2

coefficients between Z-statistics from paired datasets (see Table 3.1) are similar to each other.

The Imin pooling technique generates slightly more accurate results, as indicated by the greater R2

coefficients between Z(Imin) and tgold compared to those between Z(Iavg) and tgold (see Table 3.2).

This trend holds for all six subsets of Dataset 4.

3.4.2. The Higher Accuracy of Z(I& The Z-statistic calculated using the Imin pooling

metric provides an improvement in accuracy over the other techniques. The t-statistic derived

from datasets with 20 replicates was used as a surrogate "gold standard" since 8 or more

replicates can be considered sufficient to give power to the t-statistic [70]. The t-statistic was

chosen as the "gold standard" instead of the average logged ratio since the latter does not take

variability into account. For each of the six permuted subsets of Datasets 4, the 9 0 th percentile

penalized t-statistic, SAM penalized t-statistic, and Z(Iavg) had similar R2 values when correlated

with the "gold standard" t-statistic, although the SAM statistic did perform poorly for the noisiest

subset of Dataset 4 (#3 in Table 3.2) with an R2 value of only 0.70. Z(Imin), however,

consistently produced the highest R2 value for each of the six datasets. Since the ratios used in

each of these statistics is identical, this result indicates that the standard error generated with the

Imin technique produces the best correlation with the gold standard t-statistic based on 20

replicates. Although excluding spots with very low intensity could eliminate the difference in
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performance between the Imni and Iavg pooling metrics, this approach would make it impossible to

detect low-expressed regulated genes, which may be biologically significant.

The Z-statistics from the Imin technique do not correlate perfectly with the "gold standard"

t-statistic, however. Some disagreement can be expected because the Z(Imin) data was based on

only three replicate arrays, which contain much less information than the 20 replicates used to

calculate the "gold standard" t-statistic. Also the significance estimates calculated using the

"gold standard" t-statistic may still contain some inaccuracies, even with 20 replicates. Kerr et

al. found this to be true with 12 replicates, where accuracy is reduced if the error distribution for

each gene is modeled separately instead of using a pooled estimate [68]. Analyzing the large

(N=20) replicate dataset using robust estimators of ratio and standard deviation may be able to

create a more accurate "gold standard" to use for further testing of the Z-statistic or other

statistics. Note that we do not employ an explicit permutation-based approach to estimate the

false detection rates of the statistics investigated in this study, as in Ref. [69]. Rather than

permute gene labels from a small set of arrays to estimate the distribution of expected test

statistics, with the availability of the large (N=23) replicate dataset described herein, we

preferred to use this rich source of actual test statistics directly.

3.4.3. The Higher Reproducibility of Z-statistics. The Z-statistic--calculated with either

pooling the Imin or Iavg pooling metric-provides an appreciable improvement in reproducibility

over the average logged ratio alone, the standard t-test and the 90 th percentile and SAM

penalized t-statistics. Both linear (R2) and non-parametric rank correlation coefficients were

highest for the Z-statistic when comparing corresponding spots between three independent pairs

of replicate datasets. Also, the standard t-statistic and SAM penalized t-statistic generate linear

regression slope coefficients that vary greatly from pair to pair, indicating that their absolute
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magnitude is not as reproducible as the Z-statistics, whose linear regression slope coefficients are

much closer to 1.

The high correlation values and near-unity slope coefficients for the Z-statistic support

the hypothesis that pooling the standard deviations of spots with similar intensities provides a

stable, precise estimate of the standard deviation. This assumption of a well-estimated standard

deviation supports the use of the Gaussian distribution to map the Z-statistic to a p-value. Using

only the measured standard deviation, one is forced to use a t-distribution with only 2 degrees of

freedom to generate a p-value. This test does not have sufficient power to generate any

significantly regulated points; because of the very small number of degrees of freedom, not a

single spot seen in Fig. 3.la is found to be significant after multiple test correction. In contrast,

even after a conservative multiple test correction that makes the cutoff for statistical significance

much more stringent, many spots are found significant using the Z-statistic. The penalized t-

statistics do not produce a stable estimate of the standard deviation with these data, perhaps

because the constant added to the denominator of the test statistic showed a large variation

between replicate datasets. Therefore they cannot be mapped to a p-value in a reproducible

manner.

3.4.4. Outlier Detection. One limitation of using a pooled standard deviation is that for a

spot with replicate ratios that include one or more outliers, the appropriately high measured

standard deviation will be replaced by an inappropriately low pooled standard deviation. This

substitution could produce a false positive result. We have sought to minimize this limitation by

implementing an overlying outlier detection algorithm. (For other implementations of outlier

detection, see Ref. [79, 83].) The algorithm in this study uses the measured standard deviation

instead of the pooled standard deviation for spots for which the pooling model may not hold.
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These spots are identified as ones for which residual error o-aY' is positive and greater than twice

the standard deviation of the positive residual errors.

The measured standard deviations for these outlier points are valid sample measurements

of the variance process and should be used to calculate the pooled standard deviations for spots

with similar intensities. These ratio measurements, however, are too widely varying for one to

have the same confidence in the average ratio as one would have for other spots; thus, it is

appropriate to substitute the measured standard deviation for the pooled standard deviation in

these cases. Fig. 3.7c-d, which highlight outlier spots on a plot of the Z(Imin) vs. the "gold

standard" t-statistic for Dataset 4b, show that this outlier detection technique correctly detects

many of the presumably false positive spots that have a high Z-statistic and low tgold value. The

plots also show some false positive spots that are not detected through this algorithm, as well as a

few spots that become false negatives after outlier detection. Other, more complex outlier

detection algorithms may perform better, and should be explored. A simple modification to the

current algorithm, using local instead of global estimates of the standard deviation of the residual

error, may improve outlier detection. Alternative implementations include modifying the

pooling window shape to give more weight to a spot's measured standard deviation or that of its

nearest neighbors by intensity. Strictly speaking, the p-values for outlier spots should be

calculated using a t-distribution instead of a Gaussian distribution since the measured standard

deviation is being used. We have shown, however, that with 3 replicates, no spots in our datasets

can be found statistically significant using the t-test and strict multiple test correction. In order

to preserve detection of spots, we continue to use the Gaussian distribution to convert outlier Z-

statistics to p-values, which may slightly increase the false positive rate for spots detected as

outliers. In practice, however, such spots are rarely found to be significantly regulated.

59



3.4.5. Unpaired vs. Paired Analysis for Reference Sample Experiments. Finally, we have

extended our algorithms to apply to data from a reference sample experimental design. This

design gives one the flexibility to compare many different conditions to one another, but the

trade-off is a loss in precision. In theory, using a reference sample design instead of a direct

comparison design should increase the variance by a factor of 2. This increase has in fact been

observed in practice [90].

The paired analysis method can reduce the measured variation in a reference sample

design. The linear regression slope coefficients in Table 3.1 indicate that the Z-statistic values

using the paired analysis are higher than the unpaired Z-statistic values. Thus, the paired

difference of logged ratios, , is less variable than the independent logged ratios, Mx and My.

This observation suggests that the effects of biological or analytical variation from replicate to

replicate can be reduced if comparisons are made between paired samples. Whether this

reduction is due to using paired biological samples or paired array processing dates [91] is still

an open question, and probably will be context-dependent. Although it may not always be

practical, it would be beneficial for investigators to design reference sample experiments to be

performed in parallel whenever possible to take advantage of the lower standard deviations

produced by paired analysis.

3.4.6. Finding the optimal statistical test. Several areas remain for further refinement of

our implementation of pooling-based statistical analysis of microarray data. Currently, the

standard deviation is pooled using a simple moving rectangular window of 501 spots, but other

window sizes and shapes may improve performance slightly. More generally, we have not

explicitly compared the moving average estimator with the spline-fit or loess-based techniques to
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estimate the standard deviation used in other studies (see Background). While we expect

performance to be similar, further testing may reveal an advantage.

Following Ref. [92], we do not try to estimate the dye-specific bias of individual spots or

genes (i.e., dye- gene interaction) in order to preserve degrees of freedom needed to estimate the

variance. Informally we noted that dye bias in some spots produced high measured variances

that caused those spots to be considered non-significant outliers. A post-hoc test to warn of

potential dye bias of individual spots may be appropriate for small numbers of array replicates

(e.g. N=3), especially if the experimental design is unbalanced (i.e., the number of dye-swapped

and unswapped arrays is not equal).

Note that this study only considered statistics of the general form (ratio) / (standard

deviation). ANOVA models that consider the variance as intensity-dependent, as seen in Ref.

[68, 78], can be seen as an extension of this concept. An ANOVA framework, however, also

allows for a more complicated experimental model that can incorporate normalization and

multiple biological conditions. Pooling standard deviations as a function of minimum intensity

instead of average intensity may benefit such models. Permutation tests can also be used to

detect regulated genes, and are known to be robust to outliers but can have low power for small

N. Xu et al. found a permutation test to be equally or less accurate than parametric methods in

ranking genes [93]. Bayesian analysis can also be applied to microarray data [66, 73, 74], and

may be useful in this context to draw more information out of the distribution of intensities and

ratios in the data.

In this study, data is first normalized, and then detection of regulated genes is performed

in a separate step. In contrast, other approaches incorporate normalization and statistical

inference into a unified model [82, 92]. Furthermore, the options for normalizing the data are
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numerous, including algorithms based on local regression (loess) [60], splines [94], a constant

shift [68], or more exotic transforms that tend to remove the intensity dependence of the variance

[95]. Increased attention to the low-level details of scanning and image processing may also

improve accuracy [75, 90, 96], while at the same time potentially changing the intensity

dependence of the variance. It remains to be seen how the techniques used for normalization or

variance-stabilizing transforms will impact the accuracy and precision of regulated gene

detection. In addition, we are concerned that some of these transforms may create a systematic

bias for or against genes of low intensity (e.g., [97]).

3.4.7. Test performance can depend on data characteristics. Although many datasets have

a variance that is intensity-dependent [65, 68, 74-79], some studies have analyzed datasets whose

variance characteristics are not strongly intensity-dependent (e.g., [92]). In general, we have

experienced that microarray datasets with a low background relative to signal, loess-based

normalization, and conservative background subtraction (e.g. SPOT Image Processing) produce

standard deviations that are not strongly intensity-dependent. In this context, the differences

between the I,, and Iavg metrics disappear. In fact, for data with unusually low noise, the

standard deviations is nearly constant across all spots and all of the statistical tests considered in

this paper, even simply the average logged ratio, tend to converge. This observation is not

unexpected; as the standard deviations converge to the same value, the denominator of the test

statistics will become constant, leaving the test statistics simply proportional to the ratio. We

would recommend finding a normalization [60, 82, 90, 94] and background subtraction

technique [75, 86, 96] that produces low, intensity-independent standard deviations. Applying

variance stabilizing transforms may eliminate the intensity dependence of the standard deviation

[95], but might also reduce statistical power or bias the test toward spots of certain intensities. It
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cannot be predicted in advance whether all intensity dependence of the variation will be

removed, so we continue to use the more robust statistic Z(Imin) for all of our datasets.

Furthermore, in situations where changing the background subtraction or normalization

technique is not possible because the original data is not available, using a more robust statistic

like Z(Imin) will be advantageous.

While the pooling techniques described herein can compensate for intensity-dependent

variation, this intensity dependence can be minimized or exaggerated by different normalization

techniques and background subtraction techniques. These techniques may have subtle effects on

the power to detect regulated genes at different intensities, perhaps creating bias for or against

detection of low-expressed genes. For this reason, until the most sensitive and unbiased

normalization and background subtraction methods are optimized for each microarray system,

we would encourage creators of microarray data archives to preserve unnormalized intensity and

background data, and the original image data when possible.

Of the many useful tests used to detect regulated genes from a small number of

microarray replicates, we see the intensity-based variance estimation and Z-statistic described

here to be a good combination of simplicity, robustness, precision, and accuracy. This technique

allows meaningful p-values to be added to a list of regulated genes. With this assessment of

statistical significance, an investigator can proceed to focus on genes that are most likely to be

regulated. Implementations of the Z-test algorithms are available at

http://vessels.bwh.harvard.edu/software/papers/bmcg2004.
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4. The Transcriptional Response of Cultured HUVEC to IL-1 P

4.1. The Response of HUVEC to an Inflammatory Stimulus

The changes caused by an external stimulus to the genome-wide basal expression profile

of cultured HUVEC (cf. Chapter 2) can be studied using the statistical algorithms detailed in the

previous chapter. The stimulus we have chosen to study here is interleukin-1 beta (IL-13), a

potent inflammatory stimulus for endothelial cells [98]. Responding to inflammatory stimuli is

one of the most critical roles of the endothelium, as it is the capillary and venule barrier that

regulates extravasation of leukocytes into tissues. By overseeing leukocyte tethering and

migration, and amplifying or abrogating signaling cascades, endothelial cells modulate the effect

and severity of an inflammatory response. In addition, a number of other roles of endothelium-

e.g., regulation of haemostasis and control of permeability -are modulated during

inflammation. Thus, a genome-wide endothelial snapshot of endothelial cells exposed to an

inflammatory stimulus will begin to provide insight into the complex regulatory networks that

comprise the genetic control of several endothelial cell functions. Understanding the nature of

this response also provides insights into targets for clinical manipulations in the context of

sepsis, atherosclerosis, autoimmune disorders and other inflammatory pathologies.

4.2. Methods

4.2.1. Experimental conditions. We chose to stimulate cells with IL-10 (10 U/mL) in our

in vitro model of inflammation as it has been well-characterized in our laboratory as a potent

inflammatory stimulus [98]. HUVEC isolated from normal term cords and pooled from 5 to 7

donors were cultured in complete media supplemented with 20% fetal calf serum, 2mM L-

glutamine, 50 mg/ml endothelial cell growth supplement, 100 mg/ml heparin and 100 unit/ml

penicillin-G1100 mg/ml streptomycin, and incubated at 370C in 5% C02 in humidified air.
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Cells from the first subculture were plated at an initial density of 70,000 cells/cm 2 and grown for

24 hours. At this time point, the cells were exposed for 4 hours either to IL-1 at a concentration

of 10 U/mL ("IL-1"), or to media ("control"). These paired experiments were repeated with

three independent batches of HUVEC. RNA from these cells was collected and microarrays for

each sample were prepared as described in Chapter 2.

4.2.2. Image Quantification and Statistical Processing. The images produced by the

AB 1700 scanner were quantified by the scanner software, which subtractively normalizes each

spot's chemoluminescent signal against a corresponding fluorescent control signal, provides

surrogate values for negative or especially faint spots and normalizes all the values in an attempt

to map intensities from each array to a uniform dynamic range. In contrast with the expression

profile analysis, the normalized and surrogated signal values were used to enable the calculation

of meaningful, non-negative ratios (although these ratios may be underestimates for surrogated

values). We observed that when comparing any two microarrays, there was usually a bias in

signal values towards one array over the other at high intensities. Thus, before comparing any

two arrays to each other, we applied an intensity-based Lowess correction to normalize the array

values [60]. Spots with flag values over 10,000 were excluded from analysis, and all remaining

genes, whether classified as expressed or not expressed in cultured HUVEC (cf. Chapter 2), were

retained. Genes differentially expressed between the two conditions, IL-1 and control, were

statistically identified by applying the minimum-intensity-based variance estimation technique

with outlier detection described in Chapter 3 to the three Lowess-normalized pair of replicates.

4.2.3. QRT-PCR Validation of Select Genes. Ninety-five genes known to be involved in

inflammatory processes were validated using real-time quantitative Taqman PCR with the same

three pairs of RNA samples used to generate the microarray data. Briefly, the purified, DNase-
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treated RNA (1.5 gig) was reversed-transcribed by using a MultiScribe based reverse

transcription reaction (Applied Biosystems). The cDNA were then subjected to a real-time

TaqMan PCR in a GeneAmp 5700 sequence detection system (Applied Biosystems). The

relative gene expression was normalized to 18s RNA.

4.3. Results

4.3.1. Validation of Statistical Techniques. To validate the results presented in Chapter 3 for this

single-channel array platform, the microarray data were processed using both the minimum and

average-intensity-based variance estimation algorithm without outlier detection. The average

residual error for spots whose actual standard deviation fell below the pooled standard deviation

was 0.23 using the minimum intensity metric and 0.25 using the average intensity metric; the

average residual error for spots whose actual standard deviation fell above the pooled standard

deviation was 0.17 using the minimum intensity metric and 0.19 using the average intensity

metric. Thus, the minimum intensity metric produced a slightly better fit than the average

intensity metric.

4.3.2. Genes Transcriptionally Regulated by IL-I in HUVEC. Fig. 4.1 plots the average

intensity of spots from the IL-1 arrays against the average intensity of the corresponding spots

from the control arrays, with statistically significantly regulated genes highlighted in color.

Overall, 491 genes (523 spots) were upregulated by the IL- stimulus and 259 genes (275 spots)

were downregulated by the IL-1 stimulus. These numbers indicate that approximately 4.7% of

the human genome is transcriptionally regulated in HUVEC by IL-1. The list of all these genes

is found in Appendix A.

Fig. 4.2 shows the physical chromosome location of annotated up- and down-regulated

genes. These genes are distributed throughout the genome, with notable clusters at on
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No. of No. of Percentage Percentage
Up- Down- of Up- of Down-

regulated regulated regulated regulated
Simplified Panther Function Genes Genes Genes Genes

Transcription factor 51 49 10.4% 18.9%
Nucleic acid binding 12 13 2.4% 5.0%

ytoskeletal protein 12 11 2.4% 4.2%
Cytokine 18 0 3.7% 0.0%
Myelin protein 17 7 3.5% 2.7%
G-protein 17 6 3.5% 2.3%
Defense/immunity protein 17 2 3.5% 0.8%
Kinase 15 8 3.1% 3.1%
Transporter 12 7 2.4% 2.7%
Receptor 12 7 2.4% 2.7%
Phosphatase 12 1 2.4% 0.4%
Signaling molecule 11 4 2.2% 1.5%
Cell adhesion molecule 11 3 2.2% 1.2%
Protease 11 2 2.2% 0.8%
G-protein coupled receptor 6 5 1.2% 1.9%
Transferase 9 4 1.8% 1.5%
Chaperone 8 2 1.6% 0.8%
Oxidoreductase 8 2 1.6% 0.8%
Chemokine 8 0 1.6% 0.0%
Cytokine receptor 8 0 1.6% 0.0%
Membrane traffic protein 7 3 1.4% 1.2%
Extracellular matrix 6 0 1.2% 0.0%
Membrane-bound signaling molecule 5 3 1.0% 1.2%
Transfer/carrier protein 5 2 1.0% 0.8%
Kinase modulator 5 1 1.0% 0.4%
Protease inhibitor 4 0 0.8% 0.0%
Growth factor 3 2 0.6% 0.8%
Cell junction protein 3 2 0.6% 0.8%
Select calcium binding protein 2 2 0.4% 0.8%
Protein kinase receptor 1 2 0.2% 0.8%
Isomerase 0 2 0.0% 0.8%
Synthase and synthetase 3 1 0.6% 0.4%
Hydrolase 3 1 0.6% 0.4%
Ligase 2 1 0.4% 0.4%
Ion channel 2 1 0.4% 0.4%
Transmembrane receptor regulatory/adaptor protein 0 1 0.0% 0.4%
Peptide hormone 0 1 0.0% 0.4%

ther enzyme regulator 1 0 0.2% 0.0%
Storage protein 1 0 0.2% 0.0%
Phosphatase modulator 1 0 0.2% 0.0%
Select regulatory molecule 1 0 0.2% 0.0%
Lyase 0 0 0.0% 0.0%
Structural protein 0 0 0.0% 0.0%
Surfactant 0 0 0.0% 0.0%
Viral protein 0 0 0.0% 0.0%

Table 4.1. Summary of simplified Panther classifications for annotated genes
determined to be statistically regulated by IL-I in cultured HUVEC.

69



* Upregulated Genes
i m Downregulated Genesj

ILLLL , LL,.... IIIi....

Fig. 4.3. Histogram illustrating the number of IL-l-upregulated (red) and downregulated (blue) genes on the array
associated with each simplified Panther category.
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chromosomes 4, 6, and 11. The chromosome 4 cluster includes upregulated chemokines IL-8,

and CXCL1, 2, 3, 5 and 6. The chromosome 16 cluster includes upregulated genes ubiquitin D,

MHCI-HLA-A and E, ABCF1 and IER3. The chromosome 11 cluster includes 3 upregulated

genes-BIRC2 and 3, and MMP10, as well as the downregulated metalloprotease MMP13.

Given such a large number of genes, it is useful to group them into functional categories

based on the simplified Panther categories described in Chapter 2. Of the 750 regulated genes,

439 were associated with one or more simplified categories, as given in Table 4. 1; Fig. 4.3

presents a bar graph showing the number of regulated genes found in each category. Most

categories contain both up- and down-regulated genes, while a few contain only upregulated

genes.

4.3.3. Select QRT-PCR Validation of Microarray Results. Of the 95 genes validated by QRT-

PCR (see Table 4.2), 20 were found to be significantly regulated using a t-test on the 3 replicate

logged PCR ratios. These 95 PCR probes corresponded to 108 microarray spots (due to

duplicate spots for a given gene). Of the 21 spots that corresponded to a statistically regulated

gene by PCR, 14 (sensitivity of 67%) were detected as statistically significantly regulated on the

microarrays. Of the 7 genes that were not detected on the microarrays, 3 had average ratios

greater than 2, but were not statistically detected due to noise and another 3 had ratios less than 2

fold by PCR. Interferon gamma was the only validated gene regulated greater than 2x (22.9

fold) by PCR and not detected by microarray. Of the remaining 87 spots that corresponded to a

non-regulated gene by PCR, 3 (false positive rate of 3.4%) were detected as statistically

significantly regulated on the microarrays. Of note, all 3 of these genes were regulated by 1.9-

fold or higher on PCR, but results were too variable to be found statistically significant. Since
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the PCR was performed specifically on genes associated with the inflammatory process, the

specificity may be artificially high.

Avg Direct
PCR Labeled

Name Ratio Ratio
CSF2 630.6 518.1
CSF3 595.1 51.4
SELE 471.1 432.2
CXCL10 176.6 9.2
MCP1 122.4 107.8
ICAM1 71.0 64.0
IL8 69.2 58.9
TNF 49.3 2.0
IFNg 22.9 -1.2
IL6 21.8 23.8
ILb 11.1 6.6
ILla 10.5 16.9
NFKB2 8.8 11.1
IL15 7.9 7.1

CSF1 7.2 10.1
CSF1 7.2 6.0
MADH3 2.1 2.4

LTA 1.8 1.3
MADH7 -2.2 -1.7
CD68 -1.3 1.2
ACE -1.2 - 1.1
CCL5 17.4 2.2
CXCL11 2.8 .2 

IL12A 2.4 -1.1

TNFRSF18 2.2 1.2
VEGF 2.2

CYP7A1 2.0 -1.5
PTGS2 1.9 _ _ ,'

IL7 1.6 1.2
IL7 1.6 -1.2
IL7 1.6 -1.2
CCR4 1.4 -1.1

CD28 1.2 1.1

IL18 1.1 -1.3

EC1 1.1 1.4

CD38 1.1 -1.1

Avg Direct
PCR Labeled

Name Ratio Ratio
Stat3 1.1 1.2

Stat3 1.1 1.3

Stat3 1.1 1.1

CCL3 -3.6 -1.2
CCL3 -3.6 -1.5
CCL3 -3.6 2.1

PRF1 -3.1 1.1

CXCR3 -3.0 -1.4
PTPRC -2.7 1.1

PTPRC -2.7 -1.0
CD3 -1.9 -1.5
BCL2 -1.8 -1.1

BCL2 -1.8 -1.0
COL4A5 -1.7 -1.0
IL5 -1.6 -1.1

IkB2 -1.5 1.0
SKI -1.5 -1.1

AGTR1 -1.5 -1.1

GZMB -1.5 -1.2
HMOX1 -1.4 -1.2
GNLY -1.4 -1.3
TNFRSF6 -1.4 -1.1

ACTB -1.3 -1.1

HLADR -1.3 1.4
TGFB1 -1.3 -1.1

Nos2A -1.3 -1.8
BAX -1.3 1.1

BAX -1.3 1.1

CD8 -1.3 1.6
CD8 -1.3 1.6
SELP -1.3 1.0
TFRC -1.2 -1.1

CD34 -1.2 1.0
GUSB -1.2 -1.2
EDN1 -1.1 -1.1

FN -1.1 1.1

Avg Direct
PCR Labeled

Name Ratio Ratio
TNFRSF5 -1.1 1.2
GAPDH -1.1 -1.0

GAPDH -1.1 -1.1

TBX21 -1.0 -1.0
BCL2L1 -1.0 1.1

C3 -1.0 1.2
AGTR2 n/a -2.2
CCL19 n/a 1.2

CCR2 n/a 1.2
CCR5 n/a 1.2
CCR7 n/a -1.0
CD19 n/a -1.1

CD4 n/a -1.2
CD80 n/a 1.8
CD86 n/a -1.1

CTLA4 n/a 1.6
CYP1A2 n/a 1.3
HLADRA n/a 1.0
Hs00411908 n/a -1.0

ICOS n/a 1.5
ICOS n/a 2.0
IL10 n/a 1.8
IL12B n/a -1.0
IL13 n/a -1.4
IL17 n/a 1.2

IL2 n/a -1.2
IL2RA n/a 1.4

IL3 n/a 2.2
IL4 n/a -1.0
IL4 n/a 1.2
IL9 n/a 2.7
LRP2 n/a 1.4

REN n/a 1.2
RPL3L n/a -1.2
TNFSF5 n/a 1.3
TNFSF6 n/a -1.4

Table 4.2. Average IL-I to control expression ratios in cultured HUVEC as determined by RT-PCR and microarray
for a select set of inflammation-related genes. Ratios in bold were determined to be statistically significant.

Microarray results that agree with PCR data are shown in red (regulated) and blue (not regulated) and results that
disagree with PCR data are shown in pink (not regulated on microarray) and cyan (regulated on microarray). A

value of "n/a" indicates RNA levels in both samples were undetected by PCR for more than 1 replicate.
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4.4. Discussion

4.4.1. Comparison to Basal Expression Profile. Of the 750 genes regulated by IL-1, 701

genes were found to be expressed by the statistical analysis detailed in Chapter 2. Thus, only 49

(10%) of the upregulated genes, are "turned on" from a non-expressed state; the others are

already "on" and their expression is only modulated. Although this number may be an

underestimate due to false positives from the expression analysis, it does reflect that the majority

of genes involved in mediating the endothelial inflammatory response are transcribed basally.

Thus, the response appears not so much to switch on the activation of completely silent

pathways, but rather to amplify the processes of already enabled pathways.

Interestingly, there is a bias towards upregulation of genes over downregulation in

response to an IL-1 stimulus. The gene expression profile of cultured HUVEC (cf. Chapter 2)

indicates that the majority of highly expressed genes under basal conditions are those required

for basic cellular function (e.g., transcription) or key endothelial function (e.g., hemostasis).

Thus, the scope for modulating phenotype by downregulating these genes without impairing

necessary functions is limited. In fact, in Panther functional categories that contain a number of

highly expressed genes that may not be critical for cell survival or identity--e.g., transcription

factors or cytotskeletal proteins-there are comparable numbers of IL-1 upregulated and

downregulated genes. For the most part, however, the endothelial cell under basal conditions

appears to activate at high levels only critical pathways, and responds to stimuli by amplifying

additional pathways.

4.6.2. Biological roles of regulated genes. A number of the genes found to be regulated

have previously been shown to be IL-1 responsive in HUVEC, such as the upregulation of cell

adhesion molecules including ICAM-1, VCAM-1 and E-selectin [99],[100], cytokines such as
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IL-6, IL-8, MCP-1, and GM-CSF [99], pro-thrombotic factors such as tissue factor, and the

downregulation of anti-thrombotic factors such as thrombomodulin [101] and the glycoprotein

thrombospondin [102]. The Panther classifications underscore their patterns; the largest

categories containing only upregulated genes are cytokine, chemokine and cytokine receptor and

categories highly enriched in upregulated genes include defense/immunity protein.

A number of genes not previously recognized to be regulated by IL- were also

discovered in this dataset. These genes include upregulated transcripts, but downregulated genes

are of especial interest in this genome-wide study since previous studies on the effect of IL-1 on

endothelial cells have focused primarily on which gene products are upregulated by the

inflammatory stimulus, and report far more upregulated than downregulated genes [5, 103]. As

noted earlier, the largest number of downregulated genes fall in the transcription factor, nucleic

acid binding and cytoskeletal protein Panther categories (see Fig. 4.3).

Two Kruppel-like factors, KLF3 and KLF7, are upregulated by IL-1. KLF7 has been

shown to be upregulated in HUVEC by IL-1 at other time points [5], but this study is the first to

note upregulation of KLF3. Interestingly, KLF2, which shares a close homology with these

other factors, is downregulated by IL-1. While KLF2 has been characterized as an anti-

inflammatory transcription factor [36], the others have not been implicated functionally in any

inflammatory process to date.

Several TNF-alpha-induced proteins (TNFAIP's) and TNFAIP-interacting proteins,

which appear to have a net anti-inflammatory and cytoprotective effect, are upregulated in our

dataset. TNFAIP2, 3, and 6 have been shown to be regulated by IL- in previous transcriptional

profiling studies as well [5, 103]. Our dataset also includes the upregulation of TNFAIP1 and 8,

as well as TNFAIP3 interacting proteins 1, 2 and 3. The roles of TNFAIP1, 2 and 8 are not well
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characterized; TNFAIP3 has been shown to inhibit NF-Kappa B activation and apoptosis [104]

and TNFAIP6 activates inter-alpha-inhibitor, an anti-inflammatory agent [105]. TNFAIP3

interacting protein 2 (TNIP2) inhibits endothelial apoptosis [106]. In contrast, TNIP1 appears to

attenuate ERK2 signaling, which may have a pro-apoptotic effect [107]. TNIP3, which was

among the top 50 upregulated genes (11.8x), is a cytoskeletal protein whose only known role is

its induction by Listeria in macrophages [108]. Thus, IL-1 appears to activate in concert the

transcription of several related and possibly redundant genes preventing apoptosis, perhaps as a

part of a negative feedback loop.

The Notch pathway has previously been shown to inhibit the NF-Kappa B pathway [109],

which plays an important role in mediating inflammatory responses. It has also been shown to

be activated under TNF stimulation in the context of rheumatoid arthritis [110]. Notch ligand

jagged 1 has been seen as upregulated in HUVEC by IL-1 in previous transcriptional profiling

studies, but our dataset indicates that several other genes related to the Notch pathway are

regulated in HUVEC by IL-1 at the 4-hour timepoint. The downstream Gridlock homolog Hey-i

is upregulated (1.5 fold), along with Notch activator presenilin 1 (1.6 fold) and Notch ligand

jagged 1 (2.6 fold). The ligand jagged 2, however, is downregulated (1.7 fold). The increased

expression of Notch pathway members under IL- stimulation may indicate a negative feedback

loop to moderate the NF-Kappa B response.

The Notch pathway, which is involved in vascular development, may also be regulated as

part of an angiogenic response to an inflammatory stimulus. Concurrent regulation of other

developmental or angiogenesis-related genes include both Ephrin Al and B1, which were

upregulated (4.3 and 2.5 fold, respectively), and Ephrin ligand EphA4, which was downregulated

(1.7 fold). The Ephrin-Eph genes have been implicated mostly in development and angiogenesis
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[111], and their regulation under IL-1 suggests either that even at an early time point, this

stimulus causes endothelial cells to modulate their angiogenic phenotype. Several other known

or putative pro-angiogenic factors were found to be upregulated, including the cytokine IL-8,

VEGF, and adrenomedullin [112]. In contrast, another angiogenic factor, placental growth factor

[113], was downregulated.

Atherosclerosis, considered to be an inflammatory process, also includes the

accumulation of many lipids in its lesions. Interestingly, two species of apolipoprotein L are

upregulated by IL-1 in cultured HUVEC. Apolipoprotein L has previously been demonstrated to

be upregulated in a TNF-alpha-induced endothelial inflammatory response and to be present in

atherosclerotic lesions [114]. Also upregulated (1.6 fold) is seipin, the gene implicated in

Bernardinelli-Seip congenital lipodystrophy; loss of function of this gene leads to loss of fat

accumulation [115]. Upregulation of this gene in endothelial cells may be involved in the lipid

dysregulation that is often seen in the context of vascular inflammation.

Suprisingly, also upregulated is EDG-1, a molecule implicated in angiogenesis and

formation of adherens junctions in endothelial cells [116], although increased permeability

would be an expected endothelial response to an inflammatory stimulus. Perhaps this gene is

upregulated as part of a negative feedback loop in response to the increased permeability one

would expect to find in an endothelial inflammatory response.

4.6.3. Advantages of Genome-wide Screening of Differential Gene Expression. The

ability to interrogate the entire genome for changes in HUVEC gene expression due to IL-

stimulation has revealed a number of new genes regulated, such as KLF2, Ephrin B1, HEY-1 and

jagged 2, in addition to several genes known to be IL-1 responsive such as E-selectin, VCAM

and IL-8. This study is the first to look at the effect of IL-1 stimulation of HUVEC with total
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genome array technology and with replicate measurements. Comparisons with other studies are

confounded by the use of different time points and experimental conditions such as IL-1 dosage

and source of endothelial cells [5, 103, 117]. Compared to the two closest studies that profiled

HUVEC treated with IL-1 10 U/mL across a range of time points [5, 103], this study has found

far more regulated genes, and a greater percentage of downregulated genes. Zhao, et al. looked

only at a subset of the genome, 4,000 genes, and found 33 genes to be regulated in at least 1 of 5

different time points, of which 10% were downregulated at 4 hours [103]. Mayer, et al. used a

more comprehensive genome array examining approximately 30,000 genes, and found 137

regulated genes in at least 1 of 3 different time points, of which approximately 10% were

downregulated. Our previous transcriptional profiling experiments with non-total-genome arrays

(using identical experimental conditions and comparable statistical processing) have also

produced a smaller number of regulated genes and smaller fraction of downregulated genes

[118]. The bias towards upregulated genes may indicate that previous arrays that spotted a

limited number of genes were enriched in genes characterized as having increased expression

under activating stimuli.

One factor affecting the overall high numbers of regulated genes that we found at just one

time point compared to other studies is our use of replicate microarrays and statistical analysis.

Instead of setting arbitrary fold cutoffs, we have been able to select genes according to a

statistical cutoff of the likelihood of their being truly regulated. Thus, we are not limited by the

size of ratios, e.g., 4x in Mayer, et al.'s study, and can detect important genes that are regulated

at lower fold differences but consistently so. Such genes include both upregulated species such

as apolipoprotein L2 (3.3x), TNFAIP3 interacting protein 2 (1.8x), the apoptosis-related caspase

7 (1.7x) and downregulated species such as connexin 37 (2.8x) and thrombospondin (-1.9x). The
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use of replicates also reduces the number of false positives in our lists of differentially regulated

genes, since reproducibility is taken into account. The reliability of our statistical approach is

reflected in the PCR data, especially in the high sensitivity (96.6%).

In addition to unveiling additional genes regulated under an inflammatory stimulus, a

genome-wide exploration of the HUVEC response to IL- has enriched the existing knowledge

we have of which pathways are affected by this stimulus. For example, jagged 1 expression has

been previously shown to be regulated by IL-1, but this study is the first to illustrate the

concomitant regulation of several other elements of the Notch pathway. Similarly, a number of

additional molecules in the TNFAIP family and the Ephrin/Eph family have been newly shown

to be regulated by IL-1. These results underscore the complexity of the endothelial response to a

simple chemical stimulus; both receptors and ligands, as well as genes with overlapping

function, are regulated at a transcriptional level. Such results can be used to discover novel DNA

binding sites for transcription factors that affect multiple genes regulated by IL-1 [5].

Perhaps most revealing from a genome-wide study of the endothelial response to a simple

stimulus are the conflicting directions in which genes involved in the same pathway or function

are regulated. The contrasting regulation of jagged 1 and 2, or of the pro-angiogenic VEGF and

anti-angiogenic placental growth factor, highlights the complexity of the feedback mechanisms

that are activated in response to IL-1. By further defining the genome-wide expression profiles

of HUVEC responding to the same stimulus at different time points, as well as to different

stimuli that modulate some of the same pathways, will provide the data required to reverse

engineer these rich regulatory transcriptional networks.
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5. Effect of Linear Amplification of RNA on Microarray Analysis

5.1. Introduction

The genome-wide expression profiling techniques we have described can be applied to

the study of an endless spectrum of tissues and conditions, limited only by sample availability. It

may be difficult to obtain sufficient RNA material (-40 .g of total RNA) to perform a

microarray hybridization using patient biopsy specimens or under certain experimental

conditions. RNA amplification techniques have been developed to allow enough labeled

material to be generated starting from only 1-10 gg of RNA, a fraction of the material required

for a direct-labeling experiment [119].

RNA amplification techniques must be mostly linear to be of use in a differential

expression study. Although most RNA amplification techniques have been demonstrated to act

linearly across a broad range of concentrations [120, 121], there is undoubtedly an introduction

of additional noise via the amplification processes [122]. For example, the amplified RNA

sample may be enriched in shorter RNA sequences due to preferential transcription or

degradation [123]. RNA amplification has higher fidelity on the 3' end of an mRNA compared

to the 5' end; thus genes queried with probes that represent the 5' end may not be accurately

detected on microarrays [124, 125]. Some of these systematic biases affect both control and

treated samples and may have only a minor effect on the ratios of gene expression between

conditions. Concentration biases may have a larger impact on differential expression studies. If

the amplification factor is greater for species at lower concentrations than for those at higher

concentrations, the differential expression ratios will be damped by the amplification process. If

the reverse is true, genes whose transcript levels differ only slightly may appear to be strongly

regulated. To characterize the effect of amplification on our expression profiling results, we
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compared results from our original data and from microarrays using material amplified from the

same original RNA samples.

5.2. Methods

5.2.1. RNA isolation. RNA from IL-1 treated and control HUVEC was isolated and

quantified in triplicate as detailed in Chapter 4. The same RNA was used for reverse

transcriptase - in vitro transcription (RT-IVT) amplification so that the effects of amplification

could be compared to the data from the original biological specimen.

5.2.2. Amplification and Hybridization. RT-IVT amplification was performed for each

sample according to manufacturer's protocols (all reagents supplied by Applied Biosystems,

Foster City, CA, unless otherwise specified). Briefly, first a reverse transcription amplification

process generated cDNA from 10 tg of original total RNA. The total RNA was mixed with 2.0

ptL T7-oligo (dT) primer and 4.0 [tL control RNA, then heated to 700 C for 5 min. and cooled to

4°C. 2.0 ptL 1OX First Strand Buffer Mix and 3.0 tL RT Enzyme Mix were added and the

reaction held at 25C for 10 min., 42°C for 2 hours, 70°C for 15 minutes and then cooled to 4°C.

Second strand DNA was generated by adding 95.0 1tL nuclease-free water, 30.0 tL 5x Second

Strand Buffer and 5.0 tL Second Strand Enzyme Mix, and this reaction was held at 16°C for 2

hrs., 70°C for 15 min. and cooled to 4°C. Double-stranded DNA was then purified by the

addition of 150 tL of DNA Binding Buffer, followed by transfer to a DNA purification column,

two washes with 700 glL each of DNA Wash Buffer and finally three elutions with 30 [tL each of

DNA Elution Buffer.

Labeled cRNA for microarray hybridization was generated from 15 tL of the purified

cDNA. 11 [tL nuclease-free water, 8.0 jtL 5x IVT buffer, 4.0 CtL digoxigen-1 1-UTP (Roche) and

2.0 iiL IVT Enzyme Mix were added to the cDNA and reacted at 37°C for 9 hrs. then cooled to
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4°C. Labeled cRNA was then purified by the addition of 20 tL nuclease-free water, 200 pL

RNA Binding Buffer and 140 gtL 100% ethanol, transfer to an RNA purification column, two

washes with 500 4tL each of RNA Wash Buffer and finally two elutions with 50 tL each of RNA

Elution Buffer. Quality of the cRNA was verified with the Agilent Bioanalyzer 2100, and

absorbance of a 1:30 dilution of the purified cRNA was measured at 260 nm and 320 nm to

calculate cRNA concentration as (A260 - A320)*1.2. 10 ptg of cRNA in 80 jtL of nuclease-free

water was combined 10 tL cRNA Fragmentation Buffer, heated to 600C for 30 minutes then

stopped by addition of 50 ptL of cRNA Fragmentation Stop Buffer. 150 tL of this fragmented

labeled cRNA was used in the microarray hybridization procedure as detailed in Chapter 2.

Normalized, surrogated values were used for comparison of individual replicate data and of

differential expression analyses; recovered unsurrogated values (see Chapter 2 methods) were

used for expression profile analysis.

5.3. Correlation of RT-IVT Signal Values with Non-Amplified Signal Values

For each replicate in each condition, the set of signal values from the RT-IVT microarray

was compared to its corresponding set of non-amplified signal values, resulting in squared

Pearson's linear correlation coefficients (R2 ) of 0.65 to 0.67. If signal values are biased similarly

for samples from both conditions, then the ratios may still be valid. For each replicate, the set of

ratios after Lowess-normalizing between conditions were compared between the direct and RT-

IVT datasets, resulting in fitted slopes of 1.0, 0.93 and 1.1 and R2 of 0.05, 0.65 and 0.16 for

replicates 1, 2 and 3 respectively. This poor correlation, however, appears to be due to a small

number of false classifications and many small differences in the ratios of non-regulated genes.

Fig. 5.1, which plots the corresponding RT-IVT and direct ratio values against each other for

each replicate, illustrates that there are a similar number of points for all three replicates where
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Fig. 5.1. Plots of corresponding IL-1 to control signal ratios from the RT-IVTdataset vs. the
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the log ratio magnitude is large in the direct dataset, but small for the RT-IVT dataset (scatter

parallel to the x-axis), representing false negatives. Examining false positives, however, there

are a number of points in replicates #1 and #3, compared to replicate #2, that have small log ratio

magnitudes in the direct microarray dataset but large log ratios magnitudes in the RT-IVT

dataset. The largest ratios lie close to the y=x line for all replicates; thus the behavior of the most

regulated genes appear to be accurately captured when using RNA amplification.

5.4. Expression Analysis with RT-IVT Data

The gene expression profile analysis detailed in Chapter 2 was repeated using the RT-

IVT microarray data from control samples. Parameter values for the theoretical distributions and

the RMS errors between the theoretical and actual distributions are given in Table 5.1. Most

noticeably, the Gaussian standard deviation values are larger, suggesting that the RT-IVT signal

values for non-expressed genes are noisier and fall in a broader range of values that direct signal

values. Thus, the expressed and non-expressed distributions have a greater overlap and are

harder to separate absolutely. The increased noise reduces the fraction of spots predicted to be

expressed for each replicate, from -60% to -50% (f = 0.42 - 0.50). Selecting spots for which all

good quality replicates were classified as expressed (using cutoffs that maximized the theoretical

true classification rate), a total of 17,848 spots (53.9% of all spots on array) representing 15,914

genes (53.4% of all genes on array) were considered to be expressed. 83% of the spots originally

classified as expressed were also classified as expressed based on the RT-IVT data. 3,141 spots

classified as expressed based on the unamplified microarray data were not classified as expressed

using the RT-IVT data (e.g., taxilin, with an average signal value of 141.08 vs. 0.26), and 2,517

spots were newly classified as expressed based on the RT-IVT data (e.g., the chemokine CCL3,

with an average signal value of 31.40 vs. 0.87). Thus, the majority of genes are classified
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consistently as expressed or non-expressed under both direct labeling and amplification

conditions.

Replicate #1 #2 #3

Minimum signal value -3.49 -4.36 -2.44

Maximum signal value 1457.66 2634.80 2647.40
f 0.42 0.47 0.50

9N 0.06 0.12 0.21

ON 0.33 0.44 0.45
1.47 1.67 1.58

(E 1.76 1.72 1.60
x0 0.39 0.56 0.69
RMS Error 8.3E-03 9.2E-03 7.7E-03

ML Cutoff 0.59 0.86 1
True Classification
Rate 95.4% 95.3% 96.0%

Table 5.1. Statistics and parameter values for two-populationfit of signal intensity
distributions from 3 replicate microarrays of cultured HUVEC RT-IVT-amplified RNA.

5.5. Differential Expression of Genes

5.5.1. Differentially Expressed Genes Detected on RT-IVT Microarrays. Ultimately, it is

the net results from combining replicate data that will be used to interpret microarray data. Thus,

we compared the statistical detection of differentially expressed genes after RT-IVT

amplification to the genes detected using direct labeling. Using the same statistical algorithms

with outlier detection as applied to the unamplified microarray data, 219 genes (234 spots) were

found to be statistically significantly upregulated and 82 genes (87 spots) were found to be

statistically significantly downregulated on the RT-IVT microarrays. Fig. 5.2a highlights these

points on a scatterplot showing the average RT-IVT IL-1 intensity vs. the average RT-IVT

control intensity. Overall, a smaller number of genes (301 vs. 706) were statistically detected as

regulated. 498 genes originally detected as regulated were not found and 60 spots were newly

classified as regulated in the RT-IVT dataset; these points are circled both in the RT-IVT
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Fig. 5.2. (a) Scatterplot of average spot intensitiies for control vs. IL-I treated samples in the RT-IVTdataset. Statistically
significant differentially expressed genes highlighted in color and spots whose classification as statistically regulated differed from
the direct labeled dataset are circled in black. (b) Scatterplot of average spot intensitiies for control vs. IL-1 treated samples in the
direct labeled dataset. Statistically significant differentially expressed genes highlighted in color and spots whose classification as
statistically regulated difered from the RT-IVT dataset are circled in black.
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scatterplot shown in Fig. 5.2a, as well as in a scatterplot of the original unamplified data shown

in Fig. 5.2b.

Results can vary between the RT-IVT and direct labeled methods for several major

reasons. First, non-linear amplification can cause an mRNA species present at low concentration

under one condition to be amplified by a greater factor than the same species present at a higher

concentration under the other condition. Thus, the expression ratio between conditions would be

blunted, leading to "false negative" results. Possible examples of such genes would be CSF1

(10.1x reduced to 1.3), VEGF (3.0x reduced to .lx), connexin 40 (-3.8x to -1.8 x) and connexin

37 (-2.8x to -1.5). A bias in amplification may even lead to a reverse ratio; Ephrin Al, for

example, appears to be 4.3-fold upregulated in the direct comparison dataset, but 10.7-fold

downregulated (not significant) in the RT-IVT dataset.

If the amplification bias is instead towards the higher expressed condition, however, the

expression ratio will be enhanced, possibly generating false negative values. For example,

CCL3, which was not statistically upregulated according to PCR validation (see Table 5.2),

appears to be statistically significantly upregulated by 42-fold in the RT-IVT dataset but only 2-

fold upregulated (and not statistically significant) in the direct labeled dataset. A few of the 60

"false positive" genes, however, may actually have genuinely regulated at a low level, and the

RT-IVT process, by artificially increasing the ratio, may have enhanced statistical detection of

these genes. Possible genes in this category include inflammation-related factors such as CCL7

(8.4x upregulated in the RT-IVT dataset vs. 2.4x upregulated and not significant in the direct

labeled dataset), cytokine receptor-like factor 1 (10.4x vs. -1.4x) and CD79A antigen (-.6.7x vs.

1.lx).
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The additional biochemical manipulations in the RT-IVT process change the noise

characteristics of the dataset. The overall trend is an increase in noise; thus, fewer genes are

found statistically significant. This effect can be due solely to the increased standard deviation,

seen with genes such as CXCL11 (2.8x regulated in the direct labeled dataset vs. 2.9x regulated

and not statistically significant in the RT-IVT dataset), HEY-i (1.5x vs. 1.6x), presenilin 1 (1.6x

vs. 1.7x) and jagged 2 (-1.7x vs. -1.7x). In contrast, the amplification process may

proportionally increase the concentration and therefore the intensity of a few mRNA species

under both conditions. Since standard deviations of ratios tend to be lower at higher intensities,

the RNA amplification process could actually enhance statistical detection of such genes, e.g.,

the intermediate filament binding protein plectin 1 (ratio of 18.5 to 8.9 (2x) in the RT-IVT

dataset vs. 0.2 to 0.1 (also 2x) in the direct labeled dataset). Thus, effects on ratio magnitudes

and ratio variance, as well as the combination of the two, cause the discrepancies seen between

the RT-IVT and direct labeled results.

5.5.2. Validation with PCR. Comparing the data to the PCR results given in Chapter 4,

12 out of 21 (57.1% sensitivity or true positive rate) spots representing genes shown to be

regulated by QRT-PCR and 2 out 87 (2.3% false positive rate) of the spots representing genes

not shown to be regulated by QRT-PCR are found to be statistically significantly regulated on

the RT-IVT microarrays (see Table 5.2). The sensitivity value of 57.1% is slightly worse than

the value of 67% seen with unamplified microarray data. Of the 9 "false negative" spots not

found to be regulated in the RT-IVT microarray dataset, 5 have ratios over 2-fold on RT-PCR

but under 2-fold on the microarray. This large difference in computed ratios is seen in only 1 out

7 "false negative" spots for the direct labeled dataset. The false positive rate of 2.3% compared

to 3.4% for unamplified data is not appreciably different. Of the 2 false positives, however, the
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RT-PCR dataset shows CCL3 to be upregulated by 42-fold, whereas the PCR results indicate a

non-significant 3.6-fold downregulation. None of the false positive discrepancies were of this

magnitude in the direct labeled dataset.

Avg RT- Direct Avg RT- Direct Avg RT- Direct
PCR IVT Labeled PCR IVT Labeled PCR IVT Labeled

Name Ratio Ratio Ratio Name Ratio Ratio Ratio Name Ratio Ratio Ratio
CSF2 630.6 406.9 518.1 Stat3 1.1 1.2 1.2 TNFRSF5 -1.1 1.4 1.2
CSF3 595.1 6.1 51.4 Stat3 1.1 1.1 1.3 GAPDH -1.1 -1.1 -1.0

SELE 471.1 177.6 432.2 Stat3 1.1 1.3 1.1 GAPDH -1.1 1.1 -1.1

CXCL10 176.6 11.3 9.2 CCL3 -3.6 1.2 -1.2 TBX21 -1.0 1.5 -1.0
MCP1 122.4 57.2 107.8 CCL3 -3.6 -1.1 -1.5 BCL2L1 -1.0 -1.7 1.1
ICAM1 71.0 59.5 64.0 CCL3 -3.6 42 ,3 2.1 C3 -1.0 -1.6 1.2
IL8 69.2 37.2 58.9 PRF1 -3.1 1.2 1.1 AGTR2 n/a -1.1 -2.2

TNF 49.3 -1.3 2.0 CXCR3 -3.0 1.8 -1.4 CCL19 n/a -1.3 1.2
IFNg 22.9 -1.7 -1.2 PTPRC -2.7 1.1 1.1 CCR2 n/a 1.0 1.2
IL6 21.8 31.4 23.8 PTPRC -2.7 1.4 -1.0 CCR5 n/a 1.1 1.2
ILb 11.1 8.2 6.6 CD3 -1.9 -2.6 -1.5 CCR7 n/a -1.6 -1.0
ILla 10.5 11.9 16.9 BCL2 -1.8 -1.2 -1.1 CD19 n/a 2.4 -1.1
NFKB2 8.8 2.6 11.1 BCL2 -1.8 1.1 -1.0 CD4 n/a 1.7 -1.2
IL15 7.9 8.3 7.1 COL4A5 -1.7 -1.0 -1.0 CD80 n/a -1.2 1.8
CSF1 7.2 1.3 10.1 IL5 -1.6 1.2 -1.1 CD86 n/a 1.1 -1.1

CSF1 7.2 -1.1 6.0 IkB2 -1.5 -1.1 1.0 CTLA4 n/a 1.8 1.6
MADH3 2.1 2.5 2.4 SKI -1.5 -1.1 -1.1 CYP1A2 n/a -2.3 1.3
LTA 1.8 1.4 1.3 AGTR1 -1.5 1.1 -1.1 HLADRA n/a 1.5 1.0

MADH7 -2.2 -1.6 -1.7 GZMB -1.5 -1.3 -1.2 Hs00411908 n/a 1.3 -1.0
CD68 -1.3 -1.3 1.2 HMOX1 -1.4 -1.5 -1.2 ICOS n/a -1.3 1.5
ACE -1.2 -1.6 -1.1 GNLY -1.4 1.5 -1.3 ICOS n/a 1.8 2.0
CCL5 17.4 1.8 2.2 TNFRSF6 -1.4 -1.1 -1.1 IL10 n/a -1.9 1.8
CXCL11 2.8 2.9 .: ACTB -1.3 -1.2 -1.1 IL12B n/a 1.5 -1.0
IL12A 2.4 1.3 -1.1 HLADR -1.3 -1.3 1.4 IL13 n/a 2.0 -1.4
TNFRSF18 2.2 -1.4 1.2 TGFB1 -1.3 -1.2 -1.1 IL17 n/a 1.0 1.2
VEGF 2.2 1.1 ,;,z~, Nos2A -1.3 -1.0 -1.8 IL2 n/a -1.6 -1.2
YP7A1 2.0 1.3 -1.5 BAX -1.3 -1.0 1.1 IL2RA n/a -1.2 1.4

PTGS2 1.9 f 6?', BAX -1.3 1.2 1.1 IL3 n/a 1.2 2.2
IL7 1.6 -1.3 1.2 CD8 -1.3 1.8 1.6 1L4 n/a 1.5 -1.0
IL7 1.6 -1.0 -1.2 CD8 -1.3 -1.1 1.6 IL4 n/a 1.4 1.2
IL7 1.6 -1.0 -1.2 SELP -1.3 -1.0 1.0 IL9 n/a 1.4 2.7
CCR4 1.4 -1.7 -1.1 TFRC -1.2 -1.2 -1.1 LRP2 n/a 1.1 1.4

D28 1.2 -1.0 1.1 CD34 -1.2 -1.1 1.0 REN n/a -1.2 1.2
IL18 1.1 1.0 -1.3 GUSB -1.2 -1.1 -1.2 RPL3L n/a -1.1 -1.2
EC1 1.1 1.5 1.4 EDN1 -1.1 1.0 -1.1 TNFSF5 n/a 1.1 1.3
CD38 1.1 -1.1 -1.1 FN -1.1 1.2 1.1 TNFSF6 n/a 1.3 -1.4

Table 5.2. Average IL-] to control expression ratios in cultured HUVEC as determined by RT-PCR, RT-IVT
microarray and direct labeled microarray for a select set of inflammation-related genes. Ratios in bold were
determined to be statistically significant. Microarray results that agree with PCR data are shown in red (regulated)
and blue (not regulated) and results that disagree with PCR data are shown in pink (not regulated on microarray)
and cvan (regulated on microarray). A value of "n/a" indicates RNA levels in both samples were undetected by PCR
,fbr more than I replicate.
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These qualitative differences highlight the limitations of RT-IVT amplification. With

this dataset alone, it is impossible to determine if the errors introduced by RT-IVT are systematic

or random. For example, genes certain sequences may be more prone to non-linear

amplification. Also, non-linearities may be pronounced in specific ranges of concentration.

Other datasets that directly compare direct labeling and RT-IVT data for other conditions under

which different genes are regulated may provide further insight into the nature of the incurred

noise due to RT-IVT amplification. Nonetheless, our data illustrates that this technique reliably

detects the majority of top statistically regulated genes when the amount of starting material is

limited.
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6. Conclusions

We have studied gene expression in cultured human endothelium at a genome-wide level

under both basal and inflammatory conditions. We have developed generalized analytical

techniques, both to define a comprehensive profile of expressed genes under a specific condition

and to determine statistically differentially regulated genes between two conditions. These

methods have been applied to define an endothelial transcriptome for cultured HUVEC under

basal conditions and to study the genome-wide changes to this transcriptome that are caused by

an IL-I stimulus. This analysis represents the largest snapshot of the transcriptional activity of

cultured and IL-1-stimulated HUVEC to date. Finally, we have applied these techniques to data

collected using amplified RNA samples, allowing us to characterize the effect that the additional

noise may have on the output of statistical analyses.

The tools described here can be used for the rigorous analysis of microarray data studying

any biological question. Our laboratory is currently generating genome-wide expression profiles

for different types of endothelial cells to continue developing our definition of the endothelial

transcriptome-the set of genes required for endothelial identity. By applying the differential

expression algorithms to data from more and more experimental conditions, we should enhance

our understanding of how this transcriptome is modulated by different stimuli and begin to

determine the gene regulatory networks that control endothelial structure and function. As our

new bioinformatics tools are used to explore endothelium along these two orthogonal paths-

diversity of endothelial cell origin and diversity of environmental stimuli-we will develop a

more detailed picture of the physiological and pathophysiological behavior of this vascular

interface.
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Appendix A: Genes Significantly Regulated by 4-hr. IL-113 Exposure in
Cultured HUVEC

Color corresponds to p-value indicating statistical significance:

All
Down / 5e-5 < p < .05
Down I/ 5e-10 < p < 5e-5

* Down I le-15 < p < 5e-10
.Down / p < le-15

Up I 5e-5 < p < 0.05
* Up I 5e-10 < p < 5e-5
· Up I le-15 < p < 5e-10
· Up p < le-15

Ratio Gene Name
719.7 chemokine (C-X-C motif) ligand 3

518.1 colony stimulating factor 2 (granulocyte-macrophage)

432.2 selectin E (endothelial adhesion molecule 1)

431.9 chemokine (C-X-C motif) ligand 2

352.4 vascular cell adhesion molecule 1

291.5 chemokine (C-X3-C motif) ligand 1

240.3 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)

172.3 TNF receptor-associated factor 1

138.7 ubiquitin D

107.8 chemokine (C-C motif) ligand 2

100.6 chemokine (C-C motif) ligand 20

79.4 baculoviral IAP repeat-containing 3

70.8 CD69 antigen (p60, early T-cell activation antigen)

67.1 thymic stromal lymphopoietin

64.0 intercellular adhesion molecule 1 (CD54), human rhinovirus receptor

58.9 interleukin 8

51.4 colony stimulating factor 3 (granulocyte)

47.5 tumor necrosis factor, alpha-induced protein 6

45.5 tumor necrosis factor, alpha-induced protein 2

43.2 CCAAT/enhancer binding protein (C/EBP), delta

31.0 <no annotation>

29.4 chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)

28.3 tumor necrosis factor, alpha-induced protein 3

27.5 Rho family GTPase 1

25.7 leukocyte receptor cluster (LRC) member 9

24.9 likely ortholog of rat SNF1/AMP-activated protein kinase

23.8 interleukin 6 (interferon, beta 2)

23.2 tumor necrosis factor receptor superfamily, member 9

20.4 nuclear receptor subfamily 4, group A, member 3

20.3 hypothetical protein FLJ23231

17.7 coagulation factor IIIl (thromboplastin, tissue factor)
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Ratio Gene Name

16.4 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2

15.9 inducible T-cell co-stimulator ligand
13.9 <no annotation>

1 3 7 S100 calcium binding protein A3

13.6 CD83 antigen (activated B lymphocytes, immunoglobulin superfamily)

13.5 <no annotation>

12.5 molecule possessing ankyrin repeats induced by lipopolysaccharide (MAIL), homolog of mouse

12.3 chemokine orphan receptor 1

12.2 tumor necrosis factor receptor superfamily, member 1 lb (osteoprotegerin)

11.8 TNFAIP3 interacting protein 3

11.7 superoxide dismutase 2, mitochondrial

11.2 chromosome 6 open reading frame 128

11.2 <no annotation>

1 1.1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)

11.0 TRAF2 binding protein

10.1 colony stimulating factor 1 (macrophage)
9.5 <no annotation>

9.4 v-rel reticuloendotheliosis viral oncogene homolog B, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3 (a

9.3 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

9.2 activating transcription factor 3
9.1 <no annotation>

8.8 apolipoprotein L, 3

8.4 <no annotation>

8.2 human immunodeficiency virus type I enhancer binding protein 2

8.2 jun B proto-oncogene

8.1 tenascin C (hexabrachion)

8.0 hypothetical protein MGC52057

7.9 undifferentiated embryonic cell transcription factor 1

7.8 mitogen-activated protein kinase kinase kinase 8

7.7 leukemia inhibitory factor (cholinergic differentiation factor)
7.7 interleukin-1 receptor-associated kinase 2

7.2 interleukin 18 receptor 1

7.2 nuclear receptor coactivator 7

7.1 interleukin 15

6.8 histone deacetylase 9

6.8 <no annotation>

6.7 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2

6.6 receptor-interacting serine-threonine kinase 2

6.4 interferon regulatory factor 1
6.3 tumor necrosis factor, alpha-induced protein 8
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Ratio Gene Name

6.2 NK3 transcription factor related., locus 1 (Drosophila)

6.2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)

5.9 <no annotation>

5.7 <no annotation>

5.6 TNFAIP3 interacting protein 1

5.3 <no annotation>

5.3 msh homeo box homolog 1 (Drosophila)

5.2 ATP-binding cassette, sub-family G (WHITE), member 1

5.2 antigen identified by monoclonal antibody MRC OX-2

5.2 <no annotation>

5.1 serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 2

4.9 tumor necrosis factor (ligand) superfamily, member 18

4.8 BCL2-related protein Al

4.8 talin 2

4.7 Down syndrome critical region gene 1

4.7 follistatin-like 3 (secreted glycoprotein)

4.7 syndecan 4 (amphiglycan, ryudocan)

4.6 carbonyl reductase 3

4.6 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)

4 5 interleukin 7 receptor

4.5 hepatocellular carcinoma-associated antigen 66

4.5 <no annotation>

4.4 solute carrier family 2 (facilitated glucose transporter), member 6

4.4 hypothetical protein DKFZp434K0427

4.3 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)

4.3 ephrin-A1

4.3 <no annotation>

4.3 sterile alpha motif domain containing 4

4.1 chromosome 8 open reading frame 4

4.1 <no annotation>

3.9 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)

3.9 syntaxin 11

3.8 solute carrier family 12 (potassium/chloride transporters), member 7

3.8 <no annotation>

3.8 <no annotation>
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Ratio Gene Name
3.8 <no annotation>

3.8 sequestosome 1

3.7 v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)

3.7 plasminogen activator, urokinase

3.6 solute carrier family 12 (sodium/potassium/chloride transporters), member 2

3.6 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon

3.5 immediate early response 3

3.4 tumor necrosis factor (ligand) superfamily, member 15

3.3 <no annotation>
3.3 SRY (sex determining region Y)-box 7

3.3 DNA-damage-inducible transcript 4

3.3 apolipoprotein L, 2

3.2 glutamine-fructose-6-phosphate transaminase 2

3.2 leucine-rich repeats and immunoglobulin-like domains 1

3.1 interleukin 4 induced 1

3.1 a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 9

3.1 tumor necrosis factor, alpha-induced protein 1 (endothelial)

3.1 <no annotation>

3.1 agouti signaling protein, nonagouti homolog (mouse)

3.0 neuronal pentraxin I

3.0 metallothionein 1F (functional)

3.0 <no annotation>

3.0 sialyltransferase 1 (beta-galactoside alpha-2,6-sialyltransferase)

2.9 interferon stimulated gene 20kDa

2.9 B-cell CLL/lymphoma 6, member B (zinc finger protein)

2.9 peroxisomal proliferator-activated receptor A interacting complex 285

2.9 cytoplasmic linker 2

2.8 FOS-like antigen 2

2.8 interferon gamma receptor 1

2.8 neuron navigator 2

2.8 <no annotation>

2.8 membrane associated guanylate kinase interacting protein-like 1

2.8 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1

2.8 <no annotation>

2.8 laminin, gamma 2

2.7 collagen triple helix repeat containing 1
2.7 colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)
2.7 signal transducer and activator of transcription 5A
2.7 phosphoprotein regulated by mitogenic pathways
2.7 coagulation factor II (thrombin) receptor-like 1
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Ratio Gene Name
2.7 <no annotation>

2.7 UDP-glucose ceramide glucosyltransferase

2.7 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide

2.7 slingshot 1

2.7 solute carrier family 31 (copper transporters), member 2

2.7 hypothetical protein FLJ23375

2.7 immediate early response 5

2.7 tripartite motif-containing 47

2.6 cathepsin S

2.6 dual specificity phosphatase 16

2.6 Ras and Rab interactor 2

2.6 natural killer cell transcript 4

2.6 metallothionein 1B (functional)

2.6 elongation factor, RNA polymerase 11, 2

2.6 jagged 1 (Alagille syndrome)

2.6 calcium-binding transporter
2.6 <no annotation>

2.6 cathepsin K (pycnodysostosis)

2.6 <no annotation>

2.6 <no annotation>

2.6 phorbol-12-myristate-13-acetate-induced protein 1

2.5 <no annotation>

2.5 metallothionein IV

2.5 metallothionein 1A (functional)lmetallothionein 1KImetallothionein 1E (functional)lmetallothionein 2A

2.5 suppression of tumorigenicity 5
2.5 TRAF family member-associated NFKB activator

2.5 ninjurin 1

2.5 zinc finger protein 36, C3H type, homolog (mouse)

2.5 interferon gamma receptor 2 (interferon gamma transducer 1)

2.5 SEC14-like 2 (S. cerevisiae)

2.5 <no annotation>

2.5 <no annotation>

2.5 metallothionein 1X

2.5 CDC14 cell division cycle 14 homolog A (S. cerevisiae)

2.5 uridine phosphorylase 1

2.5 ephrin-B1

2.5 DnaJ (Hsp40) homolog, subfamily B, member 9

2.4 <no annotation>

2.4 nicotinamide N-methyltransferase

2.4 pannexin 1

2.4 v-rel reticuloendotheliosis viral oncogene homolog (avian)

2.4 C-type lectin-like receptor-1

2.4 tumor necrosis factor (ligand) superfamily, member 10
2.4 heat shock 27kDa protein 8

2.4 optineurin

2.4 TNF receptor-associated factor 3

2.4 MAD, mothers against decapentaplegic homolog 3 (Drosophila)
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Ratio Gene Name

2.4 zinc fingers and homeoboxes 2

2.4 interleukin 15 receptor, alpha

2.3 junctional adhesion molecule 2

2.3 hypothetical protein FLJ10276

2.3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

2.3 chromosome 6 open reading frame 197

2.3 opioid growth factor receptor-like 1

2.3 bone morphogenetic protein 2

2 3 protein tyrosine phosphatase, receptor type, K

2.2 guanylate binding protein 1, interferon-inducible, 67kDa

2.2 salvador homolog 1 (Drosophila)

2.2 hypothetical protein FLJ90440

2.2 PDZ and LIM domain 4

2.2 pentaxin-related gene, rapidly induced by IL-1 beta

2.2 TIR domain containing adaptor inducing interferon-beta

2.2 <no annotation>

2.2 hypothetical protein FLJ90005

2.2 B-cell CLL/lymphoma 6 (zinc finger protein 51)

2 2 <no annotation>

2 1 M025 protein

2.1 transducin-like enhancer of split 3 (E(spl) homolog, Drosophila)

2.1 START domain containing 10

2.1 CDC42 effector protein (Rho GTPase binding) 2

2.1 pleckstrin homology-like domain, family A, member 1

2.1 Kruppel-like factor 3 (basic)

2.1 phospholipase A2, group IVC (cytosolic, calcium-independent)

2.1 cylindromatosis (turban tumor syndrome)

2.1 solute carrier family 7, (cationic amino acid transporter, y+ system) member 11

2.1 <no annotation>

2.1 endothelial cell-specific molecule 1

2.1 matrix metalloproteinase 10 (stromelysin 2)

2.1 endothelial differentiation, sphingolipid G-protein-coupled receptor, 1

2 1 tubulin, beta polypeptide

2.0 selenoprotein SelM

2.0 tripartite motif-containing 56

2.0 KIAA1404 protein

2.0 <no annotation>
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Ratio Gene Name
2.0 serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 8

2.0 a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 4

2.0 tyrosylprotein sulfotransferase 1

2.0 SRY (sex determining region Y)-box 1

2.0 regulator of G-protein signalling 3

2.0 zinc finger protein, multitype 2
2.0 WD repeat endosomal protein

2.0 ubiquitous tetratricopeptide containing protein RoXaN

1.9 formin binding protein 1
1.9 LIM domain kinase 2

1.9 DKFZP586N0721 protein

1.9 <no annotation>

1.9 CASP8 and FADD-like apoptosis regulator

1.9 eukaryotic translation initiation factor 2C, 2
1.9 mitogen-activated protein kinase kinase 3

1.9 ras homolog gene family, member B

1.9 X-box binding protein 1

1.9 G protein-coupled receptor 56

1.9 <no annotation>

1.9 hypothetical protein FLJ22344

1.9 DnaJ (Hsp40) homolog, subfamily A, member 1

1.9 <no annotation>

1 .9 mitogen-activated protein kinase kinase kinase 7 interacting protein 2

1.9 mitogen-activated protein kinase kinase 3

1.9 nucleolar protein 1, 120kDa

1.9 guanylate binding protein 4

1.9 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)

1.9 Ras association (RalGDS/AF-6) domain family 1

1.9 monocyte to macrophage differentiation-associated

1.9 poliovirus receptor

1.8 <no annotation>

1.8 roundabout, axon guidance receptor, homolog 1 (Drosophila)

1.8 <no annotation>

1.8 stannin

1.8 tumor necrosis factor receptor superfamily, member 10b
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1.8 guanine nucleotide exchange factor for Rap1

1.8 TNFAIP3 interacting protein 2

1.8 phosphatidylinositol transfer protein, cytoplasmic 1
1.8 <no annotation>

1.8 <no annotation>

1.8 hypothetical protein MGC17791

1.8 GPP34-related protein

1.8 <no annotation>

1.8 cyclin-dependent kinase inhibitor 1A (p21, Cipl)

1.8 <no annotation>

1.8 melanoma differentiation associated protein-5

1.8 hypothetical protein FLJ12484

1.8 activated leukocyte cell adhesion molecule

1.8 transforming growth factor, beta receptor 11 (70/80kDa)

1.7 regulator of G-protein signalling 2, 24kDa

1.7 component of oligomeric golgi complex 3

1.7 myelin protein zero-like 1lhypothetical protein FLJ21047

1.7 signal transducer and activator of transcription 6, interleukin-4 induced
1.7 BCL2-related ovarian killer

1.7 tryptophanyl-tRNA synthetase

1.7 cysteine and glycine-rich protein 2

1.7 hypothetical protein MGC10986

1.7 pleckstrin homology domain containing, family C (with FERM domain) member 1
1.7 EH-domain containing 1

1.7 hepatocellular carcinoma related protein 1
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Ratio Gene Name

1.7 H2.0-like homeo box 1 (Drosophila)

1.7 promyelocytic leukemia

1.7 CD47 antigen (Rh-related antigen, integrin-associated signal transducer)

1.7 mitochondrial folate transporter/carrier

1.7 phosphatidic acid phosphatase type 2B

1.7 armadillo repeat protein ALEX2

1 .6 baculoviral AP repeat-containing 2

1.6 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5

1.6 cysteine-rich hydrophobic domain 2

1.6 dishevelled associated activator of morphogenesis 1
1.6 pleckstrin homology, Sec7 and coiled-coil domains (cytohesin 1)

1 .6 Wilms tumor 1 associated protein

1.6 transcription factor binding to IGHM enhancer 3

1.6 <no annotation>

1.6 mitogen-activated protein kinase kinase 1
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1.6 spermidine/spermine Nl-acetyltransferase
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Ratio Gene Name

1.5 <no annotation>

1.4 tubulin, alpha 3

1.4 <no annotation>

-4.0 thioredoxin interacting protein

-3.0 DnaJ (Hsp4O) homolog, subfamily B, member 4

-3.0 thrombomodulin

-2.9 Kruppel-like factor 2 (lung)

-2.9 papillomavirus regulatory factor PRF-1 hypothetical protein DKFZp434K1210

-2.8 core-binding factor, runt domain, alpha subunit 2; translocated to, 1; cyclin D-related

-2.8 adrenomedullin

-2.8 gap junction protein, alpha 4, 37kDa (connexin 37)

-2.8 SRY (sex determining region Y)-box 18

;-2.6 prickle-like . t .(Drosophila) (( 4 . i

-2.6 prickle-like 1 (Drosophila)
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Ratio
-2.6

-2.5

-2.5

-2.5

-2.4

-2.4

Gene Name

G protein-coupled receptor 126

protein kinase, cAMP-dependent, catalytic, beta

Clq domain containing 1

hypothetical protein LOC51063
<no annotation>

Meisl, myeloid ecotropic viral integration site 1 homolog (mouse)

-2.4 Rho GTPase activating protein 18

-2.4 EH-domain containing 3

-2.4 lymphoblastic leukemia derived sequence 1

-2.3 palmdelphin

-2.3 mesenchymal stem cell protein DSCD75

-2.3 hypothetical protein FLJ20674

-2.3 chemokine-like factor super family 8

-2.2 <no annotation>

-2.1 dachshund homolog (Drosophila)

-2.1 calcitonin receptor-like

-2.1 <no annotation>

-2.0 v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

-2.0 scavenger receptor class F, member 2

-2.0 homeo box A10

-1 .9 LIM domain only 4

-1.9 early hematopoietic zinc finger
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-1 .9 interferon regulatory factor 2 binding protein 2

-1 .8 <no annotation>

-1 .8 immune associated nucleotide

-1 .8 <no annotation>
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-1 .6 connective tissue growth factor
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