
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-040 May 27, 2006

Amorphous Medium Language
Jacob Beal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4398391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Amorphous Medium Language

Jacob Beal
∗

Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge, MA USA

jakebeal@mit.edu

ABSTRACT
Programming reliable behavior on a large mesh network
composed of unreliable parts is difficult. Amorphous Med-
ium Language addresses this problem by abstracting robust-
ness and networking issues away from the programmer via
a language of geometric primitives and homeostasis mainte-
nance.

AML is designed to operate on a high diameter network
composed of thousands to billions of nodes, and does not
assume coordinate, naming, or routing services. Computa-
tional processes are distributed through geometric regions
of the space approximated by the network and specify be-
havior in terms of homeostasis conditions and actions to be
taken when homeostasis is violated.

AML programs are compiled for local execution using pre-
viously developed amorphous computing primitives which
provide robustness against ongoing failures and joins and
localize the impact of changes in topology. I show some ex-
amples of how AML allows complex robust behavior to be
expressed in simple programs and some preliminary results
from simulation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Algorithms, Languages, Reliability

Keywords
Amorphous Computing, Ultrascale Sensor Networks

1. INTRODUCTION
∗Student author. This work partially supported by NSF
grant #6895292.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Increasingly, we are faced with the prospect of program-
ming spatially embedded mesh networks composed of huge
numbers of unreliable parts. Projects in the fields of sen-
sor networks (e.g. NEST[16]), peer-to-peer wireless (e.g.
RoofNet[2]), and smart materials (e.g. smart dusts[15, 1])
have the capacity to create multi-thousand node networks
in the near future, and might easily scale to millions and
beyond if the technology takes off.

Controlling such a network presents serious challenges.
Spatially local communication means networks may have a
high diameter, and large numbers of nodes place tight con-
straints on sustainable communication complexity. More-
over, large numbers also mean that node failures and re-
placements are a continuous process rather than isolated
events, threatening the stability of the network. If we are
to program in this environment, we need high-level pro-
gramming abstractions to separate the behaviors being pro-
grammed from the networking and robustness issues
involved in executing that program on a spatially embedded
mesh network.

Observing that a mesh network can be viewed as an ap-
proximation of the space it occupies, I present the Amor-
phous Medium Language, which describes program behav-
ior in terms of nested processes occupying migrating regions
of the space in which the network is embedded. An AML
program can then be expressed in terms of previously devel-
oped amorphous computing primitives which approximate
the prescribed behavior on the network.

The ultimate goal of AML is to transform problems of
communication and coordination in much the same way
that garbage collection has transformed problems of mem-
ory management. A programmer would still have to consider
these issues, but as engineering parameters to be managed
rather than problems to be solved in detail.

If successful, it should provide a good platform for im-
plementing a large variety of applications. For example, it
should be possible to efficiently program sensor-networks ap-
plications like monitoring a wildlife habitat[22]. At the same
time, it should be possible to write infrastructure to support
ad-hoc wireless networks and even far-out applications like
nanotechnological manufacturing.[13]

In the remainder of the paper, I first formalize the network
model and give a brief overview of the amorphous computing
primitives which are currently used by AML. I then describe
AML’s key design elements — spatial processes, active pro-
cess maintenance, and homeostasis — and illustrate the lan-
guage by means of examples. Finally, I compare AML with
related work.

2. NETWORK MODEL
AML is designed with respect to the following assump-

tions about the network:

• The number of nodes n is large, from thousands to
billions.

• Nodes are distributed through space and collaborate
via communication with neighbors no more than r dis-
tance away.

• Nodes are immobile.1

• Memory, processing and energy capacity are not lim-
iting resources.

• Communication complexity is measured as maximum
communication density — maximum bits per second
transmitted by any node in the network.

• Execution is partially synchronous — each node may
be assumed to have a clock which ticks regularly, but
the clocks may show different times, run at (bound-
edly) different rates, and have different phases.

• Naming, routing, or coordinate services may not be
assumed.

• Nodes randomly fail and replacement nodes join at
equal expected rates of f per second.

• Arbitrary regional stopping failures and joins may oc-
cur, including changes in the connectedness of the net-
work.

• Nodes communicate with their neighbors via reliable
broadcast.

The main departures from more common sensor network
models is the relaxation of energy as a constraint. This is
largely due to the focus on robustness, since there is an in-
verse relationship between transmission frequency and time
to detect a failure.

Note also that uniform distribution of nodes and connec-
tion with neighbors less than distance r are not required,
but that system performance may degrade when distribu-
tion is very non-uniform or when too few nearby neighbors
cannot communicate.

In addition, several design goals provided further guid-
ance:

• Due to the large number of nodes, asymptotic commu-
nication complexities should be limited to O(lg n).

• Due to the potentially large diameter d of the net-
work, asymptotic time complexities should be limited
to O(d lg d).

• Nodes should be identically programmed and differ-
entiated at the beginning of execution only by minor
differences in initial conditions.

1Note that mobile nodes might be programmed as immobile
virtual nodes[11, 12].

3. AMORPHOUS COMPUTING
MECHANISMS

Several previously developed algorithms from amorphous
computing (which uses biological metaphors to program
ultra-scaling mesh networks) are used to implement AML
primitives. Each mechanism summarized here has been im-
plemented as a code module and demonstrated in simula-
tion.

3.1 Shared Neighborhood Data
This simple module allows neighboring nodes to commu-

nicate by means of a shared-memory region, similar to the
systems described in [6, 27]. Each node maintains a table of
key-value pairs which it wishes to share. Periodically each
node transmits its table to its neighbors, informing them
that it is still a neighbor and refreshing their view of its
shared memory. Conversely, a neighbor is removed from the
table if more than a certain time has elapsed since its last
refresh. The module can then be queried for the set of neigh-
bors, and the values its neighbors most recently held for any
key in its table.

Maintaining shared neighborhood data takes requires stor-
age and communication density proportional to the amount
of data being shared.

3.2 Regions
The region module maintains labels for contiguous sets

of nodes, using a mechanism similar to that in [26]. A Re-
gion is defined by a name and a membership test. When
seeded in one or more nodes, a Region spreads via shared
neighborhood data to all adjoining nodes that satisfy the
membership test. When a Region is deallocated, a garbage
collection mechanism spreads the deallocation throughout
the participating nodes, attempting to ensure that the de-
funct Region is removed totally.

Note that failures or evolving system state may separate a
Region into disconnected components. While these are still
logically the same Region, and may rejoin into a single con-
nected component in the future, information might not pass
between disconnected components. As a result, the state of
disconnected components of a Region may evolve separately,
and in particular garbage collection is only guaranteed to be
effective in a connected component of a Region.

Regions are organized into a tree, with every node belong-
ing to the root region. In order for a node to be a member
of a region, it must also be a member of that region’s parent
in the tree. This implicit compounding of membership tests
allows regions to exhibit stack-like behavior which will be
useful for establishing execution scope in a high-level lan-
guage.

Maintaining Regions requires storage and communication
density proportional to the number of Regions being main-
tained, due to the maintenance of shared neighborhood data.
Garbage collecting a Region requires time proportional to
the diameter of the Region.

3.3 Gossip
The gossip communication module[19, 5] propagates infor-

mation throughout a Region via shared neighborhood data.
Gossip is all-to-all communication: each item of gossip has
a merge function that combines local state with neighbor
information to produce a merged whole. When an item
of gossip is garbage-collected, the deallocation propagates

(a) Before Failure (b) After Repair

Figure 1: A line being maintained by active gradients, from [7]. A line (black) is constructed between two
anchor regions (dark grey) based on the active gradient emitted by the right anchor region (light grays). The
line is able to rapidly repair itself following failures because the gradient actively maintains itself.

slowly to prevent regrowth into areas which have already
been garbage-collected.

Gossip requires storage and communication density pro-
portional to the number and size of gossip items being main-
tained in each Region of which a node is a member, due
to the maintenance of shared neighborhood data. Garbage
collecting an item of gossip takes time proportional to the
diameter of the region.

3.4 Consensus and Reduction
Non-failing nodes participating in a consensus process

must all choose the same value if any of them choose a value,
and the chosen value must be held by at least one of the
participants. Reduction is a generalization of consensus in
which the chosen value is an aggregate function of values
held by the participants (e.g. sum or average).

The Paxos consensus algorithm[18] has been demonstrated
in an amorphous computing context[5], but scales badly. A
gossip-based algorithm currently under development promises
much better results: it appears that running a robust re-
duction process on a Region may require only storage and
communication density logarithmic in the diameter of the
Region and time linear in the diameter of the Region.

3.5 Read/Write Atomic Objects
Using consensus and reduction, quorum-based atomic mem-

ory can be implemented on a reconfigurable set of nodes[20,
14]. This has been demonstrated in simulation for amor-
phous computing[5], and scales as the underlying consensus
and reduction algorithms do.

3.6 Active Gradient
An active gradient[8, 10, 7] maintains a hop-count up-

wards from its source or sources — a set of nodes which
declare themselves to have count value zero — giving an ap-
proximate spherical distance measure useful for establishing

regions. The gradient converges to the minimum hop-count
and repairs its values when they become invalid. The gra-
dient runs within a Region, and may be further bounded
(e.g. with a maximum number of hops) When the support-
ing sources disappear, the gradient is garbage-collected; as
in the case of gossip items, the garbage collection propa-
gates slowly to prevent unwanted regrowth. A gradient may
also carry version information, allowing its source to change
more smoothly.

Maintaining a gradient requires a constant amount of stor-
age and communication density for every node in range of
the gradient, and garbage collecting a gradient takes time
linear in the diameter of its extent.

3.7 Persistent Node
A Persistent Node[4] is a robust mobile virtual node based

on a versioned gradient. The gradient flows outward from
the center, identifying all nodes within r hops (the Persis-
tent Node’s core) as members of the Persistent Node, while
a heuristic calculation flows inward from all nodes within 2r

hops (the reflector) to determine which direction the cen-
ter should be moving. The gradient is bounded to kr hops
(the umbra), so every node in this region is aware of the
existence and location of the Persistent Node. If any node in
the core survives a failure, the Persistent Node will rebuild
itself, although if the failure separates the core into discon-
nected components, the Persistent Node may be cloned. If
the umbras of two clones come in contact, however, they will
resolve back into a single Persistent Node via the destruction
of one clone.

The Persistent Node is also a Region whose parent is the
Region in which its gradient runs. In addition, a Persistent
Node is a read/write object supporting conditionally atomic
transactions.

Maintaining a Persistent Node requires storage and com-
munication density linear in the size of the data stored by

Reflector

Umbra

Core

Figure 2: Anatomy of a Persistent Node. The in-
nermost circle is the core (black), which arts as a
virtual node. Every node within middle circle is
in the reflector (light grey), which calculates which
direction the Persistent Node will move. The out-
ermost circle (dark grey) is the umbra (k=3 in this
example), which knows the identity of the Persistent
Node, but nothing else.

it. A Persistent Node moves and repairs itself in time linear
in its diameter.

4. AMORPHOUS MEDIUM LANGUAGE
I want to be able to program a mesh network as though

it is a space filled with a continuous medium of computa-
tional material. The actual executing program should pro-
duce an approximation of this behavior on a set of discrete
points. This means that there should be no explicit state-
ments about individual nodes or communication between
them. Instead, the language should describe behavior in
terms of spatial regions of what I will term the amorphous
medium - the manifold induced by the topology of the mesh
network.

The program should be able to be specified without knowl-
edge of the particular amorphous medium on which it will
be run. Moreover, the shape of the medium should be able
to change as the program is executing, through failure and
addition of nodes, and the running program adjust to its
new environment gracefully.

Finally, since failures and additions may disconnect and
reconnect the medium, a program which is separated into
two different executions must be able to reintegrate when
the components of the medium rejoin.

Three key components of AML’s design help to fulfill these
goals: spatial processes, active process maintenance, and
homeostasis.

4.1 Spatial Processes
Each running process is distributed throughout a region of

space, executing behavior defined for a generic point in the
process. Every node in that region is running the process,
and sharing process variables with those neighbors that are
running the same process.

The collection of processes forms a tree, whose root cov-

ers the entire network, and where subprocesses are confined
within their parent processes. A subprocess may be fur-
ther limited in scope by confinement to an active gradient,
Persistent Node, or other arbitrary test. This structure is
implemented simply, by means of the Region mechanism
(Section 3.2).

The set of nodes participating in a processes may migrate,
expand, and contract in response to changing conditions of
the network (or its own movement heuristic, in the case
of a Persistent Node). Note also that there may be parts
of a process which cannot communicate directly with one
another: for all intents and purposes these may act as two
independent processes, evolving separately, but if they are
brought together later, the two parts will fuse.

Many copies of the same process may run at the same node
as well, as long as they have different parameters or different
parent processes. So if process Foo calls (Fibonacci 5)
and (Fibonacci 10), it creates two different processes, and
if Foo and Bar both call (Fibonacci 5) it creates two
different processes, but if Foo calls (Fibonacci 5) twice it
creates only a single process.

Process execution is coordinated by means of its variables,
whose values are produced via aggregation across the set of
participating nodes. Depending on the requirements of the
computation, the variable may be implemented via gossip,
reduction, or distributed atomic object. Gossip is cheapest,
but provides no consistency guarantees and can be used only
for certain aggregation functions (e.g. maximum or union).
Reduction is similar, but somewhat more costly and allows
non-idempotent aggregation functions (e.g. average or sum).
Finally, an atomic object gives guaranteed consistency, but
is most costly and may not be able to progress in the face
of partition or high failure rates.

Processes are invoked in AML with a call to (subprocess
(name parameters) extent).

4.2 Active Process Maintenance
The fluid nature of processes means that a process might

find itself orphaned — for example, on the other side of a
network partition from the sibling process that needed its
output. In that case, it would be nice if the process just
went away rather than cluttering up memory and swiping
cycles for its now irrelevant task.2

AML addresses this issue by requiring that processes be
actively supported by their parents (except for the root pro-
cess). Support is maintained by an active gradient, and any
process for which there is no support at a node is garbage
collected from that node. Note that this also implies that
processes do not return at a discrete point — a running pro-
cess simply continues to update its output until its parent
no longer needs it.

Thus, the orphaned process in the example above will
no longer have support from its parent, because the sibling
demanding its output is no longer connected to its portion
of the parent, and will eventually be garbage collected.

Support for a subprocess is expressed by repeated invoca-
tion of the subprocess call.

4.3 Homeostasis and Repair
The ongoing nature of failures in a large network means

that running an exception handler when a failure occurs is

2This is much the same problem as addressed in [3].

(defprocess root ()
(defvariable x #’max :base 0)
(maintain
(eq (local x) (density))
(set! x (density)))

(always
(actuate ’color (regional x))))

Figure 3: Code to calculate maximum density (num-
ber of neighbors). The density at each point is writ-
ten to variable x, which aggregates them using the
function max. Each point then colors itself using the
aggregate value for x.

not reasonable — small failures are the rule, not the excep-
tion! Moreover, if two successive large failures were to occur,
handling an exception caused by the second in the exception
handler triggered by the first could be messy.

To sidestep the entire issue, AML formulates procedures
in terms of homeostasis conditions and repair actions to take
when they are violated. As a result, incomplete computa-
tion and disruption caused by failures can be handled uni-
formly. Failures are simply an additional perturbation in the
path towards homeostasis, and if the system state converges
toward homeostasis faster than failures push it away, then
eventually the procedure will complete its computation.

There are two ways of expressing homeostasis conditions
in AML: (avoid condition repair) and
(maintain condition repair). The avoid expression evalu-
ates repair whenever condition evaluates to true; maintain
evaluates repair whenever condition is false. Note that there
is no guarantee that the repair will eventually succeed, since
its content is completely unconstrained.

5. EXAMPLES
I will illustrate how AML programs operate by means of

two examples. These examples use the CommonLISP for-
matting processed by my AML compiler. The primitives
expressed here map fairly directly onto existing amorphous
computing algorithms, thereby simplifying the task faced by
the compiler.

5.1 Maximum Density
Calculating maximum density is the AML equivalent of a

“hello world” program. To run this, we will need only one
simple process.

The AML process root is the entry point for a program,
similar to a main function in C or Java. When an AML
program runs, the root process runs across the entire space,
and is automatically supported everywhere so it will never
be garbage collected.

Processes are defined with the command (defprocess
name (arguments) statement ...). In this case, the name
is root and there are no arguments, since there are no ini-
tial conditions. The statements of a process are variable
definitions and homeostasis conditions; while the process is
active, it runs cyclically, clocked by the shared neighbor data
refreshes. Each cycle the process first updates variable ag-
gregate values, then maintains its homeostasis conditions in
the order they are defined.

The first statement creates a variable, x, which we will
use to aggregate the density. Variables are defined with the
command (defvariable name aggregation-function argu-

ments). In this case, since we want to calculate maximum
density, the aggregation function will be max.

Aggregation in AML is executed by taking a base aggre-
gate value and updating it by merging it with other values
or aggregates — this also means that if there are no values
to aggregate, the variable equals the base value. Since the
default base value, NIL, is not a reasonable value for den-
sity, we use the optional base argument to set it to zero
instead.

Now we have a variable which will calculate its maximum
value over the process region, but haven’t specified how it
gets any values to start with. First, though, a word about
the different ways in which we can talk about the value of
variable x. Every variable has three values: a local value,
a neighborhood aggregate value, and a regional aggregate
value. Setting a variable sets only its local value, though
the aggregates may change as a result. Reading any value
from a variable is instantaneous, based on the current best
estimate, but the neighborhood aggregate may be one cycle
stale, and the regional aggregate may be indefinitely out of
date.

The second statement is a homeostasis condition that
deals only with the local value of x. The function (density)
is a built-in function that returns the estimated density of
the node’s neighborhood,3 so the maintain condition may
be read as: if the local value for x isn’t equal to the density,
set it equal to the density.

These local values for density are then aggregated by the
variable, and the current best estimate can be read using
(regional x), as is done in the third statement. The third
statement is an always homeostasis condition, which is syn-
tactic sugar for (maintain nil ...), so that it is never sat-
isfied and runs its action every cycle. The action, in this
case, reads the regional value of x and sends it to the node’s
color in a display — (actuate actuator value) is a built-in
function to allow AML programs to write to an external in-
terface (its converse (read-sensor sensor) reads from the
external interface).

When this program is run, all the nodes in the network
start with the color for zero, then turn all different colors as
each writes its density to x locally. The highest value col-
ors then spread outward through their neighbors until each
connected component on the network is colored uniformly
according to the highest density it contains.

5.2 Blob Detection
With only slightly more complexity, we can write a pro-

gram to detect blobs in a binary image. In this scenario,
an image is mapped onto a space and nodes distributed to
cover the image. The image is input to the network via a
sensor named image, which reads black for nodes located
at black points of the image and white for nodes located
at white points of the image. The goal of the program is
to find all of the contiguous regions of black, and measure
their areas.

Unlike the maximum density program, the root process
for blob detection takes an argument — fuzziness — which
specifies how far apart two black regions can be and still be
considered contiguous.

The first statement in the root process declares its one
variable, blobs, which uses union to aggregate the the blobs

3Density is most simply calculated as number of neighbors,
but might be smoothed for more consistent estimates.

(defprocess root (fuzziness)
(defvariable blobs #’union)
(always

(when (eq (read-sensor ’image) ’black)
(subprocess (measure-blob) :gradient fuzziness)
(setf blobs
(list (get-from-sub (measure-blob) blob)))))

(avoid
(read-sensor ’query)
(let ((q (first (read-sensor ’query))))

(cond
((eq q ’blobs)
(actuate ’response (regional blobs)))

((eq q ’area)
(actuate ’response
(fold #’+ (mapcar #’second

(regional blobs)))))))))

(defprocess measure-blob ()
(defvariable uid #’max :atomic :base 0 :init (random 1))
(defvariable area #’sum :reduction :base 0 :init 1)
(defvariable blob :local)
(always
(setf blob (list uid area))))

Figure 4: Code to find a set of fuzzy blobs and their
areas in a binary image. Each contiguous black area
of the image runs a connected measure-blob pro-
cess that names it and calculates its area. The set
of blobs is collected by the root process and made
accessible to the user on the response actuator in
response to requests on the query sensor.

detected throughout the network into a global list.
The second statement is an always condition which runs

a blob measuring process anywhere that there is black. The
measure-blob process takes no arguments, and its extent
is defined by an active gradient going out fuzziness hops
from each node where the image sensor reads black.

This elegantly segments the image into blobs: from each
black node a gradient spreads the process out for fuzziness
hops in all directions, so any two black nodes separated by at
most twice-fuzziness hops of white nodes will be in a con-
nected component of the measure-blob process. Where
there are more than twice-fuzziness hops of white nodes
separating two black points, however, the measure-blob
process is not connected and each component calculates in-
dependently — effectively as a separate blob!

The measure-blob process has two responsibilities: give
itself a unique name, and calculate its area. The uid vari-
able, whose aggregate will be the name of the blob, uses two
arguments which we haven’t seen before. The atomic ar-
gument means that the regional aggregate value of uid will
be consistent across the process and as a side effect will be
more stable in its value. We use the init argument, on the
other hand, to start uid with a random value at each point.
As a result, uid will eventually have a random number as
its regional aggregate value which is unlikely to be the same
as that of another blob.

The area variable also uses an init argument, which sets
everything to be 1. This serves as the point mass of a node,
which we integrate across the process to find its area using
sum as an aggregator. We must ensure that no point is
counted more than once, however, so we use the reduction
argument to specify that the aggregation must be done that
way rather than defaulting to gossip.

Finally, we declare the blob variable and add an always

statement to make it a list of uid and area, packaging a re-
sult for the measure-blob process to be read by the root
process. The root process can read variables in with child
processes with the command (get-from-sub (name param-
eters) variable), and uses this to set the local value of blobs.

The final statement of the root process sets up a user
interface in terms of an avoid homeostasis condition. When
there is a request queued up on the query sensor, it upsets
homeostasis, which the repair action attempts to rectify by
placing an answer, calculated from the regional aggregate
value of blobs, on the response actuator. The user would
then remove the serviced request from the queue, restoring
homeostasis.

Thus, given a binary image, each contiguous region of
black will run a measure-blob process which names it and
calculates its area. The root process then records this in-
formation, which propagates throughout the network until
there is a consistent list of blobs everywhere.

6. RELATED WORK
In sensor networks research, a number of other high-level

programming abstractions have been proposed to enable
programming of large mesh networks. For example, GHT[25]
provides a hash table abstraction for storing data in the net-
work, and TinyDB[21] focuses on gathering information via
query processing. Both of these approaches, however, are
data-centric rather than computation-centric, and do not
provide guidance on how to do distributed manipulation of
data, once gathered.

More similar is the Regiment[24] language, which uses
a stream-processing abstraction to distribute computation
across the network. Regiment is, in fact, complementary to
AML: its top-down design allows it to use the well-established
formal semantics of stream-processing, while AML’s pro-
gramming model is still evolving. Regiment’s robustness
against failure, however, has not yet clearly been established,
and there are significant challenges remaining in adapting its
programming model to the sensor-network environment.

Previous work on languages in amorphous computing, on
the other hand, has worked with much the same failure
model, but has been directed more towards problems of mor-
phogenesis and pattern formation than general computa-
tion. For example, Coore’s work on topological patterns[9],
and the work by Nagpal[23] and Kondacs[17] on geometric
shape formation. A notable exception is Butera’s work on
paintable computing[6], which allows general computation,
but operates at a lower level of abstraction than AML.

7. CONCLUSION
AML provides a language of abstractions for describing

programs for large spatially embedded mesh networks. Pro-
cesses are distributed through space, and run while there is
demand from their parent processes. Within a connected
process region, data is shared via variables aggregated over
the region, and computation executes in response to violated
homeostasis conditions.

At present, the compiler correctly compiles and executes
simple AML programs in simulation. Most immediate of fu-
ture work is the continued refinement of the AML compiler
on the basis of existing primitives. Further development of
amorphous computing primitives is likely to enhance AML’s
performance, particularly with respect to variable aggrega-

tion. Finally, writing AML programs for real sensor-network
problems will continue to refine the semantics, and testing
AML code on deployed networks will provide more tangible
evidence of its utility.

8. REFERENCES
[1] NMRC scientific report 2003. Technical report,

National Microelectronics Research Centre, 2003.

[2] D. Aguayo, J. Bicket, S. Biswas, D. S. J. D. Couto,
and R. Morris. MIT roofnet implementation, 2003.

[3] H. Baker and C. Hewitt. The incremental garbage
collection of processes. In ACM Conference on AI and
Programming Languages, pages 55–59, 1977.

[4] J. Beal. Persistent nodes for reliable memory in
geographically local networks. Technical Report
AIM-2003-11, MIT, 2003.

[5] J. Beal and S. Gilbert. RamboNodes for the
metropolitan ad hoc network. In Workshop on
Dependability in Wireless Ad Hoc Networks and
Sensor Networks, part of the International Conference
on Dependable Systems and Networks, June 2003.

[6] W. Butera. Programming a Paintable Computer. PhD
thesis, MIT, 2002.

[7] L. Clement and R. Nagpal. Self-assembly and
self-repairing topologies. In Workshop on Adaptability
in Multi-Agent Systems, RoboCup Australian Open,
Jan. 2003.

[8] D. Coore. Establishing a coordinate system on an
amorphous computer. In MIT Student Workshop on
High Performance Computing, 1998.

[9] D. Coore. Botanical Computing: A Developmental
Approach to Generating Interconnect Topologies on an
Amorphous Computer. PhD thesis, MIT, 1999.

[10] D. Coore, R. Nagpal, and R. Weiss. Paradigms for
structure in an amorphous computer. Technical
Report AI Memo 1614, MIT, 1997.

[11] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and
J. Welch. Geoquorums: Implementing atomic memory
in mobile ad hoc networks. In Proceedings of the 17th
International Symposium on Distributed Computing
(DISC 2003), 2003.

[12] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A.
Shvartsman, and J. L. Welch. Virtual mobile nodes for
mobile ad hoc networks. In DISC04, Oct. 2004.

[13] K. E. Drexler, C. Peterson, and G. Pergamit.
Unbounding the future: the nanotechnology revolution.
Morrow, 1991.

[14] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO
II:: Rapidly reconfigurable atomic memory for
dynamic networks. In DSN, pages 259–269, June 2003.

[15] V. Hsu, J. M. Kahn, and K. S. J. Pister. Wireless
communications for smart dust. Technical Report
Electronics Research Laboratory Technical
Memorandum Number M98/2, Feb. 1998.

[16] D. IXO. Networked embedded systems technology
program overview.

[17] A. Kondacs. Biologically-inspired self-assembly of 2d
shapes, using global-to-local compilation. In
International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[18] L. Lamport. The part-time parliament. ACM

Transactions on Computer Systems, 16(2):133–169,
1998.

[19] N. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[20] N. Lynch and A. Shvartsman. RAMBO: A
reconfigurable atomic memory service for dynamic
networks. In DISC, pages 173–190, 2002.

[21] S. R. Madden, R. Szewczyk, M. J. Franklin, and
D. Culler. Supporting aggregate queries over ad-hoc
wireless sensor networks. In Workshop on Mobile
Computing and Systems Applications, 2002.

[22] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In First ACM Workshop on Wireless
Sensor Networks and Applications. ACM Press,
September 2002.

[23] R. Nagpal. Programmable Self-Assembly: Constructing
Global Shape using Biologically-inspired Local
Interactions and Origami Mathematics. PhD thesis,
MIT, 2001.

[24] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In First
International Workshop on Data Management for
Sensor Networks (DMSN), Aug. 2004.

[25] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: a geographic
hash table for data-centric storage. In Proceedings of
the 1st ACM international workshop on Wireless
sensor networks and applications, pages 78–87. ACM
Press, 2002.

[26] M. Welsh and G. Mainland. Programming sensor
networks using abstract regions. In Proceedings of the
First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04), Mar.
2004.

[27] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor
networks. In Proceedings of the 2nd international
conference on Mobile systems, applications, and
services. ACM Press, 2004.

