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ABSTRACT

This study examines the dynamic characteristics of the in-plane tunable stiffness
scanning microscope probe for an atomic force microscope (AFM). The analysis was
carried out using finite element analysis (FEA) methods for the micro scale device and its
macro scale counterpart, which was designed specifically for this study. Experimental
system identification testing using sound wave and high-speed camera recordings was
clone on the macro scale version to identify trends that were then verified in the micro
scale predictions.

The results fr the micro scale device followed the trends predicted by the macro scale
experimental data. The natural frequencies of the device corresponded to the three
normal directions of motion, in ascending order from the vertical direction, the out-of-
plane direction, and the horizontal direction. The numerical values for these frequencies
in the micro scale are 81.314 kHz, 51.438 kHz, and 54.899 kHz for the X, Y, and Z
directions of vibration respectively. The error associated with these measurements is
6.6% and is attributed to the high tolerance necessary for measurements in the micro
scale, which was not matched by the macro scale data acquisition methods that predict
the natural frequency range.

The vertical vibrations are therefore the limiting factor in the scanning speed of the probe
across a sample surface, thus requiring the AFM to scan at an effective frequency of less
than 81.3 kHz to avoid resonance.

Thesis Supervisor: Sang-Gook Kim
Title: Associate Professor of Mechanical Engineering
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1.0 Introduction

Atomic Force Microscopy is utilized in a wide range of technologies affecting the

electronics, telecommunications, biological, chemical, automotive, aerospace and energy

industries. An atomic force microscope (AFM) can not only image surfaces at atomic

resolution but it can also measure force at the subnano-Newton scale. Atomic force

microscopy is a specifically powerful technique with a wide range of applications in

biology. allowing not only for imaging but also for different types of probing and

manipulation at the nanometric scale.

Photo

Tip"10-= -

Piezo electric 
scanner

_ _ _l~f Piezo movement

Figure 1: Conventional Atomic Force Microscope Schematic [1]

A conventional atomic force microscope, like the one in Figure above, consists of an

atomically sharp tip (usually no more than 5pm in length) attached to a micro-cantilever.

The cantilever is outfitted with feedback mechanisms that allow the piezoelectric

actuators to maintain the tip at a constant force (when interested in height readings) or

constant height (when acquiring force readings) above the sample surface. As the AFM

tip scans the surface of the sample, moving up and down with the contour of the surface,

a laser beam focused onto the top of the cantilever is deflected off into a dual element

photodiode. D)ata is accumulated by measuring the deflection of the cantilever as the tip

scans the sample. The data from the detection system is then turned into force readings

er



using the displacement measurements and the known stiffness of the cantilever. The force

between the tip and the sample surface is very small, usually in the nano-Newton scale.

The primary purpose of these instruments is to quantitatively measure surface

morphology and construct three dimensional topographical maps of the surface by

plotting the local sample height vs. the horizontal probe tip position. These height

measurements are customarily taken with a constant force applied to the surface. The

stiffness of the cantilever, therefore, plays a large role as to the performance of the AFM

itself. Atomic force microscopy is one of the most powerful tools for determining the

surface topography of native biomolecules at sub-nanometer resolution, the AFM allows

biomolecules to be imaged not only under physiological conditions, but also while

biological processes are at work. One rapidly evolving area in scanning force microscopy

is the construction of tips to measure specific force interactions in cells. [4]

The purpose of this study is to investigate the dynamic properties of an in-plane tunable

stiffness AFM probe. The problem it addresses is the fact that, during biological scans of

cells, the cantilever stiffness became a source of concern when multiple hardness objects

within the cell were being studied in the same scan. As the tip moves from a hard surface

to a soft membrane (or vice versa), the force is kept at a constant value (as is customary

for height readings) so the subsequent pressure applied to the surface is no longer optimal

for the soft membrane. This requires switching probes during a scan, consequently losing

continuity and precision. By designing a probe whose stiffness can be switched, the force

applied to each different surface can be optimized without disrupting the scan. With this

design shown in Figure 2, the probe stiffness can be adapted by engaging or disengaging

flexures when the tip goes from one surface to another, resulting in an order of magnitude

stiffness change between the engaged position and the unengaged position.
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Figure 2: Tunable Stiffness Atomic Force Microscope Probe (Flexure labels will remain
the same throughout the remainder of this paper). [3]

Actuation and sensing in the z-direction can easily be integrated into this coplanar

MEMS structure. A single strand carbon nanotube (MWNT) is used as a high-aspect-

ratio tip. The inherent capability of the in-plane AFM probe for building a massively

parallel array is an important feature of the design with a great impact on the productivity

of the AFM scanning process. The in-plane structure also enables possible integration of

mnnicro-fluidic channels for reagent delivery and nanopipetting, photonic channels and

electronic wiring. [3]

The acquisition of data with this new design differs slightly from the conventional

methods described earlier, if only in the actual details of operation. The displacement is

still measured using a closed control loop, but it now consists of a capacitive sensor and a

combdrive actuator that maintain a constant force between the tip and the sample surface.

When the surface hardness increases, Flexure 2 in Figure 2 is engaged by applying a

voltage to the two electrostatic actuators that engage the clutches. Figure 3 shows the full

device design with all these components labeled.
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Figure 3: Device design with major components labeled (A: Electrostatic clutch B:
HIligh-aspect-ratio carbon nanotube tip, C: Capacitive sensor, D: Combdrive actuator). [3]

This new design poses some design challenges. The vertical motion of the tip is now

bounded by two (or three if the probe is engaged) flexures attached to a vertical

cantilever. The length of this cantilever now acts as the effective length of the tip itself

and is around twenty times as long as conventional probes. Because of this increase in

length. it is imperative to conduct a dynamic analysis since the resonant frequencies and

harmonic modes will have a discernible effect on the performance of this probe. The

horizontal and out-of-plane vibrations of this lengthy cantilever need to be studied in

order to fully understand the limitations of this design and to be able to assess the

potential applications of it. These challenges are magnified by the scale of the device,

which can be fully appreciated in Figure 4. The tolerances needed for an exact

characterization of the probe are small enough to warrant extensive consideration during

the error analysis that follows the data acquisition.
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Figure 4: Unreleased in-plane AFM probe with electrical connections on the surface for
the electrostatic actuators which engage the clutches.[3]

The expected outcome of the system identification of this probe are that the natural

frequency in the vertical direction will be the limiting factor for the maximum scanning

speed of the probe, followed by the out of plane direction vibrations and lastly, the

horizontal direction harmonic. The natural frequencies are of great interest since the tip

motion while scanning a surface will induce a harmonic-like oscillation. If this movement

is near the natural frequencies of the device, the probe will begin to show signs of

resonance which will render any data acquired to be less meaningful or will damage the

probe and the scanned surface. By studying the AFM probe's dynamic characteristics, the

resonance range can be avoided by selecting the proper scanning speed of the device.

This will therefore limit the range of the probe to scans where the settings dictated by the

dynamic identification are optimal.

The thesis studies the harmonic resonance frequencies of the tunable stiffness probe

design. which will limit the scanning speed of the probe. This data will help determine

the maximum resolution of the probe, the optimal use of the design, and ultimately to

mrnake better designs of the scanning probe system.
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2.0 Modeling Dynamic Properties of the In-plane AFM Probe

2.1 Out of Plane Motion of an Atomic Force Microscope

An AFM works by measuring the vertical motion of the cantilever support when the tip

scans a sample surface. This method of data acquisition assumes that the tip motion in the

horizontal and out-of-plane directions depends on the sine of the deflection angle in these

directions and thus makes negligible errors in the vertical direction. as seen in Figure 5.

~6
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Figure 5: Horizontal deflection of an AFM probe tip, the angle of deflection corresponds
to the angle associated with the vertical displacement.

In the above figure, a horizontal deflection making an angle 0 with the resting position

of the probe corresponds to a height reading of h. For a conventional AFM scan, this

height h is negligible compared to the pure vertical motion of the tip corresponding to the

actual sample topography. In the present design. however, since the effective length of

the tip has been substantially increased, the corresponding vertical displacement

contribution from the horizontal and out-of-plane directions become significant. Because

of this. the dynamic characteristics, including the resonant frequencies, in the two

horizontal directions are studied for the tunable stiffness probe design.
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2.2 Dynamic System Identification

The main purpose of this study is to define the dynamic characteristics of the in-plane

AFM probe device. There are several different methods to do this and both the theoretical

and experimental methods were chosen to have better reliability and ease of

implementation. By having four different data sets, each of them estimating the natural

frequency of the device in multiple stiffness settings, a consistent model can be made and

reliable predictions derived. The four chosen approaches for system identification are:

modal analysis using finite elements, lumped stiffness approximation derived from

theory, high speed video capture of the vibrating device, and Fast Fourier Transform

from a sound recording. The latter two experimental methods were done with a macro-

scale version of the device manufactured specifically for this experiment. This measured

data was then scaled accordingly. Each of these approaches is described below.

2.2.1 Modal Analysis

Modal Analysis is used to determine the vibrational characteristics (natural frequencies

and mode shapes) of a structure. The basic dynamic characteristics of the device can be

measured later and any changes in the design may be assessed and scaled accordingly.

This is the reason why this analysis was chosen over more detailed dynamic analyses

such as transient dynamic, harmonic response or spectrum analysis.

Before starting a modal analysis, there are a number of assumptions that must be made.

These assumptions are that the device has constant stiffness and mass effects, there is no

damping during the motion, and the structure is in free vibration mode. If these

assumptions hold true then the modal analysis gives the correct natural frequency and

modal shape of the device being studied.

The driving equation in this analysis is the equation of motion for an undamped system

which, in matrix notation, is:

[M u} +[K]{U}={O} (1)
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where [M] is the mass matrix, [K] is the stiffness matrix (assumed to be constant in all

directions for the present analysis), and u}, {u} are the acceleration and displacement

vectors respectively.

For a linear system, like the present analysis assumes this one is, the free vibrations will

be harmonic and follow the form:

{u} = {}ci COSoit (2)

where {(I)}i is the eigenvector representing the mode shape of the i 'h natural frequency,

wi is the ith natural frequency, and t is time.

Thus, substituting Eq. 2 into Eq. 1 gives the equation of motion as:

(- 0i 2[M]+ [K]X{} ={} 

whose trivial solution is of course {1}i = {O} and its non-trivial solution is the

determinant of the terms in parenthesis, i.e.:

[K]- C2[M] = 0 (

3)

(4)

This solution is an eigenvalue problem [5] which may be solved for up to n values of co2

and n eigenvectors {D }i which satisfy Eq. 3 (n being the number of degrees of freedom

defined in the model).

The natural frequencies that are calculated by this analysis carry units of radians per unit

time. The natural frequencies, in Hz, of the device can be found using the simple

conversion:

2f=

12

(5)



where f is the i' natural frequency in cycles per unit time.

The modal analysis is easily extended to a mass distribution study of the device, which in

the present situation is imperative. The effective mass for each of the mode shapes must

be calculated since the structure is constrained in such a way that the total mass is not

fully present in the vibration [5]. The mass that corresponds to each mode shape is

dependent on the participation factor ( ) for each excitation direction. This participation

factor is defined as:

y,= { }'[My} (6)

where D} is the vector describing the excitation direction and }7- is the normalized

eigenvector defined as:

{} [M I}, = 1 (7)

The effective mass for the i"' mode (also a function of the excitation direction) is:

V

KI, , ;[l )(8)

These effective masses are used as the mass matrix for the correlation between the

experimental data and the FEA analysis models.

2.2.2 Lumped Stiffness Model

Another way of acquiring the natural frequency of the device is using a lumped stiffness

model. According to Eq. 4, the natural frequency of the structure will be in the form:

= m (9)

where k can be determined geometrically by using a lumped stiff beam approximation for

each state of the device. With this simple formula, it is possible to derive a close estimate

1 



of the natural frequency of the device by simply knowing its material properties and

geometry.

The stiffness for one beam with length L, width w and thickness t can be calculated

using:

12EI
k/vAni,, = (1

where E is the Young's modulus and I is the moment of inertia of the beam, defined as:

ItV(t -' (1
12

The lumped stiffness of Flexure in Figure 2. is then:

k vEwt
1 Ji+2L- (12)

where the length parameters are defined as shown in Figure 6.

i 1 Li __
~~~~~~~ L1

L
Il-- L T 

Figure 6: Flexure length parameters and its lumped stiffness model, it is assumed that
the vertical beams connecting the horizontal cantilevers are stiff (they do not deform

during the AFM motion) and that the forces felt are solely in the Y-direction. [2]

The lumped stiffness of Flexure 2 in Figure 2, is:

Ewt, k. =2 -
LI

where the length parameters are defined as shown in Figure 7.

14
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Figure 7: Flexure 2 parameters and its lumped stiffness model, it is again assumed that
the forces are solely in the Y-direction and that the connections between the cantilevers

are stiff. [2]

The lumped stiffness of Flexure 3 in Figure 2, is:

Ei/3 3

kt3 --(14)

where the length parameters are defined as shown in Figure 8.

j L3LL 3

t4 I=

Figure 8: Flexure 3 parameters and its lumped stiffness model, assuming that the force is
solely in the vertical direction and the connecting vertical beams are stiff throughout the

motion. [2]

Using these lumped stiffness models, the natural frequencies of each of the two settings

(engaged and unengaged) can be calculated using Eq. 9 where:

(C!t)e I- kt + k 3 (15)

and

(jC I= V 3 (16)
m

This geometrical approximation method [2], is used to estimate a frequency range where

the modal analysis outputs will likely lie. The error that stems from this analysis is

expected to stem from the mass term in Equations 15 and 16 since the initial mass



chosen for these equations will be the total mass of the system, not the effective mass in

each direction.

2.2.3 High Speed Video Capture

The third method used to derive the natural frequency of the device was using a high

speed camera to record the motion of the device after a force was applied to Flexure 1.

The video was then analyzed and the natural frequency calculated using the simplest

definition of natural frequency [5], namely:

cycles
(17)

unit _ time

2.2.4 Fast Fourier Transform

T'he Fast Fourier Transform (FFT) algorithm is a much faster method for computing the

Discrete Fourier Transform (DFT) for all the harmonics of a given problem [6]. The DFT

is expressed., via Euler's identity as:

ae" = cosa + ia sina (18)

where 0 is the phase between the input signal (in this case a recorded sound wave). x.,

and the sampled signal, x,, [7] which is defined as:

x, = (At) (19)

The cc term in Eq. 18 is defined by:

a(m)= /Corj (my +Corco, (my (20)

where m is the harmonic being calculated and Cormj, Coro s are the correlations

associated with the harmonics [8] which are in turn defined by:

Cof = sin A - vA) (21)
n a=

and
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Corc0 (m)=-A x, cos(i Mt n sr) (22)
n =1

where w, is the fundamental frequency calculated using:

2;r1w
=jT (23)

Evaluating a signal using this approach can be time consuming and redundant. For

instance, all of the sine probes are zero at the start and the middle of the recording, so

there's no need to perform operations for them. Further, all even-numbered sine probes

1. 
cross zero at - increments through the record, every fourth probe at I and so on. The

4 8

power of two in this pattern is obvious, and the FFT exploits this by requiring a power of

two transform. and splitting the process into cascading groups of two. Similarly, there are

patterns for when the sine and cosine are 1.0, and multiplication is not needed. By

exploiting these redundancies, the savings of the FFT over the DFT are immense. While

the DFT needs O( )arithmetical operations, an FFT will compute the same result in

only O(n log n) operations. [9] This means that, for a 1500 point FT, an FFT will need

4.764 operations, compared to the 2,250,000 needed by the DFT.

For these reasons, the FFT algorithm was chosen to study the sound data acquired

through experiment.

17



3.0 Simulation and Experimental Setup

The experimental data acquired in this study can be divided into two major categories:

computational modeling using FEA and a physical experimental setup using a macro

scale version device. These two methods are described below.

3.1 Finite Element Analysis: ANSYS

The first analyses were finite element analysis models which were then studied to acquire

the necessary data, i.e. the natural frequency. This process was completely computational

and is detailed in the fotbllowing sections.

3.1.1 Apparatus

This method required the FEA computational program ANSYS Version 8.1.

3.1.2 Procedure

The finite element analysis (FEA) program ANSYS was used to run modal analyses on

both the macro and micro versions of the device. Solid models of the devices were

imported into the program as .IGS files and then their material properties were defined in

order to run the simulation. The code of these simulations can be found in Appendix A1.

The modal analysis option treats all elements as linear and it is necessary to input the

Young's modulus, density. and the Poisson's ratio of the material to be used. For the

present device, the values for these constants were:

T'able 1: Material constants for the macro and micro versions of the probe as defined for
the ANSYS simulations.

Young's Modulus kg Poisson's Ratio
IGPaI Density -_

m

Macro version 2.7 000.4
(Polycarbonate)

Micro version 4.02 1200 0.22
(SU-8)



After defining the imported models as solids (solid - tet - 1 Onode 92) and then defining

their material characteristics as described in Table 1, the mesh was produced using

ANSYS's Mesh Tool'. The mesh was created using tetrahedron mesh elements defined

with the smart size' option set at 6 for the micro devices and at 4 for the macro devices.

The next step in the preprocessor was to define the constraints. All degrees of freedom

were constrained at the non-vibrating walls of the device. This ended the preprocessor

commands and the program was ready to enter the solver.

The solver was set to Modal Analysis - Block Lanzos', which is the default setting for

modal analysis. The number of modes to extract was set to 10 and the frequencies to

sweep were set to Hz-10 kHz for the micro devices and 0 Hz to 250 Hz for the macro

devices, suitable ranges chosen after calculating the expected natural frequencies using

the method described in Section 2.2.2. These are the last parameters that need to be

specified. everything else was left as the default values. The simulation is ready to be

solved at this point, and the results acquired using this method will be presented and

discussed in Section 4.

3.2 Macro Model Experiment

The second stage of the experimental determination of the natural frequency was

performed using a macro scale mockup of the device. This setup allowed simultaneous

data acquisition via two different mediums: a high speed camera that recorded the motion

and a microphone to record the sound waves generated by the vibrations. These data sets

are then compared to the values acquired through FEA and using the lumped stiffness

theory.

19



3.2.1 Apparatus

The experimental setup used for this experiment is represented by the following diagram:

_r --------- 1 -ra I/A
Phj3rtcnr I

. HS 

Figure 9: Experimental setup for the macro scale device dynamic system identification

The microphone was attached to a LabPro sensor which recorded the data into VERNIER

software's LoggerPRO program. The sampling rate was set to 5 kHz per second and data

was recorded for I second. The Nyquist frequency for this setup was 2.5 kHz.

The high speed video camera was a Phantom HSV camera which recorded the motion

and was linked to the PHANTOM Capture program. The resolution was set to 024x256

pixels and the sampling rate was set to 4200 frames per second with an exposure

increment of 238p[s. The Nyquist frequency for this method was therefbre 2.1 kHz.

3.2.2 Procedure

The device was agitated by plucking the Flexure downwards. The data acquisition was

started simultaneously in order to record the subsequent vibration. The sound data was

then analyzed using the LoggerPRO program to output an FFT plot. The plot served as an

immediate visual check for the natural frequency values since it is trivial to estimate the

I
I

I

i

II
i
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range in which they are located. Further study of the numerical data associated with the

plot gave exact values for the natural frequencies in the directions of interest.

The video files were analyzed by defining an origin on the screen and measuring the time

increment for the device to complete one full cycle of vibration. These measurements

were then put into a MATLAB script that calculated the error associated with the video

data's tolerance (since it only takes a sample every 238 s, the values read are really

: 119 ps) along with the average and standard deviation of the video data. The script,

which makes up Appendix A3, also plotted the results associated with the data

manipulation. A summary of these results is presented in the following section.

I1



4.0 Results

The experimental methods described above looked to find the natural frequency of the

macro device, which would then serve as a check for the micro device's dynamic

identification. In the present section, a summary of the data acquired from all these

methods is presented for both the macro and micro devices in the unengaged and engaged

settings. The complete collection of Phantom camera output plots. as well as the sound

output's FFT plots for each of the device settings are presented in Appendix A4.

The complete collection of ANSYS outputs is presented in Appendix A2. Mode shape

plots fr the three main directions of vibration are presented below in Figure 10.

Vibration Mode in the X

direction

Vibration Mode in the Y

direction

Vibration Mode in the Z

direction

Figure 10: Mode Shapes as plotted by ANSYS for the Micro Device in the Engaged and

Unengaged Settings.
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As seen in Figure 10, there are harmonics in the frequency spectrum that exhibit

vibration in only one direction of motion. This is clear in the previous plots, but further

confidence in this statement is gained once the ANSYS Output window is studied, since

the participation factor (y, ) is listed as 1.0 for these directions. Realizing that this

corresponds to a vibration in the specific direction of interest, ANSYS therefore predicts

the effective mass fraction for the particular motion as well as the natural frequency in

the X, Y, and Z directions. This is the natural frequency that is taken as the theoretically

predicted natural frequency in the subsequent plots.

The experimental data acquired for the macro device through the sound measurement

generated the whole frequency spectrum associated with the tunable probe in each

setting. The natural frequencies associated with each direction of vibration were therefore

measured for both the unengaged and engaged settings. They were then compared to the

theoretical predictions of these frequencies that were calculated using ANSYS. The

numerical data is presented in Table 2 below, and the raw data is attached as Appendix

A4.

Table 2: Macro device's natural frequencies in the three normal directions of motion
[Hz]

(________X horizontal) Y (vertical) Z (out-of-plane)
Experimental 671.97+±174 125.46±6.27 385±59.3
FEA (ANSYS) 487.07 149.55 371.72

Error 27.5% 19.2% 3.5%

The error that is calculated for each of these frequencies is the error associated with the

average value of the natural frequency in each direction. It is clear from this data that the

vertical harmonic oscillations will drive the constraints in the design, and will therefore

be the most interesting to study. It is worth noting that this trend is also present in the

micro version of the probe, and the natural frequencies associated with the micro scale

probe in the X, Y, and Z directions of motion are 81.314 kHz, 51.438 kHz, and 54.899

kHz respectively. The fllowing discussion deals exclusively with the vertical vibrations

of both the macro and micro versions of the device in more detail.
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There were a total of five data sets acquired for the macro device, numbered in the plots

according to the definitions presented in Table 3. The micro device, however, only has

three data sets associated with it since experimental natural frequencies were not

gathered. The following discussion addresses the natural frequency in the vertical

direction, since it was found to be the limiting frequency for the performance of the

device and was therefore studied in further detail.

Table 3: Definition of the Data Set Number' used as X-axis on Figures 11-14
Data Set Number

_ __ 1 2 3 4 5

Macro Theory: Theory: Experimental: Experimental:
Device Theory: Ms EAExperimental: Experimental:

Device Total Mass Mass FEA Camera Sound
________~ _ .Fraction

Micro Theory: Theory:
Device Total Mass FEA n/a

Total Mass Fraction

The first number in the series corresponds to the Lumped Stiffness theory described in

Section 2.2.2. This particular approach takes into consideration the mass of the system as

a whole, not the mass that is being acted upon by the flexures. Because of this, solid

models of each device setting were imported into ProEngineer and the effective mass was

calculated in much the same way as ANSYS did for the FEA analysis. Data set 2

corresponds to the Lumped Stiffness theory with the effective mass correction. The third

data set corresponds to ANSYS's predictions for the natural frequencies using modal

analysis. effectively going through the method presented in Section 2.2.1. The last two

data sets, which only appear for the macro device settings, correspond to the

experimental setup and are an average of the raw data gathered during each experimental

run for the two active sensors.

Below, the results summary for each device setting, in both macro and micro scale, is

presented graphically with their corresponding average and standard deviations. The

summary plots the natural frequency acquired through each different method of dynamic

identification as a separate marker.
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5.0 Discussion

The data gathered from the different methods is very specific to each approach used. For

the discussion of this data, which is concerned solely with the vibration in the vertical

direction, the 'unengaged' setting will be discussed first followed by the discussion of the

'engaged' setting.

From Figure 11 it is clear that the different methods converge to a specific range once

the mass correction is introduced to the lumped stiffness model. The natural frequency in

the vertical direction for the unengaged macro device is, once data set is disregarded as

an outlier, around 120+2.4 Hz. The natural frequency for the micro device is not as

obvious as for the macro device. Once again disregarding the first data set, the natural

frequency in the vertical direction is around 30 ±2.7 kHz. This data has a larger

dispersion among its data points and would therefore seem to be less reliable. Upon

further study. the fact that the scale of the two devices is almost 200:1 gives the

impression that the tolerances associated with the two scales are different enough so that

the standard deviation shown by the micro device is acceptable for this study. A

difference of merely a few microns would produce a significant jump in the micro scale

data whereas the macro device is more forgiving. The micro data is also reliable since the

manipulations are straight calculations using FEA. not a scaling down of macro data,

which is only used to identify trends and make the necessary predictions to assess

whether the micro data follows the trends dictated by the theory and checked by

experiment.

For the engaged setting, the data also shows a good correlations that follows the expected

trends. For the macro version, the natural frequency can be assessed to be around

130±24.7 Hz. with a significant deviation shown by the first two data sets. The decrease

in the accuracy can be attributed to the lumped stiffness model and its correction using

the effective mass. It is clear that the correction, in this case, made the data jump away

firom the expected range rather than bring it closer to it as in the unengaged case. The

factor was calculated using FEA as before, which leads to the hypothesis that there is also

a scaling factor associated with an effective stiffness as well as for the effective mass.

7



The stiffness calculations assumed that the connections between the flexures were rigid,

an assumption that seems to not hold true in the engaged case. If that assumption is

annulled, then looking back at Eq. 13 and Figure 1 it is obvious that the length of the

connecting flexure must come into play in the definition of k . The length factor is

inversely proportional to the stiffness which is proportional to the natural frequency, thus

an increase in the length factor would correspond to a decrease in the stiffness and

therefore a decrease in the natural frequency associated with it. This is what needs to

happen for the lumped stitffness model's predictions to hold true, and therefore follow the

trend that is specifically presented in the FEA analysis. Taking into account, therefore,

the experimental and FEA data sets only, the natural frequency for the macro device is

clearly 30±2.44 Hz. This second value is much closer to the expected natural frequency

of the macro device, the slight increase over the unengaged version being attributed to the

difference in the stiffness to mass ratio. The micro device in the engaged setting presents

the same increasing trend as the unengaged setting. Once again, this can be attributed to

an 'effective stiffness' fraction which would make the FEA data, as the more complete

analysis, the most reliable. Nonetheless, a value of 40±3.7 kHz can be estimated for the

micro engaged device.

Upon further consideration of the natural frequencies for each of the normal directions of

vibration. a surprising trend appears. Implicitly stated in Table 2 is the fact that both the

engaged and unengaged settings of the macro device share the same natural frequency

ranges. Although unexpected during the period of data acquisition, this trend seems to

agree with the above discussion of the effective stiffness factor. Although the stiffness

increases substantially once Flexure 2 is engaged, as does the effective vibrating mass,

there seems to be some sort of extra factor associated with this setting that scales the

expected natural frequency down to a value similar to that seen in the unengaged case.

This prospect is clear in Figure A4.3 where experimental trends are plotted and

averaged.



6.0 Conclusion

This study looked to find the natural harmonic frequencies of a tunable stiffness in-plane

AFM probe. The dynamic behavior of the three primary modes of vibration were

identified through analysis and. The natural frequencies for the micro scale version of the

probe were found to be 81.314 kHz, 51.438 kHz, and 54.899 kHz for the X, Y, and Z

directions of vibration respectively. The error associated with these measurements is

approximately 3-4 kHz according to the macro scale experimental data scaling. This

would correspond to an average percent error of 6.6% for the micro scale. Although it is

surprising that such a large percent error would be associated with a purely computational

approach to identifying the natural frequencies, it is not as daunting as it would seem.

The micro scale case is unforgiving regarding small deviations and any slight

inconsistency will be amplified to an error reading in this range.

This dynamic analysis of the tunable stiffness probe is very basic in its scope. The

immediate next step in this project will be to conduct a vibration test on the micro probe

itself to see if the predicted frequencies correlate with the ones exhibited by the physical

device. If that experiment yields satisfactory results, a full dynamic spectrum analysis

should be performed to assess whether the assumptions associated with the modal

analysis hold true. This more involved experimental analysis will include a setup like the

one shown in Figure 15 where a position sensor (resistive or capacitive) is connected to

the AFM probe to accurately map its motion.
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Figure 15: Experimental Setup Schematic for Full Dynamic Spectrum Testing

Further computational analyses should also be pursued to evaluate the effective stiffness

hypothesis that was quoted as the reason for the engaged setting to exhibit a slightly

different trend than the unengaged setting.
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Appendices:
A1. ANSYS code
A1.l ANSYS code for micro device: unengaged
/AUX15
IOPTN.IGES.NODEFEAT
!*
IOrTI'N.M1ERGE.Y' ES
IOFPFN.SOIID.YES
IOPTrN.SMAI L.Y-ES
IOIP'N.iGTOIl.ER. I[)EFA
(IGESIN.'trimmedsimnple'.'igs'.'C:\Temp\'

VPLOT

HNISH
/PREP7
!*
EF. .SOLID92

MIP'EN/P ........
MIPTFNEMP. 1.0
MPDATA.EX, 1..4.02E-3
MPDATA.PRXY. ] ..22
MPTEMP........
M1I'EIMP. 1.0
MPDATIA.DENS. I.. 1, 200E- 15
SMRT.6
MSHAPE. I .3D
MSHKEY.0
!*!
(CM._Y.VOL '
VSEI,... I
CM-_Y .VOLlI
C(HKMSH.'VOLT'
('MSEL.S._Y
!*
VMESH._Y I
!*
CMDELE._ Y
(CMDELE._Y I
(CMDELE.Y2
!*:!
FI NISH
/SOl.
!.
ANTYPE.2
!
MSAVE.0
! :!-

MODOF..LANB. 10
EQSLV.SPAR
MXPAND.10. . .0
LI JMPM.0
PSTRES.0
!*
MODOPT,ILANB. I 0.1,10000, OFF
FIlST,2.3,5.ORDE. 2
FITEM.2, 104
FITEM.2.- 106
!
/GO
DA.P51 XALL.
/STATUS,SOL.U
SOLVE



A1.2 ANSYS code for micro device: engaged
/A tX 15
R)PTN.IGES.NODEFEAT
!*

IOPTN.MERGE.YES
IOPTN.SOLID.YES
IOPTN.SMALLA.Y-.S
IOPtFN.G'lER. ID)EFA
(IGES IN'trimmedengaged'.'igs'.'C:\Temp\'

VPLOT
! !·

HINISH
!PREE7
!*R
ElT. 1,SOI.1D92
!*r
M[IPTEMP........
MPTIEMP. 1.0
M PD)ATrA. EX. 1 4.02 E-3
MIPDATA.PRXY.I ., 22
MIV[EMP........
M[PTEMP, 1.)
MPDATA.DENS. 1.. 1.200E- 15
SMIVIRT.6
MISHAPE. 1,3D
MSHKFY,0
!*8
('CM._YVOLU
VSEL ... 1
CM,_YI ,VOLIT
CHKMSH,'VOI .1'
CNISFI-S._Y
!::

VMEFSH._Y I

CMD)ELE-,_Y
CMDELE-,_Y I
('MNIDELE,-Y2
! :r

FINISH
/SOL
!*
ANTY PE 2
!*
MISAVE.0)
!*N
MODOPT.LANB. 10
EQSLVSPAR
N/MIXPANDI 10. .0
ILlMPM,()
PSTRES.()

M[ODOPT.LANB.10. .10000. OFF
FLST.2.3.5.ORDE.2
H''EM.2,155
FIT l'['EM.2.-157
! r

i/Go
DA.P51X.ALL.
/STATUTS.SOLI
SOLVE

II



A2. ANSYS Outputs: Mode Shapes

Figure A2.1: Unengaged Micro Device Mode Shapes (as plotted by ANSYS's
postprocessor)

'14



l igure A2.2: Engaged Micro Device Mode Shapes (as plotted by AN S Y S's
postprocessor)
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A3. MATLAB code
A3.1 MATLAB script for video data

'}!~' i' " i-_-i i_--'ZklZ~i- F: ii Li : :.: :;~ -

clear ; close 

C = 10; 

AM 11 5-6

AS = 13. -: - : SS T ~ =2627;' ,. , : . ., . .A~ ~ 2 - -~ 73

A;O = 120.7325; - 7 
SSO = 5. 1 C987; 

:, . . :. ,__:' i 
R;S O :1:141,- - - : , -C,-'
u1 =I [328678 259856 382466 224672] 

m 2 = 57_I5 58310 371280 7920640 ]; 

F. : . 3; - .
mBI1 = [403884_ 337722 456722 29404]; . - - -z .. - ,, ' -' ,-

rB2] = [6585,46 137326 456722 8001560] ; - ' .. -

Al = arua.1.11E-6- . - :
A, = +A3.. *E-6;

B = B1. l1E-6;
SB = mB.E-6;5_ = mB2.*iE-6

DrTST = EE + A .- ; --.
DISO = + (A2. -1 ; : ' '

FST = C / DTST; .
FSO = C ./ DTSO; - : 

EA = A+ES;
EA = A-+ES;

EB1 = B--ES;
EEBI = B2-ES;

EDTST = EB + (EA. -); -- -

EDTSO = EB2 + (EA2.i1; -:: - -:- -- -1

EFST = C ./ ED)TST; : :-- : 
EFSO = C ./ EDTS;:-,.

MEA1 = A1-ES;
MEA2 = A'-ES;

MEE.1 = B+ES;
MF.2 = 2+ES;

MFETST = MEB1 + (MEA1.*-1); :: . -: . -:-
ME=TS0 = MEB2 (MEA2. *-1); . - - -- : _ - t - - .. .:

MEFFST = C ./ IEDTST; : -= - -: : , --

I A



MEFSO = C ./ MEDTSO; 

figure(l);
plot(RSO ,FSO , RSO, MEFSO, RSO, EFSO, RSO, [(ASO+SSO) (ASO+SSO) (ASO+SSO) (ASO+SSO) ],
PSO, [ (ASO-SSO' (ASO-SSO) (ASO-SSO) (ASO-SSO)] , RSO, [ASO ASO ASO ASO]);
::label(. -.'); ylabel( - : - '); title(' - -;;
hold
figure(');

plot RS), FST, RSO, MEFST, RSO, EFST, RSO, [ AST+SST) (AST+SST) (AST+SST)
P30Z, 'AST-SSTI (AST-SST) (AST-SST) (AST-SST)l] , RSO, AST AST AST AST]);

xlabel( - ); ylabel('

(AST+SST) I],

- '); title '' ,, .-

A3.2 MATLAB script for lumped stiffness model

cLear ;
close ;

E = [2.34E9; 4.02E9; 4.02E9];

w = [.00555625; .020066; 2.0066E-5];

L [.0-15; .180086; 1.80086E-4];

1 = [.02291; .145034; 1.45034E-41;

L2 = [.C 133 962; .089916; 8.9916E-5];

L3 = [.02677916; .651; 1.651E-4];

t = [.0(K208; .009906; 9.906E-6];

m = [.10812'.1L67198 .11599*,.73417 5.78551761*.167198 6.47311647*.73417 ;
5.78551764E-9.129706 6.47311668E-9'.19473; 

ki = [2.*+E*.Fr\t. 3)). /(L.'3 + 2. *(L1.'3 ));
k2 = "~ '.E .rW * lt .'3 )) . L2 . 3 ;
k = (E. w. t. 3) )./(L3 .̂3) ;

P = [kl-+k3 kL+kk-E2+k]; : 

SWN = [E./ml; - -

WN = sqrt (SWN; - -

Wn = WN. / 23. 14159 -, 

A3.3 MATLAB script for results summary

clear ; close 

A = [1:1:5]; - : - - ._
B = [: 1: 1:3 ]; - - -



WnLU = [49.423 120.26 116.03 120.84 121.31]; : :-- =- -
WnLE = 1154.1.2 178.95 130.04 132.03 127.16]; ::- --

WnSU = [11566 8287 '2115.71]; ; . ----- : - -- 
WnSE = [31044 36231 70761]; .: -- : -

WNLU = 105.5736; --- - : - - :-: -
WNLE = 144.46; - -

STLU = std/WnLU); - - - - - -
STLE = std(WnLE); -.

TELU = [WNLU+STLU WNLU+STLU WNLU+STLU WNLU+STLU WNLU+STLU]; : 
BELU = LWNLU-STLU WNLU-STLU WNLU-STLU WNLU-STLUJ WNLU-STLU]; :- . - -

TEILE = [WNLE+STLE WNLE+STLE WNLE+STLE WNLE+STLE WNLE+STLE];
BELE = [WML-SL WLE-STLE WNLE--STLE WNLE-SL WL-STLE WNLE-STLE WLE-STLE];

WONSU = 398 . 7; - - ' ' '
WNSE = 6012; : - - - -

STSU = std(WrnSU);- -
STSE = std(WrnSE); - - '-

TESU = [WNSU+TSU WNSU+STSU WNSU+STSU];
BESU = [WNSU-STSUJ WNSU-STSU WSU-STSU];

TESE = [WNSE+S TSE WNSE-STSE WNSE+STSE];
BESE = [WNSE-STSE WNSE-STSE WSE-STSE];

figure(1);
plot(A, WnLE, A, [144.46 144.46 144.46 144.46 144.46], A, TELE, A, BELE );
:-label( . . -- ' ); ylabel( .- . . : I
title ( - I - ' . - --. . ;

figure(2);
plot(A, WnLU,
.-label( _.-

title( .

figure(3);
plotiB, WnSE,
!.-label
title(

figure(4);
plot [B, WnSU,
:.:.label( .

titl (

A, [1055736 105.5736 O105.5736 105.5736 105.5736], A, TELU, A, BELU);
' ); ylabel( ". . ! - - .: i;

B, [46012 46012 46012], B, TESE, B BESE);
.); ylabel ( ...... . : . .

:: ' ' 9-' - : . -- .: :. .-. . );

B, [23989. 57 23989.57 3989.57], B, TESU, B, BESU);
- ); , label( - .- -- -);

: - ..: .. . . -. .. );



A4. Experiment Outputs

Frquecy Outputs: Sot setting
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Figure A4.1: Frequency Outputs from Video Capture: Unengaged macro device

Frequency Outputs: Stiff setting e+ St dev.
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Figure A4.2: Frequency Outputs from Video Capture: Engaged macro device

These two figures present the frequency calculated from the Phantom high speed camera
output. The blue dots indicate the calculated frequency using Eq. 17. Because of the
camera tolerance, the red and green markers show the 'error envelope' that represents the
range in which the actual value is likely to be in. The average natural frequency of the
data sets was then calculated and is represented by the olive line. The blue and magenta
lines correspond to one standard deviation above and below the average.
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The numerical values for all these parameters are:

Table A4.1: Numerical values for Freauencv Out)uts from Video Caoture

Engaged
Unengaged

;
[Hzl

132.96
115.75 

[Hzl
128.43
126.56

./'
[Hzl

134.67
117.04

. /'4

[Hzl
133.81

125.58

Frequency
Tolerance

119pts

119ps

Average

132.03 2.
120.73 5

FFT

t daiilr . i,..l ...

1 ,I, iJ , I J i t~ .. .... [i
w^MnL1U m-i-mhLL ,

~I I

1000

Fler uen/v

Figure A4.3: Fast Fourier Transform of the Unengaged Macro Probe where each spike in
the spectrum represents a natural frequency in one of the main directions of motion.
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Figure A4.4: Fast Fourier Transform of the Engaged Macro Probe where each spike in
the spectrum represents a natural frequency in one of the main directions of motion.
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Harmonic Data for Macro Device

y = -3.6315x + 671.97

y = 0.458x + 385.28

y = -0.642x + 125.46

1 _

2 3

Trial Number

4 5

-,--Y-harmonic: unengaged

.Y-harmonic: engaged

Y-harmonic: Average
---Linear (X-harmonic Average)

Figure A4.5: Natural Frequency

X-harmonic: unengaged Z-harmonic: unengaged
- X-harmonic: engaged -Z-harmonic: engaged
----- X-harmonic: Average Z-harmonic: Average
- Linear (Z-harmonic: Average) -Linear (Y-harmonic: Average)

f Experimental Data: Average of the Sound and HSV
Camera outputs
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