
Design of Human-Like Posture Prediction for Inverse Kinematic posture
control of a Humanoid Robot

by

Derik Thomann

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Mechanical Engineering

at the rm acnd

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

© Derik Thomann, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in nart

~~~~~~~Author· . A .

Author7 ;~./..<.
· ~ ~

'.
.£

Department of Mechanical Engineering
May 6,

2005

Certified )
by . ....... ......... .. .. .... ................................

Cynthia Breazeal
Assistant Professor
Thesis Supervisor

Accepted
by . .........................

Ernest Cravalho
Chairman, Undergraduate Thesis Committee

ARCHIVES





Design of Human-Like Posture Prediction for Inverse Kinematic posture control of a
Humanoid Robot

by

Derik Thomann

Submitted to the Department of Mechanical Engineering
on May 6. 2005 in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract:
A method and system has been developed to solve the kinematic redundancy for a
humanoid redundant manipulator based on forward kinematic equation and the optimization
of human-like constraints. The Multiple Objective Optimization (MOO) is preformed using
a Genetic Algorithms (GA) and implemented using the Genetic and Evolutionary
Algorithm Matlab Toolbox. The designed system is illustrated on a simple redundant 3
degree of freedom (dof) manipulator and is set up for a more complicated redundant 7 dof
manipulator. The 7 dof manipulator is modeled from the Stan Winston studio's Leonardo,
an 61 dof expressive humanoid robot. It has been found that the inverse kinematic solution
to a 3dof model arm converged within 1% error of the solution within .05 mins processor
time using the discomfort human-like constraint in 2d space. Similarly, the inverse
kinematic solution to a 7 dof model arm consisting of Leonardo's right arm geometry was
found to converge within 1% error within .20 mins processor time using the discomfort
human-like constraint in 3D space. The full kinematic model of Leonardo is developed and
future efficiency optimizations are posed to move towards the real-time motion control of a
redundant humanoid robot by way of human-like posture prediction.

Thesis Supervisor: Cynthia Breazeal
Title: Assistant Professor





Acknowledgments

The completion of this document would not be possible without the help and guidance of many:

Special thanks to Professor Cynthia Breazeal, for supervision of my thesis work and everything

else she has helped me with during my time at MIT.

Thanks to the members of the Robotic Life Group for giving me a temporary home in a

extremely creative environment. I hope in the end the research I performed is useful to them.

Thanks to Professor Haruhiko Asada for teaching the experimental class Introduction to Robotics

and sparking my interest in robotics.

Thanks to Professor Dan Frey for his guidance and encouragement to constantly explore and

apply cross-disciplinary knowledge to find new solutions.

And of course thanks to my family and friends: To my Mom for letting me take apart everything,

including the tv (I still haven't gotten it back together right), and to my Dad for always giving me

an engineering role model to aspire to be more like. To the ol' 2.007x gang, FeCl2, and the best

learning environment ever. Most of all to Amy for always being there and keeping me relativity

sane and happy with the world.

THOMANN 5



THOMANN 6



Contents

1 Introduction

1.1 Why Posture Control ..............................................

1.2 A Possible Application in Learning by Demonstration .....................

2 Robot Kinematics

2.1 Basics Of Robot Kinematics .........................................

2.2 Denavit-Hartenberg Convention ......................................

2.3 Inverse Kinematics ................................................

2.4 Inverse Kinematic Methods .........................................

2.5 Extended Jacobian .................................................

2.6 Pseudoinverse ....................................................

2.7 Optimization Approach .............................................

3 Multiple-Objective Optimization

3.1 Genetic and Evolutionary Algorithms ..................................

3.2 Genetic and Evolutionary Algorithm MATLAB TOOLBOX ................

4 Design of the Problem

4.1 Design of Human-like Constraints ....................................

4.1.1 Discomfort ..................................................

4.1.2 Dexterity ....................................................

4.1.3 Change in Potential Energy ......................................

4.1.4 Torque ......................................................

4.2 Research Platform .................................................

4.3 Leonardo ........................................................

6 Design of Model

6.1 SolidWorks Mechanical Modeled .....................................

THOMANN 7

15

15

16

19

19

20

23

25

25

25

26

27

28

28

31

31

32

32

33

33

33

33

35

35



6.2 Design of Matlab Robotics Toolbox Model .............................

6.2.1 Base ........................................................

6.2.2 Annrm ........................................................

7 Design of MOO arm problem system architecture ............................

8 Results

8.1 Single Objective 3 DOF Example Problem ..............................

9 Conclusions

9.1 Future work ......................................................

THOMANN 8

37

38

38

41

43

43

51

51



List of Figures

Figure 1-1 An image of three dots, used for the illustration of a humanoid manipulator's

(human arm's) redundancy. By placing two of your fingers and your thumb in

one of each of these 3 dots, you essentially constrain the end effector (finger)

position solution of your arm. The rotation of your arm after your fingers

have been constrained illustrates the infinite dimension of the joint space

solutions for this position. This defines the task of which arm posture to

choose, a common problem in humanoid robotics .....................

Figure 2-1 Two joint primitives of the revolve joint and the prismatic joint, commonly

used to form ideal models of robots for kinematic analysis ..............

Figure 2-2 A three link robotic manipulator, made of three revolve joints with joint

variables 01, 02, and03 ........................................

Figure 2-3 Two links of a larger robotic system, illustrating the definition of axis

necessary for Denavit-Hartenberg Representation. ......................

Figure 2-4

Figure 3-1

15

19

20

21

24

Two redundant serial planar robots possessing the same end effector solution

but having different joint solutions, or different postures ................

Graphical output of the first 30 generation of a Multiple Objective

Optimization problem. The upper left graph shows the convergence of the

range of values towards the objective value of 0. The second graph from the

upper left shows the convergence towards a optimal solution in the best

individual from each generation. Out of the chaos at the beginning, an order

seems to emerge and you can try to interpret the results. The upper rightmost

graph depicts objective value of the 85t percentile of all generations. The

THOMANN 9



bottom leftmost graph shows the value of each variable in all members of the

current generation, this two distinct shapes in this graph show two possible

optimal solutions. The bottom middle graph shows the objective values of

the individuals of the current generation while the bottom right graph shows

the order of the subpopulations ..................................... 29

Figure 4-1 A photo of Leonardo, the emotionally expressive humanoid robot. Copyright

Sam Ogden. Leonardo character design copyright Stan Winston Studio ..... 34

Figure 6-1 SolidWorks solid model of Leonardo, modeled from the original part

drawings provided by Stan Winston Studio ........................... 36

Figure 6-2 Matlab Robotics Toolbox representation of Leonardo, up to the head. This

model is constructed from 3 mutually distinct serial chains. This form of

Leonardo is very useful for kinematic calculations. The D-H representation

of this model appears in appendix ................................... 37

Figure 6-3 Further illustration of the 3 serial chains that comprise Leonardo's base,

viewed in Matlab as a Robotics toolbox robot object. Each chain originates

from a motor point located at the base ............................... 38

Figure 6-4 A plot of Leonardo's torso and right arm subsystem from Jeff Lieberman's

Robotics Toolbox model .......................................... 39

Figure 6-5 A plot of Leonardo's right arm subsystem to contrast aspects of the new

design, viewed in Matlab as a Robotics toolbox robot object .............. 40

Figure 8-1 A plot of a 3dof planar arm used to illustrate the designed method of

THOMANN 10



posture prediction, viewed in Matlab as a Robotics toolbox robot object.

This arm is equivalent to a humanoid arm held up at shoulder level and

constrained to horizontal in plane movements ........................

Figure 8-2 An in plane plot of the final solution of 3dof planar example, viewed in

Matlab as a Robotics toolbox robot object. Final orientation solved for with

desired position solution space further constrained by the discomfort

metric.........................................................

Figure 8-3 A plot of the other possible end effector solution, viewed in Matlab as a

Robotics toolbox robot object. Solved for by imposing a maximum

discomfort .....................................................

Figure 8-4 A screen shot of a single unconstrained(without discomfort objective) GA

after 30 generations, notice the divergence from the objective in the graph

on the top left. The upper middle plot shows the "confusion" between

solutions in the best individual from each generation, In fact none of these

generations come close to producing an individual with the correct end-

effector solution. The bottom leftmost graph shows the value of each

variable in all members of the current generation, this "looped" box shape

shows the competition between two optimal solutions...................

Figure 8-5 A screen shot of the MOO after 60 generations, but notice an almost

immediate convergence towards an optimal solution. The upper left graph

shows the extreme minimization of the objective value. The second graph

from the upper left shows the optimal solution in the best individual from

each generation. This is a striking graphic as it shows how close a member of

each generation is to the optimal solution. The bottom leftmost graph shows

the value of each variable in all members of the current generation, this

single distinct shape shows a well constrained optimal solutions...........

THOMANN 11

44

47

48

48

49



THOMANN 12



List of Tables

Table 1 The Physical Interpretation of D-H Parameters ......................... 23

Table 2 D-H Table for simple planar 3 dof manipulator ........................ 46

THOMANN 13



THOMANN 14



Chapter 1

Introduction

1.1 Why Posture Control

Set this thesis down and place two fingers on the colored circles below in Figure [1-1]. Now

place your thumb on the white circle. Without losing contact with the page try and move your

arm around. Now, try to experiment with putting your arm in your lap and reconnecting with the

circles; notice how your arm settles into approximately the same orientation each time.

Figure 1-1: An image of three dots, used for the illustration of a humanoid manipulator's
(human arm's) redundancy. By placing two of your fingers and your thumb in one of each
of these 3 dots, you essentially constrain the end effector (finger) position solution of
your arm. The rotation of your arm after your fingers have been constrained illustrates the
infinite dimension of the joint space solutions for this position. This defines the task of
which arm posture to choose, a common problem in humanoid robotics.

THOMANN 15



What was just shown is a result recognized in ergonomic design [6][12], and in anamorphic

simulations[18]. Even when multiple joint configurations or postures are possible, a human is

most likely to choose the posture that minimizes some metric of discomfort. This principal has

been used in ergonomic design to produce minimum stress workspaces [12]. Rather then use this

idea for workspace and task design, I will take inspiration from ergonomics and neuroscience to

design a method for the control of an humanoid robot arm.

Posture is very important in humanoid robotics. The reaching movements with similar

hand paths but different arm orientations are qualitatively dissimilar. The posture of the arm

affects the kinematics, and not only by spatial attributes of the hand trajectory. In order to control

the motion of a humanoid robot, we must be able to distinguish human-like postures for other

feasible solutions.

1.2 A Possible Application in Learning by Demonstration

When a task requires the dexterity or manipulability of humans, learning by demonstration has

been used to show a robot how it must perform a task. Jeff Lieberman and Cynthia Breazeal

designed a system that produced a generalized trajectory from relatively few action trails [1]. A

human actor performs an action in a Teleoperation suit, which is recorded. The suit records the

absolute movements which then are geometrically transformed to determine the actual extem

joint angles acted out by the robot actor. Movement data is next analyzed through a stereo optic

camera. Tactile data is recorded throughout each trial. Motion segmentation is performed by

creating start and end markers for each episode based on Mean Squared Velocity (MSV).

Similar episodes are combined and further manipulation produces final episode boundary

THOMANN 16



selection. The trails are analyzed to create two Radial Basis Functions (RBF) solutions, one to

preserve the quality of motion, and one to retain end effector precision. These two solutions are

then blended to achieve extremely complicated interactions.

The implement of this algorithm used the inverse Jacobian method (ie. Dq = J- dx), also

called the resolved motion method, to move the end effector to the desired position from an

initially defined position [2]. In general, this method suffers two major weak points; the method

has inaccuracy due to linear approximation, and also does not give a direct joint variable solution

for a desired end-effect position [3]. In a redundant chain manipulator, this solution suffers

another major problem which will be identified in the chapter on inverse kinematics.

Since only the end-effector is fully defined by the learning by demonstration algorithm,

feasible joint angles still need to be determined. The problem presented is; given a reachable

position in the work space, what is a realistic posture.

THOMANN 17



THOMANN 18



Chapter 2

Robot Kinematics

2.1 Basics of Robot Kinematics

A robot mechanism is a multi-body system made of rigid bodies called links. Connection

between the links are made by two types of joints, shown in Figure [1-2]. The revolve joint is

where a pair of link rotate around the same fixed axis. The prismatic joint, also called the sliding

joint, is where two links make translational displacements along a fixed axis. Basic forward

kinematics calculates the position of the end-effector in absolute coordinates based on the fully

I

Revolve Joint Prismatic Joint

Figure 2-1: Two joint primitives of the revolve joint and the prismatic joint, commonly used to
form ideal models of robots for kinematic analysis.

defined joint positions. Consider the 3 degree of freedom arm shown in Figure [1-3]. The arm is

made of one fixed link and 3 mobile links with parallel axis so all movement occurs within the

plane. In order to completely define the joint positions, the link lengths [ l, 12, 13] must be known,

as well as the relative joint angles [ 01, 02, 03 ]. We can see from basic trigonometry that the

THOMANN 19



relation between the end effector coordinates and the joint angles is given by equation 0.

Xe I1 Co(01) +12 cos (0 +02)+13 COS (01 +02+03)

Ye=ll sin (01)+l2sin (01+02)+13sin (01+02+03)

3

3

Link 1

PI f 1

4'0Z _Jo

Figure 2-2: A three link robotic manipulator, made of three revolve joints with joint variables
E , 2 , and [13

2.2 Denavit-Hartenberg Convention

Unfortunately, forward kinematics does not stay so simple. The kinematics of serial chains of

manipulators becomes increasingly difficult with the number of links added. The Denavit-

Hartenberg convention (Denavit-Hartenberg 1955) is used to aid the simple construction of the

THOMANN 20



kinematics of series manipulator chains. Also the D-H convention allows the construction of the

forward kinematic relation by the multiplication of homogeneous joint coordinate transform

matrices.

As seen in Figure [2-3], a robot comprised of n joints has n+l links. Joint i connects link

i-I to link i. We consider joint i to be fixed with respect to link i-i (ie. When Joint i is moved,

link i rotates about its center of rotation). To construct a D-H representation, we rigidly attach a

coordinate frame to each link. Any set of coordinate frame will work as long as the axis xi is

perpendicular to zi, and axis x intersects z.

i-2

Link i

1% Joint i 0i (xiY, ]
Figure 2-3: Two links of a larger robotic system, illustrating the
definition of axis necessary for Denavit-Hartenberg Representation.

We can express Ojxjyj,zj with respect to Oi[xiyiz] using the homogeneous joint configuration

dependent transform A.. iRj(q) is the rotation matrix and X (q) is the position vector.

I.;

,t

THOMANN 21



i'T ~ ) ARj( q) X (q)
Tj(q)= 0 

iTj= Am~ Aim ... Aj-1iAj and,

i]l

(1)

(2)

il]

Note that Tj' is the homogeneous transformation matrix relating i to j, and is configuration

dependent through the set of four D-H parameters in equation 2. The values [ai,o i,di ,Oi]

form the complete representation of the homogeneous transform for link i. Table [1] translates

the D-H parameters into physical interpretations.

Table 1: The Physical Interpretation of D-H Parameters

In standard revolve joints, only the value of Oi is variable. This leads to the convention of

THOMANN 22

a i distance between zi-I and zi

(i angle between zi- and zi measured in plane normal to xi

d i distance between Oi-, and the intersection of the xi axis with zi-
measured along the zi-I axis

~~Oi angle between xi-, and xi measured in plane normal to zi-



referring to Oi as the joint variable. Similarly for prismatic joints, only is di is defined as the

joint variable.

2.3 Inverse Kinematics

Inverse kinematics computes the joint variable solutions that correspond to a particular end

effector position. This provides an easy way to manipulate every joint in a kinematic chain: a

desired posture can be define by only defining a few points and allowing an algorithm to

determine the rest of the joint configuration. The inverse kinematic (K) equation is the inverse

of the kinematic equation (0). Given the end effector position (Oe{xe,ye.ze}) and the inverse

kinematic transform (A) the joint angles (q) required are simply given in equation (2.3.1).

q =A Oe{xe,Ye.Ze} (2.3.1)

Robotic arms are defined as kinematically redundant when the number of joints is greater than

the number of degrees of freedom needed to describe a task in the task space. Redundancy in 2D

space is shown in Figure [1-5]. In the field of robotics in general, the task requirement is for an

end effector to reach a position at a particular orientation in three dimensional (Cartesian) space.

The general form of this movement requires 6 degrees of freedom, and therefore any robot with

more than 6 independent joints is a redundant robot. In a redundant system when the end effector

is in a fixed position, some number of joints are still free to move. Each redundancy/redundant

joint creates an extra independent variable for the system. Therefore, due to redundant degrees of

THOMANN 23



ZIL~

-4

Figure 2-4: Two redundant serial planar robots possessing the same end effector solution but
having different joint solutions, or different postures.

freedom in a humanoid arm, a family of solutions rather than a unique solution is produced when

THOMANN 24

l



an end effector position and orientation is specified. Redundant IK solutions can be differentiated

based on their distinct posture, and can be useful for optimizing a cost function, keeping away

from joint limits, and avoiding collisions and Jacobian singularities.

2.4 Inverse Kinematic Methods

At the highest level, inverse kinematic methods can be describe as numeric or symbolic

solutions. Symbolic methods are referred to as closed-form, since joint variables can be

expressed as a set of equations. Greater than 6 Dof closed-form solutions are impossible, and

even 6 Dof IK requires the solution to be a high-degree polynomial (19). The other category of

inverse kinematic methods, numeric solutions, are in general fast converging algorithms that

search the solution space.

2.5 Extended Jacobian

The extended Jacobian method [2] derives additional K equations based on the orthogonality

gradient vector and the null space vector. This method can produce solutions for configurations

with one redundant Dof, but not for greater redundancy.

2.6 Pseudoinverse Method

A symbolic solution for the inverse of the definition of the Jacobian, J, is derived by Ben-Isreal

[20]. This pseudoinverse processes two undesirable side effects: it produces a cyclic unrepeatable

path 21], and can produce undesirable sporadic motions [1].

THOMANN 25



2.7 Optimization Approach

A complex humaniod robot differs greatly from a traditional robot. This can cause problems

when applying traditional IK algorithms. Traditionally inverse kinematics in robotics only

constrains the position of the end effector and not any other quality of the posture. Typically,

robotic manipulators do not possess more than 6 Dof. [19] Since the kinematic redundancy

produces a family of possible postures for one solution to the IK, an algorithm can employ

further constraints to choose the best solution. For example, cost functions inspired from

physiology can be applied to create more human-like postures. An inverse kinematic posture

prediction problem under the constraint of physiological cost functions is easily stated as a

Multiple-Objective Optimization (MOO) problem. The following section reviews the

fundamentals of Multiple-Objective Optimization.

THOMANN 26



Chapter 3

Multiple-Objective Optimization

In the general case a Multiple-Objective Optimization problem is to

Find: qRDF
to minimize: f(q)=[ f (q)f 2(q)... fk(q)]T
subject to: g1 (q)<O i=1,2,...,m

hj (q)=0 j= 1,2,..., e

Where k is the number of objectives functions, m is the number of inequality constraints, and e is

the number of equality constraints. q is a vector of design variables. f(q) is a vector of objective

functions. The feasible design space (fds) is defined as all q's that satisfy the constraint

functions and the feasible criterion space (fcs) is the image of fds (f(q)). Points in the feasible

criterion space that can be determined are called attainable. The point in the criterion space

where all of the objectives have achieved a minimum value is called the utopia point, which in

general is unattainable [4].

In order to find a solution when multiple objectives may conflict with each other, we must

introduce the idea of Pareto Optimal solutions. A solution point is Pareto Optimal if it is not

possible to deviate from that point and improve one function without hindering optimization of

another function[4].

Typically, there are infinitely many Pareto Optimal solutions for a MOO problem. This

being the case, it is necessary to incorporate designer preferences into the objective functions

based on their relative importance. Evolutionary algorithms have also have also been

successfully implemented to bypass the need for the specification of optimization weight

THOMANN 27



functions [7].

Due to the nonlinearity of the kinematic equations, and the notoriously poor behavior of

the derivatives of physiological cost functions (especially those involving absolute value), GA's

are the preferred method of solving IK MOO problems.

3.1 Genetic Algorithms

A genetic algorithm (GA) is a heuristic used to find approximate solutions to difficult

optimization problems by the application of the principles of biology. Genetic algorithms use

biologically derived techniques such as inheritance, mutation, natural selection, and

recombination. Genetic algorithms are typically implemented as a computer simulation in which

a population of candidate solutions (called individuals) evolves toward better solutions. The

evolution starts from a population of completely random individuals and happens in generations.

In each generation, the fitness of the whole population is evaluated and multiple individuals,

stochastically selected from the current population based on their fitness, are modified to form a

new population, which continues the next iteration of the algorithm.

3.2 Genetic and Evolutionary Algorithm MATLAB TOOLBOX

The Genetic and Evolutionary Algorithm Toolbox (GEATbx) is a powerful optimization package

the uses GA's. It features a broad range of evolutionary operators, algorithms, and principles. The

GEATbx is the most comprehensive implementation of Evolutionary Algorithms in Matlab

(geatbx.com 2005). It is also especially suitable for this project due to its high level functionality

and its easy to customize m-file implementation. GEATbx also features a extensive GUI, shown

THOMANN 28



in figure(, for visualizing and monitoring a GA problem.

Bestmean obd. vats variables of best indiv.

6000

0 5000

'> 4000

3000

o 2000

1000

0 10 20
generation

variables of all Ind. [Gen: 311

1 2
index of variable

3

IV
ii
i
Is

i

30 0 10 20
generation

0
It

)

60

50

40

30

20

10

o
o

Obj. vats (85% best) Gen: 31]

40 60 80 100
index of individual

20

:I

I.
0
ar

30 0

I

10 20 30
generation

order of sutbpops

5 10 15 20 25 30
generation

Figure 3-1: Graphical output of the first 30 generation of a Multiple Objective Optimization
problem. The upper left graph shows the convergence of the range of values towards the
objective value of 0. The second graph from the upper left shows the convergence towards a
optimal solution in the best individual from each generation. Out of the chaos at the
beginning, an order seems to emerge and you can try to interpret the results. The upper
rightmost graph depicts objective value of the 85th percentile of all generations. The bottom
leftmost graph shows the value of each variable in all members of the current generation, this
two distinct shapes in this graph show two possible optimal solutions. The bottom middle
graph shows the objective values of the individuals of the current generation while the bottom
right graph shows the order of the subpopulations.

THOMANN 29

4' I1T 
... 

..... 
i L T...,.TT 1ITTTIJI T TTTTr

I
0
4 0.5

.6 0
0

10 0

-1

:+: +4-
+ + +

+

+:+ +: +
.+ +~~~

+ +-F+Jf ++ +_+++ i+ + + ,'+
· jw

%+ !r+ r

n

. I

~ E
. ._

IT TT-

1



THOMANN 30



Chapter 4

Design of the Problem

On the highest level, the design of the problem is simply that of the general MOO problem,

coupled with the D-H forward kinematics, and constrained by human-like cost functions.

Find: qRD"
to minimize: f(q)= {Human-like ojective functions}
subject to: qimin < q1i< qimax and,

T ( q)- T desired( q)=[ OR (q) X) Rdesired(q) Xdesired( q) ]
0 1 - 0

The numeric calculation of the transform matrix T(q) with be performed in MATLAB using the

Robotics toolbox (RBTX), while the possible for a general symbolic transform for any D-H table

is possible The optimization will be implemented in the GEATbx.

4.1 Design of Human-like Constraints

When preforming a inverse kinematic task, humans are faced with the problem of translating a

specification of the movement in task space into some form of muscle control pattern. In general,

the process of moving a hand to a target in space involves a series of sensorimotor

transformations that convert the sensory signal of visual data about the location and orientation

of the target object (and the arm) into a set of motor commands that will bring the hand to the

desired position. The central nervous system (CNS) learns and maintains internal models of

these sensorimotor transformations. Within the CNS the primary motor cortex (MI) plays a

prominent role in the specification of these movements. From this relation of MI function to

actuation and other impetus from ergonomic data, we derive human-like objectives for

THOMANN 31



optimization.

4.1.1 Discomfort

The idea sounds simple, joints positioned close to their limits of motion are less comfortable than

joints moved within a comfortable range. Kl61sch et al. identified and mapped a planar discomfort

zone that followed a gradient from a central comfortable configuration (14) (15). Scott et al.

showed by studying reaching movements with similar trajectories but different arm orientations

that the discharge of motor cortical cells is strongly influenced by the the position of the arm (9).

Similarly the primary motor cortex mapping to the bicep and tricep muscles (elbow actuators)

changed dependent on the angle at which the elbow was fixed (10). To accomplish this relation

discomfort is defined as:

n _ n
--- i j i

/=1
i~n

Because some joints tend to affect discomfort more actively then others, predominantly from the

shoulder or elbow (9) (14), this constraint is established as a weighted sum.

4.1.2 Dexterity

Researchers at Centre de Recherche en Sciences Neurologiques studying the activity of arm

related cells in the primary motor cortex (MI) have shown a "significant modulation in the

relationship between MI cell activity and the direction of exerted force as a function of hand

location" (8). This implies some form posture dependence on future motions from that posture.

The ergonomic interpretation of this seems obvious, if knowledge of the direction of future end-

THOMANN 32



effector motion (in the task space) is known, an orientation of the Jacobian should point in that

direction. More often than not when accomplishing a know task (movement direction etc

position)

4.1.3 Change in Potential Energy

Humans are more likely to choose a kinematic solution at a minimum change in potential energy,

therefore decreasing the need to minimize the graviton energy between joint configurations.

4.1.4 Torque

Theories suggest human motor planning optimizes the smoothness joint torque [22]. With tactile

feedback, joint torque or change in joint torque can be predicted and minimized.

4.2 Research Platform

The preceding process is general for any serial chain manipulator. The following is application

specific data used to implement the proposed design.

4.3 Leonardo

Inspired by animal and human social behavior, the goal of the MIT Media Lab's Robotic Life

group is to develop robotic systems that appear intelligent and are capable of complex social

behavior. Leonardo, seen in Figure [4.1], is a sociable humanoid robot designed in collaboration

with the four-time Academy Award-winning Stan Winston Studio. The special effects studio's

most popular characters include the animatronic dinosaurs in the thriller Jurassic Park, and the

THOMANN 33



lovable Teddy" of A.I. Unlike most robots, Leonardo has a soft organic appearance due to his

Figure 4.1: A photo ot Leonardo, the emotionally expressive
humanoid robot. Copyright Sam Ogden. Leonardo character design
copyright Stan Winston Studio.

skin-like covering. Underneath it all, Leonardo features a state of the art mechanical skeleton

including 61 degrees of freedom, 32 which are in the face. Even though Leonardo is limited to

only simple interactions due to the design of his arms and hands, Leonardo in the most

expressive robot in the world today (Robotic Life Group 2005).

THOMANN 34



Chapter 6

Design of Model

A chain of models models was necessary in order to abstract the data needed to enable posture

control of Leonardo.

6.1 SolidWorks Mechanical Modeled

The SolidWorks model shown in Figure [6.1] is an model created from the original part drawings

of Leonardo as designed by Stan Winston Studio. Parts that have been changed since the original

creation of Leonardo were modeled directly from updated part. Inter-assembly spacing and

fastener offset was measured manually to an accuracy of less than [mm]. Throughout the base

and waist, the accuracy of parallel drive mechanisms is verified due to the over constraining of

the rotate base plate shown in dark green. All subsequent graphical models of Leonardo are based

on measurements directly from the SolidWorks assembly.

THOMANN 35



Figure 6-1: SolidWorks solid model of Leonardo, modeled from the original part
drawings provided by Stan Winston Studio.

The Solidworks model further illustrates that Leonardo is not a typical robot.

THOMANN 36



6.2 Design of Matlab Robotics Toolbox Model

X

Figure 6-2: Matlab Robotics Toolbox representation of
Leonardo, up to the head. This model is constructed from 3
mutually distinct serial chains. This form of Leonardo is
very useful for kinematic calculations. The D-H
representation of this model appears in appendix.

The Matlab Robotics Toolbox created by Peter Cork provides an easy way to define serial chain

manipulators and a variety of computational tools for calculating kinematics and dynamics [5].

As seen in Figure [6-2], although Leonardo is modeled as coupled serial chains from the base to

the neck, due to the limited scope of this document, initial work will only be using a single arm

for implementation. The move from a single arm to the whole model is simply a extension of the

designed procedures. The DH representation of the Matlab Robotics Toolbox model is included

in appendix

THOMANN 37



6.2.1 Base

Since Leonardo's base plate is driven by a parallel drive mechanism, i.e. it is not a serial serial

chain, and hence is not a geometry supported by the RBTX. To circumvent this limit, the model

was constructed by imposing a close-form solution on 3 separate kinematic chains (R.leo, L.leol.

L.leo2, as shown in Figure [6.3]). Each chain begins at one of the 3 base motors. The M-file

MotorDriveBaseFK (Appendix B) imposes these constraints given the 3 base motor joint

angles.

,: I i i

--1 !~~--~ I I
.. .

?-'........................ .............. ...................
................ ................. .............. .................

I~~~~~~~~~~~~~~~~~~~~? ........: 
................

...................... ................. . .................. ............... .. ..................
_~~~~~~~~~~~~~~~. ......... _ .............. P

Figure 6-3: Further illustration of the 3 serial chains that

comprise Leonardo's base, viewed in Matlab as a

Robotics toolbox robot object. Each chain originates

from a motor point located at the base.

6.2.2 Arm

In order to form a transform to correlate recorded human joint data to Leonardo's Arm,

Lieberman used the Matlab model, shown in Figure [6-4]. This model differs from the design in

THOMANN 38

................ m------------------r......

I

MT .......
I

I

I

I- - - - - - - - - -D - - - - - - - - - - - -

........ !....-- ..... s

I I , I : If I
I I

.i ; A:
I i -r ;

I I .
1. I

I I I I

....... --- i - .

-- ..............- ----.-----.-.....--~~~~~~~~~7 ..... --- . -

.!, .....

........

.......

......

......

............

I'll .......

...........

........... I

......

.......



Figure [6-5], the current design, in two ways; the original neglected the prismatic "shrug"

shoulder joint, and also condensed the shoulder geometry, eliminating a 4.2mm D-H variable a

offset on the shoulder joint. While this may seem like a small error, it directly affects the

accuracy of the end effector and changes the rotation of every joint in the arm.

Matlab Robot Mode,d for Leonardo

,o-

- .

: N

; I

I

...--

5

-5

-1]U -10
X (Leo )

Figure 6-4: A plot of Leonardo's torso and right arm subsystem from Jeff Lieberman's Robotics
Toolbox model.

THOMANN 39

N

01
5

0

-5

Y (Leoz)

0

I

.



All Leonardo's D-H representation is stored in the m-file Makeleo (appendix B); the functions

RfrontBaseKine, MainBaseKine, and LeftFrontBaseKine (appendix B) resolve the base

joint interdependency between the separate kinematic chains. The current method of piloting

Leonardo uses the function DriveLeoBase (appendix B) as the top level.

I

f

F

. . . . ... .. . .. .. . .

i--~~~~~~~J
.. .

Figure 6-5: A plot of Leonardo's right arm subsystem to contrast
aspects of the new design, viewed in Matlab as a Robotics
toolbox robot object.

THOMANN 40

A

....................

!

I
i

i



Chapter 7

Design of Multiple-Objective Optimization Arm Problem
System Architecture

The system architecture of my design is as follows; The given End effector solution forms the

first objective for the algorithm. Subsequent objectives can be selected from section to further

constrain any redundancy, one is need for each redundant Dof. The initial population is then

generated for the now specified GA MOO problem. Presently this is done by randomly sampling

the joint space but a faster converging solution can be generated by seeding the initial population

with the current solution, for small deviation from the initial point. The GA MOO problem is

then run using the SPEA algorithm. Currently only the end result is monitored but in the future

an increasingly "better" solution can be presented by outputting the fittest individual between the

present arm position and the desired point during the optimization. At the end of the

optimization the fittest solution is plotted, in the future this is intend to drive a robotic arm.

For brevity the step by step procedure will be conducted with a simple configuration.

THOMANN 41



THOMANN 42



Chapter 8

Results

Here is a limited implementation of the designed operation on a simplistic model.

8.1 Single Objective 3 DOF Example Problem

To further illustrate the control method the 3 dof arm shown in Figure [8.1] will be used as an

example. The arm represents an humanoid arm restricted to a plane coincident with the shoulder.

Since this is a model in 2 dimensional space and has 3 joints, there is one redundant joint. This

redundancy will be resolved with the discomfort constraint.

THOMANN 43



l ~ ~ ~o. .. , _ _ _ -o . .

... : ... ; : · "'' ' '..

Figure 8-1: A plot of a 3 dof planar arm used to illustrate the designed method of posture
prediction, viewed in Matlab as a Robotics toolbox robot object. This arm is equivalent to a
humanoid arm held up at shoulder level and constrained to horizontal in plane movements.

The problem is formally presented as follows:

Given the objective point E = [5.7, 3.6] and the objective orientation vector =[1,0]

using the robot defined by the D-H table in Table [2].

Joint Oi| di ci a

1 q 0 0 4

THOMANN 44



Table 2: D-H Table for simple planar 3 dof manipulator.

subject to the joint limits -rr/3 qI, q2, q3• rr/3

Substitution of the D-H table produces the following (4x4) transforms °T , T2 and, 2T3 to solve

the forward kinematics of the given robot.

cos(q1 ) -sin(q 1 ) 0 4cos(q1 ) cos(q21)

0 1 0 0 1T 0
0 0 1 0 2 0

0 0 1 0

cos(q 3) -sin(q 3) 0 Cos(q3 )

0 1 0 0
0 0 1 0
0 0 0 1

-sin(q 2) 0 2cos(q 2)
1 0 0
0 1 0
0 0 1

The Matrix Multiplication (°T1
1T2

2T3) produces the location (X(q)) and orientation (R(q)) of the

end effector,

X () )_4 Cos (ql)+ 2 cos (q 1+q2)+cos(ql+q2+q3)

q - 4sin(ql)+2sin(ql+q2)+sin(ql+q2+q3) 
R(x) os q( co q) =sin q sin q, cos q cos q sin q, sin q cos q2 sin q os q cos q sin q sin q2 sin q3 cos q sin q si q cos q co q 

sm q COS q, cos Sln q, coS q, COS q Cos q Sin q sin q sinq, sin q coS q, cos qsln q q, COS q, Cos q si q sin q cosq J

The problem is set up for optimization in GEATBx with the following features:

THOMANN 45

Joint oi d i o(i a i

2q2 0 0 2

3q3 0 0 1

°T1=

2T --
3 =



n

Goal is to minimize: in

subject to X(q) - E <.01 and R(q)= [I 0]

01

0.78
The MOO solution is q-0.39 . The graphical output of GEATBx is shown in

-0.39

Figure [8-5]. The upper left graph shows the extreme minimum of the objective value. The

second graph from the upper left shows the optimal solution in the best individual from each

generation. The bottom leftmost graph shows the value of each variable in all members of the

current generation, this single distinct shape shows a well constrained optimal solutions. The

correct robot arm posture is shown in Figure [8-2]. In contrast the solution to the maximization

of discomfort is shown in Figure [8-3]. Also in Figure [8-4], we see the results of an optimization

without the discomfort constraint. The upper left graph shows some divergence from the

objective. The upper middle plot shows the "confusion" between solutions in the best individual

from each generation. In fact, none of these generations come close to producing an individual

with the correct end-effector solution. The bottom leftmost graph shows the value of each

variable in all members of the current generation; this "looped" box shape shows the competition

between two optimal solutions.

THOMANN 46



7

6

5

4

3

0

-1

-2 I ..... .... ................ .. ... ..... ... IJ
, , , , , , , , ,

i i i i i i i i 

-1 0 1 2 3 4 5 6 7
X

Figure 8-2: An in plane plot of the final solution of 3dof planar example,
viewed in Matlab as a Robotics toolbox robot object. Final orientation
solved for with desired position solution space further constrained by the
discomfort metric.

THOMANN 47

.. :

· o 

.. I I

. . -..... :----- ; .

.................

. . .

. . .

. . .

. . .

.... :......

.........

- I

.... I.....I..................................

F :
---- :-I

......



............. ....... .......... ........... .......... .. ........ 

:................ .......... ..........: .......... 

. . .. . . .. . .. . .. .. . . . . . . . - - -

~~~~~~~......... .............. ............ - - - - - - - - --J 

..........

-6 -4 -2 0 2 4 6

Figure 8-3: A plot of
Matlab as a Robotics
maximum discomfort.

BestAnean obj. vals

the other possible end effector solution, viewed in
toolbox robot object. Solved for by imposing a

variables of best indiv.

10 2(
generation

variables of all ind. [e

1 2
index of variable

e
I
e

generation

en: 261 Obj. vals (85% best) 1Oe

100

e 80

60
e40
°20
I O

3 0 so50
index of individual

n: 26]

100

I

4

3.6
a
' 3

e 2.5

2

1.6

generation

order of subpops

5 10 15 20 25
generation

Figure 8-4: A screen shot of a single unconstrained(without discomfort
objective) GA after 30 generations, notice the divergence from the objective
in the graph on the top left. The upper middle plot shows the "confusion"
between solutions in the best individual from each generation, In fact none of
these generations come close to producing an individual with the correct end-
effector solution. The bottom leftmost graph shows the value of each variable
in all members of the current generation, this "looped" box shape shows the
competition between two optimal solutions.

THOMANN 48

6

2

0

-f

e 6000

4000

o 2000

-0.1.5I
.0.5

V 0

0- -0.6

-1

-1.5

: , Be++ '

+ !-+ + : +
+ + ; +:" F~ t

, x .
~TW I~Tw~1

fg

XWJJL

P1 r r0*r10hiv-n

.p 1,1,.r,

Obi. vals of all hen. (85% bestl

10 20 30 40 50
generation

variables of all ind. [Gen: 501

2 3
indexof variable

e
-0

I0>3e

0

>

-.

:S
0o

0.8

0.6

0.4

0.2

0

-0.2

-0.4

10 20 30 40 50
generation

Obj. vals 85% best) IGen: 50]

++
40

30 + + +

20 +
lo ,+ +
10 +

0-
0

.0

50

40

30

20

10

0
1 zU 3V 40 b

generation

order of subpops

4.5

.0
0

0

3.5

3

2.5

2

1.5

50 100 10 20 30 40
index of individual generation

50

Figure 8-5: A screen shot of the MOO after 60 generations, but notice an almost immediate
convergence towards an optimal solution. The upper left graph shows the extreme minimization
of the objective value. The second graph from the upper left shows the optimal solution in the
best individual from each generation. This is a striking graphic as it shows how close a member
of each generation is to the optimal solution. The bottom leftmost graph shows the value of each
variable in all members of the current generation, this single distinct shape shows a well
constrained optimal solutions.

THOMANN 49

0.03

0.025
0
_D 0.02

I 0.015

a 0.01
0

0.005

0

e 0.6

o
0-D

> -0.5

-1

)-O-���

I

Best objective values variables of best indiv.

THOMANN 50

Chapter 9

Conclusion

It has been found that the inverse kinematic solution to a 3dof model arm converged within 1%

error of the solution within .05 mins processor time using the discomfort human-like constraint.

This result is not general but serves to verify the time scale of the designed system. Similarly, the

inverse kinematic solution to a 7dof model arm consisting of Leonardo right armn geometry was

found to converge within 1% error within .20 mins processor time using the discomfort human-

like constraint in 3D space. The length time scale of the process is mainly due to the Matlab

implementation of the algorithm. The objective function being optimized created a robotics

toolbox robot object for each calculation involving every individual. The process could be further

optimized using the symbolic representation of the forward kinematics.

9.1 Future Work

In all this is just a small step in the direction of real time posture prediction based on GA MOO.

Immediate changes that can be made to optimize and extend this approach are outline below.

In future work, several structural changes can be used to extend the designed procedure

into a full motion control algorithm. First, more constraints need to be designed in order to

incorporate Leonardo's full D-H representation to enable complete posture control. As was

stated before, the initial population of the GA MOO is created by randomly sampling the joint

space. Thus, a faster converging solution for small deviation from the initial point could be

generated by seeding the initial population with the current solution. Since limited to a small

THOMANN 51

deviation, the control system will be, in effect, constantly changing the primary objective of the

populations of the GA MOO. Also, currently only the end result is monitored; future systems will

need to output the "fittest" individual between the present arm position and the desired point at

the request of higher level functions during the optimization.

Also many steps can be taken to increase the speed of the algorithm by changing the

implementation of the design. Other GA's can be tested and evaluated based of quickness of

convergence. The entire algorithm can also be implemented outside of Matlab, enabling faster

calculations and manipulations. The open source Multiple Objective MetaHeuristics Library in

C++ (MOMHlibC++), which is a library of C++ classes that implements a number of multiple

objective metaheuristics, provides a very promising outlet for this path.

THOMANN 52

Bibliography

[1] J. Lieberman, C, Breazeal, "Improvements on Action Parsing and Action Interpolation for Learning through
D)emonstration", International Journal of Humanoid Robotics, 2004

[2] C. Klein, C. Huang, "Review of Psuedoinverse Control for Use with Kinematically Redundant Manipulators".
IEEE Trans on System, Man and Cybernectics, vol SMC-13. 1983, pp2 4 5 -2 5 0

[3] P. Chang, "A Closed-Form Solution for the Control of Manipulators With Kinematic Redundancy". IEEE vol
CH2282-2, 1986, pp9 -1 4

[4] Z. Chen, S, Burns, "Multiple-Objective Optimization Methods". University of Victoria 1999

[5] P.I. Corke, "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine, Volume 3(1),
March 1996, pp. 24-32.

[6] K. Abdel-Malek, W. Yu, "A Mathematical Method for Ergonomic-Based Design: Placement". International
Journal of Industrial Ergonomics

[7] E. Zitzler, L. Thiele, K. Deb, "Comparison of Multiobjective Evolutionary Algorithms: Empirical Results".
Evolutionary Computation Volume 8, Number 2

[8] Lauren E. Sergio and John F. Kalaska, "Systematic Changes in Directional Tuning of Motor Cortex Cell
Activity With Hand Location in the Workspace During Generation of Static Isometric Forces in Constant
Spatial Directions" The Journal of Neurophysiology Vol. 78 No. 2 August 1997, pp. 1170-1174

119] Scott, Stephen H. and John F. Kalaska. "Reaching Movements With Similar Hand Paths But Different Arm
Orientations. I. Activity of Individual Cells in Motor Cortex" The Journal of Neurophysiology Vol. 77 No. 2
February 1997, pp. 826-852

[10] Michael S. A. Graziano, Kaushal T. Patel and Charlotte S. R. Taylor, "Mapping From Motor Cortex to Biceps
and Triceps Altered By Elbow Angle" J Neurophysiol 92: 395-407, 2004. February 25, 2004;
doi: 10.1152/jn.01241.2003

[11] Ashvin Shah, Andrew H. Fagg and Andrew G. Barto "Cortical Involvement in the Recruitment of Wrist
Muscles" J Neurophysiol 91: 2445-2456, 2004. January 28, 2004; doi: 10.1152/jn.00879.2003

[12] S. Konz, 1990, "Workstation organization and design", International Journal of Industrial Ergonomics, Vol. 6
No. 2, pp. 175-193

[13] E.S. Jung, D.Kee, M.K. Chung, "Reach Posture Prediction of upper limb for ergonomic workspace evaluation"
Proceedings of the Meeting of the Human Factors Society. 1992 Atlanta GA, pp. 702-706

[14] Kl61sch, M., Beall, A. and Turk, M. Postural Comfort Zone for Reaching Gestures. submitted.
http://ilab.cs.ucsb.edu/projects/mathias/KolschBeallTurk203PosturalComfortZoneForReachingGestures.pdf

[15] Kolsch, M., Beall, A. and Turk, M. An Objective Measure for Postural Comfort. Proc. HFES 47th Annual
Meeting, 2003.

THOMANN 53

[16] N Badler, Virtual humans for animation, ergonomics, and simulation "Nonrigid and Articulated Motion
Workshop", 1997. Proceedings., IEEE 16 June 1997 Page(s): 28 - 36

[17] J. Zhao and N. Badler. Inverse kinematics positioning using nonlinear programming for highly articulated
figures. ACM Transactionson Graphics, 13:313-336,1994.

[18] D. Tolani and N. Badler. Real-time inverse kinematics for the human arm. Presence, 5(4):393-401, 1996.

[19] Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs Deepak Tolani, Ambarish Goswami
and Norman I. Badler Computer and Information Science Department, University of Pennsylvania,
Philadelphia, Pennsylvania, 19104-6389. Received 6 August 1999; Accepted 30 May 2000.; Available
online 25 March 2002.

[20] Ben-Israel, A. and Geville, T. Generalized Inverses: Theory and Applicatons. New York, Robert E. Krieger
Publishing Co., 1980.

[21] Baillieul, J., "Kinematic Programming Alternatives for Redundant Manipulators," IEEE Conference for
Robotics and Automation, St. Louis, Mach 25-28, 1985.

[22] Uno Y, Kawato M, and Suzuki R. Formation and control of optimal trajectory in human multijoint arm
movement: minimum torque-change model. Biol Cybern 61: 89-101, 1989.

THOMANN 54

APPENDIX A
LEONARDO DH Table

THOMANN 55

joint ai ofi oi di

joint I ai I ai I Oi I di I

ai ai Oi I di

APPENDIX B
Matlab functions:

This appendix contains the M-files for Leonardo's Matlab Robotics toolbox model. The top
file is the function DriveLeoBase, which calls the coupled kinematic code file
MotorDriveBaseFK and the make/plot file Makeleo.

function [sucess] = DriveLeoBase (Phil, Phi2, Phi3)

[qLbl,qLb2,qRb] = MotorDriveBaseFK(Phil, Phi2, Phi3);
[Sucess] = Makeleo(qLbl,qLb2,qRb);

%MotordriveFK
%
%This function plots leo based on motor commands. It uses the foward
%kinematic functions to calculate dependant joint angles.
function [qLbl,qLb2,qRb] = MotordriveFK(Phil, Phi2, Phi3)

%function[Thetal, P1] = RFrontBaseKine(Phil, P2)
%function[Theta2, Theta3, P2] = LeftFrontBaseKine(Phi2, Phi3)

[Theta2, Theta3, P2] = LeftFrontBaseKine(Phi2, Phi3);
[Thetal, P1] = RFrontBaseKine(Phil, P2);

[Pil, Pi2] = MainBaseKine(Phil, Phi2, P1, P2);

qLbl =[0 Phi2 Theta2 Pi2 pi/2 0 pi pi/2 pi/2 90.32 0 pi 0 0 0 0];
qLb2 = [0 Phi3 Theta3];
qRb = [0 Phil Thetal Pil pi/2 0 0 pi/2 pi/2 90.32 0 pi 0 0 0 0];

%MotorDriveBaseFK: The Forward kinematics of Leo's Base

% [qLblqLb2,qRb] = MotorDriveBaseFK(Phil, Phi2, Phi3)
% [qLbl,qLb2,qRb] = MotorDriveBaseFK(Phil, Phi2, Phi3)
%

THOMANN 56

_

I joint

%Uses leo's base kinematics to calculate joint angles based on motor angle
%inputs. Currently also used (badly) as a catch all for generating default
%joint configurations for the rest of leo.
%
% Phil ---- Motor angle for leo's right motor referenced from the
% first quaderant
% Phi2 ---- Motor angle for leo's left bottom motor referenced from the
% 3rd quaderant
% Phi3 ---- Motor angle for leo's left top motor referenced from the
% 3rd quaderant
%
% qLbl ---- the joint variables of the first (longest) left kinematic
% chain including the left arm.
% qLb2 ---- the joint variables for the left parrellel drive mechanism.
% qRb ---- the joint variables for the right kinematic chain including
% the right arm.
%
%
%
%/Derik
%dthomann@mit.edu

function [qLbl,qLb2,qRb]=MotorDriveBaseFK(Phil, Phi2, Phi3)

[Theta2, Theta3, P2] = LeftFrontBaseKine(Phi2, Phi3);
[Thetal, P1] = RFrontBaseKine(Phil, P2);
[Pil, Pi2] = MainBaseKine(Phil, Phi2, P1, P2);

qLbl =[0 Phi2 Theta2 Pi2 pi/2 0 pi pi/2 pi/2 90.32 -pi/2 5*pi/4 -pi/3 pi/2 0
pi/2];
qLb2 = [0 Phi3 Theta3];
qRb = [0 Phil Thetal Pil pi/2 0 0 pi/2 pi/2 90.32 -pi/2 5*pi/4 0 0 0 pi/2];

function[Pil, Pi2] = MainBaseKine(Phil, Phi2, P1, P2)
% Constants

% motor X pos [mm] +/-.5
D1 = 120;
D2 = 645;
D3 = 724;

% motor Y pos [mm] +/-.5
h = 34;

H = 159;

% arm lengths [mm] +/-1
R1 = 276;
R2 = 1.76;
R3 = 100;
R4 = 232;
R5 = 150;
L = 152;
S = 51;

Lb = 222.3;

THOMANN 57

A = [(D + L* cos(Phil)),
B = [(D2 - L* cos(Phi2)),

(-H + L* sin(Phil))];
(-H - L* sin(Phi2))];

Pil =-(pi - acos ((Rl^2 + Lb^2 - norm(P2-A)^2)/(2 * R * Lb)));
Pi2 =pi - acos (((R2+R3)^2 + Lb^2 - norm(B-P1)^2)/(2 * (R3+R2)*Lb));

% RFrontBaseKine: The Forward Kinematics of Leo's Right hip
%
%Calculates end effector positon P1 (location of leo's base hip joint) and
angle Theta (secnond joint angle measure)
%expressed [x y], given motor angles PHI(1, 2, 2).

%ALL JOINTS MODELED AS
X,Y PLANE Z = 292.7mm.

COPLANAR PINS PARALLEL WITH BASE FRONT FACE IE. IN THE

function[Thetal, P1] = RFrontBaseKine(Phil, P2)

% Constants
% motor X pos

D1 = 120;
D2 = 645;
D3 = 724;

% motor Y pos
h = 34;

H = 159;

% arm lengths
R1 = 276;
R2 = 176;
R3 = 100;
R4 = 232;
R5 = 150;
L = 152;
S = 51;

Lb = 222.3;

[mm] +/-.5

[mm] +/-.5

[mm] +/-1

% Forward K Path
% Intermediates

A = [(D + L* cos(Phil)), (-H + L* sin(Phil))];

% Depentant Joint 1 angle
betal = acos ((L^2 + (norm(A-P2))^2 - (norm([D1,-H] - P2))^2)/

(2*L*norm(A-P2)));
beta2 = acos ((R1^2 + (norm(A- P2))^2 - Lb^2)/(2* R* norm(A- P2)));
Thetal = pi - (betal - beta2);

% Right Waist ball Joint position
P1 = [(D + L* cos(Phil) + (R* cos(Phil + Thetal))), (-H + L* sin

(Phil) + ((R1* sin(Phil +Thetal))))];

function[Theta2, Theta3, P2] = LeftFrontBaseKine(Phi2, Phi3)

THOMANN 58

% ABSOLUTE MOTOR ANGLES PHI(
% JOINTS MODELED AS COPLANAR
X,Y PLANE Z = 292.7mm.

% Constants
% motor X pos

1, 2).

PINS PARALLEL WITH BASE FRONT FACE IE. IN THE

[mm] +/-. 5

D2 = 645;
D3 = 724;

% motor Y pos [mm] +/-.5
h = 34;

H = 159;

% arm lengths [mm] +/-1
R1 = 276;
R2 = 176;
R3 = 100;
R4 = 232;
R5 = 150;

L = 152;
S = 51;

Lb = 222.3;

M2 = [D2 -H] ;

M3 = [D3 -h];

% Forward K Path
% Intermediates

B = [(D2 - L* cos(Phi2)),
D = [(D3 - S* cos(Phi3)),

(-H - L* sin(Phi2))];
(-h - S* sin(Phi3))];

alphal = acos ((L^2 + norm(B-D)^2 - norm([D2,-H] - D)^2)/(2*L*norm
(B-D)));

alpha2 = acos ((R3^2 + norm(B-D)^2 - R4^2)/(2*R3*norm(B-D)));
% Dependant left chain Joint angle theta2

Theta2 = (-pi + (alphal + alpha2));
% Right Waist ball Joint position

P2 = [(D2 - L* cos(Phi2) - ((R3 + R2)* cos(Phi2 +Theta2))), (-H -
L* sin(Phi2) - ((R3 + R2)* sin(Phi2 +Theta2)))];

% Parrallel drive intersect point C
C = [(D2 - L* cos(Phi2) - ((R3)* cos(Phi2 +Theta2))), (-H - L*

sin(Phi2) - ((R3)* sin(Phi2 +Theta2)))];
% Angle at C

gamma = acos ((R4^2 + S2 - (norm(M3-C)) 2) / (2*R4*S));

% Dependent joint angle
Theta3 = -pi + (gamma);

9 Makeleo: robot/plot leonardo

%Makeeo(qLbqLb2,qRb)
%aMakeleo (qLbl, qLb2, qRb)

THOMANN 59

%
%This function constructs the DH representation of Leonardo stored as 3
seperate matlab robot toolbox robot objects.
%(see help robot), [LeoLeft_Base_chainl,
Leo_Left_Base_chain_2,Leo_RightBase].
%
%. It splits up leo into 3 DH chains (angles defined in default leo spread
arm configuration);
%
% qLbl ---- the joint variables of the first (longest) left kinematic
chain including the left arm.
% qLb2 ---- the joint variables for the left parrellel drive mechanism.
% qRb ---- the joint variables for the right kinematic chain including
the right arm.

%
kinematics
%
kinematics

ql = Base Rotate (theata-z) (dummy joint used for offset)
q2 = Right base motor angle (theta-y) (thetal in kinematics code)
q3 = Right base rod one to rod two angle (theta-y) (phil in

cade)
q4 = right base/rotate base ball joint (theta-y) (pil in

code)
q5 = right base/rotate base ball joint (theta-z)
q6 = right base/rotate base ball joint (theta-x)
q7 = rotate base (theta-z)
q8 = waist front/back (theta-x)
q9 = waist left/right (theta-y)
qlO = shrug up down (90.32 is for the center position)
qll = shoulder rotate
q12 = shoulder in/out
q13 = upper arm rotate
q14 = elbow
q15 = forearm rotate
q16 = wirst in out

%/Derik
%dthomann@mit.edu
%
function[Sucess] = Makeleo(qLbl,qLb2,qRb)

Sucess=0;
%set sucess flag to 0
clf

%D-H convention for leo's left side linkage bottom kinematic chain 2
LB2_0 = link([1.570796 0.000000 0.000000 -34.0000 0]);
LB2_1 = link([0.000000 -50.8000 0.000000 0.0000000 0]);
LB2_2 = link([0.000000 -231.7800 0.000000 0.0000000 0]);

Leo_Left_Base_chain_2 =robot({LB2_0 LB2_1 LB2_2});
%make leo's left side chain2 up to the chainl
Leo_Left_Base_chain_2.name = 'L.leo2';
%name it L.leo2
Leo_Left_Base_chain_2.base = transl([(724-120) 0 0]);
%move the base over D3

THOMANN 60

W = [-200 1000 -500 500 -400 800 ;
plot(LeoLeft_Base_chain_2, qLb2, 'workspace', [-200 800
800)

%D-H convention of right side links up to waistf
0.000000
152.4000
280.0000
0.000000
0.000000
0.000000
0.000000
0.000000
70
0

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

pi/2

-159.0000
0.0000000
0.0000000
0.0000000
0.0000000
113.60000
87.740000
0

0
0.0000000

-500 500 -400

0o]);
0o]);
0o]);
0o]);
0]);
0o]);
0o]);

0o]);
0o]);

1]);

Right_Shoulder_Rotate = 1:

Right_Shoulder_Inout = 1.
RightUpper_arm = 1:

Right_Elbow = 1:
Right_Forearm = 1:
RightWrist = 1:
%limits [lower upper]
% limits
% lShoulder Shrug -.7 1.4
% lShoulderRotate -80 0
% lShoulderInOut -90 9
% lUpperArm 0 80
% lElbowB -78 0
% lForeArm -60 18
% lWrist -65 20
% rSholder Shrug -.4 .75
% rShoulderrotate 0 90
% rshoulderinout -20 90
% rUpperarm -70 0
% rElbow -90
% rForeArm 0 55
% rWrist -50 40

ink([
ink([
ink([
ink([
ink([
ink([

-pi/2
pi/2
pi/2
pi/2
pi/2
pi/2

0

4.2
0

0

0

38.1

0 15.3
0 0

0 -107.2
0 0

0 75.3
0 0

(measured from where?)

% BodyB -11 11
% torsoRYB -33 13
% torsoRZB -9 9
%RB_).qlim = [0 0.01]

%RB_:L.qlim = [0 pi/2]

%RB_2.qlim = [0 pi]

%RB_3.qlim = [0 pi]

%RB_4.qlim = [0 pi]

%RB_5.qlim = [0 pi]

%RB_6.qlim = [-11*pi/180 118pi/180]
%RB_7.qlim = []
%RB_8.qlim = []

%RB_9.qlim = []
%RightShoulder_Rotate.qlim = []
%Right_Shoulder_Inout.qlim = []
%Right_Upperarm.qlim = []

THOMANN 61

RB_0
RB_1
RB_2
RB_3
RB_4
RB_5
RB_6
RB_7
RB_8
RB_9

= link(
= link(

= link(
= link(

= link(
= link(

= link(
= link(
= link(
= link(

[1.570796
[0.000000
[0.000000
[1.570796
[1.570796
[1.570796
[1.570796
[1.570796
[1.570796
[pi/2

)
I
I
I
I

0

0
0

0

0
0

);););
);

]);

%RightElbow.qlim = []

%RightForearm.qlim = []

%RightWrist.qlim = []

LeoRightBase = robot ({RB_0 RB_1 RB_2 RB_3 RB_4 RB_5 RB_6 RB_7 RB_8 RB_9
Right_Shoulder_Rotate, Right_Shoulder_Inout, RightUpperarm, Right_Elbow ,
Right_Forearm , Right_Wrist}); %make leo's right side up to waist
Leo_RightBase.name = 'R.leo';
%name him R.leo

plot(Leo_Right_Base, qRb, 'workspace', [-200 800 -500 500 -400 800])
hold on

%D-H convention for leo's left side linkage bottom kinematic chain
= link([l.570796
= link([0.000000
= link([0.000000
= link([l.570796
= link([l.570796
= link([1.570796

0.000000
-152.4000
-280.0000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

-159.0000
0.0000000
0.0000000
0.0000000
0.0000000
-108.70000

0o]);
0o]);
0o]);
0o]);
0]);
0o]) ;

= link([1.570796
= link([l.570796

= link([1.570796
= link([pi/2

0.000000
0.000000
70
0

0.000000
0.000000

0.000000
pi/2

Left_Shoulder_Rotate =
Left_Shoulder_Inout =

Left_Upper_arm =

Left_Elbow =
Left_Forearm =

Left_Wrist =

link([
link([
link([
link([
link([
link([

-pi/2
pi/2
pi/2
pi/2
pi/2
pi/2

0

4.2
0
0

0

38.1

0 15.3

0 0

0 -107.2
0 0

0 75.3

0 0

Leo_Left_Base_chain_l = robot({LBl_0 LBl_1 LB1_2 LB_3 LB_4 LB_5 LB_6 LB_7
LB_8 LB_9 Left_Shoulder_Rotate Left_Shoulder_Inout Left_Upper_arm Left_Elbow
Left_Forearm Left_Wrist); %make leo's left side up to the base
Leo_Left_Base_chain_l.name
%name it L.leol
Leo_Left_Base_chain_l.base
%move the base over D2

plot(LeoLeft_Base_chainl,
800]) ;
% limits
% lShoulder Shrug -.7 1.4
% lShoulderRotate -80 0
% lShoulderInOut -90 9
% lUpperArm 0 80
% lElbowB -78 0
% lForeArm -60 18
% lWrist -65 20
% rSholder Shrug -.4 .75
% rShoulderrotate 0 90
% rshoulderinout -20 90
% rUpperarm -70 0

= 'L.leol';

= transl([(645-120) 0 0]);

qLbl, 'workspace', [-200 800 -500 500 -400

(measured from where?)

THOMANN 62

LB1_0
LB1_1
LB1_2
LB_3
LB_4
LB_5

LB_6
LB_7
LB_8
LB_9

87.740000
0

0

0.0000000

0o]);
0o]);
0o]);

1]);

0

0

0
0

0
0

) ;
) ;
) ;]);]);]);]);)]);

]) ;

% rElbow -90 0
% rForeArm 0 55
% rWrist -50 40
%
% BodyB -11 11
% torsoRYB -33 13
% torsoRZB -9 9

Sucess=l;

THOMANN 63

THOMANN 64

