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ABSTRACT

Finite element analysis was applied to develop a quantitative tool for studying contraction
at wound edges. Two models showing contraction at the edges of a cylindrical liver wound
were employed. The first model assumed that contractile cells applied forces to the wound
only at the top and bottom surfaces of the liver; the second model assumed that the
contractile forces occurred along the entire wound surface. Assumptions based on prior
studies on skin wound contraction where used to obtain the magnitude and direction of the
contractile forces applied to the wound edges and the material properties of the models.
The magnitudes of deformations in all three planar coordinates were obtained, and
mathematical expressions describing the deformation gradients viewed at the edges were
derived. The deformations on Model B where found to be three orders of magnitude larger
than those on Model A. The deformations in Model A were found to change exponentially
with respect to the y- and z-axis, while the deformations in Model B fit 2™-degree
polynomials with respect to both the y- and z-axis. Displacements with respect to the x-
axis were zero in both models. The applications of these quantitative models to current
studies on contraction and scaffold fabrication were discussed.

Thesis Supervisor: Ioannis Yannas
Title: Professor of Polymer Science & Engineering, Department of Mechanical
Engineering.
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1.0 INTRODUCTION

Unlike the fetus, wounds in adult species heal irreversibly by contraction and scar-
formation [1]. In irreversible healing, the wound seeks the quickest way to close to prevent
blood and fluid loss and infection of the organ. However, the site of injury is usually left
without some of its initial form and function. Investigators have, thus, been interested in
finding ways to induce the adult wound to heal by regeneration. Regeneration synthesizes
the missing organ mass at the wound site, and thus, allows for both restoration of form and
function. For regeneration to occur however, implantation of a scaffold that is seeded with
the epithelial cells of the wounded organ is required [2]. One of the important functions of
the scaffold is to delay contraction at the wound edges, and thus hinder irreversible healing.
However, to design a scaffold that is effective in stopping contraction, the nature of the
forces of contraction applied at the wound edges needs to be clearly understood.

The extensively-studied mechanism of contraction in skin wounds helps in predicting
contraction in other organs. In the studies, a well-defined defect was first obtained. A
well-defined defect is one in which the experimental volume has boundaries that clearly
separates the defect volume from the rest of the organism [3]. All traces of dermis were
removed from the defect, and the defect was given rectangular boundaries—a clearly
defined length, width and height. Fibroblasts that expressed the contractile phenotype
(myofibroblasts) aligned themselves at the wound edges and after achieving a 100 pm-
thick layer, began to contract the width of the wound (major preferred direction) until
wound closure was achieved [4]. Applying much of the knowledge obtained from skin
studies, nerve was studied as well. In nerve, the well-defined defect was created by
complete transection of the nerve. Myofibroblasts were in the capsule that surrounded the
nerve trunk and were also aligned parallel to the nerve axis inside the nerve trunk. The
myofibroblasts applied a contractile force that resulted in closure of the stump with
formation of neuroma when the contractile force overcame the force that causes outflow of
endoneurial fluid [5]. Because of the many parallels between contraction in nerve and that
in skin, it has been hypothesized that many other organs may undergo contraction and
closure in ways similar to skin wounds. Thus, in the study of contraction in wounds of
varied geometry and in organs of different geometry from skin, assumptions can be made
about the wound healing mechanisms based on the mechanism of contraction in skin.

Although there are current studies that qualitatively evaluate the forces at the wound edges
and their effects, there is an absence of quantitative models of the contractile forces, stress
distribution and the resulting deformations of the wound edges. For instance in Troxel,
1994, despite a very intensive study of the mechanisms of contraction, the extent of
quantitative analysis are kinematics and graphs that show change of the area of the wound
with time [6]. Thus, this thesis embarked on developing a quantitative tool for studying
contraction that is applicable for defects of varied geometries, using assumptions from
contraction in skin as a paradigm. Finite Element Analysis (FEA) was used to study two
models of cell contraction of a cylindrical defect in the human liver and to estimate the
magnitude of the deformations observed at the wound.



2.0 METHOD

2.1 Apparatus

ADINA was used for the finite element analysis (FEA) of the model. FEA was employed
as the quantitative tool because of its ability to solve the partial differential equations that
characterize many linear, non-linear, static and dynamics problems and provide pertinent
information like the state of stress, strain and deformations of these systems. ADINA was
selected as the finite element analysis program of choice because it allows the model
geometry to be directly created on the ADINA-AUI interface or imported from various
CAD systems. This gives the investigator flexibility in creating and modifying the
geometry of the particular organ or defect of interest. The user can also assign physical
properties, loads and boundary conditions directly to the model geometry and modify finite
element meshes without affecting the model definition. Also a finite element analysis
program that allows a geometric (pictorial) representation of the system makes it easy for
investigators to observe and interpret results without needing to be familiar with the
operation of the finite element analysis program.

2.2 Procedure

2.2.1 Assigning model geometry and applied forces

The liver was modeled as a rectangular block with dimensions of 200 mm x 90 mm x 250
mm, the approximate measurements of the human liver [7]. A 45 mm-diameter cylindrical
defect was created in the center of the 200 mm x 90 mm face to perforate the block along
the longest (the 250 mm) length. Because the system is symmetric about its center, only a
quarter of the entire geometry was required for the analysis. The forces applied on the
chosen quadrant by the restrictive presence of the other three quadrants were represented as
boundary conditions and constraints (see Figure 1, (a)). The Young’s Modulus of elasticity
(E) was approximated as 1,000 Pa (N/m?) since E for most tissues is of this magnitude. E
was converted to the equivalent 10 N/mm? to ensure that all length was expressed in units
of millimeters and all force expressed in units of Newton. This conversion was imperative
because the values input into the FEA program are dimensionless, thus, there is a need for
the units to be homogeneous if the specified geometric properties are to be in the correct
proportion relative to each other. The Poisson’s ratio was approximated as 0.5 [8].

Two models for contraction of the wound were developed. In the first model, Model A, the
model assumption was that the cells applied contractile forces to the wound only at the top
and bottom surfaces of the liver. In the second model, Model B, the assumption was that
the cells applied contractile forces along the entire wound surface. The forces applied on
both models were derived. For Model A, the circumference of the quadrant is ¥ x (pi x 45
mm) = 35.34 mm. The diameter of a single cell is about 10 yum. Thus, the number of cells
that would cover the model circumference is 3534 cells. Since a 100 pum-thick layer is
required for contraction (=10 cells thick), we have a total of 10 x 3534 cells at contraction.
With each cell applying a force of 1 nN [9], the total force applied at the 35.34 mm surface
= 10 N/mm.



at contraction. With each cell applying a force of | nN [9], the total force applied at the
35.34 mm surface = 10° N/mm.

For Model B, the area of the quadrant model is % x (pi x 45 mm) x 250 mm = 8835.7
mm”. The area of a single cell of diameter 10 um is pi x (10 um)>. Thus, the number of
cells that would cover the model area is about 28 million cells. Since a 10 cells thick
layer is required for contraction, we have a total of 10 x 28 million cells at contraction.
With each cell applying a force of 1 nN each, the total force applied at the 8835 mm’
surface = 3.18 x 10™ N/mm™.

Figure 1: The liver model showing a quarter of the entire geometry. Diagram (a)
represents the rest of the geometry as constraints on the chosen quadrant. The
green lettering B indicates constraints in the z- (U;) direction, and C indicates
constraints in the y- (U) direction. Diagram (b) is Model A, in which contractile
forces are only applied to the top and bottom surfaces of the circular wound, and (c)
is Model B, in which contractile forces are applied along the entire length of the
wound.

2.2.2 Solving for Deformations Using ADINA

The 3-D geometric model of the liver was created on the ADINA-AUI interface in what
1s referred to as the pre-processing stage. By clicking the Solution/Data file icon, the pre-
processed model (of extension .idb) from the ADINA-AUI was converted into a data file
(extension is .dat) to be recognized by the solver. The data file was processed by the
ADINA solution program, and the solution was output as a porthole file (extension
.por[t]). This solution was then converted back into a 3-D geometric model that



displayed all the pertinent deformations and was analyzable using ADINA-PLOT in what
is referred to as the post-processing stage. Mathematical equations describing the
deformations along the wound length were obtained using Microsoft Excel.

3.0 RESULTS

3.1 Deformations on Model A

In Model A, the cell contraction resulted in deformations along the y- and z-directions of
the wound. There were no deformations in the x-direction of the wound. All
deformations were symmetric about the center of the model (at length 125 mm).

At this point, it is necessary to clarify the difference between the terms “along™ the
wound and “across” the wound. “Along” the wound refers to the line that runs in the x-
direction (the 250 mm length of the wound), and on the center of the curved wound
surface. In figure 2 below, it is labeled as (i). “Across™ the wound refers to the 35.34
mm circumference of the circular wound. In figure 2 below, it is labeled by (ii), and it
runs in the direction away from the top surface. The labels (i) and (ii) will be especially
useful when expressing the deformations mathematically in terms of the “along” and
“across” lengths, respectively. The diagram below is an example of a deformation
gradient “across” the wound since the deformation changes can be traced on the (ii)
length.

Figure 2: Distances “along” and “across” a wound. (i) represents ‘“‘along” while (ii)
represents ‘‘across’” the wound. The diagram is an example of a deformation
gradient ‘‘across” the wound since the deformations (color changes) occur while
traveling on the (ii) length.



[n Model A, deformations in the y-direction changed exponentially with 96.26%
accuracy and fit the relationship y-displacement = -0.0029¢ 7" wwhere (i) represents
the distance along the wound. At about 98.8 mm along the wound length, the
displacements switched from negative to positive, i.e. displacement due to the contractile
forces became zero. The maximum y-displacement was 2.36 x 10~ mm.
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Figure 3: Deformation of Model A in the y-direction. The displacement gradient
showed symmetry in deformations about the center of the model. Also, the largest
displacements were observed at the surface of the model where the forces were
directly applied.
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Figure 4: Exponential fit for deformations in the y-direction on Model A. The
equation obtained was y-displacement = -0.0029¢ @ where (i) represents the
distance along the wound.



Deformations in the z-direction were also exponential with 97.79% accuracy and fit the
relationship z-displacement = -0.0016e™ 06650 where (i) represents the distance along the
wound. The deformations never died out but obtained their lowest value of -1.76 x 10~
mm at the center of the model. The maximum z-displacement was -1.83 x 10 mm.

TOOE -0k

Figure 5: Deformation of Model A in the z-direction. The displacement gradient
showed symmetry in deformations about the center of the model. Also, largest
displacements were observed at the surface of the model where the forces were
directly applied.
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Figure 6: Exponential fit for deformations in the z-direction on Model A. The
relationship obtained was z-displacement = -0.0016e %% where (i) represents the
distance along the wound.



There were no deformations in the x-direction (along the length of the wound).
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Figure 7: Deformation of Model A in the x-direction. There were no observed
displacements in the x direction, and thus, no corresponding displacement gradient.

3.2 Deformations on Model B

In Model B, the contractile forces resulted in deformations across the wound and in the y-
and z-directions. There were no deformations in the x-direction of the wound. Unlike
Model A, the displacement gradients occurred across the wound and not along the wound
length. The y-displacements were constant with a value of -1.07 mm along the wound.
The z-deformations were also constant with a value of -0.79 mm along the wound. Since
the displacement changes occurred across the wound, the y- and z-displacements were
plotted against the (ii) distance defined in Figure 2.
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Figure 8: Deformations of Model B in the y- (above) and z- (below) directions. All
deformations are constant along the wound length. The displacement gradients
occur across the wound.

Deformations in y- and z-directions were fit to 2" degree polynomials. The y-
deformations were fit to y-displacement = 0.0009(ii )2 - 0.0775(i) + 0.0343 with 99.84%
accuracy, where (ii) represents the distance across the wound.

11



- y-displacement

50601 — — -— . =—Poly. (y-displacement)
E 0O0B00 A
E 508010 O . S0
£
8 -1.0E+00 -
8
& -1.5E:00 i
?
> 20E+00 —

Distance across wound, (ii) [mm]

Figure 6: Polynomial fit for deformations in the y-direction on Model B. The
relationship obtained was y-displacement = 0.00099(ii)’ — 0.0775(ii) + 0.0343 where
(ii) represents the distance across the wound.

The z-deformations were fit to z-displacement = ().OO()7(ii)2 + 0.0063(ii) - 1.1344 with
99.92% accuracy, where (ii) represents the distance across the wound.
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Figure 6: Polynomial fit for deformations in the z-direction on Model B. The
relationship obtained was y-displacement = 0.0007(ii)’ + 0.0063(ii) - 1.1344 where (ii)
represents the distance across the wound.



There were no deformations in the x-direction (along the length of the wound).

Figure 9: Deformation of Model B in the x-direction. There were no observed
displacements in the x-direction, and thus, no corresponding displacement gradient.

4.0 DISCUSSION AND CONCLUSION

4.1 Result Analysis

In Model A, the exponential decay observed agrees with the intuitive expectation that
displacements are largest at the site of largest contractile forces (the surface) and
decreases along the wound. However, intuition does not explain why the decay is
exponential. The exponential nature of the graph can be explained by a study which
revealed that “self equilibrated axisymmetric (symmetric about the center of the wound)
shear and normal tractions acting on the end surface of a right circular isotropic elastic
cylinder give rise to stresses that decay exponentially along the length of the cylinder”
[10]. The wound on the liver model satisfies all the specified qualities: it has a
cylindrical geometry, is bound by an elastic, isotropic material, and has tractions
(contractile forces) that are axisymmetric.

In Model B, the constant deformation along the wound’s length was observed because the
contractile forces are distributed evenly along the wound. However, it may be argued
that the free surface at the end of each defect should lead to different deformations at
each end of the wound. Upon analysis, the deformations at the free surface of the wound
were found to be the same as the deformations within the model. This was determined by
analyzing the deformation gradients on two parallel lines, one at the free surface and one

13



free surface on deformations are negligible when compared to the deformations caused by
the contractile forces.

In general, the deformations on Model B where found to be about three orders of
magnitude larger than the deformations on Model A. Also, in both models, the
deformations observed in the y- and the z-directions might have been expected to be similar
because the system is symmetric about its center. However, the quadrant under analysis
itself is not symmetric; thus the resulting y- and z-directions on it are not similar.

4.2 Error Discussion

A number of approximations were made to simplify the model. For instance, the Young’s
Modulus (E) for liver was approximated to be 1,000 Pa, which is not correct for all tissues.
To understand how the deformations would change with increasing or decreasing values of
E, a relationship that expresses deformation () as a function of the Young’s modulus (E) is
required:

o=Ee [11] (D
where 0 is the applied stress, and € is the strain.

By definition, € = (1 - 1,)/1, = 8/1,, where 1, is the unclosed wound width, and 1 is the
deformed wound width. Thus, substituting &/1, for € in equation (1) yields,

&=(oxL,)E 2)

E is inversely proportional to & (as E of the material increases, d decreases linearly). By
dividing the real value of E by the approximated value, a value is obtained that can be
multiplied to the mathematical expressions for deformation to correct the error that arises
from approximations.

The Poisson’s ratio, v, was also approximated. However, v is defined as the ratio of the
lateral strain to the axial strain. In both models, the lateral displacement was in the x-
direction and was zero, thus the corresponding lateral strain was zero. Thus, for these
models, the approximations on v do not impact our corresponding deformations.

There might be errors associated with the magnitude of the forces that are applied on the
chosen quadrant by the restrictive presence of the other three quadrants. Although the
other quadrants were represented as constraints on the chosen quadrant (Figure 1, (a)), it is
unclear whether ADINA assumed that the contractile forces applied on that quadrant was
also applied on all the other three quadrants. Thus, the deformations obtained on the
chosen quadrant may not be taking into account the deformations on the other quadrants. In
future analyses, it may be helpful to solve for deformations using half or a whole model of
the system and to compare them with the deformations obtained from this model. If the
deformations of the other quadrants were taken into account by the solver in this case, then
similar deformations to the ones obtained from this model will be observed in the future
models.

14



One of the final approximations was that the defect in this model was in the shape of a
cylinder. Actual wounds usually do not have such symmetric geometry. However, as
actual geometries of wounds are unpredictable, it was difficult to come up with an
expression that expresses the asymmetry of real wounds as a function of the deformation at
the wound edges. However, the FEA tool would still be useful in the analysis of those
systems especially if the investigator can represent the asymmetry geometrically.

4.3 Experimental Applications of obtained data

Currently investigators use collagen-based scaffolds to halt contraction at the wound site.
Since most of the studies done on contraction have been qualitative, the fabrications of
these scaffolds have been based on qualitative models. With the introduction of
quantitative models of what occurs at the wound site, investigators have tools that give
them both the nature and the magnitude of the deformations at the wound site. These
values should aid in more efficient scaffold fabrication, as the investigator is better able to
decide whether to increase or decrease the effect of different characteristics (e.g. cross-link
density) of the scaffold, to better accommodate for deformations at the wound edge.

The quantitative values can also help save cost in scaffold fabrication. In wounds where
the length can be approximated as semi-infinite (i.e. much longer than their width and
height), the deformations do die out at the center. With such wounds, the investigator
could design scaffolds that stop contraction at the wound edges but only up to the distance
where the deformations die out. This saves the cost and time required to design the larger
scaffolds that are needed for wounds in which the deformations are present along the entire
wound.
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APPENDICES

MODEL A

distance

0

4.03226
8.06452
12.09678
16.12904
20.1613
24.19356
28.22582
32.25808
36.29034
40.3226
44.35486
48.38712
52.41938
56.45164
60.4839
64.51616
68.54842
72.58068
76.61294
80.6452
84.67746
88.70972
92.74198
96.77424
100.8065
104.83876
108.87102
112.90328
116.93554
120.9678
125.00006

MODEL B

"Along"
0.00
2.50
5.00
7.50

10.00
12.50
15.00
17.50

Y-
displacement
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362

z-deformation excel model
-1.83E-03 -0.0016
-1.07E-03 -0.00122
-8.95E-04 -0.00094
-6.63E-04 -0.00072
-5.31E-04 -0.00055
-4.17E-04 -0.00042
-3.34E-04 -0.00032
-2.68E-04 -0.00024
-2.17E-04 -0.00019
-1.77E-04 -0.00014
-1.45E-04 -0.00011
-1.20E-04 -8.4E-05
-1.00E-04 -6.4E-05
-8.44E-05 -4.9E-05
-7.16E-05 -3.7E-05
-6.13E-05 -2.9E-05
-5.29E-05 -2.2E-05
-4.61E-05 -1.7E-05
-4.05E-05 -1.3E-05
-3.60E-05 -9.8E-06
-3.22E-05 -7.5E-06
-2.91E-05 -5.7E-06
-2.65E-05 -4.4E-06
-2.43E-05 -3.4E-06
-2.26E-05 -2.6E-06
-2.11E-05 -2E-06
-2.00E-05 -1.5E-06
-1.91E-05 -1.1E-06
-1.84E-05 -8.8E-07
-1.79E-05 -6.7E-07
-1.77E-05 -5.1E-07
-1.76E-05 -3.9E-07

Z-
displacement "Across”

-7.89E-01 0

-7.89E-01 2.20805

-7.89E-01 4.41609

-7.89E-01 6.62414

-7.89E-01 8.832185

-7.89E-01 11.040231

-7.89E-01 13.248277

-7.89E-01 15.456323
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y-deformation

-2.36E-03
-1.54E-03
-1.28E-03
-9.81E-04
-7.86E-04
-6.20E-04
-4.92E-04
-3.90E-04
-3.09E-04
-2.44E-04
-1.93E-04
-1.52E-04
-1.19E-04
-9.31E-05
-7.25E-05
-5.60E-05
-4.29E-05
-3.25E-05
-2.42E-05
-1.77E-05
-1.25E-05
-8.36E-06
-5.13E-06
-2.59E-06
-6.11E-07

9.21E-07

2.09E-06

2.97E-06

3.60E-06

4.03E-06

4.28E-06

4.36E-06

Y-

displacement
0

-1.46E-01
-2.86E-01
-4.22E-01
-5.56E-01
-6.89E-01
-8.22E-01
-9.52E-01

excel model
-0.0029
-0.002181
-0.00164
-0.001233
-0.000927
-0.000697
-0.000524
-0.000394
-0.000296
-0.000223
-0.000168
-0.000126
-9.48E-05
-7.13E-05
-5.36E-05
-4.03E-05
-3.03E-05
-2.28E-05
-1.71E-05
-1.29E-05
-9.69E-06
-7.28E-06
-5.48E-06
-4,12E-06
-3.1E-06
-2.33E-06
-1.75E-06
-1.32E-06
-9.9E-07
-7.45E-07
-5.6E-07
-4.21E-07

Z-
displacement
-1.11867
-1.10912
-1.09428
-1.06846
-1.03517
-9.88E-01
-9.33E-01
-8.64E-01



20.00
22.50
25.00
27.50
30.00
32.50
35.00
37.50
40.00
42.50
45.00
47.50
50.00
52.50
55.00
57.50
60.00
62.50
65.00
67.50
70.00
72.50
75.00
77.50
80.00
82.50
85.00
87.50
90.00
92.50
95.00
97.50
100.00
102.50
105.00
107.50
110.00
112.50
115.00
117.50
120.00
122.50
125.00

-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362
-1.07362

-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
-7.89E-01
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-7.89E-01
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17

17.664369
19.872415
22.080461
24.288507
26.496553
28.704599
30.912645
33.120691
35.328737

-1.07E+00
-1.18E+00
-1.27E+00
-1.36E+00
-1.45E+00
-1.51E+00
-1.55E+00
-1.58E+00
-1.60E+00

-7.89E-01
-7.08E-01
-6.17E-01
-5.35E-01
-4.37E-01
-3.28E-01
-2.23E-01
-1.15E-01
0.00E+00
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