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Abstract
In the following paper, I study the Dirac equation in curved spacetime and solve this
equation in two-dimensional spacetime backgrounds discovered by Jackiw et al[4], [5].
I will first discuss fiat spacetime and introduce the Dirac equation, which describes the
relativistic wavefunctions of spin-' particles. I will go on to discuss curved spacetime
and introduce the Vierbein field, which will relate an arbitrary curved spacetime
to the simpler fat spacetime. After examining various transformation properties in
curved and flat spacetime, I will use the properties to postulate the Dirac equation in
arbitrary curved coordinates. By checking the invariance of the Dirac action under
both coordinate and Lorentz transformations, I will verify that the postulated Dirac
action satisies the proper symmetries and properties that it should.

In order to solve the Dirac equation in the spacetime backgrounds found by Jackiw,
I will need to examine the equation in the two- and three-dimensional cases. I will
then reduce the three-dimensional Dirac equation to two dimensions to describe states
independent of the third dimension, because the spacetime backgrounds were derived
in an Ansatz which reduced the metric from three to two spacetime dimensions.
I will then be able to solve the reduced Dirac equation in each of four spacetime
backgrounds. The solutions to the first three spacetime backgrounds involve spherical
Bessel functions. The last spacetime background has a kink, and its solution involves
a hyperbolic cosine function enveloping an oscillatory factor.

Thesis Supervisor: Roman W. Jackiw
Title: Zacharias Professor of Physics
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Chapter 1

Flat Spacetime

In order to examine the wavefunction of spin- particles in the recently discovered kink

spacetime background, I will first need to analyze the properties and invariances of

flat and curved spacetime. I begin by analyzing the Dirac equation in flat spacetime.

Throughout this paper, I will use letters from the modern Roman alphabet (a, b, c...)

to denote flat spacetime indices, called Lorentz indices. We will start our analysis

considering an arbitrary number of spacetime dimensions, which we denote D. We

define our contravariant and covariant Lorentz vectors as

Aa= (A0 ,A1 ,..., AD- 1 ) (1.1)

Aa = (A, Al, ..., AD-1) = (A°,-A 1,..., -AD - 1 ) Ab, (1.2)

where lab is the flat spacetime Minkowski metric. Any repeated index is implicitly

summed over. By this convention, repeated indices will always be one lower index

and one upper index.

The first coordinate A °, typically has some relation to time, while the other coor-

dinates are related to the (D- 1) spatial dimensions. We've chosen the convention

that the spatial coordinates change sign when raised of lowered, while the time co-

ordinate's sign is conserved. According to this definition, lab must be the diagonal

matrix with 1 in the upper left entry and -1's throughout the rest of the diagonal.

We define nab to be its inverse tensor, so that we can now use nab to lower indices and
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Dab to raise indices. Since ab is its own inverse, both tensors have the same matrix

representation. In the 4-dimensional spacetime we live in, the Minkowski metric is

1 0 0 0

ab 0 -1 0 0
nab = = 0-10 0 (1.3)

0 0 -1 0

0 0 0 -1

By defining upper and lower indices, it becomes much easier to work with relativis-

tic quantities. We can now define Xa = (ct, x) and pa = ( , p) to be the position and

momentum Lorentz vectors, which include time and energy respectively. According

to relativistic theory, Xa and pa must now transform as Lorentz vectors. Any Lorentz

vector must transform the same way under any Lorentz transformation, so that we

get the same Lorentz vector in a different Lorentz frame. A Lorentz transformation

is a linear transformation of the coordinates that preserves the inner product of any

two Lorentz vectors, AaBa. This inner product is a scalar, so we say that scalars are

invariant under Lorentz transformations[6].

We can express the transformation as a two-tensor Aab, and we find the condition

on it so that the inner product is the same in any Lorentz frame.

a= AaAb, (1.4)

A aIcdA b = 'T ab (1.5)

Lorentz transformations can be decomposed into rotations, boosts, and space or

time reversal. Rotations refer to spatial rotations of our frame, and boosts transform

to frames moving with a constant velocity with respect to the original frame. By

taking the determinant of both sides of the above equation, we see that det Aab must

be ±1. Space or time reversal arise from a discrete Lorentz transformation with

determinant -1, while all other transformations can be broken down into a series

of infinitesimal transformations. We can thus check the Lorentz invariance of any

quantity under propery Lorentz transformations (det +1) by checking whether it's
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invariant under infinitesimal Lorentz transformations. I will use this later in the

paper to test that the Dirac action that I find is Lorentz invariant.

For infinitesimal transformations, we let Aab = 6b + Eb where Ecb < 1, so that

the coordinates are only changed by a small amount. Plugging this into the above

constraint on Ab and keeping only terms up to first order in gab, we get the constraint

that Eab is antisymmetric.

Eab = -Eba (1.6)

When analyzing the effect of an infinitesimal Lorentz transformation, a Lorentz

vector A a is transformed by 6A = EabAb, where ab is a constant arbitrary anti-

symmetric infinitesimal parameter. Before continuing, I should also note that the

derivative with respect to a contravariant vector transforms like a covariant vector

and vice versa. I will thus use the compact notation,

-a a, aa -o+ . (1.7)

I will also simplify notation by using units where h = c = 1.

1.1 Dirac Equation in Flat Spacetime

In quantum mechanics, the momentum operator is given in position space by -iV.

The Hamiltonian gives the energy of the system by the operation O. We see fromat

this that it's natural to define the covariant momentum operator Pa to act this way

on contravariant position space by the operation iOa. This forces contravariant mo-

mentum to act on contravariant position space in the expected manner. We expect

the relativistic equation-papa + m2 = 0 to hold for valid quantum mechanical states,

where m is the mass of the particle. If we apply this equation directly, we get the

Klein-Gordon equation:

qaaa + m20 = 0 (1.8)

If we take 0 to be a single wavefunction of the coordinates Xa, it becomes impos-
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sible to define a probability density which is positive definite and transforms properly

under Lorentz transformations. The probability density and probability current must

form a contravariant vector in order for the probability interpretation of quantum

mechanics to hold. The second derivative in the Klein-Gordon equation forces us to

include a derivative in the contravariant vector, which allows for negative probability.

In order the get a probability vector that isn't defined with a derivative, we need

our original equation to contain only first derivatives. Dirac proposed such a linear

differential equation:

iOa a+m0 = 0 (1.9)

Rather than having & be a single wavefunction, it's now a vector of wavefunctions,

called a spinor. I'll call column vectors like spinors and the matrices that act on

them bispinors. The oya are the gamma matrices, which act as a contravariant vector of

matrices. These are constant matrices in any Lorentz frame. The equation is Lorentz

invariant, since the inner product ?a'a/a is preserved. This is the Dirac equation in

fiat spacetime. If we act on the Dirac equation with -i-bOb + m, the cross terms

cancel and give

Y by aaD) + m2 = 0. (1.10)

We now impose the anti-commutation rule

{1a 1yb} = 2 ab (1.11)

on the gamma matrices, and we find that the Klein-Gordon equation holds for each

component of the spinor. Our anti-commutation algebra of the gamma matrices

imposes the relativistic equation -papa + m2 = 0 on valid spinors.

Through linear algebra, any higher order linear differential equation can be ex-

pressed as a first order linear differential matrix equation. The Dirac equation did

just that. By our anti-commutation rule, we see that (y)- = yo, so we could also
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express the Dirac equation as

iAV¢ = -i.ywoyej - my ' (1.12)

where j is summed over just the spatial coordinates. Since the term on the left is

the time derivative, this is the Dirac equivalent to the Schr6dinger equation. Our

Hamiltonian is

H = -iy 0 i9j - m ° = y°OyiJpj - m °. (1.13)

Since the energy of any spinor must be real, the Hamiltonian must be Hermitian.

This means that 7° and °yi must be Hermitian. This gives the relation Vat = 7°-yOay°y

for each gamma matrix. We define the Dirac adjoint for any bispinor matrix M or

spinor and express this relation as such:

M -°MtYo (1.14)

_ ¢%0~ (1.15)
aY= a. (1.16)

Note that ?/ is a row vector, while b is a column vector. Since y = a, we

say that the gamma matrices are Dirac Hermitian. The anti-commutation and Her-

miticity rules are the only constraints on the gamma matrices, so any set of matrices

satisfying these constraints is a valid representation. We will always choose to work

in an irreducible representation, so that the dimensions of the gamma matrices and

spinor are minimized. Any two irreducible representations are related by a simi-

larity transformation, so changing representations just mixes the components of the

spinor. The physics is the same in any representation. The constraints can be used

to show that the gamma matrices are traceless and must be of even dimension. In

four spacetime dimensions the simplest gamma matrices are 4 x 4, while in two or

three dimensions the gamma matrices are 2 x 21].

The Dirac equation in four spacetime dimensions describes a spin-' particle. The

four components of the spinor can be made to be the spin-up and spin-down wavefunc-
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tions for the positive and negative energy solutions. The negative energy solutions

create a duplicate of the expected positive energy spectrum, due to relativity giving

us an equation for E 2 rather than for E. The ground state of a system of spin-' par-

ticles is taken to have all of these negative energy states filled. An unfilled negative

energy state can be viewed as having an anti-particle in this state. This means that

the excitation of a particle from a negative to positive energy state corresponds to

the creation of a particle and anti-particle. I'll only be working with single particle

theory for a spin-1/2 particle, so the Dirac equation will properly describe it.

1.2 Dirac Action in Flat Spacetime

We postulate that the Dirac action in flat spacetime should be

S = / d+XO(iyaa + m+). (1.17)

This integral extends over all spacetime. In order for this to be a valid action, it

must produce the Dirac equation when we set 6S = 0 under an arbitrary variation

of the spinor . Since is complex, we can vary its real and imaginary parts

independently. This is equivalent to varying and A* independently. Since is

related to O*, we can choose to vary 4' and 4' independently. Variation of 4 gives

6S= J dDx6l;(i-y'Oaf + m+) = 0. (1.18)

Since this holds for arbitrary 4, the Dirac equation must hold at all points in space-

time. Variation of 4' would give us the Dirac adjoint of the same equation, where we

would integrate by parts and drop the boundary term since 0 -+ 0 at infinity. This

action does indeed reproduce the Dirac equation.

The Dirac action must also be Lorentz invariant. Since the action's a scalar,

it must be the same in any Lorentz frame. I showed earlier that an infinitesimal

Lorentz transformation is given by xa = xb , where Eab is antisymmetric. The

transformation also changes by a similarity transformation S, . --+ S. The
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similarity transformation also transforms the gamma matrices, which must transform

like Lorentz vectors. This means that S must satisfy

S- lyaS = Aajy b . (1.19)

1 ,abExpanding in terms of infinitesimals, we find that S = 1 + Fab-, where

I~a a, ]ab 1 _[~ , ~] (1.20)

By Taylor expansion, we can expand scalar, vector, and spinor fields to see how they

transform under Lorentz transformations.

q(x + 6x) = (x) + 6Xadab(x) (1.21)

1 1b ba)= 6b6$ = eXb/b = ab(X Xba) 6ab > (1.22)
2 2

jabX = (xab - xbaa)) (1.23)

Since X must be invariant under any arbitrary antisymmetric ab, any field that

transforms this way is a Lorentz scalar. Similar expansions for vector and spin fields,

along with the appropriate Lorentz or similarity transformation, give the transforma-

tions 1

6abAc = (XaDb - xbOa)Ac + SaAb _ bAa (1.24)
=a -X~g - XcAa (1.24)

6abAc = ( ab - xb~a)Ac + racAb- ObcAa (1.25)

abs = (xaab - xba) + ab4e (1.26)

jab = (Xaab - Xbaa)_ -ab (1.27)6 f = x d -xa )+-a . (1.27)

Any fields that transform in these ways are Lorentz vectors or spinors. A Lorentz

tensor has an arbitrary number of Lorentz indices and transforms like a vector, except

that we get the extra terms that we got from the vector transformation for each index.

'To get the last equation, I used the relation Eab = ab.
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For example, a rank-2 tensor transforms as

6abAcd = (arb - xbOa)Acd + ,acAbd - nbcAad + ,adAcb - nbdAca. (1.28)

From these, we find that f is a Lorentz scalar, and a?/b is a Lorentz vec-

tor. We can now define <?yap to be the Lorentz invariant probability vector and see

that probability density is Ot, similar to the positive definite probability density

defined nonrelativistically. The probability current also behaves the same way as its

nonrelativistic counterpart.

4byaa4 is also a Lorentz scalar, since the extra terms from the transformations

of 4 and V cancel. To see this, we note that

[c yEab] = acb - bca (1.29)

follows from the anti-commutation properties of the gamma matrices. Since each

term in the action is a Lorentz scalar, the total action itself is a Lorentz scalar. We

have therefore defined a valid Dirac action for flat spacetime.
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Chapter 2

Curved Spacetime

We will now generalize from flat to curved spacetime. I will start by switching from

working with flat coordinates Xa to arbitrary curved coordinates xA. I will use Greek

letters (p, v, p...) to denote curved spacetime indices. When I refer to spacetime

indices, I will mean the Greek indices; when I refer to Lorentz indices, I will mean

the Roman indices.

In these coordinates, the metric is no longer constant. Instead we use the space-

time metric q,w(x) to lower indices and its inverse g"'(x) to raise indices. We define

a Vierbein field ea(x) to relate the metric to the flat spacetime metric Nab. The

Vierbein is defined such that

gv= -7abe e bV (2.1)

at every spacetime point. We also define the inverse Vierbein field Ea"(x) at each

point by requiring that

ea Eb" = 6b , eapEa = 6. (2.2)

From these definitions, it follows that we can find the inverse metric from the inverse

Vierbein.

giL - ?abE alEb (2.3)

We can now use g to raise to lower spacetime indices, r7 to raise of lower Lorentz in-

dices, and the Vierbein and inverse Vierbein to change between spacetime and Lorentz
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indices. It is necessary to introduce this curved spacetime metric since spacetime is

not flat in general.

2.1 Transformations in Curved Spacetime

We define a quantity in spacetime to be a vector or tensor in the same way as we did

in flat spacetime. We can convert a spacetime tensor to a flat spacetime tensor by use

of the Vierbien and insist that this new tensor transform as a tensor, as described in

the previous section. For example, for All to be a vector, ea A must transform as a

Lorentz vector. These lead to transformation rules for infinitesimal transformations

similar to those in flat spacetime.

PA, = (x,'3- za)A + PA - A' (2.4)
OA = (O - x±a')A + gA - gA ' (2.5)

2.1.1 Transformation of Spacetime Indices

We need to be careful to remember that the spacetime metric and Vierbein are coor-

dinate dependent. Thus, an ordinary partial derivative of a tensor, such as OCAP, does

not transform as a tensor in curved spacetime, due to the derivatives of the metric.

We define a new derivative operator De that transform as a tensor when acting on a

tensor. We define

D0 AA= OA +F A (2.6)

DOA OaA - F"Av (2.7)

where Fr is a connection field called the Christoffel coefficients. D acts on an

arbitrary tensor by 0 plus a Christoffel term for each index. Since D, on any tensor

must transform as a tensor, we must be able to pull the spacetime metric through

18



this derivative to raise or lower indices. It must be the case that

D.gj, = 0, Dgv = 0. (2.8)

Since the spacetime metric is a tensor, we can expand these derivatives in terms

of Christoffel symbols and the metric. From this, we find that F, is symmetric in 

and v and can be found in terms of the metric and its derivative:

ps 1s
A = (g/(vg, + ,9,3, - ugs) (2.9)

The Christoffel symbols vanish when we use a constant metric, so D, reverts back

to O, in flat spacetime. Using this equation for the Christoffel coefficients, D, acting

on any tensor is now another tensor. We could also define D' by using the metric

to raise the index on the derivative. It's also worth noting that the antisymmetric

combination O,A,- 8O,A, is a tensor, since the Christoffel symbols cancel.

2.1.2 Transformation of Lorentz Indices

We now turn our attention to tensors that have both spacetime and Lorentz indices.

Such a tensor must transform like a Lorentz tensor in its Lorentz indices, and it must

transform as a spacetime tensor in its spacetime indices. D acting on this tensor

would transform like a tensor in its spacetime indices, but it wouldn't transform as a

tensor in its Lorentz indices. We define a new type of derivative Dc, which does yield

a tensor when it acts on a tensor. Starting with D, acting on the tensor, we add

another connection field, called the spin connection one-form WAb, for each Lorentz

index. This connection field acts on the Lorentz indices in the same way that the

Christoffel coefficients act on the spacetime indices. For example, the derivative of

the field V is

It a a b DQ~~c~~DO~~c~+Wc~~~ab (2.10)

DsVai, DOVap + WsabVb (2.11)Dog bad _ Dsx H + a 'ab V p(2.11)
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Since ZDo acting on any tensor is a tensor, we must be able to move the Vierbien

through this derivative, so that we can raise, lower, and change between spacetime

and Lorentz indices. This follows from the same logic that told us we must be able

to pull the spacetime metric through the D, derivative. This tells us that[2]

Dae'A = 0, DaEap = 0. (2.12)

We can use these relations to calculate the spin connection from the Vierbien and

its derivatives. Each of the two relations yields a separate equivalent equation for the

spin connection:

.b = -Eb'De' (2.13)

W ba = -e aDs Eb ' (2.14)

The right sides of these equations add to zero, since they give the derivative of .ab

Thus, wab must be antisymmetric. Plugging in the definition of D, we get the spin

connection. This definition of the spin connection allows Ds acting on any tensor to

be a tensor.

W, b = e s(,Eb + F,,Eb ) (2.15)

= Eb"(-ea, + F;pea) (2.16)

Wpab = -W-ba (2.17)

2.1.3 Transformation of Spinors

We next turn our attention to spinors with an arbitrary number of spacetime and

Lorentz indices. To be invariant, this quantity must transform as a spinor as well

as transforming like a tensor in its spacetime and Lorentz indices. If we act D on

such a spinor, the spacetime and Lorentz indices transform properly, but it doesn't

transform as a spinor. We define a new derivative V, that adds another connection

field FY for the spinor. For consistancy, we also define its action on adjoint spinors
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and bispinor matrices accordingly. Again, a represents a spinor and M represents an

arbitrary bispinor matrix, such as the Dirac matrices. These can have any number of

indices, which are transformed accordingly by X,.

VT a- D a + aIf (2.18)

VM a" - DM a" + [, Map] (2.19)

V'Iap D4a - pa' LF (2.20)

Since we require that V, acting on any spinor must transform as a spinor, it

turns out that we must be able to pull any Dirac matrix through this derivative. This

means that the derivative of the Dirac matrices must vanish, which allows us the find

what this connection field must be[2].

V0 _a = 0 (2.21)

1 a
FA = WiiabEb (2.22)

We again make use of Eq. (1.29) in this derivation. Using this connection field, the

derivative V, of any spinor now transforms as a spinor.

2.2 Dirac Action in Curved Spacetime

Using this invariant derivative along with the curved spacetime metric, we can now

convert the Dirac equation into curved spacetime. We postulate the curved spacetime

Dirac action to be

f ~ ~~~~~~ -c 1
SD=/ dDx g V(iaEa,(O,9 + -WIbEb ) + mr). (2.23)

The inverse Vierbein is introduced into the equation to convert the flat gamma

matrices into curved spacetime, since the Vierbein relates curved spacetime to flat

spacetime. The extra lwpabZEab term is added to make the derivative of invariant

under coordinate transformations.
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Finally, we introduced the factor /:-g to the integral, where g is the determinant

of the spacetime metric with lower indices. This term acts as a Jacobian under the

integral and is needed because the curved spacetime coordinates are arbitrary. /i

can also be expressed as e, where e is the determinant of the Vierbein. This is easily

seen by taking the determinant of both sides of Eq. (2.1) and realizing that det q = -1.

-g therefore acts as a Jacobian which allows us to switch from integrating over flat

spacetime to integrating over our curved spacetime coordinates.

We vary this action in the same manner as before, noting that independent vari-

ation with respect to the real and imaginary parts of 4 is equivalent to independent

variation of O and . Varying the action with respect to 6i' gives us the Dirac

equation in curved spacetime:

j~aEI(~4'~1 be i'yat'(O,1 +-ubcE V)) + mO = 0 (2.24)(2.24)

We could also vary with respect to 6 to get the Dirac adjoint of the Dirac

equation. The sign of the extra 2wpab ab term works out, since taking the adjoint

changes the sign twice, due to the minus signs from the complex conjugate of i and

from Eab = -Eab. Also, when we integrate by parts, we get a term of the form

,O( -gEa'). Through a bit of algebra, we can show that

,( /-gEa) = /-gEbWAb . (2.25)

From this, the proper adjoint Dirac equation emerges. Thus, the adjoint Dirac equa-

tion is consistent with the Dirac equation.

iEa'(-iO, + 5bbc)y + my = 0 (2.26)~~~~~~~~~~2

In order for this Dirac action to be valid, it must be a scalar. This means that it's

invariant under both spacetime coordinate transformations and Lorentz transforma-

tions. We will examine first its transformation properties under arbitrary coordinate

transformations, called diffeomorphisms, and then its transformations properties un-
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der infinitesimal Lorentz transformations.

2.2.1 Transformation under Diffeomorphisms

When transforming under a diffeomorphism, we will change from our current space-

time coordinates x' to new spacetime coordinates which we'll denote with a prime,

x'>. The primed coordinates are arbitrary functions of all the unprimed coordinates,

such that there exists a one-to-one correspondence between coordinates. We can

therefore also express the unprimed coordinates as functions of the primed coordi-

nates, by taking the inverse. The spinor, and thus the adjoint spinor as well, is not

transformed by a diffeomorphism, so '(x') = ?b(x). Thus must be so, since the spinor

cannot depend on our choice of coordinates. The Vierbein must be transformed as

/a (I) =9x'a I9'e',(x') = , ea,(x), E' (x') = a EV(x) (2.27)
P ax~~p a 09XV 

so that the primed Vierbein exchange Lorentz indices with the primed spacetime

indices. ax"' is the Jacobian matrix for the transformation. From this, we find that

the primed spacetime metric is given by the unprimed metric along with two sets of

this Jacobian matrix.

The differential dDx in the integral is transformed by the absolute value of the

Jacobian, which is the determinant of the Jacobian matrix. The factor / = e is

transformed by the inverse Jacobian:

dD' I dt ax IdDX (2.28)
d/g'x') e'x det ~ 'd 

19XV D9XV
= e'(x') = det e'a(x') = det( e'a (x')) = v/-g(x) det (2.29)V_ ~91 (X-i-) IL x"' 9x"',

Since the Jacobian and inverse Jacobian cancel, the quantity dDx/2I remains in-

variant. This property is what makes the -g necessary in the integral. However,

we have the absolute value of the Jacobian, so they only cancel when the Jacobian is

positive. A negative Jacobian corresponds to either a space reflection or time reversal.

Thus, the action will change sign under this type of a reversal, but the Dirac equa-
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tion will stay the same. This means that the action will be invariant under proper

coordinate transformations.

By the chain rule, we get a Jacobian matrix in the expression for the primed

coordinates each time a quantity has a partial derivative with respect to the primed

coordinates.
Dx'Snac (2.30)

Since the Jacobian matrix from the primed to unprimed coordinates is the inverse of

the Jacobian matrix from the unprimed to primed coordinates,

Dx" Dx ' Dx' Dx2
x x= x x =5~. (2.31)

axc,, O9x,, ax~l x,,.

From these properties, we find that EatBp, is invariant.

This only leaves the -aE wAbcEbC term. Since the gamma matrices are invariant,

it's left to find the transformation of Ea,"Wbc under diffeomorphisms. Since Wcobc

can be decomposed into terms involving the Vierbein and its derivative, calculation

of W,bc in terms of the unprimed frame leads to a large mess of Jacobian matrices
031bc

and their derivatives. Through much algebra, I managed to find an expression for

E' ".Wbc. This quantity is not invariant, but the extra terms from the transformation

are symmetric in b and c. Since Ebc is antisymmetric, 7aEa'WbcYbc turns out to be

invariant due to the cancelling of these terms.

We've now seen that each part of the action is invariant under diffeomorphisms, so

the total Dirac action must be invariant under arbitrary coordinate transformations.

If it also turns out to be invariant under Lorentz transformations of the flat spacetime

coordinates, then this will be a valid action for us to use.

2.2.2 Transformation under Infinitesimal Lorentz Transfor-

mations

We now examine the transformation properties of the action under infinitesimal local

Lorentz transformations. These transform just the Lorentz indices. Since our curved
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coordinates are independent of our flat spacetime coordinates, the transformations

have no effect on the curved coordinate dependence. Our infinitesimal antisymmetric

parameter Eab(X) now becomes coordinate dependent, since the infinitesimal Lorentz

transformation is local at each spacetime coordinate. For tensors with an arbitrary

number of spacetime and Lorentz indices, only the Lorentz indices are transformed.

For each Lorentz index, the transformation is

A = E ab(x)Ab, Aa = eab(x)6A. (2.32)

For an arbitrary tensor, one of these terms arises for each Lorentz index. Since

the Vierbein has one Lorentz index, one such term appears when we vary it. To

vary the spin connection, we plug Eq. (2.15) into our variation and find the variation

properties of Wab.

6W b = a C, b + eb WC + 09,eb (2.33)

The spinor and adjoint spinor also transform under the infinitesimal Lorentz trans-

formations in the same way that we saw them transform in Eq. (1.26).

= abZb, b = (2.34)
2 2

The Dirac matrices transform only in their Lorentz index. We used their transforma-

tion property previously to find the transformations of ?$ and Ab.

Since we now know how each component of the Dirac action transforms, we can

now vary the action. The - factor is invariant, since it depends on only on the

spacetime coordinates. 6(b) = 0 since the variations of and b carry opposite

signs and cancel. This means that the mass term is invariant. 7aEa" is also invariant,

since the variation of the two factors cancel due to the antisymmetry of eab. When

we vary 0,aE'Z9OV), we now only get terms from the variation of ari and A. The

variation of ),lb yields the spinor variation along with a term arising from acting the

derivative of ab. The spinor and adjoint spinor variations cancel as they did for the
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mass term, leaving only

(2.35)

1~~ a 2 .b35e
Variation of pry EaVWbEbc, also sees the cancellation of the terms from the

variation of 03 and i, leaving only the variation from wpbcEbc. The two terms from

the variation of Zbc cancel two of the terms from the variation of Wbc. The leaves

only the term from the variation of wpbc involving the derivative of eab.

6(!4_'OaEbWbc4'C) -&,,EcbEaV-a bc4 (2.36)
2 2

By antisymmetry of Sab, these two last remaining terms cancel. The variation of

the Dirac action therefore vanishes under arbitrary infinitesimal local Loretz transfor-

mations. Since the action transforms as a scalar under both Lorentz and coordinate

transformations, we have defined a valid action for the Dirac equation generalized

into curved spacetime.
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Chapter 3

Dimensional Reduction

Since I will be solving the Dirac equation in two spacetime dimensions, I will simplify

the Dirac equation for the two dimensional case. The formulas for the spacetime

metric with kinks discovered by Jackiw et al[4], [5] were found using an Ansatz which

reduced from three to two dimensions, so I will also simplify the equation for the three

dimensional case. I will then dimensionally reduce from three to two dimensions by

use of the Kaluza-Klein Ansatz. To avoid confusion, I will use Greek and Roman

letter from the beginning of the alphabet (a, ,3 ...; a, b, ...) to denote spacetime and

Lorentz indices respectively in two dimensions. I will use Greek and Roman letter

from the middle of the alphabet (, v, ...;i, j, ...) to denote spacetime and Lorentz

indices respectively in three dimensions.

3.1 Two Dimensional Dirac Equation

Two dimensional spacetime consists of one spatial dimension and a dimension cor-

responding to time. I will start by introducing the totally antisymmetric ab in two

dimensions. This quantity does not transform as a tensor, so I will not raise and

lower indices as such. For convenience, cab will be defined to be equal to ab We

define ab such that 01 = 1 and ab changes sign under the exchange of the indices,

so that it vanishes when an index is repeated.

The spin connection field Waab has only one unique Lorentz component wao,01, since
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it's antisymmetric. We therefore define a connection field with no Lorentz indices

and can express W)ab in terms of this field.

WC - Wa0 (3.1)

Waab = £abWa (3.2)

We define a new bispinor matrix iy5 to be the product of the gamma matrices. We

will not raise or lower this index, since the index is never summed over. The 5 is used

as the index since it was originally defined in four spacetime dimensions and was used

along with the gamma matrices as a fifth Dirac matrix. Due to the anticommutation

relations of the gamma matrices, Eab = ,a -yb when a # band vanishes when a = b.

We can therefore express Zab in terms of y5.

7y5
= ,y°oy1 (3-3)

-ab = £ab /5 (3.4)

We can now express the Dirac action and equation in terms of w, and 75. To see

this, note that

6 eac =6 b (3.5)

eb Eab = 2. (3.6)

The Dirac action and Dirac equation in two dimensions now simplify to:

c2 f 2x 7ij/-2a(~~ + .w'~'p m, ,)S2 = |dx g (iaEa (Of + -wa 5) + m+) (3.7)

iY aEa ( + 1Y + m) = (3.8)

Since the gamma matrices are 2 x 2 in two or three dimensions, the math is
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simplest when we use Pauli matrices for our representation. The Pauli matrices are

( 1 ) ( i I 0 ()
1 (- A) 72zor2 ( ) U3- . (3.9)

1i 0 0 -1

The Pauli matrices satisfy the anticommutation relation {i, aj} = 25ij and are

Hermitian. We can choose y0 to be one Pauli matrix and y71 to be ±i times another

Pauli matrix. The gamma matrices will thus satisfy the necessary anticommutation

relations and be Dirac Hermitian. Choosing our gamma matrices as such, Y5 turns

out to be plus or minus the last Pauli matrix.

3.2 Three Dimensional Dirac Equation

Three dimensional spacetime includes two spatial dimensions and one dimension of

time. Similar to its two dimensional counterpart, we now introduce the totally an-

tisymmetric ijk. This is defined such that 0 12 = and ijk changes sign under the

the exchange of any two indices. This implies that any terms with repeated indices

vanish, and ik remains the same under a cyclic exchange of indices.

Since the spin connection field is antisymmetric, it only has three unique Lorentz

components. We can therefore use ijk to define a connection field with only one

Lorentz index. We can express the full spin connection field in terms of this new

reduced field.

k ij1

WI 1 2 ij (3.10)

Wij = EijkWk (3.11)

To see that these equations are consistent, we note that

"ijk jm . 3.13kin = mn n m (3.12)

£ijk ijm = 2( k . (3.13)
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Again, we define -y5 to be the product of the gamma matrices. Since we now

take the product of three gamma matrices, our expression for Yij changes. Using the

anticommutation rules for the gamma matrices, we can express Eij simply in terms

of the gamma matrices and y5 .

9'5 _ 90l1° 2 (3.14)

Eij = eijk"/k"5.' = 1 Ykk ), (3.15)
2

We can now put these expressions into the Dirac action and equation. We therefore

simplify the Dirac action and Dirac equation in three dimensions to:

S3 =] d -g + (iw Ej(,o + WukYa) + m+) (3.16)

1E ( + lk 5) + mb = (3.17)

As in two dimensions, it's simplest to choose the gamma matrices using the Pauli

matrices. Choosing f0 to be one Pauli matrix and 'y/ and -72 to be +i times the other

two Pauli matrices, our gamma matrices satify the necessary anticommutation rules

and are Dirac Hermitian. In any 2 x 2 representation, we see that -y5 is just ±i times

the identity. This will simplify our calculations.

3.3 Dirac Action in Hermitian Form

Recall that the gamma matrices were taken to be Dirac Hermitian to make our

Hamiltonian Hermitian. This forces our energy and momentum eigenvalues to be

real, so we say that the Dirac equation is Hermitian. The Hermiticity of the Dirac

equation is apparent in the fact that variation of the action with respect to 4' or 4'
give Dirac adjoints of the same equation. This can only be the case when the Dirac

action is Hermitian. However, the action treats or 4' quite differently, so it's not

immediately apparent that this action is Hermitian. Since the action is a scalar,

saying that it is Hermitian is the same as saying that it is real. I will now put this
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action in explicitly Hermitian form.

The Dirac adjoint of a scalar is just its complex conjugate. To decompose the

action into a Hermitian and anti-Hermitian part, we add and subtract the adjoint.

This is the same as decomposing it into real and imaginary parts.

1 1 -S= (S + S) + (S- ) (3.18)
2 2

We will now see that the anti-Hermitian part S - vanishes. The Vierbein and

spacetime metric are taken to be real. When we subtract the adjoint action from the

action, the mass term cancels since And is Dirac Hermitian. The remaining terms take

the form

- /
(S - S) = dDx2 _ gE(a( , 41 + -Wycya + WbCOi [-Y b] b). (3.19)

222

Using Eq. (1.29) and Eq. (2.25), we can rearrange this term into a total derivative

under the integral:

1~~~~~~-(S- g oyaEap) (3.20)
22

Since we integrate a total derivative over all space, we're left with only the boundary

terms, which vanishes at infinity. The anti-Hermitian part of the action vanishes, so

we see that the action is indeed Hermitian.

We can therefore express the action as explicitly Hermitian.

1 fDX- rZ~aA~ a,~ ~Wb~)~a, Eyjc}+}nm~o/)
SD = (SD+ SD) = id -[2Ea(O;yfao3-Oubyab)+Ea/lbc v 

(3.21)

Since this expression treats and !0 the same, it is explicitly Hermitian.

The anticommutator {7a, Ebc} vanishes when any two of the three Lorentz indices

repeat, due to the anticommutation rules. In two dimensions, at least two of the three

indices must always repeat, so the spinor connection field vanishes completely in the

Hermitian form. In three dimensions, the non-vanishing terms arise only when we
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use all three different gamma matrices, so {fya, Zbc} will be proportional to -y5 . The

two- and three-dimensional actions in Hermitian form are

S2 = d d2x -Eab/-atl _ D a) + mbO] (3.22)~~~~~~~~~~~~~~~(.2)
3XV/'--~ ~~~~~~~i z - 5

S3 = Jd3x g[ g Ej'(0iTJyb - O$,0yJ) + -Ej- mjO' p + m++]. (3.23)

Since terms cancel, the two- and three-dimensional actions take this simpler Hermitian

form.

When we vary the Hermitian action with respect to 6, we need to integrate by

parts due to the derivative of ~. After using Eq. (2.25), we get equations of motion

of the form

iE~ap&Yai +E ab +a, abc10
4 a

iEa+a + Ea aa2 , }b +m = (3.25)~~~~~~~~(32jap~~~~2 E ak 0 + MO = 0.
iEjLay 0- E Wjj-YkO+ 2Ej Wpjja' f + my = (3.26)

2 2WJ/k'E

An extra term emerges in each due to the derivative of the Vierbein and -g from

the integration by parts. Through a bit of algebra, we can see that these equations are

equivalent to the Dirac equations we derived before. This verifies that our Hermitian

form of the action is equivalent to our original action.

3.4 Reduction from Three to Two Dimensions

We now want to see what happens to our Dirac equation when we reduce from an

arbitrary three-dimensional metric by restricting motion in one coordinate. To reduce

the Dirac equation from three to two dimensions, I will make use of the Kaluza-Klein

Ansatz. We take the three-dimensional spacetime metric to be in the form

g, = - (3.27)
-A3 -1
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The first row and column represent the first two spacetime dimensions of the Y

and v index respectively, where g3 is a reduced two-dimensional spacetime metric.

a and 3 run over 0 and 1. The second row and column represent the third dimension,

which we plan to reduce. These correspond to M or v equal to 2. The two-dimensional

field A, is a connection field between the two dimensions in which we're interested

and the extra third dimension. Once we've restricted ourselves to two dimensions,

the particle will still feel the effects of this field on the remaining dimensions.

Given g,, in this form, we can take the Vierbein to be

= (c0 ).a 0 (3.28)
A,1 '

The first column represents the two-dimensional spacetime coordinates = ca, and

the second column represents the extra spacetime dimension A = 2. The first row rep-

resents the two-dimensional Lorentz dimensions j = a, and the second row represents

the extra Lorentz dimension j = 2. ea is the reduced two-dimensional Vierbein which

produces the two-dimensional spacetime metric g,. Plugging e into Eq. (2.1), we

verify that this Vierbein produces the desired metric g,,.

By imposing Eq. (2.2), we can find the inverse Vierbein.

= ( E a-E A ) (3.29)
0 1

We use the same convention as before, where the columns represent the spacetime

index and the rows represent the Lorentz index. Ea' is the inverse Vierbein of our

two-dimensional metric. We can also construct the inverse metric from the inverse

Vierbein.

gIV = ( . (3.30)
-g'YOAy gA,5-1 -31

The rows represent the first index, and the columns represent the second index.

Now that we have the metric and Vierbein in this form, we use them to calculate
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the three-dimensional spin connection field w . Plugging our two-dimensional Vier-

bein and A, into Eq. (2.15), we get expressions for each component of w in terms

of the two-dimensional Vierbein ea, the connection field A, and their derivatives.

To simply notation, we define the field strength of the connection field.

f, = ,AO - &oA, (3.31)

Since our field strength f is antisymmetric and runs over two indices, it has

only one independent component. We can therefore define a field strength for the

connection field with no indices. We choose to scale the field strength by a factor of

/:g, using the two-dimensional metric, to simplify our expressions.

__1
f- =Ifoi (3.32)

fa = V-gabf (3.33)

Using these definitions, I worked through the algebra to get each component of

w in terms of the two-dimensional spin connection and Vierbein along with the

connection field A, and its field strength 1. After a bit of algebra, we find that the

three-dimensional spin connection is

-~e Iaf w, + A,~fJ eaf + 2Af) (3.34)
It 0 if

The rows represent the first spacetime index, and the columns represent the second

Lorentz index. Notice that the two-dimensional spin connection with no Lorentz

indices w, appears in our expression. This will make it possible to relate our three-

dimensional Dirac equation to its reduced two-dimensional form.

Using our reduced wj, the spinor connection term in the three-dimensional Dirac

'To get the factors of / correct, we note that = Eo°Ell - Eo'El°.
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equation gets reduced to

ijH k = iV~~~ E < ifZ.f- (3.35)liyJ Ej "W/ikk Y i/ Ea Wa½'-Y2 _ 'f 7

I put subscripts on the if matrices here to avoid confusion between the ones that I

defined in two and three dimensions2 . The first term is the two-dimensional spinor

connection term. Remarkably, only the field strength and not the full A, appears in

our three-dimensional spinor connection term. Since 35 is ii in our representation,

the only additional term in our spinor connection reduces to f .

Since we restrict motion to be in only two-dimensions, our spinor will be indepen-

dent of x2. Since 024 = 0, expanding the three-dimensional Dirac equation yields

1 5 1

ij7aEa(4a, + 2w y54/) ±4 f4 + m = 0. (3.36)
2 ~4

Now that we've reduced to two-dimensions, -y5 will always be taken to be one defined

in two dimensions.

The three-dimensional Dirac equation has reduced to the two-dimensional Dirac

equation with an extra term which encompasses the effect that the third dimension

has on the two dimensions in which we're working. It turns out that only the field

strength f of our dimensional connection appears in our equation of motion. We will

choose two of the Pauli matrices for y0 and y1. Since we can still choose ±i times

the last Pauli matrix for -y2, we're choosing either plus or minus for our field strength

term. We can now solve this reduced two-dimensional equation using the spacetime

background discovered by Jackiw et al.

2Note that 5 = 2,25.
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Chapter 4

Solving the Two-Dimensional

Dirac Equation

Now that we have found and verified the two-dimensional Dirac equation that we

plan to solve, we turn our attention to the spacetime backgrounds discovered by

Jackiw et a[4], [5]. They also reduced the three-dimensional spacetime metric to

two dimesions by use of the Kaluza-Klein Ansatz, defining the field strength f in the

same manner. This allowed them to solve for the following possible two-dimensional

spacetime metrics:

Case 1: f (t, x) = 0,

Case 2: f(t, x) = 0,

Case 3: f (t, x) = iX,

Case 4: f(t,x) = x/C tanh x, 2'

C > 0,

C < 0,

C > 0,

C > 0,

2 1

9C = C 2 0 
2 t1

1 t1
9a - VCx2 0

1/ cosh4

g0a3 =
0 

0

-1 )

(4.1)

0

-1) (4.2)

O0

01 ) ~(4.3)-1
L XX 0

2x0 (4.4)
-1

In this matrix notation, the rows will

columns will represent the second index.

always represent the first index and the

Since our two dimensions are time and
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space, we now use the convention (x° ,x 1 ) -- (t,x). Our two-dimensional metrics

are all in diagonal form, so our Dirac equation will simplify quite a bit. Since each

equation depends on only one of the two coordinates, we will be able to use separation

of variable techniques to reduce from a partial differential equation of two variables

to a differential equation of one variable.

Notice that the first two cases are similar, with the role of time and space reversed.

In both cases, the two-dimensional curvature of spacetime is the constant C, which

is positive in the first and negative in the second case. These cases are the spacetime

solutions which are symmetric in the third dimension, since f = 0. The third case

represents the solutions that break this symmetry, where the plus or minus indicates

that the symmetry of the third dimension can be broken in either direction. This

solution has negative constant two-dimensional spacetime curvature -2C.

The last case interpolates between the plus and minus solutions from the third

case. Since tanhx approaches +1 as x goes to positive infinity and -1 as x goes to

negative infinity, we see that f(x) behaves in these two limits as the positive and

negative third case solutions. This is the kink solution, since it interpolates between

the symmetry breaking solutions in both limits of x. The different behavior at both

infinities makes it a kink[5].

Notice that our reduced Dirac equation depends on the field strength f but not

on the field A,. This means that we have a gauge invariance of this field. In this

case, the gauge invariance would be a change in A, by a full derivative,

A, = A, (4.5)

where A is any function of the coordinates. Thus, the solutions found will work for

any three-dimensional spacetime metric with A, transformed by this gauge invariance.

Using Eq. (3.32), we can use any A, field that has field strength f. Note that the

field strength also depends on the metric we choose, due to its -g dependence. For

the first two cases, where f = 0, we choose to use A, = 0 for convenience. In the
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other two cases, we choose

Case 3:

Case 4:

A.= (1 -

A, = (1/cosh 2 X
2

0) (4.6)

0). (4.7)

4.1 Dirac Equation for Each Spacetime

For each case, we must choose an appropriate Vierbein, so that we can relate the our

curved spacetime metric to the Minkowski metric. Each of our metrics is diagonal

with the upper left component positive and the lower right component negative. We

can therefore choose the Vierbein to be diagonal with the diagonal components being

the square roots of the absolute values of the diagonal components of our spacetime

metric. Checking Eq. (2.1), we see that this choice of Vierbein produces the correct

metric.

Since our Vierbein and metric are both diagonal, our inverse Vierbein and inverse

metric are also diagonal, with their components being the inverses of the components

of the vierbeine and metric respectively. We find the Vierbein, inverse Vierbein and
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inverse metric in each case:

Case 1: eac =

Case 2: ea-=

Case 3: ea, =

Case 4: e a =

21( 1

0

0
1 

0,

(1

a= tE t =
Ba 2

a 2

Eaa = VX

1/cosh 2

0

X

0 1

0 ,
0 1

1>

01 J
0 B cosh2 onyx

E, a 2

1 0

ao =Ct 2 ( 1
9g 2 (

(4.8)

gae= IC1x2( 1
2 0

0>
-1J

0I

-1

(4.9)

g = cX2( I )
0 -1

(4.10)

(cosh4 Xx 0

0 -1

(4.11)

The first three cases all take similar forms, so we'll find that their solutions take

similar forms. I next calculated the Christenoff coefficients for each case, using the

metric and inverse metric in Eq. (2.9). Since the metrics are diagonal, I was able to

use Kronecker deltas in each case to show that only a few of the Chistenoff coefficients

didn't vanish. I next used Eq. (2.15) to find the spin connection form. Expressed

as the two-dimensional spin connection without Lorentz indices, I found the spin

connections to be

Case 1:

Case 2:

Case 3:

Case 4:

1
Wac = (-=

xX
1W = (--
X

W, = (-V-sech2 x tanh x
2 2 

1

t

0)

0)

0).

(4.12)

(4.13)

(4.14)

(4.15)

Only the spin connection, inverse Vierbein, and field strength appear in the Dirac
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equation. Since the inverse Vierbein is diagonal and the spin connection has only one

nonvanishing component, our Dirac equation simplifies quite a bit in each case. We

find that the equations we must solve for the spinors now become

,-/U- 0 al 0 
Case 1: i- (taV) + t - y ) + M = (4.16)i2(t°o + t'y x 
Case 2: i- (x y0 + x7--- _ yyO) +me= 0 (4.17)

2 at ax 20a0 1 __

Case 3: iv/(xyo- + Xa71x 2lY) + (m - ) = 0 (4.18)

Case 4: i (cosh2 xCy - -tYl 9X6 _ tanh x-y 1/) + (m i±X tanh >4')= 0.
2 at ax'~ 2 2 4 2

(4.19)

Since we're in two dimensions, the spinors have two components and are func-

tions of both t and x. Our differential equations each involve only one of the two

variables, so we can use a separation of variables technique. The last three partial

differential depend only on on x, so we will decompose an arbitrary spinor solution

T into solutions of the form

i(t, x) = iEt() (4.20)

where depends only on x.

E must be real, so that T does not blow up at early or late times. We can interpret

E as the energy of the particle, since they are the eigenvalues of the equation

E' (t, x) = at (4.21)

The Hamiltonian is therefore the operator acting on the spinor once we've isolated

i9 on one side of the equation.

We now try to find the spinors of the form eiEt(x) which satify the Dirac equa-

tion. When we plug this into the Dirac equation, the t partial derivative replaces the

ia term by E. We've now reduced the partial differential equation to a differential

equation of just x. Solving this equation gives us two linearly independent eigen-

spinors t(x) for each valid energy, since we're solving a two-component first order
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differential equation. An arbitrary solution T(t, x) is then given by integrating over

these linearly independent solutions with arbitrary coefficients for each energy.

Since the first differential equation involves t, it turns out to be simpler in this

case to decompose I(t, x) into solutions of the form e-iPxo(t), where p is interpreted

as the momentum in the x-direction. From this, we get a similar differential equation

for 4b(t) involving only t.

4.2 Solving in the Symmetric Spacetime

Let's first analyze the first two cases, where the spacetime is symmetric in the third

dimension since f = 0. We start with case 2, since this one is more similar to the last

two cases, involving a differential equation for x. After converting this to a differential

equation of just x and rearranging terms, we get the equation:

0tb9) i 57 2EO k iy 9x 2t x C- T nAm°yo (4.22)
&x~~1 2x x

4.2.1 Massless Case

Let us first solve this in the case of a massless particle, where m = 0. Since only the

matrix 7y5 appears, we can completely separate the two components of the spinor by

choosing a representation where 7y5 is diagonal. Since we can take y5 to be any Pauli

matrix, we choose the diagonal one 3. We denote the two components of b as u and

v, so we let

(4.23)
v

The differential equation now separates into first order differential equations of u

and v. We denote the derivative of u as u' and the derivative of v as v'.

1 )u' = (iE + )U (4.24)
2xv' = (-i+ (4.25)

V'= (-iE + - )v (4.25)
2x
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These equations are easily solved by noting we can put these in the form d (n u)

and integrating both sides. We find that this massless Dirac equation is solved by a

spinor of the form /( eiE2 ) (4.26)
Be-'Ex

where A and B are arbitrary constants.

4.2.2 Including the Mass Term

Let's now see how our solution is effected by the mass term. First, let's rescale our

mass as M -= l-m to simplify notation. Both 75 and appear in our equation

now, and we can't choose both to be diagonal. We're going to have mixing between u

and v no matter which Pauli matrices we pick. However, we can make the equations

real by choosing 7-5 = cU2 and y0 = o1. By choosing our equations to be real, we will

get real solutions for the spinor. This will make the math a bit easier. We can now

express the component coupled differential equations as

1 1Eu = -v'- (M- )-v (4.27)2 x
I1

Ev = u'- (M + I)-u. (4.28)2x

By multiplying both sides by some function of x, we can express the right sides

of the equations as total derivatives. In this case, we get

d1~~~(_+Mv) 
Ex- MU= d (x- +MV) (4.29)

d 1
Ex--Mv = d (X-2MU). (4.30)

Since we have an x factor in front of both u and v, we find it convenient to

absorb this factor into the variables to simplify our differential equations. We define

-- x .v~ ~~ ) ( )(4.31)
v h
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Our coupled differential equations now become

MEg = -h' - M h (4.32)x
Eh = '- M. (4.33)

x

We can differentiate either equation and solve for the uncoupled second order differ-

ential equations. We find these to be of the form

9" + (E2 M(M-1) )g = (4.34)

h"w + (E2 M(M + 1) )h = 0. (4.35)

We recognize these as the differential equations for the spherical Bessel functions.

These are the same equations that must be satisfied by the radial wavefunction of

a nonrelativistic free particle with angular momentum quantum number M[3]. The

difference here is the the mass term now acts as our centrifugal term, instead of the

angular momentum.

The solutions to these second order equations are of the form

g(x) = x[AjMl (Ex) + BnMl (Ex)] (4.36)

h(x) = x[CjM(Ex) + DnM(Ex)]. (4.37)

The functions jM are the spherical Bessel functions of the first kind, and nM are

the spherical Bessel functions of the second kind. For integer M, these are defined as

d Msinx
jM(X) (-X)M( 1 d - sin- (4.38)x dx x

nM() - ( d) ( mcosx (4.39)

The jMsx have the property that they go to zero and small x, while the nM's go

The M's have the property that they go to zero and small x, while the rnm's go
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to infinity at small x. Their asymptotic behavior is

xM 1 M7
jM (X) )!! as x -0, jM(X) - sin(x- ) as x oo (4.40)

(2M+ 1)!! x 2
ThM(X) (2M-l)" 1 Mwr

nM(x) --- (2M 1)!! as x 0, riM() -- cOS(X- ) as x -oo. (4.41)
XM+l x 2

Using the coupling relation between the components, we find that our spinor must

be of the form

- Ax312 (iM-(EX) +Bx 3/2 nm- (Ex) (4.42)
-jM (Ex) - -nM(EX)

where A and B are arbitray coefficients. Notice that the first spinor goes to zero as

x3/2+M for small x, while the second spinor blows up as x3/2 -M at small x. The total

spinor oscillates as x1/ 2 sin(Ex + 0) with some phase shift X for large x. The factor

of x1/2 in the solution which isn't in the solution for the nonrelativistic free radial

wavefunction of a particle comes from the addition of the spinor connection term in

our Dirac equation.

If the mass is quantized in units of I, then we get the ordinary Bessel functions

described above. However, for an arbitrary mass we must use fractional Bessel func-

tions. The asymptotic behavior will still have the same dependence on M. Notice

that -M produces the same value of M(M- 1) as does M- 1. We could therefore

view the second type of Bessel functions as extensions of the first type into negative

orders, by identifying nM-1 with j-M. We see that the asymptotic dependence on M

remains the same with this change of names.

For a massless particle, we use the zeroth spherical Bessel functions and those

of order -1. We've identified the order -1 with the order 0 Bessel functions of the

other type, so we get spinors proportional to x1/2 sin Ex and x1/2 cos Ex. These are

the real and imaginary combinations of the independent spinors found for the massless

equation. Our massive solution is therefore consistent.
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4.2.3 Time Dependent Symmetric Case

Let's look now at case 1. The first difference that we see here is that our differential

equations are now dependent on t instead of x, and we replace the energy with the

momentum p in the x-direction. The Dirac equation becomes

.0i t i M 1
PO=~i 5 + iY5+ _ M1+ (4.43)

where we scale the mass term to M = /M.

In the massless case, we get the same equation as in case 2, with x and t exchanging

places. Our solutions are again of the form t1/ 2 sin(pt + ) with some phase Q.

When we have a massive particle, we run into a problem. If we try to make the

equation real, then iy5 and i must both be chosen to be 2. Since these must be

different Pauli matrices, there's no way to make the entire equation real. Instead,

let's choose 7y5 = U2 and '71 = ial. The equations are now the same as in case 2

except that M is replaced by -iM.

To get the exact solutions to these, we would have to define Bessel functions of

imaginary order. From checking the asymptotic behavior, I found that these imagi-

nary order Bessel functions must also have the same M dependence in the asymptotic

limit. As t -- oo, the spinor will oscillate as t1/ 2 sin(pt + 5) with some phase shift. As

t -- 0, the spinor behaves as tl/2 + iM, which can be expressed as t1/ 2 sin(M n x + ~b)

with some phase shift.

4.3 Solving in the Symmetry Breaking Spacetime

Let's now examine case 3, the spacetime which breaks the symmetry in the third

dimension. We will again scale the mass term, this time as M = . The Dirac

equation now becomes

.50it i 5 ( 110
Eit = -z-y ~ + M -7 - (4.44)
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where the plus or minus indicates the symmetry breaking in either direction.

Notice that this is the same equation as in case 2 except that the mass term is

shifted by . We therefore use the same convention as before, 7 5
= 2 and -y0 = a.4.

Our solutions are now the case 2 solutions with the mass term shifted.

j.M-1±i/4(Ex) nm-1±1xa / E
4' = Ax 3/2 ) + Bx3/2 M i/4(EX) (4.45)

--jMi1/4 (Ex) - -nM+l/ (Ex)

The massless solution now involves fractional Bessel functions, of order and -. 4.

We've identified the order Bessel functions of one kind with the order Bessel4 4

functions of the other kind. We've also similarly identified the- and - orders, so4 4

we're forced to use Bessel functions of negative fractional order.

Notice that when we switch between the plus and minus symmetry breaking solu-

tions, the two independent spinor solutions are switched into each other. We therefore

get the same spinor solutions for both massless symmetry breaking solutions. This

finding is consistent, since there's nothing special about either direction in the third

dimension that would make the symmetry breaking solutions differ.

The two massless spinor solutions go as x 3 / 4 and x 5/ 4 for small x. These spinors

also go as x 1/2 sin(Ex + 0) with some phase shift for large x.

4.4 Solving in the Kink Spacetime

Only the last case is left to analyze. This is the case of the kink spacetime. After

separation of variables, the Dirac equation becomes

2__/ .50?! v',-- ___ __ ,n / /E cosh2 X' xO = - + tanh - xY 5 -(m - tanh x)y% 0 . (4.46)
2 '9X 2 2 4 2

I will only be analyzing the massless solution. We will again choose the represen-

tation which makes our equations real, so 75 = r2 and °y = a1 . The representation

will also be chosen so that we use the plus sign before the field strength. Defining u

and v to be the components of the spinor as before, we get the coupled differential
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equations

Ecosh2 2Xx u =-v' + tanh /x v (4.47)
2 ~4 2

Ecosh2 -Xx v = u, _3/ tanh- x u. (4.48)
2 4 2

The spinor connection and field strength terms combined. If we had used the

minus sign for the field strength, the components of the spinor would exchange roles.

I next multiplied both sides of each equation by quantities which makes the right

sides of each equation total derivatives. This gives us

E(cosh I/x) 3 /2 u =-d 2cosh x) 1/2v] (4.49)
2 = T2coshE(cosh -x) v d( 4 )

E(cosh x)1/2v - 1 cosh -C- X) -3/ 2u]. (4.50)
2 dx 2

I next removed the fractional powers of the hyperbolic cosine by defining new

functions g and h:

u - (cosh X-x)3/2g, v (cosh Xx)1/2h(4.51)u (cosh2 2 (.1

This removes the fractional exponents and simplifies our equations.

E cosh3 2x g =-h' (4.52)

Ecosh x h = . (4.53)
2

By differentiating either equation, we can solve for the second order uncoupled

differential equations. I will express these in dimensionless form, by making them

functions of z -- x and scaling the energy as E -g- E. The second order equations

are

g"- tanhz g' + E2 cosh4 z g = 0 (4.54)

h" - 3 tanh z h' + E2 cosh4 z h = 0. (4.55)
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I was unable to discover any analytic soluiton to these equations in general. How-

ever, the zero energy solutions are trivial from this point. Since their derivatives are

zero, g and h must be constant. This gives a zero energy spinor solution of

_~(2 A(cosh x)3/2 (4.56)
B(cosh VCX)1/2

Near x =: 0, cosh x is constant to first order expansion, so our zero energy spinor

will be constant to first order here. cosh x has its minimum here and increases expo-

nentially in either direction, so our spinor will rapidly increase in magnitude as we

stray from this minimum. The asymptotic behavior of cosh x is

coshx- e- asx- -oo, coshx -eX as x -- +c. (4.57)
2 2

The first spinor solution therefore goes as e3v1 [lxI/4 at the infinities, while the second

goes as e l l/ 4 .

Let's consider the effect of the energy term now. Near z = 0, tanhz goes as z.

This term can be dropped for small z. cosh z is constant to first order in z, so our

equations become

g" + 92g = 0 (4.58)

h" + 2h = 0. (4.59)

for small z. These are harmonic oscillator differential equations, so the spinors will

goes as sin(Exx+q) for small x. This means that we don't have any type of singularity

to 0, as we did in the previous cases due to the behavior of the metric at 0.

We now check the behavior of the solutions as z -- ±oo. Due to the behavior of

cosh z and tanh z at infinity, our equations take the form

g" -g' 82 24z// / + ()2e 4zg=0, h"-3h'+( ) e h = (4.60)
X-o/+ 4 h"3h+4 h

x--+-oo 0g"+g'+( )2e-4Zg=O, h" +3h'+( ) 4zh=0. (4.61)
4 4
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From this, we see that at large z, the second derivative of g or h must be large

enough in magnitude to cancel e4 z times the same function. In order for this to hold,

the second derivative must dominate over the first derivative. We will therefore get

the same asymptotic behavior for g and h. We find the behavior at infinity to be~x ---~+ g-sin(e2Z +)oo h- sin(8e2z - ) (4.62)
8 8

x --~ -c: g sin(8e-2Z + ), h sin(8e-2Z + q) (4.63)
8 8

with some phase shift.

The spinors oscillate at the infinities with a frequency on the order of EevXll.
4

The effect of the energy term on the spinor is to add this oscillation factor, while the

(cosh V X)3/2and (cosh Xx)1/2 factors for the two components continue the envelope

this oscillation. We've seen that the frequency of oscillation increases exponentially

at both infinities, while the frequency is on the order of E near x = 0.

The total asymptotic behavior of the spinors can be expressed as

x - +00: ( A(cosh )3/2 sin( e x + 0;) (4.64)x - +o' 2 4 ~ (4.64)
B(cosh {x)1/2 sin(-eX +eX +) 

C(cosh x)3/2sin( e + ) 3)X _4-024-\/--CC (4.65)( D(cosh Xx)1/2 sin( e- x + 04) 

We've now analyzed the behavior of a massless spin-' particle in the kink space-

time. A particle with some mass would also have a similar behavior at infinity, since

the other terms in the Dirac equation would dominate over the mass term. We've

examined the properties of the spinor in each of the four spacetime backgrounds.

These solutions should give us some insight into the properties of these spacetimes.
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