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Intense Spreading of Radar Echoes from Ionospheric Plasmas

by

Seth E. Dorfman

Submitted to the Department of Physics
on May 6, 2005, in partial fulfillment of the

requirements for the degree of
Bachelor of Science

Abstract
On December 25, 2004, a large-scale ionospheric plasma bubble was observed over
Arecibo Observatory in Puerto Rico, inducing significant range spreading on iono-
grams. This phenomena may be explained by means of the E x B instability and
gravitational Rayleigh-Taylor instability. A derivation of the dispersion relations for
X and O mode waves transmitted from an ionosonde and an analysis of the collisional
Rayleigh-Taylor instability leading to an expression for the growth rate are presented
as background information. Ray tracing code developed by Nathan Dalrymple, a
previous graduate student of Professor Min-Chang Lee, is extended, first to draw re-
fractive index surfaces to illustrate a key principle in ray tracing and later to simulate
range spreading due to depleted ionospheric ducts [1]. Data from Arecibo incoherent
scatter radar and Arecibo's CADI digisonde is examined showing strong evidence
for the development of a plasma bubble following a rise in the plasma layer and the
appearance of a horizontal density gradient. In one portion of the ionosphere, this
gradient is found to be at an angle of approximately 70 degrees to the Earth's mag-
netic field, a favorable condition for the excitation of the Rayleigh-Taylor instability
over Arecibo.
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Title: Head, Ionospheric Plasma Research Group
Plasma Science and Fusion Center

Thesis Supervisor: Richard Temkin
Title: Associate Director, Plasma Science and Fusion Center
Department of Physics
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Chapter 1

X and O Mode Waves

An ionosonde transmits a linearly polarized wave that propagates through the neutral

atmosphere and into the ionosphere. Once it reaches the ionosphere, the familiar

free-space dispersion relation w = ck no longer applies due to the presence of changed

particles. Thus, to derive a new dispersion relation, we must consider the presence of

these particles and the effect of electric and magnetic fields on their motion. This is

done in Sections 4.14-4.15 of [2] which was used to cross check the following alternate

derivation.

To derive the dispersion relations for electromagnetic waves in a uniform plasma,

we start from Faraday's and Ampere's Laws with the current term retained:

caBVxE=, (1.la)

V x B = PoJ +oo at (1.lb)

Following the normal procedure of differentiating Ampere's Law with respect to

time and plugging the result into Faraday's differentiated with respect to space:
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V x (V x E) - /o A - /oeo at2

V(V. E)-V 2 E -- o a- o 2 (1.2)
/Ia -hE at 2

Assuming a small, linear perturbation of the form E = Elei(kr-wt):

~2

-k(k. E) + k2E = iw 0J + 2E (1.3)

Depending on the angle between k and E, the first term may cancel. This relation-

ship depends on the relationship between the wave electric field E and the background

(Earth's) magnetic field Bo.

If E is parallel to Bo, then charged particles affected by the wave electric field will

move along the Earth's magnetic field, behaving as if they were in an unmagnetized

plasma. In this case, the electromagnetic wave is transverse and the first term drops

out of Equation 1.3. For this reason, this wave is known as ordinary mode or 0-

mode. Neglecting thermal motion, the effect of the electric field on electrons may be

described by:

0v 1 0J-eE= m = m 1 a
At n-e) At

E -imJ (1.4)
ne2

Plugging Equation 1.4 into Equation 1.3 yields the dispersion relation:

/e 2

v 2 = -ne + k2 c 2 (1.5)
Eom

Here Wp,2 = ne- is defined as the the electron plasma frequency.

According to Equation 1.5, as the electron plasma density n increases, an O-mode

wave of a given frequency will decrease in wave number. When the wave number

reaches zero, the group velocity d = kc2 also approaches zero, and the wave is

10



reflected. At this point, the frequency of the wave matches the local plasma frequency

as can be clearly seen from Equation 1.5.

The picture looks different for extraordinary mode or X-mode waves where

E is perpendicular to Bo. This means that electrons perturbed by the wave must

move across the Earth's magnetic field; thus, there is now a significant E x Bo drift.

Equation 1.4 must be modified as follows:

-eE - ev x I

vx I

vx I

TV
30 -- T/~ -

at
icom

30 = z-v-E
e

Bo imv = B2 xx( v-E)
B0

2

= e
B io= e [(E x Bo)-Bo 2 v]

iWm

Equating Equations 1.6b and 1.6a:

v-E = [(E x Bo)-Bo2v]
e tim

(iwin eBo2e+. )v (E x Bo) + E
e zwm zWim

iw eBo Bo
: mo [ (E x ) E]

e2Bo2 =2 wiEn Bo
2

J = -nev = wpeCo [E-iWee Exhol
W 2 -Wce 2 W

This is the analog of Equation 1.4 for X-mode. Here wce = BO is the electron

cyclotron frequency and bo is a unit vector in the direction of the earth's magnetic

field. Plugging this result into Equation 1.3:

w22
2[-{k(k. E) + k2E] = pe [i ce (E x bo)- E] + E (1.8)

W2 W2 - Wce W ~~~~~~~~~~~~(8)

Unlike the O-mode case where all the terms in this equation are oriented per-

pendicularly to the wave vector, in the case of X mode we have both transverse and

11
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longitudinal terms. In order to separate these two parts, let Et and Ee be the trans-

verse and longitudinal components of the wave electric field respectively. Equation

1.8 then separates into the following two equations:

2 2
C 2 03Pe

2 [-k(kEe) + k2Ee] = 2 2 [ci Et x bo - E] + E (1.9a)

2 [k2Et] 2 We 2 [i eEe x bo - Et] + Et (1.9b)
U) W W ce W

Recall that ELBo for an X-mode wave. This means that the cross products in

Equations 1.9a and 1.9b have magnitudes equal to Et and Ef respectively. Since

EtIEeIB(I one of these cross products must pick up a negative sign depending on

the coordinate system. Since the final dispersion relation should be coordinate system

independent, we shall denote the sign of the first cross product with ± and the second

by ;:F these two will eventually cancel.

Noticing that the left hand side of Equation 1.9a equals zero and canceling a unit

vector from all terms:

2

0 2 _2 (Et)- E] + E
W ce Wpe (-Ee) = ' ii c2 -Etce

W 2-G W 2 2
-- 03ce 03 -- 0 cce

E Tie Wpe 2Et (1.10)
0302 2 2W wp - ce

Note the factor of i in this expression; this indicates a ninety-degree phase differ-

ence between Et and Ej. Since the relative magnitude of the two components depends

on frequency, an X-mode wave in general will be elliptically polarized.

Equation 1.10 is especially interesting when w2 approaches w2e + 2; here the

ratio 1I E goes to infinity. When this happens, the X-mode wave is converted into aEt

purely electrostatic upper hybrid wave. For this reason, w2 = c 2 + 2 is known as

the upper hybrid frequency and this process is called upper hybrid resonance.
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Frequency (MHz)

Figure 1-1: Dispersion relation for an X-mode wave with fpe = 6 MHz and fce = 0.8
MHz, typical parameters in part of the F layer over Arecibo, Puerto Rico. Under
these conditions fL = 5.62 MHz, fR = 6.42 MHz, and fh = 6.05 MHz Based on
Figure 4-36 in [2]

Canceling a unit vector from Equation 1.9b:

C~~~~~~ 22

2 [k 2Et] = 2 )p 2 [i .ce (TEe) - Et] + Et (1.11)
W- ce W

Substituting Equation 1.10 for Ee and canceling a factor of Et from all terms:

2 = Upe W[ Wce Wce p2ek2 [i -(i-21±
Wp2 2 - W2 Wt Go We2 p2e - Wc2 +_e pe

w 2 2 ± 2 ( _ 2 2k2 1- p 2 e + ( p) Wce c )

Pe 2(W2 - W0 )(W2 - )- We

C1 ( 2
2 2 e)k 1 W~~~~~)202 _ _ 0ce -- 0)e)

W-2 Pe 2(2 - w2 ) (w2 - )
2 a2 h2 2
= 2 1 _ je p ae (1.12)0 2 1 - 20)e0cW 22

This is the dispersion relation for the X-mode wave.

As with 0-mode, we want to find the conditions under which the X-mode wave

13



is reflected from the ionosphere. Perhaps the easiest way to do this is to graphically

solve Equation 1.12 as shown in 'Figure 1-1 where the phase velocity () of the wave

is plotted as a function of frequency. Note that for w f < fL and fh < < fR,

the phase velocity is negative and the wave can not propagate. As can be seen from

the figure, at angular frequencies WL and WR the phase velocity approaches infinity.

These are known as the left-hand and right-hand cutoff frequencies and can be

found by setting k to infinity in Equation 1.12:

+ + 4W2
WL = -e + pe ( 1.13a)

UR = ce + cc pe (1.13b)
2

When the plasma density is very small, WL is approximately zero and WR is ap-

proximately cwe. By comparison, a typical ionosonde transmits frequencies in the

range from 1 - 20 MHz, well above wce. As the wave travels upwards, wcpe gradu-

ally increases and WR grows. When WR reaches the frequency of the X-mode wave,

the phase velocity of the wave goes to infinity and the wave is reflected. Note that

since > cee for ionosonde-produced waves, we need not worry about approaching

the left-hand cutoff or upper hybrid resonance, as these frequencies are always less

than WR- Thus while all three frequencies grow as the plasma density increases, the

right-hand cutoff will reach the transmitted frequency first.

Since CW, > cWpe, an X-mode wave will be reflected at a lower altitude than an

O-mode wave of the same frequency. This can also be seen from Figure 1-1. At the

altitude chosen X-mode waves of frequency 6.42 MHz are reflected even though 'P is

only 6 MHz. An O-mode wave of the same frequency would have to travel to a higher

altitude before reaching its reflection height. Thus near the reflection height where the

uniform plasma approximation used in this chapter applies, a single wave transmitted

by an ionosonde can be split into X and O mode components with different dispersion

relations; this explains the two traces on an ionogram (see Chapter 4) showing waves

of the same frequency reflected at two different altitudes [3].
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Chapter 2

Collisional Rayleigh-Taylor

Instability

When a dense plasma supports a less dense plasma in the presence of a magnetic

field, a small perturbation may grow into a large scale instability. This is illustrated

in Figure 2-1. Ions and electrons drift to opposite sides of the perturbation by means

of g x B drift. This charge separation creates a self-consistent electric field in the

plasma. As shown in the figure, the resulting E x B drift has the effect of ampli-

fying the perturbation. The goal of this section is to derive the growth rate for the

instability as done in Section 6.7 of [2], but taking into account collisional effects.

In order to do so, we must first lay out the assumptions that will be made to

simplify the problem [3]. First, we will consider a plasma that is macroscopically

quasi-neutral and use n0 = nio = neo to represent the unperturbed density of both

ions and electrons. Second, we consider only low-frequency, large-scale Rayleigh-

Taylor modes. Next, we assume that the time scale of ion gyration is much shorter

than the other time scales in the problem [3]. This allows us to neglect perturbation

frequencies and collision frequencies as small compared to wc. Fourthly, we use a cold

plasma model (neglecting pressure force) and assume a uniform background Earth's

magnetic field and no background electric field. The mass of the electron can be

neglected when compared to the mass of the ion; this is substantiated by the fact

that the Rayleigh-Taylor instability is driven by gravity which exerts a greater force

15



y

Vn 

g~~

V'

Figure 2-1: The amplification of a small perturbation due to the Rayleigh-Taylor
instability. Dashed arrows represent the growth of the instability. Based on [3].

on ions than electrons due to the mass difference of order 103.

An important parameter in this derivation is the collision frequency Vin. This

frequency represents the momentum relaxation rate of ions due to collisions with

neutrals. This can be easily seen by noting that if collisions with stationary neutral

particles are the only force acting on the ions, their momentum decays as e-vint. To

simply the derivation, we will work in the reference frame where the neutral velocity

is zero.

Writing the momentum equation for ions:

Mno[ to + (vo V)vo] = enov x Bo + Mnog- Mnoiv2invo

M(vo V)vo = evo x Bo + Mg- Mvivo (2.1)

We shall only consider the linear stages of the instability in this chapter. This

restricts us to small perturbations of the form nl = nlcei(krwt) in the density, velocity

and electric field. Note that small here refers to the the amplitude of the perturbation

and not the scale length which is assumed to be large. When this perturbation is

added to the background parameters, the ion momentum equation may be rewritten

as follows:

16
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&0(V0 +{ V1)
M[ ( °+ V)+-((vo + vl)V)(vo + vI1)] e[E + (vo + vI) x Bo]+Mg-Mvin(vo + vi)

(2.2)

Here the cancellation of plasma density factor common to all the terms is not

shown. Subtracting Equation 2.1 from Equation 2.2:

M[ ,l + (vo V)vl] = e[E + v x Bo]-M]vinV1

M[[ + iin - k vo]v1 = ie[Ei + v1 x Bo] (2.3)

Let a = w + ivi, - k vo. Solving Equation 2.3 for v1 using methods similar to

those shown in detail in Chapter 1:

W2 E x Bo aE
V1 - [E X BO ] (2.4)

W~Ci a Bo c'i Bo

Repeating the procedure leading to Equation 2.4 for electrons (Electron parame-

ters which (differ from their ion counterparts will carry an additional subscript e.), we

obtain for the first order electron velocity:

Ex x BoVie - xBo (2.5)

Here, the electron mass has been neglected as small compared to the ion mass,

setting wo, to infinity. We can also assume >> O2 = (w-k. vo) 2 - v -2i (w -

k vo) since the frequency of ion gyration was assumed to be much greater than

other frequencies including the collision frequency and Doppler shifted frequency of

the perturbation; this greatly simplifies Equation 2.4.

In order to relate Equations 2.4 and 2.5 we need to use the continuity equation

for both ions and electrons. Under the quasi-neutrality condition, no = noi = no, and

n1 = n1i = nl . The unperturbed equation is:

17



-+V nOVO=° (2.6)On-t + V no:o 0 26at

Linearizing and subtracting zeroth order terms:

-icwn + ik von + (v -V)no + inok v = O (2.7)

To write this equation in terms of ion parameters, we refer to Figure 2-1. From

here, it is clear that the wavevector k of the perturbation is along El. Also note that

E1 is perpendicular to the density gradient. These two facts allow us to determine

which terms in Equation 2.4 cancel when plugged into Equation 2.7 for v1 . Thus,

the combined momentum-continuity equation for ions is:

E1 x Bo kcE 1-inl + ik von + 2 Vn + ni0 ---- - 0
0~~~B

El ko El(w - kvo)n1 ± i 0 0 no i ono- - = 0 (2.8)
Bo L~~o'ci B~O

Here n' is the magnitude of the density gradient.

For electrons, Equation 2.1 shows that Voe = 0 if we continue to approximate

the electron mass as zero. Thus, plugging Equation 2.5 into Equation 2.7 yields the

combined momentum-continuity equation for electrons:

E1 iwnlEl iwn! (2.9)
Bo no

Plugging Equation 2.9 into Equation 2.8, we can immediately eliminate El, Bo,

and ni. Performing the substitution and simplifying, we obtain:

-vowciL (2.10)
L

Where L = . From Equation 2.1 with vo constant (all derivatives set to zero)
and the geometry of Figure 2-1 the scalar 0 may be written as:

and the geometry of Figure 2-1 the scalar vo may be written as:

18



g
VO -

Wci - Uin
(2.11)

Applying the previously stated approximation woi >> Vin, Equation 2.10 becomes:

9Wca -_
L

' + z t+9gw2 +w(izin - kvo)-t (2.12)

Since we assumed a long wavelength perturbation, the kvo term may be neglected,

leading to the solution:

-Zl/jn ± 112 4gI . - Zvi. ± -L [o 1 9'
en. 1o)

2

We take the positive square root since the instability has a positive growth rate.

This growth rate -y is given by the imaginary part of the frequency:

1 /2 4 zyin

2 L 2

19
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Chapter 3

Ray Tracing

Chapter 1 considered the simple case of an electromagnetic wave in the ionosphere

propagating across the Earth's magnetic field. However, in general ordinary and

extraordinary modes may propagate such that the wave vector k makes a angle 0

with Bo other than 0 = . In this case, the dispersion relation is given by the

Appleton-Hartree formula [2]:

=- 2w1~~(1-k-) 1 (3.1)
W2 o2 2(1 _ "p2 2 sin2 0 ce[c2e sin4 0+42(1 _ )2 COS2 0] 2

co
2

ce -- C c

In the special cases discussed in the first chapter 0 = 2. Plugging this result into

Equation 3.1, we find that the Appleton-Hartree formula reduces to Equation 1.5 or

1.12 depending on which sign is used for . Thus, the definitions of ordinary and

extraordinary modes may be extended as follows to include cases where 0 differs from

2r: ordinary mode is governed by the Appleton-Hartree formula with a plus sign in

the denominator whereas extraordinary mode is governed by the same relation with

a minus sign.

Note that if we bring the fraction on the right hand side of Equation 3.1 to the

left, the dispersion relation takes on the form [4]:

D(x,y,z; nx, ,nz) = C (3.2)

21



Here C is a constant that does not depend on any of the six variables. While these

variables do not explicitly appear in Equation 3.1, wpe will vary with altitude in the

ionosphere depending on the local plasma density, orce and w may be taken as constant,

/2 _2 k
2

= c22, and the angle 0 depends on the direction of the vector n = (n n, ynz).

This general form for the dispersion relation is instrumental to deriving a set of

equations that may be used to trace the path of a ray as it propagates from the

neutral atmosphere into the ionosphere following the approach outlined in Section

14.3 of [4]. A dispersion relation written in the form of Equation 3.2 defines what is

known as a refractive index surface. For given values of x, y, and z, this surface

is simply the curve given by Equation 3.2 drawn on the nx, ny, and nz axes.

Note that in Equation 3.1 the only dependence on the spacial coordinates is

through wpc. This means that the refractive index surfaces can be easily labeled

by the value of Wpe. However, it is often easier to define a new dimensionless quantity

X = ge and label the surfaces in this manner. Thus, for the ordinary mode wave,cO2

X = 0 represents no plasma and X = 1 represents the plasma density at the reflection

height. Two different cross sections of several surfaces for ordinary mode are shown

in Figure 3--1.

The key principle in ray tracing is that the wave propagates in the direction normal

to the refractive index surface (a proof is shown in Appendix A.2). Note that in the

ionosphere this may be different from the direction of the wave normal as defined by

n. If n = 0 as is the case on the left hand side of Figure 3-1, the direction of the ray

at any point may be found by first locating the values of nx and nz at that point on

the plot. If the x and z axes are drawn on top of the nx and nz axes, the direction

of the wave at the point in question is that of the the normal vector to the refractive

index surface in the x-z plane.

Now let the vector V = (dx, dy, ) represent the wave velocity [4]. Since V is

normal to the refractive index surface, we can use the fact that the gradient of a

vector field is perpendicular to the surfaces of constant potential to write:

dx dy dz A(OD OD OD )
dr' )=,dt Onx'an ,9 (3.3)

Oz

22



nz

ny

Figure 3-1: Cross sections of refractive index surfaces for ordinary mode for ny = 0
and n, = 0 respectively with the Earth's magnetic field at a 47.5 degree declination
angle in the x-z plane. Sequential curves range from the outermost with X = 0 to
the innermost with X = 0.99 in increments of 0.11.

2
W pe

092
0 1

300

250

200

Altitude (km) 150

100

50

0

-50 0 50
Northward Distance (km)

Figure 3-2: Path of (solid lines) and X (dashed lines) modes at angles of incidence
ranging from -40 degrees to 40 degrees in 10 degree increments transmitted in the
x-z plane. The ray paths are shown as dashed lines in refractive index space in figures
3-1 and 3-3. The plasma density profile model with an F peak at 300 km is shown
on the left. Generated by [1].
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Where A is a constant that may be found by plugging the right hand side of the

equation into the relation V - n = c:

A = 6 ± aD o (3.4)aDnx 5- + n + n a(z

Equation 3.3 gives us only three differential equations for six unknowns. To derive

the other three, consider an infinitesimal displacement in space x. Over such a

distance, D from Equation 3.2 must remain constant. Since y and z do not change,

we can use the chain rule to write [4]:

AD OD OD Onx OD ny + OD nz5)
= - - +-- - = -0 (3.5)
x Ox On. x A ny x anz Ox

It can be shown from Maxwell's equations that for a progressive wave (a wave

in which the wave impedance is independent of spacial coordinates) V x n = 0 (see

Appendix A.1). Thus, ay _ o and K9 _= K in Equation 3.5:
Dx AD y ax -- z

0 = + OD + +OD Onx OD Onx36)
Ox anx x any D Onz z

Now, using the results from Equation 3.3:

OD dx Dnx dy Onx dz On
O -A- + + + -

Ax dt x dt y dt z

0 = AD+ d (3.7)
Ax dt

Repeating this procedure for a small displacement in the y and z directions, we

obtain the set of equations [4]:

dnx dny dnz OD OD OD
'z) -A(- - -) ~~~~~~(3.8)dt( dt ' dt -) ax , y , Oz )

Equations 3.3 and 3.8 represent a set of six differential equations that along with

initial conditions and the appropriate dispersion relation may be solved to determine

the ray path in the ionosphere. This was done with Mathematica (see Appendix B.2)

24



to produce Figure 3-2 [1].

One can gain an intuitive feeling for the expected solution to these equations by

returning to the idea of the refractive index surface from which they were derived. In

Figure 3-1 the dashed lines drawn on the the refractive index surface represent ray

paths in n-space for the coordinate-space paths shown in Figure 3-2.

When a ray leaves the ionosonde, wpe = 0, nz > 0, and the ray is on the refractive

index surface marked by the unit circle. The angle from the vertical direction at

which the ray is transmitted is equivalent to the angle from the nz axis in Figure

3-1 at which the trace for that ray begins. As the ray moves into the ionosphere,

nz decreases and the direction of the ray in coordinate space changes such that it is

always perpendicular to the refractive index surface at the point in question.

Looking at the figure, some of the ray paths are tangent to a refractive index

surface at one point, while others are not. At this tangent point, if it exists, the ray

is directed horizontally and reflection occurs even though the wave may be below the

O-mode reflection height found in Chapter 1. If such a point does not exist, then the

O-mode wave reflects when it reaches the line where X = 1. As shown in Figure 3-2

this results in a cusp at the reflection height for small transmission angles since the

ray is never directed horizontally.

A similar diagram for X mode is shown in Figure 3-3. Note that the surfaces

shrink to a point rather than a line in both cross sections; this means that the ray

path of X mode does not include cusps at the reflection height. Also, note that the

curves do not approach X - 1. Instead, they vanish at X = 1 - e where the

plasma frequency corresponds to the wave frequency of the right-hand cutoff given in

Equation 1.13b.

Some interesting refractive index surfaces for X mode may be obtained if we choose

values for the wave frequency that are less than the electron cyclotron frequency.

These are shown in Figure 3-4. As nz changes with increasing altitude, the shapes of

these curves allow for more than one tangent point. In addition, the curves do not

shrink to a line or point at aw = wpe, allowing for higher reflection heights and more

complicated ray paths.
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lIX ny

Figure 3-3: Cross sections of refractive index surfaces for extraordinary mode for
ny = 0 and n = 0 respectively with the Earth's magnetic field at a 47.5 degree
declination angle in the x-z plane. Sequential curves range from the outermost with
X = 0 to the innermost with X = 0.66 in increments of 0.11. - = 0.3334.

Li

nz nz

nx nx

Figure 3-4: Cross sections of refractive index surfaces for extrordinary mode when
ny = 0 and < . The left plot shows surfaces for < pe while the right plot
shows surfaces for > pe. The Earth's magnetic field is the same as in Figure 3-3.
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Chapter 4

Arecibo Experiments

Experiments aimed at observing naturally occurring plasma turbulence were carried

out at Arecibo Observatory from August 13-21, 2004 and again from December 20-

27, 2004. Diagnostics used include Arecibo's Canadian Advanced Digital Ionosonde

(CADI) and Arecibo Incoherent Scatter Radar (ISR). These experiments were in-

spired in part by 1997 experiments that made use of a now-disbanded HF heater to

generate artificial plasma turbulence that was observed with ISR [5].

The CADI Digisonde, deployed and run by the observatory, was set up to record

data every five minutes. The digisonde is a swept frequency HF radar that transmits

frequencies between 1 MHz and 20 MHz. Based on the transit time and a propagation

speed of c, the virtual heights of the X and O mode echoes are plotted against

frequency. This plot, known as an ionogram, was used to determine if the ionosphere

was quiet or turbulent during our experiments.

Arecibo 430 MHz ISR produced plots of the plasma density profile using incoherent

scatter techniques. The radar is a spherical dish 305 meters in diameter with a

linefeed located at the focal line to transmit and collect the radiation. Because the

dish is spherical, the radar beam is steerable; it was operated in both vertical and

rotating modes during our experiments. In the later mode, the beam was at an

angle of 15 degrees from the zenith and completed a circular path on average once

every 15 minutes and 46 seconds as shown in Figure 4-1. Each rotation period is

represented by an arrow at the bottom of Figure 4-2. A forward arrow indicates

27



Figure 4-1: Cartoon showing a horizontal cross section of the ionosphere at an altitude
of 300 km. The dark blue circular sliver shows the area diagnosed by the rotating
Arecibo ISR; the lightly shaded pink region shows the additional area diagnosed by
Arecibo CADI. Directional numbered arrows represents the order in which ISR scans
the dark region. The path shown represents two full rotations. The dark dashed line
indicates a region where a plasma bubble is located.

Density Profile versus Time Date: December 25, 2004
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Figure 4-2: Range-Time-Intensity plot for December 25, 2004. Power is integrated
over the 150 to 525 kilometer range shown in the top plot and normalized with respect
to the highest value shown.
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December 25, 2004 Discrete Density Profiles

600

550

500

450
E~
v 400

. 350

300

250

200

150

0 0.4 0.8 1.2 1.6 2
Density (x 101O/m3)

Figure 4-3: Discrete density profiles taken on December 25, 2004 when the radar is
pointed south (1) as the plasma layer finishes rising, (2) when the layer descends
slightly, inducing a sharp density gradient on the bottomside, (3) when a plasma
bubble begins to develop in an adjacent region, and (4) during the development of a
plasma bubble in the south.

that the region to the southeast is scanned just before the radar reverses direction;

a backward arrow indicates that the last region scanned is to the southwest. With

a very narrow beamwidth of 0.16 degrees, the radar diagnoses a very small region of

the ionosphere. By contrast, CADI's 90 degree beamwidth covers the entire region

spanned by ISR.

Results from ISR are shown in Figure 4-2. The top panel is a range-time-intensity

(RTI) plot, it shows the intensity of the backscattered radar echo plotted against time

and altitude. As seen from the plot, the F region plasma layer rises steadily from

8:00PM to 9:15PM Atlantic Standard Time (AST). Later on in the night, depleted

regions known as plasma bubbles develop. Note that successive pieces of data are

taken from different regions of the ionosphere as the beam rotates, stops, reverses

direction and repeats. Thus, the sudden rise in the plasma layer and corresponding

decrease in intensity occurs as the beam enters a region where a plasma bubble

ils located such as the one bounded by dashed lines in Figure 4-1. The five gaps

in the radar data indicate times when the radar was either not operating due to

instrumentation problems or being used in a different operational mode for other
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measurements.

The bottom plot shows the normalized backscattered power, an approximation

for the relative total electron content (TEC) of the ionosphere. This approximation

holds because P 1+ where P is the power reflected from any one point, ne is the

electron density, and Te and Ti are the electron and ion temperatures respectively.

Since the later two quantities are not expected to vary much with altitude and time,

relative values of the integral of P well-represent integrals of ne over altitude [5].

Note that the TEC decreases by nearly a factor of two when the radar beam enters

a bubble.

Figure 4-3 shows discrete density profile cross sections of the RTI plot when the

radar beam is at its turnaround point after approaching from the east. The four

profiles shown are taken at four key times as explained in the caption.

Some corresponding ionograms from Arecibo CADI are shown in Figure 4-4. The

gradual rise in the plasma layer is clearly visible in the ionograms taken between

7:45PM and 8:00PM AST. These ionograms show the higher-frequency portions of

the trace rising first followed by the low frequency portions. This is confirmed by

Figure 4-2 which shows that the altitude of the peak plasma density rises between

7:45PM and 8:00PM AST although the whole layer does not start to rise until 8:00PM.

Spread F, the spreading of ionosonde traces due to non-quiescent ionospheric

conditions, begins to develop on CADI at around 8:55PM but then dies out at around

9:20PM when the plasma layer on the RTI stops rising. As the layer descends slightly,

a modulation of the lower portion is visible on the RTI, indicating the presence of a

horizontal density gradient.

At 9:45PM the ionogram shown in Figure 4-5 shows an additional interesting

feature. At the top of CADI's range near 484 kilometers, the ionogram shows what

somewhat resemble spread X and O mode traces. Often, a second set of traces or

second hop occurs when the signal from the ionosonde reflects from the ionosphere,

is bounced back from the ground, and reflects off the ionosphere again before reaching

the receiver. In this case, the second set of traces will appear at twice the altitude of

the first. However, the feature at a virtual height of 450 km in the 9:45PM ionogram is
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Figure 4-4: Ionograms between 7:45PM and
layer. Transmitted frequency (on a log scale)
areas indicate reflected signal.

8:00PM AST showing a rising plasma
is plotted against virtual height. Dark

not at twice the altitude of the X and O mode traces. Furthermore, as time advances,

much clearer spread traces appear at a lower altitude as well. Meanwhile, the X and

O mode traces fade; by 10:20PM the ionogram shows one set of traces spread in

altitude starting at a virtual height of 300 km.

The high-altitude spread traces correspond to the time period that plasma bubbles

are seen on ISR. When the bubbles are only in a part of the region spanned by the

rotating radar (9:55PM-10:15PM), both the normal traces and higher spread traces

are seen on the ionograms. However, when the bubble completely predominates

around 10:25PM only the spread traces are seen. A similar phenomena was observed

on December 26, 2004; digisonde and radar data for this event is presented in [6] and

[7].
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(others). Axes are the same as Figure 4-4.
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Chapter 5

Ray Tracing in the Presence of

Ducts

The ray tracing principles discussed in Chapter 3 may be used to trace the path of rays

in Mathematica (see Appendix B.1) with several ionospheric models. Shown on the

left hand side of Figure 5-1 is the basic ionospheric model known as the Chapman

layer. This shape is a very good approximation of the ionosphere that may be

obtained by modeling the plasma production, transport, and recombination processes

at work. When this model is used, the ray tracing equations produce the linear traces

shown on the right hand side of Figure 5-1. This graph shows transmitted frequency

versus number of steps for half of a round trip from the transmitter to ionosphere

Degree Range b =0.02, Omode A =0.02, Xmode = 0.05, 0 mode An =0.05, X mode
-45 to-35 30 25 45 55
-35 to-'25 1 11 13 26
-25 to -1.5 20 10 13 24
-15 to -5 34 14 42 18
-5 to 5 9 5 8 19

5to 15 2 11 4 7

15 to 25 0 0 0 0
25to35 0 0 0 0

35 to 45 0 0 0 0

Table 5.1: Number of rays that land within one kilometer of the transmitter for
different duct sizes as a function of transmitted angle.
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Ann Chapman layer used in ray tracing
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Figure 5-1: Chapman layer model used in this chapter for a quiet
w = 27r radians per second (left). Ray tracing results for this model
echoes are shown in red; X mode echoes are in blue.
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Figure 5-2: Cartoon showing magnetic ducts in the x-z plane (left). Chapman layer
from Figure 5-1 with magnetic ducts included such that An = 0.02 (right). The scale

length d was set to 300 m for all simulations in this chapter.length d was set to 300 m for all simulations in this chapter.
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Figure 5-3: Ray tracing results showing spread F. The results on the left are for
an = 0.02 while the results on the right are for n = 0.05. Only rays which return
n n
to the ground within 1 kilometer of the transmitter are graphed. mode echoes are
shown in red; X mode echoes are in blue.

and back; one step is roughly equivalent to the time it takes a ray to travel a distance

of one kilometer in the free space below the ionosphere. The computer-simulated

ionosonde transmits frequencies from 1.0373 MHz to 3.2373 MHz (just below the

peak plasma frequency) in increments of 0.2 MHz. The ionosonde has a beam width

extending from -45 to 45 degrees run in increments of 0.5 degrees.

Now, add field-aligned density fluctuations known as magnetic ducts to the

model as shown in Figure 5-2. The ducts are characterized by a scale length d that

defines the spacial variation of the density fluctuation across the field lines and a ratio

on of the perturbation to the background plasma density.

Under these conditions, the ray no longer encounters a horizontally stratified iono-

sphere and the reflection height varies sinusoidally as a function of x. Rays launched

with a significant component along the magnetic field direction may be trapped in the

ducts and reflected in various directions; some return to the transmitter significantly

delayed. This is confirmed by Table 5.1 in which the computer-generated rays that

return to the transmitter are categorized with respect to their transmission angle. As

expected from this geometry, many more rays launched into the magnetic ducts (neg-

ative angles) return to the transmitter than those launched across the ducts (positive

angles). However, a real-world receiver cannot determine the direction from which

the rays were launched. Thus delayed rays and non-delayed rays are superimposed on

the ionogram in Figure 5-3. Delayed rays are interpreted as reflecting from a higher
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altitude; thus the traces appear spread vertically as shown in the figure. Comparison

of the two datasets suggestions that a larger a' leads to more trapped rays and hence
n

more intense spreading.

This idea may also be extended to configurations other than ducts. For example,

rays may also become trapped in a depleted plasma bubble and undergo multiple

reflections within the bubble before retuning to the ground. This delaying processes

nicely explains the spread traces at high altitudes discussed in Chapter 4. There

are no traces between the clear traces and the spread second hop because the rays

are either trapped for a while or reflect normally; none are delayed by only a small

amount.
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Chapter 6

Discussions and Conclusions

The data discussed in Chapter 4 may be explained in terms of the interaction of two

plasma instabilities. They are the Rayleigh-Taylor instability discussed in Chapter 2

and the E x B instability.

The E x B instability is typically preceded by the dynamo effect in which a

neutral wind drags along ions, separating them from electrons and creating a DC

electric field. If this field is in the eastward direction, the E x B direction will be

upward, forcing the entire plasma layer up. This effect can be clearly seen in the RTI

data from Figure 4-2 from 8:00PM to 9:15PM AST.

The light spread F shown at around 9:00PM AST compares favorably with the

result of computer simulations of magnetic ducts presented in Chapter 5. As the

plasma drifts upward under the influence of E x B its motion is constrained by the

Earth's magnetic field lines. This allows for the development of a small variation in

density among adjacent flux tubes-precisely the model used in the simulations.

Following this rise, a little after 9:30PM a rectangular modulation may be seen in

the bottomside of the F layer while the radar is pointed south. This modulation is

shown in more detail in Figure 6-1. As seen from the figure, regions with the same

plasma density vary in altitude by about 20 kilometers over the range swept out by

the radar. According to this picture, the region of lowest plasma density exists in the

southeast. As described in the preceding chapter, the Rayleigh-Taylor instability is

favorably excited when the density gradient is perpendicular to the magnetic field.
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Density Profile versus Angle Date: December 25, 2004

285

280 .

Section of Ionosphere Diagnosed by Radar

Figure 6-1: Closeup view of the modulations on the bottomside of F layer at around
9:30PM AST. The time axis has been relabeled to show the region of the ionosphere
being diagnosed by the radar.

Since a component of the density gradient observed in Figure 6-1 is in the meridional

plane, there is a chance for this horizontal gradient, when added to the background

vertical gradient, to produce a net gradient at a near-perpendicular angle to the

magnetic field [3]. To create this favorable geometry at Arecibo, the more dense

region would have to be toward the north. In other words, the density gradients

centered at about 90 degrees in the figure is ideal for the favorable excitation of the

Rayleigh-Taylor instability.

It is also interesting to note how this "northern" density gradient differs from the

sharper "southern" density gradient that forms the edges of the rectangular bulge

in the center of the figure. Although the southern gradient is sharper, it produces a

net density gradient more aligned with the magnetic field, suppressing the instability.

By contrast, if we estimate from the figure that the northern gradient occurs over

approximately 45 degrees of the radar sweep, the horizontal scale of the gradient at

an altitude of 255 km may be calculated at about 54 km. When this calculation is

combined with the estimate of 20 km for the vertical extent of the gradient, we obtain

an angle of approximately 70 degrees between the net density gradient and the Earth's

magnetic field, a more favorable condition for the excitation of the Rayleigh-Taylor

instability than that given by the declination angle of 47.5 degrees during quiescent
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conditions at Arecibo.

Half of an hour later, a large-scale plasma bubble develops in roughly the same

region, but slightly further north. Thus the center of the bubble is determined not

by the area of the lowest plasma density in Figure 6-1 but by the area where the

northern density gradient is strongest.

A slight drop in the F layer following the E x B induced rise may have also helped

trigger the Rayleigh-Taylor instability. If we include the motion of the neutrals by

adding a factor of Mnovinvn (where vn is the neural velocity) in Equation 2.1, the

factor of VinVn may be added to the gravity g to produce an effective gravity term.

This means that downward motion of the neutrals has a similar effect as increasing

gravity; in both cases the growth rate given in Equation 2.14 in enhanced. As shown

in Figure 4-3, the density gradient becomes sharper during this period also increasing

the instability growth rate. Thus, the plasma bubbles that begin to form to the south

at 10:00PMN are a triggered in part by the descent in the plasma layer in the same

region at 9:30PM.

The ionograms confirm the presence of a plasma bubble during the time that the

Rayleigh-Taylor instability is expected to predominate. Around 10:00PM, when the

large-scale plasma bubble first develops, the presence of both quiet and spread traces

indicates that both quiescent regions and turbulent regions with field-aligned density

perturbations simulated in Chapter 5 are present. When the entire region spanned

by ISR is predominately turbulent toward the end of the data sample, only spread

traces are seen.
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Appendix A

Ray Tracing: Derivation Appendix

A.1 Curl of the Refractive Index

The curl of the refractive index for a progressive wave is zero. To show this, let's use

the waveform:

E = Eiei[ko(f(r) )-wt] (A.1)

Here k is the free space wavenumber and f(r) is the spacial dependence of the

wave; the refractive index is defined such that n = Vf(r) is the refractive index vector

described in Chapter 3. The magnetic field of the wave has a similar waveform such

that = l does not depend on any spacial coordinates, satisfying the requirementB B:L

for a progressive wave [4].

Substituting this waveform into Faraday's and Ampere's laws:

k 0n x E = wB (A.2a)

kon x B = -wpo-E (A.2b)

Note that the J term in Ampere's law has been taken into account by using a

complex denoted by . may be found by expressing J in terms of E as was done
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for ordinary and extraordinary modes in Chapter 1.

Now applying the vector identity for the divergence of a cross product and simpi-

fying:

V. (n x V.(nxF

ko

in. (wE

2in (E

2in. (kon x E

2ikoE. (n x r

I) = E (V

3) = E (V

3) = E (V

3) = E (V

I) = E (V

) = E (V

O = E (V

x n)-n (V x E)

x n) - n (ikon x E)

x n)- in. (wB)

x n)

x n)

x n)

x n)

This shows that the curl of n is perpendicular to E. The vector algebra can be

repeated using B to show that B is perpendicular to the curl of n as well. But n must

also be perpendicular to the curl of n. This implies that n, E, and B are coplanar

which contradicts Equations A.2a and A.2b. Thus, the only possibility is that one of

the four vectors is the zero vector. Since n, E, and B are not zero, V x n= 0.

A.2 Key Principle in Ray Tracing

(Adapted from Section 5.3 of [4])

In a loss free plasma where n is Hermitian, the wave propagates in the direction

perpendicular to the refractive index surface. To see this, consider two waves located

at the same point: one with refractive index n and one with refractive index n + 5n.

The difference between these waves can be quantified by taking the derivative of

Equations A.2a and A.2b:
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n x E + 6n x E

n x B+n x B = -cO6[E] (A.4b)

Dotting Equation A.4a with B* and rearranging terms:

B*- [n x E + n x E]

n [E x B*]

= cB* .6B

= cB*.6B+E.[n x B*] (A.5)

Dotting Equation A.4b with E* and rearranging terms:

E* [n x B + nxB] = -c/ojE* E

n [E* x B] = cloE* .5E - 5B.- [n x E*] (A.6)

Adding together Equations A.5 and A.6:

n 2Re[E* x B] = E [n x B* + c1oE*] - 6B [n x E* - cB*] (A.7)

Now the expressions inside of the square brackets on the right are given by the

complex conjugates of Equations A.2a and A.2b provided that n is Hermitian. There-

fore:

n - Re[E* x B] = 0 (A.8)

Since the Poynting Vector is proportional to Re[E* x B], this means that n is

perpendicular to the direction of wave propagation. Since the two waves described

at the start, of the derivation have the same spacial coordinates, they are on the
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same refractive index surface in n-space. This means that An must point along the

surface; thus by Equation A.8 the wave propagation direction is perpendicular to the

refractive index surface in n-space.
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Appendix B

Ray Tracing Code

What follows is the ray tracing code used to model naturally occurring ionospheric

ducts and construct refractive index surface plots. The modeling was done in Math-

ematica and is an extension of the code written by Nathan Dalrymple [1].

B.1 Code Modified for Ducts

First, we set up the Mathematica environment:

Off[General: :spelll]

$TextStyle = {FontSize -- 12, FontFamily -- "Times"}

<< Graphics'Colors'

<< Graphics'Arrow'

{FontSize --+ 12, FontFamily -- Times}

Next, we define the Appleton-Hartree dispersions relations for X and O modes:

nor[r_, n_, f_:=

V/(1 - (X[r, f](1 - X[r, f]))/

(- Y[fI-Y[](Sin[E[Yn, f]])2+

/(¼(Y[f].Y[f]) 2(Sin[6[Y, n, f]]) 4 + (Cos[e[Y, n, f]])2Y[f].Y[f](1 - X[r, f]) 2 ) _ X[r, f] + 1))

nex[r-, n_, f]:=

/(1 - (X[r, f](1 - X[r, f]))/

(-~ Y[f].Y[f](Sin[O[Y, n, fl])2_
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/(¼(Y[f].Y[fI) 2 (Sin[e[Y, n, f]])4 + (Cos[e[Y, n, f]])2Y[f].Y[f](1 - X[r, f])2) _ X[r, f] + 1))

Gor[r-, n_, f]:= n fGo[r_, n, f_]- n

Gor[z[s], n, f]

Gex[z[s], n, f]

--\/ 1- (1 -X[z[s] ,f])X[z[s] ,f]•/ 1 1-½ Y[f] .Y Ef]Sin[E[Y,n,f}]2+ V¼1 (y[f].¥(f])2Sin[[y,n,f]]4+Cos[e[y,nf]]2y [f].Y[f](1-X[z[s],f])2-X[z[s] ,f]

\/ ~~~~~~1- (1-X[z[s],f])X[z[s],f]

- Y[f].Y [f]Sin[e[Y,n,f]]2- V (Y[f].Y[f])2Sin[e[',nf]]4+Cos[e[Ynf]]2[f].Y[f](l-X[z[s],f])2-X[z[s],f]

The following commands set up the declination angle and strength of the magnetic

field. Y is a vector whose magnitude is the ratio of the electron cyclotron frequency

to the frequency transmitted and whose direction is that of the magnetic field.

e[Y, n, L]:=ArcCos[ Y [fln n]
V' -/ Y[f.I fn. n

ODiv = 47.5SDegree;

fce = 0.8106;

Y[fl]:= f{--Cos[aDiv], 0, Sin[ODiv]}

These commands define several important fundamental parameters. The ionosphere

is set up as a Chapman layer and the magnetic ducts are modeled in the xz plane

using the sinusoidal form 6n[r].

ne[r ]:=neOe2(- -seHe W+

Sn[r_]:=JnOSin[' (r[[3]]Cos[ODiv] + r[[1]]Sin[0Div])]

X[r__ f_]_ e2ne[r(l+nr])x~r_, _].- Om.(2,,S?)

X =0;

zO = 250;

H =40;

ne0 = 130000106;

e- 1.602
10'W

f0= 8.854

091me = 1o;

fO = 3.175106;

SnO = 210-2;
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d = 0.3;

chapPlot = ParametricPlot[{X[{0, 0, z}, fO], z}, {z, 0, 400}, PlotRange -- {{0, 1.2}, {0,400}},

GridLines --+ Automatic, Frame -- Automatic,

FrameLabel- {"" , "Altitude(km)", "Chapman layer used in ray tracing", ""},

RotateLabel -- False, AspectRatio --+ 1.2]

Chapman layer used in ray tracing400 i--'-r

350

300

250

Altitude(km) 200

150

100

50

0.2 0.4 0.6 0.8 1

W2Lpe
O9,2

-Graphics--

Critical angle that defines the boundary between cusps at the reflection height (small

angles) and a smooth path (large angles) for a quiet ionosphere.

A - in[ y[fo]SY[flSin[42.5Degree]
1Degree

17.6428

Angle by which the ray deviates from the meridional plane. This is set to a small

number to prevent the ray tracing equations from failing due to singularities.

, = 0.0015

0.0015

The crux of the code; defines how much to step in both frequency and angle and then
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solves the ray tracing equations for the given parameters. Note: this code may use

up all of the memory on a machine if too many steps are chosen at once, causing that

computer to crash. To get around this problem, choose a reasonable step size and

then contract the vectors corddisp and cextdisp from the different runs and display

them on a single ionogram.

0min =-5Degree;

Omax= 5Degree;

Ostep= 0.5Degree;

fmin= 1.0373106;

fmax = 3.2373106;

fstep = 0.2106;

freqvals = Table[, {f, fmnin, fmax, fstep}];

smax = 1000;

ordSol = Flatten[Table[NDSolve[

{x'[s] == D[Gor[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], nx[s]],

y'[s] == D[Gor[x[s], y[s], z[s]}, nx[s], ny[s], nz[s]}, b], ny[s]],

z'[s] == D[Gor[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], nz[s]],

nx'[s] == -- D[Gor[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], x[s]],

ny[s] == -D[Gor[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]J}, b], y[s]],

nz'[s] == --D[Gor[{x[s], y[s], z[s]}, {nx[s],ny[s],nz[s]}, b], z[s]],

x[O] == O, y[O] == 0, z[O] == 0, nx[O] == Sin[a],

ny[0] == ,f,, nz[0] == Sqrt[1 - (nx[0]2 + ny[0]2)]},

{x[s], y[s], z[s], nx[s], ny[s], nz[s]},

{s, 0, smax}, MaxSteps Infinity], {a, Omin, Omax, Ostep}, {b, fmin, fmax, fstep}], 1];

extSol = Flatten[Table[NDSolve[

{x'[s] == L)[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], nx[s],

y'[s] == D[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], ny[s]],

z'[s] == D[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], nz[s],

nx'[s] == --D[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], x[s]],

ny[s] == -D[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], y[s]],
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nz'[s] == --D[Gex[{x[s], y[s], z[s]}, {nx[s], ny[s], nz[s]}, b], z[s]]

x[O] == , y[O] == O, z[O] == 0, nx[0] == Sin[a],

ny[0] == ,3, nz[0] == Sqrt[1 - (nx[0]2 + ny[O]2)]},

{x[s], y[s], z[s], nx[s], ny[s], nz[s]},

{s, 0, smax}, MaxSteps -- Infinity], { a, Omin, Omax, Ostep}, {b, fmnin, fmnax, fstep}], 1];

pxmin = -100;
pxmax= 100;

pymax= 250;

pasp = pymax/(pxmax - pxmin)

5
4

Determines the value of s (psordgnd) and x (pxordgnd) at which each 0 mode ray

traced returns to the ground and then constructs a table listing the frequency, effective

altitude (s/2), and distance from the transmitter (x) for each ray. The paths of all

the rays are then plotted.

psordgnd = s/.Table[FindRoot[Evaluate[z[s]/.ordSol[[a, 1]]] == 0,

{s, 300, smax}], {a, 1, Dimensions[ordSol][[ll]]}];

pxordgnd =: Table[x[s]/.ordSol[[a, 1]], {a, 1, Dimensions[ordSol] [[1]]}, {s, psordgnd[[a]],

psordgnd[[a]] }J];

cordgnd = 'rable[{freqvas[[Mod[a - 1, Dimensions[freqvals] [[1]]] + 1]], psordgnd[[a]]/2,

pxordgnd[[a]] [[1]]}, {a, 1, Dimensions[ordSol] [[1]]}]

ordPlot =

Show[{Table[ParametricPlot[Evaluate[{x[s], z[s] }/.ordSol[[a, 1]]],

{s, 0, psordgnd[[a]]}, PlotRange -+ {{pxmin, pxmax}, {0, pymax}},

AspectRatio --* pasp, DisplayFunction - Identity, PlotStyle -- Red],

{a, 1, Dimensions[ordSol [[1]]}]},

DisplayFunction - $DisplayFunction]
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250 r
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-Graphics--

pfmin =0;

pfmax =4;

phmax = 250;

Selects only those rays which return to ground within one kilometer of the transmitter

and plots them on an ionogram.

corddisp = Select[cordgnd, Abs[#[[311]]] < 1&]

zordplot = ListPlot[Table[{corddisp[[a]] [[1]], corddisp[[a]][[2]]}, {a, 1, Dimensions[corddisp][[1]] }],

PlotRange .- {{pfmnin, pfmax}, {0, phmax}} , PlotStyle -- Red]

{{3.0373, 207.062, 0.705481}, {2.2373, 187.112, 0.65332}, {1.4373, 172.459, 0.941904},

{1.0373, 164.824, -0.269159}, {2.4373, 191.722, 0.298675}, {2.6373,196.103, -0.733157},

{2.8373, 200.923, 0.560243}, {2.0373, 183.989, 0.87263}, {3.0373, 206.995, -0.742078}}
250

200

150

100

50

0.5 1 1.5 2 2.5 3 3.5 4
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-Graphics---

Repeats the process outlined above for X mode waves.

psextgnd = s/.Table[FindRoot[Evaluate[z[s]/.extSol[[a, 111] == 0,

{s, 250, smax}J], {a, 1, Dimensions[extSol] [[1]]}];

pxextgnd = Table[x[s]/.extSol[[a, 1]], {a, 1, Dimensions[extSol] [[1]] }, {s, psextgnd[[a]], psextgnd[[a] }];

cextgnd = T'rable[{freqvals[[Mod[a - 1, Dimensions[freqvals] [[1]]] + 1]], psextgnd[[a]]/2,

pxextgnd[[a]] [[1]]}, {a, 1, Dimensions[extSol] [[1]]}]

extPlot =

Show[{Table[ParametricPlot[Evaluate[{x[s], z[s]}/.extSol[[a, 11]],

{s, 0, psextgnd[[a]]}, PlotRange --+ {{pxmin, pxmax}, {0, pymax}},

AspectRatio -- pasp, DisplayFunction --* Identity,

PlotStyle - {Blue, Dashing[{0.03,0.02}]}],

{a, 1, Dimensions[extSol] [[1]]}]},

DisplayFunction -- $DisplayFunction]

cextdisp = Select[cextgnd, Abs[#[[3]]] < 1&]

zextplot = ListPlot[Table[{cextdisp[[a]] [[1]], cextdisp[[a]] [[2]]}, {a, 1, Dimensions[cextdisp][[1]]}],

PlotRange - {{pfmin, pfmax}, {0, phmax}}, PlotStyle - Blue]

2501

-100-55025 255075100

-Graphics--

{{2.4373, 181.938, 0.431969}, {2.2373, 177.986, 0.974249},

{2.8373, 189.172, 0.271794}, {2.8373, 189.092, -0.957528}, {1.0373, 151.111, -0.839944}}
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-Graphics---

Plots both X and O mode results on the same graph.

igram = Show[{zordplot, zextplot}l

Syntax::noinfo: Input expression contains insufficient information to interpret result. More...

-Graphics---
OUJ

200

150

100

50

0.5 1 1.5 2 2.5 3 3.5 4

-Graphics--
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B.2 Refractive Index Surface Plots

First, we set up the Mathematica environment:

Off[General::spelll]

$TextStyle = {FontSize -- 12, FontFamily --+ "Times"}

<< Graphics'Colors'

<< Graphics'Arrow'

<< Graphics'ImplicitPlot'

nor[n, X ]::=v/(1 - (X(1 - X))/(-Y.Y(Sin[[Y, n]])2+

/(¼(YY) 2(Sin[[Y, n]])4 + (cos[[Y,n]]) 2Y .(1 -X) 2) -X + 1))

nex[n, X_]:=/(1 - (X(1 - X))/(- Y.Y(Sin[[Y, n]])2_

/((YY) 2 (Sin[O[Y,n]])4 + (Cos[[Y,n]])2Y.Y(1 -X)2) - X + 1))
Gor[n_, X¥ -]/nX

nor[n,X]

Gex[n_, X]:=n nGex~n-,) nex[n,X]

Gor[n[s], X]

Gex[n[s], X]

{FontSize -- 12, FontFamily - Times}

Next, we define the Appleton-Hartree dispersions relations for X and O modes as well

as the declination angle and strength of the magnetic field. Y is a vector whose mag-

nitudes is the ratio of the electron cyclotron frequency to the frequency transmitted

and whose dlirection is that of the magnetic field. Cutoff frequencies are also defined.

~~/1- (1-X)X

V -x- 1Y.YSin[O[Y,n[s]]2 +V( -) 2 os[O[Y,n[s]j]2y'.Y+ (y.Y)2Sin[E[Y,n[s]]4

n[s].n[s]

~/1- . ~~ (1-X)X

1-X- . Sin[[ Y,n[s]]]2-V/(1-X)2Cos [y[Y,n[s]]]2 Y.¥+ (Y.y)2Sin[O[ ,n[s]]4

E[Y, n_]:=ArcCos[ In I

ODiv = 47.5Degree;

Y = 0.3334{-Cos[0Div], 0, Sin[ODiv]}

cutl = 1- -. Y;

cut2 = 1 -YY;

cut3 = 1 + -.Y;
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{-0.225242, 0, 0.245808}

Plots refractive index surfaces in the magnetic meridian plane for ordinary mode from

the ground (outer circle) to near the 0 mode reflection height.

ordeqns = Table[Gor[{nx, 0, nz}, XX] == 1, {XX, 0, 0.99, 0.11}1;

ordsurfs = ImplicitPlot[ordeqns, {nx,-1, 1}, {nz,-1, 1}, AxesLabel -- {n, n,}]

nz

nx

-Graphics---

Plots refractive index surfaces perpendicular to the magnetic meridian plane for or-

dinary mode from the ground (outer circle) to near the 0 mode reflection height.

ordeqns2 = Table[Gor[{0, ny, nz}, XX] == 1, {XX, 0, 0.99, 0.11}];

ordsurfs2 = ImplicitPlot[ordeqns2, {ny, -1, 1}, {nz, -1, 1}, AxesLabel -+ {n, nz}
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nz

ny

-Graphics---

Plots refractive index surfaces in the magnetic meridian plane for extraordinary mode

from the ground (outer circle) to near the X mode reflection height (right hand cutoff).

exteqns = Table[Gex[{nx, 0, nz}, XX] == 1, {XX, 0, cutl, 0.05}];

extsurfs = mplicitPlot[exteqns, {nx,-1, 1}, {nz,-1, 1}, AxesLabel -, {n., nz}]

nz

fix

-Graphics--

Plots refractive index surfaces in the magnetic meridian plane for extraordinary mode

from the upper hybrid frequency to near the left hand cutoff.
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exteqns2 = Table[Gex[{nx, 0, nz}, XX] == 1, {XX, cut2 + 0.01, cut3, 0.01}];

extsurfs2 = ImplicitPlot[exteqns2, {nx, -1, 1}, {nz, -1, 1}]

ContourGra-phics::ctpnt: The contour is attempting to traverse a

cell in which some of the points have not evaluated to numbers, and it will be dropped.

ContourGraphics::ctpnt: The contour is attempting to traverse a

cell in which some of the points have not evaluated to numbers, and it will be dropped.

ContourGraphics::ctpnt: The contour is attempting to traverse a

cell in which some of the points have not evaluated to numbers, and it will be dropped.

General::stop: Further output of ContourGraphics::ctpnt will be suppressed during this

More...

More...

More...

calculation. A

-Graphics--

Sets up a different magnetic field such that the transmitted frequency is less than the

electron cyclotron frequency.

ODiv = 47.5Degree;

Y = 3{-Cos[ODiv], 0, Sin[ODiv]}

cut4 = 1 + A-Y;

{-2.02677, 0, 2.21183}

Plots refractive index surfaces in the magnetic meridian plane for extraordinary mode

under the new circumstances.

exteqns3 = Table[Gex[{nx, 0, nz}, XX] == 1, {XX, 0, 0.99, 0.11}];
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extsurfs3 = ImplicitPlot[exteqns3, {nx, -1, 1}, {nz, -1, 1}, AxesLabel --+ {n, n-}]

nz

nx

-Graphics--

exteqns4 = Table[Gex[{nx, 0, nz}, XX] == 1, {XX, 1.01, cut4, 0.11}];

extsurfs4 = ImplicitPlot[exteqns4, {nx, -1, 1} , {nz, -1, 1}, AxesLabel -, {n, nzd]
nz

- nx

-Graphics---
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