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Degree of Bachelor of Science in
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ABSTRACT

A foot-scale model of an icosahedral virus capsid, as opposed to a helical capsid shape,
was modeled in preparation for manufacture for educational use. We chose to model the
icosahedral virus capsid for manufacture because understanding the structure of this type
of capsid is of biological importance, the icosahedral structure is well-established, and
because the icosahedral structure and geometry is representative of many viruses, it is
important to virology.

A small icosahedral virus capsid consists of 60 identical proteins. Larger capsids are
formed by adding quasi-equivalent proteins, with 60 copies of each unique protein. Our
model calls for the creation of an injection mold for one unique protein. 60 parts should
snap together with one another after manufacture to create an icosahedron. The protein
was modeled using the SolidWorks computer aided drawing (CAD) software. The CAD
model could then be converted to a file that enables us to mill a two part mold out of
aluminum blocks. This aluminum mold will then be used to injection mold parts made
out of polypropylene. The parting lines and sprue of the final parts will be cleaned up and
then assembled to complete the model.

This thesis details the specifics of the modeling of this protein, focusing on the design of
the attachment method for capsid assembly from a single injection mold.

Thesis Supervisor: David Gossard
Title: Professor of Mechanical Engineering
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Chapter 1

INTRODUCTION

1.1 Motivation

The structure and geometry of protein complexes, such as viruses, are often difficult to

visualize and understand from a drawing of the molecule on paper. Not only are one-

dimensional representations of virus hard to visualize and understand, but many of the

key concepts and structural aspects of viruses are lost. Specifically, the arrangement and

attachment of proteins to one another in the virus capsid, or shell, are often difficult to

visualize without a three-dimensional representation of the protein, thus students studying

these complexes often find them frustrating. A tangible three-dimensional model could be

examined and used to aid further discussion of viral structure; this model would be

especially useful in a classroom setting for instructors to pass around in order to help

students conceptualize protein arrangement and assembly.

There are currently computer models and programs available that allow a rendition of a

protein to be virtually manipulated in such a way as to give the appearance of three-

dimensionality.' Although computer animated models permit visual study of the

transformation of a protein assembly from procapsid to capsid, it is still difficult to grasp

the structure's physical properties.ii Computer models cannot be taken apart, or

reassembled by hand.

There is a need for a three-dimensional model of a virus that can be utilized in a

classroom to examine structure and virus formation. Viruses cannot function properly if

the structure of their outer shell, the capsid, is greatly disrupted or incompletely formed.

Therefore finding the key to capsid structure has become increasingly important, and

biologists have turned to mathematicians to try and unravel the assembly patterns of virus
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capsids."' Virologists aim to disrupt normal capsid assembly to change the final structure

so that the virus will no longer function and cannot cause harm.

A model that shows the overall structure of the capsid and demonstrates the connection

between the proteins that form it would be ideal. Such a model would allow students to

comprehend the symmetrical nature of the icosahedral viruses and see how 60 identical

but irregular subunits can come together to form a regular icosahedron. A series of

icosahedral models composed of unique protein sets of 1, 3, 4, and 7 would illustrate both

viral growth and quasi-equivalence; this thesis will focus only on the design of a protein

capsid model with one unique protein. The additional solid modeling necessary to create

the series of capsids is out of the scope of this thesis and is left for future investigation.

Thus, the ultimate goal of this thesis work is to produce a solid model of a protein, such

that 60 of the proteins will be able to assemble into an icosahedron, to help students

understand the three-dimensional structure and geometry of a virus capsid. Our model is

an abstraction of the actual three-dimensional structure and geometry of the proteins,

though the representation of the overall capsid is our aim. An irregular two-dimensional

contour was chosen to represent a unique protein because it illustrates that the tessellation

to create a regular icosahedral capsid does not need to be a regular shape itself; many

different protein shapes will tessellate. It is the connection between the proteins that

determines whether the result is a successful capsid.'

1.2 Scope and Organization

This thesis will examine the design and manufacturing processes available to create a

foot-scale assembled model of a virus capsid for low volume production. The importance

and relevance of the icosahedral virus capsid will be explained and justified. The

computer modeling process will be discussed, and this thesis will examine the techniques

available for mold and part production. The challenges and trade-offs will be analyzed,

and suggestions for future improvements and further investigation will be addressed.
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Chapter 2

VIRAL CAPSID

2.1 Biological Importance of the Virus Capsid

Viruses have properties of being both living and non-living as they are neither unicellular

nor multicellular organisms. Viruses do not replicate on their own, but require a host cell

to provide the enzymes and cell machinery necessary for replication. The virus capsid is

the protein shell that encapsulates the genetic material of the virus, protecting it. The

capsid is also responsible for choosing a host cell, opening it up and injecting the genetic

material of the virus. Virologists work to uncover the formation process of virus capsids

in hope that they may discover a way to disrupt the capsid. If the capsid either does not

form correctly, or it loses its structure, it will not retain functionality and the virus will be

prevented from spreading. A three-dimensional model of a capsid will be an excellent

presentation aid for those trying to explain to laymen how the capsids are formed.

2.2 Determining the Structure of the Capsid

There are three main types of capsids: enveloped, helical, and icosahedral (spherical).

Enveloped capsids simply take part of their host's membrane with them on their way out

of the dying cell. Although the other two types are both fairly common, spherical viruses

are more prominent because more animal and human viruses, such as human rhinovirus

and HIV, are spherical, therefore we will focus on those. Two landmark papers defined

the structure of the spherical virus capsid. In 1956, Watson and Crickiv predicted the virus

capsid to be an icosahedral structure made up of identical protein subunits. An

icosahedron has 20 equilateral triangular faces and is defined by having 2-, 3- and 5-fold
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axis symmetry [Figure 1].v Using geometry, they found that 60 identical subunits will

assemble to make an icosahedron, with three proteins per triangular face.

Figure 1: Icosahedral Axes of Symmetry.vi In this representation, the icosahedron is rotated to
look straight down on each axis of symmetry. Icosahedrons have 12 vertices, each with 5-fold
symmetry, 20 faces with 3-fold geometry and 30 edges with 2-fold geometry. Each set (12,5;
20,3; 30,2) when multiplied gives 60, the number of subunits necessary to completely cover the
surface.

In 1962 Caspar and Klugvii wrote a paper confirming the icosahedral nature of the

spherical virus capsid which Caspar had successfully crystallized in laboratory. However,

capsids are not all the same size, and it was discovered that there were capsids that

contained more than one protein, i.e. the proteins were not all identical. Caspar and Klug

found that changing the size of the subunit does not greatly affect the overall volume of

the icosahedron; a virus would not gain more space for genetic information by using a

larger protein to form the shell. However, increasing the number of subunits in the capsid

does. Caspar and Klug proposed their theory of "quasi-equivalence," which stated that

viruses used subunits that were nearly identical in structure and had quasi equivalent

bonds between the proteins to allow for larger internal volume. Most viruses fit n

subunits into their capsids, where n = 60T; T is called the triangulation number of the

icosahedron, and is equal to the number of unique subunits. T = pf2 where P is a value

from the series 1, 3, 7, 13, 19... (= h2 + hk + k2 for all pairs of integers h and k having no

common factor) and f is any integer.v ii Figure 2 shows different classes of icosahedrons:

Class P=1, P=3 and Skew Classes.
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Figure 2: Triangulation Classes. The triangles shown in bold are outlines of a triangular face on an
icosahedron.

For example, an icosahedron having three nearly identical subunits (T = 3) will have 180

subunits in total (n = 60T = 180), significantly increasing the internal volume of the

capsid and allowing the virus to carry more genetic material. Figure 3 shows models of

the capsid with different triangulation numbers.

Figure 3: Triangulation on Icosahedronsvi. On the left, a diagram of the first five
triangulation numbers having P=1; T= 1, 4, 9, 16, and 25 clockwise from the bottom.

On the right is an image of the Herpes Virus, T=16, 5-fold symmetry apparent.
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Chapter 3

DESIGN CONSIDERATIONS

3.1 Production Processes and Material Selection

Today there are many different production techniques available for creating a three

dimensional model. Many techniques have been around for a long time, and others, such

as 3D printing have only just become available. Because we are in complete control over

the shape of the protein subunit we choose to model, we have virtually the whole range of

processes available to us. We would like to have a low-labor, low-cost operation that is

easily repeatable. Ideally, the process would have a small production time; to make just

three icosahedral capsids we need to produce roughly 200 units. Our goal for total capsid

diameter is just shy of a foot, necessitating the protein subunit to be only a few inches

across. Therefore, we need a process that can handle small parts precisely so that we can

use a snap-fit fastener design as mentioned in 3.2.2.

3.1.1 Thermoform

Initially, some design was done with the thermoform process in mind to make our

protein. It is a relatively cheap molding process that can be done quickly to get results

fast. At first, thermoform seemed promising in some of our initial designs [Figure 44]

that looked like the final product could have been made by draping a sheet of material

over a mold.

Figure 4: Cross-Sectional Profile of Two Subunits.
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However, the size of the subunit is very small and would be difficult to make on the

equipment available to us. Secondly, the thermoform mold would have to be a multi-

piece mold and would therefore take a long time to set up and increase the process time.

The process time for a simple single-body thermoform part is already quite long, on the

order of minutes, and we would like to complete three full models. The time required to

thermoform 200 small parts, with a multi-piece mold, is too great. Additionally,

thermoform is not repeatable enough on this scale to guarantee 60 identical parts.

3.1.2 Injection Molding

The injection molding process is more fine-tuned than the thermoform processes

available to us. Injection molding can be used to create small precision parts to a very

high level of detail. It is also one of the fastest manufacturing processes small cycle

time, with repeatable results. We need to produce 60 identical parts for each model

assembled; therefore Statistical Process Control (SPC) analysis of our run parts will be

done. Following recommendations drawn from SPC analysis will lead to the production

of consistently identical units.

3.1.3 Materials

Our model scale is comparable to the yo-yo pieces designed and made every semester in

the Manufacturing and Design II class. As the resources of this class are readily available

to us, the same materials will be used: an aluminum block die set for the mold, and

polypropylene (PPE) for the injection material; their properties are found in table 1.

Table 1: Properties of Aluminum and PPE

Properties Aluminum Polypropylene

Young's modulus (E), GPa 70 2

Yield strength (Y), MPa 33-500 30

Brinell Hardness (HB), MPa 120 96 (Rockwell R)

Density (p), kg /n 3 2700 937

Melting point (Tm), °C 660 160

Specific heat (Cp), J/kg-K 900 2000

Thermal conductivity (k), W/ m-K 220 0.11
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3.2 Protein Interface Attachment

We will model the simple case of T=l; in such a model there is only one unique protein

that makes up the capsid. This one protein must then be able to attach to all of its

identical neighbors to assemble into the icosahedral capsid. Because one of the main

goals in creating this model is to allow users to interact with it, to both assemble and

disassemble the model at will, permanent methods of attachment cannot be used and will

not be investigated.

3.2.1 Mechanical Fasteners

To have a model that can be assembled and disassembled made of identical subunits

requires a complex unit that can snap into itself, one that would be quite difficult to

design. We explored the idea of a simpler protein model that allows for the subunits to

just barely touch, using a separate additional connecting piece to fasten them together. A

nut and bolt fastening through overlapping holes was one possible design. A sort of

double pin that would join adjacent planes, as seen in Figure 3, was another. Although the

protein subunit was easier to design, the manufacture of an additional mold and many,

many fasteners and subsequent complicated assembly led us away from separate

mechanical fasteners.

Figure 5: Pegged fastener.

3.2.2 Fastening Elements

To avoid complicated assembly, the interface at each connecting point of the protein

subunit must be unique and visually identifiable; the junctures must be an integral part of

the protein design. We strove to connect the interfacing points in unique ways such that

picking up two units a student could correctly connect them without guidance or
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instruction. The order of assembly was planned into the design of the fasteners; three

units can be assembled to create a roughly triangular plane that is one of the 20 faces of

the icosahedron. Figure 6 shows the five protruding points on the subunit model, A-E.

C

Figure 6: Protein Subunit. Joints are A-B, C-D, and E-E.

4
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Figure 7: Joint A-B Solid model of hook mechanism.
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Figure 8: Joint C-D is based on insertion of tabs.
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Figure 9: Closer look at D and E.

Figure 10: Joint E stabilizes the others but does not, in fact, lock into itself.
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Chapter 4

COMPUTER SOLID MODEL

4.1 SolidWorks

SolidWorks is a computer aided drawing program that allows for the creation of 3D solid

models. It is a useful engineering tool that helps with visualization of design ideas, and

can also be a useful design tool, allowing for assembly of designed parts before they are

fabricated. SolidWorks also makes it easy to fabricate a part from the file, allowing users

to save the part in many different file types. To this end, an IGES file created was created

from our solid model in preparation for transfer to the mold modeling program.

The creation of the solid model was the main work of this thesis and went through many

rebuilding and several redesigning steps.

Figure 11: Inner and Outer View. On the left is a view of one protein subunit from the inside of the
capsid. On the right is the view of one from the outside of the capsid.
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I

Figure 12: Icosahedra Inner Face. Three proteins snap together to form one face of the icosahedron.

il �,��

'I', 1,

i I

e f4� , , :�

; � �i , 1,



COMPUTER SOLID MODEL 19

i a '

/-

'9'

Figure 13: Five-fold Symmetry.

15 subunits and 5 faces make up this view, shown from the "inside" for clear viewing of the joints.
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Figure 14: Virus Capsid. This is a view of a fully assembled capsid model made with 60 parts.

4.2 Mastercam

Mastercam is a modeling program that allows for the planning of Computer Numerical

Control Milling; users can generate a mill path and code automatically, allowing for a

smooth transition from solid model to mold fabrication. Mastercam was able to import

the IGES file created in SolidWorks so the two halves of the injection mold could be

designed. Unfortunately, due to time constraints, the mold design is at this point

incomplete.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

A foot-scale model of an icosahedral virus capsid was designed and prepared for

manufacture for educational use. The solid model of the protein subunit was modeled in

SolidWorks, a computer aided drawing program, and an IGES file created. The IGES file

allowed the part to be transferred into Mastercam so the two halves of the injection mold

could be designed. The resulting Mastercam file for the molds will allow for automatic

CNC Mill control and the cutting of the aluminum mold blocks during the manufacturing

process. The aluminum mold can then be used in the injection-molding machine to create

the protein subunit that was originally modeled in Solidworks. After sprue removal and

finishing, parts will snap together to form the complete virus capsid model.

Much consideration was given to different processes for the protein subunit part

production. Research was done to determine the best mold making process and technique.

Materials requirements were determined and different materials were considered for the

different molding processes. Ultimately, polypropylene was found to be the most suitable

material for its crystalline properties and ease of use with an aluminum injection mold.

However, the scope of this project was narrowed to the design of the solid model, and so

we do not yet have the injection molded protein subunits.

Unfortunately, the change in scope and intention of this project means that we are still

two steps away from successfully manufacturing a functional educational tool. Future

investigators may wish to utilize the solid model created to complete a die set for

injection molding. The mold designed in this process should be usable for such a project.

Much attention would need to be given to the cooling time in the mold and the packing of

PPE, to ensure a good mating and assembly of subunits. If injection molding proves

21
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unsatisfactory, three-dimensional printing or another rapid prototyping process may be

useful technologies to consider and explore.

The solid model detailed in this thesis would be of use not only in the classroom, for

better instruction and understanding, but potentially for pharmaceutical and other

companies examining viruses. Companies could use the model to illustrate important

concepts to sales representatives and costumers.

Much has been learned while working on this project and it is our hope that the work

presented in this thesis will be of use to future investigators working on similar design

and molding projects.

22
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Chapter 6
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