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ABSTRACT

Currently the process of nanoindentation is being explored as a reliable means of
determining the mechanical properties of carbon nanotubes (CNTs) and the constituent
tubes of vertically aligned carbon nanotube (VACNT) forests. Under indentation, each
CNT can be modeled as a cantilevered beam subjected to deflection from the penetration
of the indenter. The resistance to indentation is the result of the cumulative bending of
the VACNTs. Using beam theory, the effective bending stiffness is determined by fitting
the mechanical model to the indentation force-penetration curves. In order to validate the
process of nanoindentation as a means of determining the elastic modulus of CNTs, a
macro scale physical model was built using cylindrical rods of a known material and used
to help explain some of the interactions of the tubes and indenter. Two models and two
indenters were built to explore these effects and how they changed between models and
indenters. The models demonstrated that for the indenter with a low face angle, the
process was rather accurate with corresponding errors of 7% and 15%. When using a
flatter indenter on both models, particularly the model with the higher areal density of
tubes, demonstrated the inaccuracy of the process as a means for determining the elastic
modulus of the material. Such a result was due to abnormal spikes in the data that were
observable and attributed to tube interaction with the edge of the indenter. The process of
indentation is reliable when the aberrations are minimal or are identifiable in the
indentation force versus indentation depth curves and thus can be easily discounted.

The process of scratching was also explored. For scratching the indenter is fixed at a
certain indentation height and the tube forest is then horizontally displaced and thus
further deflects the tubes. The tubes enter three phases of contact, which subsequently
affect the behavior of the scratching force versus distance curves. The macro scale model
was used to validate the predicted behavior of CNTs. In general the scratching data
supported the behavior of a three phase interaction between the tubes and indenter and
the subsequent curves. For more accurate results and numerical comparisons, the forests
need to be displaced using a constant speed linear stage and measured against distance.

Thesis Supervisor: Mary Boyce

Title: Professor of Mechanical Engineering
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1. Introduction

Nanotechnology is a rapidly growing field of engineering that has received a

tremendous amount of research over the past decade. Carbon nanotubes (CNTs) are of

particular interest due to their recently explored electrical and mechanical properties.

CNTs possess a very high elastic modulus and strength due to their cylindrical and nearly

defect free carbon hexagonal lattice structure and could be used in many electronic and

thermal devices. Although CNTs offer tremendous opportunities, many of the techniques

used to determine the material properties of CNTs have led to inconsistent results and

have proven to be difficult to perform.

Carbon nanotubes are composed of the wrapping of single atomic layer sheets and

exist as single-walled carbon nanotubes (SWCNTs) and concentrically nested multi-

walled carbon nanotubes (MWCNTs). Currently, there are a few methods used to

produce CNTs, such as carbon-arc discharge, laser ablation of graphite and chemical

vapor deposition. One CNT production technique produces vertically aligned Carbon

nanotubes (VACNTs), also referred to as nanoforests or nanograss. Currently multi-

walled VACNTs are grown onto a substrate, whereby the substrate is coated with a thin

layer metal catalyst; the layer is heated, resulting in the breakup of the metal layer into

small islands; a plasma is infused by plasma enhanced chemical vapor deposition

(PECVD), which reacts with the islands, under controlled pressured and temperature

conditions, acting to grow the CNTs. Figure 1 shows a few examples of VACNTs.

(a)
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(b) (c)

Figure 1: VACNT forests tilted by 25° to provide better visualization: (a) Sample A, (b)
Sample B, (c) Sample B [1].

Before exploring these VACNT forests many researchers first looked at isolated CNTs in

order to attempt to measure their material properties, specifically the modulus of

elasticity, reducing the experimental data using two differing theoretical approaches [1].

The first approach to determine the mechanical properties of CNTs capitalizes on

the use of classical beam theory. In applying beam theory, isolated CNTs are considered

cylindrical rods subjected to bending using various experimental methods to support and

load the CNT. Measurement of some form of load versus displacement response and/or

vibration response enable the determination of an effective bending stiffness, (El)eff of the

CNT, where E b is the effective bending modulus and Ieff is the effective moment of

inertia of the nanotube. The effective moment of inertia is approximated as:

Ief = (Do -D4 )/ 64 , (1)

where Do is the outer diameter of the nanotube and Di is the inner diameter. Thus the

effective bending modulus is defined as:

Eb EI)eff (2)
Iq'eff

Several methods of testing the bending of SWCNTs and MWCNTs have been used to

explore displacement - load behavior and, using beam theory, determined the modulus of
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CNTs. Treacy et al. (1996) measured the amplitude of thermally induced vibrations of

isolated CNTs, which was measured within a TEM. Taking the CNT as a solid cylinder

and using beam theory, an effective bending modulus of 1.28 ± .59 TPa was found [2].

Wong et al. (1997) dispersed MWCNTs on a smooth flat substrate and cantilevered the

nanotubes by deposition of an array on this substrate. An AFM was then used to scratch

the surface at the free end of the nanotubes and the subsequent lateral force and

displacement were measured. The particular test led to effective elastic modulus of

MWCNTS of 1.28 + 0.59 TPa [3]. Poncharal et al. (1999) electrically induced static and

mechanical deflection in cantilevered MWCNTs, which were excited at their resonant

frequencies and found a modulus close to 1 TPa [4]. Salvetat et al. (1999) deposited

CNTs on a well polished alumina ultra-filtration membrane on which a CNT was

occasionally placed over a pore and subjected to bending by nanoindentation. An

effective bending modulus of 0.81 ± 0.41 TPa was found [5].

As is apparent by the results reported above, a quite considerable range in

effective bending modulus was found depending on the particular approach. The first

major challenge in testing CNTs is found in their simple size scale, which imperative in

their name, is on the nanoscale (10-9 m) level. Such an incredibly small scale makes it

difficult to accurately achieve the desired loading, to properly measure the length, as well

as appropriately place CNTs in desired locations or arrangements. Moreover, the

structure of multi-walled nanotubes requires a more in-depth analysis regarding the

nested tube structure of MWCNTs and the single-atomic layer nature of each tube wall

[6-7].

Researches have found, using molecular dynamics (MD) simulations that

SWCNTs have internal strain energy per carbon atom to be proportional to l/R 2 , where

R is the radius of the nanotube. Such a dependency led researches to believe that the wall

of the nanotube mechanically replicates shell theory, which has subsequently become the

second approach used in determining the material properties of nanotubes. Coupled with

molecular dynamics, simulations of SWCNTs in compression and tension revealed a wall

membrane stretching stiffness, C, equal to 58.2 eV/atom and a wall bending stiffness, D,

of 2.23 eVA 2 /atom. Due to the atomic layer nature of a CNT wall, assigning a

particular value for wall thickness is a bit of an ambiguous process. Since the internal
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strain energy per carbon atom of a CNT had a similar value relative to unstrained

graphite sheet, many have used a wall thickness, twall=0.34 0 nm, that corresponded to the

graphite interlayer spacing. Using a classical approach with the mentioned values of C

and twa11 gives an elastic wall modulus of 1.06 TPa. Shell theory predicts that:

t3 EwD-twall Et~
1 v wa (3)

where is the Poisson ratio calculated from the diameters of the nanotubes stretched in

simulations. However, using twall = 0.340 nm with a wall modulus of 1.06 TPa in

equation (3) gives a bending stiffness, D, almost twenty five times greater than that

found using MD results. Yakobsen et al. (1996) used previous ab initio and semi-

empirical MD results to fit data to shell theory to determine the wall thickness,

twall=O.066 nm, and thus elastic wall modulus, E =5.5 TPa, which correctly determined

the wall bending stiffness [8]. The results also supported that the SWCNTs could be

treated as a beam with effective bending stiffness before local instabilities occurred.

Several further experiments were done to confirm the use of shell theory. Zhou et al.

(2000) used electronic band theory in conjunction with a tight-binding (TB) model to

estimate the strain energy and Young's modulus. The total energy was then calculated by

accounting for the occupied band electrons. The subsequent total energy was then broken

down into the rolling energy, compressing and stretching energy, and the bending energy,

all of which were used to obtain a wall bending stiffness of 5.1 TPa and wall thickness of

0.074 nm [9]. Tu and Ou-Yang (2002) used a local density approximation model, while

Kundin et al. (2001) used further ab initio energy calculations that also proved consistent

with the shell theory [10]. The behavior of MWCNTs can be modeled using the previous

results with a continuum elastic shell theory provided that the inter-wall spacing, s, of the

CNT walls remains constant due to strong Van der Waals forces and that there is a very

low (and thus negligible) shear interaction between the walls. The implications of these

conditions on theory surrounding MWCNTs will be further explored later in the thesis.

While researchers were able to determine the properties of isolated nanotubes, a

method was still needed to reliably measure the properties of the relative uniformity of
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constituent nanotubes in a VACNT forest, providing an excellent alternative for such

measurements compared to the complexity of insulating, securing and loading single

CNTs. Qi et al. (2002) used a method implementing nanoindentation. The density of the

CNT forest is determined by counting the number of nanotubes projected by a Scanning

Electron Microscopy (SEM) and dividing by the surface area of the image. The length,

L, and diameter, D, of the sample are determined by measuring thirty randomly selected

CNTs in this projection. A diamond, three-sided pyramid, is then cantilevered over the

forest.

.1~350 m
, ~ ~ ~~~~~~~~~~~12°

1�

Figure 2: Cantilevered three-sided pyramid indenter [1].

The cantilever is initiated into a tapping mode with a resonant frequency of 55 to 60 kHz

using a Digital Instrument Dimension 3100 Scanning Probe Microscopy (SPM) and used

to scan the forest and locate a desired area for indentation. The indenter is then lifted to a

preset distance about the top of the surface and begins indentation until a desired

penetration depth is reached. The results yield penetration depth versus the indentation

resistance force. The resistance is due to the combined bending of nanotubes as they are

engaged by the indenter. The non-linear relationship is used to deduce the effective

bending stiffness, (El)eff, from which the model accounting for the multi-walled structure

of CNTs used to obtain the effective bending modulus, E, wall modulus, Etw', and an

effective axial modulus, Et . Table 1 shows the results of the three sample VACNT

forests (see figure 1) used to determine the material properties of CNTs. The data

appears to be in good agreement with the previously mentioned values determined for the

T

13 tun \\ I
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various moduli [1]. The values for (El)eff Etb, E w , and Eta were obtained using the

model of this indentation process that is discussed in the next section.

Table 1: Properties determined for the three nanoindentation samples [1].

Average Average

Sample _ea Lr N (EI)eff (N(nm) 2 ) Etb(TPa) Etw (TPa) Et (TPa)
D-o (n m) L(n m)

A 104 930 143 5.2 0.91 4.14 0.90

B 90 1150 123 4.0 1.24 5.61 1.23

C 55 570 72 0.51 1.14 5.11 1.11

The three samples all had various average diameter, Do, and length, L,

number of membrane walls, N, which partially account for the differing

stiffness.

and various

effective bending

2. Model of Nanoindentation

2.1 Theoretical model of nanoindentation for VACNT forests

The individual nanotubes present in a VACNT forest are individually subjected to

bending deformation and each offer a resistance to the indentation because of their

resistance to bending. Summing all of these resistance forces for a given penetration

depth leads to the total penetration resistance force versus penetration curve. Thus each

individual nanotube may be broken down into a 2D schematic to determine their

constituent role in the indentation process. The tip of the indenter is initially at a

distance, ho, above the surface of the nanotubes. However, for measurement purposes the

penetration depth, h, is measured from the top of the VACNT forest. As the indenter

moves further into the forest it first touches a nanotube at a depth of hi (see figure 3).
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I/ /1f

Figure 3: Schematic of nanoindentation and contact between indenter and nanotube [1].

As the indenter penetration continues, the indenter comes into contact with a second

nanotube at a depth h2. Thus the ith tube is touched at a depth of hi. The deflection of the

beam can then be related to the penetration depths by using the geometry of the indenter.

With a tip angle, 0, the tip deflection, wo, of the ith nanotube is defined as:

wo = (h -h i )tan . (4)

Classical beam theory is then used to relate the deflection, as determined by indenter

geometry, to the indentation force. A free body diagram of the interaction between the

indenter and a single nanotube is shown in figure 4.

Figure 4: Force-body diagram (FBD) of nanotube and indenter [1].

I I 0 � I

I k
I

I
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77777 //// 77

I I I I I I I I I I I I I I I I



11

The force exerted on the tube is composed of the penetration force, Pi, and the lateral

force, Ti, which produces a moment on the tube at a distance, x, along the tube that is

equal to,

M = -Ti - P (Wo -w), (5)

where w is the deflection of the tube with respect to distance along the tube. The

curvature, Kc, of a deflected tube is given by,

d 2w
K =-dx2 (6)

Classical beam theory for a cantilevered beam then gives the relationship between the

moment and curvature:

(E)eff d 2 w
dx- = T x + Py, (7a)

where y = (wO - w). (7b)

Since the nanotube is found to have a strong interaction at the base of the tube where it

bonds to the substrate, a clamped boundary condition may be applied:

y x= = 0,

dYlx= =0
dxx

Wlxl = 0.

(8a)

(8b)

(8c)

Integrating equation (7) twice, using the boundary condition of equation (8), produces:
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r. T.Y = T sin k x---x, (9)
Piki coski L Pi

where ki = I(EI)ff .

Thus the deflection is defined as:

w= w - Ti sinkix + Ti x. (10)
Piki coskiL Pi

While equation (10) relates the deflection to any point along the tube, it is more desirable

to know the max deflection, which occurs at the tip of the tube. Implementing the

boundary condition found in equation (8c), the tip deflection can be reduced to:

Tj (tan ki L L
Wo=-Pt c (11)

The lateral force and penetration force, as defined in the free body diagram are related by:

Ti = P (12)
tan 0

Combining equation (4), (11) and (12), the penetration depth and penetration force for a

single nanotube can be related as:

I tan L. (13)
h = hi + (tan 0) 2 k i

Finally, the tip of the indenter comes into contact with n nanotubes depending on the

location of the tip. The total indentation force is,
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n

tP'tot E Pi . (14)
i=1

It must be noted that when h< hi there is no indentation force and thus Ptotal is equal to

zero until the tip of the indenter touches the first tube.

The value of hi, for an individual nanotube, depends on the position of the

indenter relative to that tube. Geometric considerations for each individual forest could

be used to determine such relations but would require lengthy and difficult calculations.

Rather, statistical data from a large number of indentation tests was used to determine the

average value, hi, for the ith tube in contact with the tip. The data was collected for an

indenter with a face angle, with respect to the vertical, of 21.6 °. For a depth h the area of

the cross-section of the indenter and a nanotube with a diameter of Do was found to be:

A = 0.813h 2 +4.11 Doh+ 3.141Do2. (15)

The cross-sectional area of the indenter and the number of nanotubes, i, in contact with

the indenter at a given depth, hi , are further defined by their areal density, m, of a

particular VACNT forest:

i= Am. (16)

It is now possible to determine the height of contact for the ith tube, based on the

statistical data and consequently the necessary means to fit theoretical calculations to

gathered experimental data. The effective bending stiffness, (EI)eff, is thus determined by

fitting the theoretical data to the experimental data for indentation force versus

indentation depth [1].
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2.2 Application of indentation model for various changes in governing parameters

A matlab program (see Appendix A) for the indentation theory is used to graph

indentation force versus depth for changes in the various parameters. Figure 5 Shows

curves for changes in effective bending stiffness, (EI)eff, while the length, L, and areal

density, m, are held constant.

l Is 450 I- 3 ,D,,il¢,ly ,40J --El
2E1 

I:?: 350 EI //

v eN300 / -

:.: ...., ...... F 
250 -

~00

0

~~~ iso /~"rti loo // / /, ,,- ;:':i 

;0 10i. 20 30 4l 60 0 80 l0 w100 
. i . ; 'i:dentn depth (mm)

Figure 5: Indentation force versus indentation depth for various El, while L and m are
held constant.

The curves show that as El increases the curves correspondingly shift up. Figure 6 shows

curves for the case when L and El are varied while m remains constant. The graph shows

that when L is increased, for constant El and m, the curves shift down. However, they

show that increasing L has a greater effect on the curves than increasing El. Consider the

case when the bending stiffness is quadrupled the reference stiffness, El, and the length is

twice the reference length.
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Figure 6: Indentation force versus indentation depth for various L and El, while m is held
constant.

Here we see that quadrupling the El does not counter double the length since the curve is

shifted down from the reference curve of EI and L. Thus changing the length has a

greater effect than changing the bending stiffness.
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Figure 7 shows the case when the areal density is varied, and L and El remain constant.

The curves clearly indicate that as m increases the force increases corresponding to depth.

2.3 Axial and wall modulus for constituent MWCNTs

The effective bending modulus, the wall modulus and effective axial modulus can

all be deduced from the effective bending stiffness, determined from fitting the

theoretical data to actual indentation force versus indentation depth data. The effective

bending modulus is easily determined, whether the nanotubes are single- or multi-wall

nanotubes. Simply divide the stiffness by the effective moment of inertia, as seen in

equation (2). It can be reduced to:

Eb (El)eff 64(EI)eff 64(EI)eff
= e - (¢(D4 - D4 ))~ 'ro4 (17)

where Di is the inner diameter and can be approximated to be equal to zero due to its

small value relative to the outer diameter. As described earlier, the membrane walls of a

MWCNT can be described to be concentric walls with a wall thickness, t, and an inter-

wall spacing, s, which remain constant during bending, a crucial factor in the following

theory. The wall interactions have led researches to believe that the effective bending

stiffness of MWCNTs can be thus approximated as the sum of the bending stiffness of

the walls. Isolating a particular constituent wall of a multi-wall CNT, the moment of

inertia, Ij, and cross-sectional area, Aj, for the jth wall can be defined as:

Ii 1J [D 4 _ (Dj - 2t)4] (18a)
64j =- (18a)

Ai =4JD -(D -2t)2] (l8b)
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where Dj is the outer diameter of the jth wall. The outer diameter of each wall does not

need to be individually known, only the outer diameter of the outer wall, in other words

the outer diameter of the tube. Then the outer diameter of the (j-1)th wall is found by:

Dj_1 = D - 2s. (19)

The effective bending stiffness can now be redefined in terms of the wall modulus and

the axial stiffness, (EA)eff, can be defined and are:

N N

(EI)eff = EwI j =Etw Ij , (20a)
j=l j=l

N N

(EA)eff = EtwAj = EtWy' . (20b)
j=l j=1

Recall that N is the total number of walls in a constituent MWCNT and that the wall

modulus is assumed uniform for all walls. Correspondingly equation (20a) can be solved

in terms of the desired wall modulus:

Ew - (EN)ff (21)

zIj
j=l

Once the wall modulus is determined the axial modulus can be found. The

effective axial modulus found is further defined as:

(EA)eff = E taAt, (22)

where At is the total cross-sectional area of the tube. Thus the axial modulus is:
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N

E ,Aj

Ea = (23)
A,

The formulations of the wall axial modulus and the tube axial modulus are

dependent on the accuracy of the inter-wall spacing and thickness of the walls. Without

the Van der Waals forces and low shear stress between the walls the previous correlations

would be inaccurate. It must also be noticed that the inter-wall spacing has been found

over a range of 0.34 to 0.39 nm and the wall thickness a range of 0.066 to 0.075 nm.

Thus the values determined for the each modulus hold somewhat of a potential error due

to the ranges in values. However, the results provide rather accurate values, as shown in

comparison with other experimental and theoretical results, in a lower cost and less time

consuming manner.

3. Design and construction of macro scale physical model of nanoindentation on

VACNT forests

3.1 Model design

A macro scale physical model of the nanoindentation is desired in order to give a

better visual representation of the process and to verify the application and efficacy of

this approach as a method for determining tube modulus from the indentation force-

penetration data. Specifically, the model is used to show how the tubes interact with the

indenter and each other and how that relates to the experimental force-penetration data

gathered for VACNT forests. Also the model would help further validate the accuracy of

fitting theory to experimental data when the material properties are previously known.

Different indenter geometries and tube parameters are then used to show how such

behavior is correspondingly affected.

Proper material and dimensional selections were needed to accurately make a

model of nanoindentation and also meet a few predetermined conditions. An axial load

test machine (TA.XTPlus Texture Analyser), shown in figure 8, is used to provide the
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vertical indentation force. However, this particular axial test machine can only provide a

maximum of 30 kg.

Figure 8: Axial test machine.

Also the nanoforest model plus the indenter had to fit within the size constraints of the

axial machine. An indenter with a face angle, with respect to the vertical, of 21.6 ° was to

be built to indent a depth about three quarters the length of the tubes. Thus considering

the constraints of the axial test machine, an initial constraint for the height of the tubes

was determined to be around 7 inches, although smaller heights were explored and

eventually used. Cylindrical rods come in standard diameters for each material and for

this experiment a maximum constraint for the diameter of 0.5 inches was considered in

order to minimize materials and to make sure that the ratio of length to diameter could be

close to those of actual CNTs tested.

A Matlab program (see appendix A) was created using the theory of indentation

on a forest of tubes, as described in chapter 2, where the elastic modulus and tube length,

diameter and the areal density of the forest could be varied. The program then output the

corresponding graph of the indentation force versus the penetration depth corresponding

to various input parameters. All types of materials, with various elastic moduli, were

tested using the maximum constraints determined above. It was found that material with

an elastic modulus less than 3 GPa met the force requirements of the axial test machine.
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A stress analysis was then done in order to make sure the materials being considered

would not yield under the large deflections.

Materials exposed to large deformations are subject to plastic deformation, which

occurs when the maximum stress of the material exceeds the stress yield limit. A

cylindrical rod considered to be cantilevered at one end and subjected to a bending force

has an axial stress, v~, and bending stress, aXXb and thus the total maximum stress,

Cxxm , is defined as:

rXXmax =rXXb +cr. (24)

The maximum bending stress of the rod at any axial section is:

M(0 )
_"- 2 (25)

Ieff

where M is the moment on the rod as defined in equation (5). The maximum stress of a

cantilevered beam subjected to an end load occurs at the point where the rod is

cantilevered, where the moment is the largest. Thus, referring to the free body diagram

found in figure 4, the bending stress can be broken down into:

(TL +PWQ) DI ~(6
CXXI, ~~~~~~~~~(26)

The axial strain of the rod is defined as:

F7XX P (27)
~' Aeff DOY
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Using equations (24), (26) and (27) the maximum stress of the tubes for the various

material and geometric selections was also determined and compared to that material's

yield strength that was being analyzed.

In taking into consideration all of the previous constraints, Teflon was chosen as

the material. Teflon under the geometric constraints would not only meet the force

criteria of the axial test machine but also would not yield, and is still susceptible to being

machined despite its' low modulus and is very affordable. An initial model, model A,

design was decided upon with a diameter of 0.375 inches and a length 4.9 inches, which

roughly corresponded to a length to diameter ratio used in experiments by Qi et al [1].

The indenter, which is dependent on the length of tubes used, correspondingly

determined the area of the plate, which had to be large enough to encompass the entire

indenter (table 2 and 3 show the parameters for both models and both indenters

constructed).

Table 2: Parameters for the tube forest models.

Tube
Base Size Tube Height Areal Density

Model Diameter
(in^2) (in) (in) (tubes/in^2)

(in)

A 6x 2 4.9 0.375 0.7

B 6x8 5.75 0.1875 1.46

Table 3: Indenter parameters.

Indenter Base Height (in) Face Angle

Length (in)

1 5.5 4.01 21.6

2 6 0.79 65.3

An arbitrary areal density of 0.7 tubes/in^2 was chosen, which limited the number of

tubes needed but was also high enough where more than a couple of tubes contacted the

indenter during a typical indentation. The initial design can be seen in figure 9.
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Figure 9: Design for Model A.

Figure 10: Design for Model B.

A second sample, shown in figure 10, was made using a different diameter, length and

areal density and one which could be compared with the first sample and also would be

susceptible to scratching.
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The scratching of VACNTs have yet to be explored, but scratching is a likely cause for

mechanical failure of these nanoforests and will be discussed further in the next chapter.

In order for scratching to occur the tubes need to sustain even greater deflections without

exceeding the force and yield requirements. Considering these constraints, the diameter

of the tubes for the second model, model B, was 3/16 inch with a length of 5.75 inches,

an areal density of 1.46 tubes/inA2. The tubes for this sample were arranged in a face

centered cubed (FCC) spatial pattern for symmetry.

3.2 Construction of Model

The Teflon tubes used for the model were threaded and screwed into an aluminum

plate. The aluminum plate for each sample was prepared using a mill to drill the

appropriate holes and then tapped. The two assembled models can be seen in figure 11

(a)-(b). The indenters were made out of sheets of aluminum. An aluminum sheet was cut

into two appropriate pieces that each represented two faces of the indenter.

(a) (b)

Figure 11: (a) model B; (b) model A.

Each piece was then folded to the appropriate angle, depending on which indenter was

being built. Then the two pieces were joined together through welding. The excess

material from the welding was then sanded down to reveal smooth faces and sharp edges.

A pen nut, matching a connector screw for the axial machine, was attached to the base

face of the indenter.
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(a) (b)

Figure 12: Macro indenters; (a) indenter with a face angle, with respect to the vertical, of
21.6°; (b) indenter with a face angle, with respect to the vertical, of 65.3° .

The same process was done for both the indenters with corresponding face angles of

21.6 ° and 65.3°, shown in figure 12 (a)-(b).

4.0 Results and discussion of model indentation

4.1 Experimental observations and indentation aberrations

The results from the model certainly follow the general trend of nanoindentation

on actual nanoforests. Model results for the case of imposed indentation with both an

indenter with an edge angle of 21.6 ° and 65.3 ° all showed parabolic trends in the

indentation force-indentation depth behavior as seen in nanoindentation. Figure 13

shows a typical indentation force versus depth for nanoindentation of a VACNT forest.
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Figure 14: Indentation force versus depth while using the indenter with the face angle,
relative to the vertical, of 21.6°; (a) model B; (b) model A. The sequential markings along

model B curve correspond to sequential photos taken and shown in figure 15.

Figure 14 shows the results of indentation done on physical models A and B with the

21.6° indenter. In order to give a visual representation of the process, sequential photos

were taken, which correspond to the points marked along the curve in figure 14 (a). Point

a along the curve is the start position and zero tubes touch the indenter. At point b, c, and

d there are 9, 16 and 20 tubes, respectively, in contact with the indenter.
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(d)

Figure 15: Photos taken of indentation on model B with the 21.6° indenter and
correspond to the markings in figure 14 (a); (a) a; (b) b; (c) c; (d) d.

The same process was also done for the two models and the indenter with a face angle,

relative to the vertical, of 65.3°. The results are shown in figure 16 and the corresponding

photos for model A can be seen in figure 17.
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Figure 16: Indentation force versus depth while using the indenter with the face angle,
relative to the vertical, of 65.3°; (a) models A; (b) B;. The sequential markings along
model A's curve correspond to sequential photos taken and shown in the next figure.
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AR, -,~ . ' _

(c) (d)
Figure 17: Photos taken of indentation on model B with the 21.6° indenter and

correspond to the markings in figure 16 (a); (a) a; (b) b; (c) c; (d) d.

The data supports, for both indenters, that increasing the areal density and diameter shifts

the force versus depth curves up, while increasing the length shifts the curve down and

has a greater effect. Similarly, the flatter indenter created steeper exponential behavior

and thus greater indenter forces relative to penetration for both models A and B.

As can be seen in figures 14 and 16 there are apparent aberrations in the data,

with some of the tests for each potential situation having considerably more noise than

others. Through observation of the experiments, some of the aberrations were clearly

identifiable. Almost all major defects were the result of the interaction between a tube

and the edge of an indenter. One of the most common problems occurred between the

edge of the 21.6° indenter and the tubes. Often a tube first came into contact with an

edge of the indenter as opposed to a face. The tube initially deflected as it would on a

normal face but at a greater rate due to the large angle of the edge. Then as the

deflection, and subsequently indentation force, increased the tube became increasingly

unstable on the round edge and eventually slipped off onto a face. The tube returned to a

less deflected state and as a result decreased in force. The indentation force verses

indentation depth would subsequently return to its normal parabolic path. The effect can

be seen in figure 18 and is shown for model A and B.
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Figure 18: Indentation force verses depth shows edge instability, (a) model B exposed to
21.6° indenter; (b) model A exposed to 21.6° indenter.

Model A contained the thicker and shorter tubes. As depth increased; the indentation

force consequently increased at a greater rate than model B, as shown by equation (13).

The greater the resistance to deflection the more unstable the tube became. Thus, as is

seen in figure 18 (b), the tube slipped off of the edge over a smaller change in indentation

depth. Similarly compiled tests done on nanoforests show very similar behavior, as seen

in figure 13, and would suggest, although not conclusively, that nanoindentation on

CNTs has very similar interactions with the edge of a 21.6° indenter.
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The 65.3° indenter also had some edge effects with the tubes. Instead of

deflecting, the tubes in model B, when contacting the indenter at the edge, compressed

because of high normal force due to the large face angle. This compression caused

greater changes in resistance force, than deflecting along the edge, as seen in figure 19.

The tubes continued to compress until they slipped off the edge and back on the face

where normal deflection ensued. The compression behavior was a lot more noticeable

and caused larger aberrations than the previously described edge effect.
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Figure 19: Compression behavior for model B and indenter 65.3° .

The compression also made it difficult to consistently obtain clean results and proved that

this combination of tube size and indenter was unreliable. Such combinations may also

come into play with actual nanoforest indentation tests and should be avoided when

trying to determine material properties.

While compression occurred in model B, the longer and thinner tube model,

compression very rarely occurred with model A. The shorter, thicker tubes often slipped

off the edge right as any compression behavior began to occur. Overall the results were

more consistent. The major aberrations found in model A, while using the 65.3° indenter,

actually had little to do with edge effects. A few spots on the indenter were a bit rough

and when a tube contacted the area of higher friction it often began to briefly compress.

The tubes slipped off of the area and returned to the appropriate deflected state when the
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lateral contact force was enough to overcome the increased friction. Thus when doing

nanoindentation, surface impurities, relative in size to that of the tube diameter, of the

indenter must be taken into consideration.

For model B, which had the larger areal density, as the indentation depth

increased, tubes often began to come into contact with one another. Tubes often first

began to deflect as a result of contact with an already deflected tube and not the indenter.

The tube not in contact with the indenter was very unstable in the cylindrical tubes and as

its deflection increased became increasingly unstable. Similar to edge effects, the tube

eventually slipped off of the other tube and came to rest on the indenter (see Figure 20).
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Figure 20: Indentation Force versus depth for model B and 65.3° indenter and
demonstrates tube-tune interaction.

As a result the tube was in a less deflected state and small decreases in indentation force

were visible. Since the tubes were rather small compared to the scale of deflection they

were subjected to, these decreased spikes in force were rather minimal. Had model A,

with the larger diameter tubes, been built with a greater areal density this effect would

have been more noticeable.

In general the aberrations were apparent in some of the tests and not the others

due to changes in indent location. As the location changed, and thus the depth at which

the first tube contacted the indenter change, new and different aberrations occurred and.

Figure 21 shows all the tests done and the average of the test for model A and the 65.3°

;
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indenter. Appendix B shows the other tests for all other possible cases of models and

indenters. Notice that indenter location plays a much bigger role for flatter indenters and

greater areal densities, as there are greater shifts in the experimental curves.

Figure 21: Indentation force versus depth for model B
all tests taken and average of tests.

with 65.3° indenter and includes

4.2 Fitting experimental data to theoretical predictions

The models were largely used to verify the efficacy of deducing CNT moduli

from nanoindentation. While the elastic moduli was already known for Teflon, the

theoretical model, using the known modulus, was compared to the actual experimental

results. Three out of four of the indenter and model combinations certainly showed that

the theory, dependent on the known modulus, was in good agreement with the tests. For

example, for model A the error of the force values between the theoretical and

experimental data at a depth of 40 mm was 10% and at depth of 80mm was 4%. The

theoretical data was also adjusted to better match the experimental data and thus give the

elastic modulus the experiments would suggest. The 21.6° indenter provided the most

accurate results, as can be seen in figure 22. Using the particular indenter provided the

least amounts of aberrations, which when they did occur were rather minimal. The error
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associated with fitting the theory to the results by adjusting the elastic modulus was

approximately 15% for model B and 7% for model A (see Table 4).

Table 4: Elastic modulus as determined by experimental data for models A and B with
21.6° indenter.

*Modulus given by material supplier but also confirmed by doing indent on
theoretical model(see Appendix C).

a single tube and comparing to

Although the errors are noticeable, they are not high enough to refute the indentation

approach. However, the same level of accuracy was not seen using the flatter, 65.3°

indenter. When applied to model A, the theory mirrored the experimental data, but

certainly with a higher degree of error, as seen in Figure 23.
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Figure 22: Comparison of theory and the average of the experimental data and contain
blowup sections; (a) model B and 21.6° indenter; (a) model A and 21.6° indenter.

Comparison of theory and the average of the experimental data for model A
and the 65.3° indenter.

For the particular combination, the edge effects had a greater impact on the results. The

theory does not account for these edge effects and thus an accurate and meaningful match

is not possible. When using 65.3° indenter with model B, the compression that occurred

created artifacts too large to accurately match the theory and results. Further, taking the
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average of the tests conducted was not a good representative measure of the experiments

due to the consistent but random artifacts. But portions of the indentation results for a

specific test reflected the predicted behavior at points when there were no tubes

undergoing compression or other edge effects, as seen in figure 24.

Figure 24: Comparison of theory and an experimental test for model A and the 65.3°

indenter.

However, the combination of model B and the flatter indenter does not adequately

support using indentation with the large angle indenter as a means to determine the elastic

modulus of the tubes. In general, the denser the forest of tubes or the flatter the indenter

the greater the potential there is for aberrations that will skew experimental data and lead

to high errors when determining the elastic modulus for the material.

Also notable is the fact that the mechanical model of indentation assumes small

angles of deflection for the tubes. When indenting to depths greater than 3/4 the length of

the tube, the behavior of the tubes does not necessarily follow small angle bending

theory. Thus towards the later stages of indentation the experimental data deviates

slightly from the theory.
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5. Scratching

5.1 Introduction

The scratching of VACNTs has yet to be explored, but scratching is a likely cause

for mechanical failure of nanoforests. For scratching, the indenter is positioned at a

predetermined depth where it remains fixed. The forest of tubes, whether CNTs or a

macro scale model as this paper addresses, are then moved horizontally while the

indenter remains stationary. The initial position of the indenter acts as the zero point of

the horizontal displacement, or scratch distance, x. As the forest of tubes is displaced, the

tubes deflect with respect to the scratch distance and indenter angle.

The deflection of the tube, when the indenter is positioned at large depths relative

to tube height, enters three phases with respect to the way it contacts the indenter. The

first phase, end point contact and seen in figure 25, occurs when the angle of deflection is

less than the angle of the indenter face. Here the indenter is in point contact with the tip

of the tube. For such cases the deflection of the tube and subsequent force follow the

same theory as indentation and is summed for each tube in contact with the indenter. As

the sample is moved horizontally, the tube is further displaced proportional to the amount

of horizontal displacement of the sample and the angle of contact the indenter makes with

the tube with respect to the horizontal. Here the behavior of the tube follows the linear

relationship of deflection versus force, as found in indentation, and the sum of all the

tubes would be exponential. Once the angle of the deflection of a tube equals the angle

of the face of the indenter the tube enters a period of line contact, phase two, with the

indenter and can be seen in figure 26.
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Figure 25: Phase one, end point contact, of scratching [11 ].

A

Figure 26: Phase two, line contact phase [11].
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A

Figure 27: Phase three, point contact phase [11].
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Figure 27: Theoretical prediction of scratching force verses scratching distance [11].

For tubes in this state, the relationship of force versus deflection is no longer linear, as

determined by current numerical analysis being done. The tube exhibits an increase in

the slope of the curve and even exhibits a bit of exponential behavior. The third phase,

point contact, shown in figure 27, occurs when the deflection of the tube plus the angle of
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the indenter equal 90°. Here the point of contact occurs at the lowest point of the line

contact near the tip of the indenter and near the base of the tube [11]. Figure 28 shows a

theoretical analysis of the potential behavior of scratching force verses the scratch

displacement of a nanoforest model and when a tube undergoes each phase.

5.2 Results and discussion of macro-scaled scratching

Various scratching tests were conducted on the physical models in order to verify

the shape of the scratching force versus scratching displacement. The tests were not used

to verify numerical predictions at this point. Due to apparatus constraints, the model had

to be pushed by hand and thus could only obtain curves for scratching force verses time.

However, as scratching distance is proportional to time (distance = time * velocity, where

velocity was kept rather constant) the shape of the curves can be compared to predicted

behavior.

First a test was conducted on a single tube in order to isolate the behavior and

determine whether in fact three phases of contact occur. Figure 29 shows a curve for

scratch force versus time conducted on a tube from model A and clearly demonstrates all

three phases. Figure 30 shows pictures of the tubes during each phase.
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Figure 29: Scratch force versus time for a single tube of model
at a depth of 70 mm.
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(a)

(b) (c)

Figure 30: Photos demonstrating the three contact phases of scratching; (a) end point
contact; (b) line contact; (c) point contact.

The curve certainly has a lot of noise, but that was due to friction on the surface of the

indenter. When one tube of model B was tested (see Appendix C), the aberrations from

friction were far more noticeable because of lower scratch resistance forces due to the

smaller diameter and greater height. The third phase appears to be a bit different than

theorized. Instead of the rounded parabolic top, indicating the point when the tube is
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about to slip off the indenter completely, the curve shows more of a flat, constant force

segment. However, when doing the experiment the speed was attempted to be kept

constant but at these higher forces the speed began to slow down due to human error.

Thus, there is little conclusive evidence that the behavior is in fact different. In general,

the rough experiment proved that the theoretical model for scratching is accurate in

behavior. One area that appears to differ a bit is the point right when the tube enters the

line contact phase. Their appears to be a spike decrease in force before entering the line

contact segment and is constant throughout the experiments and is also consistent when

examining scratching for two tubes and for all the tubes.

The theoretical model proposed also examines the case for two tubes, as seen in

figure 31 and was compared to experiments done using model B, seen in figure 32. The

theoretical graph has two different models. The first model results were obtained using

the finite element code, Abaqus, and the second model results were obtained using

Matlab, where the equations describing the evolution of tube bending during scratching

were programmed. Looking specifically at the Matlab model, the first tube follows the

same initial behavior of one isolated tube, but as the second tube begins to touch the

indenter, the scratch force shifts up.

F

0
U-

EM

X 10 Average Abaqus vs. Mathematical Model Curves
IA=

Scratch Distance (nm)

Figure 31: Theoretical graph of scratch force and time for two tubes.
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Figure 32: Scratch Force versus time for two tubes of model A and the 21.6° indenter at
a depth of 70 mm.

The first peak, corresponding to the third phase, thus is taller than the second peak. In

general, the experimental curves look very similar in nature and follow the predicted

behavior for two tubes. Again the peak areas appear elongated but are most likely due to

human error in moving the model and exhibit spikes due to friction.

Scratching was finally done for multiple tubes. Both macro scale models, A and

B, were exposed to scratching. The scratch force versus time results do not clearly show

the effect of isolated tube interactions because of the complexity introduced by all the

tubes. However, some overall characteristics are still very evident.
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Figure 33: Scratch force versus time for all tubes of model B exposed to the 21.6°

indenter at a depth of 80 mm.

4 ^^^^



45

The curve, seen in figure 33, is for model B (curve for model A is found in Appendix E

and a photo of model A experiment in Appendix F), and instead of a linear progression of

phase one for one tube, the force increases exponentially, which corresponds to

indentation of multiple tubes. Once some of the tubes enter the second and third phases,

the graph shows a series of spikes that in actuality show some isolated behavior

consistent with that of a single tube or two tubes. The spikes occur due to the tubes

slipping off the indenter and the new tubes engaging the indenter. However, some of the

spikes may have been the result of frictional behavior and thus hard to distinguish

between the two. In general, for better results, a linear stage, controlled by a constant

speed motor, needs to be used and recorded for distance. Such an experiment would lead

to more conclusive numerical results as well.

6. Conclusions

The macro scale physical model of nanoindentation certainly proved to be useful.

For forests with low areal density combined combined with an indenter with a 21.6° face

angle, the experimental data adequately predicts the elastic modulus of the material.

While some error was evident, it was relatively small. The aberrations, mainly edge

effects, responsible for the errors are probably found in nanoindentation, as similar

shaped artifacts appear in the indentation force verses indentation depth curve of

nanoforests. However, some of the aberrations were clearly more the result of problems

with the model. The larger indenter created large edge effects. In nanoindentation the

tops of the CNTs are actually spherical and thus most likely to become unstable quicker

than the tubes did in the model; thus the aberrations would have a smaller and less

noticeable effect. Further some of the inconsistencies on the face surface of the indenters

created some isolated compression and thus more of a model specific error.

In general, as long as the aberrations are minimal, indentation appears to be an

excellent method for determining the elastic modulus of materials. Experimental results

that clearly show identifiable aberrations should be disregarded when determining the

modulus. The frequency of the aberrations also suggest that indentation must not be
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considered a consistent process for some combinations of forest density, height, length

and indenter face angle and thus not reliable for determining moduli.

Researches believe that scratching may cause structural defects but no tests have

yet to have been conducted on actual nanotubes. The experiments done on the macro

scale physical models certainly begin to validate the theoretical predictions of the

behavior some CNT researches expect. Specifically, the experiments exhibit behavior of

three phases of contact between the indenter and tubes: end point contact, line contact

and point contact. The single tube and two tube tests particularly demonstrated the

behavior. The multiple tube experiments, however, need to be more thoroughly explored

and observed and applied to a theoretical model that accounts for the parameters involved

in the model.
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Appendix A

function [stress2] = geoff_load

clear;
%Basic parameters Below%
E=(.7)*1.0e+9; % N/m^2
Do=[3/16]*0.0254; % m
1=5.75*0.0254; %long tubes%
% =(12.78)*Do; % m%, %short tubes%
I=pi*(Do^4)/64;
stiffness=E*I;
% phi=21.6*pi/180; %for sharp indenter%
phi=65.3*pi/180; %flat indenter%
theta = 30.0*pi/180;
hmax=.02 %flat indenter%
% hmax=. 1; %sharp indenter%
% m =.7/(0.0254)^2; % # / m^2% $short tubes%
m=1.46/(0.0254)^2; % # / m^2% $long tubes%

hl =0;
nh = 20;
dh = hmax/nh;

for z=l1:(nh+l)
h(z)=h 1l+dh*(z- 1);

% A(z)=0.813*(h(z))^2+4.11 *Do*h(z)+3.141.*Do.^2; %sharp indenter%
A(z)=24.56*h(z)^2
num_cnt(z)=A(z)*m;
num_cnt(z) = floor(numcnt(z));

end

pmax = 0;
defmax = 0;

for i = 1 (nh+ 1)

pp=O;
hf = h(i);
num_c = numcnt(i);
forj = :num_c

A=j/m;
% hi(j)=(sqrt(((4.11.*Do).^2-(4.*(3.141*Do.^2-A).*.813)))-4.11. *Do)./(2.*.813);
%sharp indenter%

hi(j) = sqrt(A/24.56) %flat indenter%
x=(hf-hi(j));
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if x<0
x=0;

end
deflection = x*tan(phi);
p = pointload(deflection,l,stiffness,phi);

pp = pp +P;
if (hf == hmax)

if (p > pmax)
pmax = p
if (deflection > defmax)

defmax = deflection;
if (j == numcnt)

p = pmax;
deflection = defmax;

end
end

end
end

end
% hhh(i) = hf/.0254; % inches%

hhh(i) = hf*1000
force(i) = pp

% force(i) = pp/9.81*2.2 %lbs%
end

%Finding Stress for each tube at base where y=0%
T=p/tan(phi);
stress=((T.*l+p.*deflection).*(Do./2)./I)-(p./(pi.*((Do./2).^2)));
stress2=((T.*l+p.*deflection).*(Do./2)/I);
stress3=(T.*1.*(Do./2))/I;

figure(1);
plot(hhh(:),force(:),'r');
xlabel('depth (mm)');
ylabel('force (N)');

function p = pointload(deflection,length,stiffness,phi)
A = 1/tan(phi);
guess = sqrt(1/stiffness); % guess for effective stiffness %
tol = le-10; % tolerence%
k = newtonralphson(deflection,A,length,guess,tol);
p = stiffness.*k.A2;
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function k = newton_ralphson(def,A,len,guess,tol)
kn = guess;
delkn = ((A.*tan(kn.*len)-A.*kn.*len-
(kn.*def)).*(kn. *(cos(kn.*len)).^2))./(A.*(sin(kn.*len).*cos(kn.*len)-kn.*len));
knl = kn + delkn;
while (abs(knl -kn) > tol)

kn = knI;
del_kn = ((A.*tan(kn.*len)-A.*kn.*len-

(kn.*def)).*(kn.*(cos(kn. *len)).A2))./(A.*(sin(kn.*len).*cos(kn. *len)-kn.*en)); % = -
del(kn)./(dM/dk)

knl = kn + del_kn;
end
k = knl;
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Figure 34: Indentation force versus depth for model B with 21.6 ° indenter and includes
all tests taken and average of tests.
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Appendix B
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Figure 35: Indentation force versus depth for model A with 21.6° indenter and includes
all tests taken and average of tests.
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Figure 36: Indentation force versus depth for model B with 65.3° indenter and includes
all tests taken and average of tests.
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Appendix C
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Figure 37: Scratch test for model B and 21.6 ° indenter at a depth of 80 mm.
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Figure 39 Scratch force versus time for all tubes of model B
indenter at a depth of 70 mm.

exposed to the 21.6°

Appendix F

Figure 39: Photo of scratching for all tubes of model B using
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Appendix E

the 21.6' indenter.
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