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ABSTRACT

An experimental and numerical study was conducted to better understand the
mechanics of motion of the three-linked swimmer in viscous fluid. Numerical studies
in C++ were used to predict the velocity and motion of the swimmer using a modified
analytical model that considers the dynamical and orientational effects of rods at the
surface of a fluid. Computational simulations were graphically used to understand the
pressure and velocity distributions of the fluid-structure interactions of the three-
linked swimmer, with slightly different movement, using an immersed boundary
method computer program. Experiments using a mechanical prototype of a three-
linked swimmer were conducted to validate and compare the numerical predictions
derived from computational studies.

Experimental results indicate that a flexible armed swimmer is more than three times
as fast as its rigid armed counterpart. The analytical model presented in this study and
the corresponding computational numerical simulations were found to capture the
trends of the motion, and the predicted horizontal velocity came within 66% in value
of the recorded experimental data.

Thesis Supervisor: Anette Hosoi
Title: Assistant Professor of Mechanical Engineering
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1. INTRODUCTION

This section outlines the background and purpose of this study.

1.1 Scale and Size Effects

This study was inspired by the locomotion of small organisms found in nature. It is
important to consider the efficiency at which organisms in nature move because the
movement of natural organisms can provide the inspiration for the design of human-
made devices.

At the small scale, the effects of viscosity, cohesion, and diffusion become extremely
important, while the effects of gravity become insignificant. To accurately recreate
the effects of the swimming of microorganisms at a scale possible for experimentation,
one must use viscous fluids, i.e. fluids at low Reynolds numbers because of the
geometrically similar principle [3]. The small size and cruising speed of the bacteria
makes the viscous forces dominant when these kinds of organisms move. The
Reynolds number for larger organisms is of higher magnitude than for smaller
creatures because the Reynolds number reflects the relative importance of viscosity
and inertia. This indicates why smaller organisms must rely on the physics of viscous
fluids for propulsion.

1.2 Characteristics of flow at Low Reynolds Numbers

(T Tirlrsr c rnr-trtxA with A ;n- in

glycerin that at low Reynolds
numbers, flow is reversible [3]. If an
organism moves backwards the same
amount it moved forward, the net
amount of movement is zero. To
move in the limit of small Reynolds
number, an organism needs to
produce time-irreversible motion,
that is to say, you cannot change
your body into a certain shape, and
then go back into the original shape
by going through the sequence in
reverse. If an animal tries to swim by
a reciprocal movement, motion is
not possible; the organism ends up
back where it started (Purcell). For
example, in a low Reynolds number
limit, a scallop cannot swim because
the movement for forward movement
is the same as for that as backwards
movement, as demonstrated in figure 1.
The position of an organism depends only
velocity.

Figure 1: "Scallop" configuration, which is an
example of reciprocal motion. This type of
behavior results in no net motion in viscous
fluid. Schematics I and II describe the
respective positions. [1]

on the configuration, not the instantaneous
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1.3 Types of Swimmers at Low Reynolds Numbers

A more succinct summary of the characteristics of viscous fluid swimmers can be
found in Appendix A.

It is important to discuss the various types of swimmers at low Reynolds numbers in
order to better understand the context of the three-link swimmer under particular
scrutiny in this study.

1.3.1 Three-Link Configuration

E.M. Purcell introduced the concept of the three-link swimmer as the simplest
organism that can move in the low Reynolds number limit [12]. The analytical
modeling of this configuration models the motion in terms of the translation of a point,
the velocity due to rigid body rotation, and the stretching motion, and then
substituting into the resistance matrix for the force, velocity, and stretching
components [ 1 ]. It is possible to model the large-amplitude motion of the linkages
driven by internal motors acting at the joints, as well as determine the optimal
swimmer for conditions. The biological analogy to the three-linked swimmer is the
spiroplasma bacteria [2]. It was found at moderate stroke angles, translation is
opposite to that of the wave velocity, and that for larger stroke amplitudes, the
direction of net translation reverses, that is, for moderate stroke angles, the direction is
the same to that of the
wave velocity. Y
Numerical studies x

X
were also conducted

h1r- thr 
W i11 L I

displacements in the
x-direction, ........ ......

displacements of the
center and joint, the
velocity, and
efficiency were
solved for graphically.
(raduate student
Brian Chan at MIT
has developed a
mechanical model of
this configuration.
Purcell's swimmer
presents possibilities
in the use of micro-
robots, such as Figure 2:Configurations of the Three-Link Swimmer. The respective
those deployed in positions and the order in which the arms move. [1]
the human body for minimally invasive therapeutic treatments. Figure 2 describes the
sequence of movement for this swimmer.

1.3.2 Rotating Helix
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This configuration is similar to the geometry of the Escherichia coli. It is a round in
diameter, and twisted in a helical form [13]. It was analytically determined that at low
Reynolds numbers, a translating force will cause the helix to rotate even without the
presence of an externally applied torque. By the linearity of the Stokes equations, an
applied torque will also cause the helix to translate in position.

1.3.3 Waving Sheet

This configuration is similar to the microscopic bacteria with tails. A previous study
done by G.I(. Taylor examines the 2-D behavior, modeling the waving tail as a sheet in
viscous fluid [15]. The waving surface was modeled as a sine wave, and the stream
function was utilized to model the flow near a sheet of small amplitudes. The
microscopic organism spirochaeta balbianii exhibits this type of behavior for
movement.

A three-dimensional model, which takes into account the hydrodynamic interaction
effects, has not been completed at this date, and the immersed boundary method
(IBM) probably can present an effective solution to this problem.

1.3.4 One-Dimensional Flags in a 2-D Wind

By using nylon threads in tension in a soap film, the effects of flapping flags in a two-
dimensional wind were experimentally determined. A similar kind of behavior is
demonstrated in the flapping fins of swimming fish. It was shown that below a critical
filament length, the filament is not affected by the flow [18]. At the transition to
flapping, the mass of the fluid balances the mass of the filament, while the elastic
energy of the filament balances the kinetic energy of the fluid.

1.3.5 Elastic Filament with Internally Generated Stresses

Filaments with internally generated stresses are the type of behavior that is
demonstrated in cilia and flagella [9]. The three types of possible configurations
include the clamped head, with the position and slope fixed; the fixed head, where
position is fixed only; and the free head that is subjected to viscous load. The refined
slender body theory was used to model the movement of the cilia. It was determined
that the effective and recovery strokes encounter different resistances.

The case of nonlinearities and torsional
motion in three-dimensions has not Y
been determined. The situations x
outlined in earlier literature take into
account only internal stresses; the case
for external forces has not yet been
ascertained.

1.3.6 Twisted Elastic Filament in
Viscous Fluid

Figure 3: Supercoiling of twisted elastic filaments.
The motion of the bacterium B. subtilis The kinematics of supercoiling are dictated by
was the inspiration for the study of geometry and viscous dynamics and are also

governed by elasticity.
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twisted elastic filaments, and this kind of behavior demonstrates that the supercoiling
of elastic elements can be described by the kinematics dictated by geometry, and the
viscous dynamics governed by elasticity [7]. Figure 3 shows the geometry of
supercoiling. The details of the geometric untwisting and twist density evolution have
been numerically determined.

1.3.7 Rotating Rod with a Kink

An analytical study of this geometry showed that the elements of viscous
twisting, and bending in Y
dynamics of rotating filaments
are related [10]. The formulaic X

analysis was completed by
using elastic internal stresses to AA.
find moment and force, and
then doing a force balance to
find the dimensional shape of
the rod. This type of natural
curvature is found in bacteria
and protein binding DNA. A .
mechanical model of this
structure of the rods with a
small to moderate angle (L-
shaped) will extend, and rods
with a laroer angle (V-,haned)

drag,

, I .. I

will fold. The pictoral depiction
of this configuration is described Figure 4: Schematic (A) describes the co]
in figure 4. rotating rod when the kink is a small-mo

1.4 Types of Modeling

nfiguration of a
derate angle. The rods

with a larger angle will fold in the same situation, as illustrated
in schematic (B).

This study is concerned with two types of modeling, computational numerical
analysis and the immersed boundary method. Each of these methods examines
different aspects of the same movement..

1.4.1 Modeling of the Three-Linked Swimmer

The analytical model used in this study follows the methods developed to examine a
series of rods floating in a liquid-gas interface [16]. The study especially considers the
dynamical and orientational effects of rods at the surface of a fluid. The equations of
motion presented that described the dynamics between a rod and a wall were of
particular interest and this study focused on modified versions of these equations. A
Raleigh dissipation function was used to describe the viscous effects and drag on the
rod, and a Lagrangian multiplier method was utilized to solve the equations of motion
to find the position of the rods as a function of time.

1.4.2. Immersed Boundary Method

The Immersed Boundary Method (IBM), a computational method and mathematical
formulation, was developed to study the interaction between the fluid and the

6
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boundary of an immersed object, created by Charlie Peskin at the New York
University [11]. The technique models the biological tissue as a part of the fluid on a
lattice, intertwining Lagrangian and Eulerian coordinate systems. The Immersed
Boundary Method provides an effective solution to the coupled nature of this
situation; the fluid pushes against the boundary of the system the same time the
boundary pushes back against the fluid. The technique also addresses the
mathematical problem of solving the Navier-Stokes equations in a complex domain.
This method has been used to describe the behavior of biological systems such as the
heart and its valves, the inner ear, and the deformation and locomotion of cells.

The immersed boundary method is useful because the data derived from this program
can be used to study the fluid-structure interactions in an object. This kind of
knowledge is important in understanding the industrial applications of such devices as
the three-linked swimmer. This type of close study of such small-scale viscous
swimmers can assist in the construction and design of such applications as small
medical applications that could be used for direct drug delivery in the bloodstream.
The immersed boundary method is useful because the program makes it possible to
understand what cannot be measured in experimentation.

1.5 Purpose

The purpose of this study is to computationally examine the mechanism of movement
of low-Reynolds number organisms, specifically the 3-link swimmer. One
computational method will simulate the motion of the 3-link swimmer using a
modified analytical model [16], and the other method will study the pressure and
velocity distributions through the immersed boundary method. Results will be
validated and compared with experimental data of a rigid armed and flexible armed
three-linked swimmer.

7



2. THEORETICAL ANALYSIS

2.1 Immersed Boundary Method

The Immersed Boundary Method describes an object and its boundary on a
background stationary Cartesian grid, while allowing the object itself to be flexible in
movement [11]. The object is defined in terms of the stationary grid through a fixed
number of Lagrangian markers. The kinematic boundary condition is that the filament
must move with the fluid velocity.

The Navier-Stokes equations are given by equation (1):

Dii
p = -Vp +iV2 + Fat, (1)

Dt

where the force term Fat refers to all of the external forces in the system, including

elastic, gravitational, and bending, and where - is the material derivative.
Dt

The restrictive condition for continuity states that:

V ii =O . (2)

If we take the divergence of (1), the following relation is derived:

,(p Dl = -Vp + V2uii + Ft), (3)
Dt

0 + pV ((iiV)ii) = V2p + VFet. (4)

If we discretize equation (1) in time:

U n+1 _U" n
'- n n Vu n ) =--Vpn+l + V2U n + Fat, (5 )P( +(5)

At

where un = u(t = nAt).

Through further manipulation, (5) can be broken down into the following two
equations:

Un

P( A +- Vu n) =V V 2un F, (6)
At t (6)

Un+
l

-UUn (U + a _Vpn+l (7)
dt

When (6) and (7) are added together, it forms (5), and thus is the equivalent.
From the condition in (2), the following relation can be determined:

8



V V . (8)
dt

From the relation in (8), we can solve for the pressures in the system (pn+l).

Once the pressures, (pn+l), in the system have been solved, these can be substituted
into (7) to solve for the velocities for the system at the specific time.

In order to count the effects of the external forces on the object, we must first examine
the energy of the system,

Ee Eb + Es (9)
=- B, (10)

where the subscripts e, b, and s in (9) refer to elastic, bending, and stretching energies
respectively.

From this relation, the external force can be described as,

x X~f xt =-d 4 X(B)-dx[(Xx - 1) s ,-Bd4X-ds[(X 5 -1) S], (11)

where the subscript s refers to the arc length along the membrane. These terms
consider the amount of stretching of the membrane, and the direction of the stretching.

However, the relation in (11) makes no distinction between the fluid and the object.
Thus, from relation (11), the forces for each point in the object can be updated in the
following manner,

L

Fext (x, y) = fext + 5(x - X(s), y - Y(s))ds, (12)
o
0

where the lowercase x and y refer to the position on the fluid grid. By using the Dirac
delta function in (12) ensures that if the numerical function is not in the vicinity of a
membrane point, the function will not be updated.

In the same manner, the density at each point in the system is updated,

L

p(x,y) = Pf + fp1S(X' -x,Y' -y)ds. (13)
0

Finally, the position of each of the points in the membrane is updated based on the
velocity calculations completed above using the concept of the delta Dirac function:

n+1 n X nX - n =X Iffun(X n - X, y -y)dxdy, (14)
dt Y(4

9



where the variable in question is x+'. Thus equation (9) ensures that all values in the
grid that are not near the objects are set to zero.

2.2 Three-Linked Swimmer

For a rod in viscous fluid, the following Lagrangian equation can be used to describe
the behavior [ 1 6]:

t = l m(i2 + 2) + Itb 2 (15)
2 2

where the first term corresponds to the translational behavior, and the second term
describes the rotational kinetic energy associated with a rod. The mass of the rod is
denoted with the variable m, the moment of inertia with I, while the coordinates of the
rod at a given time are described with x and y. The angular orientation of the rod is
reflected by the variable P.

The viscous effects of the rod are included in this approximation through the use of
the Raleigh dissipation function:

=1 2 1 129 Crl (x2 cos2 0 + 2 sin2 ¢) + lCr (2 cos2 0 + 52 sin2 ) + 1Cro2 ( -(a - r I) sin 0 cos 0
2 2 2

(16)

Thus, the Euler-Lagrange equations thus modified become:

d dt dL d9l
-_( -) __ + . = 0, (17)

dt' dq d

and thus the equations of motion become,

m = -.x(oH cos2 0 +'± sin2 ) + (6r- ruI)sinocoso, (18)

my3 = (.- cUII)sinocoso->(o u sin2 0 + a, cos2 ), (19)

I,= Co, (20)

Thus, if q is used as a vector to describe the position and orientation of the rods, the
equations of motions may be simplified to be written as:

qi=M- (-J2 -FD) (21)

in matrix format. The form in (21) is used in order to facilitate the inclusion of
constraints regarding the interactions between the links of the swimmer. J is the

Jacobian matrix of the constraints Ji,a = df , where the constraintsf can be defined
dqi

in the following manner:

f 2i- (q) = 0 = q3i+l - q3i-2 - a(cos q3i + cosq 3 i+3), (22a)

10



f2i = 0 = q3i+2 - q3i- - a(sin q3i + sin q3 +3 ), 

J3i = time dependant coordinates required to define positions of each link,
(22c)

where i =(1 .... n), where n is the number of coordinates. In the particular case of the 3-
linked swimmer in question, n is 9, and alpha becomes 6.

Following the definition of the matrix J, the dimensions of the matrix are 4x9. Using
the chain rule in equation (21), we find:

d 2 f ,3n 3n 3n

0 - 2 = E Jja j +E q I id a (23)
~t j=1 i=l =, dqj

Substituting expression (23) into (21) results in an expression for the Lagrange
multipliers, and thus the positions can be solved for numerically.

In order to solve for the Lagrangian multipliers lambda, equation (23) is simplified to
the following expression:

3n 3n .dJJ:j ="=q, d -ia , (24)
i=1 j= dq

in matrix format, and this expression is used to find the equivalent expression for the
acceleration in terms of the positions q. This expression for the acceleration in terms
of J and b is substituted into relation (21) to determine a direct expression for the
Lagrangian multipliers:

b = (M - (;))T jo, (25)

where M is the identity matrix of the mass and inertia terms.

In order the facilitate the matrix multiplication, the following matrix relations were
used:

(A T )T =A, (26)

(AB)T = BTA T, (27)

where A and B are arbitrary matrices, and the superscript T indicates the transpose of a
matrix.

Manipulating relations (26) and (27) for equations (25) and (21), an expression for
lambda is determined to be,

A = bT(J T M-1J)-' (28)

where the superscript T indicates the transpose of a matrix.

11
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Using a Runge-Kutta method to integrate the equations of motion, the positions at a
specific time can be calculated.
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3. METHODS

In the following section, the system setup and the procedural steps that were taken to
complete this study will be outlined.

3.1 Computer Setup

To complete this study, a Toshiba Satellite 5005 laptop with a Pentium III processor
was utilized. Version 6.0 of MATLAB was used, and the Dev C++ program was the
compiler program operated.

3.2 Computer Code for Numerical Simulation of Three-Linked Swimmer

The equations of motions were simplified using a Lagrangian multiplier method, and
a combination of MATLAB and C++ was used to solve the equations of motion
numerically.

The actual code utilized during this study can be found in section A.2 of the Appendix
section. Four codes were used: codel.cpp was used to initialize the variables,
followed by gauss.m, a MATLAB file, and then code3.cpp was used to find the new
positions. After the first run, code2.cpp was used in place of code 1.cpp, followed by
gauss.m, then code3.cpp.

3.3 Rigid Three-Linked Swimmer Apparatus

The three-linked swimmer device that was used in this study was a machine designed
and created by the graduate student Brian Chan. In a resting position, the swimmer is
9 cm in total length, and 5 cm in height for the end links. The middle link was found
to have a height of 4.5 cm. Each link was found to be 2.5 cm in width individually.
Figure 5 illustrates the shape and size of the swimmer.

Figure 5: Three-Linked Swimmer (top view). This figure is a photo of the three-linked
swimmer in viscous fluid. The ruler and graph paper indicate the size of the swimmer.
The ruler at the bottom of the figure is measured in centimeters. The grid in the
background is divided into measurements of 1/8".
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Figure 6 illustrates the swimmer face side up to illustrate the features that are hidden
during movement.

H~~.

___t~~~~~~~~j T--aw

. v...s-. e . .. I A-................ .w- . . y~ .A. 'tinL 12id|f t|>|? T 1 

Figure 6: Three-linked swimmer (face up). This figure
illustrates the height dimensions of the swimmer.

Figure 7 shows the manner in which the three-linked swimmer was wound up before
it was set in motion.

Figure 7: Winding up of the three-linked swimmer. A small
screwdriver was used to set the swimmer in motion as illustrated in
the figure.

The movement of the three-linked swimmer was analyzed through the use of a video
camera that was setup on a tripod above the fluid and swimmer. Figure 8 illustrates
the apparatus setup.

14



Silicon
oil

Laminated grid paper to
measure magnitude of
movement

Figure 8: Experimental apparatus setup. Note that the
graph paper is immersed within the silicon oil fluid.

3.3.Flexible Arm Three-Linked Swimmer Apparatus

A variation on the rigid arm three-linked swimmer device was also used during this
study to examine the effects of arm rigidity upon swimming performance. These
experiments were also conducted in order the correlate with the immersed boundary
method effort in this study, because the immersed boundary method simulates the
movement of a flexible membrane. The arms were made of pliable rubber, and were
bendable, as demonstrated by figure 9.

Figure 9: Demonstration of the flexible arms of the swimmer.
Note that the arms can be easily bent.
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Figure 10 shows the flexible three-linked swimmer in an upright position to show the
similarities with the other design.

(,1- 00X,
_::'. |, It.- . ,.

* 
.,-.- N

i:

Figure 10: Demonstration of flexibility of membrane when
swimmer is in upright position. This figure underscores the
similarity with the rigid three-linked swimmer.

Figure 11 illustrates the three-linked swimmer in fluid. Once again,
used to measure the distance of travel of the three-linked swimmer.

grid paper was

Figure 11: Flexible Three-Linked Swimmer in Fluid. Note
the clarity of the graph paper lines in the background. The
degree of clarity enabled ease of data analysis after the
motion was recorded through a video camera.
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3.3.2 Three-Linked Swimmer Experimental Procedure

In order to analyze the velocity and magnitude of movement of the swimmer, several
experiments were completed, which consisted of recording on videotape the
movement of the swimmer in silicon oil fluid. The Canon NTSC 2R65 MC Digital
Video camcorder was used to take both still and video pictures. The swimmer was set
into motion through winding it up with a screwdriver. Through carefully analyzing
the film recorded, parameter such as the velocity and distance traveled per unit time,
were determined.

3.4 Immersed Boundary Code

The Immersed Boundary code utilized in this study was developed by Mederic
Argentina, a post-doctorate student with Professor L.Mahadevan at Harvard
University. This program runs in the Macintosh environment, and was written in the
C language. The simulation for the three-linked swimmer consisted of a torque of a
given magnitude applied at two points of a horizontal rod.

There are a variety of Immersed Boundary programs, including the original Immersed
Boundary Code constructed by N. Cowen, D.M. McQueen, and C.S. Peskin at New
York University, Titanium from the University of California at Berkeley, and the
graphical IBIS program written by David Eyre at the University of Utah. IBIS has a
graphical interface and requires little programming ability from the user. This
particular program was used because of the detailed graphical output at each time step.

17



4. RESULTS AND DISCUSSION

In this section, both the graphical representations of the data collected during
computational simulation and experimentation is presented. The significance of the
numerical simulations and experimental data with respect to the established theory is
also reviewed.

4.1 Numerical Analysis of Three-Linked Swimmer

The drag coefficients for the 3-linked swimmer were estimated using a Reynolds
number of about 0.1 [17]. The specific values utilized were: 44 for the drag parallel
to the flow, 55 for the drag perpendicular to the flow, and 50 for the rotational drag.

Figure 12 illustrates the progression of movement for each of the links. The time
dependant angle constraint has not been considered in these numerical studies.
However, figures 12 and 13 do indicate the magnitude of movement for a given time
period.

Movement of Links

-2.008 -2.006 -2.004

Movement in X-Direction of Link 1 (m)

0.1 0.1001 0.1002 0.1003

Movement in X-Direction of Link 2 (m)

-2.002 -2

0.1004 0.1005

2.001 2.002 2.003 2.004 2.005 2.006 2.007

Movement in X-Direction of Link 3 (m)

Figure 12: Comparison of Link Movement. The top graph shows the amount of link movement
for the left most link (link one), the middle graph shows the movement for the middle link, and
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the bottom graph shows the link movement progression for the bottom link. The starting position
for link 1 in the horizontal direction is -2 m, for the middle link is 0.1m, and for link 3 is 2 m. In
the vertical direction, link 1 moves 0.01 m downwards, link 2 moves 0.00483 m upwards, and link
3 moves 0.01442 m the upward direction.

Figure 1 indicates that the net motion of the swimmer in the horizontal direction for 7
seconds is 0.00483 meters, presenting a velocity of 0.069 cm/s, with movement in the
right hand direction. This figure shows that link 1 and link 2 move in opposite
directions of equal magnitude and thus the net movement is due to only the motion of
the middle link, link 2.

From the analysis of figure 1, it can be determined that the net vertical motion is
0.004903 m in the upwards direction. Once again, the vertical motion of the right
most and left most links cancel each other, and the motion is mostly due to the
dynamics of the middle link.

Figure 13 illustrates the angular movement of the links for the same time period
illustrated in figure 12.

Angular Movement of Links
fn AnU.QUZ

U

0.301

0.

n I
-2.012 -2.01 -2.008 -2.006 -2.004 -2.002

Movement in X-Direction of Link 1 (m)
0.2015 i l l 

e 0.201
0)*

- 0.2005 *

0.2 
0.0999 0.1 0.1001 0.1002 0.1003 0.1004 0.1005

Movement in X-Direction of Link 2 (m)
/','T' nAU. I V'4

(A

0.702
"o0)*0

- 0.7
al.

n rGP

I I I I I I I I I

I I I I I I I
v .v~ ·

2 2.001 2.002 2.003 2.004 2.005 2.006 2.007 2.008 2.009 2.01
Movement in X-Direction of Link 3 (m)

Figure 13: Comparison of Angular Movement. The top graph shows the angular movement for x
position for link 1, the middle graph for link 2, and the bottom graph for link 3. All three data
subplots plot data with phi increasing with increasing time.
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A constraint that specified the time-dependant angle change between the links was not
implemented in this version of the code. However, figures 12 and 13 show the
relationship between the angles and the approximate step size change in position and
angle for increasing time.

The numerical simulations show a uniform amount of change per time step. Table 
summarizes the magnitude of change for each link in each direction for a given time
step.

Table 1: Magnitude of change for one time step in each direction for each link

Link Net Amount of Change (m)
Link 1, x direction -0.001 36
Link 1, y direction -0.00137

Link 1, phi direction 0.000205
Link 2, x direction 6.9e-5
Link 2, y direction 6.9e-5

Link 2, phi direction 0.000136
Link 3, x direction 1.801 36
Link 3, y direction 0.00206

Link 3, phi direction 0.000478

4.2 Experiments with Three-Linked Swimmer

For one flap of the swimmer, the center link was found to move about 1.27 cm (0.5")
in the vertical direction, and about 0.635-0.953 (1/4"- 3/8") cm in the horizontal
direction. The horizontal velocity of the swimmer was found to be 0.106 cm/s,
moving 2.54 cm in 24 seconds.

4.3 Comparison Between Experimental and Numerical Analysis

It is difficult to make a direct comparison between the numerical data and the
experimental data because the numerical simulation did not take into account the time
dependant angle constraints. However, the magnitude of movement of the swimmer
for one flap of the swimmer, 0.01 m in the horizontal direction, was similar to the
magnitudes of movement predicted by the simulation. This similarity indicates that
the simulations present practical data that mimics the actual movement observed
during experimentation.

The numerical prediction for the velocity was found to be only 66% of the actual
value. However, this discrepancy is probably due to the estimation of the drag
coefficients and mass parameters. An inclusion of the time-dependant constraints
would also result in less of a difference. However, the computationally predicted
velocity captures the scheme of behavior very well, and provides a reliable
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understanding and prediction of the swimming behavior. Further refinement of input
parameters would assist in the creation of an even more accurate numerical model.

4.4 Immersed Boundary Method of Analyzing Three-Linked Swimmer

The immersed boundary method program used in this study used a graphical interface
to indicate the magnitude of pressure and velocity at different points along the
swimmer. Blue and colors close to the blue spectrum were indicative of high
magnitude and red and colors closer to red represented lower magnitudes. Green
represents zero magnitude. Although the captions were written with a color copy of
this study in mind, there are also included parenthetical references to the black and
white image of the figures. In a black and white copy of the immersed boundary
images, red appears as dark gray, while the blue spectrum appears in lighter shades of
gray. Thus, in the case of a black and white copy of figures 14- 26, the reader can
discern points of highest magnitude by the intensity of darkness, as the darkest areas
would correspond to the areas of highest magnitude, and the lighter areas indicate
areas of lower intensity.

Graphical data was collected and saved at intervals of 60 iterations in calculations.
The time referenced to in the figure caption refers to the number of 60 iterations
completed.

The behavior modeled in these computational simulations deviates slightly from the
actual mechanical movement in that the two arms are moving simultaneously. In the
actual mechanical apparatus, one link moves after the other. The computational
immersed boundary program simulates the movement of the swimmer by applying a
specified torque at one-third, and two-thirds of the length of the rod.

4.4.1 Pressure Distribution

Figures 14-20 illustrate the pressure distribution of the three-linked swimmer when a
perturbation in the fluid is applied. Figure 14 shows the pressure distribution in the
fluid around the three-linked swimmer at time=0.

Figure 14: Pressure distribution of three-linked
swimmer at t=O when a perturbation to the fluid is
applied. The red dots (the darkest points) in the
middle of the figure indicate the point of
perturbation.

Figure 15 shows the pressure distribution after 5 (times 60) iterations. The immediate
effects of the perturbation pressure are no longer evident, but the perturbation creates
torque and ensuing movement in the swimmer.
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Figure 15: Pressure distribution of three-linked
swimmer at t=5. At this point, the greatest
pressure seems to be underneath the middle link,
with some pressure in the fluid above the middle
link. There is no pressure distribution in either
of the two arms at this point.

Figure 16 shows the pressure distribution after 2 more iterations.

Figure 16: Pressure distribution at t=7. As an
increasing amount of torque is applied at two
points, small amounts of pressure are created at
the undersides of the arms, as indicated by the
red coloring. However, even as the arms begin to
move, the greatest amount of pressure occurs on
the bottom side of the middle link.

Figure 17 illustrates the pressure distribution after 8 iterations.

Figure 17: Pressure distribution at t=8. As the
arms continue to move, the pressure
distribution increases and moves toward the
upper portion of the arms of the swimmer. The
link on the left and right sides are moving
upwards at this point.

Figure 18 is a depiction of the pressure distribution after 9 iterations. At this point in
the sequence, there seems to be the most dramatic increase and change in the pressure
distribution.
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Figure 18: Pressure distribution at t=9. This
figure demonstrates the continuously
varying pressure distribution through the
three links. The magnitude of the pressure
seems to have decreased through the entire
structure as the swimmer reaches a more
stable configuration, as indicated by the red
color (dark gray) through the arms.

Figure 19 shows the pressure distribution after 13 iterations, and figure 20 is the final
graphic in this sequence, and this figure shows the pressure distribution when the
swimmer reaches a steady state configuration.

Figure 19: Pressure distribution at t=13. As the
swimmer arms continue to progress upward,
the pressure intensity increases, as indicated
by the blue in the underside of the links..

Figure 20: Pressure distribution at t=15. At this point,
which is similar to the final position of the three-link
swimmer, it is evident that the majority of the pressure is
centered at the middle link.

. :.. :_ '... : L J': ' A,2 1.!. ' ' .i : 
.
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The graphical data presented in this section suggests that the pressure becomes the
most intense in movement, and that the center link would play an important part in
determining the direction and position of motion of the entire swimmer.
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4.4.2 Velocity Distribution in Horizontal Direction

The distribution of velocity in the horizontal direction is captured in figures 21-23.

Figure 21: Horizontal velocity distribution at t=2.
The blue dot in the bottom half of the figure
indicates a perturbation at high velocity. The red
dots on either side of the rod indicate the
increasing horizontal velocity as the torque at the
rods increases.

Figure 22 illustrates the velocity distribution after 9 iterations, and this figure is
interesting because it shows the rapid distribution of velocity around the structure.

Figure 22: Horizontal velocity distribution at t=9.
As the end links continue to move, horizontal
velocities on alternate sides of the swimmer
increase, as indicated by the red (dark gray)
coloring.

Figure 23 is the last figure in this sequence, and this figure illustrates the horizontal
velocity distribution at steady state conditions.

Figure 23: Horizontal velocity distribution
at t=15. As the swimmer reaches a stable
configuration, the swimmer is found to lean
in horizontal velocity in one direction, as
the right link has a higher velocity than the
right.
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The velocity distribution for steady state position shown in figure 10 indicates that the
swimmer would move in the right hand direction, and this prediction agrees with the
numerical simulation data presented in section 4.1 of this study.

4.4.3 Distribution of vertical velocity

Figures 24-26 describe the velocity distribution in the vertical direction.

Figure 25 illustrates the velocity distribution after 9 iterations.

Figure 24: Velocity distribution in the vertical direction at
t=3. This figure shows a parallel distribution of vertical
velocity on either of the end links. There is a comparatively
smaller horizontal velocity on the middle ink. The blue dot
(gray) in the center indicates the perturbation in the fluid.

Figure 25: Velocity distribution in the vertical
direction at t=9. The vertical velocity on the end
links is shown to increase for progressing time as
the color has turned blue, while the vertical
velocity in the middle link does not increase in
magnitude, but the sphere of the fluid affected by
the middle link gets larger.

Figure 26 shows the vertical velocity distribution when the structure has reached a
steady state position.

Figure 26: Vertical velocity distribution at t=15. At
the stable configuration, the vertical velocity at the
ends is shown to increase in sphere as well as
magnitude, and the middle link is also shown to have
an increasing influence on the surrounding fluid.
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4.5 Experiments with Flexible Armed Three-Linked Swimmer

The flexible armed three linked swimmer was found to be much more efficient in
performance than the rigid three-linked swimmer. On average, this construction was
found to swim at an average speed of 0.332 cm/s in the horizontal direction. The
distance of travel in the vertical direction was once again found to reach a maximum
of 2.54 cm.

However, even this apparatus contained some rigidity in its construction. The arms
were attached by rigid clips, and because of the overall small size of the swimmer,
this accounted for about one-fourth of the total surface area.

4.6 Comparison of Flexible Armed, Rigid Armed Three-Linked Swimmer, and
Numerical Predictions

The flexible armed swimmer was found to be 3.13 times faster than the rigid armed
swimmer. The speed of the flexible armed swimmer was 4.8 times faster than the
numerical simulation data presented. The large difference between the numerical
simulation data and the flexible armed swimmer experimental values indicate that the
model presented in this study applies only to the rigid armed swimmer. The
experimental data suggests that the analytical model presented in this study must be
modified with other constraints and conditions in order to pertain to the behavior of
the flexible armed swimmer.

Figure 27 illustrates the difference between the movement of the flexible armed and
rigid armed three-linked swimmer.
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Figure 27: Difference between rigid armed and flexible armed swimmer. The dotted lines
represent the linear regression lines, which were added to underscore the dramatic difference in
slope between the two lines. The red stars represent data collected for the flexible armed
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swimmer, and data from two separate collections is given to corroborate the repeatability of data
point collection. The rigid armed swimmer is shown to have more uniform velocity, while the
flexible armed swimmer is more susceptible to change.

4.7 Sources of Error

The data presented in this section suggest that the theoretical model and the
experimentation conducted are in harmony with each other. However, the numerical
model could be refined to greater accuracy if the drag coefficients had been
determined with a greater degree of accuracy. Although the drag coefficients used in
the numerical code are fairly accurate estimates, using experimental and analytical
techniques to find drag coefficients could result in a model with even higher accuracy.

As mentioned earlier, an inclusion of constraints that consider the time-dependant
angle change between the links, as indicated in the theoretical analysis, would also
result in a model with even higher accuracy.

As previously discussed, the immersed boundary computer program used in this study
simulated the motion of the three-linked swimmer by applying a torque
simultaneously at one-third and two-thirds of the length of the rod. In other words, the
graphical simulation presented in this study considers a three-linked swimmer that
moves by flapping both links at the same time, which is a behavior that differs from
the mechanical apparatus used in this study. Although the pressure and velocity
distributions obtained in this study would vary slightly from the fluid-structure
interactions seen when only one link is moving, the graphical data procured does
apply because it still illustrates the overall trend of movement.

The experimental data was difficult to collect in some respects for long periods of
time because the mechanical apparatus had to be wound up with a screwdriver, and
often quickly ran out of "power." Future experiments examining the swimmer for
longer periods of time or many more sets of collections would add validity to the
experimental data presented in this study.
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5. CONCLUSIONS

The analytical model presented seems to capture the overall trends of the three-linked
swimmer described in this study. Predictions for movement in the x, y, and phi angle
directions for each link were determined using numerical simulations. The numerical
prediction for velocity in the x-direction, 0.069 cm/s was found to be 66% of the
value derived from the experimental data, 0.106 cm/s. However, a close examination
of the numerical trends in the computational model validates the use of this model to
study the behavior of the three-linked swimmer. The numerical data also indicates
that the motion of the middle link is responsible for net motion. The movement of the
end links was shown to move in nearly equal and opposite directions, canceling the
movement of the end links. The flexible armed swimmer model proved to be the more
efficient swimmer than a rigid construction, being more than three times faster than
the rigid armed swimmer, with a velocity of 0.332 cm/s. The immersed boundary
computer program enabled a close study of the pressure and velocity distributions at
various points in movement.

A further refinement of this analytical model would include the addition of the time-
dependant angle constraints and more precise drag coefficients. The data in this study
suggest that flexible material work much more efficiently in viscous fluid than their
rigid counterparts. It would be interesting to conduct future experiments with flexible
arms in the three-linked swimmer using arms of varying sizes and thickness to further
understand the mechanics of these phenomena and to find the conditions for optimal
performance. It would be interesting to continue further study on the differences
between the two types of arms, flexible and rigid, because of the industrial
applications to which these conclusions could be applied, which include airplane
wings.

28



REFERENCES

[1] Becker, L.E., Koehler, S.A., & Stone, H.A. 2003 On Self-Propulsion of Micro-
Machines at Low Reynolds Number: Purcell's Three-Link Swimmer. J. Fluid
Mech. 490, 15-35.

Analyzes the three-link swimmer first discussed by Purcell; the simplest organism
that can swim in a viscous medium.

[2] Berg, H.C. 2002 How Spiroplasma might swim. J. Bacteriol. 184, 2063-2064.

"Proposes that small helical bacteria called Spiroplasmas might propel themselves in
a manner similar to Purcell's swimmer but with non-parallel axes of bending for the
two idealized joints."

[3] Bonner, J.T. and T.A. McMahon. (1983). On Size and Life. New York: Scientific
American Library.

Discusses effects of organism size in movement and other facets of life.

[4] Camalet, S., Julicher, F. & Prost, J. 1999 Self-organized beating and swimming of
internally driven filaments. Phys. Rev. Lett. 82, 1590-1593.

Studies flapping filaments with various boundary conditions to understand the
mechanics of motion

[5] Chan, Brian. "Propulsion in Viscous Fluids: Purcell's Three-Link Swimmer,"
[Online document], 2002, [2003 September 5], Available HTTP:
http://web.mit.edu/chosetec/www/robo/31link.

Mechanical model of Purcell's three link swimmer

[6] Eyre, D.J. and Fogelson, A.L. "IBIS: Immersed Boundary and Interface Software,
A User Guide," [Online document], 1997, [2003 November 3], Available
HTTP: http://www.math.utah.edu/IBIS.

An implementation to perform the immersed boundary method which requires little
knowledge of fluid dynamics on the part of the user.

[7] Goldstein, R.E., Powers, T.R. & Wiggins, C.H. 1998. Viscous nonlinear dynamics
of twist and writhe. Phys. Rev. Lett. 80, 5232-5235.

Using geometric kinematics, viscous dynamics governed by elasticity, examines the
mechanisms of supercoiling, as those exhibited by the B. subtilis bacteria.

[8] Gray, J. How Animals Move. (1953). Cambridge University Press: New York.

Discusses through illustrations and basic physics the reasons behind animal
movement.

29



[9] Gueron, S & Levit-Gurevich, K. 1999. Energetic considerations of ciliary beating
and the advantage of metachronal consideration. Proc Natl Acad Sci USA 22,
12240-12245.

[10] Koehler, S.A. & Powers, T.R. 2000 Twirling elastica: Kinks, viscous drag and
torsional stress. Phys. Rev. Lett. 85, 4827-4830.

Looks at the relationships between viscous drag, twisting, and bending, as affecting a
rotating rod with a kink submerged in fluid.

[11] Peskin, C.S. 2002. The immersed boundary method. Acta Numerica, 1-39.

Discusses the basic principles and detailed mathematics of the immersed boundary
method.

[12] Peskin, C.S. and McQueen, D.M. A general method for the computer simulation
of biological systems interacting with fluids. Biological Fluid Dynamics, The
Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.

A tutorial for a user of the immersed boundary method.

[13] Purcell, E.M. Life at Low Reynolds Number. 1976 Lyman Laboratory, Harvard
University, Cambridge, Mass 02138

Describes the non-reciprocal motion necessary for movement in viscous fluids,
proposes that the simplest organism that can move in such an environment is one that
has a three-linked mechanism.

[14] Purcell, E.M. 1997 The efficiency of propulsion by a rotating flagellum. Proc
NatlAcad Sci 94, 11307-11311

Article regarding helical propulsion.

[15] Taylor, G.I. 1951 Analysis of the swimming of microscopic organisms. Proc. R.
Soc. Lond. 209 447-461

Discusses motion of a waving sheet in fluid to model the movement of microscopic
organisms with tails.

[16] Vella, D., Kim, H.Y., and Mahadevan, L. The wall-induced motion of a floating
flexible train. J. Fluid Mech. 772, 1-10.

Paper from which the model for the three-linked swimmer in this study was
developed.

[17] White, F.M. (1999). Fluid Mechanics. Boston: McGraw-Hill.

Basic fluid mechanics reference

30



[18] Zhang, Childress, Libchaber, and Shelley. 2000. Flexible filaments in a flowing
soap film as a model for 1-D flags in a 2-D wind. Nature 408, 835.

31



l

. - l

. l l

(n
(1)

n= --C�
= U4- +-�

C/� 0
t4--4

0 =

rn 0
(1)P U

E-

a)
E0
(1)

e's
U

.-l
.2el

0
as7

>
U -

=1

.2
U~

--.; -M
1�

U CD
U

44

>1

toD

0

o
m2

' 2
.

P :4

.�i

1�

ll�
ZZ-1�4)

I,:3
CL-�

.° U

o I = -

U WS

f i

) 79

s 'U.
4 oz

n Ca 

P. 3

V) . :

C> 'm

m ;o

cn

o

©

01

U

SH o\

0 
P O

Oz =
= o

oo E
U t-

.1

cn

-4
r�
M0

U0

i ---

t

o-cfnC)I

Crf

©-CX. -cn0U

0
,.-

¢ <

(A:

U U

6 'S

8 ,,
+ 1

x In

a 51

11 0

C/O

I-- 't

In
m
E

CL�0
.!:i
CLI14

T;
t)

C)
CI
11

-W

SCj

_43 C3

C,3 la, Cd

,DIgO Q)

U tiD II.

o 21 

oCD g 



0= :;

0. 
-

0. 0 =., CC= t

, O

0 

oCZkn Qo0 ~~c 

0 o ¢ ¢ *W <l 

C- 1° z 0

C-~~~~~~~~~-

0 ~~ ~ ~

-̂  -- 0 _ = ,V

* 0 0 C) 0: Q c 
_~~~~~ 

0
~o
0

sm*-0 

0, t0 
°, _

Q C

F. _

Q-li
CQ

c) 

oi Eu ;2
< m

0 aU -

N' .=
< Me
7 t

u 0

et
2 m -

- P =

a C)O0 C0CZ 0 a) 0 0
;:- - O-0 0 -to (
P, .= -V CZ

0

0
.0
u
w

C

0 -

O0 =C)

, .=4

0-

. 4.

0

CX -p

0 3

'A 0

0 � 0
- -o �

2 � *CIC 0
ui�� � 0

� -o

�*s �
0 �

0 � - * -

.- 0

a

/

+

. X1
P.00

Ct

.
o

.2mO

l

l

I;
-I-)

rt

k
ZZ
14�

I

Z�
�z

�z
01,- -----

q 



o

_. U
0

rz :3 EHu , o5 E
, 

V5iV
C -

=: u
_< V)

o2 E

0 

r- =

C -* 0
N '

c o50 0
Ct -: C.

0

U) -

o~.c¥'"i o=... a= 0 0 0 0 m g ~ A ^e ,. .. _ g.~ o

o0 0 - 0 
·) 0 , , .o ~

"r o .t< ° 

_ "0 0 4· F~ +~~~~~t0 I ~~ U) ~~ ~ cNI-. 

4~~~~~~~ 

7;
.2
'17
7::

..!

C) -Ln 0
.c,: U (
. =
0 = ==; p
0 = 0:
2' 
E ^q -U

20 4_

2 2
O..

x
00

~00C",s-3
C

V
o,

U)

-

4

S 0:z ',Trz 

( AZ-l 0

-o

_o

00
.2

E ~o .5 .-

to
0.,C-. C:a: U) -~

*- 0 0 0

En 0 ,.
0 O 

;_ 0

0
U)0

U) -
U) 0

0 '~~

0.
= d0

1 V.

0
0.

l

ll�
14)

-lz

to
TZ

11Z



= A =.
CQ t =U) c, 

' 0 C

VU t.0

= toW°
_

A 'y O

N 4 CZ

U O 0
<t -C * = 2 0 M 0 * l. 

-cl 
st) ) . O 

_ ~~~~~~~~b
- -~~~~~ U) ~~4

m
U).o Ei

U),' 0
0
. C

0 (A

= v

E E
Q~ K

x

1�CII
Z,. "�z

i z

�z I�t
�z

1�

E

C)

5~

g-I
cn

03ctmm)c~
.o

.o

tU



|

7;

.2
2: 

M~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7-
g2
I..0
e
zl

i'e

to

-2
m

7�

�2
.141
0.

9 Z ZwR 

-N ._:

=C)

t
Z -

v Ct 
O ) -

C C

= En

Ct u
m

u 

O CZ
5" -
° C)

, 4O
= 0
R C

EL 

_CQ
M=

M M
V a)

m

to = .j_
0 ct CV

.2 = C)

1 .5 I-

b A0 ct

= 1, 0 

:z C~ =0 8 t

N ._;

= a)
o U

t> 0

En Co -

O . U

CC E
,I ._

Ct CZv m

"n

$51
C)
E
M
rz
4.

U - CO

o 
_ m D,.~

¥-
I
s
Ln

11

1+ C3
0 1

O $5
0 0
iu M
= j<4 ,,
Ct tb
uS O
_6 2
'R 
= *x°

O *g
v; :L

.= ** 0 0

CZ= t5 M
�1'- A.C'S
- 40..4

'Etc) Q)OU q);..
E z ::t" �: -.= $.. 0..- - = .- 9 0

"Cl C,3 R -

U 0
0

O O 

$.. =(IJ'

a >=,
cc .t E t o,

.X C._X .
+ -QC , 

4 5.

_ cl 

% t s_ sb ._



_

07, .
'7 2'n 0
o ;��a.
2
:= C

4.

7e

S
¢

.2

Ei

tb-.
�2
CIZ
Z

.2
biD
.2
.2 -

Q, Z.- -z
Ln Z .-
CZ :: Z�- �z

�z -

"Z Z ;Z

Z! �3ll� - Q. LnI �Z -,

Q

o '

= Z)

(n -

W: - F

a)ct._~~~~~~~0 
o~~~~~~~~n =

*-~~~~~~ ,..

O~~~~~~~c 

Z

%
( =

· ,,,..

. ,,..= Z= .4

) _

" 2
E

la

C -

Z
C)

= C
a )
4
0
Zt:

(n - E

I. C Q

CZ0 -

la=.

o u

= r

0 PA
lu
t (ACu .V] .

._ u

... Vu

C) Ct

o <- r )C

ct=5. c : 

Cu 

o,

*: 4

I=0
4

0
*._ 0 

3 4, < -

. e

0 = c" .,

c= 0 <
x C

._ ae r4 W

,to
Z - -
C) u ct

e: -t:3 -�S.

0 .�O.= .0
U 'n = .-
,�� Z lt�s.. 0 0 =t�o .-- 0
u (n 0

- = UV .5 5
m - .2
"i, .4p
- �r ;;�-
W) -

-

C)

m

CG

. m. v =

W a) * �_ = s_ m

> ') X 3
a) ct Q =

a) < i,5 .c

Q o > W

e g = oB
Q s_ o Q_ e *= X
ce v Ce

o _t >

-

la

ct

ct



U)'t _~4=

* - U)

CU )_u _

0;= 00
= 0. (n3- 0

;. t
: VE

au o
ut

o n

(A
0 C)

0 -) .-M 0tC
VO =. 

5 = u

0;,. cQ =

c .3

U3 )= 00
0 C--0
'A

U) 0 

u - 0

0 ~.-r
*. ~o 

U)

q0 0 0 0E 

Vot

1 oU
-

) C

- Q
g

.=03 E~

)3 0wia3

_ M

O C>

U) 

c) X;o

0

7F0

U)

0 E

0A - C

U) 0 o= W° 
0 -W
*C v)

o 0U

0 i

E U

- 7-

ct =

00:) .w* 

-0
U

.

r 
C. n 

3= IC
U)

0 *
I0c

*) v

0
-6 U

0 -
o- 1

U)

- -

..

0
.* -

- -

P.

Zo u

C

,0 

c

CZct 

EC

0-
C) ver v

.

0
0
z.r
E
ZE

o

0 F

r -o
t M 'o *a
C S3

to
=2
M

ct

.2
m

.-
7> 00

*i;

.

.

|

-z 1�4
(Z -

Q�
'Ifz i tz
- -lZ.1
�z
ct�



A2. C++ Code used to Initialize Variables and Determine Equations of Motion
only for first time the simulation is run

//codel.cpp

#include <iostream.h>
#include <stdlib.h>
#include<conio.h>
#include<math.h>
#include<stdio.h>
#include<fstream.h>

//link 1: the left, link2: the center, link 3: the right

void defineInitial(double q[9]);
void findForce(double f[9], double q[9]); //calculates the
drag force on the links
void findB(double b[9], double q[9]);
void createJ(double q[9], double J[9][4]);
void makeM(double M[9] [9]);

double dt=l.5; //change in time to determine the velocity and
acceleration for the given position
double dragpar=44, dragperp=55, dragrot=50; //the force drag
coefficients
double a=0.3;
double m=0.5, I=0.6;

int main() //make size of vectors x*y in for loops (from
smaller functions)

{
double q[9]={0}; //describes the positions and

orientations of the rods
double f[9]={0}; //describes the forces
double lambda[4]={0}; //defines lambdas
double J[9] [4]={0};
double b[9]={0};
double qddot[9]={0};
double M[9] [9]={0};
defineInitial(q);

findForce(f, q);

findB(b,q);
createJ(q, J);

ofstream output;
output.open("c:/THESIS/3Link/q.txt", ios::out);

for(int x=l; x<10; x++)

{
output << q[x] << endl;
cout << q[x] << endl;

getch} ;
getch();
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return 0;

}

void makeM(double M[9] [9])

{

MIll [1] =m;
M[2] [2]=m;
M[3] [3]=I;
M[4] [4]=m;
M[5] [5]=m;
M[6] [6]=I;

M[7] [7]=m;
M[8] [8]=m;
M[9] [9]=I;

}

void

{

createJ(double q[9], double J[9][4])

ofstream outputa;
outputa.open("c:/THESIS/3Link/J1. txt",
ofstream outputb;
outputb.open("c:/THESIS/3Link/J2.txt",
ofstream outputc;
outputc.open("c:/THESIS/3Link/J3.txt",
ofstream outputd;
outputd.open ( "c:/THESIS/3Link/J4.txt",
ofstream outpute;
outpute.open("c:/THESIS/3Link/J5.txt",
ofstream outputf;
outputf.open("c:/THESIS/3Link/J6.txt",
ofstream outputg;
outputg.open("c:/THESIS/3Link/J7.txt",
ofstream outputh;
outputh.open("c:/THESIS/3Link/J8.txt",
ofstream outputi;
outputi.open("c:/THESIS/3Link/J9.txt",

J[l] [1]
J[3] [1]

J[4] [1]

J[6] [1]

J[2] [2]

J[3] [2]

J[5] [2]

J[6] [2]

J[4] [3]

J[6] [3]

J[7] [3]

J[9] [3]

J[5] [4]

J[6] [4]

J[8] [4]

J[9] [4]

ios::out);

ios::out);

ios::out);

ios::out);

ios::out);

ios::out);

ios::out);

ios::out);

ios::out);

= - 1 ;

=a*sin(q[3] );

=1;

=a*sin(q[6]);
=-1;

=-l*a*cos(q[3] );

=1;

=-l*a*cos(q[6]);
=-1;
=a*sin(q[6]);
=1;
=a*sin(q[9] );

=-1;
=-l*a*cos(q[6]);
=1;
=-l*a*cos (q [9]);
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for(int x=l; x<5; x++)

{
outputa << J[l][x] <<

}
for(int x=l; x<5; x++)

{
outputb << J[2] [x] <<

}
for(int x=l; x<5; x++)

{
outputc << J[3] [x] <<

for(int x=l; x<5; x++)

{
outputd << J[4] [x] <<

for(int x=1 ; x<5 ; x++ )

outpute << [5][x <<for(int x=1; x<5; x++){

outpute << J[5] [x <<
}

for(int x=l; x<5; x++){

outputf << J[6] [x] <<

for(int x=l; x<5; x++)

outputg << J[7] [x <<
}

for(int x=l; x<5; x++)outputh << J[8] [x <<
}
for(int x=l; x<5; x++)

{
outputi << J[9] [x] <<

}

endl;

endl;

endl;

endl;

endl;

endl;

endl;

endl;

endl;

void findB(double b[9], double q[9])

{
for(int i=1; i<=9; i++)

{

b [1] += ( (q[i]/d) *(a'cos (q [3] ) )*(q [3]/dr) )+ ((q [i]/dr) *(a'cos (q [

6]))*(q[6]/dt)); //for when alpha is one

b[2] += ( (q[i]/dt) * (a*sin(q[3] ) ) * (q[3]/dt) ) + ( (q[i]/dt) * (a*sin(q[

6]))*(q[6]/dt));

b[3]+=((q[i]/dt)*(a*cos(q[6]))*(q[6]/dt))+((q[i]/dt)*(a*cos(q[
9] )*(q[9]/dt));

b[4]+=((q[i]/dt)*(a*sin(q[6]))*(q[6]/dt))+((q[i]/dt)*(a*sin(q[
9]))*(q[9]/dt));

}
ofstream outpute;
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outpute.open("c:/THESIS/3Link/b.txt", ios::out);
for(int x=l; x<5; x++)

{
outpute << bx] << endl;

}

void findForce(double f[9], double q[9])

{
f[1]=-

1*(q [1] /dt) * (dragpar*cos (q [3] ) *cos (q [3] ) +dragperp*sin (q [3] ) *si
n (q [3] ) ) + (q [2]/dt) * ((dragperp-dragpar)*sin (q [3] ) *cos (q [3]));
f[2] = (q [1] /dt) * ((dragperp-dragpar)*sin (q [3] ) *cos (q [3] ) ) -
(q [2]/dt) * (dragpar*sin (q [3] ) *sin (q [3] ) +dragperp*cos (q [3] ) *cos(
q[3]));
f [3] =-l*dragrot* (q [3]/dt);

f[4]=-
1*(q [4]/dt) * (dragpar*cos (q [6] ) *cos (q [6] ) +dragperp*sin (q[6] ) *si
n (q[6] ) ) + (q [5]/dt) * ((dragperp-dragpar)*sin (q [6] ) *cos (q [6] ));
f [5] = (q [4]/dt) * ((dragperp-dragpar)*sin (q [6] ) *cos (q [6] ) ) -
(q[5]/dt)*(dragpar*sin(q[6] )*sin(q[6] )+dragperp*cos(q[6] )*cos(
q[6] ));

f [6] =-l*dragrot* (q[6] /dt);

f[7]=
1*(q[7]/dt) * (dragpar*cos (q[9] ) *cos(q[9] ) +dragperp*sin (q[9] ) *si
n(q[9] ) ) + (q[8] /dt) * ((dragperp-dragpar)*sin(q[9] ) *cos(q[9] ));
f [8] = (q[7]/dt) * ((dragperp-dragpar)*sin(q[9] ) *cos(q[9] ) ) -
(q[8] /dt) * (dragpar*sin (q[6] ) *sin (q[9] ) +dragperp*cos (q[9] ) *cos(
q[9] ));
f[9]=-l*dragrot* (q[9]/dt)

ofstream outputf;
outputf.open("c:/THESIS/3Link/f.txt", ios::out);
for(int x=l; x<10; x++)

{
outputf << f[x] << endl;

}

void defineInitial(double q[9]) //set initial conditions, in
the order xl, yl, phil, x2, y2,phi2, x3,y3,phi3 stored in the
vector q

{
q[l] =-2;
q[2]=--2;

q[3]=0.3; //degrees must be in radians
q[4] =0.1;
q[5] =0.1;
q [6] =)0.2;

q[7] =2;
q [8] =3;
q[9] =0.7;

}
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A3. C++ Code used to Initialize Variables and Determine Equations of Motion
after first run (used in place of codel.cpp)

//code2.cpp

#include <iostream.h>
#include <stdlib.h>
#include<conio.h>
#include<math.h>
#include<stdio.h>
#include<fstream.h>

void readFile(double temp[9]);
void defineInitial(double q[9]);
void increase(double Y[18], double F[18], double temp[9]);
//solve ODE using 2nd order Runge-Kutta Method
void function(double F[181, double temp[9], double Y[18]);
void defineInitial2(double q[9]);

double dt=l.5;
double dragpar=44, dragperp=55, dragrot=50; //the force drag
coefficients

int main()

{
//define variables
double temp[9]={0};
double q[9]={f0} , Y[18]={O} , F[18]=f0};

// defineInitial(q); //first time
defineInitial2(q); //second time
readFile(temp);

//determine initial conditions
for(int x=l; x<10; x++)

{
Y [x] =q x]/dt;

}
ofstream outfiler;
outfiler.open("c:/THESIS/3Link/position.txt", ios::out);

increase(Y, F,temp);

cout << "Position is: ";
for(int x=10; x<19; x++)

{
cout << q[x-9] <<" " << Y[xl << " " << q[x-9]+Y[x] <<

endl;
outfiler << Y[x]+q[x-9] << endl;

}

getch();
return 0;

}
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void readFile(double temp[9])

{
ifstream infile("c:/THESIS/3Link/data.txt");
for(int i=O; i<9; i++)

{
infile >> temp[i];

}

void defineInitial2(double q[9])

{
ifstream infile("c:/THESIS/3Link/q.txt");
for(int i=l; i<10; i++)

{
infile >> q[i];

}

void defineInitial(double q[9]) //set initial conditions, in
the order xl, yl, phil, x2, y2,phi2, x3,y3,phi3 stored in the
vector q

{
q[l] =-2;
q[2]=-2;
q[3]=0.3; //degrees must be in radians
q[4] =0.1;
q[5] =0.1;

q[6] =0.2;

q[7] =2;
q[8]=3;
q[9] =0.7;

}

void function(double F[18], double temp[9], double Y[18])

{
double h=0.00l;

F[l] =h* (temp [1] --
l*Y[1] * (dragpar*cos(Y[12] ) *cos(Y[12] ) +dragperp*sin(Y[12] ) *sin(
Y[12])) ) + (Y[2] * ((dragperp-dragpar)*sin(Y[12] ) *cos(Y[12])) ));
F[2] =h*(temp[2] - ( (Y[1] * ( (dragperp-

dragpar) *sin(Y[12] ) *cos (Y[12] ) ) -
(Y[2] ) * (dragpar*sin(Y[12] ) *sin(Y[12] ) +dragperp*cos(Y[12] ) *cos(
Y[12] )))));
F[3] =h*(temp[3] -(-l*dragrot*(Y[3] )));
F[4] =h* (temp [4]- ( (-
1*(Y[4] * (dragpar*cos(Y[15] ) *cos(Y[15] ) +dragperp*sin(Y[15] ) *si
n(Y[15] ) ) + (Y[5] ) * ( (dragperp-
dragpar)*sin(Y[15] ) *cos(Y[15] ) ) )) );
F [5] =h* (temp [5] - ( (Y [4] ) * ( (dragperp-
dragpar)*sin(Y[15] ) *cos(Y[15] ) ) -
(Y[5] ) * (dragpar*sin(Y[15] ) *sin(Y[15] ) +dragperp*cos(Y[15] ) *cos(
Y[15] ))));
F[6] =h*(temp[6] -(-l*dragrot*(Y[6])));
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F[7] =h* (temp [7] - (-
l*(Y[7])*(dragpar*cos(Y[18])*cos(Y[18])+dragperp*sin(Y[18])*si
n(Y[18: ) ) + (Y[8] ) * ((dragperp-dragpar)*sin(Y[18] ) *cos(Y[18] ) )));
F [8] =h* (temp [8] - ( (Y [7] ) * ( (dragperp-

dragpar)*sin(Y[18] ) *cos(Y[18] ) ) -
(Y[8] ) * (dragpar*sin(Y[18] ) *sin(Y[18] ) +dragperp*cos(Y[18] ) *cos(
Y[18]), ));

F [9] =h* (temp [9 - (-l*dragrot* (Y [9] ) ));
F[10]=h*Y[1];
F[11]=h*Y[2];
F[12]=h*Y[3];
F[13]=h*Y[4];
F[14]=h*Y[5];
F[15]=h*Y[6];
F[16]=h*Y[7];
F[17]=h*Y[8];
F[18]=h*Y[9];

}

void increase(double Y[18], double F[18], double temp[9])
//solve ODE using 2nd order Runge-Kutta Method

{
double Nsteps=6, notconverged=O; //the number of steps,
convergence test
double t=0, tf=3, h; //the starting time, the ending time,
and the increment variable
double Z[18]={0}; //holds temporary values
double Yold[18]={0}; //old Y
function(F,temp,Y);
for(int i=l; i<19; i++)

{
Z[i]=Y[i]+0.5*F[i]; //Y is the initial condition; F is the

force

}
function(F,temp,Z);
for(int i=l; i<=18; i++)

{
Y[i]=Y[i]+F[i]; //new velocity

}

A4. C++ Code Used to Solve Equations of Motion Using Runge-Kutta Method

//code3.cpp

#include <iostream.h>
#include <stdlib.h>
#include<conio.h>
#include<math.h>
#include<stdio.h>
#include<fstream.h>

//link 1: the left, link2: the center, link 3: the right
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void findForce(double f[9], double q[9]); //calculates the
drag force on the links
void findB(double b[9], double q[9]);
void createJ(double q[9], double J[9] [4]);
void makeM(double M[9] [9]);

double dt=l.5; //change in time to determine the velocity and
acceleration for the given position
double dragpar=44, dragperp=55, dragrot=50; //the force drag
coefficients
double a=0.3;
double m=0.5, I=0.6;

int main() //make size of vectors x*y in for loops (from
smaller functions)

{
double q[9]={0}; //describes the positions and

orientations of the rods
double f[9]={0}; //describes the forces
double lambda[4]={0}; //defines lambdas
double J[9][4]={f0};
double b[9]={0};
double qddot[9]={f0};
double M[9][9]={0};
double t=0;

ifstream infile("c:/THESIS/3Link/position.txt");
for(int x=l; x<10; x++)

{
infile >> t;
q[x] +=t;

}

findForce(f,q);
findB(b,q);
createJ(q,J);

ofstream output;
output.open("c:/THESIS/3Link/q.txt", ios::out);

for(int x=l; x<10; x++)

{
output << qx] << endl;
cout << q[x]<< endl;

}

getch();
return 0;

}

void makeM(double M[9][9])

{

M[1] [1]=m;
M[2] [2]=m;
M[3] [3]=I;
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M[4] [4]=m;

M[5] [5]=m;
M[6] [6]=I;
M[7] [7]=m;
M[8] [8]=m;
M[9] [9 =I;

void createJ(double q[9], double J[9][4])

{
ofstream outputa;
outputa.open("c:/THESIS/3Link/Jl.txt", os::out);
ofstream outputb;
outputb.open("c:/THESIS/3Link/J2.txt", os::out);
ofstream outputc;
outputc.open("c:/THESIS/3Link/J3.txt", os::out);
ofstream outputd;
outputd.open("c:/THESIS/3Link/J4.txt", los: :out);

ofstream outpute;
outpute.open("c:/THESIS/3Link/J5.txt", ios::out);
ofstream outputf;
outputf.open("c:/THESIS/3Link/J6.txt", os::out);
ofstream outputg;
outputg.open("c:/THESIS/3Link/J7.txt", os::out);
ofstream outputh;
outputh.open("c:/THESIS/3Link/J8.txt", ios::out);
ofstream outputi;
outputi.open("c:/THESIS/3Link/J9.txt", os::out);

J[i] [i] =-l;
J[3] [1]=a*sin(q[3]);
J[4] [l] =1;
J[6] [1]=a*sin(q[6]);
J[2] [2]=-l;
J[3] [2:]=-l*a*cos(q[3]);
J[5] [21]=1;
J[6] [21] =-l*a*cos(q[6]);

J[4] [3:1=-l;
J[6] [31=a*sin(q[6]);
J[71 [31=1;
J[9] [3]1=a*sin(q[9]);
J[5] [4=-1;
J[6] [4] =-l*a*cos (q[6]);
J[8] [4]=i;

J[9] [4]=-l*a*cos(q[9]);

for(int x=l; x<5; x++)

{
outputa << J[l] [x] << endl;

}
for(int x=l; x<5; x++)

{
outputb << J[2] [x] << endl;

}
for(int x=l; x<5; x++)
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outputc << J[3] [x] << endl;

}
for(int x=l; x<5; x++)

outputd << J[4] [x << endl;

}
for(int x=1; x<5; x++)

outpute << J[5] [x] << endl;

}
for(int x=l; x<5; x++)

{
outputf << J[6] [x] << endl;

}
for(int x=l; x<5; x++)

{
outputg << J[7] [x] << endl;

}
for(int x=l; x<5; x++)

{
outputh << J[8] [x] << endl;

}
for(int x=l; x<5; x++)

{
outputi << J[9] [x] << endl;

}

void findB(double b[9], double q[9])

for(int i=1; i<=9; i++)for(int i=l; i<=9; i++)

b[1]+=((q[i]/dt)*(a*cos(q[3]))*(q[3]/d
6]))*(q[6]/dt)); //for when alpha is o

b[2]+=((q[i]/dt)*(a*sin(q[3 ))*(q[3]/d
6])) * (q[6] /dt));

b[3]+=((q[i]/dt)*(a*cos (q[6]))*(q[6]/d
9]))*(q[91 /dt));

b [4] += ( (q [i] /dt) * (a*sin (q [6]))* (q [6] /d
9]))*(q[9] /dt));

}
ofstream outpute;
outpute.open("c:/THESIS/3Link/b.txt",
for(int x=l; x<5; x++)

{
outpute << b[x] << endl;

}
}

t) )+

ne

t) )+

((q[i] /dt) * (a*cos (q[

((q[i]/dt) * (a*sin(q[

t) ) + ( (q[i]/dt) * (a*cos(q[

It) ) + ( (q[i]/dt) * (a*sin (q [

ios: :out);

void findForce(double f[9], double q[9])

{
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f[1]=-

1*(q [1] /dt) * (dragpar*cos (q [3] ) *cos (q [3] ) +dragperp*sin (q [3] ) *si
n (q [3] ) ) + (q[2]/dt) * ((dragperp-dragpar)*sin (q [3] ) *cos (q [3] ));
f[2]='(q[l]/dt)*((dragperp-dragpar)*sin(q[3] )*cos(q[3] ) )-
(q [2] /dt) * (dragpar*sin(q[3] ) *sin(q[3] ) +dragperp*cos(q[3] ) *cos(
q[3]));
f [3] =-l*dragrot* (q [3]/dt);
f [4]=-

1*(q[4]/dt) * (dragpar*cos (q [6] ) *cos (q [6] ) +dragperp*sin (q [6] ) *si
n(q[6] ) ) + (q[5]/dt) * ((dragperp-dragpar)*sin(q[6] ) *cos(q[6] ));
f [5] = (q[4] /dt) * ((dragperp-dragpar)*sin (q [6] ) *cos(q[6] ) ) -
(q [5] /dt) * (dragpar*sin (q [6] ) *sin (q [6] ) +dragperp*cos (q [6] ) *cos(
q[6]));
f[6]=-l*dragrot*(q[6]/dt);
f[7]=-
1*(q [7]/dt) * (dragpar*cos(q[9] ) *cos(q[9] ) +dragperp*sin(q[9] ) *si
n(q[9] ) ) + (q[8]/dt) * ((dragperp-dragpar)*sin(q[9] ) *cos(q[9] ));
f[8] = (q[7]/dt) * ((dragperp-dragpar)*sin(q[9] ) *cos(q[9] ) ) -
(q[8]/dt)*(dragpar*sin(q[6] )*sin(q[9] )+dragperp*cos(q[9] )*cos(
q[9] ));

f [9] =-l1*dragrot* (q[9]/dt);

ofstream outputf;
outputf.open("c:/THESIS/3Link/f.txt", ios::out);
for(int x=l; x<10; x++)

{
outputf << f[x] << endl;

}

A5. MATLAB Code Used for Matrix Manipulation and Solving

%gauss.m - Perform matrix functions to be read into C++ code

%define m
m=0.5;
I=0.7;
M=[m 0 0 0 0 0 0 0 0;

0 m 0 0 0 0 0 0 0;

0 0 I 0 0 0 0 0 0;

0 0) 0 m0 0 0 0 0;

0 0 0 0 m 0 0 0 0;

0 0 0 0 0 I 0 0 0;

0 0( 0 0 0 0 m 0 0;

0 0 0 0 0 0 m 0;

0 0 0 0 0 0 0 I];

%define q
n=4;
fid=fopen('c:\THESIS\3Link\q.txt', 'r');
q=fscanf'(fid, '%f' , n);

%define J matrix
fid=fopen('c:\THESIS\3Link\Jl.txt', 'r');
Jl=fscanf(fid, '%f', n);
fid=fopen('c:\THESIS\3Link\J2.txt', 'r');
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J2=fscanf(fid, '%f', n);

fid=fopen('c:\THESIS\3Link\J3.txt', 'r');
J3=fscanf(fid, '%f', n);
fid=fopen( c:\THESIS\3Link\J4.txt', 'r');
J4=fscanf(fid,'%f', n);
fid=fopen('c:\THESIS\3Link\J5.txt', 'r');
J5=fscanf(fid,'%f', n);
fid=fopen('c:\THESIS\3Link\J6.txt', 'r');
J6=fscanf(fid,'%f', n);
fid=fopen('c:\THESIS\3Link\J7.txt', 'r');
J7=fscanf(fid, '%f', n);
fid=fopen('c:\THESIS\3Link\J8.txt', 'r');
J8=fscanf(fid,'%f', n);
fid=fopen('c:\THESIS\3Link\J9.txt', 'r');
J9=fscanf(fid,'%f', n);

J=[Jl'; J2'; J3'; J4'; J5'; J6'; J7'; J8'; J9'];

fid=fopen( 'c:\THESIS\3Link\b.txt', 'r');
b=fscanf(fid,'%f', 4);

%values for the force
fid=fopen('c:\THESIS\3Link\f.txt', 'r');
f=fscanf(fid, '%f', 9);

lambda=b' *inv(J' *inv(M)*J)

temp=-l*inv(M)*J*lambda'

%write the data to a file

fid=fopen( 'c:\THESIS\3Link\data.txt', 'w')
fprintf(fid, '%6.4f\n',temp);
fclose(fid)
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