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Abstract
In this thesis, we present a quantum walk algorithm for spatial search of a periodic
lattice. Our algorithm is a variation of the Childs and Goldstone algorithm for spatial
search, but begins in a randomly selected local initial state rather than a uniformly
delocalized one. We analytically calculate the running time of our algorithm on the
complete graph and find it to be O(1N). We reduce the analysis of our algorithm to
that of the Childs and Goldstone algorithm by comparing the eigenvalue conditions
of the Hamiltonians used in the two algorithms. We numerically show that the two
Hamiltonians have similar eigenvalue conditions when the starting state is a certain
extremal vertex of the lattice. We also study the behavior of the algorithm when we
move the start state away from this extremal vertex. Finally, we numerically analyze
the behavior of our algorithm on 5 and 4 dimensional lattices. In the 5 dimensional
case, we appear to be able to achieve a O(v-) running time. In the 4 dimensional
case, previous analysis indicates there may be additional factors of logCN in the
running time of our algorithm. Numerically, we are not able to determine whether
this logarithmic factor exists. However, the numerical evidence does indicate that the
running time of our algorithm is (vN), up to some factor of logCN.
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Chapter 1

Introduction and background

In this paper, we present a quantum walk algorithm for doing spatial search of a d

dimensional periodic lattice. This algorithm is based on the spatial search algorithm

presented by Childs and Goldstone in [9]. Their algorithm starts from a uniform

superposition over all vertices. This uniform state can be prepared locally from a

single vertex starting state, but then the full algorithm does not use a single time-

independent Hamiltonian. Our algorithm attempts to make the entire algorithm time

independent by beginning at a randomly selected vertex and evolving using a time

independent Hamiltonian.

Chapter one begins with an overview of quantum computing and outlines the

previous research done on spatial search and quantum walks. We will also introduce

the basic structure of our algorithm.

Chapter two examines the high dimensional case of spatial search on a complete

graph. We analytically calculate the behavior of our algorithm in this highly sym-

metric case and use it as motivation for the numerical analysis of more complicated

systems.

Chapter three presents analytic and numerical analysis of the dependence of the

behavior of our algorithm on the location of the initial state. We find that there is one

ideal starting vertex where the behavior of the system becomes simpler to analyze.

We then numerically study the behavior of our algorithm for other starting vertices.

Chapter four presents numerical analysis of our algorithm for 5 and 4 dimensional
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lattices. In 5 dimensions, the results are consistent with a running time of O(/-N);

this is the same as the running time found in [9]. In 4 dimensions, our results are

not conclusive, but our data suggests that the running time has a O(VN) polynomial

dependence.

1.1 Overview of quantum computing

The physical representation of information controls the rules of how that informa-

tion can be processed. Modern, or "classical," computers store information using

electronics, and manipulation of that information is governed by the laws of classi-

cal electromagnetism. A quantum computer, however, represents information as the

states of a quantum system; computations on a quantum computer are governed by

the rules of quantum mechanics. Because the laws of quantum mechanics offer ways

of manipulating a physical system that are impossible in classical mechanics, one can

make quantum computations with running times lower than their classical analogs.

Richard Feynman was the first to suggest the possibility of computation speedup

by using a quantum computer. In 1994, Peter Shor created a quantum algorithm for

factoring and discrete log which ran exponentially faster than any known classical

algorithm [15]. In 1996, Lov Grover developed an algorithm for quantum search that

was provably faster than any classical algorithm [13],[4]. The quantum complexity

hierarchy has been deeply studied as well (for more information, see [14]), and many

quantum complexity classes are believed to be larger than their classical counterparts.

A quantum bit is called a qubit. It is represented as a normalized vector that is

the linear combination of two orthogonal states: I,) = co 0) + cl II1). Operations

on this bit can be seen mathematically as 2 x 2 unitary matrices. Multiple qubit

states are described by higher dimensional vectors; in 4 dimensions, the vector is

102) = COO 00) + C01 101) + Cl0 10) + Cll 111).

Quantum computation has traditionally been done with qubit gates, which are

discrete operations that manipulate qubits in similar ways to logic gates for bits.

These gates are unitary operations that act on the quantum state. Qubit gates are

12



created by manipulating a Hamiltonian via an external control mechanism. A system

with time-independent Hamiltonian H evolves as I(t)) = e-iHt/h 4I(0)). By apply-

ing specific Hamiltonians for some set amount of time, one can simulate a quantum

gate. This is a discrete time conception of quantum computing. Quantum comput-

ing can also be done using continuous time algorithms. Such algorithms generally

evolve a system by some unchanging Hamiltonian [12] or slowly changing Hamilto-

nian [10]. Our algorithm is a continuous time algorithm, using an time-independent

Hamiltonian.

1.2 Grover's algorithm

In [13], L. Grover presented an algorithm to search N items for a marked item. We

will assume that only one item is marked in our discussion of Grover's algorithm

and all later search algorithms. Classically this problem requires O(N) operations.

Grover's algorithm required only O(/N) operations. This algorithm can be applied

to speed up many algorithms that use search heuristics.

A database of N elements can be represented by a function on log(N) bits; each

element is referenced by its index. To mark an item, have the function return a 1 on

the input of the item's index. The function will return 0 on the index of an unmarked

item. Say we are given an oracle for a database that acts as f. Classically, we would,

in the worst case, have to call the oracle N- times to find a marked item.

Grover's algorithm uses a quantum oracle only O(/N) times to find a marked

item. The initial state is in a uniform superposition of all the indices of the items

N-1

Is) = v/N E Ix)

The oracle is of the form

Ix) - (-I)f() Ix)

Each round of the Grover algorithm applies the oracle, and then applies 2 Is) (sI - I to

the state. The algorithm requires ry/N/4 rounds. This operation can be visualized as

13



a rotation in the two dimensional subspace spanned by the marked, or "target," state,

Iw), and the orthogonal component of the uniform starting state, Ir) = Is)- (wls) w).

Each round rotates the state of the system from r) to w) by asin2 . Therefore,N

after 7rv/N/4 rotations, the system will have rotated approximately 7r/2 radians and

be mostly in the w) state. The system can then be measured in the item index basis

and have a high probability of being found in the target state.

1.3 Spatial search

Spatial search is a variant of the Grover search problem (see [3], [9], [1]). In this case,

we imagine that the N items are stored in N different memory locations, and that we

can only move between certain memory locations. For example, if the N items are

stored in a d dimensional square lattice, we can only make local moves from an item

to the 2d items adjacent to it. In terms of formulating the problem as a Hamiltonian

acting on the item indices, we restrict ourselves to Hamiltonians with non-zero matrix

elements only between states representing vertices that are connected to each other.

Currently, there are many different spatial search algorithms. In [1] Ambainis

and Aaronson presented a discrete recursive algorithm that searches a d dimensional

database in O(V) oracle calls for d > 3, and in O(v/Nlog 2 N) oracle calls for

d = 2. In [9], Childs and Goldstone presented an algorithm for spatial search using

continuous time quantum walks. This algorithm performed in O(VN) time for d > 5,

and in O(v/NlogN) time for d = 4. The algorithm failed to give any speedup

for lower dimensions. In [2], Ambainis presented an algorithm using discrete time

quantum walks with a coin label that performed spatial search in O(VN) oracle calls

for d > 3, and in O(VN log N) oracle calls for d = 2. Recently, Childs and Goldstone

have developed another continuous time quantum walk algorithm for spatial search

using the Dirac Hamiltonian and extra spin degrees of freedom [7]. This algorithm

has a running time of O(vN log N) in d = 2.

All of the previously mentioned quantum walk algorithms for spatial search have

an initial state that is delocalized over the entire graph. In the spirit of the this
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"local" problem, one might require beginning from a local state. However, one can

generate this delocalized starting state from a localized state with O(N1/d) local

operations. One can also run the continuous or discrete time algorithm backward, by

setting the initial local state as the target state. Running the algorithm backwards

will produce a state that is close to a uniform superposition, which can then be used

with the original Hamiltonian. In this paper, we will investigate the possibility of

running the algorithm from a local state directly, with just a single unchanging oracle

Hamiltonian.

1.3.1 Continuous time quantum walks

We will use the technique of continuous time quantum walks [11] in our algorithm. A

quantum walk on a graph is like a classical random walk on a graph. An undirected

graph a set of vertices with edges between pairs of vertices. It can be defined by an

adjacency matrix

Ajk - 1 edge (j, k) in graph

0 otherwise

The degree of a vertex i is the number of edges that have i as one of its vertices.

Define the Laplacian L = A- D where D is diagonal with Dii = degree(i). Note that

this Laplacian is "local;" a vertex only interacts with the vertices connected to it.

In a continuous classical walk, there is some probability per unit time that one

moves from a vertex to the vertices sharing an edge with it. The probability of being

at any vertex j, pj(t) evolves according to

dpj (t)
d = : Lj kPk (t) (1.1)dt

k

Quantum mechanically, we represent each vertex in a graph with N vertices as

an orthogonal state, j), in a N dimensional Hilbert space. In the state 1t), the

probability of being at vertex j is defined as I (l) 12, the probability of measuring

state j) in the orthogonal basis of vertices. Note that the Laplacian previously
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defined is a Hermitian matrix. If we define the Hamiltonian acting on the system as

the Laplacian previously described, Schrddinger's equation gives an equation for the

evolution of the system

i (i) E Hjk (klI) (1.2)
dT-

k

which is analogous to Equation 1.1. The difference lies in the factor of i, which allows

for significant interference effects that make quantum walks algorithmically useful

in ways that classical walks are not. For example, in [8], an exponential quantum

speedup was shown for a graph problem using a quantum walk algorithm.

1.3.2 Spatial search using quantum walks

Childs and Goldstone's [9] first algorithm for spatial search uses the Hamiltonian

H = -yL-Iw) (wl

where L is the Laplacian for a d dimensional periodic square lattice of N vertices,

and w) is the marked vertex. The initial state is the uniform superposition of all

vertices, s). For certain values of -y, this Hamiltonian drives oscillations between the

Is) and w) state so that the amplitude of the target state is 0(1) in O(vN) time for

d > 4 and 0(1/ logN) in O(V/NlogN) time for d = 4.

In our algorithm, we will use the same value of y, but begin in some randomly

selected vertex, lb). We also add a extra term to the Hamiltonian

H = --TyL - w) (w - a lb) (bl.

We will select = 1 because we want a symmetry between the w) and lb) states;

we want this Hamiltonian to drive oscillations between the b) and the w) states

with s) as an intermediate state. Also note that this oscillation may only occur for

certain values of b. We hope that this Hamiltonian will give an algorithm for spatial

search, which will be the case if this oscillatory behavior occurs quickly enough for

sufficiently many values of b.
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Chapter 2

The complete graph

2.1 Previous analysis

A complete graph on N vertices is the N-vertex graph where every vertex is connected

to every other vertex. Analysis of an optimal quantum search algorithm for a complete

graph using initial state s) can be found in [12]. It was found that evolving with the

Hamiltonian

H = E(Is) (sl + Iw) (wl) (2.1)

for the complete graph with N vertices made the amplitude of the marked vertex 1

at
7rN1/2

2E

Analysis was done by noting that the Hamiltonian only affected the two-dimensional

subspace spanned by w) and the orthogonal vector Is) - (ws) w).

In [9], Equation 2.1 was interpreted as a quantum walk Hamiltonian of the form

previously discussed by noting that we can add a multiple of the identity to the

Laplacian of the complete graph to have the Hamiltonian found in [12].

L + NI = N Is) (s

17



This makes the Hamiltonian

H = -N Is) (sl - w) (wl

The critical value of y was found to be y = 1/N, giving the Hamiltonian proposed in

[12].

2.2 New algorithm

Now we will analyze the complete graph problem starting from some randomly se-

lected starting state lb) # w), and evolving with the Hamiltonian

H = E(js) (sl + w) (wl + lb) (bl)

In this case, we begin with a state not in the two dimensional subspace previously an-

alyzed. However, lb) is orthogonal to Iw) and mostly orthogonal to Is). Therefore we

can see that the Hamiltonian acts non-trivially only on a three dimensional subspace.

Note that all bs are equivalent.

Note that w) and lb) are orthogonal to each other since they are different vertices

in the graph. Calling the overlap between a vertex and the superposition x = (wls) =

(bls) = 1/vN, the third basis vector in our three dimensional subspace is

Jr = s)- x w) - xlb)
Ir) V 1-2x

2

In the basis of Ir), w), and lb), our Hamiltonian is

1 - 2x 2 x x/ 2

E x /1- x2 + I x2

X -x 2 x2 x2 +1

18



Table 2.1: The eigenvectors and eigenvalues of H

eigenvectors
2x-x/2

-/_ -2X2

If) = I
1

2x+vf2

1g) = I
1

lh) = -11
I

eigenvalues

)

)

E(1 + x2)

E(1-x v)

E

The state of the system at time t will be

14b(t)) = eI lb)

To find the state of the system, we can decompose lb) into a linear combination of

the eigenvectors of H, which can be found in Table 2.1.

lb) = p If)+(
1

-P g)+ Ih)

where p V'(vx+2x) Using
8

e-iHt a) = e-iEat a)

for any eigenvector la), we can then easily analyze the evolution of the system. With

some simple calculation, we can find that the probability of finding the state at time

tin w).

I (wlfb(t)) 12 = 2p2 -p + + 2p -p) cos(2vfxEt) - cos(vFxEt)

19
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This is a periodic function that has a maximum value of 1 at

vx/Ex

Therefore, the running time of this algorithm is

7r N1/2
tm- = O(vIN)

which is optimal by the lower bound found in [4].

2.3 The evolution of the system

In the same manner as previously used to find 2.2, we can find

I(bJb(t)) 12 = 2p2 -p+ + 2p -p cos(2x/xEt) + cos(xEt)(2.3)
2 2 2

( V(t)) 12 = 1- (bh¢b(t)) 12- (wb(t)) 12 (2.4)

In Fig. 2-1, we can see that the system oscillates from the b) state to the w) state

with frequency 1/2tm, with r) as an intermediate state. This is the behavior that we

will try to emulate in our algorithm for a d dimensional lattice. Instead of a system

that oscillates between the superposition and target states, we will try to have the

system oscillate between the start state and the target state, using the superposition

state as an intermediate.

Childs and Goldstone's algorithm creates a target state amplitude that is O(1)

in O(v/) time for all d > 5. We will demonstrate numerically that our algorithm

appears to have the same behavior for d = 5 for a large enough number of lb) states.

Because our algorithm emulates the behavior of the Childs Goldstone algorithm, and

because our algorithm creates a target state amplitude that is O(1) in O(/N) time

in the high dimensional case of the complete graph, we argue that the same should

occur for all d > 5 as well.

20
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Figure 2-1: Plot of the probability of finding w), lb), and s) over time for the
complete graph.
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Chapter 3

Dependence of the algorithm on

the initial state

In this chapter, we will analyze the behavior of our algorithm for different starting

states. We will begin by trying to find a starting state where analysis of our algorithm

will be similar to the analysis of the Childs and Goldstone algorithm.

The behavior of the quantum system in Childs and Goldstone's algorithm is deter-

mined by the spectrum of their Hamiltonian. The eigenvalues, ECG, of their Hamil-

tonian can be related to the spectrum of the Laplacian by the equation

1 1
F(ECG) = 1, F(E) = N () E, F(k) -

Here, (k) are the eigenvalues of the Laplacian.

£(k) = 2 d-ycosk)
j=l

where
27rm
N1/d

23



mj= 0,+1,0,+1,Mj=

if N 1ld odd

_N1/d
*--' 2 if N 1ld even.

In [6], Childs calculates that a similar eigenvalue condition is placed on a system

driven by the Hamiltonian

H = -yL - w) (wl- lb) (b

starting from state lb). Childs finds that the constraint for the eigenvalues of our

Hamiltonian, Eb, is

1 = F(Eb) ± G(Eb)

where F(E) is defined as before, and

G(E)= 1E cos(k b)
N k -yE (k) - E

where b is the d component vector with bj E {0, 1, . . , N l /d - 1}.

generality, we set the origin at the marked state: wj = 0 for all j.

Taylor expanding both functions results in

F(E)

G(E)

1 1I1 E
- NE N E T£(k) N

k$O

1 1 cos(k b)

NE + E ;-(' +NE NA 0: (k) +

Without loss of

1

k L 2(k)2 ' 
E cos(k b)
N 0y2(k)2

k#O

G(E) will typically be difficult to analyze, but in the extremal case where bj = N 1ld

for all j, cos k b = ±1, so the second term of G(E) is proportional to

G =1 cosk b

N kO E(k)
Z 1 1 (k) N (k)

k even k odd

Here, k being odd means Ej mj is odd and vice versa.

We expect the value of G1 to be very small. In figure 3-1, we plot the values

24

and



of NG1 for d = 5 and find that NG1 = (0.08 ± 0.02)N °.4 ° °0 2 with an R2 value

of 0.9979 1. This means that G1 = o(N- 1/ 2 ). Since E = O(V) in this system,

1/NE = O(N-1/2), and G(E) will be dominated by the NE term.

Dependence of NG1 on N

0 1 2 3 4 50 I 2 3 4 5

N

6

x 105

Figure 3-1: Dependence of NG1 on N for d = 5. We find that G1 = O(N-06).

Therefore, in the high N limit, the eigenvalue equation becomes

1= F(E)± NI
NE

When is added, we have the same eigenvalue equation as the Childs and Goldstone

algorithm, only with an extra constant of 2 on the 1 term. We therefore expect our

algorithm, starting from this extremal vertex and with the same value of oy as defined

1R2 is the correlation coefficient (It is also known as the product-moment coefficient of correlation
or Pearson's correlation). It describes the quality of a least squares fitting of data. R2 SSR, where

$$yy'

SSR is the sum of the square residuals, and ssyy is the sum of the residuals of the dependent variable.
Complete correlation corresponds to an R2 value of 1.

25
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in [9], to behave asymptotically like the Childs and Goldstone algorithm; the running

time should only be different by a constant multiplicative factor.

3.1 Evolution of the system starting from the ex-

tremal vertex

In figure 3-2, we see the evolution of a d = 5 and N = 8 lattice, starting from the

extremal vertex. To calculate the evolution of the system, we use a fourth degree

Runge Kutta approximation on Equation 1.2.

Comparing this graph to figure 2-1, we see that the system behaves very similarly

to the complete graph case. However, the amplitude of the target state never reaches

1. Also note that the sum of the probabilities of being in the three states does not

always equal 1; the system is not in a perfect three state system. In general, however,

the three dimensional subspace behaves like in the complete graph. In our algorithm,

we will measure the system at the time of the first peak of the target state in this

extremal case, te. In Figure 3-2, t ~ 450.

3.2 Variation of the start state away from the ex-

tremal case

Starting from a different location than the extremal vertex may significantly alter

G(E), and therefore change the behavior of our algorithm. The 1 is independent

of starting point, but we only know that G1 is small for the extremal starting point.

Define

GI (b) cosk b
N I: (k)k#O

for any starting point b. In Figure 3-3, we randomly select some starting points and

calculate NG 1 (b) as a function of the Euclidean distance2 between b and the extremal

2 Because the lattice is periodic, there are many different values for the Euclidean distance between
two vertices. We pick the smallest one.
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Probability of measuring states for 5 dimensional lattice N=8 5 =32768 for Ib>=[4 4 4 4 4]

500 1000 1500 2000

A
-- 0.5

A
Ut)
to%w v
Ca 0 500 1000 1500
co I

0)s 1

-

- 0.5A

..
co n.0 '-

o 0 500 1000 1500
O. t

Figure 3-2: The probability of finding the system in the start state,
or in the uniform linear superposition of states at different points in

2000

2000

the target state,
time for N = 85.

point. In Figure 3-4, we see how the amplitude of the system at time te is dependent

on the value of NG (b).

In Figure 3-4, one can see that large values of G1 will cause the amplitude of

the target state to diminish dramatically. In Figure 3-3, we see that these large

values of G1 occur when the starting point is far away from the extremal vertex.

Figure 3-5 shows the behavior of the target state probability over time for a starting

state that is far from the extremal vertex for N = 6. The maximum amplitude is

significantly lower than those of points near the extremal vertex. There are also some

high frequency oscillations and some asymmetry that we do not see in Figure 3-2.

The question is then, how far can the starting point be from the extremal vertex

before the behavior of the algorithm degrades? From Figure 3-3, the value of G1 for

both N = 6 and N 85 does not deviate from G1 at the extremal vertex until

27
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the distance is approximately 2/3 the maximum distance possible from the extremal

vertex. Note that for this randomly chosen a set of starting points, most points have

small G1 values. In Figure 3-4, note that most points have high amplitudes and small

G1 values, and only a few points have significantly lower amplitudes.
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Chapter 4

Numerical analysis of algorithm for

d 5 and d 4

4.1 The 5 dimensional lattice

In Figures 4--1 and 4-2, we can see the amplitude decay of the target state probability

as a function of the distance of the starting vertex from the extremal vertex. Note that

for odd Nl/d, this is a virtual extremal vertex because the coordinates xj -= Nl/d/2

do not correspond to an actual lattice site. Looking at the amplitude versus distance

plots for different values of N, it does not appear that the general shape of the graphs

depend on N. From the graphs, one can see that the amplitude does not seem to

decay significantly until the distance is at least half the maximum distance possible

from the extremal vertex, De = dN/d/2.

The maximum distance possible from the extremal vertex is (Nl/d). There

are ((N1/d)d) =- (N) lattice vertices contained in the d dimensional sphere of

radius 9(N1/d). Therefore, assuming similar behavior for large N, there is a constant

probability of the algorithm picking a starting point where the target state amplitude

will be high. If this is the case, then to get a probability of success arbitrarily close

to 1, we only need to repeat the algorithm some constant number of times.

In Figure 4-3, we plot the value of te, the time of the first peak in target amplitude,

for different values of vN. We determine each value of te manually, by visually
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approximating the time of the first peak in the amplitude of the target state for each

value of N. We found that te = (2.437±0.005)vIN+ (0.4774±0.05) with an R2 value

of 0.9975. This suggests that the running time of our algorithm is O(V/N); if so, we

have the same running time in d = 5 as the Childs and Goldstone algorithm. Their

algorithm has a running time of 1.1694vN. Our algorithm is a factor of 2.085 slower;

we expect this factor to become vX in the high dimensional limit, as indicated in our

analysis of the complete graph.

4.2 The 4 dimensional lattice

In Figures 4-4 and 4-5, we again plot the amplitude decay of the target state prob-

ability as a function of the distance of the starting vertex from the extremal vertex.

Again, the target probability for different lattice starting sites does not seem to decay

until the start vertex is some (Nld) distance from the extremal point. However,

note that the points on the graphs of N = 8 and N = 95 are much more spread out

for d = 4 than for d = 5. One can see that the points are significantly more dispersed

for low distances in d = 4 than d = 5.

In the Childs and Goldstone algorithm, the success probability for d = 4 is

O(1/log N) at time O(N log N), giving a total running time of O(Nlog 3 /2N) with

classical repetition, or O(v/- log N) using amplitude amplification [5]. The variation

of amplitudes for at small distances for d = 4 may be a result of this log N factor in

the success probability. We plot the average success probability of our algorithm for

different values of N in Figure 4-6. We do not have enough data points to be able

to conclusively state the N dependence of the average success probability. We also

plot te as a function of N in Figure 4-7. This data obviously depicts a t with a o(N)

dependence. In Figure 4-8, we have a logarithmic plot of N and t. We find that

the data fits t = O(N0 53 0 0 1) with an R2 value of 0.9986. Unfortunately we cannot

determine if there is a log multiplicative factor; the data fits O(vN), O(/N log N),

and O(/N logN) equally well, with an R2 value of 0.9980, 0.9988, and 0.9978, re-

spectively. Therefore, we cannot conclusively state the running time of the algorithm
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for d = 4, but it appears that te has a 0(/N) polynomial dependence.
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Figure 4-1: Dependence of amplitude of the target state at time te on distance of the
starting vertex from extremal vertex for N = 65 and N 75
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Figure 4-5: Dependence of amplitude of the target state at time te on distance of the
starting vertex from extremal vertex for N = 84 and N = 94
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Chapter 5

Conclusions

In this thesis, we have presented a quantum walk algorithm for spatial search of a

periodic lattice from a randomized local starting state. Our algorithm is a variation

of the Childs and Goldstone algorithm for spatial search found in [9], which was

a quantum walk algorithm from a uniformly delocalized initial state. We used the

Hamiltonian

H = -L- Iw ) (w -l b ) (bl.

We began by looking at the highly symmetric case of the complete graph. The

complete graph is the high d limit of the d dimensional periodic lattice. We reduced

the problem to a three state system, and found that the system oscillated between

the start state and the target state, using the linear superposition of all vertices as

an intermediate state. These oscillations had a period of O(VN7).

We then tried to reduce the behavior of our algorithm to that of the Childs and

Goldstone algorithm by comparing the eigenvalue conditions of the Hamiltonians used

in the two algorithms. We showed that for the case of where we began at the extremal

vertex of the lattice, the eigenvalue condition for the spectrum of our Hamiltonian is

close to their eigenvalue condition for the spectrum of their Hamiltonian. We then

give some data that indicates that moving the starting state a distance O(Nl/d) from

this extremal vertex does not dramatically change the eigenvalue condition, and that

our algorithm looks to have a constant probability of behaving correctly. Finally, we
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numerically analyze the behavior of our algorithm on 5 and 4 dimensional lattices. In

the 5 dimensional case, the results are consistent with O(v-N) running time. In the 4

dimensional case, we are not able to conclude the exact running time of our algorithm,

but the data predicts a running time with a 0(x/N) polynomial dependence.
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