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ABSTRACT

The dynamical behavior of a system of coupled relaxation oscillators is studied

experimentally. A population of up to 15 coupled electronic op-amp relaxation oscillators

is used as a prototype for the real collections of limit-cycle oscillators frequently found in

:many physical, biological and technological systems. The oscillators interact via an all-to-

all or mean-field coupling. The rarely studied case of anti-ferromagnetic interactions, in

which oscillators tend to repel each other in phase, is considered. The behavior of the

system is significantly different from the predictions of the limited theory that is currently

;available. The novel behavior observed includes the existence of numerous distinguishable

phase-locked states and an exponential distribution of the duration of transients. The

critical coupling strength necessary for the oscillator system to completely phase-lock is

measured.

A simple geometrical model of the dynamics of the system during the transient is

presented as a means of understanding the exponential distribution of transient lengths. In

addition, a phase-response oscillator model is shown to exhibit similar transient behavior.

'Thesis Supervisor: Dr. Paul S. Linsay

Title: Senior Research Scientist
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J. INTRODUCTION

Limit-cycle oscillators are an ubiquitous feature of the physical, technological and

biological worlds. In general terms, every dissipative physical system which oscillates

autonomously, is a limit-cycle oscillator. This thesis concerns experiments which were

performed upon a small collection of electronic limit-cycle oscillators, coupled to each other

with an all-to-all or mean field coupling. The behavior of the experimental system is novel

and, as will be seen, it differs markedly from the simple theoretical treatment currently

available. In order to gain a more complete understanding, however, it is useful to place

this work in its proper historical context. This will be followed by a brief survey of some

of the physical applications of coupled oscillator systems. Next, we give a more formal

statement of the purpose for our experiments, and finally, we lay out a road map to the

remainder of the thesis.

1.1 Historical Context

The problem considered here lies at the intersection of three important areas of

physics: non-linear dynamics, oscillator synchronization, and statistical mechanics. Each

of these areas has a long and rich history, infused more recently with a new vitality

resulting from recent discoveries.

1.1.1 Nonlinear Dynamics

The first such area, non-linear dynamics, dates back at least as far as Henri Poincare

IPoincar6, 1881] who originated the use of phase space to describe dynamical systems.

The phase space of a physical system is constructed so that each independent physical

variable forms one coordinate in phase space. The entire state of the system is then

compactly described by a point in phase space. A geometrical or topological understanding

of a system's phase space often provides an alternative way of viewing the system and can

lead to fresh insights into its dynamics. It is a testament to the importance of the phase

space approach to dynamical systems that it is essentially taken for granted today. Indeed,

it will prove to be a valuable tool in the work presented here.

Most of the great mathematical tools of science and technology, such as those found

in mechanical and electrical engineering, have been based largely on a linear view of the

world. Although small forays into the nonlinear realm were made, these usually took the

form of perturbative extensions of linear problems. This focus on linear problems was in
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no small measure due to the analytical tractability of such problems. The advent of the

digital computer and its rapidly increasing computational power has, in the last few

decades, ushered in a new era of research in physics and has reopened and reinvigorated

the field of dynamical systems.

The discovery of chaos - irregular, aperiodic motion in simple, low dimensional,

deterministic dynamical systems - was the key development from which so much renewed

interest in this field has flowed. Lorenz discovered [Lorenz, 1963] that a highly simplified,

purely deterministic, three dimensional model of atmospheric convection, exhibited

aperiodic behavior. This early numerical discovery of chaos, however, went unrecognized

for some time. It is now well known that dissipative systems can posses states, known as

strange attractors, toward which initial conditions eventually evolve. The existence of a

strange attractor is stable under variations in system parameters, yet the motion of a point

on the attractor is chaotic, and highly sensitive to small perturbations. This notion was

advanced by Smale [Smale, 1967] who introduced the geometrical view of strange

attractors (the Smale 'horseshoe') as transformations on phase space which involve both

stretching and folding.

The discovery of chaos led to renewed hope that the long unresolved problem of fluid

turbulence might be understood, since chaos formed a bridge between the deterministic

world of the Navier-Stokes equation and the clearly disordered and unpredictable motion of

turbulent fluids. As its parameters are varied, a system may undergo bifurcations which

introduce oscillations at new frequencies. Seminal work by Ruelle, Takens [Ruelle &

Takens, 1971] and later Newhouse [Newhouse et al., 1978] proved that, under relatively

general conditions, as few as three incommensurate (having mutually irrational ratios)

frequencies are sufficient for a chaotic attractor to arise.

1.1.2 Oscillator Synchronization

The study of oscillator synchronization has a long and rich history, as well. The

measurement of time played a crucial role in the early development of science. To make

accurate measurements of time, Christiaan Huygens [Huygens, 1673] invented the

pendulum clock in 1657. It is interesting to note that, like our own experimental

oscillators, the pendulum clock is a limit-cycle oscillator: a constant source of energy (from

a falling weight) is used to produce oscillations of constant amplitude and frequency.

Huygens also made what is probably the first scientifically recorded observation of

oscillator synchronization. He wrote:
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"It is quite worth noting that when we suspended two clocks so
constructed from two hooks imbedded in the same wooden beam, the
motions of each pendulum in opposite swings were so much in agreement
that they never receded the least bit from each other and the sound of each
was always heard simultaneously. Further, if this agreement was disturbed
by some interference, it reestablished itself in a short time. For a long time I
was amazed at this unexpected result, but after careful examination finally
found that the cause of this is due to the motion of the beam, even though
this is hardly perceptible. The cause is that the oscillations of the pendula,
in proportion to their weight, communicate some motion to the clocks. This
motion, impressed onto the beam, necessarily has the effect of making the
pendula come to a state of exactly contrary swings if it happened that they
moved otherwise at first, and from this finally the motion of the beam
completely ceases."

His astonishment and excitement is palpable even today. As Huygens' found, it is

quite common to find synchronization occurring in groups of oscillators, when no

intentional effort has been made at causing synchronization. This spontaneous creation of

temporal order and agreement among elements with so little internal 'intelligence' is

perhaps inherently fascinating to the human mind; certainly it is to those who experiment

with oscillator synchronization. It is also interesting that the coupling of Huygens' clocks

was phase-repulsive: they tend to oscillate with a 180 degree phase gap. This form of

coupling is the rarely studied case on which our work is focused. Had Huygens added a

few more clocks to his beam, he might have encountered some of our results! Today, the

synchronization of two oscillators is essentially a solved problem. This is the result of the

fact that motion on a two-torus (T2) is highly constrained, in a topological sense. Much of

the more recent work on larger oscillator systems will be discussed below.

1.1.3 Statistical Mechanics

The third area to which our work is connected is statistical mechanics. This is

necessarily so, since we are studying a collection of oscillators rather than two or three.

While the fifteen oscillators used in our experiments only barely justifies the use of the term

'statistical', much of the recent work in oscillator systems and nonlinear dynamics has

focused on the case of very large N. Winfree [Winfree, 1967] was probably the first to

make the fundamental observation that there is a close connection between the temporal

coherence of synchronization in a population of oscillators and the spatial coherence of a

phase transition in, for example, a population of spins. The variation in the natural

frequency, from oscillator to oscillator, plays the role that thermal energy plays in the spin

system. He concluded (and observed experimentally) that oscillator systems could undergo

phase transitions, spontaneously becoming ordered (phase-locked) when the coupling
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between oscillators was sufficient to overcome the 'thermal' effects. The connection with

statistical mechanics has since been put on a solid formal footing by Kuramoto &

Nishikawa [Kuramoto & Nishikawa, 1988], who showed that the critical behavior found

in globally coupled oscillator systems is analogous to the critical behavior in a system of

spins coupled by a mean field. The mathematical tools of statistical mechanics, such as the

order parameter and the self-consistent equation also have analogs in oscillators systems.

Since then, the theoretical work on systems of oscillators has grown substantially. It now

includes systems coupled locally via lattices of various dimensions [Strogatz & Mirollo,

1988], systems that include frustration and exhibit spin-glass behavior [Daido, 1992],

IOmata et al., 1988], discrete-time systems [Daido, 1987], [Kaneko, 1991], [Kaneko,

1992], systems with delays [Niebur et al., 1991], and systems with neuron-like impulsive

interactions [Tsodyks et al., 1993]. It appeared however that there was almost no

experimental connection associated with this theoretical work. It was into this gap that we

directed our efforts. It is worth noting here that there is also a fundamental connection

between the relatively new theory of neural networks and the theory of Ising spin systems.

It is with this in mind that we will speculate in the concluding section on the possible link

between our work on oscillator systems and neural networks.

1.2 Survey of Coupled Oscillator Systems

We turn now to a review of some the important and interesting applied work done on

oscillator populations. We focus first on physical systems such as Josephson junctions

and laser diodes. Then we will turn to biological systems. The field is, of course, is much

too large for this survey to be rigorous or complete. However, our purpose is twofold. It

is first to convey a sense of the broad applicability and richness of this field, and second to

provide a context of real-world systems against which our system of electronic oscillators

will not seem so abstract.

1.2.1 Physical Systems

There are several technological applications of synchronization in oscillator

populations. The problem arises typically in connection with Josephson junctions and laser

diodes when one wishes to scale up the power output of a single oscillator. One way to

accomplish this is to use many oscillators. It is clear, however, that they must be made to

oscillate in synchrony (and in phase) for that strategy to be effective. Owing to the

considerable practical value of Josephson junction oscillators, extensive theoretical and

experimental work has been performed and has led to a relatively complete understanding
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of the dynamics of arrays of these oscillators. The work until 1984 is well reviewed by A.

K. Jain [Jain et al., 1984] with slightly more recent developments discussed by Hadley

[Hadley et al., 1988a,b].

As with Josephson junctions, there is a practical interest in making one large laser out

of many small semiconductor lasers. To do so, necessitates making the individual lasers

coherent with respect to each other. This is done typically by coupling the lasers together

with normal or evanescent electromagnetic waves. Experimental work has been performed

by Elliot [Elliot, 1985] and others; and theoretical work was done by Wang and Winful

[Wang & Winful, 1988], [Winful & Wang, 1988].

Another technological example of an oscillator synchronization problem is in the

generation of electrical power, where generators are coupled together by an electrical power

distribution network [Kopell & Washburn, 1982].

Finally, perhaps the most recent example of oscillator synchronization comes from

the world of computer networks. In this unusual case [Floyd, 1993], [Treese, 1992] the

synchronization is inadvertent and undesirable. Various nodes on a computer network are

often programmed to emit packets of information at precisely timed intervals (hence they

are oscillators). It has been observed that when coupled through a network, the nodes,

which would normally be independent of each other, can become synchronized. The result

is an inefficient and destructive pattern of traffic flow, characterized by huge bursts of

information flow across the network.

1.2.2 Biological Systems

We have discussed several examples of technological problems involving oscillator

synchronization. Among natural systems, however, the problem of oscillator

synchronization finds its broadest applicability in the study of biological oscillators.

Undoubtedly the most picturesque example is the synchronous flashing of species of Asian

fireflies [Buck & Buck, 1976], [Buck, 1988]. As darkness falls, the background light

from the sky decreases, increasing the effective coupling between neighboring fireflies.

Over the course of the night, the flashing of the fireflies gradually becomes synchronized,

culminating in a spectacle that was described compellingly by Smith [Smith, 1935]:

"Imagine a tenth of a mile of river front with an unbroken line of trees
with fireflies on every leaf flashing in synchronism, the insects on the trees
at the ends of the line acting in perfect unison with those between."
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Other examples of mutual synchronization among biological oscillators are abundant.

The periodic beating of the heart can be modeled [Peskin, 1975], [Torre, 1976],

IHonerkamp, 1983] with a system of coupled oscillators. Synchronization of the

menstrual cycles of women who live together has also been observed [McClintock, 1971].

Chains of coupled neuronal oscillators can exhibit wave phenomena. Such systems have

been used to model swimming types of locomotion [Cohen et al., 1982] and the peristaltic

movement of intestines [Brown et al., 1975].

1.3 Statement of Purpose

The experimental approach taken in the work presented here builds directly on the

experimental work of Linsay and Cumming [Linsay & Cumming, 1989], [Cumming &

Linsay, 1988]. This work extends their use of two and three electronic oscillators into the

realm of the statistical by studying larger numbers of oscillators. The technique of

performing experiments on an electronic system is unusual and it inverts, to some extent,

the traditional roles of theory and experiment. In our case, the experimental system, being

constructed of well understood electronic components, is of no inherent physical or

technological interest. Rather it serves as a prototype of the current theoretical models.

Some of the implications of this strategy are discussed more fully in Sec. 6. In contrast,

most of the other experimental work on oscillator populations deals with the detailed

dynamics of specific applications, such as Josephson junctions or laser diodes discussed

above.

The theoretical work with simple oscillator models, such as the one we will describe

in Sec. 2, has grown dramatically. This is, in part, due to the recognition that the

mathematical tools of statistical mechanics could be elegantly applied to such simplified

problems. It is also due to the growing availability of computing power. Yet, while the

level of theoretical work has grown, there has been little attempt to test these elegant and

general theories with experiment. In addition, while much theoretical work has been done

on oscillator populations which tend to attract each other in phase, the case of repulsive

interactions studied here has received, by comparison, almost no attention.

This thesis reports the results of experiments on a collection of as many as fifteen

electronic relaxation oscillators, coupled with a simple mean-field type coupling. The

absence of a well developed theory applicable to the case of repulsive interactions makes

the results somewhat phenomenological. However, a simple geometrical model of the

structure of the system's phase space will be presented which will aid in understanding the
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novel transient behavior of the system. In addition, a simple, discrete numerical model will

be developed which captures some of the essential features of the dynamics without

resorting to a full-blown simulation of the electronics. The electronic oscillators used in

these experiments serve, hopefully, as generic models of the 'real world'. They permit a

rapid and intuitive exploration of large.regions of parameter space while including all the

vagaries and difficulties of any 'real' system. The ultimate aim is to uncover generalities

about the dynamics of such systems.

1.4 Layout of the Thesis

The remainder of this thesis will be structured as follows. We will embark in Sec. 2

on a review of the applicable theory. This will include a rather cursory overview of some

important general ideas in the field of nonlinear dynamics, followed by a more detailed

discussion of the current theory as it relates to our experimental system. In Sec. 3, the

details of our particular experimental system will be discussed. This will include both the

basic functioning of the oscillators themselves, as well as a relatively detailed description of

the associated control and data acquisition electronics, and software. In Sec. 4, the results

of the experiments will be presented, focusing primarily on the unusual transient behavior

of the system. Section 5 will contain a discussion of the results. A simple model of the

geometry of the phase space will be presented as a way of understanding the results from

the preceding section. This will be followed by a crude and rather incomplete mathematical

model of the system. Finally, Sec. 6 will conclude with a summary of the important results

and a discussion of possible future directions for this research.
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2. THEORY

We turn here to a review of the relevant theory of oscillator synchronization.

Before doing so, however, we will touch briefly upon some of the important concepts and

tools of nonlinear dynamics; especially those used in our primarily experimental work.

The approach will initially be somewhat tutorial, for those less familiar with the subject.

No attempt is made to be rigorous in the development of these ideas. Nor can it be

claimed that what follows is complete. Indeed, large areas of nonlinear dynamics, and

much of the prolific recent work on oscillator populations will be left out. Rather, the

goal is to establish the theoretical context which is typically used in understanding

systems of the type studied here. As shall be seen later, the theory falls well short of

what is needed to understand the behavior of our system.

2.1 Simple Linear Systems

The most natural place to begin such a discussion is with the most rudimentary of

all possible oscillatory systems: one described by the linear second-order differential

equation

d'x dx w2 x=0, (2.1)
dt2 dt

where y is the damping coefficient and co is the frequency of undamped oscillations. Of

course, many simple physical systems are well modeled by this equation. For example,

Eq. (2.1) describes the position of a mechanical system consisting of a mass M, a spring

of spring constant K, and a damper which produces a frictional force, dx/dt, if one

makes the following identification:

M

M

Alternatively, the same equation describes the current in a series R-L-C electrical circuit

if one makes the following identification:

13
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The important point to recognize is not that many systems happen to be described

by Eq. (2.1), but rather that this equation is the lowest order approximation that one can

make to many real world physical systems without destroying their oscillatory behavior.

The field of dynamical systems is naturally divided into two broad categories of

problems, depending on how areas of phase space behave under the action of the system's

dynamics. Systems in which areas of phase space are a constant of the motion are termed

conservative. Such conservation of areas of phase space places significant geometrical

constraints on how such systems move through phase space. The study of the nonlinear

dynamics of conservative systems has important application to many areas of physics

including quantum chaos and the chaotic motion of planetary systems. The

fundamentally important KAM (Kolmogorov, Arnold, Moser) theorem applies only to

conservative systems.

On the other hand, systems in which phase space area is not a constant of the

motion are said to be dissipative. Dissipative systems are the other 'half of the field of

nonlinear dynamics. The substance of this work will be confined entirely to dissipative

systems. In terms of Eq. (2.1), which models many mechanical and electrical problems,

the most fundamental of all physical quantities is energy. For such systems the

conservation or non-conservation of energy corresponds exactly with the conservation or

non-conservation of phase space area. That is, dissipation implies a loss of energy.

At first glance, dissipative systems in which no energy is ever added may appear to

hold little interest, in that all energy is eventually lost and the system ceases to move. A

particle moving in a potential with friction, for example, will eventually come to rest at

the minimum of the potential. If the potential has two minima however, there will be two

possible final states and one may then ask: what is the set of initial conditions that leads

to each particular final state? Even for relatively simple potentials, these sets of initial

conditions, or so called basins of attraction, can be profoundly complex. If one permits

the addition of energy as well as dissipation (such systems are still referred to as

dissipative) the system can exhibit a wide variety of interesting motions.

14



Let us return now to the simple linear oscillator described above and write down

the well known expression for its energy:

E(x,) = 1 2 + V(x)= !x2 + c22 (2.2)
2 2 2

where V(x) = 2x, and we have chosen m=l. Differentiating Eq. (2.2) yields an
dx

expression for the evolution of the energy,

dV(x).= + X

Using Eq. (2.1) we get

E = X + )o2C = ,2. (2.3)

Clearly, for y=O, the energy is a constant of the motion and the system is

conservative as we expect. For y>O the system is constantly losing energy as long as it is

in motion. Thus, it will eventually come to rest with x=O. The case of y<O, though less

common physically, is nevertheless useful, in that it corresponds to a continual addition

of energy to the system. The result is oscillations of ever increasing amplitude. Figure

2.1 illustrates these three familiar cases by constructing a phase space from the velocity

and position of the linear damped harmonic oscillator. The vectors indicate the direction

and speed of the flow through phase space. For y>O, points spiral in to the origin; for

"-O, points travel in ellipses around the origin. (The orbits will be circular, if the axes are

chosen with the appropriate scales); for y<O points spiral outward toward infinity.

dX/dt dX/dt dX/dt

/

x

'9-

I f~

4 /
_1F- A -7~~~~~~~~~*

y>O y=O y<O

Figure 2.1 Three views of the flow in phase space of a damped linear oscillator. The
three cases shown are normal damping (y>O), undamped (y=O) and negative
damping(y<0). The axes are scaled such that the motion is circular.
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2.2 Simple Nonlinear Systems

The mathematics of Eq. (2.1) (and all higher dimensional linear systems) has long

been completely understood. The real interest comes in understanding systems in which

the nonlinearities of the real world have not been completely removed. In viewing Eq.

(2.1) as a linearization of a more complicated system, we understand the coefficients y

and o to be merely the zeroth order terms in a Taylor expansion. We may now consider

what happens when we perturb the system with a bit of the nonlinearity that had been

previously ignored. While not the most general perturbation, we can consider the case

where the coefficients y and co are functions of position, x:

2 -= W 2 (x)

Y = y(x) = a + ax + a2x 2 + O(x3). (2.4)

Clearly, the dependence of o on x can be represented purely as a modification of the

potential, such that the potential now satisfies

dV(x)
-x. C'()

dx

As mentioned above, such problems are interesting, but they properly fall in the

realm of conservative systems. Of greater interest here is the position dependence of the

damping coefficient. Note that the expression Eq. (2.3) for the evolution of the energy

remains valid, except that y is now a function of position. The constant term in Eq. (2.4)

is obviously just the damping coefficient in the harmonic oscillator Eq. (2.1). We neglect

the first-order term (and all other odd terms) in the Taylor expansion of y, since its

perturbative effect on the energy is small when Eq. (2.3) is averaged over one cycle of the

oscillator. Thus the lowest order term of interest is the second-order term. Discarding

higher order terms yields an amplitude dependent damping coefficient which can be

written in the form

y(x) = -o -X2]

When damping of this form is used, the resulting differential equation is the well known

Van der Pol equation. After a suitable change of variables it can be written in

dimensionless form as

16



d2 -X( 2) +x = 0. (2.5)dt2 dt
For small amplitude oscillations, x2 << E, the oscillator behaves like a harmonic

oscillator with a negative damping coefficient, which causes the oscillations to grow in

amplitude. For large amplitude oscillations, x2 >> E, the damping 'coefficient' becomes

positive causing the oscillations to decay in amplitude. As one might expect, there is a

trajectory of intermediate amplitude for which these two competing effects cancel each

other over the course of one complete oscillation. Thus, for any given £, there is a single

trajectory or orbit toward which all initial conditions (except the trivial case of the origin)

are attracted.

Such an orbit is known as a limit cycle. Like an undamped harmonic oscillator, the

system will continue to oscillate forever. In contrast to the undamped harmonic

oscillator, however, the amplitude of oscillation is dependent on the parameters of the

system, rather than on the initial conditions. All information about the initial condition is

destroyed by the compression of phase space that arises from the damping. The limit

cycle itself is a feature found only in dissipative dynamical systems. Figure 2.2a shows a

schematic view of the phase-space flow in the neighborhood of a limit-cycle. One can

approximately decompose the flow near the limit cycle into motion along the limit-cycle

(in the 0-direction) and motion normal to the limit-cycle (in the radial direction). Figure

2.2b shows (again schematically) what the differential equation governing flow in the

radial direction might look like. The motion in the radial direction can in some sense be

regarded as a one dimensional dynamical system with a fixed point attractor at Ro, the

radius of the limit-cycle. The larger the magnitude of the slope near Ro, the more

strongly points are attracted to the limit-cycle.

(b)
dR/dt

R

Figure 2.2 Schematic view of limit-cycle dynamics. a) Flow through phase space. b)
Dynamics in the radial direction
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Figures 2.3a and 2.3b show the actual (numerically computed) phase-space

trajectories of the Van der Pol oscillator for small and large initial amplitudes,
respectively. In this case =0.1, hence the weak nonlinearity produces trajectories that

are nearly circular. Figures 2.3c shows x(t) for times sufficiently long that the transients

have disappeared. Note the essentially sinusoidal trajectory, again consistent with the

fact that the system is a weakly perturbed harmonic oscillator.

Figure 2.4 is analogous to Fig. 2.3, except that e=4.0; a very strong nonlinearity.

Note that the transients in Fig. 2.4 are much shorter: the system typically reaches its

stable orbit in less than one oscillation. Furthermore, the trajectories are no longer nearly
circular, but are highly distorted as a result of the nonlinearity. For large £, the graph of

x(t) also exhibits another important feature.

1

0
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1

x

-1
0 1
x

0
x
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0.5

xO

.0.5
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70 75 80 85
t

90 95 100

Figure 2.3. Dynamics of a Van der Pol oscillator for --=0.1. Figures a and b show phase
space trajectories for initial condition inside and outside the limit-cycle, respectively.
Figure c shows the nearly sinusoidal variation in position after the transient has decayed.
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There are two distinct time scales associated with the motion: a slow drift followed by a

rapid movement. Oscillations with separate fast and slow time scales are known as

relaxation oscillations. The corresponding oscillators are called relaxation oscillators.
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Figure 2.4. Dynamics of a Van der Pol oscillator for --4.0. Figures a and b show phase
space trajectories for initial conditions inside and outside the limit-cycle, respectively.
Figure c shows the variation in position as a function of time. Relaxation oscillations are
evident from the two time scales visible in the motion. Note also how quickly the
transient decays compared to the case c=0.1.

2.3 Dynamical Systems

Taking a broader view, let us consider dynamical systems in general. Virtually

any dynamical system, including the simple ones discussed above can be described by a

system of N first order differential equations

dt
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where X represents a parameter (or possibly several parameters) of the system. The N-

dimensional phase space of the system is simply the space formed by the components of
X. FP (x) is a vector field which determines the trajectory of any point , in phase space.

Dissipative systems are characterized by flows which tend to contract (N-

dimensional) areas of phase space. Geometrically, this means that under the action of the

dynamical system, an initial area of phase space will gradually be compressed until it has

no area. Formally the condition for dissipation can be written:

aFi < o.
i=, axi

Conservative systems, on the other hand, are characterized by a flow through phase space

which, as required by Liouville's theorem, preserves areas. Thus,

N dFi =

i=l aXi

It is possible and often very useful to reduce the dimension of a continuous

dynamical problem by cutting the phase space with an N-1 dimensional plane. One

records on the plane the set of points of intersection between the plane and a trajectory in

phase space. This set of points is a Poincare section and is illustrated in Fig. 2.5. By

additionally recording the temporal ordering of the points on the Poincard section,

dynamical information is retained.

The transformation that takes one point into the next is known as a map: a discrete

version of a dynamical system. In fact, a map is more general in that it need not derive

from any differential dynamical system. The map describes the 'new' state of a system

given its current state according to x' = f( ).

For dissipative dynamical systems there are invariably transients which decay

away given sufficient time. However, there is often a set of phase space points called an

attractor such that a trajectory begun on the attractor, will remain on it forever. An

attractor is said to be dynamically stable if trajectories perturbed away from the attractor

return to it. If the perturbations are amplified it is a dynamically unstable attractor,

sometimes called a repeller. The general types of attractors are well cataloged. The

simplest are, of course, fixed points. The limit-cycle, which has already been discussed,

is another common type of attractor. Strange or chaotic attractors, which were mentioned
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in Sec. 1 and play a fundamental role in the modern theory of dynamical systems, posses

unusual properties. Stable chaotic attractors are attractors in the truest sense, in that a

trajectory perturbed off the attractor will return to it. Yet, perturbations along the

attractor tend to grow exponentially in time, giving rise to the well known property of

strange attractors: sensitivity to initial conditions. As one varies a parameter of a

dynamical system an attractor may undergo a sudden, discontinuous change known as a

bifurcation. A typical example of a bifurcation involves a fixed-point attractor becoming

a limit-cycle or the two-torus, T2, becoming a chaotic attractor.

Figure 2.5. Schematic view of phase space showing the construction of a Poincard
section. An orbit is shown as it intersects the Y-Z plane at points Pi, P2, P3.

In general, dynamical systems reside in a phase space consisting of RN, where N is

the total number of canonical phase space dimensions. An important simplification

(which we shall later make explicitly for our particular system) of the limit-cycle

oscillator problem can be made for systems where phase space points are strongly

attracted to the limit-cycle. This simplification assumes that the motion of each oscillator

is confined to the limit-cycle itself, allowing the state of a single oscillator to be

completely described by an angular variable. The state space of each oscillator is then a

circle or T1, a 1-torus. For a system of N oscillators, the state space of the entire system

consists of the product of the state spaces of each oscillator, or the N-torus, TN. The term

phase space will henceforth refer to this state space consisting of the set of angle

variables necessary to specify a system of oscillators. (In fact, we will often only be

interested in the relative motions of the N oscillators, in which case the term phase space
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will refer to TN-1; one dimension having been eliminated by ignoring the average motion

of the system). Figure 2.6 shows the trajectory of a system of two oscillators on T2.

z

y

X

Figure 2.6. A single trajectory of a system of two oscillators on T2 . The beginning of a
Poincard section is also shown in the y-z plane.

It can be seen from the diagram that a differential system residing on T2 can be

reduced to a map of the circle, T1, onto itself. If the ratio, p, of the natural (uncoupled)

frequencies of two oscillators is a rational number, such that p=p/q, where p and q are

integers, then the behavior of the two uncoupled oscillators will be periodic (marginally).

This ratio is known as the 'bare' (uncoupled) winding number. For irrational winding

numbers, the phase space trajectory on T2 never falls back upon itself, but rather explores

the entire surface of the torus. Such a system is said to be quasi-periodic, since although

it is not strictly periodic, there are nevertheless two (or in general N) distinct frequencies

present. Coupling will often cause the two otherwise incommensurate oscillators to lock

together in a periodic motion. Figure 2.7 shows a schematic view of a classic phase

diagram for the problem of two coupled oscillators. The phase diagram shows the

parameter space of the system, with coupling strength plotted versus the bare winding

number. The shaded areas show the so-called locking tongues: regions of parameter

space for which the locked system has a particular winding number. It can be seen, for
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example, that as coupling strength increases, the range of frequencies for which locking

in a 1:1 ratio occurs, also grows larger.

1/4 1/2 3/4 1 3/2 2

Winding Number

Figure 2.7. Typical phase diagram for two coupled oscillators. Several locking tongues
are shown (hatched) for several rational winding numbers. The case of 1:1 frequency
locking is shown with a heavy line.

2.4 Transient Lengths

For many dynamical systems, and particularly for systems of oscillators which tend

to phase lock to each other, an important feature of the dynamics is the initial transient.

Indeed, for phase-locking oscillators, there is usually little to be said about the system

after phase-locking has occurred. The most interesting part of the dynamics is how the

oscillators arrived at synchronization. An obvious question is how long does the initial

transient last? In the case of phase-locking oscillators the time required for the system to

evolve from an initial state to a phase-locked state is called the locking time. In general,

the transient of a system will consist of trajectories which involve a decay toward a limit

cycle. In our case, however, the off-limit-cycle transient decays virtually instantaneously.

The dynamics of interest will be exclusively the motion of each oscillator along its limit-

cycle.

2.4.1 Transient Lengths Near a Fixed Point

Consider a simple one dimensional system with an attracting fixed point. In the

neighborhood of the fixed-point the dynamics of the system will be governed by

dx
= -kx, (k > O)

dt
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with the elementary solution x(t) = xe- ' . While this model of a transient is about as

elementary as one can possibly find, it is not unreasonable to use it in an attempt to

understand locking times. One difficulty of this model is that there is no clear 'end' of the

transient; the length of the transient is, mathematically speaking, infinite. One possible

approach is to associate the duration of the transient with the characteristic decay time, or

some multiple thereof. For example, if we define the transient length, , to be the time

required for the system to fall within a small 'locking' radius, p, of the origin then , is

given by

T(xo) = k-' ln(x/p).

If we further assume that the initial state xo is chosen from a uniform random

distribution in some finite range [O,XMAX], then it can easily be shown that the

distribution of transient times, h(r) is given by

- P [(r)+ kekr], < (xAX
h() MA(XAX (2.6)

O, ~' > xx )

where the delta function is the result of initial conditions which lie inside the locking

radius.

2.4.2 Transient of Unstable Chaotic Attractors

As will be shown later, the preceding results do not agree with our experimental

results. Seminal studies [Grebogi & Ott, 1983], [Grebogi et al., 1985], [Grebogi et al.,

1988] of boundary crises and unstable chaotic attractors have demonstrated the existence

of an exponential distribution of transient lengths in simple, low dimensional systems.

Since our high dimensional experimental system also displays an exponential distribution

of transient lengths, it is worthwhile to discuss briefly the theoretical work. On the other

hand, the underlying connection, if any, between the two systems is unclear.

The logistic map, given by x'= f(x)= x(l - x), is probably the most widely

studied and well understood nonlinear dynamical system. It is well known that as the
parameter X is increased from zero, the stable attractor undergoes a series of period-

doubling bifurcations, eventually becoming chaotic as X is increased past a critical value.

Figure 2.8 shows the logistic map for L=4+£.
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f(x)

x

Figure 2.8. The logistic map, x' = f(x) = X x (l-x), for >4. Also shown (dashed) is the
line f(x) = x. The loss region is a range of values of x for which f(x) > 1. Orbits which
fall into the loss region are mapped to x>l and then to x<O and then accelerate toward -o.
The width of this region is Ax.

As X approaches X=4, the maximum of f(x) approaches f(x)=l, hence the chaotic

trajectory explores a wider and wider band, until that band covers the entire range [0, 1].

At X=4, the chaotic band collides with the unstable fixed point at x=0O. The collision is

known as a boundary crisis. For >4, the chaotic behavior becomes unstable.

Trajectories which fall in the small central 'loss' region that satisfies f(x)>l will

necessarily be mapped to x>l on the next iterate. On the following iterate, the trajectory

will then be mapped to x<O and will then diverge rapidly toward x - -oo. Thus, for a

loss region which is sufficiently small, a trajectory may orbit chaotically on [0, 1]

(excluding the loss region) for a long time. In this case the motion is not true chaos, but

is rather a chaotic transient which lives for a while on what remains of the chaotic

trajectory after it has become unstable.

Suppose we define the length of the transient, , to be the time (number of

iterations) required for an initial condition to be mapped into the loss region. Since the

orbit prior to falling into the loss region is essentially chaotic, the orbit will ergodically

explore the region [0,1]. It is clear then, that for a loss region of width Ax <<1, initial

conditions chosen from a uniform random distribution on [0, 1] will have an exponential

distribution of transient lengths given by

h(r)= I e- =

'where o is the mean length of a transient. This exponential is simply the result of

Poisson statistics, since the probability of falling into the loss region is constant in time.

'The probability per iteration that the trajectory will fall into the loss region is simply Ax,
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hence, we expect that to will scale as /Ax. It is simple to show that Ax = (1 -4/A)3~.

Writing the parameter A = 4 + as a perturbation near the point X=4, we get

ro = 2£E-. (2.7)

Clearly, this logistic map dynamics differs from the case of phase locking of

oscillators, since in the latter case, the end of the transient corresponds to the arrival at a

fixed point of the system. In the case of the logistic map, the end of the transient

corresponds to a diverging of the state, x: x---oo, as t-oo. In fact, it has been shown

numerically [Grebogi & Ott, 1983] that the well known Hdnon map also exhibits a

boundary crisis in which one attractor loses its stability, allowing orbits to live for long

times on the unstable attractor, before escaping suddenly to a different, stable attractor.

As with the case of the boundary crises in the logistic map, there is an exponential

distribution of transient lengths and the average transient length scales as in Eq. (2.7).

2.5 Limit-Cycle Oscillator Theory

The preceding discussion has been elementary and rather general in that it included

a quick tour of some of the important ideas and terminology of nonlinear dynamics, as

well as a discussion of the basics of low-dimensional oscillator systems. We will now

focus on a specific oscillator model and eventually apply that model to the problem of

oscillator populations, which is of central interest to our experimental work.

As mentioned earlier, one of the important simplifications employed in studying

systems of limit-cycle oscillators is to assume that phase-space trajectories are strongly

attracted toward the limit-cycle. This assumption permits us to consider only the motion

of points along the limit-cycle. This approximation is important since the dynamics of

each oscillator is reduced from an n-dimensional problem to a 1-dimensional problem.

The motion of points along the limit-cycle can be described by a single variable, , the

phase of the oscillator. If we consider a system of N independent limit-cycle oscillators,

it is always possible to choose hi for each oscillator, such that the motion along the limit-

cycle is of uniform velocity, doi/dt = oi. Perturbing the system with interactions that are

a function only of the phase differences yields

do. N
= i + i($j -i), i- 1,2,...,N. (2.8)
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In fact, Eq. (2.8) can be derived [Kuramoto, 1984] perturbatively from the much more

general system:

dtiP(9i)+Ya(Xi,Xj), i=1,2,...,N. (2.9)
dt j=1

The first term on the right hand side of Eq. (2.9) governs the unperturbed dynamics of

each oscillator, while the summation represents a perturbative interaction.

Returning to Eq. (2.8), clearly we must require rF( + 2ir) = F(0). If we assume
that each oscillator is coupled equally to all others then Fii = F . If we further assume

-K
that F(0) = 0, then it is natural to choose r(O) = sin 0, since it is the leading term in

N
the Fourier expansion of F. This yields a simplified model which is tractable and is

frequently used in studies of oscillator populations:

d0i K N
dt = coi+ sin(0j -0), i=l,2,...,N. (2.10)

N =1

It will be shown below that this system can be written as a system of N

independent equations coupled together via a mean-field. For now, suppose K>0.

Suppose additionally that the jth oscillator has a phase slightly ahead (larger) of the ith

oscillator. Then the effect on the ith oscillator due to the jth will be to increase i's rotation

frequency, bringing it closer to j. Thus, the oscillators are attracted to each other. For

K<0 the opposite is true: there is a pair-wise repulsion between two oscillators.

2.5.1 N=2 Limit-Cycle Oscillators

A system of only two such oscillators is particularly easy to analyze. The

oscillators are described by the following pair of equations:

dt= ol + 2sin(02 - 0})
dt 2 K (2.11)

dt 2 = C2 + K sin(, 1 - 02)
dt 2

Taking the difference between the two equations conveniently yields a single equation
which governs the phase difference, WVr -- 02. Defining AW ), - 02, we get

d
- = Aw - Ksin(V) (2.12)

dt
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Figure 2.9 shows f(lv) Am - Ksin(yf) plotted versus A. The system can only

have a fixed-point if JKJ2> ao, that is if the coupling is sufficient to overcome the

tendency of the oscillators to drift apart due to the difference in their natural frequencies.

If that condition is satisfied, then there will be two fixed points, at the zeroes of f(N). The

stable (S, solid circle) and unstable (U, open circle) fixed-points will satisfy
,f'( ,)< 0, and f'(u) > 0, respectively. As we would expect, for K<0 the oscillators

are repelled from each other causing the stable fixed point to occur near y=IE. For K>O

the fixed point occurs near --=0. Also shown on the diagram are arrows on the abscissae

indicating the direction of the flow.

f(v) f(W)

, AV

K<O K>O

Figure 2.9. Dynamics of two limit cycle oscillators. The repulsive case (K<O) and
attractive case (K>O) are shown. The rate of phase separation, f, is plotted versus the
phase separation between the oscillators. The stable fixed point (solid dot) and unstable
fixed point (open dot) is indicated for each case.

2.5.2 Limit-Cycle Oscillator Populations

We now return to the more interesting case of a large population of N oscillators

with mean-field coupling, as modeled by Eq. (2.10). The goal is first to discover the

fixed-points of this system, and then to understand its dynamics. The key point to

recognize is that for large N, the problem is amenable to the well known tools of

statistical mechanics. We expect that, at least for attractive (K>0) coupling, the system

will exhibit a phase transition in which a substantial fraction of the population becomes

synchronized. We wish to determine the critical coupling strength, Kc, necessary for this

to occur.

The mathematical formulation of this problem in terms of the well known mean-

field theory tools of statistical mechanics was developed by Kuramoto and Nishikawa

[Kuramoto & Nishikawa, 1987]. Their approach, which we follow here, is first to

describe the macroscopic state of the system with an order parameter, which is simply
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the strength of the mean-field. A self-consistent equation for this order parameter may

then be formulated; its solution subsequently determining KI.

We begin by assuming that the natural frequencies of the oscillators are described

by some distribution g(co), which is symmetric about the mean frequency, oo. The next

step in many problems of this sort is to transform the system into an appropriate rotating

frame. This eliminates the motion of the mean and allows us to focus on the drift of the

oscillators relative to the mean. Define the relative phase of an oscillator to be
Vi i - wot and redefine co so that it becomes the frequency of an oscillator relative to

the mean, hence i <- O - oo. We also redefine g(co) so that it is now symmetric about

zero. Substituting these definitions into Eq. (2.10) yields

dvi= K N

dti = Oi + -Isin(vj-v). (2.13)dt N j=l

We now define a complex order parameter, Z, for this system:

N

Z(t) = Z(t)ei (') -- i- (2.14)

Note that when all N phases are aligned IZI = 1, and when the phases are distributed

uniformly around 2ir then IZI = O0. An equivalent expression for IZI is

2jr

Z(t)= Jn(v,t)eidyrv (2.15)
t=O

where n(V, t) is the number density of oscillators with phases in [, Ar+dV] at time, t.

Combining Eq. (2.13) and Eq. (2.14) yields a set of N differential equations for the

phases, which are now coupled together only through their interaction with Z(t). Thus,

we get

di = - KZIsin(i -0 ). (2.16)
dt

We would like to consider states in which Z(t) is constant in time. Recall that since

we are in a rotating frame, such states correspond to a system that exhibits a macroscopic

rotation at uniform angular velocity, oo, in the 'laboratory' frame. For some fixed Z, Eq.

(2.16) divides the population of oscillators into two distinct sub-populations. Those
oscillators whose natural frequencies satisfy Iil < IKZI will become synchronized with
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each other and with the collective oscillation embodied by Z. We refer to this sub-

population, which synchronizes, as the S group. The remaining oscillators satisfy

Ioil > IKZ1 , thus they remain unsynchronized and we refer to them as the U group (The

subscripts s and u now refer to the synchronized group and the unsynchronized group,

rather than stable and unstable, as they did before). Figure 2.10 shows the distribution of

natural frequencies, g(o). The central part of the population in the range [-IKZI, IKZI]

forms the S group (shaded), while the oscillators outside that region form the U group

(unshaded).

g(o)

Ur

0D

-IK Z1 O IK ZI

Figure 2.10. Distribution of oscillator natural frequencies. The shaded region indicates
the range of oscillator frequencies that spontaneously become synchronized (S). The tails
of the distribution (U) remain unsynchronized.

It is convenient at this point to divide the number density, n, the order parameter, Z, and

the number of oscillators, N, into their components corresponding to the S group and the

tJ group as follows:

n= ns + nu

z=zs + Z,

N=N,+N.

S group. Let us first consider the S group. These oscillators satisfy Ioil < KZ,

hence there will two fixed points; one stable and one unstable. For a given Z, each

oscillator will sit stationary at its stable fixed point. Its phase at that fixed point will be

given by the fixed point equation

Vio(Z) = O+sin-'(i / KZ) (2.17)
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These equations imply a one-to-one correspondence between natural frequency o,

and fixed point phase W. Hence, the distribution of S group phases is easily determined

from the identity

n,o( )dV = g(c)do

and the inverse of the fixed point equation

= KlZlsin(V -O ). (2.18)

Thus the distribution of S group phases is given by

n,,(yV;Z) = g[KZsin(v- 0)]. KIZIcos(y -0). (2.19)

U Group. The oscillators in the U Group are not phase-locked and never come to

rest. We wish to discover what contribution do they make toward Z. Their instantaneous

angular velocity varies sinusoidally over the course of one cycle and is easily shown to be

dVi = v (y) = oi - Klsin ( y -)
dt

The coupling does have an effect on the (one-cycle) average angular frequency of the U

Group oscillators. It is given by

-i = 2, =r 2 ,{ IKZ2 

, dt- Jd ( ko 2dV/ K,(v)

Assuming that these coupling-modified frequencies are rationally independent, the

oscillators will move ergodically over the Nu dimensional torus that forms their phase-

space. Thus the probability density of finding a particular oscillator with a given natural

frequency at some phase W, is given by

P(Thus, the distribution of phases of the U Group oscllators is given by

Thus, the distribution of phases of the U Group oscillators is given by
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n.(v)=2 Idco g(c)p(V)=2 do g() )

1 id ) 2 - IKZI]
KIZI 2- IKZsin( - O)12

where we have made use of symmetry of g(o)=g(-co). It is now possible to write down a

self consistent equation for Z as follows:

Z = S(Z)= fn(Id = [n,( V)e'v +nu(I)ei"dy
o o

Note that nu contributes nothing to Z since nu()=nu(f+7r). Inserting the expression

for ns Eq. (2.19). and making the change of variables y=sin(V) yields

S(Z) = 2 dyKZg(K[Zly)(1 _-2 )1/2
o

This integral is an odd function of Z. Expanding it to third order in Z produces

S(Z) = (1 + E)Z - P1IZ1 Z + o(1l15) (2.20)

where E - (K - KC )IK is a dimensionless expression of the coupling strength in units of

the critical coupling strength KC - 2/,rg(0) and the coefficient for the third order term is

given by P/ - K~ 3g"(0). Normally we expect the natural frequencies are described

by a unimodal distribution which implies g"(O)<0 and therefore 3>0. Figure 2.11

shows the graphical solution to the self-consistent equation Z=S(Z) for this normal case.

For K<Kc, there is a single solution with Z=0 which corresponds to the incoherent state

of the system. At K=Kc the system experiences a bifurcation and as K is increased

beyond Kc, a second solution to the self-consistent equation appears at

1

Z* = e

Since is an arbitrary constant (introduced as a result of the arbitrary choice of

initial phase of the rotating frame) we may choose it to be zero yielding

Z = (/)/2. (2.21)
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Figure 2.11 also shows the corresponding solutions to Z=S(Z) for the unusual case

of 5<0. Note that in determining these solutions it has been assumed that the system was

already in a steady-state. The preceding fixed-point analysis contains no dynamical

:information, consequently the stability of the solutions is indeterminate.

S(Z) S(Z)

7 7
>0 13<O

Figure 2.11. Graphical solution of the self-consistent equation S(Z) = Z. Solutions are
shown as dots. The normal (g"(O)<O, >0) case and the case of a concave upward
distribution (g"(O)>O, 0<0) are shown. For each, examples of coupling, K, above and
below the critical coupling, Kc, are shown, illustrating the bifurcation.

2.5.3 Dynamics of Limit Cycle Oscillator Population

In order to determine the stability of the fixed-points it is necessary to develop a

dynamical form of the self-consistent equation. Rather than reproduce the extensive

mathematics of Kuramoto and Nishikawa [Kuramoto & Nishikawa, 1987] we simply

present their equation for the dynamics of Z:

dZ
dZIKz-l = Ez - Plzli Z
dt

where 4 is a constant of order unity. As before, the complex phase factor in Z is arbitrary

and can be eliminated from both sides of the equation. Furthermore, we restrict ourselves

to the normal case of >0. For weak coupling (<0), the incoherent state with Z=O is

governed by the dynamics

dZ -Iel4-'KZ 2

dt

Thus, this state is stable, with Z>O decaying to zero in time according to
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1
Z(t) II

For strong coupling (>O) the Z=O state becomes unstable and dynamics of Z near

the coherent state, Z*, are governed by

drl = _s3/2dt =-_E3/2 or, (2.22)
dt

where

2K,
, -1/2

and (t) = Z(t)- Z* is the deviation from the fixed-point. Thus the coherent state has

become stable, with perturbations about this state decaying exponentially toward zero

according to

r7(t) o exp(-yo 3/ 2 t). (2.23)

The dynamics described by Eq. (2.22) are the simple dynamics found near an

attracting hyperbolic fixed point. It is to be expected then from our earlier discussion of

transient lengths that for a large system of oscillators with excitatory coupling, the

distribution of locking times will be finite and relatively short.

2.5.4 Repulsive (Inhibitory) Coupling

The case of repulsive or inhibitory coupling, in which the interactions between

oscillators are such that their phases tend to become anti-parallel, has been studied very

little indeed. The preceding theory assumed that K>O (attractive). The results above can

be extended to the case K<O. The only change is in Eq. (2.17), in which the phase of a

synchronized oscillator is shifted by 7r. Hence, the new phase for the repulsive coupling

case is given by

tio (Z) = Vio(Z) + r = E + + sin-'(oIKIZK)

where K is implicitly negative (that is we redefine K such thatK = KI). Pursuing the

mathematics as before we find that the only effect of this change is to invert the sign of
S(Z), thus the new S(Z) for the repulsive coupling case is given by S(Z) = -S(Z).

Clearly, Fig. 2.11 indicates that since the function S(Z) is inverted, there is still the
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expected incoherent state at Z=0. On the other hand, S(Z) must increase monotonically

with Z, therefore S(Z) = -S(Z) must decrease monotonically with Z. Thus we may

conclude that there are no other solutions to the self-consistent equation.

One way of viewing the problem of repulsive coupling is to consider the simpler

problem in which all the natural frequencies are identical. In the rotating frame, then, all

of the natural frequencies will be zero. Eq. (2.16) yields a fixed point equation

0 = KIZlsin(Wyi - 0)

There are only two solutions to this equation. The first is the coherent solution with

all phases aligned with each other and thus with Z. All of the sine factors are zero and the

equation is satisfied. The other solution is one where Z = 0. To accomplish that, we

require that the sum in Eq. (2.14) be zero. Figure 2.12 shows a typical set of N=7 phases

in the complex plane which graphically satisfy this requirement. Clearly this

arrangement, for all N>3, can be smoothly deformed (other than a trivial rotation) into

another configuration which also satisfies the fixed point equation. That there are an

infinite number of states which satisfy the fixed point equation suggest that none are

preferred and none are stable.

Im

Re

Figure 2.12. Imaginary plane showing N=7 oscillators.

In summary, the foregoing theory of limit-cycle oscillator population makes several

predictions:
* For N--oo and excitatory coupling, synchronization should occur after

a short, finite transient.
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* For N-oo and inhibitory coupling, synchronization cannot occur.

* For N>3, identical oscillator frequencies and inhibitory coupling,

synchronization cannot occur.

None of these predictions can be tested directly, since it is neither possible to

achieve N---oo, nor is it possible to create a real experimental system with identical

frequencies. Rather, these theoretical results will serve as a guide and as points of

comparison with the experimental results. Having touched upon many of the important

ideas of nonlinear dynamics and having focused on the basic theory of collective

synchronization in oscillator populations we are now prepared to proceed with the details

of the experimental work.
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3. EXPERIMENT

3.1 Overview

This chapter describes the details of the coupled oscillator system used in this

experiment. The layout of this chapter is as follows. First the electronic hardware will be

described. This will include a discussion of the basic oscillator unit, followed by a

description of the manner in which these oscillators are coupled together. Additionally,

the data acquisition and control system hardware will be described, along with some

considerations of calibration and systematic error. Finally, we will discuss the software

system for acquiring and analyzing data. This will include the method of oscillator

initialization, followed by the determination of various experimental variables (and their

errors) such as trajectories, locking times, fixed-point phases and fixed-point frequencies.

3.2 Hardware

3.2.1 Unit Relaxation Oscillator

As with any experimental apparatus, an idealized mathematical model must

eventually be implemented in real and inevitably less than ideal hardware. In the

experiments we have performed, the oscillators are electronic, and are constructed using a

single operational amplifier (op-amp) as the central element of each oscillator. Electrical

engineers and experimental physicists are generally quite familiar with op-amps since

they serve as building blocks in a wide variety of circuits. For the less experimentally

minded, it is worth describing the operation of this common and useful electronic

component. Figure 3.1 shows the schematic symbol for an individual op-amp.

V.

V+
Vout

Figure 3.1 Schematic symbol of an op-amp showing two power supply terminals,
inverting (-) and non-inverting (+) input terminals and output terminal.

There are five important connections to the op-amp. The terminals labeled Vs+ and

Vs- supply power to the op-amp and are typically Vs+ = +15v. and Vs_ = -15v. Since

these terminals only supply power they are often not shown and are implicitly assumed to

be present. The ideal op-amp is little more than differential amplifier, with an infinite
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gain. The voltage appearing at the output, Vut, is some multiple of the difference

between the voltage placed on the non-inverting input, V+, and that on the inverting
input, V_. That is V,, = G(V+ - V_), where the gain, G, in an ideal op-amp is infinite. In

a real op-amp, G is typically some very large number. For example, the op-amps used in

these experiments are the LF357 type made by National Semiconductor and they have a

gain, G - 105. In addition, the ideal op-amp has an infinite input impedance (no current

may flow into the inputs) and zero output impedance (the output will produce whatever

current is necessary to maintain the correct output voltage).

Of course, all real electrical components, including the op-amp, behave in a less

than ideal manner. One of these non-ideal effects, saturation, is a simple non-linearity

found in many physical systems including every amplifier, since no real amplifier can

amplify an arbitrarily large input. It is the one non-ideal effect which plays an important

role in the operation of the oscillator circuit. In an op-amp, the saturation effect is caused

by the fact that voltage output of the op-amp is constrained to lie somewhere between the

two power supply voltages. Often however, op-amps saturate at a voltage slightly less

than the positive power supply voltage and slightly more than the negative power supply

voltage, however we will ignore this effect for now and assume that saturation occurs at

the power supply voltages. The huge gain of the op-amp means that saturation will occur

as soon as either input exceeds the other by more than a tiny fraction of a millivolt. The

input-output characteristic of an op-amp with saturation and a large but finite gain is

shown in Fig. 3.2.

,1,

v+- v.

Figure 3.2 Input-output characteristic of an op-amp with gain, G, and saturation voltages
Vs+ and Vs-.

When used as an amplifier, an op-amp is connected with some negative feedback,

which reduces the gain and widens the central linear region to include the voltages one

wishes to amplify. In our oscillator circuits however, the negative feedback is incidental
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since there is also enough positive feedback to cause instability. Thus, the op-amp

behaves essentially as a comparator: its output saturates at Vs+ for V+ > V and the output

saturates at Vs_ for V+ < V..

In addition to the narrow band of voltages over which the op-amp behaves as a

linear amplifier rather than a comparator, the op-amp also suffers from other

imperfections. The inputs do in fact have a finite resistance and therefore do draw a tiny

current. In our apparatus this amounts to a few tens of picoamps. Furthermore the output

is capable of sourcing or sinking only a finite amount of current, typically a few tens of

milliamps. These effects will be treated essentially as negligible corrections to the ideal

op-amp behavior.

The LF357 used in our experiments was chosen specifically for its high speed.

Often an op-amp includes internal compensation capacitors so that when configured as an

amplifier, it will be stable. Since our circuit is intended to oscillate, stability is of no

concern (indeed, the circuit must be unstable to oscillate). The LF357 is a member of a

well known family of op-amps which, as a result of its lack of compensation, sacrifices

stability in favor of higher speeds. The slew rate, a measure of the switching speed of an

op-amp, is the finite rate of change of the output, when a large (saturating) voltage is

placed across the inputs. For the LF357, the slew rate is about 50 V/1ts, which implies a

lower limit of about 0.6gs for the time required to make the 30 volt transition from

negative to positive saturation. This time scale is very short, although not necessarily

negligible, compared to the roughly 200 ms typical period of oscillation of our oscillators.

Since we use of an op-amp in an unstable configuration that oscillates between

positive and negative saturation (as we shall see below), we are lead to consider two other

non-ideal effects which normally would be irrelevant for an amplifier in the linear region.

As mentioned above, some op-amps, including the LF357, do not saturate cleanly at the

power supply voltages. This is due to the use of bipolar transistors in the output stage of

the op-amp. This essentially DC effect would not be a problem except that the positive

and negative saturation voltages can differ slightly from each other, resulting in slight

asymmetries in the oscillator waveform. Additionally, saturation voltages can differ from

op-amp to op-amp producing small amplitude variations from oscillator to oscillator. The

corresponding AC effect is that after an op-amp has been driven into saturation it requires

a finite time to settle at its saturation voltage. During this settling time, the output may

overshoot the saturation voltage and exhibit ringing: small, damped oscillations about the

saturation voltage.
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Having reviewed the essential properties of op-amps we now turn to a discussion of

the oscillator itself. The basic oscillator unit used in this experiment is shown in Fig. 3.3.

It is a simple electronic relaxation oscillator familiar to many electrical engineers

[Horowitz & Hill, 1989] and is the same basic circuit that has been effectively used in

other non-linear dynamics experiments [Linsay & Cumming, 1989]. It is composed of a

single op-amp with sufficient positive feedback to produce oscillation.

R

)Ut

I Rd Rd

Figure 3.3 Relaxation oscillator circuit schematic. The capacitor, C, charged via
resistor, R, has a voltage, V, applied to the inverting (-) input of the op-amp. The output,
Vout, is a square-wave which also appears, attenuated by a factor of two at the non-
inverting input (+).

To understand how the oscillator oscillates, recall that the op-amp is nearly always

operating in saturation, thus Vout = Vs+ for V+ > V and Vut = Vs. for V+ < V . The

voltage divider formed by the two resistors, Rd (which need not in general be equal)

presents the non-inverting (+) input with a threshold voltage VT = Vout/2. When Vout

saturates at the positive supply voltage, the capacitor C, is charged through a resistance R

by a constant voltage source of voltage Vs+. The voltage on the capacitor, V = V_,

increases until the upper threshold voltage is reached: V = VT+ = Vs+/2. At this point V_

will just exceed V+ causing Vout to switch sign and saturate at the negative supply

voltage. The capacitor is then discharged by a constant voltage source of voltage Vs_ in a

similar fashion. When the negative threshold is reached, V = VT- = VsJ2, the output

switches to the positive supply voltage again and the cycle repeats. Figure 3.4 shows, on

identical time scales, the idealized waveforms Vout(t) and the capacitor voltage, V(t) = V_

(t). Clearly, between switches of the oscillator, V(t) decays toward the corresponding

supply voltage with a simple exponential form. The period of oscillation, T, is thus

determined by the RC time constant as well as the threshold voltages. For a relaxation
oscillator with VT = Vs2, it is easy to show that T = 2RC In 3 - 2.2 RC.

40



Vs+ -

Vs- -

out

V

T

Figure 3.4 Waveforms of a single relaxation oscillator. The capacitor voltage, V(t) and
output voltage, Vout(t), are shown on the same time scale

The capacitor voltage between switches of the op-amp can be written simply as

Vi(t)=+v,[l-e-"*r], t=[0,T/2 (3.1)

where V,-V,+ =lV 3,_l. V+ describes the charging phase, and V- describes the

discharging phase of oscillation, and t is the time since the last switch of the op-amp. The

derivative of V(t) between switches is thus given by

Vi(t) = (-v + V)/' (3.2)

Using this latter expression it is simple to construct a phase portrait of the

individual ideal relaxation oscillator. The limit-cycle of the oscillator is shown in Fig.

3.5. It is nearly impossible to perturb the system away from the limit-cycle shown. In

that sense, the strength of attraction to the limit-cycle is infinite. That the system exists

on an essentially one-dimensional curve is not surprising since the oscillator contains

only one capacitor. Other than the single bit of state information stored by the op-amp

itself, the one capacitor contains all information needed to describe the system. The

system traverses the solid curve in the direction shown by the arrows, moving relatively

slowly over the sloped segments of the limit-cycle and traversing the vertical, V=const.

segments instantaneously. The dashed segments of the curve indicate the only permitted

perturbation away from the limit-cycle of the ideal relaxation oscillator. Points on these

branches correspond to transient states in which the capacitor is charged to a voltage

above the upper threshold (V > VT+) or below the lower threshold (V < VT-). Clearly, in

initializing a relaxation oscillator to known state, it is not sufficient to simply charge the

capacitor to a known voltage. For any given voltage in the normal range of oscillation,

there are two possible states that the system may take: charging or discharging. In
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initializing the oscillators in our experiments we make use of the transient branches of the

phase-portrait. By setting V > VT+ the system is forced onto the lower (discharging)

branch of the limit-cycle. Similarly, by setting V < VT the system can be forced onto the

upper (charging) branch of the limit-cycle. A subsequent setting of the desired initial

capacitor voltage between the two thresholds uniquely determines the state of the system.

dV/dt

-vs/2

"'I

Ls

-V/ I

V8 /2
V

Figure 3.5 Phase space trajectory of an ideal relaxation oscillator. Solid line indicates
limit cycle associated with normal oscillation. Vertical segments at threshold voltages
correspond to sudden switches in direction. Setting the capacitor voltage outside the
thresholds produces initial conditions lying on the dashed segments.

The actual electronic implementation of this experiment used oscillator elements,

shown in Fig. 3.6. These building blocks are a slightly more complicated version of the

preceding circuit. First, each oscillator element includes an LM311 comparator on the

output of op-amp oscillator. This comparator serves a dual purpose. It electronically

isolates and buffers the oscillator from noise that might introduced by the data acquisition

system. It also converts the op-amp output voltage, which swings between the analog
power supply voltages into suitable digital logic levels (of GND=Ov and Vcc = 5v). We

call the digital logic signal output of the comparator, S. When the oscillator capacitor is

charging, S=l, when it is discharging, S=0O.

Each oscillator element also includes two solid-state FET (field effect transistor)

switches under digital control. The two switches come in a single DG300ACJ integrated

circuit made by Intersil. When open, the 'RUN' switch breaks the oscillator's negative

feedback path and isolates the capacitor from the rest of the oscillator circuit. Since the

capacitor is still connected to the (very high impedance) inverting (-) input of the op-amp,

the 'RUN' switch does not disturb the state of the system. When opened, it merely freezes
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the system in its current state. When the switch is closed, the system will begin

oscillating from wherever it was left.

Vinit INIT RUN

S

I IL - - -OSCILLATOR ELEMENT - J

Figure 3.6 An oscillator element consisting of a relaxation oscillator followed by an
LM311 comparator which buffers and conditions the oscillator output. Also shown are
the FET electronic switches. The switch controlled by the RUN signal starts and stops
the oscillator and the switch controlled by the INIT signal charges the capacitor to the
voltage applied to the VINiT input. The signal S is the digital output and V is the node
which provides a connection to the coupling network.

The other switch is the 'INIT' switch. If the 'RUN' switch is open, the 'INIT' switch

may be closed so as to allow the capacitor to be charged to any desired voltage applied at

the input VINIT. Thus the oscillator may be initialized in the following way. First, 'RUN'

is opened and 'INIT' is closed. The oscillator is then forced on to the desired branch of its

hysteresis curve by setting VNTrr to charge the capacitor to a voltage outside the range of

threshold voltages. Next, VINrr is set so as to charge C to its desired initial voltage and

finally, 'INIT' is opened. When 'RUN' is closed, the oscillator will begin its trajectory

from the initial condition to which it has been set.

The signal V, on the oscillator element allows the oscillator to be coupled to other

oscillators through a coupling network which will be discussed below. Two digital

inputs, RUN and INIT control their respective switches, and a single digital output, S,

describes the state of the oscillator. It should be noted that this one bit of information is

insufficient to completely describe the state of the oscillator. It merely tells us whether
the capacitor is charging or discharging. At the time of a 0-41 transition in S (that is

when an oscillator begins the charging part of its cycle) the phase is determined by

definition to be zero. Between switches of the oscillator we have no way of measuring
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the phase of an oscillator. For a system of weakly interacting oscillators such as ours,

however, it is reasonable to assume that perturbations in phase are small. Thus, the phase

of an oscillator during a cycle is approximated by interpolation. Its phase at any time is

approximately the time since the last switch as a fraction of the oscillator's local period.

Each oscillator element was made on a separate miniature printed circuit board

which was plugged into a larger 'motherboard'. The purpose of this approach was to

separate the specific oscillators from the data acquisition system. In this way oscillators

could easily be removed, interchanged, modified, and replaced as necessary. Should we

wish to use a different type of oscillator for example, a new oscillator element could

simply be plugged in. The connector between the motherboard and each oscillator

element supplied power, switch control signals INIT and RUN, and initialization voltage

VIMT. In addition, the output signal S and the capacitor voltage V are connected through

the connector to the motherboard.

There is another element of the construction of the oscillator, shown in Fig. 3.3, that

is worth noting. The charging resistor, R, was actually a variable 5 kfŽ resistor built from

a trimmer potentiometer. This allowed the natural frequency of each of the oscillators to

be adjusted by hand. The two resistors, Rd, which comprise and the voltage divider in the

positive feedback path were also actually implemented using a single 5 kf trimmer

potentiometer. The potentiometer was connected between ground and the output of the

op-amp. The center tap of the potentiometer was connected to the non-inverting (+) input

of the op-amp allowing the threshold voltage to be set by this variable voltage divider.

Thus, it was also possible to vary the amplitude of oscillation manually.

Figure 3.7 shows a typical time series and phase space trajectory for a single

relaxation oscillator. As can be seen from the straight lines in the phase space motion,

the behavior of an individual oscillator is very close to that of an idealized op-amp

relaxation oscillator.
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Figure 3.7 Figure a shows the capacitor voltage, V(t), for a single oscillator, measured
with a 12 bit resolution A/D converter at a rate of 2 MHz. Figure b shows dV(t)/dt
computed numerically from V(t). Figure c shows the phase portrait of the oscillator,
dV(t)/dt versus V(t). The 'noise' on dV/dt is the result of the numerical differentiation.
The differencing operation effectively amplifies the small digitization errors associated
with V(t).
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3.2.2 Coupling of the Oscillators

The oscillators in this experiment interacted with each other via a mean field

coupling. That is, each oscillator was perturbed by essentially the same signal derived

from a sum over all of the oscillators. Figure 3.8 shows a schematic representation of the

way the oscillator elements were coupled together. The input, V, of each oscillator

element was connected through a coupling capacitor, Cc, to a single common node. The

voltage at this node, Vc, is the variable that plays the role of the mean field in this system.

This common node is then connected through a variable resistor, RC, to ground. This

resistor controls the strength of mean field coupling. When Rc is zero, the coupling

signal, Vc(t), is also zero, hence there is no coupling between oscillators. As Rc

increases, the amplitude of Vc(t) increases, hence, the oscillators become more strongly

coupled together.

q

Vc

RC

l

lut,i

3ut,i+1

Figure 3.8 Schematic of the mean field coupling showing oscillators i and i+l.

The equation governing the voltage, Vi, on the ith oscillator is easily determined to

be

dV, _ 1 1c dV,dt =- I-' - + c Vorr, + C d
dt RC RC VO, CT dt , (3.3)

where CT _C + C. The first term on the right-hand side describes the well known

dynamics of a simple RC circuit. The second term is the driving term. The third term is

the coupling term. The equation describing the coupling voltage, Vc, is found by

summing the currents flowing through the Cc and into the Rc.

46



dV, 1 + (dVj
dt -Nr VC N j= dt (3.4)

where sc RcCc.

Since the output voltage takes on only two possible values we may write VOUT in
terms of the constant supply voltage Vor,i(t) = a(t)V,, where a,(t) = {+1, -1}. The

threshold voltage, which is some fraction, k, of VOUTr, is then given by VTi(t) = kai(t)V,.

The equations above describe only the dynamics of the oscillator system between

switches, during which period VOUT is constant. To complete the picture they must be

supplemented by the rule governing the switch that occurs when an oscillator reaches

threshold. Hence,

If ai(t)Vi(t)>kVs, Then ai(t+)=-ai(t) (3.5)

The purpose of the coupling capacitors is to prevent any DC flow of current from

the oscillator's internal capacitors, C. Without them, the charge on the internal capacitors

would tend to simply drain off. It was noted after the experiments had been performed

that the capacitor, C, could be eliminated from the oscillator circuit entirely. This causes

a substantial simplification in the governing equations. It is important to note that the

coupling capacitors effectively differentiate the signal V(t) produced by each oscillator.

Consequently, the contribution to the signal, V, due to a single oscillator is

approximately a square wave, since the signal at V(t) is approximately triangular.

Figure 3.9 shows the effect of the coupling network on the waveform of a single

oscillator. Figure 3.9 shows V(t) and Vc(t) for the single oscillator. Note the distortion in

the V(t) waveform relative to the unperturbed waveform of Fig. 3.7a. This is a 'self-

coupling' effect: the oscillator contributes a roughly square-wave coupling signal to the

mean-field, Vc(t), shown in Fig. 3.9b. This mean-field signal is then (approximately)

superposed on V(t) itself.

In our implementation of this circuit, the important circuit elements had the

following values: R = 1 k92, C = 0.01.F, Cc = 0.1F, and Rc was typically varied up to

roughly 1000 Ohms. Figure 3.10 is a calibration curve showing the nearly linear
variation of the amplitude of Vc(t) with the coupling resistance, for values of Rc< 300 Q.
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Figure 3.9. Waveforms of a single oscillator coupled to the coupling network with Rc=68
Ohms. Figure a shows the oscillator voltage, V(t). Figure b shows the coupling voltage,
Vc(t).
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Figure 3.10 Coupling signal calibration curve. Amplitude of coupling signal, Vc, is
plotted versus the coupling resistance, Rc.

Like the oscillator elements, the details of coupling were segregated to a separate

printed circuit board. The capacitor voltage Vi of each oscillator is passed through to the
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motherboard and then to a ribbon cable that could be plugged into a coupling board. The

separate coupling board provides prototyping space and flexibility to allow

experimentation with different coupling topologies and different circuits. The separate

coupling board approach makes it possible, for example, to change coupling schemes

merely by plugging in a different circuit board.

3.2.3 Data Acquisition and Control system

We now turn toward a discussion of the data acquisition and control system for this

experiment. In addition to the coupling which was discussed above, Figure 3.11 also

shows a schematic of the digital electronics used in the experiment. The most important

part is the Macintosh IIx computer which was used to control the entire system and to

store and analyze the data. The computer contained two specialized cards which plug in

to the Macintosh NuBus bus. The first was a National Instruments NB-DIO-32F card for

doing 32-bit digital input and output. The NB-DIO-32F contains four 8-bit ports, each of

which was separately programmable for reading or writing out digital data. The board

also contains a set of programmable clocks which coordinate the reading and writing of

information by the ports. By deriving timing signals from the clock, the state of the

system can be measured at evenly spaced and precisely defined intervals. Without such a

clock, rate of measurements would depend critically on the rate of software execution and

any branching in the software could easily produce a time series with a non uniform

sampling rate. To obtain a master clock frequency, the 10 MHz NuBus clock is in effect

divided down to 2.5Mhz. The clock signal used for sampling data from the oscillator

system (the sampling clock) is then produced by dividing the 2.5MHz master clock

frequency by a software programmable number. It was found by testing the system with

a signal generator that data cannot be sampled at a rate higher than approximately 400

kliz.

The other NuBus card was an NB-DMA-8-G card also made by National

Instruments. This card performs direct memory access (DMA) in conjunction with the

NIB-DIO-32F. Its purpose is to allow the DIO card to quickly move data in and out of the

computer's memory, bypassing the Macintosh processor. Since it works almost

transparently, and since it is not connected directly to the experiment, we need not

discuss it further.
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Figure 3.11 Schematic diagram of oscillator elements (four are shown) connected to the
coupling network and to the data acquisition system. The coupling network (broken line)
consists of a set of coupling capacitors, Cc, connected to the V input of each oscillator
element and connected to ground through a common variable resistor. A microcomputer
controls the data acquisition system via a plug-in digital I/O port. The oscillators are
enabled for initialization by a multiplexer that decodes the oscillators' address. A D/A
converter sets the initialization voltage and the oscillators are instructed to start
oscillating by the RUN signal. Finally, the ACQUIRE signal latches the output state, S,
of each oscillator simultaneously into the latch where it is read by the computer.

The state, S, of each oscillator element was input to a 16-bit latch. The computer

periodically sampled the state of the system by strobing the latch and then reading out its

contents. The system permitted data to be sampled a variety of different rates, although

in these experiments, a rate of 100 kSamples/s was used almost exclusively. With typical

50



oscillator frequencies of about 5 kHz, this produced roughly 20 samples per oscillator

cycle.

The RUN signals of all the oscillators were connected together and driven by a

single bit of the 1/O port. Thus, the oscillators could be started and stopped collectively,

but not individually. Four more output bits of the I/O port were used as inputs to a 16-bit

multiplexer, the outputs of which were connected to the INIT signal of each oscillator

element. In this way, the computer could address an individual oscillator for

initialization. Finally, the addressed oscillator was initialized to its desired voltage by the

VINIT signal which was common to all oscillators. The VINTr signal was produced by a

8-bit digital-to-analog converter which was also under computer control. Although the

VNIT signal is connected to all oscillator elements, only the addressed oscillator is

initialized.

The total number of oscillators, N, in use at any one time in the experiment was not

under computer control. Rather, N was controlled manually by simply inserting or

removing oscillator elements (each of which was on its own separate, pluggable, circuit

board) from the system.

3.2.4 Experimental/VSystematic Considerations

We now consider some details of the experimental system regarding calibration,

errors and various systematic details. First, as shown in Fig. 3.12, the oscillator system

requires some time to warm-up and come to equilibrium after being initially powered up.

The figure shows the variation in the natural frequencies of 15 uncoupled oscillators as a

function of time after power is applied. This variation is undoubtedly the result of

thermal effects in the individual oscillator op-amps, as well as a variation in the power

supply voltage as the power supply itself warmed up. The figure shows that after about

20 minutes several thermal time constants of the system have elapsed. Additionally,

there was some long term variation in the frequencies which we believe does not

significantly affect our results. At large times, the frequency drift of the oscillators is

estimated to be less than 0.3% per hour. After the N=15 system had reached equilibrium,

the natural frequencies had a mean of 4.80 kHz and a standard deviation of approximately

0.198 kHz. This corresponds to a frequency spread of about 4.1%. One of the

weaknesses of this experiment was the poor control over the oscillators' natural

frequencies. While the frequencies could be measured to relatively high precision, they

could only be set by manually adjusting a potentiometer. Thus, in this experiment, the
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natural frequencies were adjusted by hand to be within about 10% of each other and the

data was collected without further changes, except the unavoidable long-term drifts

mentioned above.
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Figure 3.12 Oscillator frequency drift during initial warm-up. Frequencies of N=15
oscillators are plotted versus time after system power-up.

Another source of oscillator-to-oscillator variability arises from differences in the

oscillator thresholds. This parameter could also be changed manually by adjusting a

potentiometer and an effort was made to minimize this variability. The typical variation

in threshold voltage is roughly 5%. Clearly, two otherwise identical oscillators with

different thresholds will have different natural frequencies. Since the natural frequency is

also an adjustable parameter, much but not all of the effect of differing thresholds can be

corrected for in setting the natural frequency of each oscillator. Even when the first order

effect of frequency variation is corrected for, differences in threshold do cause a very

slight change in the shape of the oscillator waveform. Also, a reduction in oscillator

amplitude means that the coupling signal presumably has a larger relative effect on that

oscillator. This would lead in principle to a system that is not purely mean-field coupled,

but rather has slight variations in the strength of coupling between oscillators. We expect

that both these effects are quite small. Another source of inhomogeneity in the coupling

strength is the manufacturing variability in the coupling capacitors which are rated to a

tolerance 5%. As before, this variability can largely be absorbed into variability in

natural frequencies. No attempt was made to eliminate the relatively small differences in
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coupling strength. Nor were they included in our models of the system which will be

discussed later.

As in any real system of oscillators, our ability to understand these electronic

oscillators is limited by uncertainty in their initial conditions as well as random (in this

case, electronic) noise that is essentially additive as the state of the system evolves.

3.3 Software

This section is concerned with the relatively straightforward method of initializing

the coupled system of oscillators. It will be followed by a discussion of the various

quantities measured in this experiment and the algorithms used to determine them. The

computer program "AcquireDMA.c", which is the main data acquisition and analysis

program, is reproduced in the Appendix.

3.3.1 Oscillator Initialization

In initializing the oscillators, note that since they are coupled together, setting the

voltage on one oscillator affects the voltage on all of the others. This presents a

difficulty, since the oscillators must be initialized sequentially rather than simultaneously.

If V1 is set to its desired value, subsequently setting V2 to its desired value will alter V 1.

This difficulty was overcome by repeatedly initializing the entire set of oscillators. It was

found that the system relaxes exponentially to the desired initial state. After roughly 50

full initializations, the system of 15 oscillators appears to essentially reach equilibrium.

A.s discussed previously, the state, S, is set by first initializing each oscillator to a voltage

either above its upper threshold or below its lower threshold. Only then are the

oscillators set to their desired initial voltages. It is necessary, therefore to perform the

entire relaxation procedure twice: once to set the entire set of Si, then once again to set

the entire set of Vi.

3.3.2 Determination of Transition Times

The basic quantity measured in this experiment is the value of S for each of the

oscillators, as a function of time. Fig. 3.13 shows the basic timing relationships involved

in the experiment. Let be the index into the vector of sampled data, thus we are

measuring Si(t), the state of the ith oscillator at time T, where i=1,N and T=I,NSAMPLES.

We will use henceforth as the most convenient unit of time (in samples). The time of
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the rth sample, in seconds, is then simply t = t, where t is the sampling period in

seconds.

While nothing is measured directly about the state of an oscillator during most of its

cycle, a transition in S from S=O to S=1 indicates that the oscillator has passed, by

definition, through ¢=0. Thus, we are essentially making a measurement of the transition

times, si(n): the time at which the ith oscillator makes its nth switch from discharging to

charging. The maximum uncertainty in each transition time is simply the time between

measurements of S, that is the sampling period t. The first step in the data analysis was

to simply examine each array, Si(t), as a function of time, and recording the transition

time of each transition encountered, in a new array ci(n).

V

VT+ 

VT. 4

f=O
Vout

Vs+i

Vs_ "-- T- b
S

I I I

Sampling
Clock III I' II III , t

Signal t

Figure 3.13 Timing relationships of the data acquisition system. A typical single
oscillator waveform is shown in a. The definition of f=O is taken arbitrarily to be the start
of a charging cycle. Figure b shows VOUT, the corresponding output of the op-amp with
the period, T. Figure c shows S, the digital state signal which is sampled at regular
intervals, t, by the sampling clock shown in Fig. d. The sampled signal with its
corresponding time-quantization errors (exaggerated) is shown in Fig. e.
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3.3.3 Determination of Phase & Error

The instantaneous period of the ith oscillator, at the nth cycle, Ti(n) (actually it is

not quite instantaneous since it is averaged over a single cycle) is then Ti(n)=i(n+l)-

'i(n). Since, ~, the fractional part of the phase is simply the fraction of the current cycle

that has been completed, the phase of an oscillator at any time may be estimated by linear

interpolation between =0 at the nearest preceding transition and =1 at the nearest

subsequent transition. Thus we may write the fractional part of the phase of oscillator i at

time c.

i(,) = ( n) for r(n) < < i(n + 1)
T,(n) (3.6)

The total phase, b, of each oscillator can be written as a sum of the fractional part, given

above, and the integral part, v, which is simply the number of complete cycles, or

transitions, completed by the oscillator at any given time. Thus

i(r) = vi(r)+ i(T) (3.7)

The second step in the data analysis was to calculate the total phase of each

oscillator as a function of time. Note that the oscillator transitions do not occur

simultaneously. The preceding interpolation made it possible to approximate the phase of

an oscillator at any arbitrary time, and in particular, it is important for measuring the

phase of the oscillators simultaneously. Since the interpolation adds no new information

beyond what was present in i(n), it is really unnecessary to record the i(t) for all . It

is sufficient to record the phase roughly once per cycle, and because the periods of all

oscillators were very nearly the same, we chose oscillator #1 arbitrarily as a reference and

recorded the phase of each oscillator only when oscillator #1 made a transition. That is

we computed i(n)=i(tl(n)) for n=l,nMAx, where 4i(n) is the total phase of the ith

oscillator at the time of the nth transition of oscillator #1. Thus, the phases of the

oscillators are being strobed every time 01=1. In most cases, nMA was typically about

2500 cycles.

3.3.4 Determination of Locking & Locking time

Having determined the phase of each oscillator as a function of time, it is relatively

straightforward to determine when they are phase locked. For the purposes of this work,
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the oscillators are said to be phase-locked when their relative phases remain unchanged

after one complete cycle of any oscillator.

A weaker condition known as frequency-locking permits a cycle-to-cycle variation

in the relative phases of the oscillators. The long-time average of these variations must

be zero, however, such that the average frequencies of the oscillators are all equal. Since

frequency-locking without phase-locking was not observed in our system, we will not

consider the possibility further. In some work on oscillators systems, the term phase-

locking implies the stronger condition that the relative phases of the oscillators remain

fixed throughout the entire cycle of any oscillator. As will be seen later, there are some

oscillator systems, namely those that interact discrete 'events', where this type of strong

phase-locking is not possible or relevant. Our experiment is an example of one such

system.

The time at which the system phase-locks is determined as follows. Oscillator #1 is

again used as a reference and we ask whether the remaining oscillators are locked to

oscillator #1. When all oscillators are locked to this reference, the system is said to be

locked. This somewhat asymmetrical locking condition will be justified later when we

show that, in practice, the oscillators lock together almost simultaneously, rather than in

groups, making the choice of reference oscillator irrelevant.

In order to determine whether two oscillators (specifically, the ith oscillator and the

reference, oscillator #1) are phase-locked, we begin by assuming that locking has

occurred by the last (nMAxth) cycle of data. We then scan through the data backwards,

from end to beginning until the phase difference between the oscillators has changed
from its final value by some amount S. Thus nLOci, the cycle at which the ith oscillator

locks to the reference, is the largest value of n which satisfies

[(Ii (n) -, D (n)] - [,i ( nm ) - ( n )] > . (3.8)

The value of 6 was typically a fraction of one cycle, normally taken to be 6 = 0.2.

Note that n and nLOCK,i count cycles of the reference oscillator only. Thus pair-wise

locking time, LOCK,i, of each oscillator with the reference, is determined easily from the

stored array of transition times: LOcKi-i=Tl(nLocKi). Furthermore, the cycle at which the

whole oscillator system is locked, nLOCK, is taken to be the largest value of nLOci, hence

nl = MAXi(nlCk i) (3.9)
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and locking time for the whole system is LOCK-Tl(nLOCK) Finally, if

nLOCK > (0.95) nMAx, then this was taken to mean that locking had occurred suspiciously

close to the end of the data set and that in fact the system had not locked at all during the

time data was being acquired.

3.3.5 Determination of Fixed Point phases, Frequencies & Errors

Once the locking time has been determined, the trajectory of the system is of course

naturally divided into two regimes: the transient regime for < 'LOCK and the large 

regime for T > CLOCK. Note that in the N-1 dimensional state-space comprised of the

relative phases of the oscillators (with respect to the reference), the phenomenon of phase

locking corresponds to a fixed-point, since we are in a frame rotating with the oscillators.

Clearly the integer part of the phase, which is relevant in analysis of the locking transient,

is not relevant in understanding the fixed points. This fixed point is characterized,

obviously, by its location in state-space: that is the set of relative phases. In addition,

each fixed-point is characterized by one additional number: the frequency of oscillation

of the system at that fixed-point.

It is possible to make good use of the many measurements of phase and frequency

taken at the fixed-point after the system has locked in order to significantly reduce the

cycle-to-cycle sample errors through averaging. There are often hundreds or thousands

of cycles of data taken after the system has locked allowing measurement of relative

phases to within 0.5% or better and measurement of fixed-point frequencies to within 10-

4. The average frequency of oscillation (in cycles per sample, or cycles per time step) at

the fixed point is easily computed by finding the change in total phase between two

widely separated times:

(f i )AB ( (3.10)
'rB--rA

while the average fixed point phase is given by

1 rs 1 to
I1 = _[0i()- 01 ()]= 1_,(')

tB zTA TB rA t= tA(3.11)

where A = =(nlC,,) and TB =(n,).

3.3.6 Counting Fixed Points
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The method used to count the number of fixed points, Nfp, was relatively simple.

Consider two fixed points, 1 and 2, each described by a set of N-1 relative phases:

{(¢, {,?, i=1, N-I

The two fixed points were considered identical if they satisfied the following condition:

MAX[I~ - ]E< , i= 1, N,

where is a characteristic 'confusion radius', and was chosen to be e=0.004 based on the

typical error associated with our measurements of fixed point phases. The Appendix

contains the computer code "FixedPtCluster.cp" used to count the number of fixed points.

Having described the experiment itself, as well as some of the basic data analysis,

we now proceed in the next section, to a discussion of our main experimental results.
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So far, we have presented a common theoretical model of systems of limit-cycle

oscillators, followed by a presentation of our simple experimental system of electronic

relaxation type limit-cycle oscillators. Although the mathematical model is a highly

idealized and does not suffer from many of the complexities of the electronic oscillators,

it is not unreasonable, at least in the absence of experimental results, to expect the model

to capture the essential features of our system of relaxation oscillators. This is especially

true for weak coupling, since the model is a perturbative treatment of a much more

general system.

In this section we discuss the results of our experiments. Of particular interest are

the fixed points of the oscillator system and the unusually long transients that occur

before the system reaches its fixed point. As with most many-body problems, the

appropriate place to begin is with an understanding of the two-body interactions. Thus,

in order to understand the behavior of a system of N oscillators, we turn first to a

consideration of the simplest possible system: two oscillators.

4.1 Behavior of Two Oscillators.

The behavior of N=2 oscillators is neither complicated, nor particularly interesting

in and of itself. We are interested in the N=2 system primarily to understand the sign of

the interaction between the oscillators and to verify that our mathematical model works

well in this simplest of cases. One of the first observations one makes of the N=2 system

is that when the coupling is sufficient to cause the oscillators to phase lock, they

invariably do so with 180 degrees of phase difference between them. This holds true for

oscillators started in any arbitrary set of initial conditions. This 'phase repulsion' simply

means that the pair-wise interaction of two oscillators is such that any phase difference

between the two tends to grow until it reaches its maximum value at =0.5. This

repulsive interaction is purely the result of our choice of coupling. Figure 4.1 shows the

unique final state of the N=2 system. We see in Fig. 4. l1a the (capacitor) voltage, Vl(t),

on one of the oscillators after the system has phase locked. The trajectory for the other

oscillator, which is not shown, is essentially identical, except that it is phase shifted by
180 degrees (A=--0.5). Note that at each peak and trough of the trajectory there is a small

negative 'spike'. This spike is due to the coupling signal, Vc(t), which is superposed upon

each of the otherwise unperturbed oscillator trajectories. This coupling signal, shown on
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an expanded vertical scale in Fig. 4. b, consists of small negative-going spikes which

occur each time an oscillator switches state.
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Figure 4.1. A time series for N=2 oscillators locked together with a coupling resistance
of RC=68 . The voltage on one of the oscillators is shown in (a). The voltage of the
other oscillator is similar, but is phase shifted by A{=0.5. The mean-field coupling
voltage, VC is shown in (b), on an expanded scale.

In order to understand what is occurring in this locked state recall from Fig. 3.9b

that the coupling signal produced by a single oscillator is, roughly speaking, a square

wave. Since the net coupling signal is the sum of these square waves, and since the

oscillators are out-of-phase with each other, the coupling signals, tend to cancel out.

Hence the oscillators, in finding their locked state, have arranged themselves so that the

total mean-field signal is very nearly zero, except twice every cycle when the oscillators

are switching. During these brief periods, one oscillator has switched but the second has

not. This delay is the result of the finite frequency difference between the two oscillators

which requires that one oscillator must switch in advance of the other. The resulting

incomplete cancellation of the square-wave coupling signals produces a net coupling

signal with pulses which occur every half-cycle.

In the case shown, we can understand the asymmetry of Vc (the spikes are always

negative in the example shown) as follows: Oscillator 1 reaches its upper threshold first,

and switches, causing Vc to suddenly decrease. The decrease in Vc promptly induces
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oscillator 2 to cross its lower threshold and it then also switches states, thus returning Vc

to zero. One half cycle later, the roles of the oscillators are switched and oscillator 2

reaches its upper threshold first and induces oscillator 1 to switch, thus producing another

negative spike.

Consider now a third oscillator coupled to a locked pair of oscillators. It will

essentially 'see' no coupling signal due to the locked pair, except during those brief

periods when the pair of oscillators is switching. This pulse type of interaction is

believed to be important to the transient behavior of the larger system of oscillators which

will be described below.

Although the N=2 system is not central to our results, but is rather more important

as a basis for understanding the interactions, it is worth digressing further from a formal

presentation of the main results in order to understand the dynamics of phase locking for

the N=2 system. As a crude (but sufficient) model of the N=2 system consider single

isolated oscillator (say oscillator 1) coupled weakly to the coupling network. Although

the shape of V1 will be slightly modified by the coupling, it will behave essentially as it

did without the network. That is, it will have a periodic, roughly triangular waveform
which we call V01(o) where the phase, 0=cot, increases uniformly in time. If we now add

a second oscillator of essentially equal frequency but different phase, it will modify the

voltage on oscillator 1 such that V1(O) = Vo1(0) + C(O+W), where v is the phase

difference between oscillators. As has been discussed, the shape of C(t) is roughly a

square-wave. As oscillator 1 nears a threshold, the effect of the additive coupling term,

C, will be to advance or retard the time at which the oscillator switches. Thus, when

oscillator 1 switches, it will have experienced a phase shift, AO, relative to where it

otherwise would have been had C not been present. What happens when an oscillator
switches may compactly be described by the function A4(r). The assumption that V01(4)

is triangular is valid to first order, since all phase shifting occurs when the oscillator is

near its threshold.

Now let us construct AO(W) by considering the situation near the N=0.5 fixed point

in more detail. The situation is shown in Fig. 4.2 for several different values of W, where

V is now assumed to be a perturbation around the fixed point. Since the oscillations are

nominally out of phase with each other, we expect a positive-going transition in C(t) to

occur near the time that oscillator 1 reaches its upper threshold. If the positive-going

transition in C(t) from oscillator 2 is perturbed toward earlier times by a sufficiently large

amount as in Fig. 4.2a, oscillator 1 will be raised toward threshold by a constant amount,
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independent of W. When it switches, oscillator 1 will then be phase shifted by a constant

A4=Ato, which tends to reduce the perturbation.

V
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I Slope I
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4,

VO(4), Actual, with coupling
........... V (), Projected, without coupling

V(+) = V(O) + C(,)

- .. - Extrapolation, as a visual guide

Figure 4.2 Diagram showing several cases of the N=2 oscillator dynamics near the fixed
point of the system. The effect on oscillator 1 of a switch in the state of oscillator 2 is
shown for a sequence of different relative phases. The peak-to-peak amplitude of C(t) is
K. For convenience, the horizontal axis is also used to indicate the upper switching
threshold.
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Similarly, if the positive-going transition of C(t) is perturbed toward later times by a

sufficiently large amount, as in Fig. 4.2f, oscillator 1 will be depressed below threshold

by a constant amount, independent of W. When it finally switches, oscillator 1 will then

be phase shifted by a constant A0=A0, tending to increase NW. The change in phase

difference at a switch, AO((W), is plotted in Fig. 4.3, with the letters a-f corresponding to

those in Figs. 4.2a-4.2f.

For sufficiently small perturbations, Wi, it is possible for the switching of oscillator 2

to immediately force oscillator 1 above threshold from its previously depressed state. In

this regime, the restoring phase shift, AO(), is proportional to WV. The leading and

lagging cases for this regime are shown in Figs. 4.2c and 4.2d. The boundary cases,

which occur at W = o and v = -o, are also shown in Figs. 4.2b and 4.2e with their

corresponding points indicated in Fig. 4.3. An analysis of the system near the negative

threshold of oscillator 2 produces identical results. Furthermore, since the two oscillators

are essentially identical, interchanging their roles in the preceding analysis will also

produce identical results. Thus, the mapping implicit in AO(4i) is applied not once, but

four times during each cycle of the system: once for each switch of each oscillator.

AO

-f -e --

_-o d

-Ao

A4o

Wo
\'V 0

---- b a

Proportional
Regime

Figure 4.3 Approximate map of the N=2 oscillator system about the point '=0 .5. The
shift in the relative phases of the two oscillators is shown as a function of their relative
phase. The regions marked by letters (a-f) correspond to the cases shown in the previous
diagram. The origin is at =--0.5.

Let us assume, as shown in Fig. 4.2, that C(t) has a amplitude of K, which is a

measure of the coupling strength. Assume also, that near its upper threshold V1(t) has

63



rising and falling slopes of magnitude m+ and m_, respectively. It can then be seen by

examining Fig. 4.2 that

Ao =K( 1 + and 
m+ m m+

Clearly, A¢0 > V0. We note that since m is invariably larger in magnitude that m+,

it is also true that A¢o < 2 V. Thus, the slope of the proportional regime in Fig. 4.3 is

given by -2 < -A/ o < -1. The return map for a single switching event describes the

relative phase of the two oscillators after a switch as a function of their initial relative
phase. It may be easily constructed by writing V'( ) = V + A¢0 ( ). Figure 4.4 shows

the return map. It shows a fixed point at f=1/2 where the map intersects the diagonal.

Furthermore, the central proportional region of this map has a slope m, which satisfies the

well known condition for stability: -1 < m < 0. Thus, it can be seen from the return map

that all initial phase differences between the two oscillators are attracted toward the fixed

point. For most initial conditions, phase differences tend to change at a constant rate

since most of the map has unity slope. As the system approaches its fixed point, it enters

the proportional regime where the dynamics are hyperbolic. There, the deviation from

the fixed point decays away exponentially.

14

1

0 1

o 1/2 1

Figure 4.4 Approximate return map of the N=2 oscillator system, for a single switch of
one oscillator.

There is also a fixed point at --=O, however it is a hyperbolic repeller, so it is not

shown in the figures. The effect of a small frequency difference between the oscillators

will be the accumulation of a small constant phase shift during each cycle. This will be

in addition to the effects of coupling described above. Thus, the return map will be
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shifted up or down by an amount proportional to the difference in frequency of the

oscillators. For small frequency differences, there will be small shifts in the position of

the fixed point. Eventually, however, the return map will be shifted up or down so far

that the fixed point disappears entirely. We have also assumed that C(t) is a square-wave.

In fact ,this is not quite true. The curvature of C(t) between switches of the oscillator

means that the phase shift map shown in Fig. 4.3 is not quite constant in the regions a and

f outside the proportional region. For small frequency differences, however, these

regions do not contain the fixed point, hence small amounts of curvature will only cause

small variations in the speed at which the system phase-locks.

4.2 Phase Trajectories.

We now focus on the more interesting case of N>2. Figure 4.5 shows a typical

time-series for the case of N=15 oscillators in a fully phase-locked state.
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Figure 4.5. Time series for the case of N=15 oscillators in a typical locked state. The
oscillators are coupled with a coupling resistance RC=48 £Q. The voltage on oscillator #1
is shown in (a). The mean-field coupling signal VC is shown in (b) on an expanded scale.

In this case, the coupling strength was adjusted so that it was just enough (RC=482)

to cause the system to phase-lock. Figure 4.5a shows the typical waveform for the

voltage on oscillator 1, Vl(t). The perturbations due to the coupling are visible, but are

small compared to the overall amplitude of the waveform. The associated coupling
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voltage, Vc(t) is also shown on expanded scale in Fig. 4.5b. This signal, which is clearly

periodic, shows the typical behavior of the system at a phase locked state. The spikes in

Vc(t) are due to the switching of the other oscillators in the system, and are spread out

over a broad range of phases relative to oscillator 1.

Before turning to a more complete treatment of the fixed points of the N=15

system, let us examine the unusual dynamics of the transient that occurs prior to the

system reaching a fixed-point.

A typical set of phase trajectories is plotted in Fig. 4.6a for the case N=15. The

oscillators were coupled with a relatively strong coupling resistance of Rc = 562 Q. In

this figure a single oscillator (oscillator 1) is arbitrarily chosen as a reference oscillator.

The total accumulated phase difference between each of the other oscillators and the

reference oscillator is plotted as a function of the total phase (in cycles) of the reference

oscillator. In this way we have transformed the problem into a frame rotating with the

reference oscillator. Note that the system has an exceptionally long transient followed by

an apparently abrupt arrival at the phase locked fixed point. The transient lasts for

approximately 1100 cycles of the reference oscillator. (At approximately 20 samples per

cycle of the oscillators, this transient required roughly 22,000 data samples before

locking. Sampled at a rate of 100 kHz, the transient lasted for about 0.22 seconds of real

time). After approximately 1100 cycles the relative phase trajectories become flat

indicating that the oscillators have ceased accumulating phase relative to each other. By

the end of this particular transient, the fastest oscillators have accumulated about 73

cycles more than the reference, while the slowest oscillators have fallen behind by about

1:8 cycles. A close inspection of the transient part of the phase trajectories reveals another

interesting feature. At different times the trajectories of different groups of oscillators

appear to have small plateaus of nearly zero slope, indicating that for short periods, small

groups of oscillators can become phase locked together. After some period the coherent

behavior of the group of oscillators, is destroyed.
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Figure 4.6. Typical phase trajectory for the system of N=15 oscillators at a coupling
resistance of RC = 562 Q. The relative phase of each oscillator (relative to the phase of
oscillator #1) is plotted (a) versus the overall phase of oscillator #1. Also shown on the
same horizontal scale are the order parameters Z (b) and S (c). Phase locking occurs
around 1100 cycles of oscillator #1.
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Figure 4.7. Another typical phase trajectory for the system of N=15 oscillators at a
coupling resistance of RC = 562 fl. The plots correspond to those in Fig. 4.6. Phase
locking occurs much earlier here than in the previous case.

It is also important to note that the frequency of each oscillator (relative to the

reference oscillator) is given by the slope of its trajectory. Thus, the average behavior of
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each oscillator during the transient involves short term frequency fluctuations about a

mean frequency. The oscillators are essentially drifting apart in phase at a uniform

average rate. This mean frequency is a characteristic of the oscillator and remains

substantially constant during the entire transient. Clearly, for a system of uncoupled

oscillators, the trajectories would simply be smooth diagonal lines with a slope precisely

equal to the oscillator's natural frequency. Indeed, the average frequency of each

oscillator corresponds closely to its natural frequency, as one would expect the weak

coupling limit. The question raised by this data is how is it that the coupling is both

strong enough to cause phase locking, yet weak enough to produce nearly linear

trajectories which do not seem to be approaching a fixed point until they actually do?

Shown in Fig. 4.6b is the experimentally measured order parameter, Z, associated

with the trajectories shown in (a). It can clearly be seen that phase locking of the

oscillators corresponds to an increase in Z, from an average of roughly Z = 0.015 to an

average of about Z = 0.025. In the fully locked state, the phases of the oscillators are

fixed with respect to each other. We therefore expect that locking will cause the inherent

fluctuations in Z to disappear. Indeed, Fig. 4.6b shows this reduction in the fluctuations

in Z. Of course, the fluctuations are not identically zero since there are still measurement

errors present. In a system of oscillators with attractive interactions one expects to find a

stable states in which the phases of all the oscillators are approximately equal. Under

such conditions, Z is clearly a useful order parameter since the stable state corresponds to

values of Z near unity. On the other hand, our system of oscillators exhibits stable states

with the phases spread over a wide range of values. For, example, one can imagine a

stable state in which a group of oscillators rotate together rigidly, but whose phases are

spread uniformly around the circle. In such a case, the parameter Z is almost useless,

since both complete order and complete disorder correspond to Z--0. The two states are

distinguished only by a decrease in the fluctuations in Z. In our case the change in Z as

the system phase-locks is evident, but relatively subtle, at least in comparison to the

magnitude of the fluctuations.

To remedy this deficiency, we introduce a more appropriate order parameter, S,

which measures the degree of uniformity of oscillator frequencies, rather than phases.

We define
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[(fi-(f))2]

where the { fi } are the natural (uncoupled) frequencies of the oscillators. The quantity, S,

is then simply the standard deviation in the oscillator frequencies, scaled by the standard

deviation in the uncoupled oscillators frequencies. As the coupling approaches zero, S

approaches unity. Conversely, when the oscillators are phase locked and rotating rigidly,

all the frequencies become identical, hence S approaches zero. In this sense it might be

more appropriate to call S a 'disorder parameter'. Figure 4.6c shows S as a function of the

absolute phase of the reference oscillator. Prior to phase locking, S fluctuates around an

average value of about 0.9. After locking has occurred, S fluctuates about a mean of

roughly 0.15, which results from sampling noise. Clearly, S is a more useful quantity for

describing the overall state of the system.

4.3 Exponential Locking-Time Distribution

Another example of phase trajectories is shown in Fig. 4.7. This figure is identical

to Fig. 4.6 and was produced under identical coupling conditions, but with different,

randomly chosen, initial conditions. In this case the transient is strikingly shorter. The

system becomes phase-locked after only about 100 cycles of the reference oscillator. Of

course, the total phase accumulated by each oscillator is correspondingly reduced as well.

Because of the expanded scale, this figure also illustrates well, the partial phase locking

plateaus that occur, in this example, between cycles 60 and 80.

By examining many trajectories, such as those in Figs. 4.6-4.7, starting from

randomly chosen initial conditions, we can obtain a more complete picture of the

transient behavior, as well as global picture of the structure of the phase space of this

system. To this end we construct probability distributions of the locking times, shown in

Figs. 4.8a-4.8f. Each histogram is for a different coupling strength. These histograms

are based on the locking times of 1000 different phase trajectories with initial conditions

chosen randomly from a uniform distribution over the space of all initial conditions.

Shown on a semilog scale, the distribution clearly appears to be well fit by exponential

over much of the data.
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The important implications of an exponential distribution are that locking times can

be arbitrarily large and that the probability that locking will occur during any short

interval of time is a constant. This latter observation is in accord with the observation in

the previous section that the system shows no signs of evolving toward a fixed point: the

system's dynamics just prior to locking are essentially indistinguishable from the

dynamics at the beginning of the trajectory. The distribution of locking times remains

essentially exponential for as few as N=8 oscillators. For N<8, the locking time

distributions begin to have a complex peaked structure and the long exponential tail of

the distribution disappears. For N=2, the distribution is very narrow, with most transients

lasting only a few cycles.
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Figure 4.8. Locking time distributions for several different values of RC are shown in
Figs. a-f. Also shown on each is a least-squares fit of an exponential and the values of the
fit parameters.

As one might expect, stronger coupling between the oscillators increases the

likelihood of phase-locking and consequently leads to shorter locking-times. The slope

of the exponential, therefore, becomes increasingly negative. Figure 4.9 shows the decay
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constant, , as a function of the coupling strength, Rc. A least-squares fit shows that the

data are well fit by a function of the form

A
r(Rc) =

RC - RcR

where A and RCRMT are parameters of the fit. The critical coupling strength, RCRIT,

represents the coupling strength below which no phase locking can occur.

0 200 400 600 800 1000

R

Figure 4.9. Plot of the inverse of the measured locking time constant, 1/t, versus the
coupling resistance Rc. A linear relationship is apparent extending to roughly 600 . A
linear fit is shown. The x-intercept of the line is the critical resistance RCRIT at which
the locking time approaches infinity.

For our system, with its particular distribution of natural frequencies, the value of

the critical coupling, RCRIT, at which the system underwent a phase transition to the
phase-locked state, ocurred at RCRIT = 35.7 +/- 20 Ohms.

4.4 Numbers of Fixed Points

So far we have only considered the transient behavior of the oscillator system.
After the system has phase locked we can examine the relative phases of the oscillators as
they rotate rigidly at a fixed frequency. For N=2 we have already seen that the system
possesses the single, unsurprising final state in which the oscillators are separated by AO

= 0.5 (180 degrees). For N=15, there appears to be a very large number of different final
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states. Indeed, the number is so huge that our apparatus cannot come close to exploring

them all. Figure 4.10 shows several typical final states of the N=15 system. Note that, in

a crude approximate sense, the oscillators appear to prefer to phase lock in diametrically

opposed pairs with the pairs distributed around the circle at roughly equal intervals.

12 7
6

66
5
3

14

Figure 4.10 Diagram showing several typical examples of the final states of the N=15
system. The phase of each oscillator, relative to oscillator #1, is plotted as a point on the
circle. Oscillator #1 is shown as a vertical line with phase increasing clockwise. The
number of each oscillator is also shown.

For N < 9 we are able to count the number of distinct fixed-points, Nfp, that the

system possesses. In order to count the number of fixed-points that the system possesses

it is necessary to initialize the system many times and record the fixed-point

configuration of the phases. To obtain statistically accurate estimates of Nfp it is clearly

important to initialize the system many more times than there are fixed points so that each

fixed-point is 'discovered' more that once. Since Nfp grows so quickly with the size of the

system, N, it becomes prohibitively difficult to obtain Nfp for N>8. The results of the

counting of fixed points is shown in Fig. 4.11. The data are well fit by the function

Nrfp=(N-1)! which is also plotted. These data were taken with up to 10,000 separate runs

or random initializations of the system when necessary. That the N=8 point is perhaps

lower than expected may be due to the fact that at N=8, Nfp is approaching the number of

runs, causing the space of fixed-points to be less than fully explored.
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Figure 4.11 Plot of the experimentally determined number of fixed points as a function
of the number of oscillators, N. Also plotted is the function (N-l)!. Data are measured at
RC=32 Ohms.

The quantity (N-1)! is simply the number of unique ways of ordering N items

around the perimeter of a circle. The reduction of N by 1 avoids counting configurations

which are related to other configurations by a rigid rotation. That Nfp scales as (N-1)!

tends to confirm our belief that there is approximately only one fixed-point state for each

sequential ordering of the oscillators.

4.5 Errors Growth

We can take a closer look at the transient behavior of the oscillators by asking how

the dynamics of the system transform small perturbations in the initial conditions.

Experimentally, we can repeatedly initialize the oscillator system to a particular state.

Electronic noise will insure that there is some variation in the actual initial conditions

established for the system. As the system evolves in time these variations will also

evolve, in a manner determined by the dynamics of the system. Figure 4.12 shows the

run-to-run RMS variation in each of the relative phases of the oscillators, versus the

number of cycles of the reference oscillator. The case where the oscillators are

uncoupled serves as a reference. When the oscillators are coupled the error ellipsoid

grows much more quickly: perhaps 100 times faster for this case where Rc = 562 Q.
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Figure 4.12 Plot showing the growth of the dispersion in run-to-run dispersion of error
growth. FIg. (a) shows the uncoupled case. Fig. (b) shows the coupled case with
Rc=562 Ohms.

There are several factors that make this measurement quite difficult and the results

rather crude. First, there is the continual and presumably constant addition of electronic

noise during the evolution of the system will tend to produce a linear increase with time

in the size of the uncertainty ellipsoid. Second, it is obviously impossible to

simultaneously start the system in several different conditions and directly observe the

evolution of the dispersion: the experiments must be performed sequentially. This

introduces the possibility of run-to-run variations (such as thermal drift) in the dynamics.
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5.1 Geometrical View of Oscillator Locking

Recall that the important results from the last section were that our electronic

oscillators exhibit a multitude of distinct phase-locked states, each of which is

represented as a fixed point in the frame rotating along with the phase-locked system.

Furthermore, during the transient which precedes phase-locking, points in phase space

move almost uniformly (at constant velocity), perturbed about their trajectories by the

apparently random fluctuating forces of the coupling field. These nearly free trajectories

terminate abruptly when the oscillators phase-lock. The duration of the transient or the

locking time is unpredictable and widely variable, but is well described by an exponential

distribution.

We wish now to attempt to construct a simple geometrical model which will help us

to understand what is occurring during the transient. In many systems of oscillators, such

as that described in Sec. 2, the interaction between two oscillators is non-zero for almost

all possible configurations of the two oscillators. For example, the simple theoretical

model of Eq. 2.10 contains an interaction term proportional to the sine of the phase

difference between the two oscillators. Figure 5.1a shows in a crude schematic manner

how the phase space (in the rotating frame) might look for that type of interaction. Only

two dimensions are shown, although the diagrams are intended to represent the N-1

dimensional space of relative oscillator phases (relative to the reference oscillator, for

example). The trajectory of a point is shown as it spirals in toward a fixed point. The

shaded area indicates the region where individual oscillators are subject to a 'force'. In

this case that region covers essentially all of phase space.

Recall the behavior of two of our electronic relaxation oscillators. When two such

oscillators phase-lock they form a diametrically opposed oscillator pair which

approximately minimizes the net coupling field they produce. As we have seen, the net

coupling field produced by a locked pair of oscillators is zero, except for short pulses that

occur twice during each period, when the oscillators switch.
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Figure 5.1 Schematic views of three basic types of transient dynamics associated with a
fixed point. The figures show the space formed by the relative phases of the oscillators.
The regions of attraction are shown shaded and the regions where the dynamics are those
of a nearly free particle are unshaded. The diagrams are applicable to higher dimensions
although only two representative dimensions are shown. Figure a. shows a trajectory in
a region of hyperbolic dynamics (shaded) which fills a substantial portion of phase space.
Figure b. shows a case in which oscillators lock together whenever a condition between
any two oscillators is satisfied. Figure c. shows a case in which oscillators lock together
whenever a condition between all oscillators is simultaneously satisfied.

Although less frequently studied, systems of oscillators that interact via pulses have

been examined experimentally [Winfree, 1967] and theoretically [B6lair, 1986], [Mirollo

& Strogatz, 1990], [Keener et al., 1981]. In the latter two references, the integrate-and-

fire oscillator is used to model biological oscillators with pulsatile interactions. In this

model, pulses from one oscillator are integrated into the state of the other oscillators as a

pulse of current is integrated by a capacitor. In this way, pulses from one oscillator cause

permanent shifts (advancements) in the phase of the other oscillators.

V 4,

4,

Figure 5.2 Voltage waveform of an oscillator coupled to a locked pair of oscillators.
Three superposed pulses from the locked pair are shown at different relative phases. The
pulse at 1. is insufficient to kick the oscillator over threshold, hence it has no effect.
Pulses occurring between 2 and the peak of the waveform will cause phase shifts shown
on the lower axis, with those at 2 causing the maximal shift and those at the peak causing
no shift. Pulses such as 3 occurring after the peak also have no effect on phase.
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A very general alternative type of pulsatile interaction is one in which the pulse is

simply additive. For systems which contain thresholds, a pulse that occurs sufficiently

close to the threshold will kick the oscillator above its threshold causing it to switch and

shift its phase. Otherwise, the pulse will have no lasting effect at all. Figure 5.2 shows

pulses superposed on the waveform of our relaxation type oscillators. The pulses are

shown at several different possible relative phases. Clearly, interactions only occur over

a limited range of relative phases.

For oscillators which interact in this manner, another mechanism by which the

phase locking of a group of oscillators might occur is illustrated schematically in Fig.

5. lb. Consider a collection of oscillators each rotating at an approximately constant

angular velocity. Eventually two oscillators will arrive at some phase relationship

(shown shaded in the figure) which permits them to phase-lock to each other. We might

hypothesize then that these two become permanently locked together and henceforth

behave, at some level, as a single oscillator rotating at some new natural frequency. As

the system evolves, other oscillators will arrive at some correct phase relationship that

allows them to phase-lock with individual oscillators or locked clusters. In this way,

locked clusters of oscillators grow in size by 'absorbing' or 'sticking' to others. Eventually

the system consists of a single locked-cluster, and has therefore reached its fixed point.

In this view, a trajectory moving uniformly through an N-dimensional phase space

encounters an N-l-dimensional hyperplane onto which it 'sticks'. The trajectory

henceforth remains confined to this N-l-dimensional subspace, drifting almost freely

until it encounters an N-2-dimensional hyperplane which further divides that space, and

so on, until it is confined to a zero-dimensional space which is the fixed point. The key

assumption behind this view is that a permanent phase-locking can occur if any pair-wise

locking condition is satisfied.

While this type of route to phase-locking has been observed, it clearly fails to

adequately describe the transient behavior observed in our experiments. This 'absorption'

model clearly would predict a finite and relatively short locking time. Assuming that

phase space points drift along their trajectories at a velocity given (approximately) by

their average relative frequencies (in cycles/sec)

i=(fi f2 ... fN-1) (5.1)

then the maximum time required for the system to become confined along the ith

dimension is l/fi. Thus, the maximum locking time is simply
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N-1 1

TMAX =C
i=1 f

In fact, this ignores any cooperative effects among the oscillators. In many systems

such as those cited above, the strength of attraction between locked clusters of oscillators

increases with the size of the clusters. Such cooperative effects tend to cause the locking

process to accelerate over time, thus shortening an already short and finite locking time.

In addition to the exponential locking time distribution which this model fails to predict,

our results show many examples of groups of oscillators that lock for a while and then

come apart.

Now consider the dynamics of two locked pairs of oscillators, separated in phase by

some amount AO. The situation is shown in Fig. 5.3. It is clear that for most values of AO

the pair-to-pair interaction will be zero. This is because the small pulses produced by one

pair of oscillators will have no effect on either of the other oscillators unless those pulses

occur sufficiently close to the point at which the other oscillators are switching. If the

phase difference between the pairs is small enough, then the pulses from one pair will

'kick' one of the other oscillators over its threshold sooner than would otherwise have

occurred. Such an event might be described as a 'collision' between oscillator pairs. It is

not at all clear what happens during and after a collision of pairs of oscillators, however,

we can easily envision that one or both pairs might be broken apart, becoming unlocked

from each other. In addition, it is quite possible that one or both oscillators might

promptly become phase-locked again, but to an oscillator from the other pair. This

process might be called 'stealing' in that it involves one oscillator capturing the partner of

another after a collision. In general, each locked pair will have its own unique frequency.

Since these frequencies will inevitably be different for each pair, we expect the pairs to

gradually drift toward each other until they collide.

Figure 5.3 Diagram of four oscillators locked together in pairs, with an angle A ~
between the pairs. The shaded region indicates the values of AO for which the pairs can
interact.
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The important point here is that, at some level of abstraction, the range of

interaction is limited, rather than extending over all of phase space. In this case we are in

some sense referring to interactions between pairs of oscillators, rather than oscillators

themselves.

We propose a better geometric model of the transient behavior of our oscillator

population by assuming that a permanent phase-locking can occur only if all pair-wise

locking conditions are simultaneously satisfied. In this view, which is illustrated in Fig.

5. ic, locking occurs only when the phase space trajectory happens to arrive at a state very

near the fixed point.

Suppose that throughout most of phase space, trajectories move with constant

average velocity as described above in Eq. 5.1. Only in small regions around each fixed

point are the trajectories strongly attracted to the fixed point. Elsewhere, the trajectories

behave like free particles, albeit perturbed randomly by the field that couples the

oscillators together. The situation is shown schematically in Fig. 5.4a.

0
0 1 'I

I~~~~~~~~~~~1

._ X 0 -- tB 
'1

a b

Figure 5.4 A schematic view of the space formed by the relative phases of the
oscillators. Figure a. shows a trajectory of a typical point in phase space. The trajectory
moves approximately as a free particle, perturbed slightly by the mean-field coupling
until it enters a small region (shaded) around a fixed point. The dynamics are hyperbolic
in the shaded region. Figure b. shows the system in a frame moving with the phase space
point. In this frame, the attracting region appears to move at a speed v in the opposite
direction, sweeping out areas of phase space of diameter, D.

In this figure the shaded area represents the region of attraction (shaded) surrounding the

fixed point (solid dot). Between the random perturbations of the trajectory and the

generally irrational ratios of each of the natural frequencies, we may assume that a single

phase space trajectory will ergodically explore the entire phase space; at least until phase-

locking occurs. When, after a time tLOCK, the trajectory encounters an attracting region it

83

I
/ ~~~~~~~~~~~~~~~~~~~~~~I

_______-___n___37,,
.... .... ~.~~~~~~~~~~~~~~~~~~~~~~~~

1

I
I
I
I
I

i

V_~~~~~~~~~~~:::::

/1-N I

I I
I



will be drawn toward the fixed point in a time short compared to the average value of

tLOCK.

To understand why this model produces an exponential distribution of locking

times, we must compute the probability, A(t), that a randomly chosen initial condition,

under the action of the phase space dynamics, will have not encountered the attracting

region. One way of viewing the problem is to treat it as a classical scattering problem in

N-1 dimensional space. The intensity of the unscattered (or unabsorbed) 'beam' will

depend on the density of scatterers and their cross-section, and will decay exponentially

with distance. Alternatively, we can imagine the attracting region moving across phase

space with a velocity, -v, exactly opposite that of the phase space flow as shown in Fig.

5.4b. As the attracting region moves it sweeps out areas of the phase space at a rate of

vD where D is the (N-2 dimensional) volume of the attracting region projected onto the

N-2 dimensional hyperplane normal to the direction of motion. If A(t) is the fraction of

phase space that has not been 'swept up' by the attracting region, then it is also the

probability the a particular initial condition has not phase-locked at time t. Clearly, A(t)

is governed by

dA= -vDA
dt

which can be solved trivially to yield

A=Aoe ,

where r = is the characteristic lifetime of an initial condition.
vD

For clarity, we have so far assumed that there is a single fixed point. In fact, if D is

the result of nfp fixed points of average size d = D/Nfp then

1

vNfpd

Since the transformation to the rotating frame has removed the average motion, the

velocity through phase space may be approximated

N .i 2 2 N a.
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Using our experimental result that Nfp =(N-1)! and the formula for the volume of an

N-2 dimensional sphere of radius, r,

N-2N _22 N-2ddv_2 (N-2), r

we obtain

r = N -1)!]

where T=l/f is the average period of oscillation. Taking N=15, and /T-500,
(I/ff 0.10 gives the approximate mean radius of the attracting regions to be r=0.097.

This value, although very crudely calculated, seems to be reasonable. It is about 10% of

the length of one cycle, which is comparable to the amplitude of the coupling signal as a

fraction of the total amplitude of the oscillator waveform.

The preceding view of the transient dynamics is not the only one possible. As was

discussed in Sec. 2, systems with unstable chaotic orbits can also produce transients that

have an exponential distribution of transient lengths. It is not clear from our data how to

distinguish between the two models. It is possible that the two explanations are simply

two different way of understanding the same phenomenon and that in fact they both are

correct. Perhaps the very notion of orbits is only useful for systems of relatively low

dimension and that as the dimension of the system becomes larger, the transition to a

statistical description necessitates a model like the one introduced above.

A related question concerns the basins of attraction of the phase-locked states of the

system. A basin of attraction includes, by definition, all initial conditions which

ultimately arrive at some phase-locked state. Clearly every point along a particular

trajectory through phase space is part of a single basin of attraction. Since, even in the

rotating frame, points in phase space move at a uniform average velocity, we may

conjecture that the basins consist of long, thin filaments which run parallel to each other.

Alt one end of each filament is the attracting region surrounding a fixed-point. There, the

diameter of the filament is of the same order as the attracting region. As one moves along

a filament away from the attracting region (toward more distant initial conditions), the
filament grows narrower as it is 'eclipsed' by other attracting regions. One can envision
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taking a cross section through this bundle of filaments. Although still unclear from our

data, it is plausible that when viewed in this way, the basins form a fractal structure.

5.2 PRO Model

The preceding discussion was concerned entirely with describing the geometry and

dynamics of the phase space of the experimental oscillator system. It was only weakly

motivated by the details of any particular oscillator model. In this section we will discuss

our attempts to develop a simple mathematical oscillator model which is, nevertheless,

capable of displaying the important exponential distribution of transient lengths.

5.2.1 Overview

Undoubtedly, a differential equation based model of the oscillator system would

behave as the real system did, assuming that the model was sufficiently detailed. Such an

approach would probably yield little insight into the dynamics of the oscillator population

as it would merely be a slavish copy of the real system. Such models are also

computationally rather costly.

Instead, we propose a map-like model called a pulse response oscillator (PRO)

model. The PRO model makes some bold simplifying assumptions in the hope of

capturing the essential features found in the real oscillator system. The relative simplicity

of the model compared to a system of differential equations opens up the possibility that

it, might, in the future, be studied theoretically for its own sake.

The first and most important assumption of the PRO is that oscillators interact only

via pulses of negligible duration. Each oscillator is completely described by a phase

which, in the absence of interactions, grows linearly in time at a rate set by the oscillator's

natural frequency. At some point in each oscillation (which we arbitrarily take to be

when the fractional part of its phase is zero) each oscillator emits a pulse. All the

oscillators coupled to the first have their phases, ij, instantaneously changed or kicked'

by an amount KF(od, where K is the strength of the coupling and F is a periodic function

of the phase of the oscillator being kicked. A more mathematical description of the

model is given in pseudocode below:

Pulse Response Oscillator Model
1. INPUT: Initial Phases {i (0)}, and Natural Frequencies{f,}, for i=1,N
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2. Propagate all oscillators forward in time using -i- = fi until one satisfies
dt

Oimod 1=0

3. Modify all phases according to Ojh = j + KF(kj) where F is a periodic

function which satisfies' F(p + n) = F() for all integers, n.

4. Go to step 2.

This can be written even more compactly as

dt = f + KF( i) i 6(jr)dpj .

It should be noted that once an oscillator has emitted a pulse it is prevented doing

so again immediately without first moving away from 0=0. Unlike the model discussed

in Sec. 2, in which the interactions between oscillators depended only on their relative

phases, the PRO is not rotationally invariant. The interaction depends on the oscillators'

absolute position rather than simply their phase differences. In addition, the PRO system

captures the sequential nature of many oscillator systems, including that of the

experimental system. The oscillators do not interact simultaneously, but rather one after

another, such that their positions are coupled to the order in which pulse events occur.

Although it is still unclear, it is probably these general properties, as well as the limited

range of interaction, that account for the novel transient behavior that has been observed.

5.2.2 Numerical Results

The results of numerical experiments with the pulse response oscillator indicate that

it reproduces the exponential locking time behavior of the electronic relaxation oscillator

experiments quite well. The function, F, was chosen to be identical to the function AO

shown in Fig. 5.2. The slope of the interacting region was fixed at m=-1.5, while its peak

height, K, served as the coupling strength parameter. The long term coherence of a

system of 20 pulse response oscillators was studied as a function of the coupling strength

as shown in Fig. 5.5. It can be seen that given sufficient coupling, the system will

undergo a spontaneous phase transition in which all oscillators become mutually

synchronized.
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Figure 5.5 A phase diagram showing a phase transition in a population of 20 pulse
response oscillators. The order parameter S (the normalized frequency dispersion) at
asymptotic times is plotted as a function of the coupling strength, K. At approximately
K=0. 14 the coupling is strong enough that the population will spontaneously synchronize.
The pulse response function is described in the text. The oscillators were drawn from a
Gaussian parent distribution with a 5% standard deviation in their natural frequencies.
The non zero points after the phase transition are due to insufficiently long calculation
times.

By choosing a coupling strength at K=O.15, just above the critical coupling

strength, we can qualitatively compare the temporal behavior of the PRO system, as

shown in Fig. 5.6, with the analogous experimental Figs. 4.6c and 4.7c. As with the

electronic system, the phase trajectories appear to drift at nearly constant average

frequency for many cycles before abruptly phase locking.

Additionally, transient or partial phase locking is evident from the occasional

plateaus which are visible in the trajectories. Furthermore, the time history of the

(dis)order parameter, S(t), which reflects the overall coherence of the system, behaves

similarly to its experimental analog. As before, it fluctuates about unity for hundreds of

cycles before suddenly falling off to zero.

Finally, for the PRO system, there is the locking time distribution itself. Figure 5.7

clearly shows that the distribution is well fit by an exponential over a range of locking

times extending from perhaps 50 to 1000 cycles.
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Figure 5.6 A plot of the trajectories of 20 pulse response oscillators (a). The conditions
are described in the text. The phase of each oscillator relative to a reference oscillator is
plotted as a function of time. Since the oscillators were chosen to have a mean natural
frequency near 1.0, the horizontal axis is also approximately in units of cycles. The
system can be seen to synchronize abruptly after approximately 200 cycles. Figure b
shows the order parameter, S(t). The coupling was K=0.15.

It should be noted that the PRO system fails to reproduce the fixed point states of

the electronic relaxation oscillator system. While the PRO system does indeed have a

multitude of distinct final states, the fixed-point phases of the oscillators are not spread

out over a range of angles, as they are in the electronic system. The PRO oscillators

invariably end up divided into two diametrically opposed groups separated by 180

degrees. Although the reason for this difference is not clear, we conjecture that the fixed-

point phases in the electronic system are spread over a range of angles as a result of

capacitive and other electronic delays which are not modeled at all by the highly

simplified PRO model.
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Figure 5.7 A plot of the distribution of locking times for the system of 20 pulse response
oscillators described in the text. A least-squares fit to all but the first two data points is
shown, indicating a good fit to an exponential distribution. The characteristic transient
length in this case is about 200 cycles. The coupling was K=0. 15.

5.2.3 Failure at Small Locking Times

It should also be noted that both the experimental results and the results of the PRO

simulation indicate that for very short locking times, the distribution of locking times is

not well described by an exponential. Both systems are less likely to exhibit short

locking times than is predicted by the exponential distribution. One possible explanation

for the failure at short times is that there are in fact two separate time scales associated

with each transient. This is not unexpected according to our model since, as shown in

Fig. 5.4a, the phase space is divided into two distinct types of regions: the regions of

essentially free particle dynamics, and the regions of strongly attracting hyperbolic

dynamics. At the end of each transient there is presumably a finite length of time

associated with the attracting region. This could produce a relative reduction in the

number of transients of short length. Another possibility, is that the reduction is

essentially computational. The algorithms used to determine the point at which locking

occurs are biased in that they find an upper bound on the locking time. They will always

determine that locking has occurred on or after the point at which it has actually occurred,

which would tend to suppress the reporting of very short locking times.
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6. CONCLUSION

We conclude now, first with a brief summary of the experiments and the central

results. Next, we will delve into the use of electronic systems as experimental systems,

followed by a somewhat speculative discussion of the implications our work with regard to

neural networks. Finally, we will explore some of the possible future directions for this

research.

6.1 Summary of Experiments and Results

6.1.1 Experiment Summary

We have performed a novel set of experiments on the dynamics of oscillator

synchronization. In summarizing what has been accomplished let us first recapitulate the

important features of the experiments themselves. While many experimental studies have

been done of particular systems of oscillators, such as Josephson junctions, such work is

typically focused narrowly on understanding the behavior of that particular type of

oscillator. On the other hand, the more recent interest and progress in oscillator

populations in general has been entirely theoretical, and has relied on highly simplified

mathematical models, such as that discussed in Sec. 2. These theoretical results are quite

elegant, but often the work is only weakly coupled with experimental information. Without

the guiding and focusing effect of experimental results, the theory runs the risk of veering

off toward irrelevance.

We contribute to this field some of the rarely seen experimental data. The oscillators

we studied are real electronic oscillators. Rather than construct electronic oscillators

specifically to duplicate the behavior of the simplified mathematical model, we simply

assembled a population of oscillators possessing certain general characteristics. First, the

oscillators were relaxation oscillators, which is a type of limit-cycle oscillator. Hence, they

are essentially one-dimensional elements. Second, the oscillators were coupled together

with a simple mean-field or all-to-all coupling scheme. Third, a natural consequence of the

choice of coupling was that the oscillators repelled each other: they preferred to separate

from each other in phase. This last feature, in particular, is one that has rarely been studied

theoretically and perhaps never before been studied experimentally, in part because it has

been assumed that the repulsive case produced no synchronization. We examined the time

required for the entire oscillator system to synchronize. In addition, we examined the

phase-locked states of the system. In the next section the primary results are summarized.
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6.1.2 Results Summary

The central discovery is that the locking time for our oscillator system is well

described by an exponential distribution. The system may persist in a disordered state for a

'very long time before it abruptly reaches a phase locked state. Indeed, it appears that the

length of the transient may be arbitrarily large. As might be expected, the decay constant of

this exponential distribution becomes smaller with increasing coupling. While increased

coupling shortens the average time required for the system to synchronize, there is no

guarantee that the system will synchronize within any given finite time. As the coupling is

reduced below some critical threshold, the decay constant approaches infinity, which

implies that the probability that any trajectory phase locks within a finite time is zero. This

result has interesting implications, since in the study of dissipative dynamical systems it is

important to distinguish between short term transient behavior and long term steady-state

behavior. In our system, it seems that, given finite time, a single trajectory is insufficient

to determine whether the system will ever phase-lock. Hence, distinguishing between the

ordered and disordered phases of the oscillator population is meaningless, except in a

statistical sense.

We have proposed a crude geometrical model of phase-space and a simple map type

model of the oscillator interactions. The former model envisions phase space studded with

small localized attracting regions. Outside these regions phase-space is flat, on average:

neither attracting nor repelling. Inside the attracting regions, points in phase-space are

strongly attracted to a phase-locked state somewhere inside the region. While far from

being a complete or rigorous description of the system, these models seem to adequately

capture the transient dynamics of the system mentioned above.

On the other hand, our models are not capable of describing the phase-locked states

themselves. We have found experimentally that there are a huge number of phase-locked

states of the oscillator system. The number of states appears to closely related to the

number of unique ways of ordering N items around the perimeter of a circle. That is, that

number of states goes as (N-l)! as far as our apparatus is capable of measuring. While the

number of states is not particularly surprising, the models we present do not account for the

actual configuration of the states themselves.

6.2 Discussion of Electronic Systems as Experiments

It is worthwhile to take a broader look at the nature and value of experiments

performed on electronic systems. An experiment performed on some novel and poorly
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understood type of element, such as a new type of diode, is of obvious value. What,

however, are the implications of an experiment composed of a novel arrangement of

elements each of which is well understood on its own? In our case the well-understood

elements are the op-amps; indeed they were engineered to behave in a predictable manner.

While the behavior of an individual op-amp oscillator is not especially interesting, what

about the dynamics of the coupled system?

These questions are analogous to the question of collective behavior of systems of

well understood particles. For example, plasmas are governed by the well understood

microscopic interactions in quantum mechanics and electromagnetism. Yet the collective

behavior of a plasma can be very difficult to understand as a result of strong, long-range,

nonlinear interactions. In a similar vein, the poorly understood phenomenon of turbulence

in a fluid is probably the consequence, in a microscopic sense, of little more than classical

mechanics. In such systems, an experiment can be expected to produce fundamentally

interesting information regarding the collective processes of a real, although perhaps

simplified, physical system. In our case however, the system of op-amps is not of intrinsic

interest. That is, one never encounters a collection of coupled op-amps in nature in the

same way one does encounter plasmas, fluids or molecules. The value of the op-amp

system lies in its similarity to real physical systems.

There are, in fact, cases where one wishes to engineer a system of oscillators for

technological purposes, usually to achieve a scaling up in power. As mentioned earlier,

this has been done frequently with Josephson junctions and laser diodes. Nevertheless,

since there is no direct interest (that we know of) in engineering a system of coupled op-

amp oscillators, their value lies again in their similarity to other oscillator systems.

In an experiment in which an electronic system is itself the subject of the experiment,

the electronics become a sort of analog computer. The importance of such 'analog

computers' should not be underestimated. Seminal work in the field of nonlinear dynamics

was done by Lorenz [Lorenz, 1963] using an analog computer to integrate a set of

differential equations governing atmospheric transport. While the analog computer Lorenz

used was a precision instrument designed to integrate differential equations accurately, the

equations themselves involved only three variables: perhaps the crudest model of the

atmosphere imaginable. In spite of this radical simplification, the system produced the

earliest observation of chaos in a simple dynamical system.
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As with the discovery of chaos in the Lorenz equations, the important behavior in

many dynamical systems is often a consequence of the presence of nonlinearity, dissipation

and the topology of the phase space rather than the detailed rules for propagating the system

forward in time. A simple map, difference equation, or analog computation is frequently

sufficient to observe interesting dynamical phenomena.

Other work [Linsay & Cumming, 1989] has been done using electronic systems to

demonstrate the existence of chaos and the routes to chaos, as well as to measure some

specific theoretically predicted quantities. In addition, the experiments by Winfree

[Winfree, 1967] used a system of 70 crude integrate-and-fire oscillators made with

resistors, capacitors and neon bulbs as the nonlinear element. The electronic circuit

provides a convenient platform from which to conduct experiments which are subject to all

the vagaries of a real world system (such as noise), yet which is also relatively easy to

construct, manipulate and measure compared fluid, chemical or mechanical systems (for

example.) An analog electronic system allows the experimenter visualize its dynamics in

real time and to easily see the effect of modifying parameters of the system. In a certain

sense one can think of the electronic experiment as an experiment on the mathematics.

The oscillators in our case, while simple to construct, differ from most relaxation

oscillators in that the charging and discharging parts of their cycles are symmetrical.

Furthermore, the repulsive coupling, while rarely studied, is also uncommon in nature and

rarely of interest in any current technological applications.

As the power of digital computers increased, the relative value of analog computation

for obtaining detailed numerical results rapidly diminished. Digital computers have played

a key role in the development of nonlinear dynamics. Not only are digital computers useful

in the traditional sense, for performing precise numerical calculations, but they have

allowed exploration of mathematical models that would otherwise be intractable

analytically.

Although they share this latter trait, the two approaches, digital and analog, each have

advantages and disadvantages that are worth discussing. One advantage of digital

computation is reduced noise. Digital computations suffer from errors due to the finite

precision of the variables that can be represented (roundoff), as well as error due to the

discretization of time in approximating a differential equation with a difference equation.

These errors can generally be well quantified and controlled. An analog computation, in

contrast, is plagued by electronic noise of all sorts (fundamental, thermal drifts, radio and
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line interference etc.) which can be quite difficult to track down and control. In nonlinear

systems such as ours, there is often a sensitivity to initial conditions. In such cases, the
,amplitude of the noise has a devastating effect on the ability to correlate initial and final

states.

Another advantage of a digital approach is flexibility and control. In a digital

computer changing a parameter such as a natural frequency or a coupling strength is

essentially trivial. Even wholesale changes in a model are relatively inexpensive to

implement. Furthermore, a digital implementation may approach an idealized model as

closely as one wants. An analog system, on the other hand, may contain undesirable

features that must simply be lived with. It has much less flexibility, in that gaining

computer control of some parameter, such as the natural frequencies of the oscillators,

requires a substantial amount of engineering. A change in the basic oscillator behavior

would probably mean a costly re-engineering.

Worse still, the engineering challenge rapidly grows more severe as the number of

elements increases. Suppose, for example that one wanted to model a system of N

elements with an arbitrary coupling between any pair of elements. In a digital model one
only needs to fill an NxN matrix with the desired coupling strengths. In an analog system

the coupling would be implemented, perhaps using a digitally controlled potentiometer

between every pair of elements. For N=100 elements that requires 10,000 digitally

controlled potentiometers, each of which must be individually addressable and each of

which must be connected to perhaps an 8-bit data bus which determines its resistance.

Problems of cost, reliability, power consumption, wire routing and other difficulties make

the digital approach very attractive in comparison.

A final, though probably less severe, difficulty with analog systems is the increased

failure rate with large N. Assuming that the system does not produce valid data unless all

of its constituent elements are working properly (this not necessarily a valid assumption),

the overall failure rate of the system increases linearly with N. For sufficiently large N, the

system may not be able to operate for periods long enough to acquire the desired data.

On the other hand, the analog approach does indeed have some advantages.

Foremost among them are those mentioned above: the analog electronic system allows the

experimenter to interact with the apparatus in a way that gives rapid feedback and lends

itself to an intuitive understanding of the system, rather than a being a blind exploration of

some parameter space. Another advantage of the analog electronic system is speed.
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Analog computers of all sorts have the fundamental advantage that they perform their

'computations' in parallel. In many-body physics it is relatively easy to pose problems
which greatly exceed the capabilities of even the most powerful digital computers. The

number of particle-to-particle interactions typically scales as N2.

Here again the analog approach has serious limitations. Although an analog system

may be very efficient at simulating a system or producing data, the data still must be
analyzed, invariably on a digital computer. While the problem of analysis may not be as
severe as that of simulation, it is worth considering whether the two are comparable, in
which case the analog approach makes little sense from the perspective of computational

speed.

6.3 Neural Nets

We turn now to a brief speculation upon the connection between our system of
oscillators and neural networks which have become increasingly important technologically.

As mentioned in Sec. 1, there is substantial similarity between the statistical mechanics
tools used to analyze populations of oscillators, populations of neurons, and populations of

magnetically interacting spins. In the usual analogy between neurons and spins [Muiller &

Reinhardt, 1990] the state of a spin is analogous to the average rate at which a neuron is

firing pulses. Inputs to the neural net are analogous to initial states of the spin system and
outputs are the stable, equilibrium states. The neuronal 'memories' are encoded in the set
of weights which couple one spin to another. In this crude equation, the dynamics on the
time scale of individual pulses are completely ignored. Indeed, even the firing rate of the
neuron is coarsely described with a one bit binary value, high rate or low, corresponding to

say, spin up or down.

It is not yet clear, in the field of neurobiology, whether this average neuronal firing
rate approximation is appropriate. It may be that important processing is occurring on a
pulse-to-pulse time scale. For example, the relative arrival time of pulses from two
different neurons may carry information of some sort. Certainly, the proper functioning of

the heart depends on the proper timing of individual neuronal impulses. In addition, while

artificial neural networks are generally effective for optimization, decision making, and
pattern recognition, they find little use in sequential problems such as counting.

The work reported here is part of a growing trend toward looking at oscillator
systems which interact via impulses [Tsodyks et al., 1993], [Mirollo & Strogatz, 1990],
[Brailove, 1992]. We have already seen that the sequential dynamics and ordering of our
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oscillators plays an important role in their fundamental behavior. These oscillators may

capture some essential aspect of sequential neuronal processing. If one makes the analogy

between the stable phase-locked states of our oscillator system, and neuronal 'memories',

the transient dynamics of the oscillator system might correspond to a neuronal system

'searching' for a memory. In addition, a small external perturbation is sufficient to perturb

the system away from a stable state, allowing it to resume its transient dynamics and begin

'searching' again. The significance of the exponential locking time distribution is not clear.

A comparison with studies of the time required to recall actual memories might prove

fruitful.

Another unusual and particularly interesting feature of our system is that a mean-field

coupling produces a multitude of distinct stable states. In contrast, a simple spin system

coupled with a sufficiently large mean-field possesses only a single trivial stable state

(spins aligned). A nontrivial artificial neural network must be capable of recognizing and

classifying many different input patterns. Thus it is necessary that the 'spins' to interact

locally, and that the interactions be frustrated. In this way, a multitude of stable states of

approximately equal energy are created.

6.4 Future Directions

In closing, it is useful to consider some of the possible future directions for this

research, as well as some more mundane experimental improvements. One of the great

difficulties with the experimental apparatus was the inadequate degree of computer control

over many parameters of the system. As the size of a system increases it becomes all the

more important, and yet all the more difficult to have computer control over the increasing

number of parameters available in the experiment. The most important of these parameters

are the natural frequencies of each of the oscillators. The ability to automatically control the

frequencies of each oscillator would permit the careful study of the competition between the

width of the frequency distribution and the coupling strength. Since most of the recent

theoretical work on oscillator populations concentrates on the determination of the phase

diagram, such an improvement would allow a more extensive comparison between theory

and experiment.

Another obvious improvement, is to extend the experimental results to larger N. The

number of oscillators used in our experiments N=15 is just barely large enough to be

considered in the realm of the statistical. Ideally, one would like to have N large enough

that experimental results could be studied over a broad range of N. In this way it might be
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possible to extend the results to the continuum limit N -oo. It is difficult to imagine, for

reasons we have already discussed, scaling N up by much more than one order of

magnitude. Certainly, the problems of parameter control, data acquisition and expense

would be horrendous for N=1000. On a practical level, at larger N, it becomes a matter of

necessity that N to be treated as a parameter of the system. The experiment should

improved so that individual oscillators can be automatically removed from or added to the

population, without manual intervention by the experimenter.

A particularly fertile area of future investigation would be to explore different types of

coupling. The mean-field coupling employed in our experiments is the simplest coupling

scheme possible. It necessarily precludes the existence of spatial effects. There are a great

variety of local coupling schemes possible, akin to those studied in statistical mechanics.

Considerable theoretical work has been done on such systems, but again, little has been

attempted experimentally. More complex coupling schemes would allow one to look for

spatio-temporal effects such as waves, spatio-temporal chaos and other complex

phenomena currently being investigated [Kaneko, 1989] in the non-linear dynamics field.

Of course, the practical difficulties associated with controlling the coupling strength are

formidable. For nearest neighbor interactions, for example, the number of interactions

scales with N (2N for a 2-D square array). Even if it is assumed that all coupling strengths

are equal, one still needs order N separate coupling elements (with equal strengths): a

single resistor, for example, cannot be used. For the most general possible coupling

scheme, N2 individually controllable coupling elements are required. In addition, one

would like to accommodate the possibility of both positive and negative coupling strengths

(an option which was not available even in our experiment).

Finally, it is worth considering modifications to the oscillators themselves. Recall

that each oscillator has associated with it two capacitors: one internal, which sets the natural

frequency of oscillation, and one external which couples each oscillator to the others. The

internal capacitor is in fact redundant in the limit of weak coupling. When the coupling

resistance is zero the two capacitors may simply be added together in parallel. We believe

the elimination of the internal capacitor would simplify the equations governing the circuit,

without materially affecting its behavior.

A more interesting variation on the oscillator circuit, in which we retain the internal

capacitor, is as follows: recall that currently the oscillators are single-terminal devices. That

is,, each oscillator has a single 'input' terminal which is connected through some arbitrary

coupling network to all the other input terminals. Alternatively, we could treat each
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oscillator as a two-terminal device: one input terminal and one output terminal. In the most

general possible coupling scheme, each output terminal would be coupled by arbitrary

resistive weights to each of the input terminals. This system is closely akin to the usual

model of a neural network, except for the capacitor. Its advantages are that it eliminates

entirely the need for any sort of capacitive coupling. The coupling can be purely resistive.

In addition it is elegant, since the internal resistor used to charge the internal capacitor can

be viewed as a self-coupling: it is a diagonal element in the matrix of weights which

connect the outputs with the inputs.
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APPENDIX

This appendix contains the computer code used to acquire and analyze experimental

data. The files are, in order:

AcquireDMA.c

FixedPtCluster.cp
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// -------------------------------------
/I File: AcquireDMA.c
II By: Adam Brailove

// -------------------------------------II…

#include
#include
#include
#include
#include
#include
#include
#include
#include

<CursorCtl.h>
<Memory. h>
<StdLib. h>
<StdDef.h>
<StdIO.h>
<String.h>
<Types .h>
<Events.h>
<OSUtils.h>

#ifndef MATH_
#include <Math.h>
#endif

#ifndef __SANE
#include <SANE.h>
#endif

#include
#include
#include

"Inner90:MPW:AAB:MyCHeaders:NIBoards.h"
"Inner90:MPW:AAB:MyCHeaders:NB-DIO-32F.h"
"Inner90:MPW:AAB:MyCHeaders:NB-DMA-8-G.h'

// --- Modes ---
#define NORMAL 0
#define CALIB 1

void Phi(int Nref, int *tref, int N, int *t, int *Nphi, float *phi);
int FindLocking(float *phi, float *phi_ref, int iphi_end, float epsilon);
float Phi_FixedPoint(float *phi_ref, float *phi, int iphi_lock, int iphi_end);
extended posmod(extended x, extended y);

/* ----------- Main -------------- */

void
nain(char /* argc */, char *argv[])
{

int
unsigned

must be >= 2]
unsigned
extended

int
int
int
int
extended
long
unsigned
long
unsigned
int

short

short

iOsc, nOsc; // Population of the board.
MasterfreqDiv = 2; // Divide master clock to 5 Mhz (divider

freqDivide;
sampleFreq;

iRun, nRuns, nSamples;

nSwitches [16], nSwitchesMin;
iLockPhase[16], iStartPhase; //

period[16], phaseShift[16];
*tau[16];

short *theData;
*DataCopy; // an integer array

char initRate[16], initState[16];
mode;

allLockedPhase;

for use with the NI-DSP.

Nphi[16], iphi, iphi_end, iphi_all_locked;
*phi [16];

char
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FILE
char
FILE

void
MasterfreqDiv,

initRate,

doInit);
void

nOsc);
long

nSwitches);
long

SwitchTimeArray,

nSwitches);
extended
int
int
int
int

*initFilePtr;
*phasefile;
*phasefileptr;

DoAcquire(int nSamples, unsigned short* theData, unsigned short

unsigned short freqDivide, unsigned char*

unsigned char* initState, int nOsc, Boolean

DoInit(FILE *initFilePtr, char *initState, char *initRate, int

SwitchTime(long* data, long n, long bitmask, long* SwitchTimeArray,

long nSTArray, long*

SwitchingTime(long* data, long n, long bitmask, long*

long nSTArray, long*

FindPhaseShift(timeShift, period);
ArrayMin(int *intArray, int n);
ArrayMax(int *intArray, int n);
Min (int a, int b);
Max (int a, int b);

void
short
const int

ynamically...

DSPChkErr(char*, short);
OpenDSPBoard(void);
MAXPHIARRAY = 5000;// Maximum size of phi array. MOD: could be done

// ------ Get command line input
nSamples = atoi(argv[1]); // Enter number of samples.

nRuns = atoi(argv[2]); // Enter number of master loops to perform.

freqDivide = atoi(argv[3]); // Enter sampling frequency divider: fSample =

5Mhz/(2*freqDivide)
nOsc = atoi(argv[4]); // Enter number of oscillators on board (In order,

starting from #0)
initFile = argv[5]; // Enter init filename string.

phasefile = argv[6]; // Enter file for tau differences

if (strcmp(initFile,"calib")) { // If NOT calib...

mode = NORMAL;
initFilePtr = fopen(initFile, "r"); // Open file, get file pointer. Mod:

Need to handle errors...

} else ( // if IS calib...
mode = CALIB;

//------ Allocate memory for the data
theData = malloc (nSamples*2);

if (theData == NULL) (exit(l);)

// ------ Allocate memory for the data
DataCopy = (long *)NewPtr((Size)(nSamples*sizeof(long)));
if (DataCopy == NULL) {exit(l);)

// ------ Allocate memory for the switching time arrays.

for (iOsc=0;iOsc<nOsc;iOsc++){
tau[iOsc] = (long *)NewPtr((Size)(nSamples*sizeof(long)/2));
if (tau[iOsc] == NULL) (exit(l);)

//------ Allocate memory for phi.-- MOD: could be done dynamically...

for (iOsc=0;iOsc<nOsc;iOsc++){
phi[iOsc] = (float *)NewPtr((Size) (MAXPHIARRAY*sizeof(float)));
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if (phi[iOsc] == NULL) (exit(l);)

//------ Calculate sampling frequency in Hz., Max sampling frequency = approx 350
Hz

sampleFreq = 10000000/(MasterfreqDiv*freqDivide*2);
if (freqDivide < 2) {

printf ("ERROR: freqDivide must be larger\n");

exit(l);

// ---- Output Header Info.
printf("Sampling Frequency = %f Hz\n",sampleFreq);
printf("Sampling Period = %f sec\n",1/sampleFreq);

printf("Number of Sanples = %d\n",nSamples);
printf("Number of Runs = %d\n",nRuns);

printf("Number of Oscillators = %d\n",nOsc);
printf("InitFile = %s\n",initFile);
printf( \n\n");

InitCursorCtl(NULL);

//DSPChkErr ('OpenDSPBoard", OpenDSPBoard()); // open the DSP board and report

any errors.

// ------ Master Loop
for(iRun = 0;iRun<nRuns;iRun++)

if (iRun % 10 == 0) fprintf(stderr,"*Run %d\n",iRun);

RotateCursor(iRun);

// ---- Set the Initialization arrays
if (mode != CALIB) DoInit (initFilePtr, initState, initRate, nOsc);

// ---- Acquire the data.
DoAcquire (nSamples, theData, 2, freqDivide, initRate, initState, nOsc, (mode

!= CALIB));

// copy data to an array of longs
for(j = 0; j < nSanples; j++) DataCopy[j] = theData[j];

// ---- do switching time (tau) calculation

for (iOsc=0;iOsc<nOsc;iOsc++) {
SwitchTime (DataCopy, nSamples, 0x00000001<<iOsc, tau[iOsc], nSarrmples/2,

&,nSwitches[iOsc]);
//DSPChkErr ( SwitchTime",

//SwitchingTime(DataCopy, nSanples, OxO00000001<<iOsc, tau[iOsc],

nSarrmples/2, &nSwitches[iOsc]) );
//printf("%d\t",nSwitches[iOsc]);

)
//printf (\n');

nSwitchesMin = ArrayMin(nSwitches, nOsc);

// ---- Calculate phases
for(iOsc=0;iOsc<nOsc; iOsc++) 

Nphi[iOsc] = nSwitchesMin;
Phi(nSwitches[0], tau[0], nSwitches[iOsc], tau[iOsc], &Nphi[iOsc],

phi [iosc] );
//printf("% d\ t ",Nphi[iOsc]);

//printf("phi[0] [250] = %f\n",phi[0] [250]);
iphiend = ArrayMin(Nphi, nOsc);

//printf("\n");
//printf("nSwitchesMin = %d\n",nSwitchesMin);
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//printf('iphi_end = %d\n",iphi_end);

// ---- Find phase at which each oscillator locks to osc#0.
for(iOsc=0;iOsc<nOsc;iOsc++) {

iLockPhase[iOsc] = 1 + FindLocking (phi[iOsc], phi[0O], iphi_end, 0.2);

/'/printf(%d\t",iLockPhase[iOsc]);
//printf("\n");

)
iphi_all_locked = ArrayMax(iLockPhase, nOsc);

/'/printf("iAll Locked = %d\n",iphi_all_locked);
//printf("\n");

// ---- Find oscillator periods and phase shifts

if (mode == CALIB)
iStartPhase = 0; // use the whole data stream

else
iStartPhase = iphi_all_locked; // use only the locked data

//printf("from: i,phi,t:%d, %f, %d\n,iStartPhase, phi[0] [iStartPhase],

tau[0] [iStartPhase]);
//printf("to: i,phi,t:%d, %f, %d\n\n",iphi_end-1, phi[0] [iphi_end-1], tau[0] [iphi_end-

:L] );

for(iOsc=0;iOsc<nOsc;iOsc++)
period[iOsc] = (extended) (tau[0][iphi_end-l]-tau[0][iStartPhase]) /

(extended) (phi[iOsc][iphi_end-1]-phi[iOsc][iStartPhase]);
// MUST use tau's of reference oscillator!! = tau[0]

//phaseShift[iOsc] = FindPhaseShift (deltaTau[iOsc], period[iOsc]); What

the hell was this?!
phaseShift[iOsc] = Phi_FixedPoint(phi[0], phi[iOsc], iStartPhase,

:iphi_end);

// ---- Output Data.

if (mode != CALIB) {
for(iOsc=l;iOsc<nOsc;iOsc++) printf("%5.3f\t",posmod(phaseShift[iOsc],

1.0));
for(iOsc=l;iOsc<nOsc;iOsc++) printf("%d\t",tau[0] [iLockPhase[iOsc]]);

}
for(iOsc=0;iOsc<nOsc;iOsc++) printf("%7.3f\t",period[iOsc]);

printf("\n");

// ---- Print phase differences
//phasefileptr = fopen(phasefile, w"); // open the file

//if(phasefileptr != NULL) {
// for(iphi=0;iphi<iphi_end;iphi++) {

// fprintf(phasefileptr, "%d\t%d\t%10.3f\t", iphi, tau[0][iphi],

phi[0][iphi]);

// for(iOsc=0;iOsc<nOsc;iOsc++)
// fprintf(phasefileptr, "%10.3f\t", phi[iOsc][iphi]-phi[0] [iphi]);

// }
// fprintf(phasefileptr, "\n");
// )
// fclose(phasefileptr);
//)

} // End of master loop.

// ---- print phase history of last run
if(!strcmp(phasefile,"phases")) {
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for(iphi=0;iphi<iphi_end;iphi++) (
printf("%d\t%d\t%10.3f\t", iphi, tau[0][iphi], phi[0] [iphi]);

for(iOsc=0;iOsc<nOsc;iOsc++) {
printf( "%10.3f\t", phi[iOsc] [iphi]-phi[0] [iphi]);

printf("\n ");

fflush(stdout);

exit(0);

} // === End of main

void DoInit(FILE *initFilePtr, char

I
*initState, char *initRate, int nOsc)

iState, iRate, iOsc;

for(iOsc=0;iOsc<nOsc;iOsc++) {
if (fscanf (initFilePtr, 

rewind(initFilePtr);
%d,%d", &iState, &iRate) != 2) {

// Start at top of file again
fscanf (initFilePtr, "%d,%d", &iState, &iRate);

initState[iOsc] = iState; initRate[iOsc] = iRate;

while (getc(initFilePtr) != '\n') ; // Skip to next line. Works properly for
nOsc < file width.

void DoAcquire (int nSamples, unsigned short* theData, unsigned short MasterfreqDiv,
unsigned short freqDivide, unsigned char* initRate, unsigned char* initState, int
nOsc, Boolean doInit)

unsigned short* dataSource = OxFBF40000; // WHY WHY WHY ??? Why
not:(DIOSLOT+PORTA); This duplicates stuff in InitPorts()...

int j;

// Initialize the port addresses

MasterClock(MasterfreqDiv); // Pri
AMDClock (3, freqDivide, 1); // Se,

/* --- Initialize the oscillators --- */
if (doInit) {

DACMode(); /* Se,
StopOscillators(); /* Mu
for (j=0;j<100;j++) {

InitlBoard (0, initRate, nOsc);
}
for (j=0;j<100;j++) {

InitlBoard (0, initState, nOsc);
}
IdleDAC ( );

oduce a 5 Mhz master clock
t Clock #3 at 5 Mhz/(2*5) = 500 Khz and

t mode first! */
st be stopped before init! */

/* Init the rate */

/* Init the state.*/

/* Idle the DAC at 0 volts */

DMASetup(); // Setup the general characteristics of the DMA board.
ProgramChannelO (theData, dataSource, 2*nSamples); // Program the DMA channel.

/* --- Aquire data --- *
AcquireDMAMode();

AddressBoard(0O);

/* Set mode first! */

/* Address board zero */

109

I

int

InitPorts();

go.

________________________________________________________________________________



AssertData();
StartOscillators();

ClockChannelO ();

WaitForChannelO();

/* Assert the data always, because only one board */
/* Let the oscillators run !! */

// Start the DMA transfer !!

// Poll the MiA board for a completion signal.

long SwitchTime (long* data, long n, long bitmask, long* SwitchTimeArray,
nSwitches )

long i, switches;

long, long*

switches = 0;

for (i=0;i<n-l;i++) {
if ( (data[i+l] & bitmask) > (data[i] & bitmask) ) 

SwitchTimeArray[switches] = i; // Record switch time of sample just BEFORE
transition

switches++;

}
// increment switch count

//fprintf(stderr,"*%d\t",switches);
*nSwitches = switches; // Return number of transitions found
return switches; // Return number of transitions found

}

int FindLockingPhase (int *tauTgt, int *tauRef, int n, extended *tauShift)
// Returns the last phase at which the two oscillators were locked.

int i, deltaPhi, deltaPhiTot;

deltaPhiTot = *tauTgt - *tauRef;

for (i=l;i<n;i++)
tauTgt++;
tauRef++;
deltaPhi = *tauTgt - *tauRef;
if (abs(deltaPhi*i - deltaPhiTot) > 2*i)

*tauShift = (extended) deltaPhiTot/i;
return(i-l);

deltaPhiTot += deltaPhi;
)
*tauShift = (extended) deltaPhiTot/ i;
return(i-l);

float Phi_FixedPoint(float *phi_ref, float *phi, int iphi_lock, int iphi_end)
{

int i;
float avg=0;

for(i=iphi_lock;i<iphi_end;i++) {
avg += phi [i] -phi_ref [i];

avg = avg/(float) (iphi_end-iphi_lock);
return avg;

extended FindPhaseShift (extended timeShift, extended period)
{

extended phaseShift;
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phaseShift = timeShift/period;
if (phaseShift < 0.0) phaseShift += 1.0; // put in range 0.0 to 1.0
return phaseShift;

i.nt ArrayMin(int *intArray, int n)
// General purpose routine finds the minimum of an array of n integers

int *end = intArray + n;
int min = *intArray;

while (intArray<end) {
if (*intArray < min) min = *intArray;
intArray++;

return min;

int ArrayMax(int *intArray, int n)
// General purpose routine finds the maximum of an array of n integers

{
int
int

*end = intArray + n;
max = *intArray;

while (intArray<end) {
if (*intArray > max) max
intArray++;

)
return max;

= *intArray;

int Min (int a, int b)

return (a < b ? a : b);

int Max (int a, int b)

return (a > b ? a : b);

extended posmod(extended x, extended y)

return x>=O ? fmod(x, y) : y + fmod(x, y);

void Phi(int Nref, int *tref, int N, int *t, int *Nphi, float *phi)

(
int i, k=O, tl;

for (i=O;i<Nref;i++) {
tl = tref[i];

// loop through reference transition times
// the time at which phi is to be calculated

if tl < t[O]) {
phi[i] = 0;

I else if (tl >= t[N-l]) {
*Nphi = i;
return;

I else if (i == *Nphi) 
return;

) else (
while (tl >= t[k+l]) k++;
phi[i] = (float) k + ((float)
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}

int FindLocking(float *phi, float *phi_ref, int iphi_end, float epsilon)

int iphi;
float Dphi, Dphi_end, delta;

Dphi_end = phi[iphi_end-l] -phiref [iphi_end-1];

for (iphi=iphi_end-l;iphi>=O;iphi--) {
//fprintf(stderr, %d\t",iphi);

Dphi = phi[iphi]-phi_ref [iphi];
delta = fabs(Dphiend-Dphi);

//fprintf(stderr, "%f\t",delta);
if(delta > epsilon) return iphi;

//fprintf(stderr, "\n");

}
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//------------------------------------
//

File: FixedPtCluster. cp
By: Adam Brailove

//-------------------------------------
#include <StdLib.h>
#include <StdDef.h>
#include <StdIO.h>
#ifndef __MA _
#include <Math.h>
#endif

#ifndef SANE
#include <SANE.h>
#endif

#ifndef __MathLib
#include 'HardDrive:MPW:CWork:CPlusLib:mathlib.h"
#endif

const int MAXOSC=16;

typedef struct {
int index;
float phase;

) IndexPhase;

typedef struct {
int
IndexPhase
float Ic
float pE
int

) RunRec;

irun;
iphase[MAXOSC];

ockphase;
eriod;
nosc;

int getline(char *s, int lim);
int ArrayMax(int *intArray, int n);
void PrintRunRec(RunRec *r);

typedef int (*COMPFUNTYPE) (const void *, const void *);
int Compar(IndexPhase *el, IndexPhase *e2);
int ConparRunRec(RunRec *el, RunRec *e2);

void main()

{
const int MAXLINE = 100, MAXRUNS = 11000;
const char full_output = 0;
float sampleFreq, samplePer;

int nSanples, nRuns, nOsc;
char initFile [MAXLINE], date[MAXLINE],

resistance[MAXLINE], capacitance [MAXLINE];

int
int
float
RunRec

iOsc, iRun;
phi [MAXOSC];

phaseShift [MAXOSC]
*runrec;

topology[MAXLINE],

, period[MAXOSC];

getline(date, MAXLINE);
getline(topology, MAXLINE);
getline(resistance, MAXLINE);
getline(capacitance, MAXLINE);
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scanf('Sampling Frequency = %f Hz\n',&sampleFreq);
scanf('Sapling Period = %f sec\n",&samplePer);
scanf ('Nmber of
scanf(1'Number of
scanf('Number of
scanf ( InitFile
scanf (\n\n');

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf(stderr,
fprintf (stderr,

Samples = %d\n",&nSamples);
Runs = %d\n",&nRuns);
Oscillators = %d\n",&nOsc);
= %s\n",initFile);

*Data acquired %s",date);
%s",topology);
'%s",resistance);
"%s",capacitance);
'Sampling Frequency = %f Hz\n",sampleFreq);
"Sampling Period = %f sec\n",l/sampleFreq);
·Number of Samples = %d\n",nSamples);
·Number of Runs = %d\n",nRuns);
"Number of Oscillators = %d\n",nOsc);
'InitFile = %s\n",initFile);
"\n\n");

// --- Allocate array
runrec = new RunRec[MAXRUNS];

//nRuns = 100; // Temporary debugging

int iLockedRun = 0;
for(iRun=0;iRun<nRuns;iRun++) (

// --- Read in row of data
for(iOsc=l;iOsc<nOsc;iOsc++)
for(iOsc=--l;iOsc<nOsc;iOsc++)
for(iOsc=0;iOsc<nOsc;iOsc++)
scanf("\n');

scanf("%f",&phaseShift[iOsc]);
scanf( "%d",&phi[iOsc]);
scanf("%f",&period[iOsc]);

// --- Did it lock?
int lockedPhase = ArrayMax(&phi[1], nOsc-1);
if (lockedPhase < 0.92*((float) nSamples)) ( // It locked

//for(iOsc=l;iOsc<nOsc;iOsc++) fprintf(stderr,
"%5. 3f\t ,phaseShift[iOsc]);

//for(iOsc=l;iOsc<nOsc;iOsc++) fprintf(stderr, "%d\t",phi[iOsc]);
//for(iOsc=0;iOsc<nOsc;iOsc++) fprintf(stderr, "%7.3f\t",period[iOsc]);
//fprintf(stderr, "\n");

// --- Init runrec

runrec[iLockedRun] .irun = iRun;
for(iOsc=l;iOsc<nO iOsc++) (

runrec[iLockedRun]. iphase[iOsc] .index = iOsc;
runrec[iLockedRun] .iphase[iOsc] .phase = phaseShift[iOsc];

runrec[iLockedRun] .lockphase = lockedPhase;
runrec[iLockedRun].period = period[0]; // Could avg all Nosc
runrec[iLockedRun] .nosc = nOsc;

//fprintf(stderr, "\nN:");
//PrintRunRec(&runrec[iLockedRun], nOsc);
//fprintf(stderr, "\n");
// --- sort phases of each run
//qsort(&(runrec[iLockedRun] .iphase[l]), nOsc-1, sizeof(IndexPhase),

(CCMPFUNTYPE) onpar);
//PrintRunRec(&runrec[iLockedRun]);
//fprintf(stderr, "\n");

// --- next run
iLockedRun++;
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)

int nLockedRuns = iLockedRun;

// --- sort runrecs by firing order
qsort(runrec, nLockedRuns, sizeof(RunRec), (COMPFUNTYPE)

// --- print sorted
fprintf(stderr, "\n-- Sorted Fixed Points --\n");
int FPcount=l; // Fixed point counter
int FPmultiplicity = 1; // Counts number of initial
PrintRunRec(&runrec 0]);
for (iRun=l; iRun<nLockedRuns; iRun++)

if(ComparRunRec(&runrec[iRun-1] , &runrec[iRun]))
fprintf(stderr, "%d\n", FPmultiplicity);
FPmnltiplicity = 0;
PrintRunRec(&runrec[iRun]);
FPcount++;

FPmultiplicity++;

ComparRunRec);

states ending at this FP

fprintf(stderr, "%d\n", FPmultiplicity);
fprintf(stderr, 'Runs Locked = %d\nFixed Points Found = %d\n\n",nLockedRuns,

FPcount);

// --- print full sorted list
if (full_output) (

PrintRunRec(&runrec[0]);
fprintf(stderr, "\n");
for(iRun=l;iRun<nLockedRuns;iRun++) {

if(ConparRunRec(&runrec[iRun-1l], &runrec[iRun]))
fprintf (stderr, " --------------------------- \n");

PrintRunRec (&runrec [iRun]);
fprintf(stderr, "\n" );

)

exit(0);

int Compar(IndexPhase *el, IndexPhase *e2)

float d = el->phase - e2->phase;

if (fabs(d) < 0.004) ( // within Ambiguity radius

if (el->index > e2->index) return 1;
else return -1;

) else (
if (d > 0.0) return 1;
else return -1;

)

int ComparRunRec(RunRec *el, RunRec *e2)

(
int i;
const float box_radius = 0.01;

for (i=l;i<el->nosc;i++) {
float d = el->iphase[i].phase - e2->iphase[i] .phase;

if (fabs(d) >= boxradius) { // if they are not near...
if (d>O) return 1;
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if (d<O) return -1;

return 0;

void PrintRunRec(RunRec *r)

{
int iOsc, nOsc = r->nosc;

fprintf(stderr, "%4d) \t",r->irun);
for(iOsc=l;iOsc<nOsc;iOsc++)

fprintf(stderr, "%2d, ", (r->iphase[iOsc]). index);
fprintf(stderr, "\t");
for(iOsc=l;iOsc<nOsc;iOsc++)

fprintf(stderr, "%5.3f\t",(r->iphase[iOsc]).phase,);
fprintf(stderr, "%7.3f\t",r->period);
fprintf(stderr, "%1 1 .3f\t",r->lockphase);

int getline(char *s, int lim)

int c, i;

i=0;
while (--lim>0 && (c=getchar())!= EOF && c!='\n')

s[i++] = c;
if (c=='\n')

s[i++] = c;
s[i] = '\O';
return i;

i.nt ArrayMax(int *intArray, int n)
// General purpose routine finds the maximum of an array of n integers

int *end = intArray + n;
int max = *intArray;

while (intArray<end) {
if (*intArray > max) max = *intArray;
intArray++;

return max;
I
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