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Abstract
The subject of this thesis is the use of specialized database methods to analyze and
predict protein structure. I have developed techniques for extracting and organizing
the wealth of information in the protein structure and sequence databases. More
specifically, the goal has been to identify and correlate sequence patterns with struc-
tural patterns. This approach has been applied to three general problems. First, the
exhaustive pairwise structural comparison of known protein domains has led to the
identification of shared structural topologies at the subdomain level (SSTs). I have
provided evidence that these recurring substructures represent meaningful structural
units and may form the basis of a new taxonomy for describing protein architecture.
Secondly, I have used a nearest-neighbor classifier to predict secondary structure to
an accuracy of 68% - among the best results to date. Moreover, I have devised a
scheme to assign an a priori confidence level to each prediction, thereby distinguish-
ing the more reliable predictions from the less reliable. The third project has been
the development of an iterative procedure for predicting the fold of a protein. This
method termed Iterative Template Refinement (ITR) involves the construction of
templates combining structure-based and sequence-based information and employs
an iterative search procedure to detect related proteins and to add them sequentially
to the templates. On 6 test cases, ITR has demonstrated excellent sensitivity and
selectivity.

Thesis Supervisor: Eric S. Lander
Title: Professor of Biology
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Chapter 1

Introduction

I:n this introductory chapter, I will provide a general overview of protein structure,

describe briefly the three problems investigated in this work, and outline the organi-

zation of the thesis. More specific background information will be found at the start

of each chapter.

:1.1 Protein Structure Primer

1.1.1 Basics

Proteins are important biological macromolecules that are responsible for catalyzing

many of the chemical processes in the cell. Chemically, they are defined to be a

polymer of amino acids linked together by peptide bonds. Proteins are comprised

of 20 amino acids which differ in the structure of the side chain. A more thorough

description of the properties of the amino acids and the peptide bond can be found in

Creighton (1993). A typical polypeptide chain contains between 50 and 1000 residues

or between 500 and 10,000 non-hydrogen atoms. The amino acid composition for most

globular proteins does not deviate significantly from the average composition observed

in the database, although there are notable exceptions (e.g., acid blobs, glutamine-rich

activation domains, etc.). The 20 amino acid repertoire of proteins may be expanded

lby post-translational modification such as glycosylation, lipid attachment, sulfation,
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hydroxylation, and phosphorylation [Creighton, 1993].

Proteins adopt a unique three-dimensional conformation. In this respect, proteins

differ from simple polymers in that they collapse to a single native structure instead

of a large ensemble of compact conformations [Chan and Dill, 1991]. This structure is

specified by the sequence of amino acids. Anfinsen demonstrated this point in a series

of classic experiments in which he showed that the protein RNaseA could be denatured

in urea and then refolded upon removal of the urea to its native conformation without

the assistance of auxiliary factors [Anfinsen, 1973]. This simple view of protein folding

has been complicated by recent findings that certain polypeptides require the pres-

ence of "molecular chaperones" to fold correctly [Hendrick and Hartl, 1993], but it is

most likely that the chaperonins are kinetic catalysts of protein folding rather than

active determinants of the final structure. Finally, although many proteins undergo

conformational changes upon binding substrate or upon post-translational modifica-

t;ion, these alterations typically involve subtle, local shifts in the structure (< 1.0

A for glycogen phosphorylase [Sprang et al., 1988]). Thus, each protein sequence is

mapped onto one and only one protein structure.

The structure of a protein determines its function and regulation. Expediting the

process of solving and analyzing new structures is a priority in molecular biology.

Access to structural information is essential for scientists to achieve a detailed mech-

anistic understanding of biological systems. From the standpoint of drug design, an

atomic resolution picture of the active site of a protein would aid pharmaceutical

companies in their quest to design well-behaved inhibitors.

]L.1.2 Experimental Methods for Protein Structure Deter-

mination

Experimental protein structure determination is both arduous and time-consuming.

There are two main approaches for solving a protein structure: x-ray crystallography

and NMR spectroscopy. The first step in x-ray crystallography is growing three-

dimensional crystals of the purified protein. These crystals are placed into the path
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of an x-ray beam which scatters to form a diffraction pattern. Fourier transformation

,of this pattern in diffraction space results in an electron density map in Cartesian

space. The phase of the reflections in the transform must be determined by either

isomorphous replacement or molecular replacement. The final step is fitting a protein

model into the electron density map. The quality of the model can be assessed

by measuring the agreeement between the observed reflection amplitudes and the

calculated amplitudes from the model (R factor). For more details on this important

technique see the reference on x-ray crystallography by Stout and Jensen (1968).

Certain nuclei, most notably the nucleus of the hydrogen atom, possess a magnetic

moment or spin that is oriented in an external magnetic field. NMR spectroscopy

measures the resonance frequency of a radiofrequency pulse capable of flipping the

spinning nuclei. These frequencies vary from nuclei to nuclei depending on the chem-

ical environment, resulting in a one-dimensional pattern of resonance peaks along

the frequency axis. In NMR studies of protein structure, the hydrogen nuclei in the

molecule are typically monitored although two other less abundant isotypes that pro-

duce an NMR signal, 13C and 15N, can be artificially introduced into the protein.

In order to obtain information about the structure of a protein, more sophisticated

two-dimensional NMR spectra must be collected. In brief, it is possible to detect

spin-spin coupling between two nuclei that are close in space (< 5.0 A). Measur-

ing this interaction, termed the nuclear Overhauser effect (NOE), results in a set of

distance constraints between different atoms in the molecule. One can then search

for conformations of the protein that fit these constraints; usually, there are a small

family of such structures (see Wutrich (1986) for more details). The principal advan-

tage of NMR spectroscopy over x-ray crystallography is that the protein is studied in

aqueous solution, a more natural setting, instead of being confined to a crystal lattice.

Potential structural changes may be induced by crystal packing effects. On the other

hand, x-ray diffraction can furnish a much more detailed picture of the protein.

Both techniques, however, presents some formidable technical obstacles ranging

from growing crystals and obtaining heavy atom derivatives for x-ray crystallography

to assigning resonance peaks and introducing NMR-active isotopes into the protein
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for NMR spectroscopy. These limitations explain why there are so few known protein

structures (approximately 1000 non-identical structures [Orengo, 1994]). Moreover,

some structures have proved refractory to solution by either method such as large

complexes (e.g., the ribosome) and membrane proteins. Finally, although both crys-

tallographic and NMR techniques have improved in recent years, a new structure still

requires at least a few person-years to complete.

It; is possible to obtain less complete structural information using lower resolution

spectroscopic techniques such as circular dichroism (CD) and electron paramagnetic

resonance (EPR) spectroscopy as well as chemical modification techniques such as

cross-linking and immunochemical footprinting [Creighton, 1989, Sauer, 1993]. Ellip-

ticity at 222 nm of a CD spectra provides a good measure of helical content in a

protein. EPR probes can furnish information about the hydrophobic nature of the

probe environment, the relative motion of the peptide segment attached to the probe,

and the presence of neighboring probes. Cross-linking of functional groups belonging

to different residues indicates close physical proximity, and treatment with mono-

clonal antibodies raised against the protein can map out regions of the polypeptide

chain that are solvent exposed. These methods are well suited for monitoring the

extent of protein folding under different experimental conditions or for studying the

dynamic fluctuations in protein structure. On the other hand, they do not supply

enough information to construct a high-resolution structure.

1.1.3 Theoretical Issues in Protein Folding

The forces, energetics, and thermodynamics of protein folding are incompletely un-

derstood. For small molecule model systems, chemists have been able to measure

accurately thermodynamic parameters such as the enthalpy, entropy, and free energy

fobr the formation of specific non-covalent interactions [Rigby et al., 1986]. Extrapo-

lating these data to the larger and more complicated system represented by proteins is

problematic. The principal hurdle is the the context dependence of small, higher-order

effects that can be accurately modeled or simply ignored in a small compound, but

must be approximated in a macromolecule. For example, a hydrogen bond between
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two water molecules in vacuo is known quite precisely to be worth -6.4 kcal/mol

[Fersht, 1987], but the hydrogen bond between a serine and a glutamine residue is

influenced by the environment of the bond. Electronic polarizability, reorientation

of dipoles, and rearrangement of mobile ions are just some of the factors that could

alter the strength of a hydrogen bond [Sharp and Honig, 1990]. An exact solution

involving quantum mechanical calculations of the electronic distribution of the rele-

vant atoms in the system is not feasible. Other unresolved questions concerning the

forces that hold a protein together include the contribution of the hydrophobic effect

to protein stability [Murphy et al., 1990], the interaction of helix macrodipoles with

capping residues [Serrano and Fersht, 1989], and an estimation of the entropic loss

for docking together two protein subunits [Tidor and Karplus, 1994].

Despite gaps in the theoretical understanding of proteins, substantial progress has

been made in the field of computer simulations of polypeptide chains, i.e., molecular

mechanics. Molecular mechanics (MM) attempts to simulate accurately the dynamics

of a molecule using a chemically realistic energy potential (no quantum mechanical

terms, however), subjecting the individual atoms to the various covalent and non-

covalent forces, and solving Newton's equation of motions to determine the positions

and velocities of the atoms [Karplus and McCammon, 1983]. The most important

application of molecular mechanics to the study of protein folding has been the cal-

culation of the free energy difference for a slight perturbation of the reference state

--- typically the native structure - to a new state by introducing a ligand, mutating a

residue, etc. The values determined from these free energy calculations often agree

quite closely to experimental numbers suggesting that the simulations capture the

key interactions in the system [Lee, 1992]. The overall free energy difference can be

broken down into components corresponding to specific parts of the protein or indi-

vidual contributions of the energy function [Boresch et al., 1994]. This type of free

energy analysis cannot be performed by an examination of the static structure.

On the other hand, molecular mechanics simulations are ill-suited for modelling

the de novo folding of proteins. The difficulties arise from two sources: (1) finding the

global free energy minimum structure is an extremely difficult optimization problem
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given the enormous size of the conformational search space and the limits on com-

putational power. Put another way, a long MM simulation is on the order of 1 ns,

whereas proteins fold on the time scale of 1 ms. The second basic problem is that the

energy potential, although adequate for free energy perturbation calculations in which

potential errors are largely cancelled, is not sufficiently accurate to distinguish the

native conformation from the plethora of non-native structures [Novotny et al., 1984].

The absence of quantum mechanical terms, inaccuracies in energy parameters such as

the dielectric constant, and an incomplete understanding of the physico-chemical in-

teractions within a protein (see above) all contribute to an imperfect energy function.

Thus, not only is it impossible currently to simulate the folding of a protein from an

initial random coil state, but also a correctly folded protein will partially unfold in

such simulations even under physiologic conditions [Daggett and Levitt, 1993].

Finally, one of the major unresolved theoretical questions in structural biology

is the following: Does the native conformation of a protein correspond to the ther-

modynamic minimum free energy state (thermodynamic hypothesis) or are proteins

caught in some metastable intermediate state (kinetic hypothesis)? In other words,

when analyzing or predicting a protein structure, does one have to consider the kinetic

pathway of protein folding. Dill has argued in support of the thermodynamic hypoth-

esis based on experimental evidence that folding is thermodynamically reversible for

a variety of single and multiple domain proteins suggesting that the native and un-

folded states are in chemical equilibrium [Dill, 1990]. Moreover, lattice simulations

by Shakhnovich and colleagues [Sali et al., 1994] have shown that although the pro-

tein does not have time to sample all possible conformations, a quick collapse to

a condensed state followed by rearrangement of this collapsed globule to the ther-

modyanamically most stable state is kinetically reasonable. On the other hand, re-

cent experiments with the influenza hemagglutinin protein has demonstrated that a

shift to acid pH can induce a significant conformational change which is not reversed

upon return to the starting conditions [Carr and Kim, 1993]. One possible explana-

tion is that the native structure is in a metastable state and can only be released

to a more stable final state by some environmental trigger. In summary, there is
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a large body of indirect evidence supporting the view that most proteins adopt the

thermodynamically most favorable conformation, but there may be exceptions to this

rule.

1.1.4 Hierarchy of Protein Structural Organization

The structure of a protein is quite complex. Proteins lack the regularity and symme-

try found in DNA. Containing over 5000 atoms and 500 residues packed together in a

compact globular arrangement, a typical protein defies a simple description. The task

of analyzing and explaining protein structure has been facilitated by the recognition

that protein structural organization is hierarchical. Structural biologists have distin-

guished seven levels of protein structure [Schulz and Schirmer, 1979, Jaenicke, 1991]:

(1) primary structure, (2) secondary structure, (3) supersecondary structure, (4) sub-

domain structure, (5) domain structure, (6) tertiary structure, and (7) quaternary

structure. At each level there are recurrent patterns or motifs which provide a basic

vocabulary for describing the structural elements at that level. For example, at the

secondary structure level, one can define regular local conformations of the backbone,

alpha helices and beta strands, according to hydrogen-bonding patterns. Similarly, at

the domain level, crystallographers have begun to assemble a taxonomy of structural

folds that recur in a variety of proteins possessing different functions. Admittedly, the

distinction between different structural levels may blur at times with some patterns

seeming to belong to more than one level, but in general the hierarchy facilitates the

parsing of a protein structure into more recognizable pieces.

Special display techniques have also assisted biologists in the interpretation and

description of protein structure. Rather than attempting to visualize over 5000

spheres (atoms) and connecting line segments (bonds), one can choose to repre-

sent the structure in a more symbolic form using ribbon and topology diagrams

[Flores et al., 19941. This schematic depiction coupled with the hierarchical decom-

position of the structure can help to unravel the myriad of atoms, bonds, and inter-

actions in the protein.
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1.1.5 Protein Sequence Information is a Valuable Resource

The difficulty of determining the structure of a protein, is matched only by the ease

of obtaining the protein sequence. One can sequence a protein directly using a chem-

ical technique called Edman degradation which involves the successive removal and

identification of the amino terminal amino acid. The revolution in recombinant DNA

technology has given rise to a much faster alternative strategy for protein sequenc-

ing. Namely, one can sequence the gene encoding the protein and then translate the

DNA sequence into a protein sequence using the genetic code. Because of advances

in automated DNA sequencing, it is now possible to sequence the cDNA encoding a

protein of 500 amino acids in a single day. Currently, there are over 75,000 distinct

entries in the OWL protein sequence database [Bleasby et al., 1994].

Significant sequence similarity is a strong indicator that two proteins are struc-

turally and functionally related. Sequence similarity can be measured in terms of

percent identity or a similarity score based on an amino acid substitution matrix.

Dynamic programming is used to find the best alignment of two sequences given a

scoring system and a set of gap penalties. Examining the Brookhaven structural

databank, Lesk and Chothia have observed that proteins possessing greater than

20% sequence identity are very likely to be structurally homologous, and the de-

gree of structural similarity varies directly with the degree of sequence similarity

[Chothia and Lesk, 1986]. Indeed, one promising method for predicting the structure

of an uncharacterized protein is to identify a related protein of known structure by

sequence searching and then employing homology modelling to superimpose the new

sequence on to the existing structure.

Because proteins related by sequence are likely to have descended from a com-

rmnon ancestor, they are also likely to possess similar catalytic activities. The first

order of business after cloning a new gene of unknown function is to search the

sequence database for homologs whose functional properties have been character-

ized. The immense size of the sequence database - over 50,000 entries and 20 mil-

lion residues - and the relatively slow speed of dynamic programming have neces-
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sitated the development of fast heuristic methods for sequence comparison. The

two most commonly used programs, FASTA [Pearson and Lipman, 1988] and BLAST

[Altschul et al., 1990], can run a probe sequence against the database in a matter of

minutes. The BLAST methodology has the further advantage of calculating the sta-

tistical significance of good matches. Recent data from the yeast genome sequencing

project has revealed that approximately half of the newly sequenced genes register

a significant hit against a sequence in the database [Koonin et al., 1994]. This 50%

success rate has prompted research into more sensitive sequence searching techniques

such as those using flexible pattern matching, multiple sequence templates, and li-

braries of motifs [Gribskov and Devereux, 1991].

The relative ease of obtaining the sequence of a protein and altering this sequence

through in vitro or in vivo mutagenesis has opened a new avenue for probing the

structure and function of proteins. Through site-directed mutagenesis, one can make

single amino acid changes and evaluate their effect on stability or catalytic function.

Alternatively, combinatorial mutagenesis schemes have enabled whole segments of the

protein to be randomized. In this manner, one can exhaustively search for critical

functional or structural determinants. One important conclusion from these stud-

ies is that proteins are much more tolerant to mutations than previously expected

[Lim and Sauer, 1989]. Only a very few residues are absolutely essential for maintain-

ing the native structure. This surprising plasticity presents a severe challenge to any

attempt to describe the packing of a protein interior in terms of a set of rules. A rule-

based approach fails because it cannot capture the range and diversity of interactions

in proteins.

Finally, although proteins possessing similar sequences (i.e., > 25% sequence iden-

tity) invariably resemble one another in structure, the converse is not always true.

Indeed, it has been one of the surprises of structural biology that proteins with very

different sequences and functional properties could share the same basic structural

topology (e.g., the RMS of TIM barrel structures with dissimilar sequences may be

as low as 2.5 A over greater than 100 positions). Thus, proteins that belong to the

same fold family in structure space may be distantly related in sequence space.
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1.2 Background to Thesis Topics

In this thesis, I have investigated three topics relating to the prediction and analysis

of protein structure. The topics, covered in the middle three chapters of the thesis,

are directed toward different levels of the protein structure hierarchy. Chapter 2 is

concerned with the analysis of structural patterns at the subdomain level. Chapter

3 discusses the implementation of a nearest-neighbor classifier to predict secondary

structure. Chapter 4 describes an iterative method for identifying sequences likely to

adopt a specific fold (inverted protein structure prediction). Below, I provide general

background information on each of the subjects.

:1.2.1 Taxonomy of Protein Topologies

The domain constitutes a fundamental unit of protein structure. The concept of

the domain originated when protein chemists noticed that proteolytic treatment of

certain proteins resulted in the division of the functional activities of the protein

amongst a set of stable fragments. Sequencing of these fragments revealed that

they corresponded to compact, self-contained structural modules in the overall struc-

ture [Kirschner and Bisswanger, 1976]. Indeed, criteria have been established for dis-

secting a protein structure into component domains based on the ratio of solvent-

exposed surface area to the surface area in contact with other parts of the protein

[Holm and Sander, 1994]. The size of the average domain is between 60 and 500

residues; many proteins contain two or more domains.

In recent years., the structural biology community has been repeatedly surprised

by reports that some new protein structure contains a domain that is structurally

similiar to several other domains in the Brookhaven data bank despite the absence

cf significant sequence similarity. This finding that there are recurrent structural

patterns at the domain level has given rise to speculation that there may a relatively

small number of distinct domain topologies or folds [Chothia, 1993]. Some folds seem

to be derived from a common ancestor (divergent evolution), but the passage of time

has removed any trace of sequence or functional relationship. Other folds seem to
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be examples of convergent evolution in which the descendents of different ancestral

proteins have converged on some favored packing arrangement [Lesk et al., 1989].

In either case, structural biologists have engaged in the task of grouping related

domain structures into fold families and superfamilies. Jane Richardson initiated

this endeavor by noting the patterns in -strand connectivity in /3-sheet proteins

[Richardson, 1981]. Her work has been extended by a more systematic comparison

of all structures in the database against one another and the clustering of similar

structures into families [Orengo et al., 1993].

Completing the all-against-all comparison of database structures necessitated the

development of fast and sensitive structural alignment programs. Formerly, calcu-

lating the optimal alignment and root-mean-square deviation of superimposed atoms

(RMSD) between two structures required several minutes; the new generation of pro-

grams accomplishes this task in a matter of seconds. The key innovation has been

the implementation of more sophisticated alignment algorithms ranging from dou-

ble dynamic programming [Taylor and Orengo, 1989] to Monte Carlo optimization

[Holm and Sander, 1993] to specialized graph searching [Mitchell et al., 1989] tech-

niques. Another important technical advance has been the introduction of more ro-

bust measures of structural similarity. Root-mean-square deviation of superimposed

atoms (RMSD) and alpha carbon distances (DRMS), the two most frequently used

statistics for structural relatedness, are not properly normalized for different align-

ment lengths and are quite sensitive to shifts in the relative positioning of parts of

the structures (e.g., the hinge motion of two domains). The SSAP statistic developed

by Orengo and Taylor [Orengo et al., 1992] and 'elastic similarity score' of Holm and

Sander [Holm and Sander, 1993] attempt to remedy these shortcomings.

How many fold families are there? The estimates range from 500 [Blundell and Johnson, 1993]

to 8000 [Orengo, 1994]. The reason for this wide spread is that only a relatively small

number of structures have been solved and this modest set suffers from sample bias

(e.g., a disproportionate number of DNA-binding proteins and glycolytic enzymes

have been crystallized). Extrapolating from this limited data is problematic. More-

over, it is now clear that the fold families are not equally populated. Orengo has
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shown that the 9 biggest 'superfolds' (e.g., TIM barrel, immunoglublin, etc.) account

:for 32% of the structures in the database, whereas the remainder of the database is

distributed among 71 fold families [Orengo, 1994]. Finally, the very definition of a

fold family suffers from some fuzziness. An arbitrary cutoff determines whether or

not a domain belongs to a particular family, and sometimes a structure will fall just

below or just above this threshold.

Yee and Dill have delved deeper into this issue by questioning the very concept of

the fold family [Yee and Dill, 1993]. They studied whether the structural relationship

between members of the same family was substantially closer than the relationship

between members of different families. If fold families are tightly-knit entities, one

would expect to see a bi-modal distribution of similarity scores in which one peak

(small) corresponds to intra-family comparisons and one peak (large) corresponds to

inter-family comparisons. Instead, a single continuous peak was observed, leading to

the assertion that fold families are loosely-knit organizational units. This surprising

conclusion, however, was potentially undermined by inadequacies in their structural

comparison routine, i.e., no gaps or insertions were permitted.

The appearance of cracks in the 'fold-centric' view of the structural world has

coincided with a renewed interest by structural biologists in the subdomain level of

protein structure. Subdomains are most simply defined as compact pieces of domains

that form distinct structural entities. They fall between supersecondary structure el-

ements and domains in the hierarchy of protein structure. Because domains can be as

large as 400 or 500 residues, experimentalists have attempted to identify subregions

of the domain that can form autonomous folding units. In certain cases, such stable

subdomains have been isolated [Vita et al., 1989, Jaenicke, 1991]. In addition, work

characterizing the protein folding pathway has detected specfic subdomains as early

folding intermediates [Hughson et al., 1990]. A picture of protein structure comple-

menting the domain-level description is emerging from these studies of subdomains.
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1.2.2 Secondary Structure Prediction

On the basis of model building and x-ray diffraction data on short peptides, Pauling

et al. (1951) deduced that the polypeptide backbone adopts certain regular arrange-

ments: -helices and -sheets. These regular local conformations or secondary struc-

tures are stabilized by hydrogen bonds between the amide nitrogen and the carbonyl

oxygen atoms. The a-helix has a periodicity of 3.6 residues (right-handed) and the

hydrogen bonds are between residues within a single helix. The -sheet has a peri-

odicity of 2.0 residues and the hydrogen bonds are between residues in two different

elements or strands. Both parallel and anti-parallel hydrogen bonding patterns are

observed in -sheets. The third, default category of secondary structure, coil, in-

cludes the large number of irregular local conformations as well as the rare 310- and

7r-helices. Approximately, 25% of residues are part of c-helices, 20% are members of

/3-sheets, and the remaining 55% are "coil" positions.

The DSSP program written by Kabsch and Sander (1983a) has become the stan-

dard for assigning secondary structure given a coordinate file. DSSP uses hydrogen

bonding patterns to determine the secondary structure type at a given position. Al-

ternative methods use distance constraints between alpha carbon atoms (e.g., i and

(i + 4)) [Levitt and Greer, 1977] or structural similiarity to canonical secondary struc-

ture elements to determine secondary structure. These different programs produce

roughly equivalent outputs (> 90% agreement).

Predicting secondary structure from sequence qualifies as a prototypical classifi-

cation problem. Given a set of features, the sequence of the protein, one attempts

to determine the labels (secondary structures) associated with the various positions

in the protein. More specifically, the classifier attempts to determine the secondary

structure label at position i by examining a window of n residues (typically be-

tween 9 and 21) centered at i. A range of techniques have been developed from

the statistics and artificial intelligence (AI) communities for such problems. Many

of these approaches have been applied to secondary structure prediction, including

rule-based methods [Chou and Fasman, 1974], pattern-matching [Cohen et al., 1983],
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neural networks [Qian and Sejnowski, 1988], statistical methods [Gibrat et al., 1987],

and database-oriented techniques [Levin et al., 1986].

To achieve peak performance, the internal parameters of the classifier must be

adjusted or 'trained' over some part of the data. Thus, the data set is divided into

multiple, non-overlapping test and training sets. The union of the test sets is the whole

data set. This testing procedure, termed cross-validation, ensures that one does not

test and train over the same data and that each member of the data set is tested

exactly once. Only recently have researchers abided by this protocol, casting some

doubt on previous claims [Kabsch and Sander, 1983b]. A second important check is

that there should not be strong sequence homology between polypetide chains in the

training set and chains in the test set. Zhang et al. (1992) removed any polypeptide

chains in the database that possessed greater than 50% sequence identity with an-

other member; Rost and Sander used the more conservative cutoff of 25% identity

[Rost and Sander, 1993]. Again, this precaution has not been carefully observed by

researchers evaluating secondary structure predictors.

The most commonly used statistic for prediction performance has been the per-

centage of positions correctly predicted. One drawback of this measure is that a

'dumb' predictor that predicts all coil positions achieves a prediction performance of

55%. As comparison, most current prediction systems successfully predict between

60 - 70% of residues. Matthews (1975) devised a measure based on the correlation

between the predictions and the actual secondary structure that penalizes both false

positives and false negatives so that an all-coil prediction would have a correlation

score of 0. This statistic is particularly useful for assessing the effectiveness of the

predictor over each of the secondary structure types. Finally, Rost and Sander (1993)

and Yi and Lander (1993) have formulated a performance metric based on the amount

of information provided by the predictions about the true secondary structure. The

benefits of the information measure include its more precise mathematical foundation

and its more intuitive representation of accuracy in terms of bits per position.

Rost and Sander have added an exciting new wrinkle to the enterprise of sec-

ondary structure prediction [Rost and Sander, 1993]. They have proposed to predict
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over multiple, aligned sequences instead of a single sequence. Because of the extra

sequences, loop positions are more readily identified by the presence of gaps in the

alignment, and the secondary structure 'signal' is more clearly distinguished from the

background noise. The authors employed a cascaded neural network scheme in which

the input encoding had been altered so that the proportion of each amino acid at

a position was recorded instead of its presence or absence. The improvement was

substantial; the neural network achieved a prediction accuracy of 71%. Not surpris-

ingly, there was a direct correlation between the number of aligned sequences and

performance.

Some have questioned the usefulness of secondary structure prediction. Knowing

the secondary structure of a protein does not specify its complete 3D structure. I

offer the following three motivations for continuing research in this area. First, infor-

mation from these predictions can be used to make higher-order predictions by being

incorporated into lattice model simulations or fold recognition programs. Secondly,

the predictions provide insight into the factors that induce secondary structure for-

ination (e.g., intrinsic amino acid propensities versus global packing effects). Finally,

secondary structure prediction is a well-defined, yet challenging problem that serves

als a testing ground for alternative prediction strategies.

1.2.3 Inverted Protein Structure Prediction

The possibility that there are a relatively small number of distinct protein folds sug-

gests an indirect approach to the protein folding problem: assemble a database of

fblds and develop a classifier capable of assigning a protein sequence into the appro-

priate fold category and correctly aligning the sequence onto the fold. Alternatively,

one could start with a given structural fold and search the database for sequences

that are likely to adopt that structure. The two approaches are essentially equiv-

alent and involve assessing the compatibility of a sequence with a structure. This

inverted strategy of predicting structure has been referred to variously as 'inverse

protein folding', inverted protein structure prediction, fold recognition, or threading.

For a higher resolution model, one can take the canonical fold with the superimposed
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sequence and perform molecular mechanics to refine the hybrid structure.

Roughly speaking, one can divide the different approaches to inverted protein

structure prediction into sequence-based methods and structure-based methods. Much

of the current excitement surrounds the structure-based strategy, but for years scien-

tists have employed sequence searching techniques to identify structurally related pro-

teins. In its simplest form, the search template is composed of a single query sequence

that is run against the database using dynamic programming or one of the fast heuris-

tic comparison techniques such as FASTA and BLAST. The statistical significance of a

match is assessed by permutation (shuffle) tests or by analytic equations derived from

assumptions about the distribution of scores [Karlin et al., 1991]. To address the com-

plaint that these single sequence comparison techniques lack sensitivity, researchers

have developed more sophisticated techniques for exploiting sequence information

that employ multiple sequence templates [Taylor, 1986], flexible pattern matching

[Barton and Sternberg, 1990], and motif searching [Neuwald and Green, 1994].

The structure-based methods can be further divided into two camps: those that

incorporate structural information into a local environment template and those that

encode structural information into a residue-residue contact potential. Bowie and

Eisenberg (1991) pioneered the former strategy by defining a set of 18 local struc-

tural environment classes based on secondary structure, solvent accessibility, and

polarity. A scoring table was then established that assigned a value for pairing each

of the amino acids with each of the environment classes. Dynamic programming

found the optimal alignment of a target sequence onto the local environment tem-

plate. Jones et al. (1992) were among the first groups to adopt the latter approach of

transforming the structural data into a contact potential that measured the propen-

sity for two residues to be in close proximity. The motivation is that the essence of

a 3D structure can be captured by the set of contacts between neighboring residues,

and the compatibility of a sequence with a structure can be estimated by computing

the contact energy of the sequence aligned onto the structure. Because the contact

score of a given residue depends on the alignment at the other positions, a variation

of dynamic programming, double dynamic programming, was used to identify the
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best alignment. The many threading techniques that have appeared subsequently

use variations of the local environment scoring system [Ouzounis et al., 1993], the

pairwise contact potential [Sippl and Weitckus, 1992, Maiorov and Crippen, 1992], or

both [Godzik and Skolnick, 1992, Goldstein et al., 1992]. Only Pickett et al. (1992)

have merged structural and sequence information into a single template.

Although conceptually similar, the structure-based methodologies differ from one

another in numerous technical details. Some of the more important technical issues

include the following: (1) the scoring system for matching a particular structural

feature with a particular amino acid; (2) the treatment of gaps and insertions; (3)

computing the significance of a score; (4) weighting features from a single or multiple

structures; and (5) the alignment method. Many of these implementation decisions

have a profound effect on the overall performance of the program, and a more thorough

understanding of their effects is needed.

The fold prediction algorithms have achieved some notable results. There is a

long list of structurally related protein pairs possessing little or no sequence similar-

ity that have been recognized by these techniques. Members of this list include actin

and 70-kD heat-shock cognate protein [Bowie et al., 1991], globins and phycocyanin

[Jones et al., 1992], hexokinase and actin [Jones et al., 1992], and plastocyanin and

the immunoglobulins [Godzik and Skolnick, 1992]. While encouraging, these results

have not been extended to a more comprehensive collection of test cases. Indeed,

very few groups (Jones et al. (1992) is an exception) have compiled statistics - per-

cent accuracy, number of false negatives, number of false positives, etc. - on the

performance of their fold predictor. Thus, unlike the secondary structure prediction

field, it is not possible to compare two methods based on some performance statistic.

Developing more rigorous training and testing criteria is a priority.

As more protein structures are determined and the universe of structural topolo-

gies becomes more densely populated, inverted protein structure prediction will be-

come an increasingly effective tool for predicting structure and function. Indeed, one

possible 'solution' to the protein folding problem is the eventual identification of all

distinct protein folds followed by the construction of a comprehensive database of fold
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templates, and the design of an accurate fold recognition program. This goal can be

attained in the not-too-distant future.
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1.3 Overview of Thesis

Managing the complexity inherent in protein structure is a key problem facing struc-

tural biologists. One seeks to organize and integrate the disparate collection of struc-

tural information. I have applied specialized database methods to address this prob-

lem. The basic idea is to use existing knowledge as examples to interpret new in-

stances. By database techniques, I am referring to a broad range of methods, not

only for storing and retrieving data, but also for processing and making sense of

the data, i.e., comparing entries, finding patterns, quantifying the information in the

database, etc. By manipulating data and patterns at different levels of complexity,

this approach avoids the pitfall of being either too detailed (molecular mechanics) or

not detailed enough (rule-based methods).

In this work, I have concentrated my effort on exploiting the vast amount of in-

formation in the sequence and structure databases. My basic strategy has been to

identify sequence and structural patterns, correlate the two, and quantify the infor-

mation present in these patterns. I define a pattern to be a concise description of

a set of related data. Scanning the two databases for such patterns requires among

other things a measure for comparing distinct entries, a method for clustering related

entries, and a scheme for representing the combined features in a cluster. Moreover,

it is possible to take advantage of the correlations between sequence and structural

patterns to make predictions. For example, the sequence motif GxxxxGK[ST] is fre-

quently associated with the beta-turn-alpha structural motif in GTP-binding proteins

and can be used to predict the presence of a GTP-binding loop. Finally, I have em-

ployed some basic concepts from information theory to build a framework for assessing

the effectiveness and reliability of both the patterns and the predictions.

I have explored three different topics from structural biology, described in the

previous section, using this database approach. The three topics represent chapters

2, 3, and 4 of the thesis. In the final chapter, chapter 5, I tie together the results

from this work.

Chapter 2 describes a project to identify structural patterns at the subdomain
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level. I have performed an exhaustive comparison of a database of structural domains

taken from the Brookhaven databank. The important technical innovations include a

length-normalized measure of structural similarity and a relaxed minimum alignment

length criterion. The common substructures between two domains are termed shared

structural topologies or SSTs. Related SSTs can be grouped into families, and these

SST families may span multiple fold families. In terms of the description and analysis

of protein architecture, SSTs possess many of the properties one would associate

with important constituents of protein structure, making them a useful construct for

creating a protein structure taxonomy.

Chapter 3 outlines my implementation of a nearest-neighbor classifier for the pre-

diction of secondary structure. A key innovation is a novel similarity scoring scheme

for identifying neighbors based on the local environment methodology developed by

Bowie and Eisenberg (1991). The predictor was able to achieve a peak prediction

accuracy of 68%. A second important idea is converting the final output into a prob-

ability distribution over the three secondary structure states instead of a one-state

prediction. These probability estimates convey a sense of the reliability of each pre-

diction. Finally, I have developed a measure of prediction performance based on the

mutual information provided by the predictions about the true secondary structure.

Chapter 4 addresses the problem of fold prediction using a procedure that com-

bines sequence-based and structure-based (local environment) information into a sin-

gle, expanding template. The technique, termed iterative template refinement (ITR),

employs an iterative search scheme that detects related proteins and sequentially adds

them to the template. In this fashion, the initial seed template, constructed from a

protein of known structure, gives rise to a tree of descendent templates containing

both a structure-environment component as well as a multiple sequence alignment

component. The enhanced 'signal' in these templates enable ITR to detect structural

similarities between distantly related proteins.

Chapter 5 links together the methods, results, and conclusions from the middle

three chapters and explores some of the broader implications of the thesis. Although

on the surface each of the topics seem to represent an independent piece of research,
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upon closer inspection there are interesting interconnections. For example, the predic-

tions from the nearest-neighbor secondary structure classifier could be used as input

into the ITR method for fold recognition in place of the Bowie-Eisenberg scoring sys-

tem. Similarly, the existence of SSTs shared by the Rossmann fold family and the

TIM barrel family provides one possible explanation for the detection of p21 RAS

and arabinose-binding protein by the tryptophan synthase (TIM barrel protein) ITR

search. Finally, it is important to emphasize the relavance of this thesis to other areas

of protein structure prediction and analysis including lattice simulations of protein

folding, homology modelling, and protein design.
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Chapter 2

The Identification and

Classification of Shared Structural

Topologies (SSTs) at the

Subdomain Level

2.1 Abstract

We have searched the database of known protein structures for shared structural

topologies at the subdomain level. Our data consisted of 317 structural domains se-

lected from the Brookhaven Databank. Using a fast and sensitive structural compar-

ison technique, we performed an exhaustive pairwise comparison of all the domains.

This work differs from previous attempts to classify protein structures in three im-

portant respects: (1) domains rather than complete polypeptide chains were used in

the comparisons; (2) we have devised a novel measure of structural similarity normal-

ized for alignment length; and (3) we have relaxed the requirement that the majority

of positions in both structures are included in the alignment. Loosening the require-

ment for global alignment permitted the identification of common subdomains among

structures considered to possess distinct structural folds. We refer to these recurring
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recurring substructures as shared structural topologies (SSTs) as distinguished from

the structural fold. We have clustered related SSTs into families and have demon-

strated that members of different fold families may belong to the same SST family.

From the standpoint of protein architecture, SSTs represent meaningful structural

units that are useful for identifying relationships among different domains, pinpoint-

ing the core packing arrangment in domains, and uncovering component subdomains

in complex structural folds. Finally, we demonstrate how SSTs can be used to an-

alyze and describe a new protein structure using the recently solved structure of

IIV reverse transcriptase as an example. We have discovered that the "palm" cat-

alytic subdomain of HIV reverse transcriptase shares a common substructure with

the carboxy-terminal domain of glutamine synthetase.
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2.2 Introduction

Domains have long been considered a fundamental unit of protein structure, but in

recent years, structural biologists have begun to study the properties of pieces of do-

mains or subdomains. The subdomain level of structural organization has attracted

attention for several reasons. First, the size of a typical subdomain is approximately

40 to 120 residues, which fills the considerable gap between the supersecondary struc-

ture level (approximately 20 to 40 residues) and the domain level (approximately 70

l;o 300 residues). Secondly, experimental evidence suggests that specific subdomains

may be intermediates in the folding pathway (Hughson et al., 1990). Thirdly, certain

subdomains form stable autonomous folding units when dissected away from the rest

of the protein (Jaenicke, 1991). Finally, some subdomains in isolation display many

of the properties of a molten globule (Peng & Kim, 1994).

One of the surprises in structural biology has been the observation that certain

structural topologies (e.g., the four-helix bundle, TIM barrel, etc.) appear in a wide

range of domains. These recurrent structural patterns at the domain level have been

termed folds. Some have even speculated that the universe of folds may be quite

limited - fewer than 1000 distinct folds (Chothia, 1992) - greatly simplifying the task

of structural analysis and prediction. Following the lead of Jane Richardson, several

groups have attempted a systematic classification of known structures into fold fam-

ilies (Holm & Sander, 1993; Orengo et al., 1994). There has been complementary

research directed toward identifying structural patterns at the secondary and super-

secondary structure levels (Ring et al., 1992; Rice et al., 1990). Surprisingly, this

type of taxonomic analysis has not yet been applied to the subdomain level.

We have identified and classified recurrent structural patterns at the subdomain

level by carrying out a systematic pairwise comparison of structural domains. Previ-

ous investigations have compared the known structures in the Brookhaven Data Bank

with the goal of grouping structures into fold families (Orengo et al., 1993; Holm &

Sander, 1993). Because we were interested in uncovering common topologies at the

subdomain level, we adopted a more flexible strategy that incorporated three impor-
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tant methodological changes. First, our dataset was composed of protein domains

rather than whole polypeptide chains. Secondly, we devised a measure of structural

similarity normalized for alignment length so that a more precise threshold for sig-

nificant structural similarity could be established. Finally and most importantly, we

have relaxed the requirement for global alignment, thereby permitting the matching

of common substructures.

The exhaustive pairwise comparisons successfully identified a large number of

common substructures shared by two or more distinct domains. We refer to these

recurring substructures as shared structural topologies (SSTs). SSTs spanned com-

pact, globular regions of the protein, often encompassing interior residues involved

in important packing interactions. SST families were created by grouping together

related SSTs. Many SST families were quite large, including domains from multiple

fold families. Indeed, the distinction between SSTs and structural folds was high-

lighted by the observation that the same SST could be found in structures possessing

different overall folds.

Because they occupy a strategic position in the hierarchy of protein structural

organization between the supersecondary structure and domain levels, SSTs have

contributed important insights into protein architecture. From the perspective of

the universe of possible folds, SSTs have proved to be a unifying influence, linking

together seemingly unrelated structures into an extended family network. In terms

of the analysis of individual structures, SSTs often coincide with the core packing

region of a domain, thus pinpointing the critical packing arrangements. Finally, we

have found that the larger and more complex domains may contain multiple SSTs

that encompass different regions of the protein, thus highlighting different packing

units (possibly overlapping) within the same structure. In the future, we propose

that new structures be analyzed not only for folds, supersecondary structure motifs,

and secondary structure elements, but also for SSTs. As a case study, we present a

SST analysis of the HIV reverse transcriptase structure.
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2.3 Materials and Methods

(A) Dataset

'We selected 226 representative protein chains from the July 1993 release of the

]Brookhaven database. We used the domain assignments supplied by the crystal-

lographers to define the domains. The resulting 317 domains are listed in Table 1.

(B) Calculating structural similarity

We wish to identify alignments between protein domains possessing similar structures.

To make this goal precise, we must define the notion of an alignment and provide a

measure of structural similarity between two aligned proteins. To this end, we have

devised a normalized measure of structural similarity that is relatively independent

of the alignment length.

(a) Alignment. Given domains A and B of respective lengths nA and nB, an

alignment of length L, XAB, between them is defined to be the set of ordered pairs

{(al, bl), .. , (aL, bL)} of corresponding positions in the two domains (with 1 < al <

a2 < ... < aL < n and 1 < bl < b2 < ... < bL < nB). Positions ai and bi are said

to be corresponding positions.

(b) Distance matrix. Given domain A, the distance matrix consists of elements

dA defined to be the distance between the i-th and j-th alpha carbons of the protein.

(c) DRMS between two structures. Given an alignment XAB of length L be-

tween domains A and B, the distance root-mean-square deviation (DRMS) of the

alignment is defined to be

L L (dA dB )2
DRMS(XA B) E L ( b-bj) (2.1)where an a e tohn L L (L-) ( .

i<j j=1 2

where a, and b refer to the n-th aligned position in structures A and B, respectively.
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(d) Finding "optimal" alignments. To identify structural similarities, we would

like to be able to find the optimal alignment with respect to DRMS. Although explicit

optimization is expected to be time-consuming, we have developed a rapid heuristic

algorithm which relies on iterative dynamic programming and bears some similarities

to an algorithm of Subbiah et al. (1993). The details are given in Appendix 1.

(e) Lower bound on alignment lengths. To avoid uninteresting matches of short

structural segments, it is useful to place a lower bound on the allowable length of the

alignment. In the past, crystallographers have adopted the conservative stance of

requiring that the alignments cover at least 60% of the larger protein. We have some-

what relaxed this criterion by defining Lmin(n), the minimum allowable alignment

length for a domain of length n, to be the following piecewise linear function:

Lmin(n) -

(0.25 n) + 25 60 < n < 100

(0.2 n) + 30 100 < n < 150 (2.2)

(0.4. n) 150 < n < 250

100 n > 250

This criterion requires coverage of greater than 60% for domains of 60 residues, 50%

for domains of 100 residues, 40% for domains of 150-250 residues, and 100 positions

for domains exceeding 250 residues.

(f) Normalized DRMS (nDRMS) and Distance Similarity Ratio (DSR).

DRMS itself turns out not to be a good measure for comparing the structural sim-

ilarities among alignments of different lengths, because it is highly dependent on

alignment length. Specifically, we generated pairs of random compact structures (as

described in Appendix 2) and determined the best alignments between them (using

the algorithm described in Appendix 1). The DRMS values scaled roughly linearly

with alignment length (Figure 1). To eliminate the dependence on alignment length,

we defined the normalized DRMS (nDRMS) of an alignment XLAB of length L by the
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equation
DRMS(XAB\ DRMS(XLAB)

n DRnMs(XL = ORMS( (2.3)randomDRMS(L) '
where randomDRMS(L) denotes the mean DRMS for alignments of length L be-

tween random compact structures. Thus, the expected nDRMS score for random

structures is 1. Finally, we defined yAB to be the alignment of length L with the

minimum DRMS value.

For a given pair of structures A and B, nDRMS is still a function of the alignment

and exhibits some fluctuation for different alignment lengths (see Figure 2). We

defined the Distance Similarity Ratio (DSR) to be the minimum nDRMS score for

alignments that satisfy the minimum alignment length criterion:

DSRAB = mini(nDRMS(YAB)), Lmin(nA) < L < ns, (2.4)

where nA is the length of structure A, and n, is the length of the smaller structure.

In the work below, the DSR statistic was used to measure the degree of structural

similarity for each comparison.

(g) Definition of optimal and standard alignment. We defined the alignment

satisfying Lmi, with the best nDRMS score to be the "optimal alignment". The

length of the optimal alignment was invariably the minimum allowable length for the

domains being compared. Often, there were other corresponding position pairs which

when added to the alignment slightly increased the normalized DRMS value, but

appeared to belong to the common substructure. Hence, we created the "standard

alignment" by extending the optimal alignment to include all pairs of positions that

satisfied the following criterion for a "good" position pair:

single-DRMS(XAB, (ai, bi)) < randomDRMS(L), (2.5)r311~1-U1IVI rJ ~L
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where the single position DRMS value (single-DRMS) for each position pair (ai, bi)

in the alignment was defined to be

single-DRMS(XIB, (ai, bi))= (daiaj dbi) (2.6)

(C) Definition of Shared Structural Topologies (SSTs)

Two structures A and B form a shared structural topology (SST) if DSRAB < 0.6

(SSTAB) or DSRBA < 0.6 (SSTBA). The SST is defined to be the standard align-

ment of the comparison. Note that the length of a SST is always greater than or

equal to 40, but is not constrained to be less than or equal to 100 since the length of

the standard alignment often exceeds Lmin. More generally, it is possible to define a

SST between more than two domains. A m-way SST is a substructure shared by m

distinct domains {(all, , aml), , (alL, , amL)}.

(D) Definition of SST Families

Each SST family was organized around a family center. Every domain in turn was

selected as the center of a family, and the family members were determined according

to degree of structural similarity to the family center. Thus, there were 317 family

centers and 317 families. We explored two different criteria for family membership.

(1) Single-center family. All two-way SSTs that were derived from a family center

were members of the family (i.e., FA = {SSTAM1, ... , SST A M'} where A is the family

center and Mi is another domain in the database).

(2) Multiple-center family. First, a set of close relatives to the family center were

identified. Bi was considered to be a close relative of domain A if DSRABi < 0.5 and if

the standard alignment included at least 60% of the positions in both structures. The

union of the single-center families of the center A and its close relatives Bi constituted

the multiple-center family of A.
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(E) Choosing the N families with maximal coverage of the

,domain database

There was significant overlap between the various SST families, with many domains

appearing in multiple families. We wished to choose the N families that maximally

covered the domain database. The total coverage of N families was measured either

(i) by the total number of different domains that contained a SST belonging to one

of the families or (ii) by the sum of the fraction of positions in each domain that was

included in a SST from one of the N families. Starting with the largest SST family,

we adopted the greedy strategy of successively adding the family that maximally

increased the total coverage. This procedure is not guaranteed to find the optimal

coverage, but should produce a reasonable approximation.

(F) Constructing the minimum spanning tree

The results from the all-by-all comparisons could be schematically represented as a

fully connected graph in which the nodes denote the domains and the edges represent

the structural similarity between the domains measured in terms of a DSR score.

The value of an edge between two nodes A and B was the minimum of DSRAB and

DSRBA. From this raw data, it was possible to generate a minimum spanning tree

for any subset of the domain database using the Kruskal algorithm.
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2.4 Results

(A) Creation of domain database and evaluation of compar-

ison method

Polypeptide chains in the July 1993 release of the Brookhaven database were checked

for sequence similarity. Chains possessing greater than 30% sequence identity with

another chain were removed. The 226 chains that remained after this filtering step

were divided into domains based on the recommendations of the crystallographers.

We note that this manual definition of domains agrees well with the automated do-

main assignments generated by the program of Holm and Sander (1994). There were

317 domains in all, which ranged in length from 59 to 450 residues.

The goal of structural comparison is to find the optimal alignment of positions

between two structures that minimizes some measure of structural similarity. We

have developed a method that uses iterative dynamic programming to minimize the

r.m.s. deviation of alpha carbon distances (DRMS) over a range of alignment lengths

(see Materials and Methods). The algorithm permitted gaps, but not the permuta-

tion or reversal of chain order. We wished to evaluate the accuracy of the method by

comparing its alignments to those published in the literature or generated by other

programs. We collected a set of 100 control alignments obtained from pairs of related

structures (Orengo & Taylor, 1992). In 75 cases the alignments were nearly iden-

tical (> 70% identical). In 10 cases the iterative dynamic programming procedure

produced a better alignment as judged by the DRMS and RMS over the common

residues. In 8 cases the alignments were different (< 70% identical), but possessed

roughly equivalent DRMS values, and in 7 cases the alignment was slightly worse.

Thus, our structural comparison method produced alignments comparable in quality

to other methods.
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(B) Measure of structural similarity normalized for align-

ment length and minimum alignment length criterion

Two popular measures of structural similarity are the root-mean-square deviation of

alpha carbon positions after superposition (RMS) and the root-mean-square deviation

of interresidue alpha carbon distances (DRMS). One deficiency with both RMS and

DRMS is that they are quite sensitive to the exact number of aligned positions (Cohen

& Sternberg, 1980 ). RMS and DRMS exhibit an approximately linear relationship to

one another (Cohen & Sternberg, 1980; Maiorov & Crippen, 1994), and in this work,

we have primarily used DRMS to assess structural similarity.

In order to explore the alignment length dependence of DRMS in more detail, we

constructed a set of random polymer structures of length 200 that were compact and

uniformly-packed as gauged by the radius of gyration and the number of alpha carbon

contacts. The structures were generated using three different lattice models: (1)

knight's walk lattice (24 basis vectors); (2) 20-vector lattice with a relative coordinate

system; and (3) 20-vector relative lattice containing local conformation constraints

(.Appendix 2). The degree of structural similarity among the random chains was

nmeasured over a range of alignment lengths from 30 to 100 positions, and for each

type of lattice, a plot of the average DRMS for approximately 20 comparisons versus

the number of aligned positions is shown in Figure 1. The average of the three sets of

data was well fit by a line: y = 0.037L + 0.766 (r = 0.98). Others have calculated the

random DRMS for unrelated structures as a function of alignment length, but their

comparison techniques did not permit gaps or insertions (Cohen & Sternberg, 1980;

Alexandrov & Go, 1994).

Merging the DRMS value and the alignment length into a single function would

greatly expedite the assessment of the significance of a structural comparison. To this

end, we have devised the following "normalized" measure of structural similarity:

AB DRMS(XAB)
nDRMS(XAB ) L (2.3)(L ) randomDRMS(L) (2.3)'

XAB is the alignment of length L between domains A and B, and randomDRMS(L),
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calculated using the fitted line in Figure 1, is the DRMS over L aligned positions

expected for two unrelated structures. We define y4B to be the alignment of length

L with the minimum DRMS value. Plotting the variation in nDRMS(YL) as a

function of alignment length for a set of 1000 unrelated domain pairs (see Figure 2)

demonstrates that the normalized DRMS is much less sensitive to alignment length

than DRMS alone. As the number of equivalenced positions increased from 30%

to 60% of n (length of the smaller domain), the value of DRMS(Y) remained

remarkably constant.

Although the overall graph was relatively flat, for certain pairs of related struc-

tures, the value of nDRMS(YL) increased dramatically for longer alignment lengths.

In Figure 2, we have superimposed a plot of the ratio nDRMS(L for a comparison

between the domains lbtc_2 and lmnsl. There is a sharp rise in this graph because

lbtc_2 and lmnsl share a common substructure, and when the alignment extends

beyond this substructure, the nDRMS(YL) score jumps significantly. We have in-

vestigated this phenomenon in more detail by calculating the number of significant

similarities as determined by a nDRMS(YL) score below 0.5 or 0.6 as a function of

alignment length. As shown in Table 2, there was a five-fold increase in the number

of significant similarities as L decreased from 65 to 35% of n,. These data underscore

the point that new types of conserved topologies could be identified by reducing the

number of aligned positions in a comparison.

One of the central differences between this work and previous investigations is the

establishment of a less stringent minimum alignment length criterion. In the past, at

least 60% of positions in both proteins were equivalenced in order to ensure global

alignment of the structures (Orengo et al., 1992). We have adopted a more flexible

approach in defining the minimum number of aligned positions in a structure of length

n:, Lmin(n). First, the range of Lmin was set between 40 and 100 residues, inclusive.

These bounds correspond to the length of a typical subdomain. Within this range,

Lnin was defined to be a piecewise linear function with respect to n (see equation (4.6)

in Materials and Methods). Since most domains are between 70 and 300 residues,

L,,i, typically ranged from 60% to 33% of the length of the domain. To verify
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the appropriateness of this criterion, we have examined the "standard alignment"

length of a set of related pairs of proteins (0.4 < nDRMS(Yo05.s) < 0.55). The

standard alignment is defined by extending the optimal alignment (alignment with

best nDRMS score) to include all position pairs whose single-position DRMS value

for the alignment is less than randomDRMS(L) (see Materials and Methods). As

shown in Figure 3, Lmin nicely defines the lower bound of the distribution, showing

that it does not exclude the smaller common substructures in related domains.

As depicted in Figure 2, the normalized DRMS scores still exhibit some fluctuation

with respect to alignment length. Incorporating the Lmin function, which restricts the

possible values of L, into the nDRMS function leads to the following measure of the

structural similarity that depends on the domain length, not the alignment length:

DSRAB = min(nDRMS(YLAB)), Lmin(nA) < L < n,. (2.4)

I:n order to better understand the properties of this measure, we studied the distri-

bution of DSR scores for a set of 3600 dissimilar protein pairs. The list was derived

by choosing pairs of domains that belonged to different structural classes (or, , Ao//p

or al+). As shown in Figure 4, the plot hovered around 1.0 with a mean of 1.13.

Thus, although estimated from artificial lattice chains, the randomDRMS(L) func-

tion reasonably approximates the level of structural similarity between unrelated real

protein chains. Only a single comparison between the all-d domain lfcla_l and the

c+/ domain lgdlo_2 had a DSR score of less than 0.6 (0.51). We then calculated the

DSR scores for a set of 400 similar protein pairs in which the proteins in each pair

belonged to the same structural family (Orengo et al., 1992). The mean DSR score for

these comparisons was 0.47, and the scores ranged from 0.1 to 0.7. More importantly,

a clear division between the two sets occurred at around 0.6. From the comparisons

of the random lattice chains, we found that a DSR score of 0.6 was approximately 6

standard deviations below the mean of 1.0. Thus, based on the data from both the

random lattice protein models as well as real protein chains, we have established a

DSR score of 0.6 as the threshold for a significant structural similarity.
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(C) SSTs and SST families

Having assembled a database of protein domains, developed a method for comparing

two protein structures, devised a normalized scale for structural similarity, and estab-

]ished a minimum alignment length criterion, we possessed the tools to perform an

all-by-all comparison to identify common substructures. We refer to a substructure

shared by two or more distinct domains to be a shared structural topology (SST).

More precisely, two structures A and B form a SST if DSRAB < 0.6 or DSRBA < 0.6.

The SST encompasses those positions that are in the standard alignment of the two

structures. The set of aligned positions between the two related substructures specifies

a "two-way" SST. More generally, the simultaneous alignment of m related substruc-

tures gives rise to a m-way SST. Any SST can also be represented by a consensus

distance matrix constructed by averaging the appropriate positions in the alpha car-

bon distance matrices of the involved structures.

Examination of the SSTs revealed that they form cohesive structural units and

not loose amalgamations of secondary structure elements. As assessed by radius of

gyration, SSTs are comparable in compactness to domains of the same size (within

one standard deviation), and they contain a higher percentage of buried positions

(37% versus 29%). The vast majority of SSTs (> 85%) ranged in size from 40 (lower

limit of Lmin function) to 120 residues, indicating that SSTs do indeed represent

topologies at the subdomain level.

These findings were confirmed by direct visualization of some example SSTs. In

Figure 5 we have used ribbons and topology diagrams as well as a direct superposition

of alpha carbon atoms to display 2gbpl (glucose/galactose-binding protein, domain

1) and three SSTs derived from 2gbpl. The region of each structure included in the

SST is shaded. The! three SSTs are characterized by a central 13-sheet consisting of 4

or 5 parallel /3-strands flanked by several helices. The shifting, addition, or removal

of secondary structure elements has caused some interesting variation, but the overall

topology of the SSTs is remarkably preserved. The SST encompasses the majority

of positions in 5p21_1, whereas the SSTs with 2rus_2 and sbtl delineate a common
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:subdomain within a larger structure. Finally, the conservation of the SSTs stands in

contrast to the dissimilarity in the overall folds for the domains: 2gbpl, (periplasmic-

'binding family) 2rus_2 (TIM barrel), 5p21_1 (Ras family) and lsbtl (subtilisin serine

protease family).

The vast number of SSTs generated by the comparisons were organized into fam-

ilies. We defined the SST families by selecting each domain in turn to serve as the

center of a family and then recruiting those SSTs that were structurally related to this

family center. Thus, there were 317 families and 317 family centers. In the simplest

scheme, the family consisted of any SST derived from the family center (single-center

family, see Figure 6A). A second, more generous definition of the family, identified a

list of close relatives, Bi, to the family center A. Domain Bi was considered to be a

close relative of A if DSRABi < 0.5 and the standard alignment spanned at least 60%

of the residues in both domains. The union of the single-center families of A and its

close relatives constituted the multiple-center family of A (see Figure 6B).

Some of the SST families defined using the multiple-center method were quite

large. The largest of the families were derived from ao// domains. For example, in

Table 3, we list the members of the 2gbpl SST family. The family is composed of

SSTs from 81 domains including members of a wide variety of fold families rang-

ing from the TIM barrel, Rossmann fold, carboxypeptidase, glutathione reductase,

and periplasmic-binding protein families. Most of these domains can be described as

singly- or doubly-wound parallel -sheet structures according to the Richardson tax-

onomy (Richardson, 1981). The shift from a single center to a multiple center added

16 domains to the family. In the work below, we exclusively used the multiple-center

definition.

There was considerable overlap in membership among the 317 SST families. Sev-

eral domains possessed SSTs belonging to many different families. In order to elimi-

nate this redundancy, we have attempted to identify the 40 SST families maximally

covering the domain database. Coverage was measured in terms of the total number

of domains, number of domains with at least 50% of its positions included in a SST,

and the sum of the fraction of each domain (fractional coverage) contained in a SST
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belonging to one of the families. We obtained the list in Table 4 using the greedy

strategy of first choosing the largest SST family and then successively adding the

:family which increased the fractional coverage by the most. Both the individual cov-

erage of each SST family as well as the running total coverage of the top 40 families

is presented.

Surprisingly, the first three families in this list - 21bp_2 (periplasmic-binding do-

main), ltlkl (immunoglobulin fold), and 256b_1 (4-helix bundle) - contained SSTs

from 141 domains. The top 40 families contained SSTs from over 241 domains or

'75% of the database. Only 50 domains did not contain any SST at all, and many of

these narrowly missed forming a SST (i.e., DSR score slightly above 0.6). By slightly

relaxing the minimum alignment length criterion by 15% (i.e., L05 = 0.85 Lmin),

we reduced the number of domains without SSTs to 27. Thus, a disproportionate

number of structures in the Brookhaven databank (July, 1993) possess a substruc-

ture belonging to one of a small number of SST families. It is likely that this trend

will continue as more structures are added to the database. Furthermore, these data

suggest that a new structure is likely to share a SST (not necessarily a previously

identified SST) with an existing member of the domain database.

(D) Protein architecture viewed from a SST perspective

Smaller than a structural fold and yet large enough to represent a defined packing

unit, SSTs are an appropriate size to be considered a meaningful structural entity. In

this role, SSTs have provided some important insights about protein structure.

It is possible to create a more unified description of a large set of structures

by constructing a minimum spanning tree (MST) with SST links. The minimum

spanning tree casts a broader net than the SST family since each node does not need

to be connected to the center of the tree. We have constructed such a tree for the

majority of o/3 domains in our domain database (see Figure 7). The structure of the

tree shows the relationship between a variety of ao// fold families. At the center of

the MST are the periplasmic-binding protein domains (ldril, 2gbpl, 21bp_2, etc.).

Emanating outward on one branch are the GTP-binding proteins (5p21_1 and letul)
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:ollowed by the actin family (latnl, 2yhx 2, etc.). Radiating outward on another

]branch is the glutathione peroxidase family (lgplal, 2trx_l1, ldsbl). The large TIM

barrel family (ltim1_, lmns_2, 4xia_l, etc.) is also connected to the periplasmic-

binding protein family. Down the trunk of the tree are the Rossmann fold domains

(e.g., 8adh 2, 51dh._2, lgdlo_l, etc.) followed by ldhr_l and then the hydrolase family

(4tgll, lace_l1, 3sc2_1, 2eda1_). Branching off 8adh_2 is the glutathione reductase

family (3grsl, 3grs_2, lphhl, ltrb_l, etc.). The adenylate kinase family (3adk_l

and gkyl) and dihydrolate reductase (3dfr1_) are connected to the tree through

ldhr_.l. Only three a/3 domains (lalk_2, latr_l1 and 2yhxl) were not included in

the MST.

Structural biologist often divide a protein structure into a core region essential for

stability and outlying segments that are less crucial for the integrity of the protein.

It is not trivial, however, to ascertain what constitutes the core, although visual

inspection coupled with an analysis of residue packing and burial provides good hints.

The fact that many SSTs are compact, well-buried, and conserved, suggests that

they could furnish complementary information in this determination. In Figure 8, we

present three examples of how aligning a set of SSTs derived from a given domain

may help to define the structure's core. The first domain of the immunoglobulin FC

fragment light chain, lfcla_l, shares SSTs with 15 other domains. In Figure 8B1, we

have plotted the number of SSTs at each position in the structure. Positions with

14 or 15 SSTs were considered to constitute the core (see Figure 8A1), and this core

corresponds quite closely to the framework residues identified by Chothia and Lesk

(1.987) in immunoglobulin structures. In the case of 3fbpl, three SSTs confirm what

is visually evident: the core of the structure corresponds to the middle 5 P-strands

packed against the central helix (see Figure 8A2). Finally, staphylococcal nuclease

possesses a single SST with lbovl which is located not in the middle, but to one

side of 2snsl. This division of staphylococcal nuclease is supported by experimental

data which shows that mutations in the twisted /3-sheet spanned by the SST have a

more profound effect on stability than mutations in the C-terminal helices (Meeker

& Shortle, 1991).
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The strict division of a structure into core and non-core regions is less enlightening

for the larger domains which contain multiple important packing arrangments. SSTs,

however, have also proved useful for describing these more complex folds in terms

of component substructures (see Figure 9). For example, carboxypeptidase (5cpal)

is a 307 residue a/: protein characterized by a long, mainly parallel d-sheet with

helices on both sides. 5cpal shares SSTs with 18 other domains, and many of these

SSTs possess substantial overlap (> 45% of positions in common) with one another.

There are some exceptions, however. The SST with lbia_2 shares the right half of

the -sheet, whereas the SST with 3sc2_1 encompasses the left half of the sheet (26%

overlap). To complete the rough decomposition into a right part, left part, and central

region, the SST with 2gbpl is located in the center of the sheet (38% overlap with

the lbia_2 SST and 34% overlap with the 3sc2_1 SST).

The globin fold has been extensively studied but an analysis using SSTs offers a

new perspective on the structure. The SST between myoglobin (lmbdl) and 2cro1_

delineates what can be considered the core packing arrangement between helices A,

EB, E, G, and H. On the other hand, the SST with lhmq_l shows that the two long

helices G and H interact with one another in a manner similar to that found in helix

2 and helix 3 of four-helix bundle proteins. For the third example, we turn to two

members of the TIM barrel family. The traditional, geometric description of the TIM

barrel has treated the structure as a single, monolithic entity. Surprisingly, we found

that 2gbpl makes a SST with the N-terminal half of the barrel in tim 1, whereas it

forms a SST with the C-terminal half of the barrel in 2rus_2. Thus, these two SSTs

divide the TIM barrel into two half barrels.

(E) Analysis of a new protein structure using SSTs: HIV

reverse transcriptase

Another potentially useful function for SSTs is to aid crystallographers in the descrip-

tion of new protein structures. Trying to digest a complex, unfamiliar structure into

more recognizable pieces presents a formidable challenge. Initially, one might search
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for canonical folds, define the secondary structure elements, and look for supersec-

ondary structure motifs or regular packing arrangements. Identifying SSTs would

furnish complementary information. Below, we scanned the recently solved structure

of HIV reverse transcriptase for SSTs.

HIV reverse transcriptase (HIV RT) is a 556 amino acid protein that catalyzes

the synthesis of RNA from DNA. Kohlstaedt et al. (1992) solved the structure to 3.5

IA and defined two distinct domains: a polymerase domain and a RNase H domain.

We subjected the polymerase domain to SST analysis by comparing it to each of

the 317 domains in our database. There were two significant hits: the region from

residue 91 to 235 formed a SST with the N-terminal domain of RUBISCO (2rusl)

and the region from residue 322 to 415 formed a SST with E. coli RNase H (lrnhl).

These two SSTs divided in an approximate fashion the polymerase domain into the

four parts which correspond to the four subdomains described by Steitz and collegues

(Kohlstaedt et al., 1992).

Each of the four subdomains were then run against the domain database to search

for more SSTs. The results are presented in Table 5. The "finger" subdomain did not

register a hit to any of the domains. Likewise, the "thumb" subdomain exhibitted

only weak structural similarity to several four-helix bundle proteins. The modest DSR

scores support the assertion by Kohlstaedt et al. (1992) that the thumb subdomain

distantly resembles a four-helix bundle architecture. As described above, the section

of the protein from 320 to 420, termed the "connection" subdomain, shares a SST

with lIrnhl, and it also records significant DSR scores against three other members of

the lrnhl SST family, 11ap_2, latnl, and latn_2. This resemblance was previously

noted by Artymiuk et al. (1993). In Figure 10A, we present a superposition of the

connection sudomain against the RNase H domain of HIV RT. The close structural

relationship between these two adjacent sections of the protein suggests a duplication

event during the evolution of the HIV RT gene.

The most surprising finding was that the "palm" subdomain, encompassing posi-

tions 80 to 115 and 150 to 240 which includes the active site of the enzyme, contains an

unexpected SST with the C-terminal domain of glutamine synthetase (2gls_2). The

53



structural similarity is quite good: 2.22 A RMS over 67 residues (see Figure 10B).

Joyce and Steitz (1994) have speculated that three active site aspartic acid residues -

D110, D185, and D186 - are involved in coordinating two Mg2+ ions. These divalent

metal ions are thought to catalyze the formation of the new phosphodiester bond.

Intriguingly, in the structural alignment of 2gls_2 with the palm subdomain, D10RT

is superimposed on E131GS and D186RT matches up with E220GS. Both E131GS and

E220Gs are known to coordinate Mn2+ in the active site of glutamine synthetase,

lending indirect support for the Joyce-Steitz model. To our knowledge, this is the

first time the catalytic subdomain of HIV RT has been shown to possess structural

similarity with another non-polymerase protein.
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2.5 Discussion

In this work, we have identified recurrent structural patterns at the subdomain level

by completing an all-by-all structural comparison of 317 domains selected from the

Protein Data Bank. This study was made possible by three important technical

innovations. First, we have developed a fast and sensitive structural comparison

method. Secondly, we were able to assess the significance of the comparisons by using

a measure of structural similarity (DSR) normalized for alignment length. Finally,

we have devised a minimum alignment length criterion that reduced the required

number of equivalenced positions between the two structures, thereby facillitating

the identification of smaller substructures than in previous studies. Making Lmin

more stringent would result in the identification of related folds, whereas making

Lmin less stringent would delineate common supersecondary structures.

We refer to these common substructures as common structural topologies or SSTs.

The typical SST ranges from 40 to 120 residues which in some cases is large enough to

span a domain, but in most cases represents only part of a domain. SSTs are compact

and contain a higher proportion of buried residues. In the hierarchy of protein struc-

tural organization, SSTs fill an important gap between the structural fold and the

supersecondary structure motif (see Figure 11). The archetypal structural patterns

associated with each level greatly simplifies the analysis of a protein by assisting in

the deconstruction of a complex structure into more familiar pieces. This theoret-

ical work on common topologies at the subdomain level complements the ongoing

experimental work elucidating the fundamental role of subdomains in protein folding.

We have organized the vast number of SSTs into families by clustering together

related SSTs. One key finding of this study is that SST families are quite large, and

domains from different fold families may contain SSTs belonging to the same SST

family. For example, the 2gbpl SST family includes members of the TIM barrel,

Rossmann fold, glutathione reductase, carboxypeptidase, and GTP-binding families.

Altogether, the three largest non-overlapping SST families include 141 domains or

44% of the database. Only 50 domains possess no SSTs, and if the minimum align-
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ment length requirement is relaxed slightly, this number is lowered to 27. In the

near future as the structural database grows, it may be possible to describe a good

proportion of every structure by referring to its SSTs.

In this work, we have argued that SSTs are interesting and important structural

components. They are small enough to represent a single, relatively simple packing

arrangment, and yet they are large enough to be considered a whole packing unit.

We have shown that in this role SSTs have provided important insights into protein

structure, showing the underlying commonality among different domains, helping to

identify the core regions of a structure, and furnishing a description of more compli-

cated folds in terms of component (possibly overlapping) substructures. All in all,

SSTs provide the basis for a rich new taxonomy for the understanding of protein

structure. In the future, we recommend that a new structure be described at both

the fold level and the SST level, thereby furnishing a more complete picture of the

structure.

Recently, Yee and Dill (1992) have argued that fold families as traditionally de-

fined are loosely-knit forms of organization. In other words, the relationships within

a family are not that much stronger than the relationships between different families.

Their conclusions, however, were weakened by the fact that their comparison algo-

rithm did not permit gaps or insertions, casting some doubt on the appropriateness

of their measure of structural similarity (Orengo, 1994). Our work with SSTs, which

uses a structural comparison technique that allows gaps and insertions, supports their

basic claim since we have demonstrated that it is not uncommon for members of differ-

ent fold families to share a common substructure. Thus, we agree with the assertion

of Yee and Dill that the boundaries between different fold families are difficult to

establish.

Within the structural biology community there has been a preoccupation with the

enumeration and cataloguing of structural folds. This line of investigation has proved

most valuable since there is considerable evidence that the number of structural folds

is limited. On the other hand, this work has pointed out some limitations of the "fold-

centric" view of the world. First, as mentioned above, an exclusive focus at the fold
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embellishment of a common SST with extra secondary and supersecondary structure

elements may give rise to a spectrum of different folds. Secondly, there is the tendency

to treat structural folds such as the TIM barrel as an inviolate whole, rather than

perceiving the possibility of breaking up the structure into simpler pieces. Finally,

:from the perspective of protein design, one must appreciate the exciting prospect of

mixing and matching SSTs to create new folds.

In an attempt to determine the basic unit of protein folding, experimentalists

have begun to dissect proteins into smaller domains and subdomains and have asked

whether these fragments behave as autonomous folding units (Jaenicke, 1991). An au-

tonomous folding unit is operationally defined as a section of a protein that is stable in

isolation. Many SSTs represent relatively self-contained subdomains that can be dis-

tinguished by limited contacts with the surrounding protein. Do some SSTs correpond

to autonomous folding units? Only a handful of experiments have been performed

to measure the stability of isolated subdomains. Vita et al. (1989) have made frag-

ments of thermolysin and found that one of the smallest pieces that was compact and

monomeric corresponded to residues 225 to 316 in the second domain of the protein.

Interestingly, a weak SST between 3tln_2 and 21zm_2 (DSR = 0.615, DSR0 8 5 = 0.55)

encompassed the positions 171 - 179, 233 - 246, 257 - 272, 279 - 290, and 303 - 311

in thermolysin or basically the same region as the stable subdomain.

Why are these topologies conserved? Is it the consequence of divergent or con-

vergent evolution? An examination of the conformation and positioning of the side

chains in the SSTs demonstrates that the structural conservation is not only at the

level of the alpha carbon atoms but also the at the level of the packing of the side

chains. Indeed, there is a strong correlation in the atomic level residue-residue contact

maps derived from the related substructures in a SST. The absence of any sequence

similarity among proteins related by a shared SST and the fact that the same SST can

appear in domains with significantly different overall structures suggest that physico-

chemical constraints, and not evolutionary descent, is responsible for the repeated use

of the same architecture. In the future, we hope to study in more detail the factors

that may explain the preference of certain packing arrangments.
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Finally, we propose that every new structure be searched for SSTs along with

recurrent structural patterns at other levels of structural organization. We have iden-

tified several interesting SSTs in the polymerase domain of HIV reverse transcriptase.

First;, we demonstrated that the connection subdomain is structurally similar to the

RNAse H domain of RT. Secondly, our analysis has revealed that the palm subdomain

shares a SST with the second domain of glutamine synthetase. There is a suggestive

conservation of catalytic carboxylates in the two active sites. In the future, we hope

to examine in more detail the evolutionary relationship between these two enyzmes.
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2.6 Appendix 1: Structural Comparison Algorithm

We employed an iterative technique based on dynamic programming to find the opti-

mal alignment. Unlike the the method of Holm and Sander (1993), this algorithm does

not permit the reversal of chain direction and enforces the topological connectivity

of the aligned segments (i.e., 1 a < ... < aL < nA and 1 < b < ... < bL < nB).

A second important point is that the aligned segments were required to be at least

three residues long to prevent the matching of short one or two amino acid fragments.

The basic idea is that the alignment at iteration k, XABk, was used to calculate

the cost matrix Mk. The value of Mj was inversely related to the root-mean-square

deviation of the entries in row i (belonging to the alignment) of the distance matrix

of protein A with respect to the corresponding entries in row j of the distance matrix

of protein B:
1

M-0) (2.7)

mrn L

The Needleman-Wunsch 'global' dynamic programming algorithm (Needleman &

Wunsch, 1970) with no gap penalties produced a new alignment, XAB,(k+1), which

was used to fill M-(k+ ). The whole process was repeated and the alignment usu-

ally converged in fewer than 8 iterations. The parameter 0 controlled the length of

the alignment and was lowered from 0.25 to 0.125 (i.e., 0 = 1 1 1 andS; with 84 5 6 7' 

iterations for each value of 0) in order to extend the alignment. Aligned segments

of fewer than three amino acids were removed from the alignment. For each align-

ment XAB,, the DRMS values for a range of alignment lengths between Lmin and

L were calculated. An alignment of length L could be pruned to give rise to a set

of shorter alignments by incrementally removing those position pairs with the worst

single-DRMS values. The best DRMS score for each alignment length was stored.

It should be noted that this approach is somewhat similar to the independently

derived iterative dynamic programming method described by Subbiah et al. (1993).

The main difference is that Subbiah calculated the cost matrix Mk by superimposing

structures A and B given the alignment at iteration k and then determined the
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absolute distance between residue i of protein A and residue j of protein B.

Two methods were used to generate the initial alignment. First, we adapted the

graph matching algorithm described by Grindley et al. (1993) to align secondary struc-

ture elements. Briefly, the protein structure was represented as a labelled graph in

which the nodes correspond to secondary structure elements and the edges represent

distance and angle relationships between these elements. A maximal common sub-

graph isomorphism algorithm identified similar structural patterns in the two struc-

t;ures and aligned equivalent secondary structure elements. To generate the initial

alignment of individual positions, the middle residue of equivalent secondary struc-

ture elements were superimposed, and the alignment was extended in both directions

to the boundaries of the elements.

Secondly, we implemented the more laborious approach of systematically aligning

the positions of the two domains at different registers (i.e., X = {(1, 1), ... , (nA, nA)},

offset = 0). Not all possible registers were tried, only those that were 10 positions

apart (i.e., offset =: ... , -20, -10, 0, 10, 20, ..- ). The iterative dynamic programming

algorithm described above refined each of these initial alignments, and the best DSR

score from the various offsets was recorded.

For most comparisons, the two methods produced the same final alignment. Method

1 was much faster and was used for the comparisons between real protein domains.

Method 2 was used to compare the random lattice structures because they often did

not possess true secondary structure.

Finally, after all the comparisons had been performed, we checked the consistency

of the various alignments. First, we examined the agreement between XAB and

XBA. In other words, the same set of corresponding position pairs in alignment

XAB should be found in the alignment XBA with only the order of the pair reversed

(inverse relationship). Then, we also checked that XAB and XBC were consistent

with X A C. The three alignments were consistent at aligned position i if given the

three corresponding position pairs (ai, bi) E XAB, (bi, Ci) E XBC, and (ai, c') c XAC,

C/ = Ci. Any inconsistencies were resolved by checking if one or more of the alignments

were not optimal.
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2.7 Appendix 2: Generating Random Lattice Struc-

tures

Three different types of lattices were used to generate the random structures: (1)

knight's walk lattice consisting of 24 basis vectors (Skolnick et al., 1990); (2) 20-

vector lattice consisting of 20 basis vectors in a relative coordinate system (i.e., the

xyz axes at position i were determined by the location of alpha carbon atoms (i -

2), (i - 1), and i; and (3) 20-vector lattice with local conformation constraints to

encourage the formation of secondary structure. The 20-vector 'relative' lattice was

constructed by selecting and adjusting 20 of the 24 basis vectors from the knight's

walk lattice according to how well they could represent real protein structures in a

relative coordinate system. Random structures with local secondary structure were

created by fitting a real structure onto the lattice and then randomizing the vectors

at coil positions. The secondary structure assignments were taken from the first 200

residues of the following structures: tim (46% , 17% ), 2cpp (49% , 6.5% ),

2cyp (42.5% c, 2% ), and 3cna (0% a, 45% 3).

To ensure uniform packing, the radius of gyration and the number of alpha car-

bon contacts at 4 A and 8 A for each random structure were constrained to be

within 2 standard deviations of the values expected for a real protein of the same

size (15.0 < RG < 18.5, CONTACT 4 .0 < 20, and 315 < CONTACT 8 .0 < 479). We

ran simulations allowing the lattice structures to sample conformational space under

the influence of an energy function that measured the deviation from the expected

values for the radius of gyration and the two types of contacts. Typically, over 10,000

iterations of simulated annealing were necessary to generate each compact random

structure.

For the lattices without local conformational constraints, (1) and (2), two groups

of five random structures were created. All possible comparisons within each group of

five were calculated, resulting in (2. 10) = 20 total comparisons. For the third type of

lattice, two random structures were created for each of the four secondary structure

assignments. Comparisons between structures with the same local constraints pro-
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duced DRMS values that were approximately 10% lower than comparisons between

structures with different local structure. Only the data from the comparisons between

structures with different local conformational constraints (4 6 = 24 in total) were

included in the calculation of the randomDRMS function.
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Figure 1

20-vector lattice

O Knight's Walk lattice

0 20-vector lattice, local
conformation constraints

Linear fit of averaged
data: y = 0.037x + 0.766

C 0 CD CD C 0
N 'IC 00 O Cq

Alignment Length

Figure 1. Plot of random DRMS versus alignment length. The
random DRMS values were generated from the comparisons of
random lattice polymer structures over a range of alignment
lengths. Three types of lattice models were used, and each data
point represents the average of 20 comparisons for a particular
lattice. The equation of the line that best fit the average of the
three sets of data is given.
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Figure 2
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Alignment Length (L)

Figure 2. Variation in nDRMS as a function of alignment
length. The nDRMS values are plotted as a ratio of nDRMS(YL)
to nDRMS(YK) where YL is the alignment of length L with the
minimum DRMS and K = (0.45 ns). Alignment length is
measured as a fraction of the length of the smaller domain (ns).
The square data points represent the average of 1000 control
comparisons, whereas the diamond data points are the data from
a single comparison between the domains lbtc_2 and lmns_2.
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Figure 3

Standard Alignment Length vs. ns
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Figure 3. Distribution of standard alignment lengths (SALs) as a
function of domain length. The alignments were generated
from a set of related domain pairs. Superimposed is a graph of
the minimum alignment length function, Lm,.
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Figure 4

DSR of similar and dissimilar
pairs vs. ns
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Figure 4. Distribution of DSR values for dissimilar pairs
(squares) and similar pairs (diamonds). The dotted line signifies
the value of DSR = 0.6, which is the cutoff for a significant
structural similarity.
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Figure 5A
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Figure 5B

D1

Superption of 2gbp_l (purple) and lsbt (green).

B2

Superpcsitin dof 2gbp_l (purple) and 2rus2 (green).
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Figure 5. Examples of SSTs derived from 2gbp_l. (A) Ribbon and topology di-

agrams of the domain 2gbp_l and 3 other domains sharing a SST with 2gbp_l: (1)

2gbpl, (2) 5p21_1, (3) lsbtl, (4) 2rus_2. The SST is shaded in purple in the rib-

bon diagrams and depicted by the filled circles (helices) and triangles (-strands) in

the topology diagrams. (B) The alpha carbon superposition of related substructure

between (1) 2gbpl (purple) and lsbtl (green), and (2) 2gbpl (purple) and 2rus_2

(green). Only positions present in the SST are shown.
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Figure 6. Schematic representations of the two methods used to construct the SST

families. (A) The filled circle represents the family center and the lines are drawn

to other members of the family that share a SST with the family center. (B) The

(lark-filled circle is the family center and the two grey-filled circles represent "close

relatives" of the family center. Note that the family is larger because the family is

the union of SSTs derived from either the family center or its close relatives.
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Figure 7. (A) Minimum spanning tree of a/: domains. The nodes are the domains

and the edges represent the DSR value between the domains. The thickness of the

edge indicates the strength of the similarity (see legend). Domains belonging to the

same fold family have been boxed. Specific fold families have been labeled.
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]Figure 8. SSTs highlight the core packing region of a domain. Both (A) ribbon

and topology diagrams are shown (only the core elements are shaded) along with

(B) graphs of the number of aligned SSTs at each position in the structure for three

domains: (1) lfela_l, (2) 3fbpl, and (3) 2snsl.
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]Figure 9. Large and complex folds can be described in terms of multiple SSTs

with minimal overlap. Three examples are presented: (A) 5cpal (SSTs with 3sc2_1,

Ibia 2, and 2gbpl), (B) lmbdl (SSTs with 2cro_1 and lhmql), and (C) ltiml and

2rus_2 (SSTs with 2gbpl). The SSTs are shaded in both the ribbon and topology

diagrams.
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Figure 10

Superposition of "connection" subdomain (purple)
and RNAseH domnain (green) of HIV RT

t

Superposition of "palm" subdomiain (purple) of HIV RT and 2gls_2 (green)

''i
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]Figure 10. Identification of SSTs in HIV reverse transcriptase. (A) Alpha carbon

superposition of the "connection" subdomain (purple) with the RNase H domain

(green) in HIV reverse transcriptase. (B) Alpha carbon superposition of the palm

subdomain (purple) with the C-terminal domain of glutamine synthetase (2gls_2,

green) .
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Figure 11

Figure 11. Hierarchy of protein structural organization.
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Table 1

Code Title Bounds

155cl CYTOCRO C550
2 1 i_l RICIN

3 1l_l 0BI0UITIN CONJUATIN 90ZYE
4 ll 3 NIOCL6U9 III (1)
5 1lbk_ 2 3IDONUCL AS III (2)
6 lbp_l L-RBINOSE0-BINDINO PROTEIN ( 1)
7 labpl L-ARABIMOB-BINDIN PROTEIN (2)
8 lc1_l ACTLCBOLNS6T8PAS6
9 lc1_l ACTIOXANT0IN

10 1od1 AL809 R6DUCTS
11 lep_l APOLIPOPHORIN III
12 111 6ldl L0006 A
13 l1lk_l AL1LIN8 P9OS9PBTAS0 (1)
14 1k_2 AL0ALN P9OSPHATA6 S (2)
15 l1oil ACO9AT OXIDB (1)
16 lo._2 ASCORBAT OXID ASS (2)
17 1o3 ASCORBA E OXIDAS (3)
1 Ilarbl ACBROOBACTIR PROTAS I (1)
19 lrb_2 ACBEOOBACTER PROTrASE I (2)
20 O1rpl PEROXIDASE (1)
21 lrp_2 PeROXIDAS (2)
22 ltnl ACTIN (1)
23 lotnl ACTIN (2)
24 ltr_l BSAT-SBOC COGNAT 9 PROT0IN (1)
25 ltrl2
26 lyh_l
27 lbul1
28 lb nl
29 lbbp_l
30 lbgl
31 lbi.l
32 lbi1_2
33 l1b2_1
34 1b2_2
35 Ibovl
36 Lbp2_l3 7

lbtcl
38 Lbtcp2
39 lccS 1
40 :Lcd81
41 :Lc.Y91

42 :Lcidl
43 cd1_2
64 :lnb_1

45 .o11

46 t6o81
47 ].col2
48 icpcal
49 l(cpb.l
50 (.t¢_1
S1 ~.dhrl

52 Idri1_l
53 5dr2
54 Odbl
55 1db2
56 16._1
57 ecdl
58 lend1

59 1tul
60 l130_1
61 lfclsl
62 lfcl_2
63 17h1_1
64 lfk_1
65 lfnr1
66 lnr_2
67 lgrl1
68 lecr_2

69 ladlo_l
70 ldlo_2
71 l0ky_
72 1llt_1
73 llly_
74 lly_2
75 1lnf_1
76 llzP_l
77 lo l
78 lpl_l
79 lhlpl
80 l)unel
81 11UDY_1
82 l00y_2
83 lloel
84 llt 1
85 1lo l
86 1lbl
87 1lbl
88 llop_l
89 lpp_

2

90 1lfb_1
91 1hll
91 llbll
92 11b_1
93 llpl
94 1111_l
95 11-1_1

96 1ntl
97 lnt_2
98 1nbd 1

99 1Cpll
100 1cpl_2
101 lsin_l
102 ln n2
103 lsin_3
104 1n1

105 ln2
106 lml2_1

1-121

1-262
1-150
1-21, 133-211

22-132
11 -1121-109 255-284

110-254, 285-306

21-480

1-108

1-315

1-153

1-363

1-162, 263-449

163-242

1-130

131-310

311-552

1-132

133-263

1-144, 275-291

145-274, 292-336

1-144, 338-372

145-337

2-136 230-297

9rsAT-SOC COGNAT PROTrIN (2) 137-229 299-383
BRTA-D-ULUCAN 4-OLUCANOYDROLAE 1-214

0DOCITI9NAS6 1-24
6 9N 9 04 1-108
BILIN BINDING PROTEIN 1-173

6U1LOCYT1 CSP 1-158
BIRA BI8CTINAL PR0OT I N (1) 1-60
BIRA BIUCTIOAL PROTIN (2) 61-247
B8AN POD O0TTL0 VIRUS (1) 1-1S2
BMAN POD MOTTLS V~RU$ (2) 183-374

VZROTOXN-1 1-69

PHOSPOLIPAeB A2 1-125

B TA-AL6YLaS 1 ) 1-266
BSA-AYLA S (2) 267-491
C9TOC6O97 C 1-83
CD8 1-114
CSTTIN 1-1081
CD DOAINS 3 ND 4 (1) 1-106
CDI M AIN8 3 AND 6 (2) 107-177
IS APO-EEPRESOR 1-104

COLICIN A 1-197
CHOLS8 ROL OXIDA0E8 1-115 191-2 0
COLESTERO L OXIDASS 116-190, 281-502

C-PHYCOCYANIN (ALPA) 1-162

C-PEYCOCYANIN (BETA) 1-172

L7/L12 50B RIBOsOIAL PROTEIN 1-78

DIHYDROP~TRIDINe RDUCTAS 1-236

D-RIBOS-BNDING PROTIN 1-103, 235-263

D-RIBOSe-BINDING PROTIN 104-23. 264-271

DISULFIDE BOND FOR. PROT. (1) 1-62, 139-188

DISUL~IDe BOND POU. PROT. (2) 63-138

DIYDROLPOYL TRANSACETYLASE 1-243

BIIOGLOBIN (ERYSTROCRUORIN) 1-136

9DOWCLBASe V 1-137

ELONOATION FACTOR TU 1-141

PBOSPEOCARRI R III 1-150

PC FRA)ICY IGG1 CLSS 61) 1-105

PRAGIs~ IGG1 CLASS (2) 106-206

RRITIIN (H-CAIN) 1-170

FK504 BINDING PROTIN 1-107

FERRDOXIN RWDCTASE (1) 1-161

FERRDOWXIN REDUCTASe (2) 142-296

GAIN IVA-CRYSTALLIN (1) 1-85

GIU IVA-CRYSTALLIN (2) 86-174

HOLO-D-G3P DBHYDROGrNAg (1) 1-147

ROO-D-Q3P DB~YDROG nARs (2) 168-334

GUANYLAT XIAs 1-186

oLUATRONB SYMsASS 1-121

oLUCOAMYLRrs (1) 1-226

OLUCOAlYLABS (2) 227-470

ORANULOCTS-YACROP PAOR CRF 1-119

ReASP SA 1-96

GLYCOLATS OXIDAS R 1-3S0

0LUTATHONE PEROXIDASR 1-186

EIUE POTrNIAL IRON PROTIN 1-85

HgDRIYRIN 1-113

eHAI NETNsYLTRANERASE 61) 1-193, 306-327
EgAI METHLTRNZsFRASE (2) 194-280

ALPHA-AMIYLARS INBITOR HOE-467 1-74

HISTOmB N5 1-74

gUnAN ROIIH SORIONE 1-166

INTRLrKIN-1 BTA l-151

FATTT ACID BINDING PROTIN 1-131

LUCINEAINOPePTIDABs (1) 1-155

LEUCINR AIIINOPEPIDASE (2) 156-481

TRAN. FACTOR LB1 (BOO) 1-78

L2BBMOGOBIN 1-153

LdLBDA REPRBeSOR 1-92

APOLXPOPROTeIN-R3 1-146

BAT-IABILE NTROTOXIN 1-103

LYROZRll 1-130

lBITHIONINE AIPEPTIDASE (1) 1-119

31TgIONINE AIINOPPTIDASR (2) 120-263

HWOGLOBIN 1-153

IOIUNOGLOBULIN FAR FRAQENT (1) 1-110

IWIUNOGLOBULIN FAB FAGl NS (2) 111-220

NITEOGrNUS 3O- FS PROSIN (1) S0-202

NITROG BNUUS O-Pe PROTI N (2) 203-310

NITROONAS 81-F PROTEIN (3) 1-460 319-670

IANDILATE RACIUASe (1) 1-130

IANDYLAT RACBMASE (2) 131-357

1S2 VIRUB COAT PROEIN 1-129

Code Title Bounds

107 lmrb_1
0oa lmp_l

109 lop_l

110 lndkl
111 lnip_l
112 1nip_2

113 1nbl
114 lon l
115 lovl
116 lp.z_l

117 lpeyl
118 lpd_l
119 lpd.2
120 lpd_3
121 lpfkl
122 lpk_2

123 1pdl
124 1d_2

125 lpgsl

126 lphl
127 lphh2
128 iphh_3
129 lpil_l

130 lpii_
131 lpkp_l
132 Ipl£1
13 lohl
134 lpowl
135 lpo_2
136 1po3
137 lptl
138 ipyp_l

139 lrbpl
140 1r-cl
150 1.9c111 lre¢2
142 irbdl
143 irhd
144 1ribl

1645 lrn31
146 lrnhl
147 lrnt_l
147 lsbtl
149 00t_
150 let_

2

151 1.h.l
152 25hl

153 2oil
154 1n3_1
155 1ryl

156 ltbp_l
197 ltbp_2
158 lt-nl
199 tfgl
160 lti-l
161 ltil
162 ltlkl
163 tnll
164 ltrb_l

165 ltrb_2

166 lubql

167 lul l
168 lvg_l
169 llrybl

170 lwyb_2

171 1Xzl

172 256b_1
173 

2
P.tl

174 2fut_2

175 2lpl
176 

2
Alp_

2

177 2pr_l
178 2gpr_2
179 290_1l
180 Zbbkl
ltl 2bopl

182 bpa l_l

183 2cbl1
182 2ccy_l
105 2cd4l
186 Zcd_2
17 2c1il
188 2pk_L1

l89 2cpk_2

190 2cpl_l

191 2cpp_l

192 2¢pp_2

193 2crol

194 2ctl_l

195 2ctB2

196 2clp_l

197 2ayp_2

198 2®d&_l

199 2ed12

200 2f9£_

201 2gbp_l

202 2gbp_2

203 291l_1

204 2911_2

205 gtl

206 2Sit_2

307 hhbb_l

208 2hm_l

209 Zhl&&l

210 2hl&&_2

211 2hl-b l

212 Zhmg_l

YMuOSe BINDINO PROTIN

AJOR URINARy PROTIN

MYR~OBLATOSIS VIRAL PROTA3E

NUCLBOSIDE DIPBOSPBATE KINAES

NITROGNABE IRON PROTEIN (1)

NITRO99aSE IRON PROTIN (12)
N80URIINIDA (SIAIDAS)
P-30 PROSTIN

OVALBUIN

PS DOAZURIN

P LASTOCYANIN

PORPHOBILINOfiN DFAMINASe (1)

PORPBOBLIWOQN DAIUS (2)
PORPBOBILIN00N DA1NAS (3)

B00PBOPRUCTOKINA S (1)

PHOSPOFRUCTOKINASE (2)

1-115

1-157

1-112

1-148

1-144
147-283

1-390

1-103

1-385

1-120

1-99
1-91, 189-206

92-188
207-296

1-130, 252-305
131-251 306-320

6-PB0OPBO1LUC6AT D8YDR. (1) 1-176
6-PBOBPOGLCONATb DBYDR. (2) 177-469
PRTEIN · TYP 7 1-70

P-BYDROXYB ZOAT YDRO . (1) 1-175
P-0YDOXeB1NZOATE9 9YDRO . (2) 176-290
P-BYDROSYBE ZOATE 9YDRO . (3) 291-394
ANTRANILA I I0IIMRS 1-29
INDO-3-GLYCROL-P RYNHASR 256-452

RIBOCIIAL PROTIN S5 1 -145

PLATLT PACTOR 4 1-65

HIs PEOSPAOCARIER PROTEIN 1-85

PYRUVASe OXIDASE 61) 1-191

PYRU06AT OXIDS (2) 192-342
PYRU0A96 OXIDAS (3) 343-593
STRTPSAVIDIN 1-119

INORGANIC PYROPHOSPBATASE 1-280

RTINOL BINDIW PROTIN 1-174

RCOVRIN (1) 1-B
R6COvRII (2) s85-15
RODANS (1) 1-050
RODAIS9 (2) 151-293
R O0 9IBO9UCLOTD RDUCTA 1-30
RIBOWCL R I 1-124

SLNO1MT. RIBOOCLASE B 1-1B

RIBOUCLAS T1 1-10
SUBTILISIN BPN 1-275
TRYPSIN SOT (1) 1-103
TRYPSIN SOT (2) 104-223
V-sRe SB 6O9AN 1-59

PYN PROO-OCOR 9 83 DOIN 1-59
6IALIDAS 6 1-381
SCORPI N6ROOXIN 1-65
S9RYL-TNA SYNTBTAS 101-421
TATA-BINDIN PROTIN (1) 1-90
TATA-BINDIN PROTIN (2) 91-180
T9NAC N 1-9
Tr TYP BTA 2 1-112
XUNIZ TRYPSIN ZNHIBITOR 1-167

TRIOSR PBOSPbATR ISOMRRASS 1 -247

TLOIN 1-10 3
TUMIIOR NCROSIS 9 ACOR-ALPBA 1-15
TBIORDOXIN R9DUCTAS 1-114
THIOREDOXIM REDUTASe 113-244

UIOUITIN 1-76

PURINE WCL~. PHOePHoRYLtSE 1-289
VARIAN SrFACE OLYCOPROT)I N 1-362

TRTPTOPBAN SYNhASs 1-44, 7S-196

TRYPTOPBAN SYNTHASE 45-77, 197-38S

ZXF268 IIIEDIAT ARLY Go e 1-85

CYTOCROMa R542 1-106

ASPRTATE AllINOTRANSFAe 1-315

ASPRSATZ AIOTRI~l~srZ)lsS 316-396

ALPBA-LYTIC pROTEASE (1) 1-87

ALPA-LTTIC PROTASE (2) 88-198

RIZOPUSPRPSIN (1) 1-173

RIZOPOsPEPSIN (2) 174-325

AZURIN 1-129

ITRYLINE D DROG NAS 1-355

BPV S2 DUA-BIDINO LOMAIN 1-85

PBIX174 CAPSID PROTrINS 1-426

CARB(IC ANHYDRASE POR B 1-256

CYTOCaROa C' 1-127

CD N-TERMIINL FRMN (1) 1-97

CD N- RIIAL FRAGMESNT (2) 9B-176

CEYIOrHYPSlN INHIBITOR 2 1-75

CAP PROTIN KINA~R (1) 1-125, 303-336

CAIP PROTIN XINASS (2) 126-302

CYCLOPgILIN A 1-164

CYTOCHeOME Pi4oCAK (1) 1-95, 295-340

CYTOCeROnE P6SOCAM (2) 96-294, 3&1-4s

43* CRO PROEIN 1-65

CITRATE SYNTHASg (1) 1-274, 381-437

CITRAST SYNTBASS (2) 275-380

CYTOCgROIXE C PROXIDASE (1) 1-160

CYTOCHOIR C PEROXIDASR (2) 161-345

gALOALXDE DHALOGNASS (1) l-1lSS 230-310
RALALKXAfn D ~HALOGNAXr (2) 156-229

BAsIC aIBROBLAST UROWT FACTOR 1-126

D-GAL-GLU BINDING PROTIN (1) 1-110, 257-294

D-GAL-LU BINDIN PROTIN (2) 111-256 295-309

OLUTAMINS RYNTETASR () 1-103

ULUTAIINE sYNTHETABs (2) 104-468

OLTASTIONII S-TRANS eR (1) 1-89

oLUSASSIONX S-TRANSFzRRSS {2) 90-217

gMOOLOB IN BTA 1-146

BUMAN INOST OL lONOPBOSPBATARS 1-272

CLABS I EISTOCOPATIBILITY (1) 1-181

CLAS I BISSOCONPATIBILITY (2) 182-270

BA-MICROGLOBULIN 1-99

H!JEAGGLSTININ 1-175

Code Title Bounds

214 2pd_2
215 2lbpl
216 2lbp_2
217 

2
1z991

218 218 2
219 28svl1_1
220 2pb_l
221 2pil

222 2pll_2

223 
2

pi_3
224 2reb 1
221 22o.1_
226 2ru._2
227 2zrv_l

229 2.p_
2

230 2.n_l
231 2.nvl
232 2nv_2
233 2od_l
234 211_l
235 2ltvl
236 2t._l
237 21t.vc_1
238 2tbsc_2
239 2t_
240 2trl
241 2yhxl
242 2Z_2
243 351c_
244 3dk_l
245 3b5cl
246 3bell
247 31b1l
248 3bl111
249 3chyl
250 3cl_1
251 3cln_1
252 3cln2
253 3cnp_1
254 s3cp_l
255 3dfr_l

256 3dnLl
257 3.c1
258 3pll_2
259 3enll
260 31nl_2
261 3tbpl
262 

3
fbp

2

263 3fc_1
264 3£fl_1

265 3g.p_1
266 3gap_2
267 3gr._
268 3r1_2
269 3gpr3
270 3hg_1
271 3bvp_1
272 31icb1
273 31cdl
274 31ed_2
275 3118_1
276 3ink1
277 3nd1
278 36d2
279 

3
pgkl

280 3Ik2
281 39-l
282 3rp2_1
283 3rp2_2
284 3c21
285 3tlnl
286 3ln.2
287 3wrpl
288 4£dll
289 4f111
290 6ndhl
291 4dh_2
292 4.bvl
293 4tgl_2
294 4tml
295 4tsi2
296 4tll
297 61t1l_2
298 4911l
299 Scpl
300 51dhl
301 Sldh2
302 5p21ll
303 6itel
304 61cn_2
305 6.cn_3
306 6on4
307 7&pl_l
308 7wg_1
309 .dh
310 8dh2
311 8tc1
312 8t1e_2
313 8Btebl
314 9o.t_1
315 0ciD_2

316 9pap_
317 9p p_2

CT0OCHRO P450 (1) 72-325. 390-457
CYTOCB6O6 E P450 (2) 1-71. 326-389
L6UCINg-B9INDIN PROTIN (1) 1-118 253-326
19UCN0-BNDIN0 PROTIN (2) 124-247. 332-344
LYSOZY Y (1) 1-73
1YsOZY7 (2) 74-164

L YOO VIRUS COAT PROTIN 1-268

PRALBUYIN 1-124

PBTB0ALAT DIOXYONASE (1) 1-111
pBBALAT9 DIOXYONAS1 (2) 112-226
PBTHALATE DIOEYO~NASR (3) 227-321

9CA PROT0IN 1-303
RUBICO 1) 1-168
RUB7CO (2) 19-437
RCORV DONUCLASS 1-212

SARCOPLA CA-BIND PROT. (1) 1-84
SARCOPL8 CA0-BIND PROT (2) 85-174
STAPhYWCOCCAL WCLFASE 1-161

sINDBS VIRUS CAPSID PROT (1) 1-66
8INDBI VIRUS CAPID PROT. (2) 67-151

CUZN suPROXID DI UTAS 1-151
8TRP. SUBTILISIN INSIBITOR 1-107

TOBACC NCROSIS VIRUS 1-184
TA1A-A .0LAR A 1-30
O7ASO 6uSrY STN VIRUS (1) 1-211

6O6ATO BUSHY STUNS VIRUS (2) 212-321
TOBACCO YOSAIC VIRUS 1-15

TBIORDOXIN 1-108

yAST BO 0INA E B (1) 1-50. 191-430
yEAST BXO0INAS B (2) 51-190 431-457
CYTOCBROE C551 1-82

ADBYLA6T 8 INA 9 8 1-192
eTOCBo7 B5 1-85
BCTERIOCHLOROPHYLL- A PROTIN 1-364

BA-IACTAAS 1-30 156-257
B6 A-LA9TA9AS 31-153
CBY 1-128
CBLOR9PBN. ACEYLTRANSFR. 1-213
CA6ODOLIN (1) 1-75
CA69ODULIN (2) 76-143

CONCANAVALIN A 1-237

CALCIUM-BINDING PARVALBUIIIN 1-108

DIHYDROFOLATR RDUCTASe 1-162

DOXYRIBONUCL~U~E I 1-259

ASPAAUINAS TYP II (1) 1-200

APA6rOINAs T 1YP II (2) 201-326
POLA (1) 1-192

NOLAS (2) 143-436

FRUCTOsE-16-SIRPOSPHATASE (1) 1-181

FRUCTOSE-16-BIsPEOSPHATASE (2) 182-316

RRSDOXIN 1-98

FLAVODOXIN 1 -138

CATABOLITE ACTIVATOR PROT. (1) 1-135

CATABOLIT ACTIVAOR PROT. (2) 134-200

oLUTABtIONE RRDUCTUs (1) 1-139

OLUUAHBIONe REDaCTAE (2) 140-272

OLUSATBIONE REDUCTABS (3) 345-461

BGJIAOLUTININ 1-320

BIV-1 PROTASe 1-99

CALCIID-SINDINO PROTEIN 1-75

ISOCITRATE DHBYDRO]ASE 6 1} 1-123, 318-414
ISOCITRAT DEHYDROAE (2) 32-157, 203-317

INTERLr)IIN 8 1-68

INTIRLUBIN 2 1-122
LAN. SUPEROXIDE DISYUTAS { 1) 1-94

YAN. SUPROXIDE DISmUTAsB (2) 95-203

PEOsPHOoLYCERATR KINASs (1) 1-192

PBOPBOGLYCRRATR KINUSe (2) 193-415

PBOSPHOQLYCERATE MUTASE 1-250

RAT MAST CELL PROT ASE II (1) 1-116

RAT YAST CELL P ROT EASE II (2) 11S-224

S=INS CARBOXYPEPTIDASE II 1-254

TBsROLYSIN (1) 1 -l5

THeRmOLYSIN (2) 152-316

TRP APORPRESSOR 1-101

r·EMAEOIN 1-106
Fig PROTIN 1-73

CYT. YLATS DERYDROrNASE (1) 1-151

CYS. IALATE DEBDRO~ENASE (2) 152-333

SOUTS BEN IOSAIC VIRoS COAT 1-222

TRIACYLGLYCERO L ACYHLBDROLASE 1-265

T IYLATS 81nqTSAse (1) 70-140

THYIYATEY 8nsAU E {2) 1-69, 141-316
TYROSYL-TRNA SYNTEETASR (1) 1-230

SYROSYL-TRNA SY19RETAS (2) 231-317

D-YLOSE ISOIIRASE 1-393

CARBOYPEPTIDASE A 1-307

LACSATZ DBYDROG NAS (1) 1-21, 165-331

LazCTATZ DrYDROG NAs (2) 22-164

C--RAS P21 PROTEIN 1-166

ACOITAS (1) 1-201

ACONITASE (2) 202-319

ACONITASE (3) 320-512

ACONITABr (4) 537-753
ALPA-1-ANTITRYPSIN 1-339

YWAT oeRM AGGLUTININ 1-171

ALCOBOL DSBDROENASE (1) 1-1746 319-374

ALCOBOL DrHYDRO~ENASE (2) 1 75-318

ArPARTATS CARBAMOYLTRANR. (1) 1-151

AePARTATE e ARBAMOTLTRANR. (2) 152-310

ASPARTAT CARBIOYL. (RrE.) 1-146

CATALAS 6 1) 74-318

CATALASE [2) 319-438

PAPAIN 61) 19-112, 208-212

PA~AIN (2) 1-18, 113-207

Table 1. List of domains used in this study. The PDB code, title, and residue boundaries of each domain are listed.
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Table 2
Relationship between minimum alignment length
and the number of significant similarities

Number of Comparisons

nDRMS < 0.6

2978

2511

2035

1548

1145

778

532

1926

nDRMS < 0.5

1391

1141

957

752

609

459

335

899

Table 2. Relationship between minimum alignment length and
the number of significant comparisons. The alignment length L
is reported as a fraction of the length of the smaller domain, ns.
Lmin refers to the minimum alignment length function described
in the text. The two columns present the number of comparisons
with a nDRMS(YL) score less than or equal to 0.5 or 0.6, given the
specified minimum alignment length.
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Minimum
Alignment
Length

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lmin
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Table 3

Multiple-center Single-center

Domain Closest DSR Structural Family
DSR relative 2bl

1 2gbp_l 0.00 2gbp_l 0.00 Periplasmic
2 idril 0.00 ldri_l 0.13 Periplasmic

3 labp_l 0.00 labp_l 0.23 Periplasmic

4 21bpl 0.00 21bp_l 0.28 Periplasmic
5 1dri_2 0.00 ldri_2 0.35 Periplasmic

6 2gbp_2 0.00 2gbp_2 0.40 Periplasmic

7 21bp_2 0.00 21bp_2 0.47 Periplasmic

8 3chy_l 0.00 3chy_l 0.48

9 labp_2 0.25 ldri_2 0.51 Periplasmic
10 lpfkl 0.25 ldri 1 0.37

11 5p21_1 0.31 ldri_l 0.31 Ras/GTP-binding

12 8atca _1 0.32 Idril 0.41 Rossmann fold

13 lsbtl 0.32 2gbp_1 0.32 Subtilisin

14 8adh 2 0.34 ldri_2 0.56 Rossmann fold

15 3icdl 0.35 21bp_l 0.44
16 Ipgd_1 0.35 3chy_l 0.41 Rossmann fold

17 3icd_2 0.37 2gbp_2 0.65

18 2pia_2 0.37 21bp_2 0.49

19 lmin 3 0.38 3chy_l 0.57

20 lgdlo_1 0.38 21bp_2 0.41 Rossmann fold
21 3eca_1 0.39 Idril1 0.45

22 8atca 2 0.39 2gbp_l 0.39 Rossmann fold
23 lula 1 0.39 Idril 0.44 Carboxypeptidase

24 3-ca_2 0.39 Idri_1 0.41

25 lns_ 2 0.40 Idril 0.44 TIM barrel

26 3fxn_1 0.40 21bp_2 0.47

27 pow_3 0.41 21bp_2 0.58

28 ldhrl 0.42 ldri_2 0.44

29 2aatl 0.42 2gbp_1 0.42

30 lwsyb_2 0.42 1dri_2 0.54

31 2reb _ 0.43 ldri_2 0.71

32 lglt_1 0.44 ldril 0.47

33 lac 1_l 0.44 21bp_2 0.49 Hydrolase

34 51dh_2 0.44 21bp_2 0.58 Rossmann fold

35 4tsl_1 0.45 2gbp_2 0.55 Rossmann fold
36 lmin_2 0.45 3chy_l 0.54

37 2-da_1 0.45 Idri_1 0.48

38 2ru _2 0.46 2gbp_l 0.46 TIM barrel

39 4xia 1 0.46 2gbp_l 0.46 TIM barrel

40 lfnr_2 0.46 21bp_2 0.53

41 1lap_2 0.46 2gbp_1 0.46 Carboxypeptidase

42 11apl 0.46 2gbp_l1 0.46 Carboxypeptidase
43 5cpa 1 0.46 2gbp 1 0.46 Carboxypeptidase

44 4mdh_1 0.47 3chy_l 0.55 Rossmann fold

45 lmin 1 0.47 2gbp_l 0.47

46 lhay 1 0.47 3chy 1 0.54

47 3adk_1 0.49 3chy_l 0.53 Adenylate kinase
48 letu 1 0.49 2gbp 1 0.49 RAS/GTP-binding

49 3enl 2 0.49 21bp_l 0.56 TIM barrel

50 3gra_2 0.49 3chy_l 0.66 Glutathione reductase

51 laid 1 0.50 3chy_l 0.57 TIM barrel

52 3ac2_1 0.50 2gbp_2 0.66 Hydrolase

53 lgky 1 0.50 2gbp_l 0.50 Adenylate kinase

54 3pg.m_ 0.50 21bp_2 0.67

55 lpow_l 0.51 3chy_1 0.56

56 lpow_2 0.51 ldri_1 0.53

57 2taa 1 0.51 21bp_2 0.61 TIM barrel
58 Inip 1 0.51 ldri_1 0.63

59 lpda_2 0.51 3chy_l 0.70

60 lppl_l 0.52 2gbp_1 0.52 Glutathione peroxidase

61 6acn 4 0.52 2gbp_1 0.52

62 lbtc 2 0.52 3chyl 0.60

63 lwsyb 1 0.52 3chyl 0.59

64 3pgk 1 0.52 ldri 1 0.79 Rossmann fold

65 ltim 1 0.52 2gbp_l 0.52 TIM barrel
66 2trx 1 0.53 ldri_1 0.63 Glutathione peroxidase

67 lpii 2 0.53 3chy_l 0.55 TIM barrel

68 2hhm 1 0.53 2gbp 1 0.53

69 3pgk_2 0.53 2gbp_1 0.53 Rossmann fold
70 lalk 1 0.54 2gbp_ 0.54

71 lad. 1 0.54 3chy_l 0.74 TIM barrel

72 lpiil 0.54 2gbp_1 0.54 TIM barrel

73 lpda_l 0.55 Idril 0.56
74 lpfk 2 0.55 21bp_2 0.72

75 lrhd_2 0.55 ldri 2 0.73

76 ltrb_2 0.56 3chy_1 0.60 Glutathione reductase
77 3dfr_l 0.56 21bp_2 0.74 Dih drofolate reductase

78 3fbp_2 0.57 ldri_l 0.58

79 lbtcl 0.57 3chy_1 0.65 TIM barrel

80 ldab 1 0.58 2gbp1 0.58 Glutathione peroxidase
81 2yhx 2 0.60 21bp_l 0.72 Actin
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rTable 3. The 2gbpl SST family. Data is presented from both the single-center

and multiple-center clustering schemes. The closest relative refers to the domain in

the multiple family center with the lowest DSR score to the target domain. For the

single-center method, all DSR values are with respect to 2gbpl. The final column

describes the fold family of the domain.
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Trable 4. The 40 SST families with the maximal coverage of the domain database.

'Number domains' refers to the number of domains possessing SSTs that belong to

a given family. A running total of distinct domain hits is kept in the 'Total number

domains' column. 'Total domains (50% Len.)' keeps track of the total number of

different domains with SSTs spanning greater than 50% of the positions in the domain.

'Fraction coverage' refers to the sum of the proportion of each domain that is contained

in a SST belonging to a given family. 'Total fraction coverage' is a running total of

the fractional coverage, excluding double counting. The final column is a description

of each family.
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Table 5

Alignment
Domain DSR Length DRMS RMS

"Fingers" (1) 3cla_1 1.07 57 3.10 8.29
subdomain [1]

"Palm" (1) 2gls_2 0.47 59 (67) 1.40 (1.58) 2.14 (2.22)

subdomain [2] (2) 2rus_1 0.58 59 (73) 1.72 (2.19) 2.43 (3.50)

(3) lbia_2 0.62 59 1.84 3.23

"Thumb" (1) lhmq_l 0.76 48 1.96 2.73

subdomain [3] (2) 2tmv_l 0.88 48 2.26 3.72

"Connection" (1) lrnh_l 0.48 51 (66) 1.29 (1.90) 2.05 (3.12)

subdomain [41 (2) latn_2 0.51 51 (64) 1.36 (1.74) 2.07 (2.72)

(3) 11ap_2 0.58 51 (62) 1.56 (1.92) 2.24 (2.98)

(4) latn_l 0.59 51 1.57 2.54

Table 5. SSTs identified in the polymerase domain of HIV reverse transcriptase.
For each of the four subdomains, the domains from the database with the lowest
DSR scores are listed along with the minimum alignment length, DRMS, and
RMS values. The comparison statistics for the standard alignment are presented
in parenthesis.
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Chapter 3

Protein Secondary Structure

Prediction Using

Nearest-Neighbor Methods

3.1 Abstract

We have studied the use of nearest-neighbor classifiers to predict the secondary struc-

ture of proteins. The nearest-neighbor rule states that a test instance is classified

according to the classifications of "nearby" training examples from a database of

known structures. In the context of secondary structure prediction, the test instances

are windows of n consecutive residues, and the label is the secondary structure type

(c-helix, /-strand, or coil) of the center position of the window. To define the neigh-

borhood of a test instance, we employed a novel similarity metric based on the local

structural environment scoring scheme of Bowie et al. (1991). In this manner, we

have attempted to exploit the underlying structural similarity between segments of

different proteins to aid in the prediction of secondary structure. Furthermore, in

addition to using neighborhoods of fixed radius, we explored a modification of the

standard nearest-neighbor algorithm that involved defining an "effective radius" for

each exemplar by measuring its performance on a training set. Using these ideas, we
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achieved a peak prediction accuracy of 68%.

Finally, we sought to improve the biological utility of secondary structure predic-

tion by identifying the subset of the predictions that are most likely to be correct.

Toward this end, we developed a nearest-neighbor estimator that produced not the

traditional "one-state" prediction (-helix, /3-strand, or coil) but rather a probability

distribution over the three states. It should be emphasized that this scheme estimates

true probability values and that the resulting numbers are not pseudo-probability

scores generated by simple normalization of the raw output of the predictor. Apply-

ing the mutual information statistic, we found that these probability triplets possess

58% more information than the one-state predictions. Furthermore, the probability

estimates allow one to assign an a priori confidence level to the prediction at each

residue. Using this approach, we found that the top 28% of the predictions were 86%

accurate and the top 43% of the predictions were 81% accurate. These results indi-

cate that, notwithstanding the limitations on overall accuracy of secondary structure

prediction, a substantial proportion of a protein can be predicted with considerable

accuracy.
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3.2 Introduction

Predicting the secondary structure of proteins is an important intermediate step in the

understanding of the tertiary structure of proteins. Secondary structure information

can be incorporated into simulations that attempt to fold proteins. In addition, this

information can be used to enhance the sensitivity of programs designed to identify

proteins that are homologous to a query sequence.

In the field of artificial intelligence (AI), secondary structure prediction would

be considered a typical classification problem: one attempts to predict the class

(secondary structure) of a given instance based on its features (sequence). Many

traditional AI classification methods have been used to predict secondary structure,

including rule-based methods (Chou & Fasman, 1974), statistical methods (Gibrat et

al., 1987; Stolarz et al., 1992), neural networks (Qian & Sejnowski, 1988; Holley &

Karplus, 1989; Kneller et al., 1990), pattern-matching (Cohen et al., 1983; Rooman

&: Wodak, 1988), etc. Interestingly, all of the above achieved approximately the same

level of proficiency: between 60 - 65% accuracy. It is believed that this plateau is

the result of the inability of the current techniques to account for global interactions

between segments of the protein separated by many residues.

Recently, there has been renewed interest in the AI community in methods that use

a database of known examples to classify the test instance. These nearest-neighbor

systems have achieved excellent results in a variety of problem domains (Aha et

al., 1991). The basic idea of the nearest-neighbor approach is to use the labels of

examples closely related to the test instance to determine the label of the test instance.

Recently, several groups have successfully applied this methodology to the problem

of protein secondary structure prediction (Nishikawa & Ooi, 1986; Levin et al., 1986;

Z]hang et al., 1992; Salzberg & Cost, 1992). Indeed, Zhang et al. (1992) found that

their nearest-neighbor predictor (termed MBR) outperformed a neural network and

a second-order Bayesian statistical method.

These recent studies on nearest-neighbor secondary structure prediction systems

were somewhat limited by employing a narrow definition of "nearness" or "distance"
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based on sequence similarity. We sought to broaden this work in three ways - two of

which are specific to nearest-neighbor systems while the third is applicable to almost

any secondary structure predictor:

(1) We developed a hybrid scoring system that combined a sequence similarity

matrix with the local structural environment scoring method of Bowie et al. (1991).

Bowie and Eisenberg have demonstrated that by constructing a local environment pro-

file based on the three-dimensional structure of a protein, one can identity distantly-

related protein sequences likely to adopt the same structural fold as the starting

protein. We reasoned that this same scoring system could be used to identify struc-

turally similar segments in different proteins that possess low sequence similarity,

thereby enhancing the sensitivity of a nearest-neighbor secondary structure predic-

tor.

(2) We explored. a generalization of the nearest-neighbor rule that involved estab-

lishing an "effective radius" for each exemplar. The radius of an exemplar determines

whether or not it is involved in the classification of an instance. Based on its perfor-

mance on a training set, an exemplar's radius can be shrunk or expanded.

(3) Finally, we explored the notion that, although it may not be possible to predict

the entire secondary structure of a protein with high accuracy, it may be possible to

identify a subset of the predictions (i.e., those residues) that are the most accurate.

Toward this end, we developed a method to calculate a predicted probability distri-

bution Pi over the three possible states at residue i. This probability distribution

represents a true probability estimate and is not a pseudo-probability score gener-

ated in an ad hoc fashion, e.g., by simply normalizing the raw outputs of a neural

network. As we show, the probability triplets encode 58% more information than the

simple one-state prediction and facilitate the identification of regions of high or low

predictive confidence.

Using a neural network to combine the predictions from six different nearest-

neighbor predictors that employed various combinations of two scoring sytems and

three window sizes, we achieved a final prediction accuracy of 68%. This score is

significantly higher than a perceptron neural network trained and tested over the
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same data set (63.4%). More importantly, by examining the estimated probability

triplets, it was possible to distinguish the more reliable predictions. Interestingly, the

28% of the predictions assigned the highest level of confidence were 86% accurate,

and the 43% of the predictions with the highest level of confidence were 81% accurate.

These results indicate that a substantial portion of a protein sequence can be predicted

with considerable accuracy.
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3.3 Materials and Methods

(a) Database

A database of 110 protein chains was selected from the Brookhaven Protein Data

Bank. This list closely resembles the database of proteins assembled by Zhang et

al. (1]992). The secondary structure of these proteins was assigned using the pro-

gram DSSP written by Kabsch and Sander (1983). Residues within 310-helices were

classified as coil. The sequences were less than 30% identical with each other with

the exception of the pairs lcse[i] and 2ci2[i] (35% identical) and 2abx[a] and lnxb

(43% identical). Percent sequence identity was determined by a standard dynamic

programming algorithm (Needleman-Wunsch) using the Dayhoff PAM250 scoring ma-

trix. The letter in the square brackets refers to the selected subunit. Below is a list of

the protein chains used in this study (proteins in our database considered homologous

to a given protein are listed in the curly braces):

(1) 155c, (2) labp {2gbp}, (3) lacx, (4) lcc5, (5) crn, (6) lcse[i] {2ci2[i]}, (7)

lctf, (8) lcy3 {2cdv}, (9) lecd {llhl, lmbd, 2hhb[b]}, (10) letu, (11) lfcl[a] {2fb4[h],

lmcp[l]}, (12) lfc(2[c], (13) lfxb {4fdl}, (14) lgcn, (15) lgcr, (16) lgdl[o], (17) lgpl[a],

(18) hip, (19) lhmq[a], (20) lilb, (21) llhl {lecd, lmbd, 2hhb[b]}, (22) lzl, (23)

lmbd {lecd, llhl, 2hhb[b]}, (24) lmcp[l] {2fb4[h], lfcl[a]}, (25) lmlt[a], (26) lnxb

{2abx[a]}, (27) lpaz {lpcy}, (28) lpcy {lpaz}, (29) lpfk[a], (30) lphh, (31) lpp2[1],

(32) lppt, (33) lrhd, (34) lrn3, (35) lrnt, (36) lsbt, (37) lsgt {3rp2[a]}, (38) lsn3,

(39) tgs[i] {2ovo}, (40) tim[a], (41) lubq, (42) 256b[a], (43) 2aat, (44) 2abx[a]

{lnxb}, (45) 2alp, (46) 2apr, (47) 2aza[b], (48) 2cab, (49) 2cro, (50) 2ccy[a], (51) 2cdv

{:lcy3}, (52) 2ci2[i] {lcse[i]}, (53) 2cpp, (54) 2cts, (55) 2cyp, (56) 2fb4[h] {lfcl[a],

lincp[l]}, (57) 2gbp {labp}, (58) 2gls[a], (59) 2gn5, (60) 2hhb[b] {lecd, llhl, lmbd},

(61) 2ins[a], (62) 2ins[d], (63) 21bp, (64) 21zm, (65) 2ovo {ltgs[i]}, (66) 2pab[a], (67)

2plv[a], (68) 2sns, (69) 2sod[b], (70) 2ssi, (71) 2stv, (72) 2taa, (73) 2tbv[c] {4sbv[c]},

(74) 351c, (75) 3adk, (76) 3b5c, (77) 3cla, (78) 3cln {3cpv, 3icb}, (79) 3cna, (80) 3cpv

{3cln, 3icb}, (81) 3fxc, (82) 3fxn, (83) 3gap[a], (84) 3grs, (85) 3icb {3cln, 3cpv}, (86)

3icd, (87) 3pgk, (88) 3pgm, (89) 3rp2[a] {lsgt}, (90) 3rxn, (91) 3tln, (92) 3wrp, (93)
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3xia, (94) 4cpa[i], (95) 4dfr[b], (96) 4fdl {lfxb}, (97) 4mdh[a] {51dh}, (98) 4pti, (99)

z4sbv[c] {2tbv[c]}, (100) 4tsi[a], (101) 5cpa, (102) 51dh {4mdh[a]}, (103) 6acn, (104)

7api[a], (105) 7wga[b], (106) 8adh, (107) 8atc[a], (108) 8atc[b], (109) 8cat[a], (110)

9pap.

There were (3148 helix positions (28.8%), 4123 beta-sheet positions (19.3%), and

]1,078 coil positions (51.9%) in the database.

(b) Training and testing procedure

We used a jackknife procedure to train and test the nearest-neighbor predictor (Kneller

et al., 1990). Each protein in the database was successively chosen to be the test pro-

tein. The training set for a given test protein was constructed by removing the test

protein and any homologous proteins from the database. In this manner, there was no

overlap between the training data and the test data. Proteins considered homologous

to a given protein based on close structural similarity are listed in braces (see above).

Two standard performance measures were used to assess prediction accuracy. Q3

is the percentage of correct predictions,

Q3 - qa + q + qcoil 100% (3.1)
N

where N is the total number of residues predicted, and q is the number of residues

of secondary structure type s that are predicted correctly. The Matthews' correlation

coefficient is a more stringent measure of predictive accuracy,

= (Ps .n.) -(s o3)
/ ( ns + u) (n + os) (p + (U) ( +(3.2)

where p, is the number of positive cases correctly predicted, n is the number of

negative cases correctly rejected, o, is the number of false positives, and u is the

number of false negatives (Schulz & Schirmer, 1979).
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(c) Nearest-neighbor method

The standard classification problem involves assigning a label from a set L to any

observation X. The k nearest-neighbor rule classifies Xi based on the known labels of

the k nearest neighbors (exemplars) of Xi. In this work, the instances were windows

of n consecutive amino acid residues (henceforth, n-segments) from the test protein,

and the exemplars were n-segments of local structural environments and sequence

d.erived from the training set proteins (see Fig. 1A). The n-segments were generated

by collecting all overlapping windows of n residues from the appropriate data set.

The labels were the secondary structure type (-helix, -sheet, or coil) of the center

residue in the n-segment.

A given test instance was compared against all the exemplars using a scoring

system, and the k highest scoring exemplars (i.e., nearest neighbors) were noted. The

raw output Yi at position i is a triplet (hi, ei, ci) in which hi, ei, and ci respectively

represent the number of nearest neighbors of structure type helix, sheet, and coil.

The single state prediction at a residue is the label associated with a plurality of the

k high-scoring exemplars (see Figs. B and 1C). By examining the results from the

training set, we established the rule that ties were broken in favor of helix followed

by sheet.

(d) Scoring system (distance metric)

Nearest-neighbor methods depend on a notion of "distance" between the test instances

and the training exemplars. For this purpose, we adapted the local environment scor-

ing method of Bowie and Eisenberg. Each protein in the training set was converted

into a 3D structure profile by assigning each residue in the structure to an environ-

ment class. The local structural environment of a given residue was determined by

three features: (i) the secondary structure; (ii) the solvent accessibility; (iii) the po-

larity. The three structural features were used in two different ways: either they were

treated separately to construct three independent tables, or they were combined to

create a single scoring table.
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Secondary structure, as mentioned above, was assigned by the program DSSP. The

fractional solvent accessibility of a given position was determined using the program

DSSP to calculate the total solvent-exposed surface area of the residue in the protein

and then dividing this number by the solvent-exposed surface area of the residue in a

G(ly-X-Gly tripeptide. The polarity of the environment was calculated by determining

the fraction of the total surface area of a residue in contact with a polar atom,

including the putative oxygen atoms of the surrounding solvent.

Environment classes were defined by systems of inequalities involving the solvent

accessibility (denoted a) and polarity value (denoted p), with boundaries chosen to

ensure approximately equally populated sets. Three different partitions of the (a, p)

values were used:

(1) Al = {0.0 < a < 0.12}, A2 = {0.12 < a < 0.41}, A3 = {0.41 < a < 1.0); Pi =

{0.0 - p < 0.47}, : = {0.47 < p < 0.63}, P3 = {0.63 < p < 1.0}.

(2) S1 = {0.0 < a < 0.12,0.0 < p < 0.40},S2 = {0.0 < a < 0.12, 0.40 < p <

1.0}, S3 = {0.12 < a < 0.41,0.0 < p < 0.55},S4 = {0.12 < a < 0.41, 0.55 < p <

1.0}, S5= {0.41 < a < 1.0, 0.0 < p < 1.0}.

(3) S1 = {0.0 < a < 0.12,0.0 < p < 0.34},S2 = {0.0 < a < 0.12, 0.34 < p <

0.45},S3 = {0.0 < a < 0.12,0.45 < p < 1.0O,S4 = {0.12 < a < 0.41,0.0 < p <

0.49}, S5 = {0.12 < a < 0.41, 0.49 < p < 0.60}, S6 = {0.12 < a < 0.41, 0.60 < p <

1.0},S7 = {0.41 < a < 1.0,0.0 < p < 0.67},S8 = {0.41 < a < 1.0,0.67 < p <

0.78}, S9 = {0.41 < a < 1.0, 0.78 < p < 1.0}.

The score for matching a residue Ri with a local structural environment Ej was

given by the information statistic:

SCORE(Ri, Ej) = log10 R ) (3.3)

where P(Ri Ej) is the probability of finding residue i in environment j, and P(Ri) is

the probability of finding residue i in any environment. The scores were determined

by first removing the test protein from the data set and then collecting the necessary

statistics from the remaining proteins. Thus, there were 110 scoring tables - one for
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each test protein.

(e) Estimating the probability of each secondary structure

type

It is important to know not only the one-state prediction of the most likely secondary

structure type at a given position, but also an estimate of the probability associated

with each type (i.e., the probability that position i belongs to an -helix, -sheet,

or coil). To estimate the probability density for each prediction generated by our k

nearest-neighbor predictor, we used, in turn, a k nearest-neighbor algorithm (Duda

& Hart, 1973). Specifically, the output from any secondary structure predictor at

position i is a three-tuple vector (Y,, Y3, Y,) - indicating the number of neighbors

with label helix, beta-sheet, or coil. This triplet for the test instance was compared

to the triplets for all instances in the training set (described in section (b)) using

a Euclidean metric (i.e., V/(Ah)2 + (Ae)2 + (c) 2 where Ah, Ae, and Ac are the

differences between the helix, sheet, and coil components of the raw output vectors),

and the k nearest neighbors were determined. The labels of the nearest neighbors

were compiled and the proportion of the labels, (hi, i, k), represented the estimate

of the probability density at position i. For this purpose, we used a value of k = 50.

Thus, this procedure measured how frequently a helix position, a beta-sheet position,

and a coil position gave an output that is similar to (Ye, Yp, Yc). Note that this

method produced a true probability estimate, rather than merely a normalization of

(f) Combining the ouputs from different predictors with a

neural net

As described above in part (e), the outputs of the different nearest-neighbor pre-

dictors were converted into estimated probability scores using a k nearest-neighbor

algorithm. These probability values were the input to a neural net with no hidden

layers (perceptron). The perceptron had a window size of 9. Supposing that there
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were 3 different predictions and given that each prediction is a 3-tuple vector and that

the window size is 9, the perceptron would need to contain {[(3 3) + 1] 9) = 90 input

units. The one refers to the spacer unit. The database was divided into 4 groups;

three groups were used to train the neural net and the fourth group was the test set.

(g) Analysis of incorrect predictions

First, we determined percent accuracy for positions in each type of secondary struc-

ture. We then subdivided each secondary structure element into the ends and the

middle positions and determined the performance on each. The first and last residues

of each helix or ,3-strand were classified as end residues.

The correlation coefficient for correct (incorrect) predictions separated by d posi-

tions was calculated using the standard formula (Mendenhall et al., 1990):

_ i (Yi - 9)(Yi+d - (3.4)
Ei (Yi - )2

The data yi was either 1 or 0 depending on whether the prediction was correct, d

represents the separation distance, and is the mean prediction accuracy (0.68).

(h) Calculating the effective radius of each exemplar

In order to increase the influence of "reliable" exemplars relative to "unreliable"

exemplars, we explored an approach that shifted the emphasis from the neighborhood

of the test instances to the neighborhood of the training exemplars. The basic idea

is to establish an effective radius for each exemplar. For a given test instance, an

exemplar is counted as a neighbor of the test instance (i.e., is "active") if the test

instance falls within the effective neighborhood of the exemplar. In the AI literature,

this protocol has been termed the Alien Identification Rule (Dasarthy, 1991).

In practice, each exemplar was matched against a training set of instances. The

radius r was specified in terms of the number of nearest training instances to the exem-

plar. For each exemplar Wj, the radius determined a threshold score, THRESH(Wj, r).

During the classification of a test instance Xi, the set of "active" exemplars consisted
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of those exemplars for which the matching score was greater than the threshold score,

5SCORE(Xi, Wj) > THRESH(Wj, r). The training set for a given exemplar con-

sisted of all instances in the database minus the test instance itself and any instances

derived from proteins homologous to the protein from which the exemplar originated.

(i) Information content of output

From an information theory perspective, the secondary structure of a protein can be

viewed as a string composed of 3 letters: h, e, and c. We calculated the average

amount of information per position in a typical secondary structure string using the

formula for information entropy:

H(P)= -- Pi ' log2Pi (3.5)
i

where Pi represents the probability that a given position in the string is of type i. For

protein secondary structure, H(P) = 1.47 bits/position.

To measure the amount of information provided by both the standard one-state

output and the probability triplets about the true secondary structure, we calculated

the mutual information statistic (Stolarz et al., 1992):

I(S; D) = E Pr(Si n Dj) log2 Pr(S (3.6)
2,3j~ Pr(Si) ·Pr(Dj)

which is a standard measure of the amount of information provided by a prediction D

of a state S. For the standard one-state output, Pr(Dj) is the probability (fraction) of

predictions of type Dj {h, e, c}, Pr(Si) is the probability (fraction) of residues in the

database that are in structure class Si E {h, e, c}, and Pr(Si n Dj) is the probability

(fraction) of events in which a prediction of type Dj is made at a position of type Si.

For the probability output encoding, each output triplet Pk was placed into a bin Bj

that encompassed a range of values that included Pk. Then in the equation above,

Pr(Dj) is the probability that a prediction falls into bin Bj, and Pr(Si n Dj) is the

probability that a prediction made at a position of type Si falls into bin Bj. There
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were 55 bins, and each bin spanned an interval of 10 percentage points for the helix

and beta-strand probability values (e.g., B1 = PkO.O _ Pa < 0.1, 0.0 _ Pp < 0.1)).

In general, I(S; D) I(S; S) = H(S). That is, the mutual information of D

about S is bounded above by the information of S about itself, with equality if and

only if D is a perfect predictor.
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3.4 Results

(a) Scoring systems

The standard AI classification problem consists of assigning a class or label to a

given test instance. The k nearest-neighbor rule classifies the test instance Xi based

upon the known labels of the k nearest neighbors of Xi chosen from a set of known

exemplars. A key decision in any nearest-neighbor prediction scheme is the choice

of the distance metric (scoring table) for relating the instances (the sample points to

be classified) to the exemplars (the sample points whose labels are known). In the

few previous studies employing nearest-neighbor classifiers for secondary structure

prediction, the distance metric was based on sequence similarity (Levin et al., 1986;

Zhang et al., 1992; Salzberg & Cost, 1992). In this paper, we sought to take advantage

of the additional structural information inherent in the local structural environment

scoring method of Bowie et al. (1991).

The local structural environment method involved assigning every residue of a

protein with known three-dimensional structure to an "environment class" based on

the local structural features of that position. In this manner, a 3D structure profile

(environment sequence) was created that was converted into a set of training exem-

plars -- n-segments of environment classes - by collecting all overlapping windows of n

residues (see Fig. 1). Similarly, n-segments of sequence generated from the test pro-

tein became the test instances. Finally, a scoring table was set up that assigns a score

for the alignment of each local environment class with each amino acid type. The

score was simply the information value for pairing a residue Ri with an environment

Ej (see Materials and Methods).

As originally described by Bowie and Eisenberg, the local structural environment

of each position was determined by three local features: (i) secondary structure;

(ii) solvent accessibility; (iii) fraction of contacts with polar atoms (polarity). In

order to discretize the latter two features, the range of possible values was divided

into three equally-sized categories. We wished to assess the relative importance of

each structural feature in the classification process. Thus, instead of combining the
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different features into one table, we initially chose to construct three separate tables

and then successively to add their contributions (Table 1, rows 1 - 3). Using a single

table based on secondary structure alone resulted in a prediction accuracy of 59.2%.

Adding the solvent accessibility table improved performance to 64.2%, and using all

three tables produced a prediction accuracy of 65.1%. These results confirmed the

importance of all three structural features. It should be noted that altering the exact

ratio of the contributions of the three tables did not significantly affect the prediction

(data not shown). Consequently, a 1:1:1 ratio was used.

We next wanted to know whether creating more specialized environment classes

would be beneficial. We, therefore, combined the 3 local features into one table. Both

a 15 state table (3 secondary structure types x 5 accessibility/polarity classes) and

a 27 state table (3 secondary structure types x 9 accessibility/polarity classes) were

tried. The performances of the single tables (65.1% and 65.6%, respectively) did not

differ significantly from the performance of the combination of the three tables (see

Table 1, rows 3, 6 and 7). In all cases, we were careful to construct the scoring table

from a training set which consisted of all proteins in the database except for the test

protein.

Finally, we wished to create a hybrid scoring system that combined the local en-

vironment scoring system with a scoring matrix based on sequence similarity. We

selected for study the Dayhoff PAM250 matrix and a mutation matrix (Benner ma-

trix) recently developed by Gonnet et al. (1992). Although neither matrix predicted

well alone, 60.4% and 61.7% respectively (Table 1, rows 4 and 5), both slightly en-

hanced the performance of the local environment scoring tables by about 1% (Table

1, rows 8 and 9). In this hybrid system, the contributions of the two different scoring

methods were approximately 1:1. The best scoring system, "Second/Access/Polar(15)

+ Benner", produced a prediction accuracy of 66.8% which is slightly higher than the

predictive capability of a neural net (63.4%) without any hidden layers (perceptron)

or the MBR predictor (64.1%), the nearest-neighbor prediction scheme developed by

Zhang et al. (1992).
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(b) Number of nearest neighbors and window size

Another important parameter in any nearest-neighbor predictor is the number of

nearest neighbors k (i.e., size of the neighborhood) used to classify the test instance.

Previous studies on nearest-neighbor classifiers of secondary structure employed val-

ues of k between 1 and 25 (Zhang et al., 1992; Salzberg & Cost, 1992). Using a fixed

window size of 13 residues and the "Second/Access/Polar(15) + Benner" scoring sys-

tem, we tested a range of values for k (see Table 2). As can be observed, the best

classification results were achieved with k between 50 and 200. Thus, as much as 1%

of the database of approximately 20,000 exemplars were involved in the classification

of each test instance.

We also tested the effect of window size on prediction accuracy. The simple-

minded approach of capturing global interactions by enlarging the window size has

not worked well for other classification methods. For example, Stolarz et al. (1992)

found that a perceptron performed better with a window of 13 residues (63.5%) than

a window of 25 residues (61.7%). The nearest-neighbor system operated best with

n = 1.9, but achieved good results with window sizes as large as n = 25 or n 41

(see Table 3). It is possible that the decline in accuracy with very large windows can

be attributed to the failure to allow gaps or insertions during the alignment of the

exemplars with the test instance.

(c) Combining several predictions with a neural network

We noticed that different scoring systems and different window sizes in the nearest-

neighbor classifier produced significantly different predictions. We reasoned that com-

bining information from these different predictions could improve performance. In-

deed, Zhang et al. (1992) have demonstrated that using a neural network to combine

the outputs of several different classification methods resulted in a classification ac-

curacy superior to that of the individual predictions. Employing two scoring systems

and three window sizes, we collected six different outputs. These outputs were con-

verted into estimated probability values with a k nearest-neighbor algorithm described
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below (see section (f) or Materials and Methods). A standard testing and training

procedure was used with a neural network with no hidden layers (perceptron) pos-

sessing a window size of 9. We first merged the outputs from the 3 window sizes for

each scoring system and then the resulting two predictions were combined to produce

the final prediction (see Table 4).

The overall prediction accuracy was 68.0%. The correlation coefficients for the

three types of secondary structure were C, = 0.52, Cp = 0.41, and Ccoil = 0.44. The

variation in prediction accuracy between proteins was quite large ranging from 100.0%

(lppt) to 44.7% (2pab). A full list of the prediction accuracy for all 110 proteins is

provided in Table 5. Part of this variability could be attributed to differences in the

content of 3-sheet in the proteins. Indeed, we found that all ac-helical proteins (70.9%)

were better predicted than al// proteins (67.9%) or all -sheet (65.6%) proteins.

Table 6 compares the reported accuracy for a variety of prediction schemes. Be-

cause different authors employ somewhat different databases and training/testing

protocols, direct comparison with previously published work is problematic. We

did, however, directly test the memory-based reasoning (MBR) method of Zhang

et al. (1992) and a perceptron neural network on our database (see Table 1): our

nearest-neighbor method performed significantly better in this direct comparison (at

the 0.99 confidence level, see equation (6) of Zhang et al., 1992), yielding 68% accu-

racy as against 64.1% and 63.4% for the other methods. We also note that neural

networks trained and tested by other investigators resulted in prediction accuracies

similar to our perceptron data (Qian & Sejnowski, 64.3%; Holley & Karplus, 63.2%;

Kneller et al., 65%, Zhang et al., 63.1%), suggesting that differences in the databases

did not have a dramatic effect on performance.

(d) An analysis of incorrect predictions

We next analyzed the location and distribution of the prediction errors. As shown

in Table 7, we decomposed prediction accuracy into secondary structure type and

relative location in the secondary structure element. Table 7, part A, demonstrates

that -strand positions were predicted much more poorly than the helix or coil posi-

110



tions: only 41.7% of all 3-strand residues were predicted correctly. Furthermore, we

found that the ends of the sheets and helices were more susceptible to errors than the

middle positions. Indeed, as shown in Table 7, part B, the prediction accuracy at the

ends of helices was 36.8%, whereas the prediction accuracy at the central residues of

helices was 68.6%. (N.B. Some of these errors may be due to ambiguity in defining

the precise boundaries of secondary structure elements).

Finally, we wished to address the question of whether the errors were uniformly

distributed or occurred in clusters. One simple indicator is provided by measuring the

length of an average run of incorrect predictions. If errors were uniformly distributed

(with 68% overall accuracy), one would expect that correct predictions would occur

with an average run length of 3.09 residues and incorrect predictions would occur with

an average run length of 1.47 residues. In fact, our nearest-neighbor method produced

runs of correct and incorrect predictions of 6.77 and 3.35 residues, respectively. This

indicates a non-random clustering of errors. This point is illustrated in more detail

in Figure 2, which shows the correlation between the correctness (incorrectness) of

the predictions at positions i and i + d, for various separation distances d. This

autocorrelation is over 0.50 at a distance of 1 and is still substantial even at a distance

of 5. This clustering of errors may explain why our method and those of others (Zhang

et al., 1992) sometimes miss entire secondary structure elements.

(le) Calculating the radius of each exemplar

Because the exemplars appeared to vary in reliability, we decided to study a variation

of the k nearest-neighbor rule, termed the Alien Identification Rule (Dasarthy, 1991),

that focuses on the neighborhood around each exemplar rather than the neighborhood

around each instance. The standard protocol for nearest-neighbor prediction is an

instance-based approach: an exemplar Wj participates in the classification of an

instance Xi if it is one of the k nearest neighbors to Xi. Alternatively, one can

use an exemplar-based approach: one defines a "sphere of influence" with a radius

r for each exemplar Wj, and declares that a given exemplar Wj is "active" in the

classification of instance Xi if Xi is located within the radius r of Wj. The potential
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advantage of this approach is that "unreliable" exemplars (defined by some criteria)

can be given a small radius, while reliable examplars can be assigned a larger radius.

The approach is similar in certain respects to that adopted by Levin et al. (1986) in

which a training exemplar participated in the classification of a test instance if the

two sequence segments contained more than a prespecified number of identities.

Using this approach, each test instance was compared against the database of

exemplars as was usually done. Then, any exemplars with a matching score that

was below a certain cutoff, specific to each exemplar, were removed. The remaining

exemplars were used to classify the test instance. For each exemplar, the cutoff

score was determined by comparing the exemplar against a set of training instances.

The highest-scoring r training instances specified the cutoff score, THRESH(Wj, r),

above which the top r instances scored. Thus, the test instance Xi fell within the

"sphere of influence" of Wj if the matching score, SCORE(Xi, Wj), was greater

than or equal to THRESH(Wj, r). With a value of r = 50, this approach achieved

a level of performance (66.7%; Table 8, row 1) comparable to that of the standard

instance-based method (66.8%; Table 8, row 8).

One advantage of the exemplar-based system is that it is possible to compile

statistics measuring the performance of each exemplar at a given radius - allowing

one to identify good and bad exemplars. Figure 3 presents a picture of the overall

predictive performance of the exemplars when r = 50. Although the majority of

the exemplars (61%) had a predictive accuracy between 50% and 80%, there were a

considerable number that fell far above or below this region. Further attention was

devoted to these outlying exemplars.

We attempted to improve the predictions by decreasing the radius of the most

unreliable exemplars to 0 and expanding the radius of the most reliable exemplars.

This strategy has improved the performance of nearest-neighbor classifiers in several

cases (Aha et al., 1991). We began by removing the poorest-performing 10%, 20%, or

30% of the exemplars. In order to avoid the inclusion of test data into the performance

statistics, the statistics for each exemplar were generated from a training set (see

Materials and Methods). As can be seen in Table 8, elimination of the unreliable
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exemplars resulted in almost no improvement in prediction. We then attempted to

couple the pruning process with the expansion of good exemplars by removing the

worst X% of the exemplars and then expanding the radius of the top X% of the

exemplars from 50 to 100 where X = 10, 20, and 30 (rows 5, 6, and 7, Table 8). A

slight but noticeable gain (0.6%) in performance was observed.

(f) Estimating the probabilities of each secondary structure

type

Traditionally, the final output of a secondary structure predictor is a "one-state"

prediction of the most likely secondary structure type at each position. We reasoned

that it might be more informative to predict a probability distribution Pi over the

three possible states at each residue i.

A variety of methods exist for estimating probability distributions including Parzen

Window techniques, k nearest-neighbor algorithms, and kernel estimators (Duda &

Hart, 1973). We selected for study the k nearest-neighbor algorithm because of its

simplicity and robustness. The basic idea is as follows. The raw output of our nearest-

neighbor secondary structure predictor was a list of triplets Yi = (hi, ei, ci), where hi,

e,:, and ci are the number of nearby exemplars that were in the helix, strand, or coil

state, respectively, for position i. In order to obtain instead a probability distribution

Pi = P(Yi), we identified the training examples which yielded an output vector near

to Yi and defined Pi, based on the empirical probability distribution observed for

these nearby training examples (see Materials and Methods). Thus, we measured the

proportion of helix positions, beta-sheet positions, and coil positions that had an out-

put similar to Yi. In this application, we defined distance between output vectors Yi

by the standard Euclidean distance metric, and we used a value of k = 50. It should

be noted that this probability density estimation method estimates true probability

values and not ad hoc pseudo-probability scores generated by normalization of the

raw output Yi.

It was important to assess the accuracy of the predicted probability distributions.
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'To this end, we grouped probability values into bins spanning an interval of 10 per-

centage points and measured the level of accuracy of the predictions associated with

each interval. Parts A and B of Table 9 show the relationship between the predicted

accuracy and the actual accuracy. The results indicate that the predicted probability

does not deviate substantially from the actual.

The output of estimated probability triplets provides a way to discriminate be-

tween positions of high predictive confidence and positions of low confidence. Indeed,

looking at Table 9 (part A), one observes that the predictions with predicted accu-

racy greater than 80% represented 28.4% of all predictions and were 85.9% accurate,

while those with predicted accuracy greater than 70% represented 43.3% of all pre-

dictions and were 81.3% accurate. As might be expected from the large number of

coil positions in the database, the coil predictions tended to have higher probability

values than the beta-sheet or helix predictions. Indeed, Table 10 shows that 34.3% of

all coil predictions had a probability value greater than 0.8 while only 24.4% of helix

predictions and 11.6% of beta-sheet predictions achieved a similar level of confidence.

The primary motivation for converting the output of the predictor into probability

triplets was to increase the information content of the predictions. We compared the

information content of the two different output descriptions (one-state vs. probability

distribution) using the mutual information statistic. From an information theory

perspective, the secondary structure of a protein can be viewed as a string composed

from a three-letter alphabet (h, e, and c). We used the formula for information

entropy to calculate the average amount of information per position in a typical

protein secondary structure:

H(P) - pi log2Pi (3.5)
i

where Pi represents the probability of each type of secondary structure. We found

that protein secondary structure contains 1.47 bits/position of information (a binary

number contains one bit of information per position). We then determined the infor-

mation provided by the predictions relative to the actual secondary structure using
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the following formula for mutual information:

Pr(Si C Dj)I(s; D) = E pr(si n Dj) Plog( p (S) P Dj) (3.6)

where Pr(Dj) is the probability of a prediction of type Dj, Pr(Si) is the probability

of a residue in structure class Si, and Pr(Si n Dj) is the probability of events in

which a prediction of type Dj is made at a position of type Si. We found that the

output consisting of the estimated probability triplets possessed 0.41 bits/position

of information whereas the traditional one-state output contained 0.28 bits/position.

Thus, the estimated probability output contained 58% more information than the

one-state output. Nonetheless, even the probability triplets captured less than (01 )

or 28% of the total amount of information present in the secondary structure.
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3.5 Discussion

We investigated the application of a nearest-neighbor classification system to the

problem of secondary structure prediction. Our work introduced two innovations to

this approach. First, we implemented a hybrid scoring system that combined the

Bowie and Eisenberg local environment scoring system with a sequence similarity

matrix (Benner matrix). This scoring table was designed to detect subtle structural

similarities between segments of different proteins. Indeed, it is encouraging that this

method performs better than any previous single prediction method. In addition,

when six different predictions were combined with a neural network, a prediction

accuracy of 68% was observed. We experimented with other scoring tables including

those based on other structural features such as hydrophobic moment, size, and local

conformation. None resulted in any improvement. We also attempted to merge

our scoring system with the value-difference metric employed by the MBR predictor.

Again, there was no increase in predictive accuracy (data not shown).

Secondly, we studied the concept of establishing the effective radius of each ex-

emplar. The radius of the exemplar was set by determining a threshold score,

THRESH(Wj,r), for each exemplar. Using a radius of 50, this exemplar-based

approach performed comparably to the standard instance-based scheme. Pruning un-

reliable exemplars by setting their radius to be 0 and expanding the radius of reliable

exemplars from 50 to 100 using performance statistics generated from a training set

resulted in a 0.6% improvement in prediction. Although this methodology produced

only a modest improvement in prediction accuracy, it may be the approach of choice

in the future because of its greater flexibility. Different types of exemplars could be

accommodated within the same predictor. For example, two exemplars could possess

different window sizes and use different scoring systems and yet be used to classify the

same test instance. Unlike the standard instance-based method, the scores between

a given test instance and different exemplars are not directly compared.

The merits of the nearest-neighbor approach to secondary structure prediction

include simplicity, flexibility, and a straightforward interpretation. When applied
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-to the protein secondary structure problem, the nearest-neighbor rule captures the

biologically appealing idea of using structural homology between protein segments to

aid in prediction. It is possible that the slight improvement in overall performance

observed with our method can be attributed to the ability of the Bowie and Eisenberg

scoring system to detect subtle structural relationships between parts of different

proteins which possess little sequence similarity. One possible area of research is

enhancing the sensitivity of methods designed to detect this underlying structural

homology.

Ultimately, the key to a dramatic increase in prediction accuracy is the incorpo-

ration of global, long-range information into the prediction scheme. Using a larger

window size is one attempt in this direction. Unfortunately, nearest-neighbor methods

suffer from the same defect as other approaches and exhibit a decline in performance

with increasing window size. Part of the problem may be the failure to allow gaps

or insertions during the alignment of the test instance to the training exemplars. We

are currently investigating using a dynamic programming algorithm that permits gaps

and insertions during the matching phase of the procedure.

Finally, we wished to study the advantages of transforming the raw output of our

predictor into estimated probabilities of each type of secondary structure. We used

a k nearest-neighbor algorithm to estimate a predicted probability distribution at

each residue. It should be emphasized that this algorithm is not limited to nearest-

neighbor predictors, but can be applied to the output of any secondary structure

predictor. These predicted probability distributions had the advantage that they

contained 58% more information than the standard one-state predictions, 0.41 versus

0.26 bits/position. However, since the typical protein secondary structure contains

on average 1.47 bits/position of information, this still represents less than 28% of the

information present in protein secondary structure.

Moreover, the estimated probability triplets allow one to identify a priori the

residues that are most likely to be accurately predicted. We found that the top

28.4% of the predictions were 85.9% accurate, and the top 43.3% of the predictions

were 81.3% accurate. Others have previously formulated the concept of confidence
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scales (Biou et al., 1988) or prediction strength (Holley & Karplus, 1989), but their

confidence values were calculated a posteriori after the predictions had been specified

and evaluated. In other words, because the confidence values were not derived using

appropriate training and testing procedures one cannot be certain about the accuracy

of these values on a new protein. Furthermore, no attempt was made to determine

the probability values for all three secondary structure types at each position.

The approach of calculating a predicted accuracy at each residue offers a way to

increase the biological utility of secondary structure prediction, notwithstanding the

fact that the overall predictive accuracy seems to have reached a plateau at slightly

less than 70%. We suggest that secondary structure predictions and methods should

henceforth include predictions of the probability distribution (rather than simply one-

state predictions) in order to assist consumers of such predictions in discriminating

confident assertions from wild guesses. In Figure 4, we illustrate a sample output for

the first 25 residues of cytochrome c550 (155c) from our prediction scheme which lists

both the final one-state output and the associated probabilities for each secondary

structure type. Although our work produced only a slight improvement in overall

prediction accuracy compared to other prediction methods, there was a significant

increase in the total information provided by the predictor.
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3.6 Figures and Tables
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R. Creation of Training and Test Sets (window = 13).

Test Protein

NEGDAAKGEKEFNKCK... (sequence)

1. ------NEGDAAK Test
2. -----NEGDAAKG Instances
3. ----NEGDAAKGE
4. ---NEGDAAKGEK

Training Protein

FF35523542552254...

1. ------FF35523
2. -----FF355235
3. ----FF3552354
4. ---FF35523542

(3D structure profile)

Training
Exemplars

B. Identification of Nearest Neighbors.

1) Matching:

Instance Exemplars Matching Score

1. ------NEGDAAK 1. ------FF35523

2. -----FF355235

3. ----FF3552354

2) Ordering (k=50): (for test instance #1)

Exemplar No.

1. 7383
2. 18033

50. 19796

Matching Score

290
260

176

SS type of exemplar

C
C

C

C:. Final Prediction.
(for test instance #1)

1) Y1 = (0,0,50); H = 0, E = 0, C = 50.

Figure 1
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]Figure 1. A schematic description of the nearest-neighbor method applied to

secondary structure prediction. Outlined is the procedure used to create the

set of test instances and training exemplars (part A), to identify the nearest

neighbors of a given test instance (part B), and to tabulate the final prediction

(part C). The 15 environment classes for the 3D structure profile are

represented using hexadecimal notation. A more detailed description of this

protocol and an explanation of how the scoring table was constructed are

provided in the Materials and Methods section.
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Figure 2
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Figure 2. Correlation coefficients of correct (or incorrect)
predictions separated by d positions. The plot is identical
whether correct or incorrect predictions are analyzed. The
standard formula for statistical correlation was used (see
Materials and Methods).
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Figure 3
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Figure 3. A graph depicting the performance characteristics of

the exemplars against the whole database. The number of

exemplars possessing each level of predictive accuracy is plotted.

The scoring table was "Second/Access/Polar(15) + Benner", the

radius r = 50, and the window size was 13.
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PROTEIN = 155c

One-state

Position prediction

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Probability values

PX Pa Pcoil

0.00
0.04
0.04
0.02
0.10
0.34
0.24
0.46
0.46
0.50
0.48
0.48
0.40
0.38
0.24
0.18
0.20
0.18
0.14
0.24
0.14
0.16
0.08
0.02
0.00

0.10
0.00
0.02
0.04
0.08
0.02
0.10
0.02
0.10
0.06
0.08
0.04
0.06
0.00
0.04
0.08
0.22
0.20
0.40
0.60
0.46
0.40
0.16
0.08
0.06

True secondary
structure

0.90
0.96
0.94
0.94
0.82
0.64
0.66
0.52
0.44
0.44
0.44
0.48
0.54
0.62
0.72
0.74
0.58
0.62
0.46
0.16
0.40
0.44
0.76
0.90
0.94

Figure 4. A sample output for the first 25 positions of cytochrome c550
(155c). The standard one-letter abbreviations for the three types of
secondary structure is used: 'h'= helix, 'e' = beta-strand, and 'c' = coil. P,, P,
and Pcoil represent the estimated probabilities for each type of secondary
structure at a given position.
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Table 1

The performances of different scoring tables

Scoring Matrix

1. Second

2. Second + Access

3. Second + Access + Polar

4. Dayhoff

5. Benner

6. Second/Access/Polar(1 5)

7. Second/Access/Polar(27)

8. Second + Access + Polar + Benner

9. Second/Access/Polar (1 5) + Benner

10. Neural Net (Perceptron)

11. MBR

Accuracy (%)

59.2

64.2

65.1

60.4

61.7

65.1

65.6

66.1

66.8

63.4

64.1

Window size = 1 3; k (the number of nearest neighbors) = 50.

"Second + Access + Polar" indicates 3 separate tables.

"Second/Access/Polar(1 5)" refers to a single table with the

number of states specified by the number in the parentheses.
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Table 2

The effect of the number of nearest neighbors on prediction

Window size = 13; scoring table = "Second/Access/Polar(15) + Benner".

129

Number of Nearest
Accuracy (%)Neighbors

1 58.3

10 65.4

25 66.1

50 66.8

100 66.9

200 66.8

400 66.3



Table 3

The effect of window size on prediction

Window Size Accuracy (%)

7 63.4

13 66.8

19 67.1

25 66.5

41 65.0

Scoring table = "Second/Access/Polar(15) + Benner"; k=50.
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Combining multiple

Table 4

predictions with a neural network

The predictions from the 3 different window sizes for each scoring table were first combined with

a neural net (perceptron). The resulting two outputs were then fed into a second neural net to

produce the final prediction. A description of the procedure used to train and test the neural nets

is provided in the Materials and Methods section.
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Scoring Table Window Size Accuracy (%)

Second/Access/Polar(15)+ 13 66.8
Benner

19 67.1 67.8

25 66.5

68.0

Second+Access+Polar+ 13 66.1

Benner
19 66.1 67.4

25 65.6
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Table 6

Prediction accuracy for secondary structure predictors

Method Accuracy (%)

Bayes 61.1
(Stolarz et al., 1992)

Homologue 62.2
(Levin et al., 1986)

GOR III 63
(Gibrat et al., 1987)

Neural Network 64.3
(Qian & Sejnowski, 1988)

Rooman-Wodak 62
(Rooman & Wodak, 1988)

King-Sternberg 60
(King & Sternberg, 1990)

GOR-COMBINED 65.5
(Biou et al., 1988)

MBR-STM-NN-HYBRID 66.4
(Zhang et al., 1992)

Nearest-Neighbor 68.0
(Yi & Lander, 1993)

Accuracy as reported by the authors.
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Table 7

Analysis of prediction accuracy at selected positions

Subset of Predicted Sites Accuracy (%)

A)
1. h 62.6

2. e 41.7
3. c 80.8

B)
1. hhh 68.6
2. eee 49.9
3. ccc 82.5
4. chh or hhc 36.8
5. cee or eec 30.2

Helix, P-strand, and coil are represented respectively by 'h', 'e', and

'c'. The predicted position is underlined. The known secondary

structure at and adjacent to the predicted position is depicted.
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Table 8

Altering the radius of the exemplars in an exemplar-based nearest-neighbor system

Pruning Exemplars Expanding Exemplars Accuracy (%)
(% Removed) (% Expanded)

1 0 0 66.7

2 10 0 66.9

3 20 0 66.8

4 30 0 66.6

5 10 10 67.3

6 20 20 67.3

7 30 30 67.2

8 Standard Nearest-Neighbor Method (k = 50) 66.8

The initial radius for all exemplars was 50. The scoring system was "Second/Access/Polar(15) + Benner."

The window size was 13. The radius of the pruned exemplars was set to 0. The radius of the expanded

exemplars was increased to 100.
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Table 9

An analysis of the estimated probability values

Probability Value of Accuracy (%) Proportion of
Prediction (%) Database (%)

A)
> 80 (87.8) 85.9 28.4

70 - 80 (74.8) 72.6 14.9

60 - 70 (64.9) 64.6 25.7

50 - 60 (55.1) 55.7 16.6

< 50 (45.6) 43.9 14.5

B)

40 - 50 (44.8) 43.4

30 - 40 (33.9) 34.3

20 - 30 (23.7) 23.8

10 - 20 (13.5) 13.4

0 - 10 ( 4.7) 5.7

The probability values were placed into intervals spanning 10 percentage points. The number

in parenthesis refers to the average value for that interval. The accuracy was calculated by

counting the number of times that the secondary structure type associated with the estimated

probability value was correct. In part A), the estimated probability values represent the highest

value in the probability triplet at a given position. Proportion of the database refers to the

fraction of the predictions in which the maximum estimated probability value at a given

position fell within the specified interval. In part B), the probability values were not necessarily

the maximum value in the triplet.
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Table 10

A breakdown of the probability values by prediction type

Probability Value of Proportion of Each Type of Prediction (%)
Prediction (%)

Helix Beta-sheet Coil

> 80 24.4 11.6 34.3

70 - 80 14.5 9.9 16.3

60 - 70 29.0 27.8 23.6

50 - 60 18.3 24.9 13.8

< 50 13.8 25.8 12.1

The probability values were divided according to the secondary structure type

associated with the value. They were then placed into intervals spanning 10

percentage points. Finally, the proportion of each type of prediction that fell into the

different probability intervals was measured.
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Chapter 4

Recognition of Related Proteins

by Iterative Template Refinement

(ITR)

4.1 Abstract

Predicting the structural fold of a protein is an important and challenging prob-

lem. Available computer programs for determining whether a protein sequence is

compatible with a known three-dimensional structure fall into two categories: (i)

structure-based methods, in which structural features such as local conformation and

solvent accessibility are encoded in a template, and (ii) sequence-based methods, in

which aligned sequences of a set of related proteins are encoded in a template. In both

cases, the programs use a static template based on a predetermined set of proteins.

Here, we describe a computer-based method, called Iterative Template Refinement

(ITR), that uses templates combining structure-based and sequence-based informa-

tion and employs an iterative search procedure to detect related proteins and sequen-

tially add them to the templates. Starting from a single protein of known structure,

ITR performs sequential cycles of database search to construct an expanding tree of

templates with the aim of identifying subtle relationships among proteins. Evaluat-
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ing the performance of ITR on six proteins, we found that the method automatically

identified a variety of subtle structure similarities to other proteins. For example,

the method identified structural similarity between arabinose-binding protein and

phosphofructokinase, a relationship that has not been widely recognized.
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4.2 Introduction

'The number of distinct protein structural folds is thought to be relatively small,

perhaps less than 1000 (Chothia, 1992). If so, many of the 60,000 proteins in existing

sequence databases must adopt conformations similar to an already known structure.

]However, it remains a challenging problem to place proteins known only by their

amino acid sequences into the correct structural family.

Various computer programs have been developed for using a fixed template for de-

tecting structurally related proteins. Broadly speaking, they fall into two categories.

(i) Structure-based methods. In this approach, a template encoding information

about a specific structure is used to search the protein database to find other sequences

compatible with the structure. The first such approach involved classifying each

position in a structure according to its solvent accessibility, local conformation, and

polarity (Bowie et al., 1991). Subsequent generalizations have included other types

of environments defined according to the nature of contacts made by each residue

(Ouzounis et al., 1993) as well as residue-residue contact potentials (Grodzik et al.,

1992; Jones et al., 1992). These methods have been recently reviewed (Bowie &

Eisenberg, 1993; Wodak & Rooman, 1993).

(ii) Sequence-based methods. Sequence similarity can often be a reliable indicator

of structural homology (Chothia & Lesk, 1986). To detect very high degrees of

sequence similarity, rapid pairwise comparison programs such as FASTA (Pearson &

Lipman, 1988) and BLAST (Altschul et al., 1990) can be used. To detect more subtle

similarities, many investigators have adopted the strategy of constructing a template

based on the sequences of multiple members of a known protein family in order to

focus attention on the most conserved features - thereby extracting signal from noise

(e.g., Taylor, 1986; Bashford et al., 1987; Gribskov et al., 1987; Altschul & Lipman,

1!990; Barton & Sternberg, 1990; Henikoff & Henikoff, 1991).

In contrast to such computer programs, experienced protein researchers searching

for new members of a structural family adopt a broader approach. Investigators

will typically use both structure-based and sequence-based information and will often
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,examine the information in an iterative fashion - e.g., using comparisons of close

family members to identify important structural or sequence features that permit

subsequent recoginition of more distant family members.

Here, we describe a computer-based method that attempts to incorporate the ideas

of (i) integration of structure and sequence information and (ii) iterated search. Called

Iterative Template Refinement (ITR), the procedure starts with a single protein of

known structure and derives a 'Level 1' template reflecting information about both

structure and sequence of the protein. The Level 1 template is used to search the

database to identify similar proteins, which are then used to construct various different

Level 2 templates. The process is iterated to yield an expanding tree of dynamically-

refined templates. Because template construction is dynamic, the method offers the

prospect of discovering new similarities beyond the usual family groupings. Because

the method is fully automated, user involvement is kept to a minimum.

To evaluate this approach, ITR was applied to six starting proteins: (i) arabinose-

binding protein (1ABP); (ii) plastocyanin (1PCY); (iii) cytochrome c (1CCR); (iv)

chymotrypsin (2CGA); (v) the dinucleotide-binding domain of lactate dehydrogenase

(5LDH, domain 1); and (vi) the -subunit of tryptophan synthase (1WSYA). In

each case, ITR was able to detect similarities to structurally related proteins that

could not be found by standard single sequence comparison. For example, templates

constructed from plastocyanin automatically identified the structurally similar im-

munoglobulins and templates derived from bovine chymotrypsin automatically iden-

tified a variety of bacterial serine proteases. A particularly striking example was the

finding of structural similarity between arabinose-binding protein and phosphofruc-

tokinase, a similarity that has not been widely recognized despite the availability

of the two structures. Overall, ITR provides a potentially powerful approach for

detecting subtle, structurally important similarities among proteins.
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4.3 Outline of Methodology

ITR essentially consists of repeated cycles of database search and new template gen-

eration. Briefly, one starts with a Level 1 template based on a single protein of known

structure. One searches the database with this Level 1 template to identify and align

all significant matches in the protein sequence database. Each of the matches is used

to derive a distinct Level 2 template, which are then used to search the database

once again. The process is repeated through as many levels as feasible (Figure 1A),

with each Level k template potentially giving rise to multiple distinct Level k + 1

templates. ITR thus yields an expanding tree of templates (Figure B). It should be

noted that only the starting protein is required to have a known structure.

To make matters precise, let P1 be a protein of known structure. In the manner of

Bowie et al. (1991), each residue of P1 is assigned an "environment class" describing

its local neighborhood in the structure. The specific assignment used here is taken

from Yi and Lander (1993), which uses 15 environment classes. A Level k template

of length m rooted at P1 is defined as a multiple subsequence alignment of the

environment string and the amino acid sequence of Pi, together with the amino acid

sequences of k - 1 other proteins, P2, ..., Pk. A Level 1 template thus involves just the

environment string and the amino acid sequence of P1 . A Level 4 template of length

80 rooted at arabinose-binding protein (1ABP) is shown in Figure 1C.

A multiple subsequence alignment is formally defined by a k x m matrix

S whose i-th row, (il ... , sim), is a sequence of consecutive positions in protein Pi,

possibly interrupted by occurrences of the gap symbol "-". Let aij denote the amino

acid in position sij in protein Pi or the gap symbol if sij is a gap symbol. Similarly,

let ej denote the environment symbol of the amino acid in position sj in protein P1

or the gap symbol if slj is a gap symbol.

ITR involves three steps, with the first two applied at each successive Level k.

(i) Database search. To search the protein sequence database with a Level k

template T, the template is converted into a profile using an extension of the method

of Gribskov et al. (19387). The profile combines the sequence and structure information
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of the template into a single scoring function, PROFILEj(x), that specifies the score

for matching the j-th position in the template to amino acid x in a target protein P.

Specifically, the profile is defined as:

k

PROFILELj(x) = a A(ai, x) + /B(ej, x), (4.1)
i=l

where A(*, ) is a traditional amino acid by amino acid scoring matrix and B(., )

is an amino acid by environment scoring matrix (see Materials and Methods). Thus,

the profile makes possible the alignment of a target sequence against a template

containing both sequence and structure information. The parameters (ca, ) control

the relative weight to be placed on sequence versus structure; they were chosen so

as to place twice as much weight on the sequence component as on structure (see

Materials and Methods). A traditional Gribskov profile would correspond to setting

A = 0.

The resulting profile is compared to each protein P in the database by using

a standard 'local' dynamic programming alignment algorithm (Smith & Waterman,

1981) with appropriate gap penalties, gopen and gext, for opening and extending a gap.

F'or each protein P, the resulting score Y = Y(T, P) is converted into a 'normalized'

Z-score by using a standard Monte Carlo shuffling test (Doolittle, 1986; Gribskov &

Devereaux, 1991; Karlin et al., 1991). Proteins P with final Z-scores exceeding 7.5 are

considered to be significant matches to the template T. (See Materials and Methods

concerning choice of parameters and thresholds).

(ii) New template generation. Significant matches resulting from a search with a

Level k template are used to derive distinct Level k + 1 templates, which are then

used for a subsequent round of database search.

(iii) Analysis of completed search tree. An ITR search produces a tree of templates,

which can be represented as a graph (Figure 1B). Using this graph, the final 'signifi-

cance score' for each protein found in the ITR search is defined as follows. Each edge

connecting a Level k template to a Level k + 1 template is labelled with the Z-score

for the protein added in creating the Level k + 1 template. Each node of the tree is
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labelled with the smallest (i.e., least significant) Z-score on the path connecting the

node to the root of the tree. A particular protein P may occur at multiple nodes in

the tree; the final 'significance score' for P is defined as the maximum of the labels

for nodes at which P occurred.

As outlined above, ITR is conceptually simple but computationally inefficient.

The reasons are several: (a) the search tree can expand exponentially at each level,

particularly as many related proteins are identified; (b) search of the entire database

using dynamic programming is very time-consuming; and (c) complete Monte Carlo

shuffling to calculate a Z-score for each match is too slow. To speed up the procedure,

we adopted several computational compromises outlined in Material and Methods.
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4.4 Results

To assess the accuracy and sensitivity of ITR, we tested the approach using six starting

proteins whose structures are known: (a) arabinose-binding protein (ABP); (b) plas-

tocyanin (PCY); (c) cytochrome c (1CCR); (d) chymotrypsin (2CGA); (e) lactate

dehydrogenase, Rossman domain (5LDH, domain 1); and (f) tryptophan synthase,

ar-subunit (1WSYA). We examined the list of matching proteins identified by ITR.

For proteins with known structures, the accuracy of the match could be rigorously as-

sessed by comparing the structures of the identified protein and the starting protein.

The structures were aligned by using a computer program (T. -M. Yi, unpublished)

to minimize DRMSD and were considered structurally related if the alpha carbon

atoms could be aligned at > 60% of the positions in the smaller protein with Dis-

tance Matrix RMSD (DRMSD) of < 2.7 A. For proteins without known structures,

the accuracy of the match could only be assessed qualitatively (and thus somewhat

subjectively) based on information about the structure, function, and regulation of

the protein.

(a) Arabinose-binding protein (1ABP)

Arabinose-binding protein is a two domain protein belonging to the family of periplas-

mic binding proteins that includes galactose-binding protein, ribose-binding protein,

phosphate-binding protein, etc. (Spurlino et al., 1991). The structure of arabinose-

binding protein (1ABP) was solved to a resolution of 2.4 A by Gilliland and Quiocho

(1981).

The Level 1 template identified only two significant matches: ribose-binding pro-

tein and galactose-binding protein (Figure 2A). Each was separately aligned to the

Level I template to create two Level 2 templates. Using these Level 2 templates, a

new class of proteins emerged: members of the lac repressor family. For example, the

Level 2 template 1ABPJGECR, produced nine significant matches (see Figure 2B).

As the search progressed, the branching of the search tree was constrained to prevent

an exponential explosion of templates (see Materials and Methods). A typical Level
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4 template is shown in Figure 2C. The complete search results are shown in Table 1.

One interesting match was to the periplasmic leucine-binding protein (2LBP), for

which the structure is available. Despite low sequence similarity, structural alignment

confirmed that leucine-binding protein and arabinose-binding protein are structurally

homologous (DRMSD = 2.4 A, aligning 214 alpha carbon atoms).

A. more surprising match was to two families of transcriptional regulators: the lac

repressor family and the two-component response regulator family. The similarity

with the former family had been noted by Muller-Hill (1983) based on careful manual

sequence analysis of these proteins and is supported by the fact that both classes

of proteins bind small ligands (often a sugar moiety) and undergo a conformational

change upon binding. Using ITR, this similarity emerged automatically. To our

knowledge, the similarity to the two-component response transcriptional regulators

has not been previously noted. Interestingly, these response proteins also bind a small

ligand (ATP) and trigger the conformational switch of the transcriptional apparatus

from closed to open complex (Kustu et al., 1991). Because structures are not available

for these families, these structural similarities cannot be confirmed.

The most unexpected match was to phosphofructokinase, identified on level 4.

Although the structures of arabinose-binding protein and phosphofructokinase have

been known for years, similarity between them has not been widely noted. In fact,

the two proteins are structurally quite similar (DRMSD = 2.4 A, aligning 184 alpha

carbon atoms). Functional and structural clues suggest a potential relationship. Both

proteins are composed of two a/f3 domains, and both proteins bind their ligand(s) in

the cleft between the two domains. Upon binding, both proteins undergo a confor-

mational shift in which the two domains pivot to enclose the ligand. (We are grateful

to a referee for pointing out that Holm and Sander (1993) have recently performed

a hierarchical clustering of all known structures, in which the periplasmic binding

proteins and phosphofructokinase appear in the same region of the tree.)

In summary, the search identified three proteins with known structures. All three

matches were confirmed by structural alignment. In two cases (galactose-binding

protein and leucine-binding protein), the similarity was strong enough that it could
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be found by standard pairwise sequence comparison or the Bowie-Eisenberg method,

while in the third case (phosphofructokinase) the similarity was too subtle to be

recognized by such pairwise comparisons.

(b) Plastocyanin (1PCY)

]'lastocyanin is a small copper binding protein that plays a role in electron transfer.

The Level 1 template, derived from poplar plastocyanin (PCY), identified plas-

tocyanins from other species and the closely-related pseudoazurins and amicyanins

(Table 2). The Level 3 templates identified two other classes of proteins involved in

electron transport: azurins and basic blue proteins. Although these proteins have

low sequence similarity to plastocyanin, their structures have been solved and are

known to be very similar to 1PCY (Baker, 1988; Guss et al., 1988). Interestingly,

the Level 3 templates also uncovered a class of proteins functionally far removed

from plastocyanin: various members of the immunoglobulin superfamily (see Table

2). In fact, the structure of plastocyanin has been noted to resemble the -barrel

topology of the "immunoglobulin fold" (Guss & Freeman, 1983). Finally, the Level 4

templates identified a significant match with ascorbate oxidase, a blue multi-copper

oxidase. In fact, the structure ascorbate oxidase was recently solved by Messerschmidt

et al. (1992), and it possesses three domains of a similar P-barrel type as plastocyanin

(]DRMSD = 2.0 A, aligning 94 alpha carbon atoms).

Of the identified proteins, four groups possessed members with known structure

(azurins, basic blue protein, immunoglobulins, and ascorbate oxidase). The accuracy

of these matches was confirmed in all four cases. Of the four, only the similarity to

the immunoglobulins could be detected using standard pairwise comparison methods.

(c) Cytochrome c (1CCR)

The c-type cytochromes have been grouped into four classes based on structural and

electrochemical criteria (Ambler, 1991). The members of each class are structurally

homologous to one another, while the members of different classes possess differ-
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ent structural topologies. Class I, which includes the main group of mitochondrial

cytochrome c proteins, has been further subdivided into five subclasses according to

sequence similarity. A Level 1 template was derived from rice cytochrome c (CCR), a

member of Class I, subgroup B. The results are shown in Table 3. The initial search

identified other members of subgroups A and B (primarily cytochrome c, c2, and

c550 proteins). Subsequent levels identified members of subgroups C (cytochrome

c6), D (cytochrome c551), and E (cytochrome c555). Most of these proteins have

low sequence similarity with rice cytochrome c, and historically, structural data was

necessary to confirm the close relationship among the different class I subgroups (Am-

bler, 1991). The search also identified the protein p-cresol methylhydroxylase which

is known to consist of two subunits: a flavoprotein and a c-type cytochrome (McIntire

et al., 1986). Analysis of the crystal structure of this protein has verified that the

cytochrome subunit belongs to the class I family of cytochrome c proteins (Mathews

et al., 1991).

Of the identified proteins, three have known structures. The accuracy of the

matches was confirmed in all cases. None of these could be detected using standard

pairwise comparison methods.

(d) Chymotrypsin (2CGA)

A Level 1 template, derived from bovine chymotrypsin (2CGA), not surprisingly

identified many of the members of the mammalian serine protease family. As the

search proceeded, several different types of bacterial proteases emerged - including

members of both the streptomyces and staphylococcus classes of serine proteases,

along with B. subtilis metalloproteinase, Achromobacter proteinase I, and heat shock

protein HtrA (Table 4). In the past, it was suspected from functional data that

some of the bacterial proteases were structurally related to the mammalian serine

proteases, but sequence analysis proved inconclusive (Delbaere et al., 1979). For

the streptomyces family of serine protease, the question was resolved when several

structures were solved (-lytic protease, proteases A and B from S. griseus) and shown

to be quite similar to the structures of the mammalian serine proteases (Fujinaga et
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al., 1985). Moreover, the structure of Achromobacter proteinase I has been solved

recently, and it is quite similar to chymotrypsin (DRMSD = 2.1 A, aligning 197

alpha carbon atoms). Here, ITR was able to rediscover and potentially extend the

relationship between bacterial and mammalian serine proteases.

Of the identified proteins, two have known structures. The accuracy of the matches

was confirmed in both cases. Neither could be detected using standard pairwise

comparison methods.

(e) Lactate dehydrogenase - dinucleotide-binding domain

(5LDH, domain 1)

The Rossmann fold is a common structural topology, consisting of a parallel /-sheet

with a-helices packed on both sides. It is found in many proteins that bind NAD,

NADP, ATP, GTF', and FAD (Rossmann, 1974). A search was initiated with the

Rossinan domain of lactate dehydrogenase from dogfish (residues 22 to 164). The

Level 1 template identified lactate dehydrogenases from other species along with the

closely-related malate dehydrogenases. At Level 2, several other dehydrogenases be-

gan to appear along with a variety of GTP-binding proteins. By the later stages of

the search, a large number of different dehydrogenases, reductases, and hydrolases

were detected. In all, 15 classes of proteins were identified, most of which are known

to bind NAD, NADP, ATP, or GTP (Table 5).

Structural data is available for four of the identified proteins: phosphoglycerate

kinase, G3P dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and p21 ras protein.

The first three proteins clearly possess the Rossmann fold, while the structure of p21

ras diverges somewhat from the canonical topology. Nonetheless, it is possible to

align 97 alpha carbon atoms (out of 143 residues) between the two structures to 2.5

A DRMSD, which satisfies the criterion for structural similarity stated above.
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(f) Tryptophan synthase - alpha subunit (WSY_A)

The tryptophan synthase a-subunit catalyzes the last reaction in tryptophan biosyn-

thesis. It has a canonical TIM barrel structure, consisting of a -sheet wrapped

into a barrel surrounded by c-helices. A Level 1 template derived from tryptophan

synthase a-subunit from Salmonella typhimurium (1WSYA) identified only other

bacterial tryptophan synthases.

Interestingly, Level 4 templates identified another enzyme in the tryptophan biosyn-

thesis pathway, indole-3-glycerol-phosphate synthase (TrpC), and two enzymes in-

volved in histidine biosynthesis, cyclase HisF and compound III isomerase (HisA)

(see Table 6). The structure of indole-3-glycerol-phosphate synthase is known, and

it is indeed a TIM barrel protein. Work by Wilmanns and Eisenberg (1993) using

a more advanced version of the Bowie-Eisenberg 3D profile method have recently

suggested that cyclase HisF and compound III isomerase also possess a TIM barrel

structure.

Various other proteins emerged including several oxidases that use NAD as a cofac-

tor ((S)-2-hydroxy-acid oxidase, flavocytochrome B2, and dihydroorotate oxidase) and

several ion transporting ATPases (H+/K+-transporting ATPase, Ca2 +-transporting

ATPase, and cadmium-transporting ATPase). The structures of (S)-2-hydroxy-acid

oxidase (DRMSD = 2.0 A, aligning 194 alpha carbon atoms) and flavocytochrome B2

(DRMSD = 2.5 A., aligning 162 alpha carbon atoms) are known to be TIM barrels;

no structural data are available for the ion channel proteins.

Finally, the search produced the first two definite false positives. Level 4 templates

identified two c// proteins, arabinose-binding protein and p21 ras protein, with Z-

scores just above the threshold of 7.5. Although both proteins possess an alternating

ac-helix//-strand secondary structure pattern such as is found in tryptophan synthase,

the overall tertiary folds are different. We discuss below the reasons for these false

positives. Thus, among the known structures, this search recorded two correct hits

and two false positives.
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(g) Searching based on sequence alone

In principle, ITR, could be performed without making use of the structure-environment

component (i.e., setting the weighting parameter = 0). To test whether the

structure-environment component contributed significantly to the sensitivity of the

method, we repeated the searches for arabinose-binding protein and plastocyanin

without this information. The results are presented in the last column of Tables 1

and 2. It is clear that there is a substantial loss of sensitivity.
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4.5 Discussion

Iterative Template Refinement is intended to be an automated procedure for iden-

tifying proteins distantly related to a starting protein. By dynamically creating a

tree of templates, ITR takes a bootstrapping approach to extracting key features in

a protein - letting them emerge spontaneously as templates are refined through suc-

cessive database searches. In this way, ITR can find matches that are not detected

by traditional single-protein comparison techniques. Of course, the crucial question

is: Do the reported matches actually represent structural similarity among distantly

related proteins?

(i) Accuracy

The best test of accuracy is to examine matches to proteins of known structure to

evaluate whether there is true structural similarity. In the six searches reported

above, there were 20 such matches (Table 7). Of these, the identified protein had

clear structural similarity in 18 cases and was unrelated in two cases. We note that

our definition of structural similarity (DRMSD < 2.7 A aligning at least 60% of the

alpha carbon positions) is somewhat less strict than that employed by some crys-

tallographers, but is designed to capture the notion that two proteins possess the

'same' structural fold. Indeed, this criterion reflects the level of structural similar-

ity between members of large structural families such as the jellyroll /3-barrel family

(Chelvanayagam et al., 1992) and the Greek key /3-barrel family (Hazes & Hol, 1992).

Among the 18 confirmed matches, only three were also detected by FASTA, BLAST,

or the Bowie-Eisenberg method (Bowie et al., 1991). Thus, ITR was able automat-

ically to discover various subtle relationships, with a reasonably low (but non-zero)

false positive rate.

The two false positives occurred in the search with tryptophan synthase c-subunit

and had Z-scores just above the threshold for significance (arabinose-binding protein

and p21 ras, each with Z = 7.5). In examining the three structures, we noted that

they do share some charateristics: they are all //p proteins consisting of repeated
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units of a-helix and /3-strand and, in fact, they can be aligned in a manner consistent

with these similarities in secondary structure, solvent accessibility, and even sequence

(not shown). Nonetheless, the overall topologies are different. This observation sug-

gests that ITR might be further improved by including a final evaluation step based

on three-dimensional contact potentials, which encode distance relationships between

different positions in a structure (Jones et al., 1992).

Importantly, ITR misses many structural similarities among proteins. Indeed,

there remains no automatic way to recognize all distant similarities among pro-

teins. For example, the arabinose-binding protein search failed to identify many

either periplasmic binding proteins, which are known to have structural similarity

(Spurlino et al., 1991). The plastocyanin search identified the immunoglobulins, but

missed many other proteins with the immunoglobulin fold such as superoxide dismu-

tase and actinoxanthin. Similarly, the tryptophan synthase search did not recognize

many TIM barrel proteins including TIM itself, enolase, and a-amylase. At this early

stage, however, we were more concerned with minimizing false positives than false

negatives; the choice of a relatively high threshold cutoff of 7.5 reflects this concern.

For most of the matches, the accuracy cannot be rigorously evaluated because no

structural information is available for the target protein. These matches should be

regarded as a test set that will permit unbiased evaluation of the method as the struc-

tures are eventually solved. In the meanwhile, they offer intriguing hypotheses that

may provoke further investigations. For example, the searches reported above sug-

gest three interesting predictions: (i) the two-component transcriptional regulatory

proteins are structurally related to the lac repressor farmily; (ii) the staphylococcus

family of bacterial proteases possess the same structural fold as the mammalian serine

proteases; and (iii) the Na+/K+-ion-transport ATPases contain a TIM barrel domain.

(ii) Relationship with other methods

ITR combines both structure-based and sequence-based approaches to the detection

of similarities and uses iteration to automatically derive templates without prior spec-

ification of a protein family. Clearly, ITR draws extensively on prior work by many
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investigators (Taylor, 1986; Gribskov et al., 1987; Altschul & Lipman, 1990; Barton

& Sternberg, 1990; Smith & Smith, 1990; Bowie et al., 1991; Henikoff & Henikoff,

1991).

ITR differs from most previous structure-based approaches in that it makes ex-

tensive, iterative use of sequence information. A single static template combining

both sequence and structure information was previously used by Pickett et al. (1992)

in a study of TIM barrel proteins, although they concluded that the combination did

not improve discrimination over the use of sequence information alone. It should be

noted that the study involved only a single hybrid template; there was no iteration.

ITR differs from most previous sequence-based approaches in that templates are

automatically derived without prior specification of a protein family. Iterative tem-

plate construction was first explored by Taylor (1986) in his study of immunoglobu-

lins. However, in this and similar studies, the proteins studied were all identified a

priori. Because ITR involves construction of an expanding tree of templates, it can

potentially identify new relationships.

Altschul and Lipman (1990) were among the first to recognize the importance

of using multiple sequence alignments as a database search tool, noting that it is a

strategy used implicitly by experienced protein researchers. They developed a rapid

heuristic search program BLAST3 implementing database search based on 3-way

alignments. ITR is conceived in a similar spirit, but takes a rather different approach

by using a multi-level expanding tree search, which may successively refine features

in a template.

It should be noted that both the structure-based component and the sequence-

based iteration play an important role in ITR. Omitting the structure-based informa-

tion greatly weakens the sensitivity of the method, as noted in the Results section.

Similarly, failing to search in an iterative fashion (i.e., using only Level 1 searches)

also greatly diminishes the number of matches detected.
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(iii) Limitations and future directions

There are many open questions about the optimal implementation, sensitivity, and

selectivity of this search method. The current program is still quite slow, requiring

one week per protein on a standard workstation and we are investigating algorithmic

improvements and heuristic shortcuts to speed up the search without unacceptable

loss of sensitivity. In addition, the program involves a variety of parameter choices for

scoring matrices, gap penalties, etc. The choices are reasonable, but have not been

optimized.

More importantly, ITR produces some clear false positives and many false nega-

tives. Concerning false positives, it will be important to study the various parameters

and thresholds used in the procedure. The current definition of a "significant" match

remains empirical and somewhat ad hoc; a useful statistical theory for the significance

of tree search is currently lacking and is likely to be challenging. Concerning false

negatives, it may be possible to add additional structural information such as a con-

tact pair potential or predictions of secondary structure. Indeed, many of the recent

advances in structure-based methods to inverted prediction could be adapted to ITR

(Goldstein et al., 1992; Grodzik et al., 1992; Jones et al., 1992; Sippl et al., 1992;

Ouzounis et al., 1993). More broadly, it will be important to test ITR on a more

extensive list of examples to evaluate its performance. At present, ITR should be

viewed as a tool for exploratory data analysis producing putative matches requiring

confirmation.
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4.6 Materials and Methods

(A) Compromises required for efficient computation

As outlined in the text, ITR is conceptually simple but computationally inefficient.

The reasons are several: (a) the search tree can expand exponentially at each level,

particularly as many related proteins are identified; (b) search of the entire database

using dynamic programming is very time-consuming; and (c) complete Monte Carlo

shuffling to calculate a Z-score for each match is too slow. To speed up the procedure,

several computational compromises were adopted. Many alternative choices could

clearly be made, but the chosen shortcuts seemed to provided adequate speed up

without noticeable loss of sensitivity. However, these choices cannot be said to be

optimal in any sense.

(i,) Pruning the search tree. To prevent the tree from branching too extensively,

three constraints were used for pruning. (a) The search was terminated after the

construction of Level 6 templates. (b) The total number of Level k templates used

to search the database was limited to 6 on Level 2; 30 on Level 3; and 48 on Levels

4 and 5. If the available number of Level k templates exceeded this bound, only the

'most promising' templates were used. Templates were ranked based on the total

number of matching proteins having significant Z-scores and the total number of

matching proteins having Z-scores that had increased from a previous level. (c) The

total number of Level k + 1 templates generated from any given Level k template

was limited to 6 on Level 1; 5 on Level 2; 4 on Level 3; and 3 on Level 4. If the

number of significant database matches for a given template exceeded this bound, a

modified version of the hierarchical clustering algorithm of Smith & Smith (1990) was

used to group the proteins into the maximum allowed number of clusters. Briefly,

the clustering algorithm involves successively grouping together pairs of sequences

with the highest similarity. One representative from each cluster was chosen. This

eliminated the explosion caused by related members of protein families and ensured

that the paths chosen were as different as possible.

(ii) Pre-screening the database. Because dynamic programming is very time-
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consuming, templates were initially compared to the entire protein database by using

a modified version of the BLAST algorithm (sBLAST) to identify the highest-scoring

2000 proteins. For a given template, we calculated a list of the highest scoring 4-mers

(Altschul et al., 1990), scanned the database for proteins containing words in the list,

and extended the hits into complete matches. The highest-scoring 2000 proteins iden-

tified in this manner were subsequently analyzed by complete dynamic programming.

(iii) Calculating Z-scores. When a template T was compared to a protein P of

length n, the resulting score Y = Y(T, P) was converted to a Z-score by a standard

Monte Carlo shuffling technique (Doolittle, 1986; Karlin et al., 1991). The template

T was compared to a collection of 600 random sequences having the same length as

1', with amino acids randomly chosen according to the frequency distribution in the

database. The mean yn and standard deviation a, for these random comparisons

were determined and the Z-score was defined as Z = (Y-yn). To avoid calculating

a Z-score for every possible length n, we first calculated the mean y and standard

deviation sn for sequences of length n = 100, 200, 400, 600, and 800. The results

for other values of n were estimated by interpolation and the Z-score was estimated

using these interpolated values. If the estimate exceeded 6.5, the Z-score was then

calculated using Monte Carlo shuffling for the exact length.

The overall distribution of Z-scores was bimodal, with a large peak extending

from Z = -3.0 to Z = 3.0 consisting primarily of unrelated sequences, and a second

smaller peak for Z-scores above 12.0 consisting primarily of very closely related se-

quences. The range of Z-scores between Z = 6.0 to Z = 9.0 appeared to contain many

interesting matches to potential distant relatives and the threshold of significance was

chosen to balance between the false positives and false negatives.

Matching proteins were tested for compositional bias by comparing the distri-

bution of amino acids in the protein with the overall distribution in the database,

using the chi-squared statistic as a measure of deviation. Only one protein showed an

unusually large deviation: 125K hypothetical protein detected in the 1ABP search.

When the specific sequence of this protein was used in the random permutation test,

the resulting Z-score still exceeded the threshold (Z = 8.5). The current implemen-
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tation of ITR permits calculation of Z-scores using the amino acid composition of

either the target protein or the average composition of the database. In most cases,

the two scores are quite similar (data not shown).

VWith these compromises, a complete ITR search for a single starting protein re-

quired about one week on a DEC Alpha workstation using the PIR sequence database,

release 26.0. The execution time of ITR was approximately equally divided between

searching the database and calculating the Z-scores. This time could be shortened by

making further computational shortcuts. However, the performance was adequate for

our present purposes of studying the method. The computer program implementing

ITR as described above is available from the authors.

(B) Parameter selection

(i) Implementation of dynamic programming. The local optimal dynamic program-

ming algorithm of Smith-Waterman (Smith & Waterman, 1981) was implemented

with two minor modifications. To avoid very short alignments, significant matches

were required to span at least two-thirds of residues in the starting protein. Because

the nmultiple sequence profile portion of the search template could contain gaps, the

"pay once" gap penalty strategy described by Smith and Smith (1990) was used.

(ii)Scoring matrices. In equation (1), the amino acid by amino acid scoring matrix

A was chosen to be the Benner mutational distance matrix (Gonnet et al., 1992), and

the amino acid by environment scoring matrix B (Figure 3) was defined as in Yi and

Lander (1993), although other choices are clearly possible.

(iii) Weighting parameters. The weighting parameters (a, 3) were defined in terms

of the 'magnitude' of the sequence versus structure-environment of each template.

With the notation as in equation (1), the magnitude mA of the sequence component

and rnB of the structure-environment was defined as

1 L k

mA = ' E max(A(aij, x), 0) (4.2)
j=l i=l x
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and
1 L

mB = -*. max(B(ej, x), 0), (4.3)
L j=1 z

where the inner summations are taken over all amino acids x and L is the length

of the template. For each template, the weighting parameters were then taken as

(O, ') = (3 2A7 1 ) - which has the effect of placing twice as much weight on the

sequence component as on the structure component.

(iii) Gap penalties. Two sets of values for the gap penalties were used, (gop,e, next) =

(0.55, 0.11) and (0.75, 0.15). A target sequence was aligned with a template using both

gap penalties and the higher Z-score recorded. By way of comparison, normalizing the

gap penalties (20.63, 1.65) recommended by Gonnet et al. (1992) by dividing by the

magnitude of their scoring matrix produces the values (1.91, 0.15). Thus, the penalty

for opening a gap is somewhat smaller than that used by Gonnet et al. (1992).

The choice of parameters was altered slightly after completing the searches with

1ABI', 1PCY, CCR. We had initially included an additional set of values for the

weighting parameters (, ), reflecting equal contributions of sequence and structure

information, and for the gap penalties, (gopen, ext) = (1.00,0.20). These additional

choices were dropped because they yielded poor alignments and poorer sensitivity.

In addition, we slightly raised the threshold for significance from our initial choice of

7.0 to 7.5. The first three searches were rerun with these final parameters, with the

result that two false positives were eliminated from the 1ABP search and one false

positive from the 1CCR search. The latter three searches were performed only with

the final parameters.
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4.7 Appendix 1: Updating the List of Proteins of

Known Structure Identified by ITR

Since the publication of this chapter in the journal Protein Science (Yi and Lander,

1994), two more proteins detected by the ITR searches have had their structures

solved. In both cases, the structural data confirmed the prediction of structural simi-

larity between the target protein(s) and the root protein. First, the structure of PurR,

a, member of the Lac repressor family of DNA-binding proteins, was determined to a

resolution of 2.7 A (Schumacher et al., 1994). The corepressor binding domain (CBD)

or PurR displayed remarkable structural homology with the periplasmic binding pro-

teins (the RMSD between PurR CBD and ribose-binding protein is 2.3 A over 144

alpha carbons). Thus, as predicted in Table 1, the members of the Lac repressor fam-

ily do indeed adopt; the same fold as the root protein of the search, arabinose-binding

protein. Secondly, Holm et al. (1994) noticed the structural relationship between

3a,20P-hydroxysteroid dehydrogenase (1HSD), a member of the short-chain dehy-

drogenase family (row number 3 in Table 5), and both dihydropteridine reductase

(1DHR) and the classical dinucleotide-binding topology found in lactate dehydroge-

nase (5LDH). The common core between 1HSD and 5LDH extends for about 130

residues. These data strongly suggest that the short-chain dehydrogenase family and

the Rossmann family share a common fold. Thus, among 22 matches to proteins of

known structure, ITR registered 20 correct hits and two false positives.
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Figure 1. Schematic representation of Iterative Template Refinement. (A)

Flow chart illustrates the iterative process of database search and template

construction. (B) An expanding tree of templates grows from a starting

protein during the course of the search. Each square (node) represents a

distinct template. One particular path through the tree is shown in bold to

illustrate the procedure for assigning Z-score labels to edges and nodes. (C)

An example of a Level 4 template rooted at arabinose binding protein (1ABP)

showing both the structure-environment component (represented using

hexadecimal notation as in Yi and Lander, 1993) and the sequence

component.
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LEVEL 1

Template = 1ABP

E:ECDAA555BCDEBDB1400 2321340244CCAEBC978A

ENLKLGFLVKQPEEPWFQTE WKFADKAGKDLGFEVIKIAV

1.01

E:EAABBBABB4401441142 12400443EAEDEDBA556B

EVPLVMMAATKIGERQGQE LYKEMQKRGWDVKESAVMAI

201
56ABBBDBB11013103EED BEDCDBAAA66BBCBB2400

IVGMNDSTVLGGVRATEGQG FKAADIIGIGINGVDAVSEL

301
CEADEE 3D environment profile (1ABP)

KXGLGGK sequence (ABP)

CE2440241034024DEADA AAABACCDECAE20142144

PDGEKTLNAIDSLAASGAKG FVICTPDPKLGSAIVAKARG

3ECCAABBBBCABEEECEDD

YDMKVIAVDDQFVNAKGKPM

BBEECDBB331131114203 44DACEECC99CEBEDCDE2 113431240044BEEBCCA5

TANELDTARRRTTGSMDALK AAGFPEKQIYQVPTKSNDIP GAFDAANSMLVQHPEV1HWL

EEEEECABCA65AABAADA1 320022124224EEDEAEEE CCDEECDCBBDECAEECAEE

SKAQATGFYGSLLPSPDVHG YKSSEMLYNWVAKDVEPPKF TEVTDVVLITRDNFKEELEK

High-scoring proteins from search

Z-score CODE TITLE

1 >15.00 JGECR D-Ribose-binding protein precursor - Escherichia coli
2 13.99 JGECG D-Galactose-binding protein - Escherichia coli

Figure 2A
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]LEVEL 2

Template = 1ABPJGECR

I)AA555BCDEBDB1400232 1340244CCAEBC978ACE2

K;LGFLVKQPEEPWFQTEWKF ADKAGKDLGFEVIKIAVPDG

1?IALWSTLNNPFFVSLKDG AQKEADKLGYNLVVLDSQNN

]L03
JUABBBABB40144114212 400443EADEDEDBA556BBB

VPLVMMAATKIGERQGQELY KEMQKRGWDVKESAVMAITA

VVSHIASDNVLGGKIAGDYI AKKAGEGAKVIE--LQGIAG

2;03

ABBBDBB11013103EEDBE DCDBAAA66BBCBB2400EE

C:MNDSTVLGGVRATEGQGFK AADIIGIGINGVDAVSELSK

AQNDEMALGALRALQTAG-- KSDVMVVGFDG---TPDGEK

-440241034024DEADAAA ABACCDECAE201421443E CCAABBBBCABEEECEDDEE

-EKTLNAIDSLAASGAKGFV ICTPDPKLGSAIVAKARGYD MKVIAVDDQFVNAKGKPMDT

PAKELANVQDLTVRGTKILL INPTDSDAVGNAVKANQAN IPVITLDRQ--ATKG --- -E

EECDBB33113111420344 DACEECC99CEBEDCDE211 3431240044BEEBCCA556

NELDTARRRTTGSMDALKAA GFPEKQIYQVPTKSNDIPGA FDAANSMLVQHPEVKHWLIV

TS--AARERGEGFQQAVAAH KF--NVLASQPADFDRIKG- LNVMQNLLTAHPDVQA--VF

292
EEECA-BCA65AABAADA13 20022124224EEDEAEEEC CDEECDCBBDE 3D environment

profile (1ABP)
AQATG-FYGSLLPSPDVHGY KSSEMLYNWVADVEPPKFT EVTDWLITRD sequence (1ABP)
AVNDGKLAATIAQLPDQIGA KGVETADKVLKGEKVQAKYP --VDLKLVVKQ sequence (GECR)

High-scoring proteins from search

Z-score CODE TITLE

1 >15.00 JGECG D-Galactose-binding protein - - Escherichia coli
2 >15.00 RPECDU pur repressor - Escherichis coli
3 >15.00 RPECL lac represor - Escherichia coli
4 13.95 RPECCT cyt repressor - Escherichia coli
5 12.56 RPECG gal repressor - Escherichia coli
6 11.51 RPECEG ebg repressor - Escherichia coli
7 10.41 JV0031 MalI protein - Escherichia coli
8 9.10 A35160 Repressor protein RafR -Escherichia coli
9 9.04 B24925 lac repressor - Klebsiella pneumoniae

Figure 2B
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LEVEL 4

Template = 1ABP_JGECR_RPECCT_A35160

4
DAA555BCDEBDB -- -140 02321340244CCAEBC978 ACE2-440241034024DEA DAAAAB-ACCDECAE20142 1443ECCAABBBBCABEEE C

KLGFLVKQPEEPW- - - FQT

TIALWSTLNNPF - - -FVS

TILVIVPDICDPF - - -FSE
AIGLVYPENDVPFNSGVFDMD

EWKFADKAGKDLGFEVIKIA VPDG-EKTLNAIDSLAASGA

LKDGAQKEADKLGYNLVVLD SQNNPAKELANVQDLTVRGT
IIRGIEVTAANEGYLVLIGD CAHQNQQEKTFIDLIITKQI
MVSCISRELAYHDIDLLLIA DDEH-ADCHSYMRLVESRRI

KGFVIC-TPDPKLGSAIVAK

KILLIN- PTDSDAVGNAVKM

DGMLL --- LGSRLPFDA-SI
DALIIABTLDDDPRITH- - -

ARGYDKKVIAVDDQFVNAKG

ANQANIPVITLDRQ- -ATKG
EEQRNLPPMVMANEF - --A
LHKAGIPFLALGRV- - -PQG

98
ED-DEEAABB-BABB440144114212400443EAEDEDB A556BBBEECD--BB33113 111420344DACEECC99CE BEDCDE2113431240044B

KP-MDTVPLV-MMAATKIGE

----- EVVSH-IASDNVLGG

-PEL-ELPT--VHIDNLTAA

------ LPCAWFDFDNHAGT

RQGQELYKEMQKRGWDVKES AVMAITANELD--TARRRTT

KIAGDYIAKKAGEGAKVIE- -LQGIAGTS - --AARERGE

FDAVNYLYE-- -Q- QGHKRIG- - - -CIAGPE-EMPLCHYRLQ

WQATQKLIAL--- GHKSIA- -L--LSENT-SHSYVIARRQ

GSMDALKAAGFPEKQIYQVP

GFQQAVAAEF--NVLASQP

GYVQALRRCGIMVDPQYIAR

GWLDALHEHGL- KDPLLRLV

TKSNDIPGAFDAANSMLVQH

ADFDRIKG-LNVQNLLTAH

GDFTFEAG-SKANMQQLL-DL

SP-TRRAG-YLAVMELM-SL

194
EEBCCA556ABBBDBB1101

PEVKHWLIVGMNDSTVLGGV
PDVQA--VFAQNDENALGAL

PQPPT-AVFCHSDVMALGAL

PAPPT-AIITDNDLSGDGAA

3103EEDBE---DCDBAAA6 6BBCBB2400EEEEECA-BC A65AABAADA1320022124

RATEGQGFK---AADIIGIG
RALQTAG ----- KSDVMVVG

SQAKRQGLKV--PEDLSIIG

MALQLRG-RLSGKEAVSL

INGVDAVSELSKAQATG -FY
FDG --TPDGEKAVNDGKLA
FDN - - IDLTQFCDPP- -L

YDOGL-P-QDSIIELDVA- --

GSLLPSPDVHGYRSSELYN

ATIAQLPDQIGAKGVETADK

TTIAQPRYEIGREAMLLLLD

AVIQSTRSLVGRQISDMVYQ

273

224E 3D environment profile
(IABP)

WVAR sequence (ABP)
VLKG sequence (JGECR)
QMQG sequence (RPECCT)
IING sequence (A35160)

High-scoring proteins from search

Z-score CODE TITLE

1 >15.00 RPECDU pur repressor - Escherichis coli
2 >15.00 RPECG gal repressor - Escherichia coli
3 >15.00 RPECL lac represor - Escherichia coli
4 >15.00 JGECG D-Galactose-binding protein - Escherichia coli
5 >15.00 B24925 lac repressor - Klebsiella pneumoniae
6 >15.00 JV0031 MalI protein - Escherichia coli
7 >15.00 RPECEG ebg repressor - Escherichia coli
8 8.03 KIRBF 6-Phosphofructokinase (EC 2.7.1.11) - Rabbit
9 7.88 S03321 Regulatory protein nifR - Rhodobacter capsulatus

Figure 2C
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Figure 2. ITR with arabinose-binding protein (1ABP). The figure displays

three snapshots showing the template and list of high-scoring proteins at

three different stages of the search: (A) the Level 1 template, (B) one of the

two Level 2 templates, and (C) a typical Level 4 template. The structure-

environment string is represented using hexadecimal notation as in Yi and

Lander, 1993. Below each template are the results of the database search using

the template. Only significant matches are shown (Z > 7.5), and sequences

closely related to one of the template sequences or to another member of the

list have been removed.
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Table 1. Target proteins closely related to the starting protein or to another

member of the list were removed. Remaining proteins sharing significant

sequence similarity were grouped together under the same number.

Structural similarity was measured by direct comparison of the crystal

structures if available. Alternatively, careful sequence analysis in certain

cases provided strong evidence for structural similarity with the starting

protein. A brief description of the function and binding properties of each

protein was provided from experimental data in the literature. Family

classification was based on the family designation in the PIR sequence

database or according to the recommendations reported in the references.

Also indicated is whether the protein could be detected using FASTA, BLAST

(p < 0.05), or the Bowie-Eisenberg method (Z > 5.0). BLAST Poisson scores less

than 0.2 and Bowie-Eisenberg Z-scores greater than 4.0 are listed in

parenthesis. Finally, the last column refers to the results of the search using

sequence information only (i.e., the local environment profile was omitted).

Question marks signify the absence of the appropriate information. 'Tx. reg.'

is an abbreviation for transcriptional regulator.
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PROTEII

1 Aspartate-se
dehydrogena

2 GDPmanno

3 A) Ribitol dehy

B ) Sorbitol-6-ph
dehydrogen

C) 27K bile acid
protein

D) Acetoacetyl-

E) Alcohol deh
(Fruit fly)

F) Carbonyl re

4 UDP-N-acet
D-glutamate

5 A) Transforinr

B) Transforin

C) Rab4 proteir

6 Glyceraldeh
dehydrogen

7 Alanine deh

8 3-Hydroxya.
dehydrogen

9 Phosphogly

10 Nitrogen fix
protein FixJ

11 Adenylhom

12 Fatty-acid s

13 Initiation fa

14 Exodeoxyril

15 UDPglucose

Table 5
List of proteins identified by lactate dehydrogenase (5LDH, domain 1) search

SrcuaLigand(s)/ Detected by

:N Z-score Similarity Function Cofactor(s) Family FASTZ-score Similarity Family FASTA

mialdehyde 11.4 ? oxidoreductase NAD ? No
ase

se 6-dehydrogenase 11.0 ? oxidoreductase NAD ? No

drogenase 9.7 ? oxidoreductase NAD short-chain dehyd. No

osphate 9.6 ? oxidoreductase NAD short-chain dehyd. No
ase

I dehydroxylating 9.6 ? oxidoreductase NAD short-chain dehyd. No

CoA recluctase 9.6 ? oxidoreductase NAD short-chain dehyd. No

ydrogenase 9.6 ? oxidoreductase NAD short-chain dehyd. No

eductase 9.5 ? oxidoreductase NADP short-chain dehyd. No

ylmuramoyla lanine 9.2 ? ligase ATP ? No
t ligase

,g protein (rhc-l) 9.0 Likely signalling GTP RAS Yes (0.02)

ng protein (ras) 9.0 Yes signalling GTP RAS No

9.0 Likely signalling GTP RAS No

yde 3-P 9.0 Yes oxidoreductase NAD ? No
ase

ydrogenase 8.8 ? oxidoreductase NAD ? No

cyl-CoA 8.4 Yes oxidoreductase NAD ? No
ase

cerate kinase 8.3 Yes kinase ATP ? No

ation regulatory 8.2 ? Tx. reg. ATP two-component No

ocysteinase 8.1 ? hydrolase ? ? No

snthase 8.0 ? oxidoreductase NADP ? No

tor IF2 7.8 ? translation GTP EF-TU No

,onuclease V 7.7 ? DNA repair ATP ? No

e 4-epimerase 7.6 ? isomerase NAD ? No

See notes for Table 1 for details. Only ligands and cofactors containing nucleotides are listed in "Ligand(s)/Cofactor(s)" column
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Detected by
Bowie-Eisenberg

No

No

No

No

No

No

No

No

No

No (4.6)

No

No

No

No

No

No

No

No

No

No

No

No

-



0) -J 0)0 W 1J Cco a, o W' w

H U)> 0 n n n0 n ~'

~~~~~~~~nh~ ~ ~ ~~~~~~~nI

r ;. I D C -H, H
-l·d U)U ) -

U) (Uoso

ID w mH (I-D U). .(
s ~ ~ ~ U -. 

- -. 1 - - - 1 ',..

Ln U .h . . ., ."
-J J J - r 
- J - J 0 ) 0 ) 0

z Z
0 0 (D ID (D

Ut U) U)

-. -. 0 0 0 0~~~~~~~~~~~~~~~~~~~~~~~~~OL 
;T q. ;T ;. 0 "0 -' 5 * U) 0 ~ . .

H (U 0 '0 '~~ ~~ ~~0 w IDcrq ID IDq i O 0 0 0 I I ("~~~ H H H (U~0 ~~~~~~nvlv, P' "a ~~~~~~~~~~~~~~ 'd ,~~~~(

t D D D D ID - D DtD ·d ·a 5 r D j ·d ·d 3 ° s m 
ID ID (D (D

tZ C 'Z o Z o Z oZ o Z o Z o

~~z z Z Z Z Z Z Z Z ZZ0 0 

z z z z z z (Dz o (U 00 0 d 

U) ~~~~~~~~0U

o
,-t
Z

oCDN B0

0 v
I

o "

184

U)n

o0
mz
o

3

rwwh0

pi
O-
a,

m
O.-



Table 7

List of proteins of known structure identified by the searches

Starting Protein Target Protein

Detected by
Code Z-score Structural BE, BLAST,

Similarity or FASTA

1. Arabinose-binding protein
(1ABP)

2. Plastocyanin
(1PCY)

la) D-galactose-binding protein
b) D-ribose-binding protein

2a) Leucine-binding protein
b) LIV-binding protein

3 Phosphofructokinase

1 Azurin

2 Basic blue protein

3a) Immunoglobulin light chain
b) Immunoglobulin heavy chain
C) T-cell surface glycoprotein, CD4

4 L-ascorbate oxidase

2GBP 15.0
2RBP 15.0

2LBP
2LIV

1PFK

2AZA

1CBP

Yes
Yes

9.2 Yes
9.2 Yes

8.0 Yes

9.7 Yes

8.2 Yes

2FB4_L 8.2 Yes
2FB4_H 8.2 Yes
2CD4 7.7 Yes

1ASO 7.9 Yes

1 Cytochrome c551

2 Cytochrome c555

3 p-cresol methylhydroxylase,
cytochrome subunit

la) Protease A
b) Protease B
c) Alpha-lytic protease

2 Achromobacter proteinase I

5. Lactate dehydrogenase.
Rossman domain
(5LDH, domain 1)

1 Glyceraldehyde 3-P dehydrogenase 1GDI_0

2 p21 ras protein

9.0 Yes

5P21 9.0 Yes

3 3-Hydroxyacyl-CoA dehydrogenase OACD

4 Phosphoglycerate kinase 3PGK

8.4 Yes

8.3 Yes

6. Tryptophan synthase,
a-subunit (1WSYA)

la) (S)-2-hydroxy-acid oxidase
b) Flavocytochrome B2

2 Indole-3-glycerol-phosphate
synthase

3 Arabinose-binding protein

4 p2 1 ras protein

IGOX
1FCB

9.4 Yes
9.4 Yes

--- 7.8 Yes

1ABP 7.5 No

5P21 7.5 No

185

Yes
No

Yes
Yes

No

No

No

Yes
No
No

No

3. Cytochrome C
(1CCR)

4. Chymotrypsin
(2CGA)

351C 9.4 Yes

--- 8.1 Yes

--- s8.0 Yes

2SGA
2SGB
2ALP

1ARB

No

No

No

No
No
No

No

9.7 Yes
9.7 Yes
9.6 Yes

9.6 Yes

No

No

No

No

No
No

No

No

No

Summary of data for proteins with known structures from Tables 1 - 6. Target proteins possessing significant
sequence similarity were grouped together under the same number. Dashes in the 'Code' column indicate that the
structure has not yet been deposited into the Brookhaven database. 'BE' refers to the Bowie-Eisenberg method.
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Chapter 5

Conclusion

This thesis has described the application of specialized database methods to three

problems relating to the analysis and prediction of protein structure: the identi-

fication of structural patterns at the subdomain level, the prediction of secondary

structure, and inverted protein structure prediction. In this concluding chapter, I

will discuss the broader implications of these results to the field of protein folding.

First, it is important to examine the relative strengths and weaknesses of the database

approach and highlight some of the key technical innovations. Secondly, I shall out-

line promising future directions for this research. Finally, I would like to assess the

relevance of this work to the Protein Folding Problem.

5;.1 Critique of the Database Approach

The universe of possible sequences and structures is incomprehensibly large. Current

data, on the other hand, suggests that sequence and structure space is only sparsely

populated [Chothia, 1992, Orengo, 1994, Orengo et al., 1994]. Two possible expla-

nations for this limited occupancy are evolutionary heritage and physico-chemical

constraints. In other words, evolutionary descent from a common ancestral protein

will result in a set of dense clusters of sequences and structures in sequence/structure

space. Moreover, evidence is accumulating that certain topologies (and hence se-

quences) are favored because of the nature of the interactions that hold a protein to-
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gether [Finkelstein et al., 1993, Laurents et al., 1994]. The database approach makes

,extensive use of these constraints in its search for meaningful patterns.

For example, the nearest-neighbor secondary structure predictor described in

Chapter 3 employs a novel 'metric' for defining the neighborhood around each exem-

plar in the training set. A more sensitive scoring system that can detect underlying

structural similarity between a test instance and a training exemplar is likely to im-

prove prediction performance. I have used a hybrid scoring scheme that couples the

Benner sequence similarity matrix to the Bowie-Eisenberg local environment method.

Thus, compared to statistical and neural network techniques, the nearest-neighbor

classifier makes more explicit use of evolutionary and physico-chemical relationships.

][t is difficult to imagine how information about amino acid substitution frequencies

could be encoded in a neural network.

Likewise, I have integrated this hybrid scoring system into the ITR fold prediction

technique. ITR is unusual in that it encodes both sequence and structure information

into the templates, thereby combining the specificity from sequence conservation with

the sensitivity of structure compatibility. The other key innovation of ITR is the

iterative scheme of refining the search template with new matches from the sequence

database. This process has the effect of distinguishing the signal from the noise in

the template. The 'signal' positions may represent evolutionary conserved residues or

amino acids that are important structural determinants. Finally, the growth of the

tree of search templates (see Figure 1B in Chapter 4) reflects to a certain degree the

evolutionary relationship between the seed sequence and the sequences subsequently

added to the templates.

The motivation for my investigation of SSTs was the belief that there were in-

formative structural patterns smaller than a fold but larger than supersecondary

structure motifs. I have identified many such patterns, suggesting that there are po-

tent constraints limiting the number of observed topologies at both the domain and

subdomain levels. It is likely that SSTs are the product of both divergent and con-

vergent evolution. The database approach of exhaustively comparing the entries in

PDB against one another and then clustering related members into families could be
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extended to other levels of structural organization (i.e., supersecondary structure). In

this fashion, a more systematic identification of structural patterns of all sizes could

be achieved. The key technical innovation was the development of a more flexible

measure of structural similarity that permitted the detection of common substruc-

tures.

What are the potential drawbacks associated with specialized database methods?

:[ will focus on the nearest-neighbor classifier but these arguments also apply to the

other database systems studied in this thesis. First, there is the issue of implemen-

tation. Devising a suitable metric and determining the composition of the database

requires careful investigation. A related difficulty is that optimizing the performance

of the nearest-neighbor system entails tinkering with the various parameters; there

are no analytic procedures (e.g., back-propagation for neural networks) for optimizing

these parameters. Moreover, it is problematic (although not impossible) incorporat-

ing more complex relationships between different features, such as the interaction

between amino acids four residues apart in a helix. Finally, whereas rule-based meth-

ods can provide an explanation for why a certain peptide segment adopts a helical

conformation, the output from a nearest-neighbor predictor offers no such general

insight.

o5.2 Future Directions

One natural extension of the work on SSTs is to identify in a systematic fashion

recurrent structural patterns at all levels in the hierarchy of protein structural or-

ganization. Then, by creating a database of these patterns, one could develop a

language for protein structure based on a vocabulary of folds, SSTs, motifs, etc. This

language could be used to parse a single structure or to describe the overall universe

of structures. Another important question is to what extent do SSTs correspond to

autonomous folding units and folding intermediates. I have provided a few suggestive

examples, but a more careful investigation may be of interest to those studying the

protein folding pathway as well as protein design. Finally, one would like to better
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understand the physico-chemical basis for the frequent occurrence of certain struc-

tural motifs. Why are these structures favored? Close inspection of SSTs may shed

some light on the underlying interactions that stabilize a particular three-dimensional

conformation.

The nearest-neighbor secondary structure predictor has achieved one of the best

results to date on single test sequences. The next step would be to follow the lead

of Rost and Sander (1993) and use the system to predict the secondary structure

of multiply aligned test sequences. Already, Salamov and Solovyev (1995) have cre-

ated their own version of the nearest-neighbor classifier described in Chapter 3 and

have adapted it to multiple sequence prediction. Their performance was comparable

tlo Rost and Sander (72.2% vs. 71.6%). Other possible directions are suggested by

new developments in the field of machine learning. One could divide the classifier

into four expert classifiers, each of which is specialized for a specific class of pro-

teins (, /3, a//3, a+P). Cohen and colleagues have experimented with predicting

over a single class of structures and have demonstrated improved prediction accuracy

[Kneller et al., 1990]. A second more ambitious undertaking would be to attempt pre-

dicting the secondary structure of the whole sequence database, not just the proteins

in PDB. A tradeoff exists with this type of unsupervised learning approach between

dramatically expanding the database of exemplars versus the uncertainty surrounding

the label associated with each exemplar. Finally, one can apply this methodology to

the prediction of other local structural feature such as solvent accessibility which may

possess more information about the tertiary fold than secondary structure.

Testing ITR on six proteins, there were 20 matches with proteins of known struc-

ture: 18 possessed the same basic fold as the seed protein, and two did not. The

two false positives were instructive because both arabinose-binding protein (1ABP)

and p21 Ras (5P21) possessed similar secondary structure and solvent accessibility

patterns with the seed protein, the a-subunit of tryptophan synthase (1WSYA). In-

deed, the three proteins share a common SST. One way of eliminating these spurious

matches would be to add a residue-residue contact potential containing information

about the relative positioning of different residues. Such a potential would com-
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plement the local environment and sequence substitution information present in the

current scoring scheme. Several groups have developed contact potentials based on

the loglikelihood of residue pairs being in contact [Wodak and Rooman, 1993]. More

intriguingly, Gobel et al. (1994) has outlined a method for using data on the correla-

tion of mutations in related sequences to predict residues that are in close proximity.

Another area in which the sequence/structure fitness function could be improved is

in the handling of deletions and insertions. Current methods employ a gap initia-

tion and a gap extension penalty. This parameterization scheme is too restrictive to

reflect the diversity in the size and number of gaps observed in related real protein

structures. Finally, a more rigorous method for calculating the statistical significance

of an alignment score is needed. ITR converts the raw alignment score into a Z-score,

but recent theoretical results from the sequence comparison field suggests that the

distribution of match scores is exponential and not normal [Karlin et al., 1991].

15.3 Protein Folding Problem

The protein folding problem is one of the most celebrated problems in molecular bi-

ology today. Yet, I would argue that there are two distinct subproblems embedded in

this larger question. First, can one accurately predict the three-dimensional structure

of a protein from its sequence? Secondly, do we understand the forces, energetics,

and thermodynamics that cause a polypeptide chain to adopt a specific conformation?

This thesis touches upon both issues.

Improving current methods for protein structure prediction has been a principal

goal of the thesis. :[ have developed two promising prediction techniques: the nearest-

neighbor secondary structure classifier has achieved one of the best results on single

test sequences, and the ITR fold predictor was able to detect structural homology

between distantly related proteins. My approach has been to exploit evolutionary

and physico-chemical constraints through the use of specialized database techniques.

I also made a conscious decision to work on problems associated with different levels of

the protein structure hierarchy with the long-range hope of tying together the different
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projects. For example, the results from a secondary structure classifier could be used

,as input to a protein fold predictor. Similarly, local structural and contact information

could be incorporated into a lattice model system to predict structure more directly.

Finally, one could obtain an atomic resolution structure through homology modelling.

Each of these steps requires substantial progress before de novo prediction can become

a reality, however.

Less obvious is how this thesis has a bearing on the second question. First, I have

investigated the encoding of structural information in information-based measures.

A variety of local conformation, solvation, and contact potentials used in this the-

sis and elsewhere [Wodak and Rooman, 1993, Bowie and Eisenberg, 1993] are based

on tables of information values. Exploring the relationship between these statistical

potentials and physically realistic energy functions is an important research topic.

Indeed, Bryant and Lawrence (1991) have estimated the dielectric constant in the

interior of a protein by examining the distance distribution of charged amino acids

in proteins. Secondly, prediction accuracy provides a scale for measuring the rela-

tive contribution of various factors to a particular structural phenomenon such as

secondary structure formation. For example, Gibrat et al. (1991), noting that the

performance of most prediction algorithms using a single sequence window as input

has not exceeded 65%, have speculated that local sequence contains about 65% of

the information necessary for specifying the secondary structure of a given residue.

Similarly, the poor performance of methods that rely on single amino acid preferences

reflects the relatively small magnitude of the intrinsic secondary structure propensi-

ties of amino acids [Minor and Kim, 1994]. Finally, my work with SSTs has furnished

many examples of recurrent structural patterns. Understanding the basis for these

favored packing arrangements may provide insight into the interactions that hold a

protein together.

I would like to conclude the thesis with a discussion of one of the central issues

in the protein structure field: Is the simple binary code of hydrophobic (buried)

and hydrophilic (solvent-exposed) positions the primary determinant of the three-

dimensional conformation of a protein. This question addresses both aspects of
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the Protein Folding Problem. Bowie et al. (1990) have matched the hydrophobic-

ity pattern derived from a set of aligned sequences with the pattern of buried and

exposed residues in protein structures in an attempt to identify the tertiary fold

of the sequences. With this approach, they successfully predicted that the CheY

protein is structurally similar to fiavodoxin. Dill and colleagues have modelled pro-

tein folding using a lattice system consisting of only hydrophobic and polar residues

[Chan and Dill, 1991]. They have found that this simple description captures many

of the properties (secondary structure, compactness, unique native conformation,

etc.) associated with real proteins. On the experimental side, Hecht and colleagues

IKamtekar et al., 1993] have randomized buried and exposed positions in the four-

helix bundle protein cytochrome b562 with hydrophobic and hydrophilic residues,

respectively. The fact that over half of these random sequences could adopt compact

(o-helical structures suggests that the appropriate positioning of polar and nonpolar

amino acids without regard to identity may be sufficient for inducing a particular

three-dimensional topology.

The database tools developed in this thesis could assist in a more in-depth in-

vestigation of the merits and limitations of this proposal. First, an examination of

related SSTs would reveal whether the underlying pattern of hydrophobic and hy-

drophilic positions has been conserved in domains sharing a common substructure.

Furthermore, it is important to ascertain the nature of the mapping (one-to-one?)

between these solvent accessibility patterns and three-dimensional topologies. Sec-

ondly, as described above, the nearest-neighbor predictor could be adapted to predict

the solvent accessibility state of residues in a protein instead of their secondary struc-

ture. The nearest-neighbor approach which employs multiple window sizes would be

expected to provide more information than schemes which focus on the amino acids

at the predicted position only (window = 1). Thirdly, the ITR methodology could

create templates combining the hydrophobicity patterns from multiple related struc-

tures or from both structures and sequences. Having information from more than

one protein would facilitate the identification of the important (core) positions in the

pattern. Finally, using lattice models (Yi & Lander, in progress), it may be possible
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to gauge the relative contribution to the native conformation of burying hydrophobic

positions and exposing hydrophilic positions versus local conformational tendencies,

:hydrogen-bonding patterns, packing constraints, and specific (i.e., polar) contacts

between different residues.
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* Beer-drinking buddies (Scott, Keith, Jae, etc.): Bright Lights, Fallen Angels:
The Decadent Bar Scene around MIT during the Early 90's.
* Chris and Sima: Eating Out on a Limited Budget in Boston and the Bay
Area.

· Kei-Mu: Reverse Psychology: Alternative Approaches to Giving Advice.

Finally, I would like to thank Chris and Sima for their unwavering
friendship, Kei-Mu for his unrelenting advice, and Mom and Dad for their
love and support.
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