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ABSTRACT

, T cells can be divided into subtypes on the basis of Vy gene
expression, receptor diversity and tissue localization. These subtypes
arise in "waves" in the thymus during ontogeny. One of the models
proposed to explain this phenomenon is the programming model, in
which rearrangement of particular Vy genes is targeted in progenitor
cells whose subtype is predetermined.

Earlier studies demonstrated that the T cell receptor Vy genes
rearrange to the J1l segment in a highly ordered fashion during
ontogeny. Here, a PCR assay used to quantitate rearrangements in
thymocyte DNA from different developmental time points showed
that the relative frequencies of the V rearrangements correspond
reasonably well to the frequencies of Vy-expressing subtypes in the
thymus at the different time points.

It has been proposed that the accessibility of a gene to the
recombinase machinery may be controlled, at least in part, by
transcription. In order to determine the relationship, if any, of
transcription to ordered V gene rearrangement, an RT-PCR assay
was employed to quantitate transcripts of unrearranged Vy genes
(sterile transcripts) in thymocyte RNA from the same developmental
time points as used above. This showed that the pattern of Vy gene
sterile transcripts correlates with the timing of their rearrangement.

The accessibility model predicts that not all Vy genes in the Cl
cluster will be accessible in the same progenitor cell. Some
transcripts of rearranged Vy3 genes were found to consist of the V4
leader (L4) spliced onto the V3Jyl coding exon, indicating that both
the V3 and the Vy4 genes are accessible on the same chromosome.
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The RT-PCR assay was employed to compare L4 usage in Vy3
rearranged vs. sterile transcripts. Unlike the rearranged transcripts,
the sterile transcripts rarely contain L4, suggesting that the V3 and
VY4 genes are differentially accessible prior to rearrangement.

The first T cell receptor positive thymocytes to appear during
ontogeny are Vy3+ cells, which can only be detected in the fetal
thymus and can only be generated by the combination of fetal stem
cells and fetal thymic stroma. The abundance of Vy3 sterile
transcripts in fetal vs. adult stem cell-derived thymocytes in fetal
thymic organ cultures was measured to determine if the Vy3 gene
accessibility in these progenitors contributed to the ability to become
a Vy3+ cell. In every case, V3 sterile transcript levels were higher
in RNA from fetal thymic lobes repopulated with fetal liver than in
those repopulated with adult bone marrow. Given this apparent
contribution of the stem cell origin to the restriction of V3 + T cell
development, four models were proposed describing the possible role
of' the thymic stroma in the regulation of this process.

Finally, Vy sterile transcript levels in SCID adult thymocytes
were found to be similar to those in normal fetal thymocytes.
Examination of fetal liver chimeras of normal cells into SCID mice
(AKR-->SCID) showed, however, that the SCID adult thymus lacked
the ability to generate V3 + cells from fetal stem cells. Neither the
maturation of the SCID thymus induced by normal cells in these
chimeras, nor the introduction of SCID fetal stem cell into a normal
thymus in the reciprocal chimeras (SCID-->AKR), caused a decrease in
the Vy3 sterile transcript levels in the SCID cells. However, V3
sterile transcript levels did decrease in normal cells from AKR-->SCID
and CB17-->SCID chimeras. The result that SCID cells do not produce
lower levels of sterile Vy3 transcripts in response to coexisting with
normal developing T cells in an adult thymus, fails to clarify the role
of adult thymic stroma in regulation of Vy3 gene accessibility.

Thesis Supervisor: Dr. David H. Raulet
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Chapter 1

INTRODUCTION

T Cell Antigen Receptor

Structure
The T cell receptor (TCR) is composed of a clonally variable,

disulfide-linked heterodimer composed of either af3 or y$ chains,

vvhich are responsible for the antigen specificity of the T cell (Dembic

et al., 1986, Saito et al., 1987). These are non-covalently associated

with the CD3 complex, which is composed of five invariant chains: , 6

£, and a disulfide linked dimer of either -C or -l (reviewed in

(Ashwell & Klausner, 1990)). This complex is thought to be involved

in intracellular signal transduction upon TCR stimulation (Frank et al.,

1990, Irving & Weiss, 1991).

Ligand Recognition and Function

The TCR recognizes a peptide antigen bound to a Major

H[istocompatibility Complex (MHC) molecule (reviewed in (Rothbard

& Gefter, 1991)). Most ap3 T cells express either a CD4 or CD8 co-

receptor which binds to a non-polymorphic region of MHC Class I or

MHC Class I, respectively, and increases the avidity of the TCR-

antigen interaction. ax3 T cells which are CD8+ are usually cytolytic

and kill cells whose antigen/MHC complex they recognize. CD4+ cells

secrete a variety of cytokines upon recognition of antigen/MHC
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complex which have a "helper" function for cells bearing that

complex.

In contrast, most y T cells are CD4-CD8-. The functions and

specificities of y8 cells are still being elucidated and will be discussed

be, low.

Generation of Diversity

A diverse repertoire of T cell specificities is required to

respond to the wide variety of antigens that may be encountered in

the lifetime of an organism (reviewed in (Davis & Bjorkman, 1988)).

There are several mechanisms which operate to generate diversity of

T cell receptor chains (reviewed in (Schatz et al., 1992)). The exons

forming the antigen binding domain of the T cell receptor chains, like

imlmunoglobulin (Ig) genes, are assembled from gene segments

consisting of variable (V), diversity (D-in TCR f3, and IgH genes only)

and joining (J) segments. This process of V(D)J recombination is able

to generate considerable diversity because of the variety of choices

of gene segments and the production of divergent sequences at the

junctions of these segments.

One way junctional diversity is achieved is by the loss of

nucleotides from the ends of each coding segment, due to the

imprecise nature of the joining process. Also, the junctions often

contain non-germline-encoded nucleotides (N regions) which are the

result of random base additions by the enzyme terminal

deoxynucleotidyl transferase (TdT) (Desiderio et al., 1984, Landau et

al., 1987). Another type of base addition is found in P (palindromic)

regions, which occur next to coding segments in which no base loss

10



has taken place. These typically consist of one or two nucleotides

complimentary to the end of the adjacent gene segment (Lafaille et

al,, 1989, McCormack et al., 1989).

Somatic hypermutation, used to increase the diversity of

immunoglobulin genes, has not been shown to operate in TCR genes.

The mechanism of V(D)J recombination will be discussed in

detail below.

TCR loci

Figure -1 illustrates the genomic organization of the murine

TCR loci. The locus is contained in the region between Vx genes

and the Ja genes. Thus, the entire locus is deleted in the event of a

Vacx to Ja rearrangement. Approximately ten of the Vxa/6 genes are

actually used to assemble genes. Some of these can be used by

either a and , while others, particularly V1 and V5, appear to be

used only in the assembly of chains. The Va genes rearrange to

one of -80 Ja segments upstream of a single Ca region. Similarly, VS

and V3 join to D and then J segment upstream of a single (6) or two

tandem () constant region genes.

The y genes, in contrast, are arranged in four clusters, each of

which contains a single Jy and Cy segment (reviewed in (Raulet,

1989)). Cy3 is a pseudogene which is usually unrearranged and is

deleted in some mouse strains. The Vy genes generally rearrange to

the adjacent Jy segment, thus allowing the possibility of three

different rearrangements on the same chromosome. In fact, multiple

rearrangements of the TCR y locus in the same cell are commonly

observed. However, usually only one of the rearrangements is
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productive (Heilig & Tonegawa, 1987). Degenerate y TCR expression

nnay be prevented by preferential pairing with 6 chain and allelic

exclusion (Korman et al., 1988, McConnell et al., 1989).

Lineage Separation of ac3 and y T Cells

af3 and y T cells can be derived from a common progenitor.

Two general models have been proposed regarding the point at

which their lineages diverge.

In one model, ax3 T cells are derived from cells which have first

attempted and failed to produce functional y and rearrangements

(Allison & Lanier, 1987). This model is based in part on the timing of

the rearrangements, as the genes are first to rearrange during

ontogeny, followed by y, P and finally ca (Born et al., 1986, Raulet et

al., 1985, Snodgrass et al., 1985a, Snodgrass et al., 1985b). Also in

support of this model is the observation that y rearrangements are

found in most ax3 T cells (Garman et al., 1986, Hayday et al., 1985,

Heilig et al., 1985, Heilig & Tonegawa, 1987, Reilly et al., 1986,

Traunecker et al., 1986).

The second model proposes that progenitor cells are committed

to become either an ap3 or a y8 cell before rearrangement takes place.

Support for this model comes from the observation that the circular

excision products resulting from a Va-Ja rearrangement contain the 

locus in its germline configuration (Winoto & Baltimore, 1989). This

implies that the gene rearrangements take place in cells which

have not undergone 6 rearrangement. Another study did find

rearranged 6 loci in excision circles, but their cloning methods
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selected against unrearranged genes, perhaps allowing them to

detect rare exceptions (Takeshita et al., 1989). Additional evidence

consistent with this model comes from studies in which mice

transgenic for rearranged y and 6 genes still had normal numbers of

c3 T cells (Dent et al., 1990, Ishida et al., 1990). Thus, the ac3 T cells

developed regardless of the presence of functionally rearranged 

and 6 genes in the progenitor cells.

Currently, the second model is the favored one. However, it

does not account for the presence of rearranged y genes in most ocX T

cells. It is possible that lineage commitment occurs after y

rearrangement. Alternatively, y rearrangement may not be

restricted in progenitor cells which are committed to the of3 lineage.

Indeed, the rearranged state of the y genes may not be important as

most of these genes are not expressed in oc3 T cells (Korman et al.,

1988). Similarly, most y T cells have partial (D1-J3) chain

rearrangements (Asarnow et al., 1988, Marusic-Galesic et al., 1988a).

Thus the V to DJ3 rearrangement step may be the important one in

lineage determination.

T Cell Development in the Thymus

T cells originate from hematopoietic stem cells in the bone

marrow or fetal liver which migrate to the thymus and, under the

influence of the thymic stroma, become mature T cells. There is

evidence that some mature T cells are produced in the absence of a

thymus, but this discussion will focus on thymus-dependent T cell

development.
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Thymic architecture

The murine thymus is an organ essentially derived from

epithelial tissue formed between embryonic day 11 (Ell) and E12

(reviewed in (van Ewijk, 1991)). Shortly thereafter, lymphoid

progenitors begin to enter. By E13, the thymus has begun to shape

itself into two distinct compartments, the cortex and the medulla.

The medulla is in the interior of each thymic lobe and is surrounded

by the cortex. The cortex contains a meshwork of epithelial cells

with long, branching processes. This region is packed with

lymphocytes and has scattered macrophages. The medulla is made

up of more conventional type epithelial cells, has fewer lymphocytes

and contains bone marrow-derived dendritic cells, particularly near

the border with the cortex.

The outer (subcapsular) region of the cortex is distinct from the

rest as the location in which the majority of the lymphocytes are

actively dividing. The epithelial cells form into baskets which are

filled with lymphocytes. This is also where the thymic nurse cells

(TNC) are found. TNC are large epithelial cells that bind thymic

lymphocytes so tightly that when isolated from the thymus, they are

found to have completely engulfed many lymphocytes. These

remain viable and can be released in culture, suggesting that in vivo

the TNC give inductive signals while sequestering the developing

lymphocytes. In the deeper cortex, the epithelial cells are organized

into sheets perpendicular to the thymic capsule. These may serve to

guide the migration of thymocytes from the outer cortex toward the

m edulla.
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Thymus colonization

T cells first begin as pluripotent hematopoietic stem cells (HSC).

These are present in the fetal liver and in the bone marrow after E15

(reviewed in (Ikuta et al., 1992)). These cells can give rise to all

erythroid, myeloid and lymphoid lineage cells. However, as they

differentiate, their developmental potential becomes more limited.

HSC-derived T precursor (pro-T) cells migrate into the thymus from

the fetal liver during gestation and from the bone marrow starting

late in gestation. The seeding of these cells early in life does not

suffice to generate T cells indefinitely. Maintaining T cell production

requires colonization of the thymus by successive waves of stem cells

through adulthood (Jotereau et al., 1987). These cells develop into

mature T cells under the influence of the thymic stroma (see below).

Purified pluripotent HSCs injected directly into the thymus can

de velop into T cells. However, it is not clear if under normal

physiological conditions, stem cells are still multipotent when they

enter the thymus. They may need to differentiate to the pro-T stage,

perhaps to express the appropriate homing receptors. Recently,

monoclonal antibodies have identified novel cell surface markers

(JORO) that define a population of pro-T cells (Palacios et al., 1990).

Staining of embryos revealed that cells expressing these markers are

present in the fetal liver at E9 and in adult bone marrow. These cells

appear in the thymus at Ell, and at E14 they make up almost 100%

of thymocytes. This number declines to -1% by E18 and the cells

remain a small percentage of thymocytes in adult (Palacios &

Samaridis, 1991). The kinetics of the expression of JORO markers
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suggest that HSCs become pro-T cells in the fetal liver and bone

marrow prior to migration to the thymus.

' hymocyte differentiation
Pro-T cells enter the thymus and move through it in a specific

order which is related to maturational steps performed by different

thymic microenvironments (reviewed in (Rothenberg, 1992)). After

entering the thymus near the border of the cortex and medulla, pro-

T cells slowly migrate to the outer region of the cortex. During this

period, cell division begins. In the subcapsular region, proliferation

is at its maximum rate. This phase ends with the expression of TCR

on the cell surface. These cells then stop proliferating, shrink and

move back through the cortex, where they begin to mature. Only T

cells with a mature phenotype enter the medulla. Cells may reside

here for several days before being exported to the periphery. The

role of the medulla is not clear, but it is thought to be involved in

selection or functional maturation of T cells.

In the process of becoming mature T cells, thymocytes undergo

many stages defined by cell-surface phenotype for markers such as

CD4, CD8, TCR/CD3, and I-HSA, among others (reviewed in (Rothenberg,

1992)). The earliest thymocytes have a cell surface phenotype

similar to HSCs, but lack the ability to differentiate into non-T cell

lineages and express CD4 at low levels (Wu et al., 1991). These cells

are HSAIOCD410CD8-TCR - , after which they undergo a transition to

the HSA+CD4-CD8-TCR - (DN) stage. These cells appear to pause,

apparently awaiting an as yet undefined triggering signal from the

thymic microenvironment. Once initiated, these cells undergo a

17



transition to a rapidly dividing state in which they begin to express

low levels of CD8 on their surface followed by CD4. At the same time,

they rearrange their TCR genes. When this stage is over, the cells

are HSAhiCD4+CD8+TCR+ (DP) . It is at this stage that self-reactive

cells are deleted by negative selection, and cells with the appropriate

MHC-restriction are encouraged to mature by positive selection.

After the selection step, these cells attain their mature T cell

phenotype of ISA-CD4+CD8-TCR + or HSA-CD4-CD8+TCR + and move to

the medulla.

The above discussion refers to the development of a(x T cells.

Because y T cells are CD4-CD8- even when mature, it is difficult to

define maturational steps on the basis of expression of these

molecules.

Influence of T cells on the thymic environment

It has been established that the thymic environment has a

great influence on developing thymocytes. Recent studies have

shown that this influence is bidirectional.

The most compelling examples of the dependence of thymic

stromal development on the presence of lymphocytes come from

experiments in SCID mice. These mice have a defect in their ability

to rearrange Ig and TCR genes that results in a profound lack of B

and T cells (Bosma et al., 1983). The thymus of a SCID mouse is

almost entirely cortical, with only a few scattered medullary cells,

illustrating the need for lymphoid cells to maintain the structure of

the medulla.

18



Various methods have been used to develop a normal thymic

architecture in SCID mice. The injection of normal bone marrow cells

into SCID mice restored the thymic architecture to a normal

morphology (Shores et al., 1991). In addition, SCID mice crossed to

TCR a3 transgenic mice had normal thymuses (van Ewijk et al.,

1994). Finally, injection of normal lymph node cells into a SCID

mouse caused the restoration of the cortex and medulla (Surh et al.,

1992). Thus, it appears that the presence of mature T cells is

necessary for the establishment and/or maintenance of normal

thymic architecture.

Immunobiology of y8 T cells

y6 T cells can be divided into subtypes on the basis of V gene

usage, receptor diversity, ontological timing of development and

tissue localization. This discussion will focus primarily on T cells

with receptors whose y genes are derived from the Cyl cluster (For a

summary of Cyl-derived y6 subtypes see Fig. 1-2).

Ontogeny of y T Cell Subtypes

y6 T cell subtypes arise in ordered waves during ontogeny. The

first CD3 + thymocytes appear at embryonic day 13 (E13). At this

stage, virtually all CD3+ thymocytes express a Vy3/V81 receptor.

The abundance of these cells peaks at -E15, after which their

numbers decline to be undetectable in the thymus by birth (Cron et

al., 1988, Havran & Allison, 1988, Itohara et al., 1989). A second,

overlapping wave comprising Vy4/V81-expressing thymocytes is

19
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thought to arise and decline slightly later that the first, although the

lack of a Vy4-specific antibody prevents an exact comparison of the

Vy3 and Vy4 waves (Ito et al., 1989). Thymocytes bearing Vy2,

paired with various V, particularly V5 (Elliott et al., 1988, Korman

et al., 1988), first appear in the fetal thymus at E16 and, along with

Vyl.1 and Vyl.2-bearing cells, make up most of the y T cells in the

adult thymus (Houlden et al., 1988, Itohara et al., 1989). Vy5 -

expressing cells appear to arise extrathymically (De Geus et al., 1990,

Lefrancois et al., 1990).

Receptor Diversity

Vy3/V81-expressing T cells are unusual in that, as a population,

their TCRs are almost completely lacking in junctional diversity

(Asarnow et al., 1988, Havran et al., 1989). Similarly, Vy4-expressing

cells are characterized by the invariant junctional sequences of the

V y4 chain, which is paired with the same V1 chain used by Vy3-

expressing cells (Lafaille et al., 1989). The junctional sequences

almost exclusively used by the Vy3, Vy4 and V61 chains in early fetal

thymocytes are called the "canonical" sequences (Asarnow et al.,

1988). These sequences lack N regions, probably due to the low

levels of TdT in the early fetal thymus (Landau et al., 1987,

Rothenberg & Triglia, 1983).

In contrast, Vy2-expressing cells have more diverse receptors,

with regard to both junctional sequences and pairing with 6 chain

(Cron et al., 1988, Cron et al., 1989), as do Vy5+ cells (Bonneville et

al., 1988, Goodman & LeFrancois, 1989, Takagaki et al., 1989a).
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Tissue Tropism

Another characteristic distinguishing the various y6 T cell

subtypes is their tissue localization in the periphery of the adult

mouse. y T cells with polymorphic receptors are primarily found in

the secondary lymphoid organs (Vy2+ , Vyl.l+ and Vy1l.2+), the lungs

(Vy2+) and the lining of the intestine (Vy5+ , i-IELs) (reviewed in

(Haas et al., 1993)).

Cells expressing the canonical Vy3/V61 receptor are found in

the epidermis and are known as skin intraepithelial lymphocytes (s-

IELs). Similarly, Vy4+ T cells reside in the epithelial layer of the

tongue and female reproductive organs and are known as r-IELs

(reviewed in (Allison & Havran, 1991, Havran et al., 1991a, Raulet et

al., 1991)).

The fact that s-IELs express the same Vy3/V61 TCR as the early

fetal thymocytes suggests that these are the precursors of the s-IELs.

Definitive proof was rendered by studies in which nude mice, which

are deficient in Vy3+ s-IELs, were engrafted with fetal thymic lobes

or Vy3+ fetal thymocytes (Havran & Allison, 1990). This resulted in

the appearance of donor-type Vy3 + cells in the skin. Additionally,

the depletion of Vy3 + cells during fetal development by the

administration of anti-Vy3 antibody in utero, resulted in mice that

were deficient in s-IELs (Havran & Allison, 1990).

The observation that tissue localization of s-IELs, r-IELs and i-

IIELs is correlated with the Vy gene usage suggests that the TCR may

act as the homing molecule to direct these cells from the thymus to

their peripheral locations. However, the s-IELs and i-IELs in TCR

transgenic mice were found to bear the transgene-encoded receptor

22



(Bonneville et al., 1990), indicating that tissue localization does not

depend on the expression of the correct TCR. It is therefore possible

that subtype determination involves the coordinate activation of TCR

and homing receptor expression during development.

Fetal Origin of Invariant y6 T Cells

As mentioned above, Vy3 cells are only present in the thymus

during fetal ontogeny between -E14-E17. Two possible explanations

are that only fetal stem cells are competent to become Vy3+ cells, or

that only a fetal thymic microenvironment can support the

development of Vy3+ cells. To test this, fetal thymic lobes were

repopulated with either fetal liver stem cells or adult bone marrow

stem cells. These same stem cell populations were introduced into

the adult thymus by intrathymic injection (Ikuta et al., 1990). The

only combination which led to the appearance of Vy3+ cells was the

fetal stem cells in the fetal thymus, indicating that the stage of

development of both the thymic stroma and progenitor cell are

important. This was confirmed in studies which used thymic grafts

and stem cells transferred into a nude host in all the combinations

described above. Only the mouse grafted with fetal liver and

reconstituted with fetal liver stem cells generated Vy3+ cells in the

skin (Havran et al., 1991a).

Antigen Specificity and Function

Although their actual function(s) are unknown, y6 cells appear

to possess some of the same functional capabilities as cax cells

23



(reviewed in (Haas et al., 1993, Raulet et al., 1991)). y6 T cells

capable of lysing tumor targets have been isolated from a variety of

tissues including thymus, peripheral blood, spleen and intestine. In

addition, y6 cells can secrete a variety of cytokines. Anti-CD3

antibody treatment or lectin stimulation of y T cell clones revealed

production by each clone of some combination of the following

cytokines: IL-2, -3, -4, -5, -10, TNFa, TGF3, GM-CSF, IFNy and 3.

Antigen specificities of y T cell are not well understood. What

follows is a discussion of reactivities of various subtypes, although

the physiological relevance of these is not clear.

Because of their location in the secondary lymphoid organs and

the variability of their receptors, Vy2-, Vyl.1-, and Vy1l.2-expressing

T cells were thought to have the capacity to respond to conventional

antigens. y8 T cell clones and hybridomas have been isolated which

recognize a variety of antigens including classical and non-classical

MHC, the MHC I-like CD1 molecule, and mycobacterial antigens

(reviewed in (Haas et al., 1993, Porcelli et al., 1991)).

Interestingly, many MHC-specific clones are broadly cross-

reactive, suggesting that they recognize a relatively non-polymorphic

antigenic determinant (Matis et al., 1987). Also, alloreactive cells

occur infrequently in populations of y T cells, indicating that they

may not have the bias for MHC recognition found in populations of ca3

cells.

Mycobacteria-reactive y8 cells have been found in immunized

mice and also in the lesions of leprosy patients and the synovial fluid

of patients with arthritis (Holoshitz et al., 1989, Janis et al., 1989,

MLodlin et al., 1989, O'Brien et al., 1989). It was found that even y78 T
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cells from healthy donors produced a vigorous response against

rnycobacterial antigens (Pfeffer et al., 1990). In addition, a large

fraction of y8 T cells isolated from newborn thymus recognize the

highly conserved mycobacterial heat-shock protein HSP65. These

were also found to cross-react with the human HSP65 (Born et al.,

1990). Although these cells were isolated from newborn thymus,

they all express Vyl.1/V66, a splenic y5 subtype. The observation

that these mycobacteria-specific hybridomas spontaneously produce

IL-2 in culture suggests that they may be reactive against stressed

autologous cells.

Even before this discovery, it had been suggested that one

function of y T cells is immunosurveillance of epithelial tissue to

eliminate stressed autologous cells in these locations (Asarnow et al.,

1988, Janeway et al., 1988). This theory was initially based on

characteristics of Vy3+ s-IELs. Due to their receptor homogeneity,

lack of lateral mobility in the skin and contact with keratinocytes it

was proposed that they respond to damage-induced self antigens in

keratinocytes. This was supported by the observation that s-IELs in

culture with "stressed" keratinocytes responded by producing IL-2

and that exposure of the keratinocytes to heat shock or sodium

arsenate increased this stimulation (Havran et al., 1991b).

Antigens for Vy4-expressing r-IELs have not been determined.

However, given their similarity to s-IELs, it is possible that they

recognize an analogous antigen in the tissues in which they reside.
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Thymic selection

af3 T cells are known to progress through several stages as they

mature in the thymus, during which they are subjected to negative

selection, to remove self-reactive cells, and positive selection, to

produce an MHC-restricted repertoire which can recognize antigen

presented by autologous cells. Whether similar selection processes

are used to shape the y8 T cell repertoire is currently under

investigation.

Studies using MHC-deficient mice indicate that selection on

MIHC is not required for normal development of most ya T cells. Mice

that are mutant for 32-microglobulin ([2m), and thus are grossly

deficient in MHC class I, appear to have normal numbers of y T cells

in the lymphoid organs, skin, intestines and uterus despite a

profound lack of CD8 + ao3 T cells (Correa et al., 1992, Zijlstra et al.,

1.990). Treatment of purified y cells from the spleen, thymus

lymph node or skin of these mice with anti-y6 antibody resulted in

normal proliferative responses and lymphokine secretion. Similar

results were obtained from studies examining y T cell repertoire and

function in MIC Class II deficient mice (Bigby et al., 1993).

In contrast, studies using 2m-deficient mice bred to mice

transgenic for a Class I MHC-specific yb TCR show that T cell

development is affected by the lack of MHC (Wells et al., 1991, Wells

et al., 1993). In these mice, the transgene-expressing thymocytes

were unable to proliferate to TCR stimulation, were HSA positive and

did not populate the peripheral lymphoid organs. Similarly, studies

using mice transgenic for MHC Class I Tla-specific y6 TCR show that

transgene-positive cells are absent from the thymus and periphery
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of mice expressing the Tla-encoded determinant (Dent et al., 1990).

These studies suggest that some y cells may be subject to positive

and negative selection on MHC Class I molecules. However, the low

frequency of MHC-reactive y T cells (Bluestone et al., 1991) indicates

that this is probably a minor population in normal mice.

Although most y subtypes appear to mature normally in the

absence of MHC molecules, it is still possible that a positive selection

step involving interaction with a non-MHC ligand is required. This is

supported by studies examining the development of Vy3 +

thymocytes either in vivo or in fetal thymic organ cultures (Leclercq

et al., 1993, Tatsumi et al., 1993). These cells were shown to undergo

a change from an immature Vy3lOHSAhi to a Vy3hiHSAlo phenotype,

the same phenotype as s-IELs. This transformation can be blocked

by treatment with cyclosporin A, which also inhibits positive

selection of ap thymocytes.

Finally, it does not appear that positive selection is required to

insure that Vy3 + and Vy4 + T cells express receptors with the

canonical sequence. The frequency of canonical junctions in s-IELs

and r-IELs from MHC Class I-deficient mice was comparable to

normal mice, indicating that MHC I molecules do not participate in

selecting invariant y T cells (Correa et al., 1992). In addition, studies

were done in mice which had mutated TCR y recombination

substrates (Asarnow et al., 1993) or mutated C sequences (Itohara

et al., 1993) such that no protein products from rearrangements of

these genes would reach the surface. Most Vy3, Vy4 and V1

rearrangements were found to have the canonical sequence even

though it is unlikely that selection of these junctions occurs.
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In contrast, an earlier study had found that treatment of fetal

thymocytes with an anti-ya antibody resulted in an increase in the

frequency of productive Vy3, Vy4, and V1 rearrangements with

non-canonical junctions, presumably by somehow bypassing positive

selection (Itohara & Tonegawa, 1990). However this result is

difficult to reconcile with the above, and may represent an

artifactual expansion of rare cells with non-canonical junctions.

Regulation of Ordered y T cell Subtype Production

Models proposed to explain the phenomenon of ordered y8 T

cell subtype production include the "selection" model and the

"targeting" model (reviewed in (Raulet et al., 1991)). The selection

model proposes that rearrangement of TCR y genes is essentially

random and that the ordered appearance of y6 T cells bearing

distinct Vy receptors is accomplished by selection of those cells on

stage-specific thymic ligands. The molecular targeting model

proposes that the lineage of progenitor cells is determined prior to

rearrangement, which leads to the targeting of specific V gene

segments for rearrangement. It must be pointed out that these

models are not mutually exclusive and may actually reinforce each

other.

Presently, most evidence weighs in on the side of the targeting

model. Many observations suggest that positive selection of most y6

T cells is not absolutely necessary (see above). In addition, it has

been found that the rearrangement of Vy genes is not random, but

occurs in a similar order to the appearance of the corresponding Vy-

expressing cells (Garman et al., 1986). Other evidence for gene
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targeting is based on observations that the non-productive

rearrangement in a panel of well-characterized cell lines is usually

the same as the productive one, indicating restriction of

rearrangement in the progenitors of these cells (Raulet et al., 1991).

Finally, mice which are mutant for C and thus express no detectable

y8 TCR, still have the same ordered Vy and V rearrangement

patterns seen in normal mice (Itohara et al., 1993).

The targeting model also proposes that there are various

sublineages of T cell precursor cells committed to becoming a

particular y6 subtype. The observation that stem cells of adult or

fetal origin have different developmental potential fits with this

prediction (Havran et al., 1991a, Ikuta et al., 1990, Ikuta &

Weissman, 1991).

V(D)J Recombination

The previous section described a model in which regulation of

V y gene rearrangement may be partially responsible for

developmentally ordered y6 T cell subtype production. An

understanding of the rearrangement mechanism is important to

determine its regulation. The assembly of gene segments into

functional Ig or TCR genes is a complex process requiring many

levels of control. The V(D)J recombination mechanism is discussed

below (reviewed in (Gellert, 1992, Lieber, 1991, Schatz et al., 1992).

29



'V(D)J Recombination Signals

Recombining gene segments of immunoglobulin (Ig) and TCR

loci are flanked on one (V, J) or both (D) sides by conserved sequence

motifs known as recombination signal sequences (RSS) (Fig. 1-3A).

These consist of a palindromic heptamer directly adjacent to the

coding sequence and an A/T-rich nonamer which are separated by a

non-conserved spacer of 12 or 23 nucleotides. Mutational analyses

showed that neither the self-complementarity of the heptamer nor

the tract of five A residues in the nonamer are essential for

recombination. The most important bases in the heptamer are the

four immediately adjacent to the coding segment. The nonamer itself

is not absolutely crucial, as a low level of recombination occurs even

if it is mutated out of existence. The sequence of the spacer does not

appear to be important, but the length does. Reduction of spacer

length by more than one base severely reduces joining.

Joining can only occur between gene segments flanked by RSS

with different spacer lengths (12-23 rule). In the TCR loci, V and D

segments have an RSS with a 23 bp spacer on their 3' end and D and

J regions have an RSS with a 12 bp spacer on their 5' ends. This

allows joining of V to D, D to D, D to J or V to J. In the IgH locus, the D

segments are flanked on both sides by RSS with 12 bp spacers, and

the J gene segments by RSS with 23 bp spacers, so direct V-J joining

and the use of multiple D segments is not allowed (Fig. 1-3B).

Depending on the relative orientation of the gene segments, joining

occurs by deletion of the intervening sequences or by inversion (Fig.

1-3C).
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Figure 1-3: Outline of V(D)J recombination. (A) The consensus RSS

sequence. The important nucleotides, determined by mutational

analyses, are boxed. The number below each nucleotide shows the

percentage conservation at each position. (B) The V, D and J

segments from the various antigen receptor loci are shown with their

type of RSS. Filled triangles indicate an RSS with a 23 bp spacer,

open triangles an RSS with a 12 bp spacer. (C) Deletional or

inversional recombination.

From Gellert, 1992 and Lieber, 1991
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Rearrangement Mechanism

The first step in V(D)J recombination involves site-specific cuts

made at the juncture between the coding sequence and the heptamer

of the RSS (Roth et al., 1992b). This is followed by resolution of the

resulting DNA ends into coding joints and signal joints. Signal joints

are formed by precise heptamer to heptamer ligation (Roth et al.,

1993), while the joining of the coding ends is much less precise,

generally resulting in the loss or addition of 1-10 nucleotides.

The resolution of coding ends has many steps, one of which is

thought to be the formation of ends into covalently sealed hairpin

loops. This is based, in part, on the accumulation of unresolved

coding ends with this conformation in SCID thymocytes (Roth et al.,

1992a). Opening of the loop by nicking somewhere other than

between the terminal nucleotides would lead to the formation of

short inverted repeats. Retention of one or more of these bases after

exonucleolytic processing, followed by addition of nucleotides by TdT

and subsequent joining would lead to junctional sequences including

P and N nucleotide insertions.

However, P nucleotides do not appear in every junction. It is

possible that hairpins could be a universal intermediate in V(D)J

recombination, but nicking of the hairpin at its terminus would lead

to blunt ends. Also, P nucleotides could be removed by exonuclease

prior to joining. Potential P nucleotides may also be used as short

homologies to aid in the alignment of two coding ends in the joining

process, which would mask their presence (Feeney, 1992).
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Protein Factors

Only a few of the enzymes involved in V(D)J recombination

have been definitively identified (reviewed in (Schatz et al., 1992)).

As mentioned above, TdT is responsible for the addition of non-

templated nucleotides to the coding junctions. In addition,

heptamer- and nonamer-binding proteins and site-specific

endonucleases have been detected in extracts from lymphoid cells.

The SCID factor has been shown to be important for coding joint

formation, although it has yet to be isolated.

To date, the most crucial factors identified in the V(D)J

recombination process are the products of two recombinase

activating genes RAG-1 and RAG-2. These two linked genes were

cloned on the basis of their ability to transfer V(D)J recombination

activity to non-lymphoid cells (Oettinger et al., 1990, Schatz et al.,

1989). This in itself is surprising because it implies that all other

components of the V(D)J recombination machinery are already

present in non-lymphoid cells.

That these gene products are necessary for V(D)J

recombination is demonstrated by the fact that the deletion of either

RAG-1 or RAG-2 genes by homologous recombination results in a

complete lack of functional B and T cells (Mombaerts et al., 1992,

Shinkai et al., 1992). Co-transfection of RAG-i and RAG-2 into non-

lymphoid cell lines permits rearrangement of recombination

substrates with normal signal and coding joints, indicating that these

genes are sufficient to activate V(D)J recombination. In addition,

RAG-1 and RAG-2 transfected into SCID fibroblasts leads to SCID-like

recombination, with normal signal joints and abnormal coding joints,
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indicating that neither of these genes codes for the SCID factor

(Schatz et al.,, 1992).

The direct role of RAG-1 and RAG-2 proteins in V(D)J

recombination has not been demonstrated. They may actually be a

part of the recombination machinery, they may activate other factor

involved in V(D)J recombination, or they may recruit ubiquitous

factors used for other types of recombination or DNA repair to the

V(D)J recombination complex.

Only pre-B and pre-T cells express both RAG-1 and RAG-2.

RAG-1 expression is detected in the fetal and postnatal murine

central nervous system (Chun et al., 1991), although its importance is

questionable, as RAG-1 mutant mice have no obvious nervous system

defects (Mombaerts et al., 1992). RAG-2 is expressed in the chicken

bursa of Fabricius, where it may be involved in Ig gene conversion

(Carlson et al., 1991).

RAG-1 and RAG-2 expression appears to be developmentally

regulated. Recent studies have revealed that RAG-1 and RAG-2

expression occurs in two waves during intrathymic development

(Wilson et al., 1994). The first occurs at the CD4-CD8- stage,

coincident with 13, y and 6 gene rearrangement, and the second at the

early CD4+CD8 + stage, coincident with ox gene rearrangement. In the

thymus, levels are high in TCR+CD4+CD8+ cells , but not CD4+ or CD8+

single positive cells. Also, crosslinking of the TCR leads to down

regulation of RAG-1 and RAG-2 expression (Turka et al., 1991). The

timing of RAG-1 and RAG-2 expression implies that the presence of

TCR on the surface is not enough to shut off rearrangement, but that
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:it: may be regulated by the processes of positive and negative

selection in the thymus.

Regulation of V(D)J recombination

The process of V(D)J recombination must be regulated at many

levels to insure that rearrangement occurs in the appropriate

lineages (e.g. TCR genes in T cells and Ig genes in B cells), to insure

that each B or T cell is monospecific (allelic exclusion), and to account

for the developmentally ordered rearrangement of certain Ig and

TCR gene segments.

Lineage-related control of IgH and TCR3 genes appears to be

limited to the V to DJ step, as various instances of DJ rearrangements

of these genes are seen in the inappropriate cells (Asarnow et al.,

1988, Ferrier et al., 1990, Marusic-Galesic et al., 1988b, Okada et al.,

1994, Serwe & Sablitzky, 1993)

One level of control, allelic exclusion, is the mechanism

responsible for each B or T cell having only one antigen specificity.

For IgH chains, this is accomplished by the presence of the functional

g.H protein, which shuts off further IgH rearrangement (reviewed in

(Yancopoulos & Alt, 1986)). Once a light chain is produced that can

pair with heavy chain, rearrangement of light chain also ceases. In T

cells, allelic exclusion may be only partially controlled at the level of

rearrangement, and may involve regulation of transcription of

rearranged genes and/or selective pairing between chains (reviewed

in (Malissen et al., 1992)).

The developmentally ordered rearrangement of certain gene

segments represents another restraint on V(D)J recombination. For
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example, the most JH proximal VH Ig gene segments rearrange

earlier in development, and the more 5' segments rearrange later

(Malynn et al., 1990, Schroeder et al., 1987, Schroeder et al., 1988,

Yancopoulos et al., 1984, Yancopoulos et al., 1988). TCR Vy genes of

the Cyl cluster rearrange in a similar developmentally ordered

manner (Garman et al., 1986), and Chapter 3).

In all these cases, selective rearrangement occurs even though

the V(D)J recombinase is active and all gene segments use the same

signal sequences. How then are these various controls exerted on the

rearrangement process? The accessibility model (Alt et al., 1986)

proposed that rearrangement is regulated by the ability of the locus

or of individual gene segments to serve as recombination substrates,

which in turn is determined by their accessibility to the recombinase

machinery.

Earlier studies have shown a correlation between transcription

of unrearranged genes and their subsequent rearrangement. For

example, transcripts of unrearranged VIIJ558 genes appear in

developing fetal liver pre-B cells immediately before rearrangement

of the corresponding genes (Lennon & Perry, 1990, Yancopoulos &

Alt, 1985). In the case of a recombination substrate which has been

transfected into a pre-B cell line, selection for transcription of a

linked gene results in high rates of subsequent rearrangement (Alt et

al., 1986). Induction of K gene rearrangement in pre-B cell lines

correlates with expression of unrearranged CK and VK genes (Martin

et al., 1991, Schlissel & Baltimore, 1989). Rearrangement of TCR Vo

genes by a cell line in culture correlated with transcription of the

unrearranged genes (Fondell & Marcu, 1992). Results of these
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studies suggest that accessibility of an unrearranged gene to the

recombinase machinery may be controlled, at least in part, by

transcription.

This correlation between transcription and rearrangement was

strengthened by experiments demonstrating that transcriptional

control elements also play a role in regulating rearrangement. For

example, rearrangement of a transgenic recombination substrate was

found to occur efficiently only in the presence of an active

transcriptional enhancer (Ferrier et al., 1990). Rearrangement of a

transgenic recombination substrate from the chicken IgX locus was

severely reduced if either the enhancer or the promoter was deleted,

but was increased by the removal of an intronic silencer element

(Lauster et al., 1993). Finally, mice which have had their IgH

intronic enhancer deleted by homologous recombination have

severely reduced V-DJ rearrangements (Serwe & Sablitzky, 1993),

and K intronic enhancer knockout mice do not rearrange their 

genes at all (Takeda et al., 1993).

low could transcription be responsible for accessibility?

Transcription factors can bind to a promoter site, causing the

disruption of the nucleosome structure. Elongation causes

displacement of nucleosomes as the polymerase reads through

(reviewed in (Adams & Workman, 1993, Felsenfeld, 1992)).

However, the fact that transcription is correlated with accessibility in

many cases does not mean that transcription per se causes

accessibility. Accessibility may be controlled at another level which

coincidentally allows transcription to occur.
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There are examples in which the absence of transcription, due

to the lack of promoter elements (Engler et al., 1991) or treatment

with transcriptional inhibitors (Hsieh et al., 1992), still allows

rearrangement of transfected recombination substrates. These

observations suggest that transcription is not absolutely necessary

for accessibility. However, the presence of a transcriptional enhancer

may be. In all cases thus far, deletion of the enhancer from

transgenic recombination substrates or endogenous genes abolishes

or severely reduces rearrangement (Chen et al., 1993, Engler et al.,

1991, Ferrier et al., 1990, Kallenbach et al., 1993, Okada et al., 1994,

Serwe & Sablitzky, 1993, Takeda et al., 1993). In a recent study, the

Ig H enhancer was demonstrated to induce chromatin accessibility

directly, even when the region responsible for transcription was

deleted (Jenuwein et al., 1993).

What role might the enhancer play in accessibility? In mice,

the rabbit K enhancer is not competent to activate transcription in

mouse pre-B cells, However, transgenic recombination substrates

containing this element rearrange. It was suggested that merely the

binding of transcription factors to the enhancer is sufficient to allow

accessibility (Kallenbach et al., 1993). Other studies have shown that

highly methylated transgenic recombination substrates do not

rearrange efficiently, indicating that the degree of methylation may

affect a gene's accessibility to recombinase (Engler et al., 1993, Hsieh

& Lieber, 1992). Recently, the intronic Ig K enhancer was

demonstrated to cause demethylation of its gene in a cell-type and

stage specific manner when transfected into various cell lines
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(Lichtenstein et al., 1994), suggesting another way in which

enhancers may affect accessibility.

Although enhancers have been clearly implicated in

accessibility of TCR and Ig genes to the recombinase machinery,

other elements may be necessary to limit the lineage-specificity of

this process. For example, transgenic recombination substrates

consisting of TCRM V, D, J segments and an Ig C with either an IgH

enhancer or a TCR[ enhancer undergo D to J rearrangement in both B

and T cells. However, complete V to DJ rearrangement only occurs in

T cells, indicating that the promoters or some other elements may

play a role in restricting this to the appropriate lineage (Ferrier et al.,

1990, Okada et al., 1994). In support of this is the observation that

TCR and Ig enhancers are usually lymphoid-specific, but not lineage-

specific (reviewed in (Leiden, 1993, Staudt & Lenardo, 1991)).

In earlier studies, the presence of transcripts of unrearranged

genes, although perhaps not essential for rearrangement, were taken

to be an indicator of the gene's accessibility. However, more recent

studies have shown that high levels of transcript can be detected in

the absence of rearrangement, suggesting that in some cases, yet

another level of control is being exerted on the rearrangement

process (Bottaro et al., 1994, Okada et al., 1994).

In summary, transcription is correlated with rearrangement in

many cases, but transcription per se may not be responsible for

accessibility. Enhancers do appear to be essential in regulating

accessibility, but lineage-specificity of rearrangement in some cases

may be controlled by other elements, such as promoters. Finally, an
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additional step may be required following accessibility of genes to

activate rearrangement.
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Chapter 2

MATERIALS AND METHODS

Mice. Balb/c-ByJ and AKR/J mice were purchased from Jackson

Laboratories, Bar Harbor, ME. Breeding pairs of CB17 wild type and

SCID mice were purchased from Taconic, Germantown, NY, and were

bred and maintained at University of California, Berkeley. C57BL/6,

C57BL/6-Ly5..1 and all fetal mice were bred at the University of

California, Berkeley.

Antibodies. Monoclonal anti-CD8 (AD4(15) (Raulet et al., 1980),

3.168.8 (Sarmiento et al., 1980)) and anti-CD4 (GK1.5 (Dialynas et al.,

1983), RL172.4 (Ceredig et al., 1985)) antibodies for complement

kills were used in the form of culture supernatants. Phycoerythrin-

conjugated anti-CD3e (500-A2), anti-CD4, anti-CD8, FITC-conjugated

anti-CD8 and biotinylated anti-Thyl.1 were purchased from

Pharmingen, Inc., San Diego, CA. Other antibodies; anti-Vy3 (536,

(Havran et al., 1989)), anti-Thy 1.2 (301-112, (Marshak-Rothstein et

al., 1979)), and anti-Ly5.1(A201.7, (Shen et al., 1982)) were provided

by the Cancer Research Laboratory, University of California,

BEerkeley.

Cell lines. The 7.17.A2 cell line ((Kuziel et al., 1987), kindly

provided by R. E. Tigelaar) was grown in RPMI-1640 supplemented

with 5% FCS, 50gtM 2-ME, 0.2 M HEPES, antibiotics and 20 U/ml hu-

rlL-2 (Cetus Corp., Emeryville, CA).
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Thymocyte Isolation. Gestational age of fetuses was determined

as the number of days following the morning of appearance of a

vaginal plug (day 0). Total thymocytes were used from embryonic

day 14 and 15 (E14, E15) fetuses. CD4-CD8- thymocytes were isolated

from E18 and adult (3-4 week old) mice, by treatment of the cells

with anti-CD4 and anti-CD8 antibodies plus complement (a mixture of

rabbit (Cedarlane Laboratories, Ontario, Canada) and guinea pig

(Gibco, Grand Island, NY) sera (Holsti & Raulet, 1989)). Fetal

thymocytes were pooled from several litters and adult thymocytes

from at least 10 animals. For E15, E18 and adult mice, debris from

the disrupted thymus capsules was allowed to settle out during

thymocyte isolation. This step was omitted when isolating E14

thymocytes to increase cell yield.

CD3- cells were prepared as follows: total thymocytes from E15

or CD4-CD8- thymocytes from adult mice were stained with PE-

conjugated antibody against the T cell receptor-associated CD3-6

chain. The CD3- cells were purified by electronic cell sorting using a

FACS IV (Becton Dickinson). Dead cells were gated out on the basis of

forward scatter and propidium iodide uptake.

Nucleic Acid Preparation. Genomic DNA was isolated from

thymocytes as described (Maniatis et al., 1982). Total RNA was

isolated using the guanidinium/CsCl method (Chirgwin et al., 1979).

In cases where RNA was isolated from small cell numbers, 20[tg E.

coli rRNA (Boeringer-Mannheim Biochemicals, Indianapolis, IN) was

added as carrier. DNA fragments corresponding to rearranged and

43



unrearranged Vy genes were subcloned into Gemini plasmids

(Promega Biotech, Madison, WI), to allow the production of DNA and

RNA templates of known quantities used to standardize the

quantitative PCR experiments. Synthetic RNAs used as standards for

absolute quantitation were transcribed in vitro using T7 or SP6 RNA

polymerase (Promega Biotech, Madison, WI). All RNA samples were

treated by digestion with RQ-1 RNase-free DNase (Promega Biotech,

Madison, WI) to remove any contaminating genomic or plasmid DNA.

RNA and DNA samples were quantitated spectrophotometrically and

their condition observed on ethidium bromide stained agarose gels.

Southern blot analysis. Southern blot analysis was as described

(Garman et al., 1986) with the following exceptions: prehybridization

wash was omitted and after hybridization, filters were washed twice

with 2X SSC, 0.05% SDS at room temp. and twice with O.1X SSC, 0.05%

SI)S at 600C.

PCR primers. Synthetic oligonucleotides used as primers are as

follows: CTGGGAATTCAACCTGGCAGATG (L2), GCTAAGAAGGATGTG

GG'ITG (V2-3'a), CCAGCAGCCACTAAAATGTC (L3), TGGAGGATCCTTGGT

GGGTTCA (V3-3'a), ACTGAGGGCACCCAAGGGGATAG (V3-3'c), GGATGG

GGATCCTGCTACAAGTC (L4), GGAAGGAATTGTGTGCACAGGT (V4-3'a),

GG(CGCCCTCTGTGTAGTGGCCTITGGCCCA (3'f3-tubulin), and CAGGCTGGTC

AATGTGGCAACCAGATCGGT (5'3-tubulin). V2, V3, V4 and J1 primers

have been described previously (Asarnow et al., 1989).

44



Quantitative PCR of DNA. Serial dilutions of DNA samples were

prepared. PCR (Saiki et al., 1988) was carried out in a total volume

of 100 ml consisting of 25 pmoles each primer, 200mM each dNTP,

1.5 mM MgC12, lx PCR buffer (Cetus Corp., Emeryville, CA) and 2.5 U

Amplitaq (Cetus Corp., Emeryville, CA). Samples were heated to 940C

for 3 min. followed by amplification for 35 cycles of 1 min at 940C, 1

Irin at 550C and 1.5 min at 720C. After the last cycle, a final

extension step at 720C for 10 min was done. 25 ml of each PCR

reaction was run on 2% agarose gels in TBE buffer. Products were

visualized by ethidium bromide staining. Southern hybridization

analysis of the gels with Vy-specific oligonucleotide probes confirmed

the identity of bands corresponding to rearranged Vy-Jy genes (data

not shown).

Quantitation of the target sequence in the initial nucleic acid

sample was accomplished by comparison to the amount of product

amplified from titrated quantities of plasmid DNA standards

containing the same target sequence. The plasmid DNA standard was

prepared by adding 1 pg of plasmid to lg of herring sperm DNA,

which was then subjected to serial dilution.

Quantitative PCR of RNA. Total RNA was titrated by serial

dilution into a solution containing lmg/ml E. coli rRNA. cDNA was

prepared using 200 U MoMuLV reverse transcriptase (Bethesda

Research Laboratories, Gaithersburg, MD), primed with 25 pmoles of

the antisense oligonucleotide primer in a total volume of 20 1tl

containing 1 U/ml RNAsin (Promega Biotech, Madison, WI), mM

each dNTP, 1.5 mM MgC12 and lx PCR buffer. This was incubated for
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:30-45 min. at 420C, and the enzyme heat inactivated at 990C for 5

min. Some reactions were done without reverse transcriptase as a

control against the presence of contaminating DNA. PCR was

performed using the above cDNA mixture diluted to 100l by the

addition of lx PCR buffer, 1.5mM MgCl2, 25 pmoles sense primer and

2.5 U Amplitaq. Amplification was carried out as described above.

25 til of each PCR reaction was run on 2% agarose gels in TBE

buffer. Products were visualized by ethidium bromide staining. In

some cases the DNA was transferred to nitrocellulose followed by

hybridization (Maniatis et al., 1982) of the blot with 3 2p-end-labeled

unique oligonucleotides internal to the PCR primers. Sequences of

the probes are as follows: GAGGCTATTCTGGAAGCTCAG (V2-3'b),

'TATCCCCITGGGTGCCCTCAGT (V3-3'b), GCGGGAGTGGGACITGTCTTGTIT

(V3C), TCACCTGCACAGACACCTAG (V4-3'b), ACCTGAGCGAACAGAGTCC

ATGGTCCC (-tubulin).

Quantitation of the target sequence in the initial nucleic acid

sample was accomplished by comparison to the amount of product

amplified from known quantities of synthetic RNA standards

containing the same target sequence. The results were adjusted to

account for different content of mRNA, as determined by a parallel

analysis of tubulin transcripts in the RNA samples.

The synthetic RNA standards were generated by transcription

of corresponding linearized plasmid DNA templates. For the

reactions in Chapters 4, 6 and 7, these sequences corresponded to the

unrearranged Vy3, Vy4 or Vy2 genes. For the reactions in Fig. 5-3A,

the templates corresponded to cloned PCR products of L3-V3-J1 or

L4-V3-J1 transcripts. These cloned PCR products were also used as
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the templates for the reactions in Fig. 5-3B, except that the Vy3-3'

sequence was substituted for the Jyl sequence in each plasmid.

RNase protection assay. The RNase protection assay was a

modification of the procedure of Melton (Melton et al., 1984)

described previously (Garman et al., 1986).

Repopulation of fetal thymic organ cultures. This procedure

was performed as described previously (Ikuta et al., 1990), with

minor modifications. Briefly, thymic lobes were dissected from

C57BL/6 fetal mice at day 14 of gestation and cultured on

polycarbonate filters in Transwell plates (Costar, Cambridge, MA) in

IDMEM containing 10% FCS, 50jM 2-ME, antibiotics (DMEM-10) and

1.35mM deoxyguanosine (Sigma, St. Louis, MO) for five days. Each

lobe was then washed with DMEM-10 without deoxyguanosine, and

put into hanging drop culture for 24 hours in 20 gtl containing 3X105

fetal liver or adult bone marrow cells from C57BL/6-Ly5.1 mice.

Lobes were then placed in culture on Transwell plates for 11 days.

Cells isolated from these cultures were subsequently used for

staining or isolation of RNA.

Construction of chimeric mice. AKR-->SCID chimeras were

constructed as described previously (Shores et al., 1990) with the

exception that the unirradiated CB17 SCID were injected i.v. with

3X107 fetal liver, not bone marrow cells. In addition, control

chimeras were constructed by injecting SCID mice with SCID fetal

liver cells (SCID-->SCID). AKR-->SCIDneo chimeras were constructed
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by i.p. injection of 0-1 day old SCID neonates with 5X106 AKR fetal

liver cells. SCID-->AKR chimeras were constructed by injecting

iIrradiated (1000 rad) 8-12 week old AKR mice with 3x107 SCID E14

fetal liver cells. Control chimeras included lightly irradiated (200

rad) SCID mice injected with SCID fetal liver (SCID-->SCIDirr) and

irradiated AKR injected with CB17wt fetal liver (CB17-->AKR). All

chimeras were analyzed 8-12 weeks post-injection.

Analysis of chimeric mice. Peripheral blood lymphocytes from

,AKR-->SCID were stained with anti-Thyl.1-biotin + streptavidin-PE

(Molecular Probes, Eugene, OR) and analyzed on a FACscan (Becton &

]Dickinson, Mountain View, CA) to determine chimerism. Thymocytes

were isolated from the AKR-->SCID chimeras which were positive for

Thy-l.1 and pooled. CD4-CD8- cells were enriched by treatment with

anti-CD4, anti-CD8 and complement, and the resulting cells were

stained with anti-Thyl.2-FITC and anti-CD4-PE+anti-CD8-PE. Cells

positive for PE (CD4 and/or CD8) were gated out and the host CD4-

CD8-Thy 1.2+ cells were isolated by sorting on an EPICS Elite flow

cytometer (Coulter, Hialeah, FL). Cells which had been set aside prior

to the complement kill were analyzed on the EPICS after staining

with CD4-PE, CD8-FITC and either Thy-1.l-biotin or Thy-1.2-biotin +

streptavidin -tricolor.

Thymocytes from SCID-->AKR or CB-->AKR chimeras were

pooled and enriched for CD4-CD8- cells as above. The remaining cells

were stained with anti-CD4-PE+anti-CD8-PE and anti-Thy-1.2-FITC,

and CD4-CD8-Thy1.2 + cells were isolated by sorting. As above some

cells were analyzed prior to the complement kill.
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CD4-CD8- thymocytes were isolated from the SCID-->SCID and

SCID-->SCIDirr chimeras by treating with anti-CD4, anti-CD8 and

complement.

RNA isolated from these various populations was subjected to

the quantitative PCR assay described above.

Epidermal cell preparation. Cells were isolated from the

epidermis of AKR-->SCID and AKR-->SCIDneo chimeras using a

procedure described previously (Sullivan et al., 1985).
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Chapter 3

ORDERED REARRANGEMENT OF T CELL RECEPTOR Vy GENES

Introduction
It is known that y T cell subtypes arise in ordered waves

during ontogeny. However, the mechanism responsible for this is

poorly understood. Two general models can be invoked to explain

this phenomenon. In a "selection" model, rearrangement of the T cell

receptor genes occurs randomly, and the appearance of temporally

restricted waves of particular Vy-expressing cells are generated by

the selection of those receptors on stage-specific thymic ligands. In a

''targeting" model, rearrangement is not random, but is programmed

on the basis of the fate of the cell. Thus, the sublineage of a

progenitor cell is established, and subsequently the appropriate Vy

gene segment is targeted for rearrangement.

A model in which targeted rearrangement of T cell receptor y

genes is responsible for the ordered appearance of y T cell subtypes

during ontogeny would predict that the rearrangement of these

genes at different stages of development would occur in the same

order. Previous studies from this lab (Garman et al., 1986) provided

evidence that Vy3 and Vy4 rearrangements are more abundant in

early fetal thymocytes than in adult thymocytes, while Vy2

rearrangements are more frequent in adult than fetal thymocytes

(see Figs. 1-1 and 1-2 for arrangement of Vy genes). Those studies

employed unfractionated preparations of thymocytes at most time

points, hence the majority of the cells at the later time points were
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C)D4+CD8 + phenotype, most of which are in the ca3TCR+ lineage.

Furthermore, a report from another group challenged the claim that

Vty genes are differentially rearranged during ontogeny (Carding et

al., 1990). This chapter describes quantitative analysis of T cell

receptor y gene rearrangements in CD4-CD8- thymocyte populations,

in which most y cells and progenitor cells are found.

Results
Initially, Vy gene rearrangements during development were

quantitated by Southern blot analysis of EcoRI-digested CD4-CD8-

thymocyte DNA from various stages of development. The observed

pattern of Vy rearrangements was similar to the pattern that was

initially reported: Vy2 rearrangements are evident by E15 (day 15 of

gestation) and increase during development to maximal levels in the

adult (17 kb band in Fig. 3-1A). Vy3 rearrangements are evident by

l15 and at E18 (day 18 of gestation), but decrease to undetectable

levels by the adult stage (18 kb band in Fig. 3-1B). Vy4

rearrangements are less abundant than Vy3 rearrangements, but

follow a similar developmental pattern (17 kb band in Fig. 3-iB).

The Southern blot analysis fails to provide sufficient

quantitative information to compare the extent of rearrangement of

different V genes. Therefore, the CD4-CD8-thymocyte DNA samples

were also subjected to a quantitative PCR analysis, in which

rearranged alleles were amplified from titrated samples of

thymocyte DNA using a Jyl antisense primer (Ji) and a sense strand

primer from the leader exon of each Vy gene (L3, L4 or L2 primer;

for locations and sequences of primers and probes, see Fig. 3-2 and
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Figure 3-1: Southern blots of EcoRI-digested genomic Balb/c

DNA from El4 and E15 thymocytes, or from E18 and adult CD4-

CD8- thymocytes. The DNA was gel fractionated, blotted, and

probed with: (A) a Vy2-specific probe (a 695 bp Aval-Clal

fragment from the Vy2 gene) or (B) a Vy4- and Vy3-specific

probe (a 2.6kb Pvu2-Hind3 which includes the Vy4 gene and

upstream sequence. Because Vy4 and Vy3 are on the same

germline EcoRI fragment, the latter probe will detect

rearrangements of either Vy3-Jyl (an 18 kb fragment) or Vy4-

Jyl (a 17 kb fragment) (Garman, et al, 1986). The origin of the

weak bands at 7 kb and 16 kb in adult thymocyte DNA in (A)

is uncertain, but they have not been seen in other similarly

probed blots of adult thymocyte DNA.
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Fig 3-2: Locations of primers used in this study. ()PCR sense

primer, () PCR anti-sense primer
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Materials and Methods). For the purpose of quantitation, plasmid

DNAs containing the corresponding rearranged Vy-Jyl gene were

titrated in parallel PCRs. The products of the PCR reactions were

separated on an agarose gel, visualized by ethidium bromide

staining, and quantitated by comparison to the reference DNA (Fig 3-

3). This approach allows the determination of the approximate

frequency of each rearranged gene in the genomic DNA population.

The identity of the various bands was confirmed by Southern

hybridization analysis, with the use of Vy specific oligonucleotide

probes (data not shown).

The PCR analysis revealed that Vy2 rearrangements are very

rare in E14 DNA, and increase -250-fold during subsequent

development to reach a maximum at E18 (Fig. 3-3, plotted in Fig. 3-

4-A). Vy3 and Vy4 rearrangements are also relatively infrequent at

E14, and their abundance increases -20-fold by E15. But unlike Vy2

rearrangements, Vy3 and Vy4 rearrangements decrease later in

development, by 30-fold and -10-fold, respectively.

The quantitative PCR assay allowed comparison of the

frequencies of different Vy gene rearrangements at given time points

(data summarized in Fig. 3-4B as percentages of summed Vy2, Vy3

and Vy4 rearrangements). Vy2 rearrangements are relatively rare at

E 14, being -1/10 as frequent as Vy3 rearrangements, but

subsequently increase to substantially exceed either Vy3 or Vy4

rearrangements by the late fetal stage and in the adult. Vy3

rearrangements, which predominate at E14 and E15, decrease to

-1/50 the level of Vy2 in the adult. Moreover, the comparisons

indicated that Vy3 rearrangements are more abundant (4-10 fold)
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Fig 3-3: PCR analysis of Vy rearrangements to Jyl in

thymocyte genomic DNA samples. Dilutions of genomic DNA or

plasmid DNA standards were used as templates for PCR. Above

each lane is the amount of DNA included in the initial reaction.

To amplify rearranged y genes, the J antisense primer and the

L3, L4 or L2 sense primers (Fig. 3-2) were used. Control PCR

using the 5' and 3' 13-tubulin primers were performed to

normalize for the amount of genomic DNA in a sample. 25g1 of

each reaction was run on ethidium bromide-stained 2% agarose

gels. The size of each product was as predicted: Vy3, 520 bp;

Vy4, 630 bp; Vy2, 550 bp; tubulin, 310 bp. As a control, PCR

with each set of primers was also performed using herring

sperm DNA instead of template and yielded no detectable

product (not shown).
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Fig 3-4: Summary of rearrangements of Vy2 (), Vy3 (), and

Vy4 (O) genes at different stages of ontogeny. The abundance

of Vy rearrangements is expressed either as (A) number of

copies/ig DNA, or (B) as a percent of summed Vy2, Vy3 and

V y4 rearrangements. Quantitative densitometry was used to

determine the values from a single experiment, which are

depicted in the figure. The results were corroborated in at

least one additional complete experiment of each type. The

levels of Vy rearrangements at E14 may be slightly

underestimated, due to contamination of this sample with

thymic capsule cells (see Materials and Methods).
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than Vy4 rearrangements in the fetal thymocyte DNA samples. Thus,

the relative frequencies of the different Vy rearrangements

correspond reasonably well to the frequencies of Vy expressing cells

at the different time points (see Discussion). The analyses presented

here corroborate and extend earlier results showing that Vy genes

are rearranged differentially during development.

Discussion

This analysis provides quantitative comparisons of the extent

of each Vy gene rearrangement in the CD4-CD8- population at

different stages of development. The results fulfill the prediction of

the targeting model with regard to ordered rearrangement of Vy T

cell receptor genes, which correlates with the ordered appearance of

y5 T cell subtypes during ontogeny.

Discrepancies between the extent of rearrangement of each Vy

gene and the representation of cells expressing a Vy product on the

cell surface might be used to argue for selection events acting on

nascent y cells. In fact, the extent of Vy gene rearrangements in the

early fetal and adult stages, when adjusted for the rates at which

each type of rearrangement is found to be productive, roughly

corresponds to the relative frequencies of cells expressing a given Vy

product on the cell surface. The frequencies of Vy3 and Vy4

rearrangements in the fetal thymus that are productive (-60%) is

much higher than the frequency of Vy2 rearrangements that are

productive (-10%) (Lafaille et al., 1989). Using these approximate

values, it can be calculated that the ratios of productive
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rearrangements at E14 is -50Vy3:6Vy4:lVy2 which fits with the

reported predominance of Vy3 + cells in the early fetal thymus

(Havran & Allison, 1988, Itohara et al., 1989). At E18, adjustment of

the values for the rates of productive rearrangements yields a ratio

of -2Vy3:1 Vy4:1 Vy2, consistent with the pattern of Vy surface

expression found in one study (Itohara et al., 1989). In the adult

CD4-CD8- population, the ratio, calculated from our data using the

reported approximate frequencies of adult thymic Vy

rearrangements that are productive (50% of Vy3, 37% of Vy4 and 21%

of Vy2, (Lafaille et al., 1989)), is -1Vy3:2Vy4:15Vy2. These values fit

well with the findings that Vy2+ cells greatly outnumber Vy3 + and

V'y4+ cells in the adult (Havran & Allison, 1988, Itohara et al., 1989).

Hence, there is a good concordance between the extent of V

gene rearrangement and the abundance of Vy+ cells. In contrast,

previous studies demonstrated that the levels of rearranged Vy/Jyl

transcripts correlate poorly with the representation of cells

expressing a given Vy product on the cell surface (Carding et al.,

1990, Garman et al., 1986). However, these studies examined the

levels of transcripts of the rearranged genes which can be influenced

by numerous variables and are not necessarily correlated with the

extent of DNA rearrangements. For example, Vy2 genes are

frequently rearranged in a3 T cells, but are usually transcriptionally

silent (Garman et al., 1986, Heilig & Tonegawa, 1986).

This is not the only study to offer evidence in favor of the

molecular targeting model. A prediction of this model is that

rearrangement in individual T progenitor cells is somehow restricted

to a particular Vy gene segment. This is supported by the
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observation that in a small panel of well-characterized T cell lines,

the rearrangement on the second, unused chromosome is either

unrearranged or usually of the same type as the functional

rearrangement (Raulet et al., 1991). Additionally, an analysis of

rearrangements in freshly isolated Vy3+ s-IELs using the quantitative

PCR assay described here demonstrated that the vast majority of

second alleles also have Vy3 rearrangements, with only a small

fraction carrying Vy2 and Vy4 rearrangements (J. Baker and D Raulet,

unpublished results). Finally, Vy rearrangements were determined

in thymocytes derived from mice in which the T cell receptor C gene

was disrupted by homologous recombination (Itohara et al., 1993).

Because no y receptor appears on the surface of these cells, the

levels of Vy rearrangement would not be affected by selection. In

these thymocytes, patterns of Vy rearrangements are the same as in

normal mice.

There appears to be a preponderance of evidence in support of

programmed gene rearrangement. While our results represent an

argument for regulation of gene rearrangment, it should be pointed

out that this is not incompatible with the possibility that y6 T cells

are also subject to developmental selection.
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Chapter 4

ORDERED PRODUCTION OF T CELL RECEPTOR Vy STERILE

TRANSCRIPTS

Introduction
The previous chapter described experiments which

demonstrate that T cell receptor Vy genes are rearranged

differentially during development and that the pattern of

rearrangements closely correlates with the ordered appearance of

the concomitant Vy-expressing y5 T cells in the thymus. The ordered

pattern of Vy gene rearrangement in developing T cells is similar in

some respects to the rearrangement of immunoglobulin VH genes in

developing B cells. VH gene rearrangement also occurs in an ordered

manner, with the most 3' segments rearranging earlier and 5'

segments later (Malynn et al., 1990, Schroeder et al., 1987, Schroeder

et al., 1988, Yancopoulos et al., 1984, Yancopoulos et al., 1988). The

generality of this phenomenon suggests that similar mechanisms

may regulate rearrangement in the different gene families.

The accessibility model (Alt et al., 1986) attributes the control

of V-(D)-J rearrangement to the regulation of access to the gene

segments by the recombination machinery. Transcriptional activity

of a gene can be a reflection of its accessibility, and correlations

between transcription of particular gene segments and their

rearrangement have been demonstrated in many instances.

No previous study has correlated differential V gene

rearrangement with transcription of the genes. In order to
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investigate the possibility that transcription of Vy gene segments is

related to the ordered manner in which they rearrange, I have

examined transcript levels of unrearranged TCR Vy gene segments at

different developmental time points.

Results
Quantitative RT-PCR of Unrearranged Vy Genes.

To determine if transcription is correlated with ordered Vy

gene rearrangement, I used a PCR-based assay to detect transcripts

of unrearranged Vy genes (subsequently called sterile Vy transcripts)

in fetal and adult thymocytes. Total RNA was isolated from

populations of thymocytes prepared identically to those used for the

DNA analysis described in Chapter 3. Using titrated samples of RNA,

reverse transcription of cDNA corresponding to sterile Vy transcripts

was primed with antisense oligonucleotides corresponding to

sequences 3' of the unrearranged Vy2, Vy3 or Vy4 genes (V2-3'a, V3-

3'a, and V4-3'a, Fig. 4-1), which are absent from the corresponding

rearranged transcripts. The sterile transcripts were amplified with

the same downstream primer and a corresponding upstream sense

primer (either in the Vy coding exon or in the case of Vy3, the leader

exon of the Vy3 gene). In order to determine the amounts of the

transcripts, synthetic RNAs corresponding to each unrearranged Vy

gene were titrated in parallel reverse-transcription/PCRs (see

Materials and Methods). PCR products were visualized on Southern

blots probed with end-labeled oligonucleotides corresponding to

sequences 3' of the Vy gene but internal to the primers used for the

PCRs (V2-3'b, V3-3'b, and V4-3'b, Fig. 4-1). In addition, the level of
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Figure 4-1: Locations of primers and probes used in this study.

(ft)PCR sense primer, (4) PCR anti-sense primer, () oligonucleotide

probe for Southerns, ( ) 7-mer/9mer recombination signal.
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Figure 4-2A: RT-PCR analysis of sterile Vy transcripts in total RNA

from thymocytes (see text and Materials and Methods).

Dilutions of total RNA from thymocytes, or of in vitro synthesized

standard RNAs, were used as templates, with anti-sense primers 3' of

each unrearranged Vy gene (-3'a primers, Fig. 4-1), to direct cDNA

synthesis. The sterile transcripts were amplified with the same

downstream primer and an upstream V-specific primer (L3 for Vy3,

V4 for Vy4, and V2 for Vy2, see Fig. 1A). The products were gel-

fractionated, blotted, and hybridized with oligonucleotide probes

corresponding to sequences 3' of the V gene but 5' of the primer

used for PCR (-3'b probes in Fig. 4-1). The sizes of the products as

predicted from the sequences are: Vy3, 450 bp; Vy4, 334 bp; Vy2, 288

bp; TUB, 310 bp. The size of the larger V3 product (450 bp) indicates

it is derived from a correctly spliced transcript. DNA contamination

of the RNA sample would have yielded a larger (550 bp) fragment,

cldue to the presence of the intron. The standard plasmid for Vy3 in

this experiment is constructed from genomic DNA, and therefore

includes the intron.

68



§J9

§LJOt7

65 ooz

6dl
/

44 4 4

6ug

BUOt7

6uoo

6nl

6ug

6uot,

6n I SI 
6ug

fiICl4- r *
-UVV

Buooz

BnL

Bug I
I

BuOt'

6uo0 :

6dg Z

6d9g I

6doZ£ L

6ug9 

6d8'Z I

6dxg I

doz 

6ugL 

bdg'ZI i

6dlg 9

6dOZ£

6ug L

6d'Z Il

6dt 9

Bdoz£ r

Bug L 

oo* c.> n > M > C O

I--

U
(I)

:Z

cr0u
37

z
cr

F-,
-

a

z
z
0
LU

z
cr

U3

iwi

z
-4z
cc

LU

61zi:-

big, I

u 

ii

. . v



Figure 4-2B: Dependence of the PCRs on reverse transcriptase. For

Vy2 and Vy4 PCRs, reactions were performed with 1 itg total RNA

(same samples as used in Fig. 4-2A) with (+) or without (-) the

addition of reverse transcriptase in the initial reaction.
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the ubiquitously expressed f3-tubulin transcript in each RNA sample

was determined in parallel quantitative PCRs, in order to normalize

for the amount of mRNA initially added to the PCR reaction.

Two control experiments indicate that contamination of the

RNA samples with genomic DNA was not responsible for the

observed bands. In the case of Vy2 and Vy4, PCRs run in parallel in

which reverse transcriptase was omitted in the initial step yielded no

bands (Fig. 4-2B). In the case of the Vy3 PCR, in which the primers

spanned an intron, no product of the size of the unspliced 550 bp

genomic DNA fragment was observed (Fig. 4-2A). Note that in both

Vy3 and Vy4 PCR, fragments smaller than the expected fragments

were observed in addition to the expected product. This has been

reported in other reverse transcription/PCR experiments (Kyes,

1989, Takagaki et al., 1989b) and may result from aberrant initiation

of reverse transcription within the transcript.

Sterile Vy Transcript Levels Correlate With Rearrangement

Patterns.
As shown in Figure 4-2A and summarized in Figure 4-3, sterile

Vy3 transcripts are relatively abundant in E14 thymocytes, increase

several-fold at E15, and diminish dramatically (>100-fold) to

undetectable levels by the adult stage. The sterile Vy4 transcript

shows a similar pattern, although the decline in levels between the

early fetal and adult stage is less precipitous (-10-fold) than that of

the sterile V3 transcript. In contrast, sterile Vy2 transcripts show

the opposite pattern, in that they are very low at E14 and increased
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Figure 4-3: Summary of sterile transcripts (A) and rearrangements

(B) of Vy2 (), Vy3 (), and Vy4 (O) genes at different stages of

ontogeny. Sterile transcripts are presented as the number of

copies/gg total RNA. Quantitative densitometry was used to

determine the values from a single experiment, which are depicted

in the figure. The results were corroborated in at least one

additional complete experiment of each type. The levels of sterile Vy

rearrangements and transcripts at E14 may be slightly

underestimated, due to contamination of this sample with thymic

capsule cells (see Materials and Methods). Note that (B) is identical

to Figure 3-3(A) and is included here for comparison.
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-20-30-fold by E15 to the level they maintain in the adult stage.

Considering that increased accessibility of an unrearranged gene is

expected to precede rearrangement of the gene, the changes in

abundance of sterile transcripts correlate very well with the

observed patterns of subsequent Vy2, Vy3 and Vy4 rearrangements

during ontogeny (compare Figs. 4A and 4B).

It might be argued that the virtual absence of sterile Vy3

transcripts in adult DN thymocytes is due to the deletion of most of

the unrearranged Vy3 gene segments from the thymocyte population,

which would result from rearrangement of Vy2 (or Vy4) to Jyl in

most of the cells. This does not appear to be the case, since a strong

band corresponding to the unrearranged Vy3 and (Vy4) gene is

present in Southern blots of DNA from adult CD4-CD8- thymocytes

(Fig. 3-1). Using the quantitative PCR assay, only a two-fold or

smaller reduction was found in germline-configuration Vy3 genes in

adult CD4-CD8- thymocyte DNA compared to fetal thymocyte DNA

(data not shown).

It might also be argued that the sterile Vy transcripts originate

in mature y6+ cells, from alleles that remain unrearranged, rather

than in the progenitors of y6 + cells. To address this possibility, the

PCR analysis was repeated with samples of RNA from E15 and adult

DN thymocyte populations from which CD3+ cells had been removed

by cell sorting. The pattern and amounts of sterile transcripts in

these cells was similar to that in the corresponding unsorted

thymocyte populations (Table 4-1). These results indicate that TCR-

negative cells produce most of the sterile transcripts detected.
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age of
mice

copies/ig

Vt2 V7t3

E15 5.7X10O 3.4X1 0$

Adult DN 1.2X10 <3.6X10

Sterile Transcript Levels in CD3' Thymocyte RNA.

CD3- cells were isolated from El 5 and Adult DN thymocytes, and
sterile transcript levels in the RNA from both of these populations
were assessed by RT-PCR as in Fig. 4-2.

Table 4-1.



Discussion

The developmental pattern of Vy gene rearrangements

corresponds well to the pattern of sterile Vy transcript levels. The

,decrease of rearrangement is correlated with the decline of the

corresponding sterile transcript, as in the case of Vy3 and Vy4

rearrangements. Previous examples have documented correlations

between the onset of rearrangements and the appearance of sterile

transcripts (see Introduction), as is the case for Vy2 rearrangements.

The fact that different Vy gene rearrangements follow opposite

trends during development, which are positively correlated with the

abundance of the corresponding sterile Vy transcripts, argues

strongly against a chance relationship. Differences in the steady

state level of a given transcript at different stages of development

are likely to reflect differences in transcription rates, although the

possibility that degradation rates change specifically during

development has not been ruled out.

The correlation between transcription and rearrangement

argues in favor of a model in which differential accessibility

regulates Vy gene rearrangement. However, this study provides no

clue as to whether transcription is a cause or merely a consequence

of increased accessibility. Examples given in the introduction to this

thesis appear to support the idea that transcription of a gene is

actually a requirement for its rearrangement. Specifically, in all

these cases, the removal of the transcriptional enhancer from either

a transgenic recombination substrate (Ferrier et al., 1990) or from

endogenous genes either abolishes (Takeda et al., 1993) or severely

reduces (Serwe & Sablitzky, 1993) rearrangement. However, it must
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be pointed out that enhancers, in addition to upregulating

transcription, may also play a role in either establishing or

maintaining an open chromatin configuration.(Ariizumi et al., 1993,

Engler et al., 1991, Hsieh et al., 1992, Jenuwein et al., 1993) Other

studies have suggested that replication or demethylation may play a

role in regulating gene accessibility. Thus, a gene may be rendered

accessible by a mechanism other than transcription, and

transcription may or may not accompany it.

Another possibility is that the sterile transcripts themselves (or

their products, if any) may be responsible for increased accessibility.

For example, sterile transcripts of immunoglobulin CH regions

involved in class-switching include one or more I exons spliced to the

first CH exon. When the Ic was replaced with an E enhancer/VH

promoter combination, very little lymphokine-induced switching

occurred even though it was demonstrated that transcription through

this region did take place (Bottaro et al., 1994). One interpretation of

these results is that the actual sequence of the sterile transcript is

important in this case. Additional evidence for such a mechanism

was reported in the case of in vitro studies of a test plasmid

containing an Ig switch recombination signal sequence (Reaban &

Griffin, 1990). In this experiment, transcription of the sequence, as

well as the presence of the transcripts themselves, was required to

stabilize an unusual conformation which caused a relaxation of

supercoils in the plasmid (i.e. increased accessibility). However, this

mechanism appears to be dependent on the repetitive nature of the

switch recombination signal and may not be applicable to the

sequences of the V-(D)-J heptamer-nonamer recombination signals.
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Chapter 4A

COMPARISON OF PCR ASSAYS

Introduction
The RT-PCR assay described in Chapter 4 demonstrated a

striking difference in Vy3 sterile transcript levels between adult DN

and E15 fetal thymocytes. This experiment was repeated many

times and always showed a difference of 50 to 100-fold. In the

experiments described in later chapters, it was necessary to modify

the PCR conditions to increase the sensitivity because of the use of

limiting amounts of input RNA. In control experiments comparing

Vy3 sterile transcript levels in E15 and adult DN RNA, the magnitude

of the difference was less striking than was previously observed.

This chapter describes comparisons of the different PCR approaches

in an attempt, to determine the actual difference in levels of Vy3

sterile transcripts between these populations.

Results
The small cell numbers recovered from fetal thymic organ

cultures (Chapter 6) or sorted populations from SCID chimeras

(Chapter 7) necessitated using considerably less input RNA in each

PCR. As a result it was necessary to increase the sensitivity of the

R'T'-PCR. The first attempt to improve the assay was to use a "hot

start" technique, which involved heating all the elements of the PCR

to 720C before mixing. This is reported to prevent the production of

extraneous products due to low stringency hybridization of primers
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in the first round of amplification (Chou et al., 1992, D'Aquila et al.,

1991). Another version of the PCR assay involved the use of a new

primer pair, V3/V3-3'c (Fig. 4A-1). In both cases, these altered

conditions resulted in strongly increased sensitivity of the PCR. In

fact, PCR products of sterile Vy3 transcripts were readily detectable

in RNA from the adult DN thymocyte population, whereas these

products were almost undetectable in earlier PCRs. Quantitation in

various experiments revealed a 6-18-fold difference in Vy3 sterile

transcript levels between E15 and adult DN RNA samples. Examples

are shown in Figure 4A-2. The same samples were analyzed using

either hot start or standard RT-PCR. The standard PCR revealed an

.-80-fold difference in Vy3 sterile transcripts between E15 and adult

RNA samples (Fig. 4A-2A), while the difference using hot start only

appeared to be 10-fold (Fig. 4A-2B). An RT-PCR assay using the

new primer pair resulted in only a 6-fold difference between E15

and adult DN RNA with regard to Vy3 sterile transcript levels (Fig.

4A-2C).

After this was discovered, the condition of the RNA samples

was checked on a formaldehyde agarose gel. Both the E15 and adult

DN RNA samples were somewhat degraded but appeared to contain

comparable levels of 18s and 28s rRNA (data not shown).

Additionally, both yielded the same amount of product when

amplified with 3-tubulin primers (Fig. 4A-2D). The apparent

increase in Vy3 sterile transcripts is not due to contamination of the

adult DN RNA as this effect was seen with a number of independent

adult DN samples (data not shown). In addition, no Vy3 PCR product

was ever detected when using a control RNA from the fibroblast
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Figure 4A-1: Location of new Vy3 primers and probe. Sense >)

and anti-sense () PCR primers; oligonucleotide probe (); 7-

mer/9-mer recombination signal. PCR primers (>-, <) and probe

(i), used in Chapter 4 are included for comparison.
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Figure 4A-2: Comparison of variations of the RT-PCR assay. RNA

from E15 or adult DN thymocytes was titrated and subjected to RT-

PCR to detect Vy3 sterile transcripts (A, B, C) or 3-tubulin

transcripts (D). The amount of input RNA is indicated above each

lane. Lanes designated "no RT" refer to reactions with the highest

titration of input RNA from which the reverse transcriptase was

omitted. (A) RT-PCR was performed as described in Figure 4-2 using

the V3L/V3-3'a primer and the V3-3'b probe. (B) RT-PCR

performed as in (A), except that all components of the PCR reaction

were heated to 720C prior to mixing ("hot start"). (C) RT-PCR

performed using the V3/V3-3'c primer pair and the V3C probe (see

Fig. 4A-1 for locations). (D) RT-PCR using the 3-tubulin primers and

probe.

The sizes of the products in all reactions were correct as

predicted from the sequences. (A, B) 450 bp (E15 and adult DN) and

550 bp (standard transcript) (C) 253 bp (D) 310 bp.
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NIH3T3 cell line or E. coli ribosomal RNA as template (data not

shown).

In order to determine which results were correct, I employed a

competitive PCR assay, which, because it is internally controlled, is

reported to be the most reliable quantitative PCR assay (Becker-

Andre & Hahlbrock, 1989, Siebert & Larrick, 1992). In this assay, a

constant amount of sample is used in every PCR and each is mixed

with graded doses of a synthetic competitor transcript which yields a

distinguishable PCR product. Both templates compete for the primers

during each cycle. The reaction that contains equimolar amounts of

standard transcript and endogenous sequence yields the same

amount of product from each. The competitor in this case is the in

vitro synthesized Vy3 transcript used as a quantitation standard in

previous assays. The plasmid from which it was transcribed contains

an insertion of an EcoR1 linker. Thus, the PCR products of the

standard and endogenous transcripts can be distinguished by

subjecting them to EcoR1 digestion prior to gel electrophoresis.

Samples of either E15 or adult DN RNA were spiked with

different amounts of standard transcript in two-fold dilutions. RT-

PCR was performed using the V3/V3-3'c primer pair for 25 cycles.

After amplification, a portion of each reaction was digested with

EcoR1, run on gels, blotted, and the blot hybridized with the V3C

probe (Fig. 4A-1). The results, shown in Fig. 4A-3, reveal an -10-fold

difference in Vy3 sterile transcript levels between E15 and adult DN

RNA samples.
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Figure 4A-3: Vy3 sterile transcript levels determined by

competitive RT-PCR. Competitive RT-PCR was performed on (A) E15

and (B) adult DN RNA samples using the V3/V3-3'c primer pair. A

series of reactions was performed on 200 ng of thymocyte RNA

which included graded (two-fold dilutions) amounts of Vy3 standard

transcript as indicated above each lane. After amplification, 20 gtl

from each reaction was digested with EcoRI, gel-fractionated, blotted,

and the blots hybridized with the V3C probe. The bands

corresponding to products from the endogenous transcripts (endog.,

253 bp) or standard transcripts (std., 118 bp) are indicated by

arrows. (C) Control reactions using as template E. coli rRNA only,

RNA from the NIH3T3 fibroblast cell line +1.25 fg standard transcript

or standard transcript only either intact (-) or EcoRI digested (+), as

indicated.
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Discussion

Results presented here show that the magnitude of the

difference in Vy3 sterile transcript levels between E15 and adult DN

RNA varies depending on the assay conditions used. The standard

RT-PCR used in Chapter 4 yields a 50-100-fold greater amount of

product from E15 RNA than from adult DN RNA, while this difference

is 6-18-fold using either a "hot-start" technique or a more efficient

primer pair. The problem of how to determine which result is the

correct one was resolved using a competitive RT-PCR assay. This is

generally acknowledged to be reliable because each reaction is

internally controlled. Using this assay, the level of Vy3 sterile

transcript in E15 thymocyte RNA was shown to be -10-fold greater

than in adult DN RNA. Because of this, the difference determined

using the hot start or the V3/V3-3'c primer pair was designated as

the correct one.

The original data could be interpreted to mean that there is an

ON/OFF difference between E15 and adult cells with regard to Vy3

germline transcription. The results using the more sensitive PCR

assays suggest a more subtle difference. This difference, although

smaller than originally determined, is reproducible and still

represents a significant difference in sterile Vy3 transcript levels

between fetal and adult thymocyte precursors, consistent with a

significant difference in the accessibility of the Vy3 gene in these

populations.

Although we believe that of all the PCR techniques, the

competitive RT-PCR assay is the most reliable way to measure small

differences in transcript levels, it has a major drawback. Because the
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target RNA sample is not titrated, a large amount of each sample is

required to cover a useful range of standard transcript

concentrations. The small amounts of RNA recovered from fetal

thymic organ cultures or sorted cells from chimeras precluded the

use of a competitive PCR assay in subsequent studies. However,

subsequent RT-PCR experiments were performed using the V3/V3-

:3'c primer pair which gives approximately the same results as the

competitive PCR assay.

In Chapter 3, the level of rearrangement of Vy3 genes in E15

thymocyte DNA was shown to be -30-fold higher than in adult DN

thymocyte DNA (Fig. 3-3 and 3-4). It is possible that the difference

in levels of rearranged Vy3 genes had been overestimated, because,

like the sterile transcript levels, rearrangements were quantitated

using a PCR assay. However, the V3L/J1 primer pair appears to

work quite efficiently as indicated by the absence of incorrectly sized

products on the ethidium bromide-stained gels. Also, this primer

pair can quite efficiently amplify transcripts from as little as 800 cell

equivalents of E15 RNA in an RT-PCR assay (data not shown).

Therefore, we believe the 30-fold difference observed in Chapter 3

to be reasonably accurate. With the results presented in this

chapter, this difference can not be completely accounted for by the

difference in levels of Vy3 sterile transcripts. How can this

discrepancy be explained?

One possibility is that E15 and adult DN thymocyte populations

both contain cells which transcribe the unrearranged Vy3 gene, but

the fetal cells transcribe it at a higher rate which is above some

threshold required for rearrangement of the gene.
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Alternatively, the rate of rearrangement of the Vy3 gene in E15

thymocytes may in fact only be 10-fold greater than in adult DN

thymocytes. However, the cells which rearrange and express the Vy3

gene may persist longer in the fetal thymus due to a signal which is

only provided by the fetal thymic stroma. This is supported by

recent studies showing development of fetal thymocytes from a

Vy3lOwHSAhigh to a Vy3highHjSAl o w stage (Leclercq et al., 1993,

Tatsumi et al., 1993). This transition was inhibited by cyclosporin A,

suggesting that a signal from the fetal thymic stroma may be

necessary for the survival and/or maturation of these cells. Perhaps

in the adult thymus, the Vy3+ cells do not accumulate due to the

absence of this signal.

Possible explanation for results using different assay

co n di t ions.

It would seem that the use of several dilutions of each sample

prior to RT-PCR would control for efficiency of cDNA production and

amplification in samples which contain different amounts of target

transcript. An improvement in the efficiency of the amplification

would be expected to affect each sample equally. Why then did the

original assay conditions overestimate the difference between the

populations?

In the original PCR assay, when the primer/Taq polymerase

mixture is added at relatively low temperature, the primers may

bind to imperfectly matched sequence in addition to the target

sequence. Addition of a few nucleotides to the 3' end of the primer

by Taq polymerase would then allow the primer to remain bound at
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the imperfectly matched sites at the higher annealing temperature

(Innis et al., 1988). This would occur in the first round of the PCR, so

that aberrently initiated templates would be amplified in subsequent

rounds, and thereby interfere with the amplification of the desired

product. In fact, in ethidium bromide stained gels of PCR products

amplified with the V3L/V3-3'a primers, many bands were present

which did not hybridize to the oligonucleotide probe located between

the two primers (data not shown). These bands do not appear on

gels of PCR products generated using the newer methods.

In this scenario, the "hot start" conditions, or the use of the new

primer pair, increase the efficiency of amplification of the desired

product by not allowing initiation of polymerization at aberrant sites.

Because the adult DN sample has 10 O-fold fewer sterile transcripts, it

has a higher ratio of non-target/target sequences. This would result

in increased amounts of incorrect PCR products which would compete

for limiting components in the reaction mixtures. Therefore, the

content of Vy3 sterile transcripts in the adult DN sample would be

underestimated.
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Chapter 5

REGULATED ACCESSIBILITY OF Vy3 AND Vy4 T CELL

RECEPTOR GENES

Introduction
The previous chapter examined transcription of Cyl cluster

genes and the possible role of differential accessibility in controlling

their ordered rearrangement. Clearly, the timing of Vy3 and Vy2

accessibility is different, matching their rearrangement patterns.

However, Vy3 and Vy4 genes are both rearranged and expressed in

the fetus and they are only separated by -1 kb. This raises the

question as to whether differential accessibility leads to separate

lineages of progenitor cells, or if Vy3+ and Vy4+ cells can be derived

from the same immediate progenitor. The accessibility model, when

applied to Vy gene rearrangement, predicts that only one of the Vy

genes in the Cyl cluster will be accessible in a given progenitor cell.

The model makes no predictions concerning whether all the Vy genes

in a cell become accessible later, after the cell has differentiated into

a mature y6+ cell. In this chapter, evidence is presented that the Vy4

gene is accessible in mature Vy3+ cells, but may be inaccessible in

progenitors of Vy3 + cells.
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Results
Some Vy3 transcripts use the Vy4 leader in the 7.17A2 cell

line.
Experiments to determine the start sites of Vy transcripts in a

Vy3+ cell line, 7.17A2, found evidence of transcripts containing the

Vy4 leader exon (L4) sequences, but not the Vy4 coding exon

sequences (Spencer, 1991). Since Vy4 is not rearranged in 7.17A2, we

suspected that these transcripts might consist of L4 sequences spliced

to the Vy3 coding exon sequences. To check this, cDNA from 7.17A2

RNA was subjected to PCR amplification using either the L3 (V3

]leader exon) or L4 sense primer and the J1 antisense primer (Fig. 5-

1). Products of both reactions (ie. using the L3/J1 or L4/J1 primer

pairs) were easily detected and examples were cloned and sequenced

(data not shown). The Vy3-Jyl junctional sequences of each product

corresponded to the functional, canonical s-IEL sequence (Asarnow et

al., 1988). As expected, in the L3/J1 product, L3 was correctly spliced

to Vy3. The L4/J1 product consisted of L4 correctly spliced to the Vy3

sequences (Spencer, 1991). The origin of the L4-Vy3-Jyl transcript is

presumably a large primary transcript that originates upstream of L4

and extends through Vy3 and the Jyl-Cyl regions (Fig. 5-1).

The relative abundance of transcripts of the L4-Vy3-Jyl and L3-

Vy3-Jyl types in 7.17A2 were quantitated with the use of the RNase

protection assay, employing in vitro synthesized RNA probes

corresponding to each cloned PCR product described above (results of

D. Spencer). As shown in Figure 5-2, fragments consistent with

protection of the probes by both L3-Vy3 and L4-Vy3 transcripts were
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Figure 5-1: Schematic representation of rearranged Vy3 +

transcripts employing the L4 or L3 sequences. Shown are the spliced

products which would result from transcripts originating upstream of

either the Vy3 or the Vy4 leader. Beneath each spliced product are

the primers to amplify products for PCR analysis and cloning of

probes used in the RNase protection assay in Figure 5-2. Also shown

is the oligonucleotide used to probe blots in Fig.5-3.
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Figure 5-2: RNase protection assay to detect L3-V3 and L4-V4

transcripts in the 7.17A2 s-IEL line. The protected bands,

corresponding to the indicated products, are indicated by arrows, as

are the undigested probes. The probes used for RNase protection are

shown above the corresponding lanes, with the size of the exons

indicated in base pairs. Labeled probes were hybridized with 2 [ig of

total RNA from 7.17A2 cells line, from negative control NIH3T3

fibroblastic cells or with 2 tg yeast tRNA, and digested with RNase.

Note that the smaller band in each case corresponds to

protection of the V3 exon alone. During cloning of the probes,

exonuclease digestion removed different amounts from the 3' end,

leaving the L3-V3 probe with 4 and the L4V3 probe with 16 bases of

J1 sequence. This accounts for the difference in size between the

lower bands protected with each probe.

(Experiment performed by D. Spencer)
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observed with both probes. As determined by densitometric analysis,

approximately 19% of all the Vy3-Jyl transcripts use L4, while most of

the remaining transcripts use L3. The results indicate that in this cell

line an appreciable fraction of Vy3 transcripts originate from a larger

]primary transcript that includes L4. Hence, the Vy3 and Vy4 genes on

the same chromosome must both be accessible to RNA polymerase.

L3 vs. L4 usage in Vy3Jyl transcripts in freshly isolated

thymocytes
To determine if transcripts of rearranged Vy3 genes frequently

use L4 in freshly isolated thymocytes, cDNA from E15 thymocyte RNA

was subjected to quantitative PCR using J1 as a downstream primer

and L3 or L4 as upstream primers. Vy3-containing PCR products

were detected by hybridization with a Vy3-oligonucleotide probe

(V3C, Fig. 5-1). The analysis revealed that -22% of rearranged Vy3

transcripts in E15 cells are of the L4-Vy3-Jy1 type (Fig. 5-3A).

Therefore, as in the 7.17A2 cell line, a substantial fraction of

rearranged Vy3 transcripts from E15 thymocytes appear to result

from processing of a transcript that initiates upstream of the Vy4

gene, indicating that both the Vy3 and Vy4 genes must be accessible

to RNA polymerase on a significant fraction of the rearranged

chromosomes.

L3 vs. L4 usage in Vy3 sterile transcripts in freshly isolated

thymocytes
The preceding results raise the question whether the Vy4 and

Vy3 genes are both accessible on the same chromosome before
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Figure 5-3: Usage of L4 and L3 in transcripts of unrearranged
genes in E15 fetal thymocytes. Transcripts of rearranged (A), or
unrearranged (B) Vy3 genes were detected by PCR amplification of
Jyl-primed (A) or V3-3'a-primed (B) cDNA with L4 or L3 upstream
primers. Gel-fractionated products were blotted and hybridized with
the Vy3 oligonucleotide probe (V3C). Comparison of titrated E15 RNA
with titrated in vitro synthesized standard transcripts (see Materials
and Methods) allowed the determination of the number of copies/Lg
total RNA, indicated to the right of the figure.
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rearrangement, which would argue that rearrangement of Vy3 vs. Vy4

is not controlled by differential accessibility. If both genes are
accessible on the same chromosome, it might be expected that the
sterile Vy3 transcripts in fetal thymocytes, like the rearranged

transcripts, would commonly initiate upstream of the Vy4 gene and
include the Vy4 leader exon. To examine this possibility, a similar

PCR assay was used as in the previous experiment, except that in

order to amplify transcripts of the unrearranged genes, the V3-3a'
downstream primer (Fig. 4-1) was used instead of the J1 primer. As

before, the upstream primers were either the L3 or the L4 primers.

Using this method allowed determination of the abundance of sterile
transcripts containing L4 spliced to Vy3 relative to those containing

13 spliced to Vy3. In contrast to what was observed in the case of

rearranged transcripts, L4-Vy3 sterile transcripts were much rarer

(--1/100th the level) than L3-Vy3 sterile transcripts in E15

thymocytes (Fig. 5-3B). These data indicate that very few of the
sterile Vy3 transcripts arise by splicing of L4 to Vy3. A possible

explanation is that the long primary transcripts that initiate upstream
of Vy4 and include Vy3 are not synthesized in progenitors of Vy3 cells,

perhaps because the Vy4 gene is inaccessible in these cells. Thus the

Vy4 gene may become accessible in Vy3 cells only following

rearrangement and/or maturation of the cells.

Discussion
The results presented in this chapter of studies of rearranged

versus sterile Vy3 transcription are consistent with the accessibility
model. Initially, we found that rearranged Vy3 transcripts in an s-
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IEL cell line and in fetal thymocytes often employ the upstream Vy4

leader exon, indicating that both the Vy3 and Vy4 genes must be

accessible in many of the cells with rearranged Vy3 genes. In

contrast, sterile Vy3 transcripts in fetal thymocytes employ the Vy4

leader exon only very rarely. As an explanation for these results we

propose that essentially all Vy3 sterile transcripts derive from

primary transcripts initiating at the Vy3 promoter, rather than from

larger transcripts that include L4. The larger sterile transcripts

would not be produced if the L4/Vy4 gene is inaccessible in the

progenitors of Vy3 cells, and/or if the Vy4 promoter is inactive in

these cells. An alternative possibility, that has not been ruled out, is

that the large sterile transcript is produced, but L4 fails to be spliced

to Vy3. We think this is unlikely, however, since other splicing

events occur normally in sterile transcripts, for example L3 to Vy3

(Figs 4-2 and 5-3B) and L4 to Vy4 (data not shown).

It may seem unlikely that regulation by differential

accessibility of genes segments separated by only 1 kb could occur.

H1owever, a recent study of the human T cell receptor 6 locus

(Lauzurica & Krangel, 1994) demonstrated that the step of V to D

rearrangement of a transgenic recombination substrate is regulated

separately from VD to J rearrangement even though there is only 0.9

kb between the D and J segments.

An attractive version of the accessibility model as applied to Vy

gene rearrangement is that Vy gene accessibility is controlled by

selective activation of the Vy gene promoters. Gene accessibility, in

turn, controls differential gene rearrangement. The fact that the

promoter regions of Vy2, Vy3 and Vy4 show little sequence
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relatedness (Doherty and Raulet, unpublished), is consistent with the

possibility that they are independently regulated. Following gene

rearrangement and/or maturation of the y6 cell, transcription of

other Vy genes in the cell apparently occurs, as shown by the splicing

of the Vy4 leader exon to Vy3 in rearranged transcripts. Among

other possibilities, this may occur because rearrangement brings the

downstream Cyl enhancer (Kappes et al., 1991, Spencer et al., 1991)

nearer to the previously silent promoters, thus activating them.

Another possibility is that each V gene has two types of promoter

elements, one of which is selectively activated to produce the sterile

transcripts, and a second promoter element, active in all mature y8

cells, used to produce the mature transcripts.

Unfortunately, it is difficult to directly assess the whether Vy

gene promoters are differentially active during development. For

example, we have found in transient transfection allays that the Vy4

promoter is active in several y6 T cell lines and hybridomas, even

ones which do not express a Vy4 receptor on their surface (J.

Goldman, C. Thut and K. Guenther, unpublished results). However,

the activity of promoters in mature cells is no indication of their

regulation during development. At present, no appropriate

precursor cell lines exist which can differentiate into particular Vy-

expressing T cells in vitro. This rules out the possibility of using the

transient transfection/reporter gene assays normally employed to

assess transcriptional element functions.

Recent examination of the Vy3 promoter has revealed a

transcriptional repressor region between Vy3 and Vy4 which acts on

both the Vy3 and heterologous promoters in a y6, but not an a[3 T cell
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line (Clausell & Tucker, 1993). This may be involved somehow in the

regulation of Vy3 vs. Vy4 rearrangement in developing T cells.

However, it is difficult to assign this repressor element a role in

regulating differential Vy3/Vy4 rearrangement as it has only been

tested in mature T cell lines.
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Chapter 6

Vy STERILE TRANSCRIPTS IN THYMOCYTES FROM DIFFERENT
STEM CELL SOURCES

Introduction
The previous chapter(s) demonstrated a correlation between

the transcription of unrearranged T cell receptor Vy gene segments

and their rearrangement. This correlation is particularly strong with

regard to the Vy3 gene segment as both its transcription and

rearrangement decline contemporaneously. Cells which express a

V'y3+ T cell receptor on their surface are interesting in that they only

appear in the thymus for a restricted period of time during fetal

ontogeny (days 14-18). In the adult mouse they are found only in

the skin as intraepithelial lymphocytes (s-IEL). It has been

demonstrated that the generation of Vy3 + T cells requires that

precursor cells of fetal origin develop in a fetal thymus (Havran et

al., 1991a, Ikuta et al., 1990). Any other combination of stem cells

and thymus (e.g. fetal liver/adult thymus, adult bone marrow/ fetal

or adult thymus) fails to generate Vy3 + cells either in the thymus or

the skin. This suggests that the targeted rearrangement of Vy3 genes

is programmed by the thymic microenvironment and/or the origin of

the progenitor cells. This chapter describes experiments to

determine whether the production of Vy3 sterile transcripts, a

correlate of targeted rearrangement, is a property inherent in fetal

progenitor cells, by comparing sterile transcript levels in fetal liver-

derived vs. bone marrow-derived thymocytes differentiating in a

fetal thymus.
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Results
Repopulation of fetal thymic organ cultures (rFTOC)

The analysis illustrated in Figure 6-1 has been previously

demonstrated to support the growth and development of T cells from

their precursors in vitro (Ikuta et al., 1990). Thymic lobes from

C57BL/6 mice (Ly-5.2) were dissected from fetuses on day 14 of

gestation (E14), and treated with deoxyguanosine, which destroys

resident lymphoid cells but leaves the thymic stroma intact. These

"empty" lobes were then repopulated with either E14 fetal liver (FL)

or adult bone marrow (BM) cells from C57BL/6-Ly5.1 congenic

donors in hanging drop cultures. The repopulated lobes were grown

for eleven days to allow for thymocyte development and the

resulting cells were harvested for RNA preparation.

A fraction of cells from both types of rFTOC was set aside for

staining to ascertain if the repopulation was successful. As shown in

Figure 6-2A, the repopulations worked as expected (Ikuta, et al,

1990). The resultant cells are virtually all donor-derived (Ly-5.1+)

indicating that the deoxyguanosine depletion of host thymocytes was

successful. Also, as demonstrated previously, Vy3+ cells are only

produced in fetal thymic lobes which were repopulated with fetal

liver stem cells (6.4% of total), whereas lobes repopulated with adult

bone marrow had only background staining for Vy3 (Fig. 6-2A).

Analysis of Vy3 sterile transcript levels

An RT-PCR assay similar to the one used in Chapters 4 and 5

was employed to analyze the level of Vy3 sterile transcripts in total
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Repopulation of fetal thymic organ cultures. See text

and Materials and Methods for details.
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Figure 6-2: FACS analysis of cells from repopulated fetal thymic

organ cultures. Cells isolated from FL- or BM-repopulated fetal

thymic lobes after 11 days in culture were stained with (A) anti-

Ly5.1-FITC and anti-Vy3-biotin + streptavidin-APC and (B) anti-CD4-

PE + anti-CD8-PE.

109



10

F4

O
tlTo

To

0
0
0

0

0
0

L!

~-4

4-

cu

'-4O

Cu

(w

e--Cu la~~~...
Vo

·
~ i .. .'

0o
00

o
0

I M IT I I I [ITT I I F I

-



B
fetal liver repopulated

.1 1 10 100 1000

bone marrow repopulated

.1 1 10 100 1000

CD4 +CD8



RNA from rFTOC cells. However, several changes were made. RNA

used in earlier analyses was prepared from CD4-CD8- thymocytes,

while RNA from the rFTOCs was prepared from unfractionated cells.

These repopulations took place over the course of 2-3 weeks. As a

result, the cells were harvested in small pools, not all at once.

Because only a small number of cells could be recovered from thymic

lobes on any given day, it was not feasible to isolate CD4-CD8- cells

either by complement kills or sorting. However, staining for CD4 and

CD8 revealed similar proportions of double negative cells in pools of

cells derived from fetal liver or bone marrow repopulated thymic

lobes (Figure 6-2B).

Because the number of cells in each pool was small (generally

<106), RNA was isolated using E. coli rRNA as carrier. This precluded

quantitation of sample RNA by spectrophotometer, so PCR assays

were performed using cell-equivalents of RNA (rather than ptg or ng

quantities). The starting samples were titrated, reverse-transcribed

to produce cDNA, the cDNA amplified, and the products visualized on

Southern blots. Quantitation was accomplished as before by parallel

amplification of known quantities of an in vitro synthesized

transcript. H-owever, the primer pair (L3/V3-3'a) used to amplify

sterile transcripts from thymocyte RNA in earlier assays did not

work efficiently enough to reliably amplify transcripts from the

small quantities of RNA used here. To remedy this, a new primer

pair was used (V3/V3-3'c) (for location and sequences of primers

and probes, see Fig. 4A-1 and Chapter 2) which resulted in a smaller

product (253 bp vs. 450 bp) and allowed linear amplification of Vy3

sterile transcripts across the range of RNA concentrations used.
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RNA from independent pools of either fetal liver- or bone

marrow-repopulated thymic lobes were subject to RT-PCR as

described above. RNA from these pools was shown to produce

similar amounts of product when amplified with primers specific for

f3-tubulin (Fig. 6-3C). As shown in figure 6-3A and summarized in

Table 6-1, Vy3 sterile transcript levels were higher in fetal liver than

in bone marrow rFTOCs in every case. The difference varied from 3-

fold (e.g. FL-1 vs. BM-3) to 14-fold (e.g. FL-3 vs. BM-1) with the

average difference of 5-7-fold. This concurs reasonably well with

the relative difference in Vy3 sterile transcript levels between fetal

and adult CD4-CD8- thymocytes using this primer pair (see Fig. 4A-

2C).

The same pools had different absolute values for Vy3 sterile

transcript levels in the different experiments (Table 6-1). Thus, it is

not possible to compare absolute levels between experiments.

However, in every case the relative levels of Vy3 sterile transcripts

in each pool are comparable from one experiment to the next.

The difference in sterile Vy3 transcript levels between FL-

rFTOCs and BM-rFTOCs, is consistent, though small. To insure that

the observed 3-14 fold difference is reliable, 30,000 cell equivalents

of RNA from each individual pool in Expt 2 (Table 6-1) were

combined into larger pools of either FL- or BM-derived cells. These

were titrated in two-fold dilutions and subjected to the same PCR

assay as above. In concordance with earlier observations, the

difference in Vy3 sterile transcript levels was five-fold greater in

RNA from FL than BM (Fig. 6-4A and Table 6-1).
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Figure 6-3: Sterile transcripts levels in RNA from rFTOCs. RNA

from independent pools of rFTOC cells (or in vitro synthesized

standard transcript) was titrated (by 5-fold dilutions) and reverse-

transcribed using an anti-sense primer. The cDNA was then

amplified using the same anti-sense primer and a sense primer. 251

from each reaction was gel-fractionated, blotted, and the blots

probed with 3 2 P-labeled oligonucleotide. Above each lane is the

amount of input RNA in cell equivalents (or fg for the standard

transcript). Lanes labeled "No RT" represent PCRs with the highest

titration of input RNA in which the reverse transcriptase was

omitted. RNA samples are designated either FL (from fetal liver-

repopulated thymic lobes) or BM (from bone marrow-repopulated

thymic lobes). (A) Vy3 sterile transcripts detected using the V3/V3-

3'c primer pair and V3C probe (Fig 4A-1). (B) Vy2 sterile transcripts

detected using the V2/V2-3'a primer pair and V2-3'b probe (Fig. 4-

1). (C) Tubulin transcripts. Note that these are the results of two

different experiments. Product for the sample BM-2 is shown for

both experiments to allow comparison.
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Figure 6-4: Sterile Vy transcript levels in RNA from pooled rFTOCs.

RT-PCR was performed as in Figure 6-4 using as template combined

pools of RNA from either fetal liver rFTOCs (FL-pool) or bone marrow

rFTOCs (BM-pool), with two-fold dilutions. (A) Vy3 sterile

transcripts detected using the V3/V3-3'c primer pair and V3C probe

(Fig 4A-1). (B) Vy2 sterile transcripts detected using the V2/V2-3'a

primer pair and V2-3'a probe (Fig. 4-1).

(C) Tubulin transcripts.
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Table 6-1: Summary of sterile transcript levels in rFTOC RNA. PCR

gels were scanned on a densitometer, and values expressed as

copies/10,000 cell equivalents were calculated by comparing amount

of PCR product from each sample to the amount produced from

known amounts of standard transcript.

a) PCR shown in Fig. 6-3A

b) PCR shown in Fig. 6-4A

c) PCR shown in Fig. 6-3B

d) PCR shown in Fig. 6-4B

e) calculated as average of BM samples vs. average of FL

samples
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Analysis of Vy2 sterile transcript levels.

To investigate whether the differences observed were a

general phenomenon or specific to the Vy3 transcript, Vy2 sterile

transcript levels were also determined. As shown in Figure 6-3B and

summarized in Table 6-1 there is no consistent difference in Vy2

sterile transcript levels between FL and BM rFTOCs Some FL rFTOCs

had higher levels than BM rFTOCs (e.g. FL-2 vs. BM-1), while others

were lower (e.g. FL-1,3 vs. BM-2), with the average difference BM>FL

by 1.6-fold. As above, an additional RT-lPCR experiment was

performed using the pooled RNA samples from FL or BM rFTOCs with

two-fold dilutions. As shown in Figure 6-4B and Table 6-1, the

pooled samples resulted in a difference in Vy2 sterile transcript

levels between BM- and FL-derived thymocytes of 1.4-fold.

Discussion

Previous studies have demonstrated a requirement for the

combination of fetal stem cells and a fetal thymic microenvironment

to generate Vy3+ T cells. RT-PCR assays used here show that the

level of Vy3 sterile transcripts is higher in RNA samples from FL-

derived thymocytes than from BM-derived thymocytes, reflecting

the difference in developmental potential between fetal and adult

thymocyte precursors in the ability to develop into Vy3+ cells.

Furthermore, the difference in Vy3 sterile transcript levels between

FL and BM progenitors is enough to account for the difference

observed between E15 and adult DN thymocytes.

Because the thymic lobes were repopulated with

unfractionated FL or BM cells, there could be a difference in total
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numbers of T cell progenitors, resulting in the observed difference in

Vy3 sterile transcript levels. That this is not the case is supported by

the observation that there is no consistent difference between FL and

BM repopulated thymic lobes with regard to Vy2 sterile transcript

levels.

If the accessibility of Vy3 genes is controlled at the level of

stem cell origin, what role is played by the thymic microenvironment

in controlling the generation of Vy3 + T cells? At least four models

can be envisioned which incorporate our observations with the

earlier results on this issue (Fig. 6-5).

In the first model, the fetal progenitor cell destined to become

a Vy3 cell transcribes the germline Vy3 gene independently of

interaction with the thymus, reflecting an increased accessibility of

the gene inherent in these cells. However, a signal which can be

provided by the fetal thymus, but not the adult thymus, is required

to activate actual rearrangement of the gene. This possibility is

supported by recent studies showing that transcription and/or

demethylation of transgenic recombination substrates can occur in

cells in the absence of high levels of rearrangement, indicating that

an additional step may be required (Bottaro et al., 1994, Chen et al.,

1993, Okada et al., 1994).

In the second model, a signal from the fetal thymic stroma

initiates transcription and/or accessibility of germline Vy3 genes

allowing their rearrangement. According to this model, the signal

can only be delivered by the fetal thymic strorna, and only fetal stem

cells are receptive to this signal.
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Possible role of thymic signals in Vy3 + T cell

production. Steps in the rearrangement of a Vy3 gene in a fetal

progenitor cell are shown as well as the points at which positive ( )

or negative ( T) signals are delivered by the fetal (Models I, II, IV)

or adult (Model III) thymic stroma according to each of the four

models described in the text.
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A third possibility is that fetal progenitors have the potential to

spontaneously transcribe and rearrange their Vy3 genes. The adult

thymus, but not the fetal thymus, delivers a negative signal which

actively shuts off the production of Vy3 sterile transcripts and/or

Vy3 gene rearrangement

Finally, in the fourth model, the occurrence of both germline

transcription and rearrangement of the Vy3 gene segment in the fetal

progenitor cell is independent of the thymic microenvironment.

However, the fetal thymus, but not the adult thymus, may provide

other signals which are required for the survival and/or maturation

of the Vy3 + cells. This is supported by studies which show that

phenotype maturation of Vy3 expressing cells is promoted by

interactions within the fetal thymus (Leclercq et al., 1993, Tatsumi et

al., 1993). Whether these interaction involve the T cell receptor has

not been established. However, in one study, crosslinking of the y T

cell receptor on HSA+ thymocytes resulted in downregulation of RAG-

1 expression (Tatsumi et al., 1993), which is associated with T cell

maturation (Brandle et al., 1992).

An important aspect of each of the above models is that the

rearrangement of the Vy3 gene is a programmed event in a

particular subset of fetal progenitor cells. Thus, the signal(s)

delivered by the fetal thymus to support, or by the adult thymus to

repress, the development of Vy3 cells only act on progenitors in

which this lineage is predetermined.

The rearrangement of the Vy3 gene has been demonstrated to

proceed correctly both with regard to developmental timing and

production of canonical junctional sequence in the absence of
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selection, probably as the result of molecular constraints (Asarnow et

al., 1993, Itohara et al., 1993). While this and other evidence suggest

that programmed rearrangement of Vy genes plays an important role

in the ordered appearance of yb T cell subtypes during development,

this does not imply that selection events in the thymus are not also a

part of the normal physiological process of y6 T cell development.

With regard to activating or repressing Vy3 gene

transcription/rearrangement, the nature of any putative signals

between the thymus and stem cells colonizing it is unknown.

However, cytokines are possible candidates. For example, cytokines

can differentially induce transcription of specific immunoglobulin

heavy chain constant regions prior to switch recombination to that CH

segment in B cells (Lutzker et al., 1988, Stavnezer et al., 1988). IL-

10 and IL-7 have been demonstrated to be involved in y6 T cell

development in the fetal thymus (Fine et al., 1994, Tomana et al.,

1 993). However, no cytokine has been determined to preferentially

support the outgrowth of a particular y T cell subtype. An

alternative possibility is that receptors on stem cells interact with

counter-receptors on the surface of thymic stromal cells, resulting in

either the activation or repression of Vy3 gene rearrangement.
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Chapter 7

Vy STERILE TRANSCRIPTS IN THYMOCYTES FROM SCID MICE

AND CHIMERAS

Introduction
The previous chapters examined the role of Vy gene targeting

in the ordered appearance of y T cell subtypes. The results

suggested that differential accessibility of Vy genes may be

responsible for the changing rearrangement patterns during

ontogeny. To further study the importance of sterile Vy transcripts

in development, I wished to look at patterns in cells which do not

rearrange their T cell receptor genes, namely in thymocytes of SCID

mice.

SCID mice have a defect in their recombinatorial machinery

such that they are unable to correctly complete V-(D)-J

rearrangement (Schuler et al., 1986). As a result, they are severely

deficient in B and T cells (Bosma et al., 1983). The thymus of the

SCID mouse reflects this deficiency in that it is not organized into

distinct cortical and medullary regions and it has only a fraction of

the cellularity of a normal thymus. The thymocytes that are present

are large in size, IL-2R+ , CD4-, CD8- and TCR- (Shores et al., 1990).

These cells most resemble early fetal thymocytes of a normal mouse.

Cells of this phenotype are also present in small numbers as T cell

precursors in the adult murine thymus. (Scollay et al., 1988).

Introduction of normal cells into a SCID thymus, either by

exogenously added stem cells (bone marrow chimeras) or through
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the spontaneous reversion of the SCID mutation in a small subset of

endogenous cells ("leakiness"), changes the thymus to a more normal

adult morphology. The thymus develops distinct cortical and

medullary regions (Shores et al., 1991), and a portion of the SCID

thymocytes advance to the CD4+CD8 + stage (double positive-DP)

(Shores et al., 1990). It is important to note that cells which become

DP do not necessarily express T cell receptor themselves, but merely

require the presence of these normal cells.

Because the adult SCID thymus in some respects resembles a

normal fetal thymus, it was of interest to examine whether the

similarity extends to the presence of high levels of Vy3 sterile

transcript. If so, I wished to know if the maturation of the SCID

thymus, induced by the presence of normal cells, would cause the

level of Vy3 sterile transcripts to decrease in SCID thymocytes. It

was also of interest to determine whether the SCID thymus, given its

resemblance to a normal fetal thymus, could support the

development of Vy3+ T cells. This chapter describes studies to

address these questions.

Results
V'r Sterile Transcript Levels In SCID Thymocytes

First it was important to determine Vy sterile transcript levels

in thymocytes of unmanipulated SCID mice. Because they are

arrested prior to y gene rearrangement (Carroll & Bosma, 1991),

adult SCID thymocytes may have similar progenitor pools as normal

adult CD4-CD8- thymocytes prior to rearrangement of T cell receptor

genes. Thus, they may also have similar patterns of Vy gene sterile
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sterile transcripts
copies/gg

source of
thymocyte RNA Vy2

5.7X105

Adult DN CD3'

SCID El 5

SCID Adult

l.2X105

4.6X10 5

4.6X1 0 5

<3.6X1 0 3

2.3X1 0 5

2.3X1 0 5

Table 7-1: RNA from El 5 or adult SCID thymocytes was subjected

to quantitative RT-PCR as described in Chapter 4. Values for El 5 CD3'

and adult DN CD3- sterile transcript levels from Table 4-1 are included
for comparison

El5 CD3-

Vy3

3.4X1 0



transcription. Alternatively, it is possible that they have the same

pattern of sterile transcripts as fetal thymocytes, because of their

resemblance with regard to cell surface markers and thymic

architecture. To test this, RNA was isolated from thymocytes of 3-4

week old adult and E15 fetal CB17 SCID mice and subjected to the

quantitative RT-PCR assay described in Chapter 4.

The results, summarized in Table 7-1, compare the levels of

Vy2 and Vy3 sterile transcripts in SCID E15 and adult thymocytes to

levels in normal CD3- thymocytes. First, it is important to point out

that with regard to either Vy2 or Vy3 sterile transcript levels, there is

no discernible difference between SCID adult and SCID E15 fetal

thymocytes. It also appears that the pattern of Vy3 sterile

transcripts in either population closely resembles that of normal

CID3- E15 fetal thymocytes. Sterile Vy2 transcript levels also are

similar between SCID adult, SCID E15 and normal E15 CD3-

thymocytes. Thus, with regard to sterile transcript levels, the adult

SCID thymus is comparable to a normal fetal thymus.

Construction of Chimeras

Experiments by Shores, et al (Shores et al., 1990, Shores et al.,

1991) demonstrated that the introduction of bone marrow cells from

a normal mouse into a SCID mouse would induce the thymus to

change to a more normal state. I made similar chimeras to test

whether the Vy3 sterile transcript levels in SCID thymocytes would

decrease in response to residing in a thymus which changed from a

fetal to an adult state.
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First, potential CB17 SCID (Thyl.2) hosts were tested for

leakiness by performing ELISAs to determine the IgG content of their

serum. Only IgG-negative hosts were used. They were injected i.v.

with E14 fetal liver cells from AKR (Thyl.1) donors (AKR-->SCID).

Fetal liver was chosen as the source of stem cells because this would

allow the determination of whether the environment of the SCID

thymus is sufficiently "fetal" to support the development of Vy3-

expressing T cells. Unlike most stem cell chimeras, the hosts were

unirradiated to allow observation of the effect on residual SCID host

thymocytes. Control chimeras were also constructed by injecting

SCID hosts with E14 fetal liver from CB17 SCID donors (SCID-->SCID).

s-IELs in chimeras

As discussed in the previous chapter, Vy3+ T cells can only be

generated from the combination of fetal stem cells and a fetal thymic

microenvironment (Havran et al., 1991a, Ikuta et al., 1990). Because

of the resemblance of the adult SCID thymus to a normal fetal

thymus, its potential to support the development of Vy3+ T cells from

fetal progenitors was examined. If these cells are in fact produced,

they may only be present in the thymus for a limited time, which

could easily be missed. It was assumed that these cells would be

capable of homing to the skin, as Vy3 + s-IELs were recovered from

adult (nude) hosts reconstituted with fetal liver and fetal thymic

stroma (Havran et al., 1991a). Therefore, the presence of donor-type

s-IELs was determined by staining epidermal cells for Thy-1.1 and

V y3. However, no Vy3+ cells were found in the skin of these mice

(Fig 7-1).
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Figure 7-1: s-IELs in SCID chimeras. Epidermal cells isolated from

the skin of AKR, AKR-->SCID chimeras or AKR-->SCIDneo chimeras

were stained with antibodies against Vy3 and Thyl.1. Percent of

donor-type s-IEL is indicated.
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Additional chimeras were constructed using fetal liver cells

from AKR donors and neonatal (0-1 day) SCID recipients (AKR-->

SCIDneo) in the hope that the fetal stein cells would have a better

chance of developing into Vy3 + cells in a SCID thymus which has not

been subject to the effects of aging. Also, neonates have been shown

to be the best hosts for complete reconstitution of unirradiated SCID

mice with allogeneic stem cells (Cowing & Gilmore, 1992). However,

staining of epidermal cells from these chimeras did not detect Vy3+

cells (Fig. 7-1).

The reconstitution looked to be complete as demonstrated by

the normal distribution of CD4/CD8 subsets in the thymus (data not

shown). Additionally, the spleens of these chimeras were removed,

enriched for y8 T cells by treatment with antibodies against heat-

stable antigen (to remove B cells), CD4 and CD8 plus complement.

Staining of surviving cells with pan-af3 or pan-y6 antibodies revealed

the presence of both o[3+ and y8+ T cells in the spleens of these

chimeras (Fig. 7-2) which have the donor Thyl.1 type (data not

shown). This indicated that the lack of Vy3+ cells in the skin was not

due to some general defect in the ability of these mice to generate T

cells from donor stem cells.

Isolation of thymocytes from chimeras

These chimeras were designed to examine the effect of the

presence of normal cells on SCID thymocytes. First, host cells had to

be isolated from the chimeras. This was done by exploiting the Thyl

allelic difference between donor (AKR-Thyl.1) and host (CB17 SCID-

Thyl.2) cells. Isolation of SCID cells from these thymuses was first

133



Figure 7-2: T cells in spleen of AKR-->SCIDneo chimeras. Spleen

cells from SCID (A, B), AKR-->SCIDneo (C, D) or AKR (E, F) mice

were depleted of B cells and stained with antibodies against a3 T cell

receptor (A, C, E) or y8 T cell receptor (B, D, F).
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attempted by two rounds of depletion with anti-Thyl.1 antibody

plus complement. Because the SCID cells made up such a small

proportion of the thymocytes in the chimeras, it was difficult to

achieve a high level of purity using this technique. Staining of the

resultant cells revealed that only 20% were Thyl.2 + (data not

shown). Thus, in order to isolate a pure population of host cells it

was necessary to sort them away from the thymocytes which had

expanded from the donor stem cells.

Eight to ten weeks post-injection, mice were tested for

chimerism by staining of peripheral blood lymphocytes (PBLs) with

anti-Thyl.1 antibody. All thymuses from mice which were chimeric

by PBL phenotype (i.e. Thyl.1+) had normal cellularity (average

1.5x10 8 cells/thymus) compared to thymuses from mice which were

Thyl.1- (average 3.4x106 cells/thymus). Thymocytes from chimeric

mice were pooled, and a portion of them were stained for CD4, CD8

and Thyl.1 or Thyl.2. The SCID (Thyl.2+) cells made up 0.5% of total

thymocytes. As expected, the donor cells had differentiated into the

normal CD4/CD8 subsets (Fig. 7-3B). In addition, some of the

resident SCID thymocytes (29.8%) had adopted the CD4+CD8 +

phenotype (Fig. 7-3B), in accordance with earlier findings (Shores et

al., 1990).

The remaining cells were subjected to one round of treatment

with anti-CD4 and anti-CD8 antibodies plus complement to enrich for

CCD4-CD8- cells. The resultant cells were stained with a mixture of

anti-CD4/CD8-PE, anti-Thyl.2-FITC and anti-Thy 1.1-biotin +

streptavidin-tricolor. CD4-CD8- (PE-) cells were sorted into host

(Thyl.2 + ) and donor (Thyl.l+) populations. Post-sort analysis
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Figure 7-3: CD4/8 phenotypes of thymocytes from SCID chimeras.

Percent of each CD4/CD8 subset is indicated in the appropriate

quadrant. (A) Total thymocytes from SCID-->SCID chimeras were

stained with CD4- and CD8-specific antibodies. (B) Total thymocytes

from AKR-->SCID chimeras were stained with anti-CD4, anti-CD8 and

either Thyl.l1- or Thyl.2-specific antibody. CD4/CD8 staining from

either host (SCID) or donor (AKR) cells is displayed by gating on

Thyl + cells, as indicated. (C, D) Total thymocytes from SCID-->AKR

(C) or CB17-->AKR (D) chimeras were stained with anti-CD4, anti-

CI)D8 and anti-Thyl.2 antibodies. CD4/CD8 subsets from donor cells

are displayed by gating on Thyl.2 + cells.
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revealed the purity of the sorted cells was 98.7% (SCID) and 98.8%

(AKR).

V y3 sterile transcripts in AKR-->SCID chimeras.

As demonstrated above, the Vy3 sterile transcript levels in

SCID thymocytes are comparable to those present in normal fetal

thymocytes. In order to determine if these levels were influenced

by the maturation of the thymus induced by the presence of normal

cells, RNA was isolated from SCID-->SCID thymocytes and sorted SCID

host and AKR donor thymocytes from AKR-->SCID chimeras. As in

Chapter 6, the small cell numbers required the use of rRNA as

carrier. Thus, the amount of RNA used for the RT-PCR was measured

in cell equivalents. This RNA was amplified using the V3/V3-3'c

primer pair (Fig. 4A-1). Earlier experiments had shown that SCID--

>SCID thymocyte RNA generated the same amount of Vy3 product as

SCID thymocyte RNA (data not shown). As illustrated in Figure 7-4,

it is apparent that there is little change in the levels of Vy3 sterile

transcript in SCID thymocytes from the AKR-->SCID chimeras. There

is, however, an -5-fold decrease in Vy3 sterile transcript levels in

AKR thymocytes from these chimeras, as expected. These data

indicate that the "adult" thymic environment is unable to cause a

decrease in Vy3 sterile transcript levels in SCID progenitor cells.

SCID-->AKR chimeras.

Another way to test the effect of a mature thymic

Imicroenvironment on SCID thymocytes was to introduce them into a

normal thymus. This was accomplished by injecting CB17 SCID fetal
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Figure 7-4: Vy3 sterile transcripts in AKR-->SCID chimeras.

(A) RNA from SCID-->SCID chimeras, sorted populations of cells from

AKR-->SCID chimeras (AKR-->SCID(S): SCID host cells or AKR-

->SCID(A): AKR donor cells) or in vitro synthesized standard

transcript was titrated (by 5-fold dilutions) and reverse-transcribed

using the V3-3'c primer. The cDNA was then amplified using the

V3/V3-3'c primer pair. 25gtl from each reaction was gel-

fractionated, blotted, and the blots probed with 3 2 P-labeled V3C

oligonucleotide. (For locations of primers and probe, see Fig. 4A-1).

Above each lane is the input RNA in cell equivalents (or fg for the

standard transcript). Lanes labeled "no RT" represent PCRs with the

highest titration of input RNA in which the reverse transcriptase was

omitted. (B) RT-PCR product from the same RNA samples using

tubulin primers and probe.
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liver cells into irradiated AKR hosts and observing the effect on

CD4/CD8 subsets and Vy3 sterile transcript levels. Control chimeras

were also constructed by injecting CB17 wild type fetal liver into

AKR hosts (CB17-->AKR), and CB17 SCID fetal liver into lightly

irradiated SCID hosts (SCID-->SCIDirr).

Analysis of the CD4/CD8 subsets demonstrated similar results

as the reciprocal chimeras. Donor cells from CB17-->AKR chimeras

differentiated into all four subsets in relatively normal proportions

(Fig. 7-3D). A portion of SCID thymocytes (79%) from SCID-->AKR

chimeras became CD4+CD8 + as predicted (Fig. 7-3C).

Donor thymocytes from SCID-->AKR or CB17-->AKR chimeras

were pooled and treated with one round of anti-CD4 and anti-CD8

antibodies plus complement. The resulting cells were stained with

CD-4/CD8-PE and Thyl.2-FITC. Donor DN cells were sorted as PE-

FITC + and were found to be 95% (SCID) and 98.5% (CBI7) CD4-CD8-

Thyl.2+. Vy3 sterile transcript content in the RNA from these cells

was assessed as above using RT-PCR (Fig. 7-5). Again there was little

apparent difference between SCID-->SCID and SCID-->AKR with

respect to sterile Vy3 transcript levels. In contrast, levels were -5

-25-fold lower in CB17-->AKR thymocytes as would be expected.

'Thus, thymocytes derived from CB17 stem cells produce low levels of

V y3 sterile transcript in the adult thymic microenvironment.

However, the adult thymus does not appear to exert this effect on

stem cells from SCID mice.
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Fig. 7-5: Vy3 sterile transcript levels in -->AKR chimeras. RNA

from SCID-->SCIDirr, sorted DN donor thymocytes from SCID- ->AKR

or CB17-->AKR chimeras, or in vitro synthesized transcript was

subjected to RT-PCR to detect Vy3 sterile transcripts or tubulin

transcripts as in Figure 7-4.

Note that the first two lanes of SCID-->SCIDirr products were

loaded in reverse order.
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Discussion

An RT-PCR assay determined that E15 and adult SCID

thymocytes express transcripts of unrearranged Vy2 and Vy3 genes

in a pattern similar to normal E15 fetal thymocytes, suggesting that

the adult SCID thymus resembles a fetal thymus with respect to Vy3

gene accessibility.

Previous studies demonstrated that the SCID thymus is

essentially not defective and evidence presented here supports this.

For example, upon the introduction of normal stem cells, it is able to

direct the differentiation of thymocytes into normal CD4/CD8 subsets.

In addition, it is able to produce y and a[3 T cells from these stem

cells as evidenced by their presence in the spleen. Despite the

effects of normal AKR cells on the thymic architecture and CD4/CD8

expression by SCID thymocytes in AKR-->SCID chimeras, there did

not appear to be any effect on SCID thymocytes in these chimeras

with regard to reduction of Vy3 sterile transcript levels.

Another attempt to investigate the effect of a normal adult

thymic environment of SCID thymocytes involved the introduction of

SCID stem cells directly into a normal thymus using SCID-->AKR

chimeras. Since these cells would never have been exposed to a fetal

thymic environment, the influence of the adult thymus can be

evaluated. SCID cells isolated from SCID-->AKR chimeras still had

high levels of Vy3 sterile transcripts indicating that, like SCID cells

from AKR-->SCID chimeras, the environment in which these cells

mature does not affect the transcription of the Vy3 genes.

In normal mice fetal liver stem cells colonize the fetal thymus

and a some of these cells express high levels of Vy3 sterile
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transcripts in preparation to become Vy3+ cells. These thymocytes

would then presumably rearrange their genes and migrate to the

skin. As development progresses, these cells would be displaced by

thymocytes derived from bone marrow cells which would not

produce high levels of Vy3 sterile transcripts. Vy3 progenitor cells

among SCID thymocytes, being unable to rearrange their genes may

survive and become trapped in the thymus, remaining through

adulthood. This may not seem likely because some studies indicate

that SCID thymocytes have a high rate of turnover (Rothenberg et al.,

1993, Schuler et al., 1988). However it is possible that the small

subset of thymocytes which are transcribing unrearranged Vy3 genes

are long-lived in the thymus. Thus, in the chimeras, these cells

would remain regardless of the state of maturation of the thymus.

Another possibility is that the normal adult thymus is capable

of providing signals which actively shut off the production of Vy3

sterile transcripts. This could explain the observation that

thymocytes derived from CB17 fetal stem cells introduced into a

normal thymus have reduced levels of Vy3 sterile transcripts. The

reduced levels of Vy3 sterile transcript in donor derived cells from

the AKR-->SCID chimeras demonstrates that if this signaling does

occur, it is working properly in the adult-like thymus of these

chimeras. The observation that the Vy3 sterile transcript levels in

SCID thymocytes from both AKR-->SCID and SCID-->AKR chimeras

remain high indicates that these cells may be arrested at a

developmental point at which they are unresponsive to the putative

negative signals from the adult thymic stroma.
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Results presented in this chapter show that, although the

unmanipulated adult SCID thymus resembles a normal fetal thymus

with regard to Vy3 sterile transcript levels, it does not appear to

have the ability to support the development of Vy3+ T cells from

normal fetal progenitors. Why is this so?

One possibility is that the signal provided by the normal fetal

thymus may be required to induce rearrangement of the Vy3 gene

whose accessibility, as evidenced by high levels of Vy3 sterile

transcript, may be an inherent property of the fetal progenitor cell.

This is supported by the observation that SCID thymocytes in the

SCID-->AKR chimeras express high levels of Vy3 sterile transcripts in

spite of the fact that they are derived from fetal stem cells which

have never been exposed to fetal thymic stroma. Thus, the SCID

thymus may essentially play a passive role with regard to the

production of Vy3 sterile transcripts but would not provide signals,

given by the normal fetal thymus, to induce rearrangement of Vy3

genes.

Alternatively, it is possible that the adult SCID thymus is

different from a fetal thymus in that it can not deliver a signal which

induces maturation of Vy3 + cells (perhaps from the HSA+ to the HSA-

stage) and which may be required for the export of these cells to the

periphery. Thus, Vy3+ cells, even if generated in the thymus, may

not appear in the skin of these mice.
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CHAPTER 8

CONCLUDING REMARKS

The Accessibility Model and TCR y Gene Rearrangement

The accessibility model has been invoked to explain regulation

of rearrangement in situations such as sequential rearrangement of

IgH chain genes or cytokine-mediated class switching. In this model,

transcription of unrearranged gene segments, which precedes their

rearrangement, is thought to be an indicator of the accessibility of

the gene segments to the recombinase machinery. Consistent with

this model are my observations that the pattern of sterile Vy gene

transcript levels during ontogeny correlates with the timing of their

rearrangement.

A prediction of the accessibility model is that only one Vy gene

of the Cyl cluster will be accessible in a given progenitor cell. We

observed that, in contrast to rearranged Vy3 transcripts, sterile Vy3

transcripts rarely have the Vy4 leader exon spliced to the Vy3 coding

exon. This suggests that Vy4 and Vy3 genes may be differentially

accessible prior to rearrangement.

Taken together, the results in Chapters 3-5 suggest that

ordered Vy gene rearrangement is accomplished, at least in part, by

the selective induction of V gene accessibility, which is correlated

with transcription of the unrearranged genes. Although this and

other work provide strong correlations between transcription and

rearrangement, this does not imply that transcription per se is

responsible for accessibility of the genes. The presence of sterile
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transcripts may merely be a reflection of the chromatin accessibility

mediated by a different mechanism. Experiments showing that

high levels of sterile transcript can be produced without appreciable

levels of rearrangement have been used to argue that transcription is

not sufficient to cause accessibility of these genes. However, in those

studies, the measure of accessibility was rearrangement. Thus, it is

possible that transcription is sufficient for accessibility, but that

accessibility is not sufficient for rearrangement. For example, local

control of gene accessibility may be regulated by certain factors,

while activation of rearrangement may require other locus or gene-

specific factors necessary to assemble the recombinase complex.

Identification of cis-acting elements that regulate accessibility should

lhelp to sort out the various levels at which recombination is

controlled.

It has not been determined which cis-acting elements are

responsible for the various steps in rearrangement as opposed to

those responsible for transcription. The immunoglobulin heavy chain

enhancer is an excellent system for analysis of this problem as it is

well-characterized and known to be important for both transcription

and rearrangement. Selective mutation of discrete sites within the

enhancer might allow the dissociation of transcription, accessibility

and rearrangement.

Previous research involving accessibility and rearrangement

has usually focused on immunoglobulin, rather than T cell receptor

genes. These studies have the advantage that rearrangement occurs

in vitro in pre-B cell lines, the counterparts of which are not

available for the y T cell lineage. Studies of developmental
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regulation of immunoglobulin and TCR gene rearrangement have

recently moved to in vivo models such as mice transgenic for

rearrangement substrates or with specific control elements deleted

or mutated. These models allow the most stringent analysis of this

issue. Ongoing studies with Vy gene transgenic recombination

substrates suggest that it is not simply the promotor elements nor

the relative position of the genes which determine the order of

rearrangement in this system (J. Baker and D. H. Raulet, unpublished

results).

Relative Contribution of Stem Cell and Thymus Origin to

V y3 + Cell Development

All the aspects of the control of differential transcription

and/or accessibility of Vy genes are not fully known. It could be the

property of the origin of the stem cell (i.e. fetal liver vs. adult bone

marrow) and/or of differential signaling by fetal vs. adult thymic

stromal cells. My results showed that fetal liver stem cells, but not

adult bone marrow stem cells generated high levels of Vy3 sterile

transcripts in a fetal thymus. This fits with earlier results showing

that only fetal stem cells can give rise to Vy3 + cells, which were

corroborated in my experiments.

Taking these results into account, I proposed four models to

explain the restricted development of Vy3+ thymocytes. In the first

model, fetal Vy3 progenitor cells spontaneously transcribe the

unrearranged Vy3 gene, indicating its accessibility. A signal from the

fetal thymus is then required to activate rearrangement. The second

model states that the Vy3 gene rearrangement is a spontaneous
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process after the accessibility of the Vy3 gene in the fetal progenitor

is triggered by signals from the fetal thymus. The third model

describes a mechanism in which the spontaneous transcription

and/or rearrangement of Vy3 genes in progenitor cells is actively

switched off by a signal delivered by the adult thymus. Finally, in

the fourth model, transcription and/or accessibility, as well as

rearrangement, are spontaneous processes. After expression of the T

cell receptor on the surface, the fetal thymic stroma delivers a signal

to allow survival and/or to induce maturation of the Vy3+ cell.

It is possible that some aspects of each model play a role in the

production of Vy3+ cells. This is a multi-step process which may be

regulated at every stage. Thus, distinct thymic signals may be

necessary to induce accessibility, rearrangement and maturation of

these cells.

Certain aspects of these models can be readily tested. For

example, if Vy3 sterile transcript production in fetal progenitors is

independent of thymic signals, it may be possible to detect these

transcripts in purified populations of stem cells or pro-T cells from

fetal and adult bone marrow, allowing a comparison between the

two. It may also be possible to incubate stem cells with separated

populations of fetal thymic stromal cells in reaggregation cultures.

This would be useful in determining which stromal cell types might

be important for the signaling involved in development of Vy3+ cells.

Recently, it has been shown that thymic stromal cells from

young (day 7) mice can be used in reaggregation cultures (J. P.

Allison, unpublished results). Reaggregation experiments using day

7 thymic stroma with fetal or adult stem cells could be used to
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determine if Vy3 sterile transcript levels are reduced, as predicted

by Model III. In addition, mixing experiments with adult and fetal

thymic stroma could be performed to determine if the effect of one

or the other is dominant.

Another way to test whether the adult thymus has a negative

effect on Vy3 gene transcription, would be to introduce fetal or adult

stem cells into an adult thymus by intrathymic injection, and

determine Vy3 sterile transcript levels at various time points after

transfer.

Vy3 Gene Accessibility in SCID Chimeras

For the final series of experiments I started by determining the

pattern of sterile Vy transcripts in SCID thymocytes to observe the

pattern of expression in the absence of rearrangement. I found that

the sterile transcript patterns resembled those of E15 fetal

thymocytes. This concurs with the fetal appearance of the SCID adult

thymus with regard to thymocyte cell surface markers and thymic

architecture.

I made AKR-->SCID fetal liver chimeras to examine the effect of

the maturation of the SCID thymus, induced by the presence of

normal cells, on Vy3 sterile transcript levels in the resident SCID

thymocytes. I also made SCID-->AKR chimeras to examine the effect

of introducing the SCID fetal stem cells into an adult thymus. In both

types of chimeras, little change was observed in Vy3 sterile

transcript levels in SCID thymocytes. The lack of response of SCID

stem cells to changes in the thymic microenvironment suggests that
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they have limited usefulness for the understanding the mechanism

of regulated rearrangement of the Vy3 gene.

AKR thymocytes from the AKR-->SCID, and wild type CB17

thymocytes from CB17-->AKR chimeras did express lower levels of

V y3 sterile transcripts. However, the role of the thymus in the

downregulation of Vy3 sterile transcripts is difficult to ascertain.

Events may have occurred between the injection of the fetal liver

cells and the determination of the sterile transcript levels in the

thymus weeks later. The relationship between fetal and adult stem

cells is not clear. It is possible that the fetal stem cells injected into

the chimeras home to the bone marrow where they are somehow

converted to "adult" stem cells prior to migration into the thymus.

More direct experiments to determine if negative signals are given

by the adult thymus are described above.

Although the adult SCID thymus resembles a normal fetal

thymus, my results suggest that it lacks the ability to deliver the

appropriate signals necessary to support development of Vy3+ T cells

from fetal progenitors. Perhaps the differences between normal fetal

and SCID adult thymus can be examined to provide clues as to what

is necessary for the production of Vy3+ cells.
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